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Optic Nerve Head Pulsatile Displacement in Open-Angle
Glaucoma after Intraocular Pressure Reduction Measured by
Optical Coherence Tomography: A Pilot Study
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* Correspondence: marklesk67@gmail.com

Abstract: This study investigated the effect of intraocular pressure (IOP) reduction on pulsatile
displacement within the optic nerve head (ONH) in primary open-angle glaucoma (POAG) patients
with and without axial myopia. Forty-one POAG patients (19 without myopia, 9 with axial myopia
and 13 glaucoma with no intervention) participated. Swept-source optical coherence tomography
(OCT) videos of the ONH were obtained before and after IOP-lowering treatment (medical or surgical)
achieving a minimum IOP drop of 3 mmHg. A demons registration-based algorithm measured local
pulsatile displacement maps within the ONH. Results demonstrated a significant 14% decrease
in pulsatile tissue displacement in the non-myopic glaucoma cohort after intervention (p = 0.03).
However, glaucoma patients with axial myopia exhibited no statistically significant change. There
were no significant changes in the pulsatile ONH deformation in the control group. These findings
suggest a potential link between IOP reduction and reduced pulsatile displacement within the ONH
in POAG patients without myopia, offering new insights into the disease’s pathophysiology and
warranting further investigation into underlying mechanisms and clinical implications.

Keywords: ocular biomechanics; optic nerve head displacement; optical coherence tomography pulsatility

1. Introduction

The optic nerve head (ONH) is the primary site of damage in glaucoma [1–3]. In-
traocular pressure (IOP) is widely recognized as a major risk factor [4–6]. However, the
complex interplay between IOP, ONH biomechanics, and disease progression remains
poorly understood [7–10]. This lack of understanding underscores the need to investigate
factors beyond IOP, particularly in light of individual variations due to age, demographics,
and anatomy [11,12]. Furthermore, a recent publication based on the ocular hypertension
treatment study (OHTS), a landmark glaucoma clinical trial, found that only 25% of the
study participants with elevated IOP developed visual field loss in either eye over a 20-year
follow-up [13]. The elusive nature of the pathophysiological pathways of POAG has led
researchers to investigate the mechanical properties of the eye as prognostic biomarkers
and potentially actionable targets.

Deformation of the lamina cribrosa (LC) and adjacent structures at the optic nerve
head (ONH) have been investigated recently through analyses of physical changes during
intraocular pressure (IOP) manipulation and gaze shift [14,15]. Studies on the response of
the lamina cribrosa to IOP manipulation have yielded variable results [2,16,17], which may
reflect the baseline differences and remodeling that occur in POAG. Currently, assessment of
morphological changes at the ONH, both in animal and human studies [6,14,18,19], employ
OCT technology. Various methods have been used, including 3D volume reconstruction [2],
digital volume correlation algortitm [17], and in silico simulations based on ex vivo tissue
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biomechanics [20]. However, these studies rely on static optical coherence tomography
(OCT) analyses, which fail to capture the dynamic, pulsatile nature of the tissues [6,8].

The initial investigation of pulsations in and around the optic nerve head (ONH)
focused on the presence of venous pulsation. Recent studies have witnessed a surge in
efforts to analyze tissue perfusion using OCT-angiography (OCT-A) and Doppler tech-
nologies [21–23]. Notably, low ONH perfusion has been linked to a higher prevalence and
progression of glaucoma, even in the absence of elevated intraocular pressure (IOP) [24,25].
However, the current understanding remains limited regarding whether ONH pulsation
reflects an imbalance between the forces exerted by blood flow, IOP, choroidal pulsation,
and intraorbital pressure, or if it contributes to the initial pathophysiology of glaucoma.

Recent advances in optical coherence tomography (OCT) have led to the development
of OCT elastography, a technique capable of quantifying the biomechanical properties
of tissues in vivo [26], and it has been proven to facilitate assessment of biomechanical
properties of multiple ocular structures and detect changes in biomechanical properties
associated with changes in IOP [27]. However, despite the multiple applications of this
technology it requires additional equipment, and it is not available in all clinical settings.

We developed a method to measure ONH changes during the peripheral pulse which
on its own may have important implications [28–30]. It is possible that what we learn from
these pulsatile measurements may lead to a better understanding of the pathophysiology
of glaucoma and help with diagnosis and management. Examining the change in these
pulsatile displacements when the IOP is reduced is one of the first steps to understanding
their significance. The stress caused by IOP, peripapillary sclera stiffness, blood flow,
and changes in these factors have a potentially detrimental impact on axon bundles and
supporting cells in the ONH, particularly around the lamina cribrosa [29,31–34].

Each cardiac cycle influences ocular structures through a propagated blood pressure
wave, leading to variations in choroidal volume, pulsatile tissue movements, and intraocu-
lar pressure. Since the eye is a dynamic and non-rigid organ, it exhibits complex responses
to these hemodynamic and biomechanical forces, which are not yet fully understood due to
the intricate anatomy of the eye. Similarly, research in neurology has shown that pulsatile
movements of cerebrospinal fluid, driven by cardiac blood flow, significantly affect neural
tissues and contribute to conditions like Chiari malformation [35]. This suggests that similar
mechanisms could potentially impact the eye, given its direct connection to the brain and
exposure to systemic pulsatile forces.

Ocular pulse amplitude has also been correlated to changes in intraocular pressure due
to glaucoma treatment [36,37]. It has been documented that large IOP decrease following
trabeculectomy causes a decrease in OPA and choroidal thickening. Choroidal perfusion
changes have also been reported in animal models after IOP manipulation [38], which
could be indicative of the importance of the hemodynamic forces in the eye.

By measuring how these forces affect the ONH, researchers can better understand the
physiological and pathological responses of the eye, potentially leading to breakthroughs
in diagnosing and treating ocular diseases. Moreover, this understanding could lead to
insights into how repetitive micro-stretching from pulsatile forces may contribute to tissue
damage and disease progression, similar to observations made in certain brain conditions.

While current evidence does not establish a clear link between pulsatile displace-
ment and ocular disease or visual outcomes, a deeper physiological and pathological
understanding of this factor could justify its inclusion in future studies.

2. Materials and Methods

The institutional review board of the Maisonneuve-Rosemont Hospital approved this
study, which was conducted in accordance with the 1964 Declaration of Helsinki and its
amendments. Written informed consent was obtained from all participants.



Bioengineering 2024, 11, 411 3 of 13

2.1. Patient Recruitment and Clinical Examination

Patients with POAG were recruited from the ophthalmology clinic at the Maisonneuve-
Rosemont Hospital and were only included in the study if they were beginning topical
drugs to reduce intraocular pressure, were selected for selective laser trabeculoplasty (SLT),
or were scheduled to undergo filtration surgery, without the use of a drainage device, as
part of their clinical care. Only one eye was included per participant, and a minimum IOP
reduction of 3 mmHg was required. No additional procedures were performed as part of
the study.

A control group, defined as eyes with no IOP reduction intervention, of 13 subjects
was recruited. Exams were performed within 4–6 weeks apart in the same anatomical
position, using the built in OCT eye tracker.

Eye examinations and imaging were performed by the same ophthalmologists (ML
and MMS, respectively). The visual function was assessed using a Zeiss Humphrey Field
Analyzer Visual Field (Carl Zeiss Meditec, Dublin, CA, USA), and static OCT measure-
ments were acquired using a Spectralis OCT (Heidelberg, Germany), as required by the
clinical protocol.

The PlexElite 9000 OCT (Zeiss, Dublin, CA, USA) was used to acquire videos with an
A-scan rate of 100 kHz, with a center wavelength of 1040 nm. The OCT device has an axial
optical resolution of 6.3 microns and a transverse resolution of 20 microns. Images were
acquired with no pupillary dilation in dim light conditions.

2.2. Image Processing

The algorithm to generate the displacement maps was validated and described in
detail in our previously published paper [30]. Briefly, we measured the displacement of
ONH tissue caused by pulsatile blood flow changes over a period of 30 s (3000 images)
using swept-source OCT.

To minimize movement artifacts due to respiration, head movements, and saccades,
consecutive images were rigidly registered, by applying global transverse and axial transla-
tions relative to a reference frame (Figure 1). To correct for finer motion artifacts and eye
rotations, cross-correlation was computed between all A-scans of an image and those of
the reference frame. Next, a linear fit of the maximum cross-correlation for all A-scans was
used to calculate the axial translations that compensate rotation.
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Figure 1. Pipeline to process data. A 3000-frame OCT video is acquired. Images are aligned by
a global and a finer A-scan-based rigid registration. Non rigid registration is applied to obtain
displacement fields that describe tissue changes between every pair of images. Displacement vectors
are calculated for every pair of images, and the median absolute value of this field is calculated for
the whole video. Finally, a graphical representation of the local changes in the median pulsatile
displacement on one B-scan is obtained.

Once images were globally aligned and A-scan registration was performed, median
pulsatile displacement fields were calculated between pairs of frames using the demons
algorithm [39–43] and movement heatmaps were constructed from the median displace-
ment of all the image pairs along the movie (Figure 1). The algorithm’s outcomes were
validated previously to assess its response to different amplitudes, noise levels, and ability
to identify physiological changes [30]. We applied this method to compare displacement
maps of glaucoma participants imaged within 7 days before and 4–6 weeks after the clinical
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intervention. Participants with difficulty fixating or unclear media were excluded from
the study.

The same observer (MMS) manually traced the ONH area in all cases and the Bruch’s
membrane openings (BMO) as references (Figure 2A). The area between the internal limiting
membrane and the RPE/Bruch’s membrane complex was manually delimited in both the
nasal and temporal retina. The lamina cribrosa and prelaminar tissue depth were measured
using the BMO plane to the deepest level of the cup (the most anterior portion of the
prelaminar tissue) [44]. First, a line was drawn at the maximum point, and then two other
lines were traced, one nasal and the other temporal, 100 microns from this line. The mean
distance of these three measurements was defined as the anterior prelaminar tissue depth
and lamina cribrosa depth (Figure 2B).
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Figure 2. (A) Segmented optic nerve head. The highlighted region represents the section used for the
analysis. The ONH area was manually traced by the same observer in all cases, using the Bruch’s
membrane openings as references. The included area was the tissue in between both landmarks,
the vitreous interphase, and the posterior border of the LC. The area between the internal limiting
membrane and retinal pigment epithelium/Bruch’s membrane complex was manually delimited
in both nasal and temporal retinas. (B) Pre-laminar tissue depth (“cup depth”) is defined by the
maximum depth between a horizontal line connecting the nasal and temporal BMO and the deepest
anterior lamina cribrosa and prelaminar tissue area. Two additional lines were traced 50 microns
nasally and temporally to this central line and the total depth was defined as the average of the
three lines.

Peripapillary choroid thickness was measured in the nasal and temporal choroid
100 microns from the BMO for each one of the B-scans.

2.3. Statistics

We performed statistical analysis using R programming software (version 2022.12.0+353).
To generate the plots, we used the ggstatsplot package [45]. Descriptive statistics were
applied to the demographic data, while the Student t-test, Wilcoxon (in non-parametric
distribution data), and ANOVA were used for continuous and categorical variables. Multi-
variate analysis was conducted to determine the correlation between pulsatile optic nerve
displacement, demographic, and clinical data.

Non-parametric paired tests (Wilcoxon) were used to compare the main clinical pa-
rameters extracted for the Spectralis OCT, which was used to obtain the standard of care
OCT parameters.
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3. Results
3.1. Demographic and Clinical Data

Initially, 53 patients were included in the study; however, due to excessive movement,
media opacities or post-operative complications, a total of 41 participants with POAG
were finally included in the study. Within this cohort, 9 subjects were also diagnosed
with axial myopia (axial length > 25 mm), 19 with no myopia and 13 corresponded to
the no-intervention control group. The demographic and clinical characteristics of the
intervention groups are listed in Table 1.

Table 1. Demographic and clinical characteristics of included study participants.

Parameter
Group (n = 28)

Glaucoma (n = 19) Glaucoma and Myopia (n = 9)

Pre-
Intervention

Post-
Intervention p-Value * Pre-

Intervention
Post-

Intervention p-Value *
Baseline

Comparison
(p-Value)

Age (years) 67.7 ± 11 - 64.4 ± 14 - 0.4 +

Sex (female %) 14 (73%) - 4 (44%) - 0.1 o

Intervention (surgical %) ** 8 (50%) - 4 (44%) - -
AL (mm) 23.19 ± 0.7 - 25.89 ± 0.5 - <0.005 +

IOP (mmHg) 25.65 ± 8 16.5 ± 7 <0.005 22.2 ± 6 16.0 ± 9 0.01 0.2 +

IOP change (mmHg) 9.1 ± 7 - 6.2 ± 4 - 0.01 +

Glaucoma severity ***
Early (n (%)) 7 (37%) - 4 (44%) - -

Moderate (n (%)) 6 (31.5%) - 2 (28%) - -
Severe (n (%)) 6 (31.5%) - 3 (28%) - -

Anatomical and Functional Assessment
Visual Field MD (dB) −3.67 ± 6 −3.68 ± 6 0.4 −5.51 ± 3 −5.40 ± 4 0.8 0.5 +

BMO area (µm2) 1.89 ± 0.4 1.88 ± 0.4 0.7 2.26 ± 0.5 2.25 ± 0.5 0.1 0.4 +

GCC volume (mm3) 0.91 ± 0.1 0.88 ± 0.2 0.02 0.86 ± 0.1 0.87 ± 0.1 0.7 0.6 +

Peripapillary CT area
(mm2) 974 ± 353 1140 ± 380 0.1 499 ± 369 661 ± 352 0.7 <0.005 +

Anterior PLT depth (µm) 1033.02 ± 600 973.39 ± 559 0.05 753.46 ± 439 740.12 ± 452 0.5 0.3 +

RNFL Thickness (µm)
Superior 96 ± 26 94 ± 24 0.08 96 ± 16 92 ± 17 0.01 0.5 +

Inferior 94 ± 33 87 ± 35 0.05 101 ± 36 89 ± 32 0.01 0.8 +

Temporal 57 ± 15 55 ± 13 0.7 63 ± 11 64 ± 13 0.3 0.4 +

Nasal 59 ± 16 61 ± 16 0.1 56 ± 16 61 ± 17 0.5 0.2 +

* Paired Wilcoxon test. ** Compared to medical intervention with eyedrops or SLT (n (%)). *** Classification based
on Hodapp–Anderson–Parrish criteria. IOP (intraocular pressure), AL (axial length), RNFL (retinal nerve fiber
layer), BMO (Bruch’s membrane opening), GCC (ganglion cell complex), CT (choroid thickness), PLT (prelaminar
tissue). + Welch’s t test, o Chi-Square Test.

The mean age was 68 years for the glaucoma group, 64 years for the glaucoma and
axial myopia one and 66 for the control, with a sex distribution of 73%, 44%, and 46% of
female participants in each cohort, respectively. There was a significant intraocular pressure
reduction for both treatment cohorts (9.1 ± 7 mmHg and 6.2 ± 4 mmHg). Images were
taken between 4 and 6 weeks after intervention.

For the intervention groups, no difference was found in the visual field before and
after the treatment. Overall, there was no significant difference between the main clinically
used parameters (RNFL thickness, BMO area, and ganglion cell complex (GCC) volume)
between different axial length groups at baseline. Following intervention, there was a
significant decrease in the inferior retinal fiber layer thickness (RNFL) in both groups
(p = 0.05 for both the AL < 25 mm and AL ≥ 25 mm) and in the GCC volume in the
non-myopic glaucoma cohort (p = 0.02).

There was no significant difference between the peripapillary choroidal cross-sectional
thickness area on the B-scans before and after intervention, whereas the anterior prelaminar
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tissue depth change was only significant in the non-myopic glaucoma cohort. It changed
from a mean depth of 1033 ± 600 µm to 973 ± 559 µm.

3.2. Pulsatile Displacement Change

The main, and most interesting, outcome of our results is the measurement of the
median pulsatile displacement in the ONH as shown in Figure 3.
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Figure 3. Median pulsatile displacement changes before and after IOP decrease. Panel (A): Example
of pulsatile displacement maps corresponding to a subject before and after trabeculectomy with an
IOP decrease of 8 mmHg. Panel (B): Median pulsatile displacement changes in the ONH in glaucoma,
glaucoma plus myopia and control cohorts.

An example of the changes in the median pulsatile displacement map is depicted in
panel A. The ONH is delimited between the two Bruch’s membrane openings and the
posterior surface of the prelaminar tissue (see Figure 3).

Before the intervention, there was a median pulsatile displacement of 9.1 ± 2 µm
compared to a displacement of 7.9 ± 1 µm after IOP decrease (p = 0.03) in the non-myopic
glaucoma cohort, resulting in a significant 13.7% decrease in pulsatile displacement after
the intervention compared to the baseline. In contrast, in the myopic glaucoma cohort,
the baseline displacement was 9.0 ± 1 µm compared to 10.1 ± 2 µm after the interven-
tion resulting in a 10.9% increase from the baseline; notably this effect is not statistically
significant (p = 0.55) (Figure 3).

In the control group there was a baseline displacement of 7.31 ± 2 µm and a mean
displacement of 7.03 ± 2 µm in the second visit (p = 0.89).

Regarding the directionality of the change, while most subjects exhibited a reduction
in displacement, it is noteworthy that in the normal AL and glaucoma group, six patients
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(31.6%) experienced an increase in displacement after the intervention, in contrast to four
patients in the glaucoma and axial myopia group (44.4%).

The magnitude of the change in median pulsatile (before–after IOP reduction) displace-
ment (in microns) was used as an outcome to explore the correlation with the demographic
and clinical variables. The multivariate analysis showed no significant association between
changes in pulsatile displacement and age, sex, IOP change or glaucoma severity in the
complete cohort or the AL < 25 and AL ≥ 25 mm groups separately. The type of treatment
(surgical versus medical) was also not found to be an influential factor in the displacement
change (R = 0.02, p = 0.5).

A detailed analysis was conducted to investigate the correlation between IOP and pul-
satile displacement. As discussed, the IOP change did not exhibit a significant correlation
with the change in pulsatile displacement (R = 0.01, p = 0.2). Interestingly, a positive corre-
lation was observed between basal IOP and the IOP change in mmHg (R = 0.4, p = 0.001,
CI [0.3–0.8]) (Figure 4A), and a similar correlation was identified between basal pulsatile
displacement and the displacement change (R = 0.2, p = 0.004, CI [0.1–0.6]) (Figure 4B). This
implies that higher basal values (before intervention) of IOP and pulsatile displacements
are correlated with a larger change, respectively, after the intervention.
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Figure 4. Correlation between intraocular pressure and pulsatile deformation. (A) Basal IOP correla-
tion with absolute IOP change (mmHg). (B) Basal pulsatile deformation correlation with absolute
displacement change (µm). (C) Relationship between IOP and deformation before intervention.
(D). Relationship between IOP and deformation after intervention.

Moreover, when we analyzed the relationship between IOP and pulsatile displacement
at baseline, there was no significant correlation before treatment (R = 0.03, p = 0.6). How-
ever, this changed when we examined the postoperative data. We observed a significant
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correlation between IOP and pulsatile displacement after the intervention (R = 0.2, p = 0.02,
CI [0.04–0.5]) (Figure 4C,D).

Additionally, a modest positive correlation was found between the absolute displace-
ment change and the change (before–after IOP reduction) in the anterior prelaminar tissue
depth upon intervention (R = 0.2, p = 0.03, [CI 0.0009–0.02]) in the complete cohort. This
multivariate analysis was performed using age, IOP and basal prelaminar tissue depth
as confounders.

Given the difference between IOP decrease in both cohorts, the absolute IOP change
was used as a confounder in the multivariate analysis, along with axial length, and no
significant effect was found in the degree of IOP-reduction on pulsatile displacement in our
data. For intraocular pressure change there was no correlation with the amount of pulsatile
displacement change (R = 0.009, p = 0.9).

No significant correlation was found between any of the OCT and VF field parameters
described in Table 1 and the pulsatile displacement at baseline.

4. Discussion and Conclusions

Our study found that a reduction in IOP leads to a significant decrease in pulsatile
displacement of the ONH in patients with POAG without myopia. In contrast, the myopic
group showed a non-significant increase in pulsatile displacement after IOP reduction,
despite having a smaller IOP reduction and a 10% greater rate of surgical intervention.
Since more subjects in the myopic cohort had an increase of the pulsatile displacement and
given the sample size, a bigger longitudinal study on axial myopia patients would help
understand the difference in the biomechanical response in this specific group of patients.

There was no ONH pulsatile displacement when the IOP values remain constant, as
shown in the control group which suggest that the biomechanical response may be related
with the IOP levels in glaucoma patients.

The results indicate that IOP has an impact on the pulsatile displacement of the ONH,
and the relationship between these two factors may be affected by myopia. The difference
between the myopic and non-myopic groups could be attributed to the fact that myopic
eyes tend to have less stiff tissue compared to non-myopic eyes [46–48]. However, our
sample size in the myopic group was too small to be certain that a significant difference
existed in the behavior of the two groups.

The displacement observed in this study is most likely the result of the combination
of pulsatile changes occurring in the eye, especially the pulsations of the choroidal and
retinal vasculature and the pulsatile aqueous outflow, which intersect with the mechanical
properties of the ocular tissues. In vitro studies on human tissue have shown that cyclical
mechanical stretch at the heart rate frequency can affect extracellular matrix transcription
genes in the lamina cribrosa, as suggested by Kirwan et al. [49]. This molecular effect could
potentially explain the neuroprotective effect of IOP from a biomechanical perspective.

Jin et al. added relevant evidence using finite element modelling, highlighting the
importance of the vascular component, studied in silico. The models indicate that during
the cardiac cycle, the ocular pulse amplitude and choroidal expansion can deform the ONH
with a net shearing of neural tissues within the neuroretinal rim [50]. Here we presented
the clinical applications of this novel method to measure the ONH tissue displacement
driven by the ocular pulsations and choroid which we have previously hypothesized and
measured [29,51].

The pulsation of the ocular tissue is a result of a complex interplay of mechanical forces
acting around the ONH. These forces include the response to changes in IOP, intracranial
pressure [17], choroidal perfusion [52], retinal perfusion, and the biomechanical properties
of the ONH tissue, and other ocular tissues such as ocular rigidity [53,54]. Our findings
suggest a significant decrease in pulsatile displacement of the ONH after IOP reduction
in patients with POAG without myopia, even after correcting for baseline IOP and IOP
change. This suggests that while there may be a physiological interaction between IOP and
tissue response, the strain of the tissue is more closely linked to the biomechanical status of
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the tissue (in this case seen as the lamina cribrosa position change) than to the IOP change
itself. This notion needs to be examined in a much larger study.

The current evidence on biomechanical modeling of the human eye mainly focuses on
static OCT imaging. By analyzing video OCT, instead of a static assessment, we are able to
capture the pulsatile changes along with the influence of IOP. This feature may permit us
to better explore biomechanics-based risk factors. However, it also adds the constraint of
analyzing a smaller anatomical area compared to other studies [2,17,50,55]. The pulsatile
displacement may in future be used to estimate the mechanical properties of the ONH,
without resorting to manipulating the IOP.

We conducted a thorough analysis of static parameters in standard OCT imaging and
visual field, taking into account factors such as IOP, type of intervention, and demographic
variables that may influence the anatomical characteristics of the lamina cribrosa, such as
age [56] (see Table 1). Our results revealed a modest correlation between the change in
position of the anterior surface of the prelaminar tissue following IOP reduction and the
change in pulsatile displacement following intervention in both myopic and non-myopic
patients. This finding supports the idea that changes in tissue may influence the response
of the lamina cribrosa to cyclic cardiac inputs [20,50].

Another potential limitation is that the observed differences in pulsatile displacement
response to IOP reduction between myopic and non-myopic patients with primary open-
angle glaucoma (POAG) need to be confirmed in a larger cohort that is also better matched
for the degree of IOP reduction. If confirmed, the differences observed between myopic and
non-myopic eyes could potentially be attributed to the underlying mechanical properties
of the ONH. In non-myopic eyes with glaucoma, a thinner choroid has been reported
compared to normal population [12,52,57], and this could result in reduced choroidal
pulsatility which may be the primary driving force for lower ONH pulsatility when IOP is
also lowered. On the other hand, in myopic eyes the choroid is even thinner, as is the lamina
cribrosa, and the sclera is thinner and less rigid compared to non-glaucomatous eyes [58].
Mechanical properties of the sclera may be the dominant factor in myopia, allowing for
more movement with the pulse as IOP is reduced. This suggests that there is a complex
interplay between factors such as IOP, choroidal pulsatility, and scleral mechanics that
may be modified in the presence of myopia. While it is still early to support this theory,
the application of this new tool may provide a starting point to explore the role of these
vascular forces within a clinical context.

Preoperative intraocular pressure has been identified as a predictor of IOP reduction
following glaucoma treatment and cataract surgery [59–61]. Our data support this evi-
dence. We demonstrate that a higher basal IOP is correlated with a more substantial IOP
reduction. Similarly, the basal pulsatile displacement is correlated with a greater change in
displacement as part of the response to treatment. This correlation is independent of the
absolute value of IOP reduction, which could provide additional information regarding the
treatment response.

Another noteworthy finding is the increased correlation between IOP and pulsatile
deformation, as illustrated in Figure 4. A similar change in this correlation has been de-
scribed in the cornea, particularly corneal hysteresis, where authors observed an increased
correlation between the two variables in weeks 2 and 4 after IOP reduction. In this case the
recovery is suggested to be related to microstructural changes that affect CH rather than
the macrostructural changes, evidence that has also been presented in animal models [62].

While the specific correlation between IOP and pulsatile deformation measured by
OCT is not widely reported in the literature, there is growing evidence describing the
remodeling of the ONH tissue in response to treatment [63,64] and in some cases it has been
clinically described that RNFL thickness can improve after IOP has been stabilized [65,66].
Our method is a novel tool that, applied to a bigger cohort, could lead to deeper analysis
on the correlation of biomechanics and positive outcomes to treatment in glaucoma.

When IOP was reduced by surgery, our second imaging session was conducted after
6 weeks because earlier imaging may have shown lower quality. When medical therapy
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was used to lower IOP, imaging was performed after the documented IOP drop, which
was within 4–6 weeks. By not imaging immediately after an acute change, we are allowing
some time for tissue remodeling to occur [67,68], which can be challenging to account for
when analyzing our results. Prospective data are needed to better understand the role of
tissue remodeling in glaucoma progression and its correlation with pulsatile displacement.

The morphological differences at the ONH in glaucoma patients with and without
myopia pose a continuing challenge for diagnostics and follow up. The morphological
characteristics of the ONH exhibit high variability, making it difficult to establish a standard
set of parameters for diagnosis and monitoring, especially in myopia [69]. Variations in
optic disc size, optic nerve fiber density, lamina cribrosa pores, interpore connective tissue
area, and cilioretinal artery frequency also contribute to the complexity of the problem [11].
It is possible that the pulsatile displacement of the ONH could be a new parameter that
has some value in diagnosis and follow up of POAG, in addition to its potential role in the
pathophysiology of the disease. Further studies will be required.

There is a notable variation of the displacement value among individuals, as seen in
Figure 3, which could be explained by the multifactorial nature of this biomarker. There
is considerable variation within individuals of tissue rigidity, intralaminar pressure and
response to intraocular pressure treatment. While the response remains fairly consistent
within the normal AL and glaucoma group, a careful interpretation of the results, including
the consideration of multiple clinical variables, should be performed in future studies.

The neuroprotective effect of IOP decrease also exhibits significant variability within
individuals [70], making it challenging to rely solely on IOP measurements for clinical
monitoring of the ONH. We speculate that the biomarker of pulsatile ONH displacement
could become complementary to IOP itself as a tool for clinical assessment upon further
investigation. Larger cross-sectional and prospective studies will be required.
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