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Abstract

The recent COVID-19 pandemic revealed an urgent need to develop robust cell culture

platforms which can react rapidly to respond to this kind of global health issue. Chinese

hamster ovary (CHO) stable pools can be a vital alternative to quickly provide gram

amounts of recombinant proteins required for early-phase clinical assays. In this study,

we analyze early process development data of recombinant trimeric spike protein

Cumate-inducible manufacturing platform utilizing CHO stable pool as a preferred pro-

duction host across three different stirred-tank bioreactor scales (0.75, 1, and 10 L). The

impact of cell passage number as an indicator of cell age, methionine sulfoximine (MSX)

concentration as a selection pressure, and cell seeding density was investigated using

stable pools expressing three variants of concern. Multivariate data analysis with princi-

pal component analysis and batch-wise unfolding technique was applied to evaluate the

effect of critical process parameters on production variability and a random forest

(RF) model was developed to forecast protein production. In order to further improve

process understanding, the RF model was analyzed with Shapley value dependency

plots so as to determine what ranges of variables were most associated with increased

protein production. Increasing longevity, controlling lactate build-up, and altering pH

deadband are considered promising approaches to improve overall culture outcomes.

The results also demonstrated that these pools are in general stable expressing similar

level of spike proteins up to cell passage 11 (�31 cell generations). This enables to

expand enough cells required to seed large volume of 200–2000 L bioreactor.

K E YWORD S

CHO stable pool, Cumate induction, fed-batch bioreactor production, MVDA, random forest,
SARS-CoV-2 trimeric spike protein
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1 | INTRODUCTION

Chinese hamster ovary (CHO) cells are currently the industry standard

when it comes to producing recombinant therapeutic proteins. This is

because CHO cells are able to produce human-like proteins that have

adequate glycosylation profiles. CHO cells can come in two flavors,

cell lines derived from single clones and stable pools. Cell line devel-

opment requires numerous stringent screening procedures that select

the best performing cell clone.1 These tests are generally carried out

at the micro-liter scale to evaluate growth, protein yield, and critical

quality attributes (CQAs). Such screening procedures can take months

to complete and consequently these strategies are sub-optimal when

reacting to rapidly evolving public health crisis, such as the global pan-

demic caused by the SARS-CoV-2.2,3 To fast-track the cell line crea-

tion to large-scale protein production, mammalian cell stable pools

have been considered an attractive alternative.4 This is because even

though the cell pools are less homogeneous than their cell line coun-

terparts, they can still be utilized to produce recombinant proteins at

a sufficiently large-scale. It is noted however that cell pools can be

susceptible to cell age effects and thus for stable pools to be a viable

alternative to cell lines to provide enough materials for toxicology

study and Phase 1 clinical trials, the process must be understood and

optimized.5 Optimizing pool process intensification can rely on

design-of-experiment to identify process conditions that enhance cul-

ture performance in a given production scale. Once sufficient data are

generated across various production systems and with different pools,

exploratory multivariate data analysis (MVDA) can be utilized to sort

through the data to understand what parameters promote good per-

formance or impact adversely the production process.6 Additionally,

soft sensors that predict process outcomes can also be developed not

only to predict future yields based on monitored variables but to also

understand the variable importance within the model.7 When variable

impact on model is combined with intimate process knowledge,

insights can be gained to create representative models or improve

process performance.

In terms of large dataset analysis, principal component analysis

(PCA) and partial least square (PLS) are the two tools frequently used

in biomanufacturing. PCA is generally employed as the first step of

MVDA to explore the large data structure and provide process

dynamics. PLS can be applied as the second part of MVDA focusing

on process optimization and forecasting. In the first part of this article,

we will focus on the use of PCA to reduce data dimensionality thus

facilitate data visualization and comparison.8 PCA can uncover corre-

lations among variables or show relationships between outcomes and

variables to ultimately detect trends and outliers. PCA is a process

that transforms a large dataset with collinearity into a low dimensional

space of new uncorrelated variables so-called principal components

(PCs) in such a way that each PC explains a certain portion of the

overall variance within the dataset.8,9 In biomanufacturing, PCA has

been readily used to evaluate the success of scale-up/scale-down and

process impacts on glycosylation profiles.10–14 Bioprocessing data can

be considered as a three-dimensional dataset that consists of various

experiments where all the variables vary through culture time (lot

number, process parameters, sampling time points). The first step in

PCA is data unfolding. There are numerous approaches such as batch-

wise, time-wise, and variable-wise unfolding. Collectively, these

methods are called multiway PCA (MPCA).15,16 Batch-wise unfolding

allows the direct comparison between different batches although

granularity along the time dimension is lost.9,17 However, by compar-

ing among batches, different experimental clusters can be visualized

and then understood depending on how various process parameters

were changed between the conditions. Although PCA is generally

used on late process development or manufacturing datasets to evalu-

ate outliers and improve process robustness, studies have shown that

applying similar techniques to early process development datasets can

be beneficial revealing information such as uncontrolled variance and

experimental flaws.18,19 As mentioned above, PLS is a similar tool that

transforms the original dataset to latent variables, thus reducing the

original dimensionality.8,20 However, a key difference is that PLS

relates a feature vector (X) to a response vector (Y) which can then be

utilized in regression to predict outcomes. This tool has also been

applied widely in bioprocessing scale-up.21 For instance, PLS was used

as a regression technique to predict monoclonal antibody (mAb) pro-

duction and compare a 3 L scale process with a 2000 L scale

process.22 Through interpreting the PLS loading plots and altering the

process conditions of the 3 L bioreactor, a comparable process was

created at small-scale that displayed similar behaviors and outcomes

when compared to the 2000 L process. Thus, the 3 L bioreactor can

be a scale-down model to predict the 2000 L performance. Even

though the PLS technique is highly interpretable (carry out dimension-

ality reduction on feature vector X and response vector Y and then

realize a linear regression with the non-correlated latent variables), it

has the downside of utilizing a linearity assumption.8 Importantly,

when PLS was coupled with amino acid stochiometric balances an

approach to rapidly optimize amino acid concentrations in chemically

defined media additives was developed. Here, PLS was deployed to

comprehend the relationship between the dynamics of time-

dependent stochiometric balances and critical response variables like

cell growth or mAb productivity.23 Consequently, important nutrients

that impacted specific response variables or cellular phenotypical

states could be detected and further translated into experimental

designs for validation studies.23 Given that biological processes are

nonlinear in nature, less interpretable but better performing tech-

niques can be utilized through machine learning (ML) models (such as

support vector machine [SVM] regression), especially if the goal is to

develop a soft sensor.24 Such technique has been applied in

large-scale bioreactors to predict titer based on features.25 Lactate

metabolism was found to be a key process indicator (KPI) in terms of

predicting final protein yield and suggested the importance of control-

ling glycolytic fluxes during seed train inoculation at large-scale. Tree-

based models are also powerful tools that can accurately model nonli-

nearity among biological systems.8 Here, data can be segmented into

ranges and a decision tree can represent the outcome of a response

variable depending on what ranges various input variables are

observed at. Since this approach can lead to overfitting, which is an

undesirable ML characteristic, random forest (RF) can be realized. RF
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techniques are able to run a collection of decision trees in parallel and

then return the average prediction of each decision tree. Since it aver-

ages out multiple regression trees, RF can overcome the overfitting

drawbacks that are observed with single decision trees.26 Such

approaches have also been utilized in the modeling of Raman spec-

troscopy and shown to be an alternative to the PLS gold standard.27

Extreme Gradient Boosting algorithms (XGBoost) are also decision

tree-based methods and differ with RF in the sense that trees are con-

structed sequentially rather than in parallel. This allows for a gradual

improvement of the decision tree by continuously re-weighting trees

that correctly predict outcomes that were previously poorly modeled

by previous decision trees.8 Since this objective function can be opti-

mized with a learning rate, it can be more prone to overfitting and as

such, care must be taken when building and tunning the model. Alter-

native approaches applied in bioprocessing include multiple linear

regression, k-nearest neighbors, Gaussian process regression, classifi-

cation, and regression tree, and ensemble approaches (Gradient

Boosting Machine, Adaptive Boosting).8,26,28

MVDA tools can help improve our understanding of a process

which is key to develop a robust production platform capable of being

transferred to different cell types for various target proteins. It is also

known that ML models can play a role in modeling the interaction

between variables and outcomes. This, in turn, provides a pipeline for

transferring knowledge gained during the early process development

to the manufacturing stage where soft sensor prediction capability will

be greatly increased given that the process will be locked in to a spe-

cific range within the design space (DS); the latter is needed to assure

predefined CQA.6 Such tools are part of the process analytical tech-

nology initiative and an important aspect of Biopharma 4.0

manufacturing which aims to improve process understanding.6

The current article focuses on applying MPCA to examine early

process development data with the purpose of expanding process

knowledge and improving conditions that maximize SARS-CoV-2 tri-

meric spike protein production using stable pools instead of stable

clones to accelerate development timelines. Further modeling with RF

demonstrated that endpoint product titer can be predicted utilizing

key cumulative and endpoint process values. In-depth analysis of the

model demonstrated that improving overall longevity of the cell cul-

ture as well as limiting lactate build-up are key variables that if tunned

appropriately with process related changes could improve spike pro-

tein yields. It is worth mentioning that SARS-CoV-2 spike protein is a

difficult-to-express protein due to its structural complexity. Any

upstream process development to improve its yield would be valuable

to help manufacture this potential vaccine antigen.3

2 | MATERIALS AND METHODS

2.1 | Stable CHO cell pool and small-scale cell
culture conditions

Four stable CHO cell pools expressing SmT1 trimeric spike proteins

namely Wuhan (Wu), Wuhan Tagless (WuTL), Delta (De), and Beta

(Be) variant were generated as described previously.3 Pool cells were

thawed and grown in BalanCD CHO Growth A medium (Fujifilm/

Irvine Scientific) supplemented with 50 μM MSX (L-Methionine sul-

foximine, Sigma-Aldrich) and 0.1% (w/v) Kolliphor P188 surfactant. A

total of 125 mL (20 mL working volume) shake flasks without baffles

(Corning) were used for cell maintenance and passage. The flasks

were shaken at 120 rpm (25 mm orbital diameter) in an incubator reg-

ulated at 37�C, 5% CO2, and 75% relative humidity. Cells were pas-

saged every 2 or 3 days to keep a maximum viable cell density (VCD)

between 2 and 3 � 106 cells/mL.

2.2 | Cell culture analytical methods

Cell density, viability, main metabolites (glucose, lactate, ammonia)

were measured utilizing the previously reported methodology.2,29

Briefly, cell counts were realized with Innovatis Cedex (Roche) or

ViCell Blue (Beckman Coulter) automated cell counter using trypan

blue dye exclusion assay. Key metabolites such as glucose, lactate,

and ammonia were determined using the Vitros 350 Chemistry Sys-

tem (Orthoclinical Diagnostics). Volumetric protein titers were esti-

mated using TGX Stain-free SDS-PAGE gels (Bio-Rad) quantification

method.

2.3 | Bioreactor fed-batch process

The bioreactors were seeded at 0.2 � 106 cells/mL (low-seed) or

0.4 � 106 cells/mL (high-seed) and cultivated for 17 days in the fed-

batch mode. Temperature downshift (from 37 to 32�C) was realized

3 days after seeding. A pH shift (from 7.05 ± 0.05 to 6.95 ± 0.05) was

performed on all batches 2 days after seeding. Induction was con-

ducted with 4-Isopropylbenzenecarboxylate (Cumate, ArkPham),

concomitantly with the temperature downshift. Cultures were fed

with BalanCD CHO Feed 4 (Fujifilm/Irvine Scientific) and supplemen-

ted with glucose to maintain the concentration above 17 mM (3 g/L)

for the next sampling point. Samples were taken from the bioreactors

on days �3, �2, �1, 0, 3, 5, 7, 10, 12, and 14 days post-induction

(dpi) for off-line analysis, while feeding was realized in a bolus dosage

from 0 dpi onward. Table 1 shows a summary of studied process con-

ditions. The impact of seeding density (low vs. high), cell age through

cell passage number (passage 5, 8, 11), MSX concentration (50 vs.

125 μM) on process outputs was examined. Volumetric power input

(P/V) indicating the relationship between agitation speed and culture

volume was set in a range between 40 and 30 W/m3 for the Multifors

0.75 L (Infors) and BioFlo 1 L (Eppendorf) systems. The final P/V value

was decreased due to volume increase with feed events while keeping

a same agitation speed. For the BioFlo 10 L bioreactor (Eppendorf), a

P/V range between 20 and 80 W/m3 was explored. A dissolved oxy-

gen (DO) setpoint of 40% (of air saturation) was chosen for the Multi-

fors 0.75 L and BioFlo 1 L systems while for the BioFlo 10 L

bioreactor, DO of 40% and 60% were studied. A Kolliphor P188 sur-

factant concentration of 0.2% (w/v) was used for the Multifors 0.75 L

REYES ET AL. 3 of 19
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and BioFlo 1 L whereas a variation from 0.2% to 0.6% (w/v) Kolliphor

P188 was investigated in the BioFlo 10 L system. In the Multifors

0.75 L, micro-spargers (10 μm pore diameter) with an air cap

(AC) were used in a cascade air/oxygen strategy. Cell passage number

and MSX concentration were varied across batches. For the BioFlo

1 L, micro-sparger, macro-sparger, and dual sparger composed of a

micro-sparger and a macro-sparger were compared. A mix between

air caped and no air caped strategies were also studied within this sub

dataset. The BioFlo 10 L studies encompassed a variety of process

conditions such as ACs, sparger type, agitation rate, and number of

impellers. It must be noted that for bioreactor runs that employed

dual sparger configuration, the macro-sparger sent only air (AC) while

the micro-sparger injected flow of both oxygen and carbon dioxide as

needed.

2.4 | Dataset structure and batch-wise unfolding
method

The dataset is made up of 59 batches (productions). It is worth men-

tioning we kept the terminology “batch” to indicate a production run

as this term is widely used in data science. All productions (batches)

were performed in fed-batch mode. Of the total 59 productions,

38 were conducted in the Multifors 0.75 L, 13 batches in the BioFlo

1 L, and 8 batches were realized in the BioFlo 10 L. For the Multifors

0.75 L parallel benchtop bioreactor platform, 14 batches were run

with Wuhan pool, 12 batches were realized with Delta pool, 6 batches

with Beta pool, and 6 batches with Wuhan Tagless pool. The other

two systems (BioFlo 1 and 10 L) used exclusively the Wuhan pool.

Table 2 shows the variables considered in the MVDA. Product titer

was not listed given that the Wuhan pool sub dataset has only end-

point titers while titer evolution profiles were available for Delta,

Beta, and Wuhan Tag-less pools. It was decided to exclude titer as a

variable to keep analysis consistent across pools. However, during the

analysis of variable relationship, endpoint titers were considered for

result discussion. Viability, VCD, residual glucose, lactate, and ammo-

nia were measured following the same schedule as mentioned in the

process conditions section above. Calculated values such as integral

viable cell concentration (IVCC), glucose consumed per day, and cell

specific metabolic rates (glucose, lactate, ammonia) were estimated

using the same procedure across all batches. Online data from the bio-

reactor runs were also added into the dataset. pH, cumulative volu-

metric base addition, cumulative oxygen flow, and cumulative carbon

dioxide flow were calculated into daily averages such that direct com-

parison with the sampling day's data could be made. The cumulative

gas flows were normalized with respect to the bioreactor volume so

as it represents the cumulative gas volume per liquid volume per

minute (VVM) for each gas. Batch-wise unfolding of the data

(Figure 1) was realized in such a manner, so each row represents a

TABLE 1 Bioreactor production process conditions.

Bioreactor
System Pool

Seeding

Density (106

cells/mL)

Cell

passage
number

MSX
(μM)

P/V range
(W/m3)

DO
(%)

Kolliphor
P188 (%, w/v) Sparger

Aeration
strategy

Number of
impellers

Multifors

0.75 L

(Infors)

Wuhan (Wu)

Delta (De)

Beta (Be)

WuhanTL

(WuTL)

Low: 0.2

High: 0.4

5

8

11

50

125

40–30 40 0.2 Micro Air cap (AC)

with Air/O2

cascade

2

BioFlo 1 L

(Eppendorf)

Wuhan (Wu) High: 0.4 5 50 40–30 40 0.2 Macro

Micro

Dual

Air cap (AC)

No air cap

1

BioFlo 10 L

(Eppendorf)

Wuhan (Wu) High: 0.4 5 50 20–80 40

60

0.2

0.6

Macro

Micro

Dual

Air cap (AC)

No air cap

1

2

TABLE 2 Variables considered in batch-wise multiway
PCA (MPCA).

Offline measurements Cell growth IVCC, cells*day/mL

VCD, cells/mL

Viability, %

Metabolites Residual glucose, mM

Lactate, mM

Ammonia, mM

Total consumed

glucose (TCG), mM

Cell specific

metabolite

rates

Glucose (qGlc), pmol/

cell/day

Lactate (qLac), pmol/

cell/day

Ammonia (qAmon),

pmol/cell/day

Online environmental

continuous

measurements

Gas sparging Oxygen, mL/min

Air, mL/min

pH control pH profile

Base addition

volume, mL

Carbon dioxide,

mL/min
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batch, and each column represents a variable at a given sampling time-

point (�3 to 14 dpi, Day post-induction).

For this unfolding method, each experiment (batch) becomes a

score in the PC plot effectively collapsing the time dimension while

there is a loading value for each sampling point for every variable.

Loadings (presented in Supporting Information) provide information

about how each variable contributes to the formation of the PCs and

can help interpret the data structure and relationships among vari-

ables within the dataset. Consequently, loading plots can help under-

stand what variables are driving the position of a given score (batch

experiment) in the PC axis. Loadings can be positive or negative repre-

senting the direction of the relationship (positive loadings indicate

positive correlations between the variable and the PC while negative

loadings represent negative correlations). Magnitude of the loading

values are also relevant as they represent the strength of the relation-

ship. Larger values suggest more significant influences of the variable

on the PC. It must be noted that since all the runs were performed to

investigate specific process parameters (cell passage number, seeding

density, MSX concentration, pool type), the objective of the MVDA is

to infer global trends within the dataset and determine KPI. This

is especially important since there is a lack of published information

regarding inducible pools and much less large dataset analysis of such

production platform. To the best of our knowledge, this is the first

report demonstrating the benefit of MVDA to help interpret the data

obtained during the early bioreactor process development of an

inducible stable CHO pool.

2.5 | MVDA approach, software, and package

Pre-processing of online data and analysis was carried out using

R programming language. The mdatools30 package was utilized for

PCA while the caret31 package was employed to build the ML models.

Multi-steps were used to treat the data. First, Savitzky–Golay filter-

ing32 was carried out on pH data before calculating daily averages for

bioreactor online data (pH, oxygen flow, carbon dioxide flow, base

addition) so as to filter out noise sensor data. For the remaining vari-

ables (base, oxygen, and carbon dioxide sparging), root cause analysis

was carried out to determine if abnormal behavior could be explained

by sensor faults and thus excluded from analysis. Second, daily aver-

ages and sampled variables were gathered in Excel spreadsheets

(Microsoft) and arranged such that they matched in the time

dimension. Daily averages of the online data were taken and for the

sparge rates, since they are highly variable (on/off flow of pure oxy-

gen and carbon dioxide), cumulative of said variables (oxygen and car-

bon dioxide flow) were taken so as to compare trends. Lastly, of the

daily online bioreactor values, only values that matched with sampling

days were taken so as to not bias the dataset (in the 17-day fed-batch

process, there would be 10 offline sampling data values for each vari-

able while there would be 17 values for each online variable). For the

online variables, values starting from �2 dpi (culture Day 1) were

included since base addition and oxygen sparging are nonexistent in

the first day of culture (�3 dpi = culture Day 0). Input data (IVCC,

VCD, viability, lactate, ammonia, cumulative glucose consumed,

residual glucose, base addition, cumulative oxygen sparged, cumula-

tive carbon dioxide sparged, pH, qLac, qGlc, qAmon) were arranged in

batch-wise unfolding so as to carry out PCA where score values and

PC axis generation can be considered the output for the purpose of

data visualization. Loading plots, presented in supplemental materials

(see Figures S1–S18) were utilized to determine the driving factors

behind score plot distributions.

Once correlations among variables were better understood

through MPCA, key parameters describing the behavior of each batch

(IVCC, endpoint viability, max lactate, endpoint lactate, endpoint

ammonia, cumulative glucose consumed, endpoint residual glucose,

total base addition, cumulative oxygen sparged, cumulative carbon

dioxide sparged, endpoint pH, pool type, passage number) were calcu-

lated and used as input features to predict endpoint titers (output)

using four modeling methods as described below. MSX concentration

was excluded from the model because the extra MSX supplementa-

tion did not show impact as demonstrated in the Results and Discus-

sion section below.

SVM, PLS, RF, and XGBoost were utilized as regression methods

to relate the input variables (features) to the output variable (titer).

The total dataset used to generate the regression models was made

up of 50 batches. It was split into training (80%) and test (20%) sub

datasets. Model metrics were obtained for both training and test data-

sets. Each model was subjected to the same hyperparameter tuning

strategy. Adaptive resampling of the tuning parameter grid was real-

ized in such a way that the random search of hyperparameters is con-

centrated on values that are in the neighborhood of the optimal

parameters by discarding settings judged sub-optimal. To assess the

performance of the training regression models, bootstrapping was

conducted using the training and test dataset separately. For each

F IGURE 1 Batch-wise unfolding
from 3D dataset to 2D data
arrangement. Each row represents a
batch (i). Time (k) and variables ( j) are
presented as columns and arranged in
a cyclical mode such that every
variable is a block from time 0 to k.
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iteration (i = 100), a bootstrap sample was created by resampling the

imputed sub dataset (training or test) with replacement. The regres-

sion model was then used to predict the target variable for the boot-

strap sample. Key evaluation metrics including root mean square error

(RMSE), mean absolute error (MAE), and the coefficient of determina-

tion (R2) were evaluated at each iteration. By repeating this process

multiple times, a distribution of these metrics was obtained, providing

insights into the performance and variability of the pre-trained regres-

sion models on both the training and test datasets. Best performing

model based on RMSE, MAE, and R2 was then analyzed with Shapely

value dependency plots to obtain more information about the impact

each feature has on the prediction outcome and at what range of

values said features had a positive or negative impact on prediction.

The R caret package was utilized to build the models, boot pack-

age33,34 was used to get bootstrapped statistics, and fastshap pack-

age35 was employed to construct the Shapely value dependency

plots.

3 | RESULTS AND DISCUSSION

3.1 | Seeding cell density impact

To investigate the impact of seeding cell densities, two densities (low:

0.2 � 106 cells/mL and high: 0.4 � 106 cells/mL) were evaluated

within 14 batches. Our previous data (not shown) demonstrated that

higher density at induction contributes to accelerate production pace

thus shortens process duration without affecting final titers. However,

the superior seeding density bound needs to be controlled mainly

because the existing feed regimen has been designed to support a

specific range of VCD. Post-induction cell overgrowth due to high

induction cell density may lead to premature cellular decline probably

due to nutrient limitation occurred at high cell biomass.

From Figure 2a, it is clear that two distinct clusters are created.

The orange cluster represents productions seeded at high density

while bioreactors seeded at low density are distributed within the

green cluster. When evaluating what variables drive this phenomenon

in the principal component 1 (PC1) axis, it is found that batches

located on the positive PC1 axis have higher lactate accumulation

(27.8 mM peak lactate vs. 23.7 mM peak lactate), increased peak VCD

during the 3-day growth phase (4.35 � 106 c/mL vs. 2.98 � 106 c/

mL), and increased oxygen requirements (16.77 vs. 10.52 mL/min).

These variables are intimately related with increasing biomass which

explains the segmentation based in seeding density. It is worth men-

tioning when the endpoint titers and viabilities are compared, no clear

relationship with respect to seeding density can be attributed

(Table 3).

Figure 2b shows that some productions differ in the principal

component 3 (PC3) axis. This component is primarily driven by addi-

tion of base to regulate pH (negative PC3) and increasing oxygen

sparging flowrate (positive PC3). Given that links between

oxygen consumption and protein production have been

investigated,36 the final protein production of the batches at opposite

ends of the PC3 axis was evaluated. It was determined that the points

lying on near the origin and the right-hand side of the PC3 axis had an

average protein expression of 1064 ± 137 mg/L (n = 10) while the

points lying on the left side of the PC3 axis had a final protein expres-

sion of 765 ± 83 mg/L (n = 4). Since the variation in protein expres-

sion happened in both high and low seeding density conditions, a

deep dive into the time series data was required to explore the root

cause of this variation. As such, time profiles were plotted (Figure 3).

High performers (blue) were defined as batches that were above aver-

age in terms of final protein expression whereas low performers (red)

were assigned as batches that had below-average protein expression.

F IGURE 2 Principal component (PC) scatter plots for Wu pool in
Multifors 0.75 L bioreactors. (a) Principal component 1 (PC1) versus
principal component 2 (PC2) scatter plot showing seeding density
impact on the distribution of batch experiment scores. High seeding
density batches are colored in orange while green indicates low
seeding density batches, (b) Principal component 3 (PC3) versus
principal component 4 (PC4) scatter plot showing high and low titer
batches spread between both seeding densities. Ellipses represent
95% confidence interval. Left ellipse indicates low yield productions
while right ellipse relates to high yield runs.

TABLE 3 Endpoint product titers and viabilities.

Product titer, mg/L Viability, %

High seeding density (n = 8) 1010 ± 216.2 91.19 ± 3.42

Low seeding density (n = 6) 937 ± 141.4 94.7 ± 1.65
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It is clear that high performing batches (blue) required generally

lower base addition (Figure 3a) and higher oxygen sparging (Figure 3b)

compared to low performing batches. It is unclear why two low yield

batches displayed elevated base volume at the beginning of culture.

The large sudden addition of base for these two cultures may have

been caused by an error in priming the base lines for proper pH con-

trol at the culture start. This, in turn, could lead to an overly aggressive

response from the proportional integral derivative controller. It was

estimated that the total volume inside the base line is only 2 mL and

thus total base volume uncertainty is near 12%. This low amount of

F IGURE 3 Color coded time profiles for the Wuhan pool experiments (n = 14) performed in the Multifors 0.75 L system. (a) Base addition
volume, (b) cumulative oxygen sparging, (c) lactate profile, (d) total consumed glucose, (e) cumulative carbon dioxide sparging, and (f) daily pH
profile.
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base volume addition uncertainty was not considered to be impactful

enough to merit excluding the two batch runs from further modeling.

When evaluating the corresponding lactate profiles (Figure 3c), it is

hard to conclude that lactate metabolism alone is enough to explain

the variation in protein expression even though high titer cultures dis-

played less lactate production variability. Figure 3d shows that high

performers had higher glucose consumption. It can be postulated that

high glucose demand relates to higher levels of protein expression

through tricarboxylic acid cycle (TCA) cellular respiration activity as

evidenced by the increased oxygen requirements (Figure 3b). Higher

overall CO2 sparging rates were observed with low performing

batches (Figure 3e). All the cultures were performed with pH setpoint

± deadband of 7.05 ± 0.05 (covered range: 7.0–7.1) until �1 dpi and

pH was downshifted to 6.95 ± 0.05 (range: 6.9–7.0) from �1dpi to

14 dpi. When looking at the daily average pH profile (Figure 3f), it can

be discerned that the worst performing cultures had the largest devia-

tions within the deadband, with values near the 6.9 or the 7.0 thresh-

old. Increasing the pH deadband to cover a larger pH range (e.g., 6.8–

7.2) could potentially diminish addition of carbon dioxide or base thus

eventually improve process robustness.

3.2 | Impact of bioreactor culture system

The Wu pool in the Multifors 0.75 L system was compared to a data-

set resulted from the BioFlo 1 L system (Figure 4). The BioFlo 1 L

dataset centered around exploring impact of aeration conditions. The

main goal was to find the appropriate aeration strategies that would

re-create the results observed in the established Multifors 0.75 L pro-

cess as part of a technology transfer project.

Figure 4 shows that the negative PC1 axis is strongly influenced

by high levels of total consumed glucose (TCG), base addition, and lac-

tate accumulation. Alternatively, the positive PC2 axis is driven by

increased IVCC, oxygen sparging, and ammonia. For example, when

comparing the left most culture with the right most culture, it is found

that the left most culture shows a 2.54-fold increase in cumulative

glucose consumption before temperature shift, large lactate accumu-

lation (2.52-fold increase in endpoint lactate), 5.2-fold increase in base

addition, and initial large cell growth (2.69-fold increase in IVCC

before temperature shift). Conversely, the positive PC1 axis is influ-

enced strongly by high CO2 sparging, high growth phase pH, and high

viability specifically towards the end of the batch (24% higher end-

point viability for the culture in the bottom right when compared to

the culture in the bottom left). Importantly, the far left-bottom batch

which was a dual sparger culture had a base addition of 42.8 mL

which was 2.8-fold higher than the average base addition in the Bio-

Flo 1 L dataset (14 batches). Interestingly, ammonia accumulation in

this left-bottom batch was lower (4.0 mM) when compared to the

average ammonia accumulation of the BioFlo 1 L dataset (5.5 mM).

This points at the idea that batches towards the right side of the graph

had less lactate accumulation and better longevity. This viability

dependence explains why the negative PC1 axis is driven by large ini-

tial cell growth and high glycolysis/lactate metabolism as the cultures

are unable to sustain the large biomass increase and are followed by a

premature decrease in viability. It is clear that the BioFlo 1 L system

has a wider spread in the score plot when compared to the Multifors

0.75 L system (evidenced by the spread in the confidence intervals

[CIs] of each reactor system). This makes sense given that the BioFlo

1 L dataset focused on testing a variety of sparging and aeration strat-

egies whereas the Multifors 0.75 L dataset studied the impact of

F IGURE 4 Principal component (PC) scatter plots of Wu pool in two bioreactor systems (Multifors 0.75 L and BioFlo 1 L). Principal
component 1 (PC1) versus principal component 2 (PC2) scatter plot showing the same pool (Wuhan) with different aeration strategies. Orange
batches (BioFlo Macro) employ macro-sparger in BioFlo 1 L, green batches (BioFlo Micro) use micro-sparger in BioFlo 1 L, red batches (BioFlo
Dual) utilize dual sparger configuration in BioFlo 1 L, blue batches (Multifors Micro AC [Air Cap]) employ micro-sparger with AC for the Multifors
0.75 L system, and ocean blue batches (BioFlo Micro AC) deploy air caped micro-sparger in the BioFlo 1 L system. Brown ellipse represents the
BioFlo 1 L system (13 batches), and purple is assigned to the Multifors 0.75 L system (14 batches). Ellipses represent 95% confidence interval.
TCG, total consumed glucose; VCD, viable cell density.
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seeding densities, MSX concentration, and cell passage number under

the same hydrodynamics conditions in regard to mixing (volume, agi-

tation, and aeration). Since cell passage number's effect was deter-

mined to not be an important factor for the Wu pool nor MSX

increased concentration after induction, seeding density is the main

factor driving the variation of the overall spread for the Wu pool clus-

ter. Importantly, this implies that aeration strategies have a strong

impact on process outcomes given that the batch spread in the scatter

plot from BioFlo 1 L cultures was larger when compared to the Multi-

fors 0.75 L batch distribution extent.

From Figure 4, it is also worth noting that the five Multifors

0.75 L cultures that do not overlap (and a sixth batch that exists at the

boundary) within the 95% CI ellipse of the BioFlo 1 L system are low

density cultures. These 6 batches are the only low-density cultures of

the Multifors 0.75 L dataset. Since seeding density was observed to

have an important impact on culture outcome (Figure 2a), these six

cultures are shown different from the rest of high-density batches.

Interestingly, within the 95% CI ellipse of the Multifors 0.75 L cluster,

seven batches from the BioFlo 1 L system are found. These cultures

use a micro-sparger to provide oxygen to the cells. This may suggest

that sparging oxygen with micro-sparger best recreates the hydrody-

namics environment of the Multifors 0.75 L cultures; the latter use

uniquely a micro-sparger. In regard to aeration strategy (with or with-

out AC), large variation was found in non-air caped batches, both with

micro- and macro-sparger. Dual sparger also shows variability that

was mostly driven by fluctuations in lactate metabolism and its

impacts (base addition). It can be postulated from the process devel-

opment data that multivariate tools can be deployed to help pick aera-

tion strategies that diminish variability and translate process

conditions across bioreactors to facilitate scale-up.

Scale-up from the small-scale bioreactors (Multifors 0.75 L and

BioFlo 1 L) to a BioFlo 10 L system was next explored as shown in

Figure 5. From Figure 5a, it can be observed that the spread of the

BioFlo 10 L system is significantly higher than the BioFlo 1 L or the

Multifors 0.75 L. This is due to the fact that data was collected under

varying experimental conditions such as differences in DO conditions

(40% vs. 60%), sparger (macro, dual, micro), agitation speed, AC, initial

volume (5 L vs. 7.5 L), and impeller configuration (1 impeller

F IGURE 5 Principal component
(PC) scatter plots of three bioreactor
systems (Multifors 0.75 L, BioFlo 1 L,
and BioFlo 10 L). (a) Principal
component 1 (PC1) versus principal
component 2 (PC2) scatter plot and
95% confidence ellipses of Multifors
0.75 L, BioFlo 1 L, and BioFlo 10 L.
Ellipses represent 95% confidence
interval, (b) principal component
3 (PC3) versus principal component
4 (PC4) scatter plot of Multifors 0.75 L,
BioFlo 1 L and BioFlo 10 L. Blue,
green, red batches indicate the
Multifors 0.75 L, BioFlo 1 L, and BioFlo
10 L, respectively. IVCC, integral viable
cell concentration.
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vs. 2 impellers) as described in Table 1. The PC1 axis is driven by

IVCC, lactate, TCG, and base addition in the positive direction while

carbon dioxide and viability are the main driving factors in the nega-

tive direction. The low-density Multifors 0.75 L cultures are centered

in the left most negative axis whereas the high-density cultures are

near the origin. BioFlo 1 L and BioFlo 10 L have equal seeding densi-

ties but varying hydrodynamics conditions. This difference in spread

emphasizes the idea that the impact of hydrodynamics is much more

important than other initial variables such as seeding densities (the

spread of the Multifors 0.75 L dataset is driven by variance in seeding

density, Figure 2). The negative PC2 axis is driven by oxygen sparging

and IVCC while the positive PC2 axis is strongly driven by ammonia,

carbon dioxide, base addition, and lactate accumulation. There was a

strong difference in sparging strategies between the 10 L system (dif-

ferent sparger types, different ACs and different DO set points were

utilized) and the small-scale systems (BioFlo 1 L and Multifors 0.75 L)

that can explain the differences between the 10 L cluster and the Bio-

Flo 1 L and Multifors 0.75 L clusters along the negative PC2 dimen-

sion despite gas flows being normalized with respect to reactor

volume. Four BioFlo 1 L batches fall within the 95% CI of the Multi-

fors 0.75 L data which again underscores the idea that batches with

similar hydrodynamics (micro-sparger) across different bioreactors can

be evaluated with MVDA. When examining the PC3 versus PC4 scat-

ter plot (Figure 5b), one outlier (right-most batch) from the 10 L sys-

tem is evident. The positive PC3 axis is driven by increased lactate

accumulation and base addition while the negative PC3 axis is

strongly driven by IVCC and carbon dioxide sparging. The right-most

batch outlier utilized a single impeller with a macro-sparger which

probably reduces oxygen transfer capability, and as such, large

amounts of oxygen sparging was required while at the same time hav-

ing issues maintaining its 40% DO setpoint. This suboptimal DO con-

trol could have impacted cell metabolism as it produced unusually

high amounts of lactate (peak lactate was 98 mM) and consequently,

required a lot of base addition (313.6 mL). This unusual behavior con-

cluded in a 390 mg/L titer yield which is below the 732 mg/L average

that the 10 L bioreactors had. In the literature, similar adverse behav-

iors induced by inadequate DO controls have been reported.37

3.3 | Cell age effect

As it was mentioned above, the expression stability of pools needs to

be evaluated to ensure a commercial-scale production which requires

an expanded seed train. Three pools stability was evaluated in the

Multifors 0.75 L system as part of an early process development

objective (Figure 6). For the Wuhan pool, final spike protein yield

remains high even at increasing passage number (P5 = 11 genera-

tions: 908 ± 161.91 mg/L [n = 4]; P8 = 20 generations:

1252 ± 158.39 mg/L [n = 2]; P11 = 31 generations: 971 ±-

250.31 mg/L [n = 2]). Two-tailed t-tests (Table S1) for the Wuhan

pool comparing passage number impact show no significant difference

between the three cell passage numbers (p-value <0.05). The Beta

pool's final endpoint protein yield displays however a gradient behav-

ior such that P5 (455 ± 91.21 mg/L, n = 2) > P8 (370 ± 18.66 mg/L,

n = 2) > P11 (341 ± 7.41 mg/L, n = 2). Maximum lactate was

observed to be different such that P5 had a higher peak

lactate (50.15 mM) when compared to P8 (33.9 mM) and P11

(32.3 mM). Endpoint ammonia was higher in P5 (8.28 mM) compared

to P8 (5.97 mM) and P11 (6.12 mM). Endpoint IVCC also demon-

strated cell age variance such that P5 (1.14 � 108 cell*day/mL) < P8

(1.56 � 108 cell*day/mL) < P11 (1.69 � 108 cell*day/mL). Interest-

ingly, when detailing total oxygen sparged, it is clear that the cumula-

tive average flow rates follow the IVCC trend such that P5 (18 mL/

min) < P8 (26.58 mL/min) < P11 (27.27 mL/min). On the other hand,

even WuTL endpoint protein production did not seem to be nega-

tively impacted (P5 = 838.5 ± 48.8 mg/L [n = 2], P8 = 751.5

± 60.1 mg/L [n = 2], P11 = 908 ± 106.06 mg/L [n = 2]), an inverse

relationship between base addition and oxygen sparging was found.

Passages 5 and 11 which had the higher protein production also had

higher oxygen sparging and less base addition when compared to

F IGURE 6 Scatter plot of principal
component 1 (PC1) versus principal
component 2 (PC2) of different cell
passage numbers used for productions
of three pool variants in Multifors
0.75 L bioreactor. Batches are color-
coded based on their passage number
and pool type (Wu, Beta, WuTL).
Ellipses represent 95% confidence
interval.
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passage 8. A similar conclusion is reached when evaluating above-

average batches and below-average batches in terms of final yield.

The above-average (832 mg/L) batches required more oxygen sparg-

ing and needed less base addition. The difference was driven by

increased lactate accumulation in the low performing batches. The

best performing batches also had on average higher total glucose con-

sumption demonstrating that the high metabolic activity was shared

across glycolysis and other metabolic pathways that do not end in lac-

tate accumulation.

When evaluating two-tailed t-tests (Table S2) on key metrics, it

can be said that although the passage number did not have statistical

impact on final titer concentration, there was passage number related

variation with respect to total glucose consumption for the WuTL

pool. Similarly, although passage-related statistical significance was

found in endpoint lactate and endpoint IVCC, no evidence for statisti-

cal impact on endpoint titers was determined in the Beta pools. In

stark contrast, when evaluating cell age impact on the Delta pool

(Figure 7), passage number seems to have an impact on the spread of

the scores such that higher passage number batches have more

spread. Interestingly, it was determined from the loadings (Figure S13)

that oxygen sparging and base addition are inversely related, while

lactate and base are directly correlated. This is because spread in the

PC1 axis is driven by base and lactate in the negative direction while

glucose consumption, IVCC, and oxygen flow increase in the positive

direction. Additionally, the positive PC2 axis is mostly driven by car-

bon dioxide sparging whereas the negative direction is driven by base

addition. Since the scores did demonstrate a cell passage number's

dependence, the average protein concentration for each passage was

calculated. Titer of 600 ± 112 mg/L, 361 ± 31 mg/L, and

398 ± 92 mg/L were estimated for P5 (n = 4), P8 (n = 4), and P11

(n = 4), respectively. Additionally, endpoint ammonia showed cell age

related behavior since P5 (6.88 mM) had significantly lower ammonia

accumulation when compared to P8 (8.79 mM) and P11 (10.82 mM).

Table 4 shows a two-tailed t-tests comparing passage number impact.

Only endpoint titers are statistically different. Taken together, it can

be concluded that culture age does indeed play a role in culture out-

comes for the Delta pool. This pool is likely to become unstable over

time, so considerations will be necessary when scaling up, such as lim-

iting the cell passage to five in order to preserve high titers.

3.4 | MSX concentration impact

The studied CHO pools in this work express Glutamine Synthetase

(GS) gene implying MSX is required during the cell line generation pro-

cess. Tian38 showed that increasing the MSX concentration to certain

level can lead to an improved overall protein yield. In this study, MSX

supplementation up to 125 μM was investigated across the Wu,

Delta, WuTL pools to determine if the increased selection pressure at

the moment of induction has a positive impact on final protein yield.

As it can be seen from Figure 8, no discernible clustering is evident

when analyzed based on MSX concentration. This suggests that extra

F IGURE 7 Principal component
1 (PC1) versus principal component
2 (PC2) scatter plot showing cell age
impact on Delta pool. The blue, green,
and red color represent batches
performed with cell passage number
P5, P8, and P11, respectively. Ellipses
represent 95% Confidence Interval.

TABLE 4 Two-tailed t-test of cell age's impact on different key
variables for Delta pool.

Delta pool P5 versus P8 P5 versus P11

Base volume 0.37 0.17

Endpoint lactate 0.83 0.33

Total oxygen sparging 0.11 0.82

Endpoint titer 0.01* 0.03*

Total glucose consumption 0.66 0.63

Endpoint IVCC 0.48 0.56

Max lactate 0.53 0.27

Endpoint ammonia 0.24 0.06

Note: Values with asterisk * represent conditions in which statistical

significance was found (p-value <0.05).
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addition of 75 μM MSX during induction (Day 3 post-seeding) does

not provide a clear impact. The visual clustering that occurs in the

scores plot as evidenced by the 95% confidence ellipses is driven by

differences in pool behavior. To further determine the impact of extra

75 μM MSX addition, two-tailed t-tests (Table S3) were realized. No

statistical differences were found in almost all the key variables

between the base level MSX+ (50 μM MSX) and extra MSX ++

(125 μM MSX) conditions at the exception of endpoint ammonia

(p = 0.01 < 0.05). The Delta cluster has the most spread profile prob-

ably due to the fact that this specific pool seemed to be significantly

impacted with cell increasing age (Figure 7). Given that the Delta pool

dataset had enough data points, an additional two-tailed t-test

(Table S4) was conducted. It was determined that even if passage

number is accounted for, MSX has no statistical impact on general cell

culture variables except for the passage 11 batches; 35 mL of base

was added with 50 μM MSX productions (MSX+) while only 8.9 mL

of base was needed for 125 μM MSX bioreactors (MSX++). Taken

together, it can be postulated that additional MSX supplementation at

induction has no added value and thus can be avoided in the future

when working with such pools.

3.5 | Global pool analysis

Once every pool was analyzed separately, the four pools were then

examined together to better understand pool related clustering and

behavior that may not be self-evident when investigating individually.

From Figure 9, it is possible to discern that the pools tested in the

F IGURE 8 Principal component 1 (PC1) versus principal component 2 (PC2) scatter plot showing the impact of methionine sulfoximine (MSX)
addition during induction on various pools. Batches are colored with respect to pool and MSX addition. Blue and ocean green batches represent
Delta pools with no extra MSX addition (50 μM Delta) or with addition of 75 μM MSX at induction (125 μM Delta in total), respectively. For Beta
pools, green color represents the productions without extra MSX addition at induction (50 μM Beta) while yellow batches are assigned to Beta
pools with 125 μM MSX. Wuhan Tag-less (WuTL) productions were conducted without extra MSX addition at induction (50 μM WuTL, orange
color) compared to red batches with 125 μM MSX. Colorful ellipses show 95% Confidence Interval for respective studied conditions.

F IGURE 9 Principal component
1 (PC1) versus principal component
2 (PC2) scatter plot of all the Multifors
0.75 L experiments encompassing
4 pools (37 batches). Wu pool colored
in blue, Delta pool colored in green,
Beta pool colored in yellow, and WuTL
pool colored in red. Colorful ellipses
represent 95% Confidence Interval

(CI) for each respective pool.
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Multifors 0.75 L system exhibit distinct behavior as evident by

the extent in the distribution and spread variation in the PC1 versus

PC2 graph. The Wuhan variant pool has a large spread in the PC1 axis

that is driven by its high density versus low density seeding batches.

This is evident from the loading plots (Figure S17) in which it is clear

that the driving factors are IVCC, lactate, total glucose consumption,

and oxygen sparging requirements. It is worth mentioning that the

Wu pool dataset is split into high-density and low-density seeding

batches. Such a segmentation based on biomass is captured. On aver-

age, Delta pools had 1.7-fold higher IVCC when compared to the Wu

pool which again explains how the Delta pool is centered in the posi-

tive PC1 axis while the Wu pool is spread out in the negative direc-

tion. This further demonstrates that every pool had different growth

patterns and, in consequence, had different specific protein produc-

tion characteristics. Delta pool had the most overall growth but pro-

vided the second poorest endpoint titer. The PC2 axis is heavily

driven by lactate and base addition in the positive direction while oxy-

gen sparging, carbon dioxide sparging, and viability are in the negative

direction. Even though most pools demonstrated an inverse relation-

ship between base addition and oxygen sparging individually, it is not

possible to carry out this analysis across pools. However, between

batches within the same pool, analyzing these critical attributes does

seem to hold as a predictor.

3.6 | Endpoint titer modeling

Since many of the process conditions and measured variables were

observed to have impact on culture behavior and a close relationship

to final titer, the possibility of creating four ML models based on

widely used linear (PLS) and nonlinear regressors (RF, SVM, Extreme

Gradient Boosting [XGB]) was explored. In order to build regression

models, key variables were utilized. Table 5 summarizes the important

variables used to predict batches not utilized during the training pro-

cess. Endpoint viability can be considered an indicator of batch lon-

gevity whereas endpoint IVCC can be an indicator of accumulated

biomass which has been observed to be a strong determinant in terms

of total protein production given the strong link between the two var-

iables (Protein yield = qP * IVCC). Endpoint residual glucose is a rele-

vant parameter as it gauges metabolic activity at the end of the

culture. Low endpoint viability indicates that the culture suffered a

culture decline and thus was probably impacted in terms of its capac-

ity to remaining metabolically active enough to produce protein in the

end stage of the process. Cumulative sparged oxygen can also be

understood as proxy parameter for metabolic activity. Given the

important relationship between oxygen requirement and TCA cycle

activity, it is coherent that oxygen sparging should be included in the

model.36 Peak lactate can be interpreted as a proxy measurement for

maximum glycolytic activity while endpoint lactate can be understood

as an estimation of lactate absorption which has been observed to be

a good process indicator in CHO cell culture processes.25 It can

be observed as well that different pools have different importance on

the protein yields. Endpoint ammonia should also be included within

the model as high ammonia accumulation cultures maybe negatively

impact cell culture longevity and consequently productivity. TCG can

be accepted as a proxy for overall metabolic activity (glucose can be

consumed through glycolysis to yield lactate or it can be transformed

to pyruvate to link with the Krebs [TCA] cycle; Figure 10) and as such,

it should also be represented within the model. As the Delta pool was

observed to have a clear impact on protein production with increasing

passage number, this information was also included in the modeling

process. Total base addition can be understood as an indirect mea-

surement of total lactate build-up and an indicator of pH acidic profile.

Total carbon dioxide sparged can be reasoned as a pH control indica-

tor that contains information about the pH upper deadband and also

indicates whether cells switch to lactate consumption phase. Lastly,

endpoint pH which can be interpreted as a clear indicator of lactate

consumption was also included within the model development

process.

A dataset comprising 50 batches, encompassing both Multifors

0.75 L and BioFlo 1 L experimental runs, was split into training (84%)

and test (16%) sub datasets. The BioFlo 10 L cultures were excluded

from the modeling phase on the basis of high experimental variability

without replicates (varying impeller configuration, varying sparger

type, varying sparging strategy, varying DO set point). Furthermore,

one culture from the BioFlo 1 L dataset was excluded from the model-

ing phase on the basis that respiratory tests were realized throughout

the culture, thus potentially impacting the online values that are uti-

lized as features in the model. From the considered data, a split was

chosen randomly with the condition that it contains a high/low pro-

duction batch performance. The features were regressed in function

TABLE 5 Variables used for protein prediction modeling.

Variables Indicator

Endpoint viability Batch longevity

Peak lactate

accumulation

Maximum glycolysis activity

Endpoint lactate

concentration

Lactate consumption or production

Residual glucose Metabolic activity

IVCC Accumulative cell biomass

Endpoint ammonia

concentration

Metabolic activity for glutamine

synthesis and waste accumulation

through amino acid deamination

Total glucose consumed Metabolic activity

Total base added Lactate build-up

Total average oxygen

sparged per day

Cellular respiration

Total average carbon

dioxide sparged per

day

pH controlling profile for upper bound

of pH deadband

Endpoint pH Secondary indicator for lactate

consumption (low pH indicates lactate

accumulation while high pH relates to

lactate consumption status)

Cell passage number Pool stability

Pool variant Indicator of product specific nature
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of endpoint titer to generate a model capable of predicting final yield

given key process outcomes. As to give a fair chance to each model,

the same strategy for tunning the hyperparameters (parameters used

to control the learning process in ML). Here, adaptive resampling of

the tuning parameter grid was realized in such a way that the random

search of hyperparameters is concentrated on values that are in the

neighborhood of the optimal parameters. This is done by discarding

settings that are clearly sub-optimal. This approach has been observed

to reduce training time.39

As it can be seen from Table 6 (bootstrapping results), the RF

model was able to outperform SVM and PLS models in all the tested

metrics (RMSE, MAE, and R2), for the test and training datasets.

F IGURE 10 Schematic of the
glycolysis pathway and TCA cycle.
2 ATPs are formed in the glycolytic
pathway while 36 ATPs are generated
through the oxidative
phosphorylation pathway.

TABLE 6 Mean and confidence
intervals for training and test results for
respective metric after bootstrapping.Training dataset

Mean Mean Mean 95% CI 95% CI 95% CI

RMSE MAE R2 RMSE MAE R2

SVM 95.92 66.93 0.88 61.56–125.98 43.84–82.58 0.82–0.96

RF 62.15 49.13 0.96 47.10–75.27 33.98–59.80 0.94–0.98

XGB 45.48 28.36 0.98 27.00–69.41 17.33–38,45 0.96–0.98

PLS 217.97 184.88 0.41 189.20–260.70 151.20–219.00 0.26–0.72

Test dataset

Mean Mean Mean 95% CI 95% CI 95% CI

RMSE MAE R2 RMSE MAE R2

SVM 80.35 74.33 0.92 61.80–97.42 52.39–89.30 0.84–0.98

RF 65.96 58.15 0.94 51.62–88.24 41.44–80.20 0.90–1.00

XGB 99.51 89.71 0.83 73.17–122.90 52.56–111.02 0.73–1.00

PLS 158.36 120.00 0.72 115.00–260.30 59.70–199.70 0.50–0.98
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Overall metrics of the RF model performed similar in the training and

test datasets suggesting that the model was generalizable across the

dataset, this may be due to the fact that RF algorithms are known to

be robust to outliers and noise within datasets.40 Importantly, XGB

outperforms RF in the training dataset but performs worse-off in the

test dataset possibly indicating a lack of generalization with the avail-

able data for this particular model. When detailing the 95% CIs, it can

be observed that SVM and RF are statistically different than PLS in

terms of RMSE metric. Additionally, the RF model has the narrowest

intervals (training and test for RMSE, MAE, and R2), when compared

to the other three models.

As it can be observed from Figure 11, good predictive capability

is attained with the RF model, not only is the R2 value high (0.95) but

the majority (6/8) of the resulting predictions fall along the R2=1 line

which represents an ideal model of perfect prediction. When taking

into account the CIs of the regression line, we can see that for the

total span of the data, the 95% CIs contain the ideal model suggesting

that despite the low data amount to test the model, predictions are

statistically in line with an ideal model. Interestingly, outside the span

of the data, CI widens and begins to stop overlapping with the ideal

model specifically within the 0–300mg/L range. This is to be

expected as there are no batches spanning this range thus no model

prediction falling within this zone. Consequently, extrapolation of a

linear model (regression line) outside the training and test range of the

RF model is not an appropriate indicator for performance along these

ranges.

Recent approaches have centered around improving the inter-

pretability of ML models.41–43 This is especially important for indus-

tries where process understanding is a key requirement for regulatory

approval, as is the case in the biotherapeutic industry. SHapley Addi-

tive exPlanation (SHAP) was developed using the idea of the Shapley

value which is a notion in game theory that helps determine fair profit

allocation to various stakeholders by evaluating their respective

contribution to the outcome.44 In the context of ML, each stakeholder

can be understood as a feature and the payout is the outcome of the

model itself. In summary, the Shapley value for each feature repre-

sents each feature contribution to the model's prediction of a particu-

lar datapoint. This is estimated by calculating the average marginal

contribution of a feature considering every possible combination.

Consistent results have been shown with SHAP values, and SHAP

dependency plots offer a helpful model summary.7,42,45 From the gen-

erated dependency plots, various conclusions can be discerned. Fea-

tures with positive magnitude SHAP values have a positive impact on

the prediction, while negative magnitude values represent a negative

impact. The bigger the magnitude of the SHAP values, the stronger

the effect.

In Figure 12a, there seems to exist an optimal IVCC value for

which good protein production is obtained. When coloring based on

cell pools, the resulting behavior seems to be cell pool dependent

given that the Beta and Delta pools in general reached higher total

IVCC but also had less cell specific protein productivity (qP). For the

Wu pool, two clusters (one below 0 in the Y axis and another above

0 reaching 35) are formed. These two clusters correspond to high and

low seeding densities, respectively. It can be concluded that for the

two Wu pools (and presumably WuTL since the two high density clus-

ters overlap for both pools), higher seeding density was concomitant

with better protein yields. It may also suggest that the current feed

regimen developed is unable to sustain higher cell densities and since

Beta and Delta pools exhibited large biomass growth, an optimization

of the feeding regimen could allow these pools to reach protein

expression levels comparable to Wu and WuTL. As detailed in

Figure 12b, maximum lactate accumulation of 35 mM and beyond has

a negative impact on endpoint protein yield. This observation holds

across all pools given that the fast decrease in SHAP values is

observed for Wu, Beta, and Delta pools. It is paramount to reduce lac-

tate accumulation in a given culture to avoid increased osmolality due

to base addition. One simple strategy that could be implemented to

control lactate accumulation is to replace bolus feeding with slow con-

tinuous feeding rate as it has been observed to diminish metabolic

waste build-up by decreasing the variations in nutrient availability

which might alter the metabolic behavior of the cell culture run.46

From Figure 12c, it can be observed that high endpoint viability has a

positive impact on final protein production. This impact rapidly turns

negative once viability is below 85%. This suggests that increasing cul-

ture longevity and thus maintaining metabolic activity is critical. In

order to avoid early cell culture decline, appropriate measures must

be taken such as lowering osmolality impact (through less base addi-

tion by using only sparging gasses for effective pH control), decreas-

ing hydrodynamic stress caused by shear damage and/or optimizing

feeding strategies.47–49 Feeding based on oxygen consumption rates

or bio-capacitance measurements may be an attractive starting point

to develop on-demand feeding strategies given the strong relationship

that these signals have with viable cell volume and consequently, with

metabolic activity, given that larger cells have consumed more

oxygen.50–55 Interestingly, when noting the SHAP endpoint pH

dependency plot (Figure 12d), it is clear that endpoint pH of 6.93–

F IGURE 11 Measured versus predicted titer scatter plot. R2 = 1
line in the diagonal indicates ideal model and blue line shows
regression line with 95% confidence interval.
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6.95 had the most positive impact on final titers. It is worth mention-

ing that all the studied cultures existed within a deadband of ±0.05

between 6.9 and 7. Thus, cultures with endpoint pH of 6.93–6.95 rep-

resent processes in which no base addition or carbon dioxide was

added in the last day of the fed-batch process. This could imply that

unnecessary action upon cultures may be a net negative and thus pH

deadband can be increased to ±0.2 around the 7.0 setpoint so as to

avoid base addition and carbon dioxide sparging.

From Figure 13a, it is discernible that even if there seems to be

a pool dependence in terms of cumulative oxygen sparging (Delta

and Beta cluster differently from Wu and WuTL pools), there are

signs of an optimal total oxygen sparging that is concomitant with

high yields given the overlaps among pools and observing the fact

that beyond 0.035 cumulative VVM, no further increase in SHAP

values can be detailed. The Wu cluster near the �50 (Y axis) repre-

sents low density seeding cultures. This demonstrates the close link

culture oxygen requirements have with VCD and viable cell vol-

ume.56,57 For the SHAP cumulative glucose consumption depen-

dency plot (Figure 13b), it can be observed that lower glucose

consumption has a negative impact on protein production. This

could be explained by either lower VCD or lower metabolic activity,

both of which directly impact the culture capacity to achieve high

titers. Alternatively, very high cumulative glucose consumption also

had a negative impact on protein yields. This may be explained by

the fact that cultures that consume glucose at high rates tend to

have high lactate productions and thus adverse culture outcomes.

This again points towards the idea that regulating the glucose intake

of cells may be beneficial in terms of avoiding high lactate accumu-

lation. From the endpoint ammonia dependency plot (13C), it is

noticeable that ammonia concentrations beyond 8 mM, for the pro-

cess studied, were generally associated with negative protein pro-

duction prediction. This makes sense given that ammonia is another

relevant by-product that can be a direct result of amino acid metab-

olism (Figure 10). Lastly, from Figure 13d, it can be observed how

residual glucose serves as a proxy indicator of endpoint metabolic

activity. Most notably, it can be understood as an inverse of the

final viability measurement given that lower residual glucose values

represent higher metabolic activity while high residual glucose

values demonstrate cell cultures with little glucose metabolism and

thus low overall metabolic activity.

F IGURE 12 Shapley value dependency plot. (a) Integral viable cell concentration (IVCC), (b) max lactate, (c) endpoint viability, (d) endpoint
pH, (e) cumulative oxygen sparged, (f) total glucose consumption, (g) endpoint ammonia, (h) endpoint residual glucose.
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4 | CONCLUSION

MVDA tools can be utilized in early process development to gener-

ate wider insights that might otherwise be difficult to conclude

through standard univariate analysis. In the context of this article, it

was possible to determine that although seeding density constraints

the overall cell density available during the production phase,

impacts on viability mean that there is a relative parity in terms on

protein outcome by the end of the 17-day fed-batch process. Addi-

tionally, it was found that oxygen sparge requirements can be used

as a process performance indicator to evaluate culture outcomes. It

was observed that cultures with high sparge rates and low base

addition were concomitant with high endpoint titers. On the other

hand, by comparing the same pool across different systems, it was

possible to determine which culture conditions reproduced similar

behaviors such that representative processes are created. In this

case, it was possible to determine which aeration conditions in the

BioFlo 1 L system best re-create the hydrodynamics conditions of

the Multifors 0.75 L system. Cell passage dependence on different

pools was also readily observed through clustering in the PCA plots.

This is key as it allows to determine which pools may be viable for

larger scale production.

Difference in pool behavior was also evaluated through clustering

and careful analysis of the loading plots. It was observed that differ-

ence in lactate metabolism and cell growth (and the consequent deriv-

atives such as base added volume, oxygen requirements, and

longevity) were the main drivers in differentiating the culture out-

comes. It was also demonstrated that a RF model, utilizing these key

features, is able to capture the nonlinear relationships between the

measured variables and the final protein yield in order to generalize its

predictive capabilities. These ML models can then be analyzed

through SHAP dependency plots to recognize the interactions and

given early process development goals, improve process understand-

ing. To the best of the knowledge of the authors, this is the first time

SHAP dependency plots have been applied for the purpose of CHO

cell culture process performance analysis. This may prove to be a

worthwhile strategy, given that the analysis of early process develop-

ment datasets served to gain insights that can aid further process

optimization. For example, it was concluded that increasing pH dead-

band may be beneficial so as to limit unnecessary base and carbon

dioxide additions. This strategy may be used in tandem with slow con-

tinuous feeding to diminish sudden metabolic by-product build-up.

Importantly, longevity was also determined to be a relevant factor,

and as such, finding strategies that improve said longevity may also be

F IGURE 13 Shapley value dependency plot. (a) Cumulative oxygen sparged, (b) total glucose consumption, (c) endpoint ammonia,
(d) endpoint residual glucose.
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adequate more than just increasing cell density but in detriment of

viability. Such strategies could center around diminishing shear force,

osmolarity stress, and improved feedings since these processing

parameters (high shear, high osmolarity, inadequate feeding) have

been observed to be important drivers of cellular apoptosis.47,58,59
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