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Abstract B
ACKGROUND CONTEXT: The role of lumbar paraspinal muscle health in back pain (BP) is

not straightforward. Challenges in this field have included the lack of tools and large, heterogenous

datasets to interrogate the association between muscle health and BP. Computer-vision models

have been transformative in this space, enabling the automated quantification of muscle health and

the processing of large datasets.

PURPOSE: To investigate the associations between lumbar paraspinal muscle health and age, sex,

BMI, physical activity, and BP in a large, heterogenous dataset using an automated computer-

vision model.

DESIGN: Cross-sectional study.

PATIENT SAMPLE: Participants from the UK Biobank with abdominal Dixon fat-water MRI

(N=9,564) were included (41.8% women, mean [SD] age: 63.5 [7.6] years, BMI: 26.4 [4.1] kg/m2)

of whom 6,953 reported no pain, 930 acute BP, and 1,681 chronic BP.

OUTCOMEMEASURES: Intramuscular fat (IMF) and average cross-sectional area (aCSA) were

automatically derived using a computer-vision model for the left and right lumbar multifidus (LM),

erector spinae (ES), and psoas major (PM) from the L1 to L5 vertebral levels.

METHODS: Two-tailed partial Pearson correlations were generated for each muscle to assess the

relationships between the muscle measures (IMF and aCSA) and age (controlling for BMI, sex,

and physical activity), BMI (controlling for age, sex, and physical activity), and physical activity

(controlling for age, sex, and BMI). One-way ANCOVA was used to identify sex differences in

IMF and aCSA for each muscle while controlling for age, BMI, and physical activity. Similarly,

one-way ANCOVA was used to identify between-group differences (no pain, acute BP, and chronic

BP) for each muscle and along the superior-inferior expanse of the lumbar spine while controlling

for age, BMI, sex, and physical activity (a=0.05).

RESULTS: Females had higher IMF (LM mean difference [MD]=11.1%, ES MD=10.2%, PM

MD=0.3%, p<.001) and lower aCSA (LM MD=47.6 mm2, ES MD=350.0 mm2, PM MD=321.5

mm2, p<.001) for all muscles. Higher age was associated with higher IMF and lower aCSA for all

muscles (r≥0.232, p<.001) except for LM and aCSA (r≤0.013, p≥.267). Higher BMI was associ-

ated with higher IMF and aCSA for all muscles (r≥0.174, p<.001). Higher physical activity was

associated with lower IMF and higher aCSA for all muscles (r≥0.036, p≤.002) except for LM and

aCSA (r≤0.010, p≥.405). People with chronic BP had higher IMF and lower aCSA than people

with no pain (IMF MD≤1.6%, aCSA MD≤27.4 mm2, p<.001) and higher IMF compared to acute

BP (IMF MD≤1.1%, p≤.044). The differences between people with BP and people with no pain

were not spatially localized to the inferior lumbar levels but broadly distributed across the lumbar

spine.

CONCLUSIONS: Paraspinal muscle health is associated with age, BMI, sex, and physical activity

with the exception of the association between LM aCSA and age and physical activity. People with

BP (chronic>acute) have higher IMF and lower aCSA than people reporting no pain. The differen-

ces were not localized but broadly distributed across the lumbar spine. When interpreting measures

of paraspinal muscle health in the research or clinical setting, the associations with age, BMI, sex,

and physical activity should be considered. © 2024 The Author(s). Published by Elsevier Inc.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)
Keywords: A
dipose tissue; Artificial intelligence; Back muscles; Fatty infiltration; Low back pain; Magnetic resonance

imaging
Introduction

Back pain (BP) is the leading cause of disability world-

wide with a lifetime prevalence up to 84% and an annual

prevalence between 22% and 65% [1]. Despite persistent

efforts to improve the management of BP, including sophis-

ticated diagnostic techniques and novel treatments,

the global burden of BP continues to grow [1]. The

development of BP is multifactorial, driven by the interac-

tion between many biological, psychological, and social

factors [2].
In this study, we seek to advance our understanding of

one of these biological factors contributing to BP, namely

the role of lumbar paraspinal muscle health. Decline in par-

aspinal muscle health in BP has been characterized by

increased intramuscular fat (IMF) and decreased size (ie,

muscle atrophy) [3]. While researchers have hypothesized

that paraspinal muscle health decline plays an important

role in spinal function [3], the literature is inconclusive

about the magnitude and meaning of these changes in

people with BP. In some studies, increases in IMF and

http://creativecommons.org/licenses/by/4.0/
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decreases in the size of the lumbar paraspinal muscles were

highly associated with the presence and severity of BP [4],

although others disagree [5]. The inconsistency in the litera-

ture may be related to the accuracy and reliability of the

methods used to assess muscle health, not adequately

accounting for confounding factors, and the use of small

samples sizes providing low statistical power [6].

Paraspinal muscle health decline in BP is complex. Ongo-

ing effects of pain, inactivity, and inflammation [7] as well as

different time-dependent structural remodeling mechanisms

may influence this decline [7]. However, paraspinal muscle

health decline is not specific to people with BP and even seen

in asymptomatic individuals [8]. Paraspinal muscle health

decline may vary locally by segmental level [9] and may be

masked by other factors (eg, age, body mass index (BMI),

sex, and physical activity) [8]. As most studies have investi-

gated small cohorts of BP participants, the studies have lacked

variability in sample characteristics indicating the need for a

broad assessment of lumbar paraspinal muscle health in a

large, heterogenous dataset.

Muscle composition and size can be quantified noninva-

sively using conventional (T1 and T2-weighted) and advanced

(Dixon and proton density fat fraction) magnetic resonance

imaging (MRI). The assessment of muscle health with MRI

has traditionally required manual segmentation of the muscle

boundaries. Manual segmentation inefficiencies have impeded

using these methods in large-scale studies and clinical practice

[10]. Applying advanced computer-vision approaches to MRI,

such as convolutional neural networks (CNN), has been trans-

formative, enabling automated quantification of muscle health

with high efficiency and human-level performance [10,11].

This combined with the recent availability of large, heteroge-

nous whole-body imaging datasets, such as the UK Biobank,

provides both the tools and data to transform our understand-

ing of the relationship between muscle health and BP.

To improve our understanding of lumbar paraspinal

muscle health, we investigated the associations between

lumbar paraspinal muscle health and age, BMI, sex, physi-

cal activity, and BP using an automated computer-vision

model and Dixon fat-water MRI from 9,564 participants

with and without BP from the UK Biobank. We assessed

the differences between people with BP and no pain both

globally and locally along the superior-inferior expanse of

the lumbar spine. We hypothesized that paraspinal IMF and

muscle size would be associated with age, BMI, sex, physi-

cal activity, and BP. Furthermore, we hypothesized that the

differences between people with BP and no pain would be

most profound at the lower lumbar spine, where spinal

pathology is most commonly reported.
Methods

UK Biobank

The UK Biobank is a large, on-going prospective cohort

study, established primarily to investigate the genetic and
lifestyle determinants of various diseases of middle and

later life [12]. The UK Biobank received approval from the

National Information Governance Board for Health and

Social Care and the National Health Service Northwest

Multicentre Research Ethics Committee. The Strengthening

the Reporting of Observational Studies in Epidemiology

reporting guideline for cross-sectional studies were fol-

lowed [13].

In this cross-sectional study, we used the initial imaging

assessment responses (application number 67450) to iden-

tify cohorts of participants with no pain, acute BP (ie, less

than 3 months), and chronic BP (ie, more than 3 months).

Participants were asked: “In the last month, have you expe-

rienced any of the following that interfered with your usual

activities?” (Data-Field 6159). Participants experiencing

BP were then asked about the duration of the BP: “Have

you had back pains for more than 3 months?” (Data-Field

3571). The no pain cohort was identified by a response of

none of the above to pain experienced over the month prior,

the acute BP cohort was identified by a response of yes to

BP in the last month and no to BP lasting longer than 3

months, and the chronic BP cohort was identified by a

response of yes to BP in the last month and yes to BP lasting

longer than 3 months. No additional clinical pain measures

regarding BP were accessible with the initial imaging

assessment. Self-reported physical activity was assessed using

the Short International Physical Activity Questionnaire

(IPAQ), which encompasses the frequency, intensity, and

duration of walking, moderate, and vigorous activities [14].

The time devoted to walking, moderate, and vigorous activi-

ties was adjusted based on the estimated energy expended in

each activity category. This adjustment was made to calculate

the Metabolic Equivalent of Task (MET) minutes per week,

representing the total physical activity [15].

Dixon fat-water MRI

Dixon fat-water abdominal MRI was performed supine

using a 1.5T Siemens Aera MR scanner (Syngo MR D13,

Siemens, Erlangen Germany) (VIBE, TE1=2.39 ms,

TE2=4.77 ms, TR=6.69 ms, flip angle=10˚, matrix

size=224£174, in-plane resolution=2.232 mm£2.232 mm,

slice thickness=4.500 mm). Fat and water magnitude

images were reconstructed from the in-phase and out-of-

phase acquisitions [16]. To assess muscle composition, we

calculated IMF as the percent of the total signal (water+fat)

attributed to fat. As height varies between sexes [17] and

across the lifespan [17], we calculated each muscle’s cross-

sectional area and normalized the total CSA by the number

of slices segmented to calculate the average cross-sectional

area (aCSA).

CNN training and testing

A blinded rater (EW) with extensive training in lumbar

spine anatomy and imaging manually segmented the

muscles of interest (ie, left and right lumbar multifidus,
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erector spinae, and psoas major) across the L1−L5 verte-

bral levels using anatomical cross-references as previously

described [18]. This manual segmentation process was pre-

viously tested for its reliability and accuracy, demonstrating

a high level of segmentation accuracy and excellent inter-

rater reliability [10]. We determined that a total of 130 par-

ticipants (65 participants with no pain and 65 participants

with chronic BP) to be an optimal cut-off between the time-

consuming burden of manual segmentation while providing

sufficient clinical variability (ie, age, sex, BMI, physical

activity, and BP status) in the training and testing datasets.

The images were split into training (n=100, 47.0% chronic

BP, 50.0% female, mean (SD) age: 63.1 (7.7) years, BMI:

26.0 (3.9) kg/m2) and testing datasets (n=30, 46.7% chronic

BP, 53.3% female, age: 62.2 (7.9) years, BMI: 26.5 (3.5)

kg/m2) and were matched for sex (p=.261), age (p=.593),

BMI (p=.430), and BP status (p=.732). We trained a modi-

fied 2D U-Net CNN for image segmentation using the

MONAI framework for deep learning in healthcare imaging

(See Supplementary Methods for CNN training specifica-

tions) [19]. The CNN used in this study will be made openly

available at https://github.com/MuscleMap/MuscleMap.

Inclusion and exclusion criteria

Participants were excluded for withdrawal from the UK

Biobank, not attending the initial imaging assessment, miss-

ing BMI, missing self-reported physical activity, self-

reported history of cancer (Data-Field 20001), substance

use disorder, other major medical conditions (Data-Fields

20001 and 20002), and no Dixon fat-water imaging. Next, a

blinded rater (EW) performed a visual inspection of the

images and excluded participants for inadequate field-of-

view (ie, not capturing the L1 and L5 vertebral levels), pres-

ence of fat-water swapping artifacts, and poor image qual-

ity. The same blinded rater also visually inspected the CNN

muscle segmentations and excluded participants based on

poor segmentation quality.

Statistical analyses

Two-tailed partial Pearson correlations were generated

for each muscle to identify the direction and magnitude of

linear relationships between the muscle measures (IMF and

aCSA) and age (controlling for sex, BMI, and physical

activity), BMI (controlling for age, sex, and physical activ-

ity), and physical activity (controlling for age, BMI, and

sex) in people with no pain. Additionally, we used a one-

way ANCOVA to identify sex differences in IMF and

aCSA for each muscle while controlling for age, BMI, and

physical activity. Similarly, a one-way ANCOVA was used

to identify between-group differences (no pain, acute BP,

and chronic BP) for each muscle while controlling for age,

BMI, sex, and physical activity. To assess the spatial distri-

bution of IMF and CSA and between-group differences in

IMF and CSA along the superior-inferior expanse of the

lumbar spine, we calculated IMF and CSA at each axial
slice. Using spline interpolation (interp1d, SciPy Version

1.9.1), we normalized the IMF and CSA measures along

the superior-inferior axis such that the most inferior and

superior slices corresponded to 0% and 100% of the muscle

length, respectively [20]. We then assessed IMF and CSA

using a one-way ANCOVA at each axial slice (controlling

for age, BMI, sex, and physical activity) to identify where

IMF and CSA differed between the no pain, acute BP, and

chronic BP groups for each muscle. Model residuals were

tested for normality and sphericity using Skewness, Kurto-

sis, Shapiro−Wilk, Q−Q plots, and Mauchly’s test of Sphe-

ricity. We used an a of 0.05 as the threshold for statistical

significance, and Bonferroni correction to adjust the fam-

ily-wise error rate for multiple comparisons. We performed

statistical analyses in R-studio (Version 4.2.2).
Results

From the 502,485 participants in the UK Biobank,

29,656 participants with imaging were included after initial

screening, of which 15,597 were excluded based on inade-

quate field-of-view, 54 due to fat-water swapping artifacts,

43 due to poor image quality, and 71 due to poor segmenta-

tion quality (31% female, mean [SD] age: 62.3 [7.5] years,

BMI: 35.2 [9.8] kg/m2, no pain: 20 [28.2%], acute BP 7

[9.9%], chronic BP 18 [25.4%], and no BP but other pain

conditions 26 [36.6%]). From the remaining 13,891 partic-

ipants, 6,953 participants with no pain (41.7% female,

mean [SD] age: 63.7 [7.5] years, BMI: 26.1 [3.9] kg/m2,

MET: 2,794.6 [2,359.7]), 930 with acute BP (37.2%

female, age: 62.5 [7.6] years, BMI: 26.6 [4.1] kg/m2,

MET: 2,852.3 [2,543.2]), and 1,681 with chronic BP

(44.7% female, age: 63.2 [7.9] years, BMI: 27.4 [4.7]

kg/m2, MET: 2,859.1 [2,711.1]) were included. The

remaining 4,327 participants were excluded due to

no reported BP but endorsing other pain conditions

(Supplementary Fig. 1).

Convolutional neural network

Training of CNN was completed in 150,000 iterations.

The trained CNN models segmented all axial slices in an

image in 1.96 (0.03) seconds (Fig. 1), with high segmenta-

tion accuracy (Sørensen-Dice Index≥0.892) for the CNN

for all muscles (Supplementary Table 1). Furthermore, we

report high CNN accuracy and reliability for IMF

(MAE≤0.919%, ICC2,1≥0.869) and aCSA (MAE≤11.39
mm2, ICC2,1≥0.949) (Supplementary Table 2). Bland-Alt-

man and correlations plots are shown in Supplementary

Figs. 2 and 3.
Associations with age, BMI, sex, and physical activity in

people with no pain

Mean (SD) IMF was 36.2% (10.1) for the lumbar multi-

fidus, 27.0% (9.3) for erector spinae, and 7.8% (1.7) for

psoas major. Age and IMF (controlling for BMI, sex, and

https://github.com/MuscleMap/MuscleMap


Fig. 1. 3D rendering (left) and 2D renderings at the L1-L5 vertebral levels (right) of the paraspinal muscle segmentations from the automated computer-

vision model. Muscle segmentation masks of the right lumbar multifidus (red), left lumbar multifidus (green), right erector spinae (dark blue), left erector

spinae (yellow), right psoas major (turquoise), and left psoas major (purple) are shown. R Right, L Left, S Superior, I Inferior.
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physical activity) were positively correlated for the lumbar

multifidus (r≤0.484, p<.001), erector spinae (r≤0.484,
p<.001), and psoas major (r≤0.305, p<.001). BMI and

IMF (controlling for age, sex, and physical activity) were

positively correlated for the lumbar multifidus (r≤0.236,
p<.001), erector spinae (r≤0.320, p<.001), and psoas major

(r≤0.492, p<.001). Physical activity and IMF (controlling

for age, sex, and BMI) were negatively correlated for

the lumbar multifidus (r≤0.086, p<.001), erector spinae

(r≤0.083, p<.001), and psoas major (r≤0.079, p<.001)
(Fig. 2). Females had higher IMF (controlling for age, BMI,
and physical activity) for the lumbar multifidus (mean dif-

ference (MD)=11.1%), erector spinae (MD=10.2%), and

psoas major (MD=0.3%) (p<.001) (Fig. 3).
Mean (SD) aCSA was 592.3 mm2 (84.2) for the lumbar

multifidus, 1596.0 mm2 (288.3) for ES, and 686.5 mm2

(208.4) for psoas major. Age and aCSA (controlling for

BMI, sex, and physical activity) were negatively correlated

for the erector spinae (r≤0.241, p<.001) and psoas major

(r≤0.352, p<.001) but not the lumbar multifidus (r≤0.013,
p≥.267). BMI and aCSA (controlling for age, sex, and

physical activity) were positively correlated for the lumbar



Fig. 2. Associations between intramuscular fat (IMF) (Panel A) and average cross-sectional area (aCSA) (Panel B) and age, body mass index (BMI), and

physical activity for the left and right lumbar multifidus, erector spinae, and psoas major in people with no pain. Partial correlations (Pearson’s r) were per-

formed to identify linear relationships between IMF or aCSA and age, BMI, and physical activity when controlling for age, sex, BMI, and/or physical activ-

ity, respectively (residuals plotted). Note: The y-axis is scaled differently for each muscle to better visualize the correlations.
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multifidus (r≤0.308, p<.001), erector spinae (r≤0.518,
p<0.001), and psoas major (r≤0.276, p<.001). Physical

activity and aCSA (controlling for age, sex, and BMI) were

positively correlated for the erector spinae (r≤0.037,
p=.002) and psoas major (r≤0.079, p<.001) but not the lum-

bar multifidus (r≤0.010, p≥.405) (Fig. 2). Females had

lower aCSA (controlling for age, BMI, and physical activ-

ity) for the lumbar multifidus (MD=47.6 mm2), erector
spinae (MD=350.0 mm2), and psoas major (MD=321.5

mm2) (p<.001) (Fig. 3).
Lumbar paraspinal muscle health between people with and

without BP

We found significant between-group differences (con-

trolling for age, BMI, sex, and physical activity) for IMF



Fig. 3. Estimated marginal means for IMF (Panel A) and aCSA (Panel B) by sex (controlling for age, BMI, and physical activity) for the left and right lumbar

multifidus (LM), erector spinae (ES) and psoas major (PM). Females have higher IMF and lower aCSA for all muscles. Error bars=1 SE. *p<.05, **p<.01,
***p<.001.
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for all muscles (p<.001). IMF was higher in people with

chronic BP than in people with no pain (MD≤1.6%,

p<.001) and acute BP (MD≤1.1%, p≤.044). IMF was

higher in people with acute BP than in people with no pain

for the right lumbar multifidus (MD=0.7%, p=.034) and the

right psoas major (MD=0.1%, p=.038) (Fig. 4).

For aCSA, we found significant between-group differen-

ces for the erector spinae and psoas major (p<.001) but not
for the lumbar multifidus (p≥.385) (while controlling for

age, BMI, sex, and physical activity). aCSA was lower in

people with chronic BP than in people with no pain for all

muscles (MD≤27.4 mm2, p<.001). Between people with

chronic BP and acute BP, no significant differences in

aCSA were found for all muscles (MD≤17.8 mm2,
p≥.058). aCSA was lower in people with acute BP than

those without pain for the left lumbar multifidus (MD=7.4

mm2, p=.012) and left psoas major (MD=12.1 mm2,

p=.022) (Fig. 4).
Spatial distribution of lumbar paraspinal muscle health in

people with and without BP

The spatial distribution of IMF and CSA varied along the

superior-inferior expanse of the lumbar spine and was mus-

cle-specific and consistent across the groups (Figs. 5 and 6).

IMF increased inferiorly for the lumbar multifidus and erec-

tor spinae while IMF decreased inferiorly for the psoas

major. Lumbar multifidus IMF demonstrated a unique



Fig. 4. Between-group differences (mean§SE) in intramuscular fat (IMF) (Panel A) and average cross-sectional area (aCSA) (Panel B) for the left and right

lumbar multifidus, erector spinae, and psoas major in participants with no pain, acute back pain (BP), and chronic BP. Estimated marginal means are shown

for each group after controlling for age, BMI, sex, and physical activity. People with chronic BP had significantly higher IMF and lower aCSA for all muscles

compared to people with no pain. Error bars=1 SE. Note: The y-axis is scaled differently for each muscle to better visualize the group differences. *p<.05,
**p<.01, ***p<.001.
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sawtooth pattern. The spatial distribution of CSA was also

muscle-specific and consistent across the groups. CSA of

the lumbar multifidus and psoas major gradually increased

inferiorly, peaked in the lower lumbar levels, and then
rapidly decreased. CSA of the erector spinae rapidly

increased inferiorly, plateaued in the midlumbar levels, and

then gradually decreased. The differences in the spatial dis-

tribution of IMF and CSA between the groups were not



Fig. 5. Spatial distribution of intramuscular fat (IMF) along the superior-inferior expanse of the lumbar spine for the left and right lumbar multifidus, erector

spinae, and psoas major. Mean IMF (§1 SE error bands) for people with no pain, acute back pain (BP), and chronic BP (Mean) as well as between-group dif-

ferences (Difference) in IMF are shown. We normalized the IMF measures along the superior-inferior axis such that the inferior most and superior most slices

corresponded to 0% and 100% of the lumbar muscle length, respectively. Gray and hatched shading = Bonferroni corrected p-value <.05, showing significant
between-group differences after family-wise error correction.
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localized to the inferior lumbar levels but more broadly dis-

tributed across the lumbar spine for all muscles.

Discussion
We drew on a large, heterogenous dataset to report on

the associations between lumbar paraspinal muscle health

and age, BMI, sex, physical activity, and BP (acute and

chronic). The findings provide convincing evidence for

higher IMF and lower aCSA in BP with the largest differen-

ces in those with chronic BP. Next, we assessed paraspinal

muscle health along the superior-inferior expanse of the
lumbar spine and in contrast to our hypothesis showed that

the differences in composition and size in people with

BP and no pain were not localized to the inferior lumbar

levels but more broadly distributed across the entire lumbar

spine.

Information about the associations between lumbar para-

spinal muscle health and age, BMI, sex, and physical activ-

ity in people with no pain is limited [8,21]. Moreover, these

studies typically included small, homogenous samples and

used rater-dependent muscle segmentation techniques [10].

Here we first investigated the associations with lumbar



Fig. 6. Spatial distribution of cross-sectional area (CSA) along the superior-inferior expanse of the lumbar spine for the left and right lumbar multifidus, erec-

tor spinae, and psoas major. Mean CSA (§1 SE error bands) for people with no pain, acute back pain (BP), and chronic BP (Mean) as well as between-group

differences (Difference) in CSA are shown. We normalized the CSA measures along the superior-inferior axis such that the inferior most and superior most

slices corresponded to 0% and 100% of the lumbar muscle length, respectively. Gray and hatched shading=Bonferroni corrected p-value <.05, showing sig-

nificant groups differences after family-wise error correction.
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paraspinal muscle health and age, sex, BMI, and physical

activity in a large, heterogenous dataset of 6,953 partici-

pants with no pain using an automated computer-vision

model. Our findings are consistent with Crawford et al.

(2016) [8] demonstrating that paraspinal muscle health is

associated with age and sex with the exception for the asso-

ciation between lumbar multifidus size and age. Significant

associations with age and sex may be explained by muscle

fiber type distributions. For example, age is related to a

reduction in fiber size, that primarily affects type II fibers

(ie, fast twitch) not type I fibers (ie, slow twitch) [22].
Additionally, males exhibit greater type II/I fiber ratios

while females exhibit greater I/II fiber ratios. Type I muscle

fibers appear to express larger magnitudes of IMF, and type

II muscle fibers appear to be more susceptible to atrophy in

terms of paraspinal muscle health [23]. In contrast to the

findings of Crawford et al. (2016) [8], we found significant

associations between BMI and paraspinal muscle health.

Differences between the findings of both studies are likely

to be explained by the sample size (80 versus 6,953 partici-

pants with no pain) or methodology as our muscle size

measures were corrected for height and measured across
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the entire muscle between the L1 and L5 vertebral levels.

As a step towards developing reference values for research

and clinical applications, we provide tables of IMF and

aCSA from people with no pain subgrouped by age, BMI,

and sex (Supplementary Tables 3 and 4). With further

refinement, normative reference values could provide a

foundation to clinically assess the magnitude of IMF and

aCSA on a patient-by-patient basis with respect to a pain-

free reference.

Our findings show an association between paraspinal

muscle health and self-reported physical activity. Specifi-

cally, higher self-reported physical activity was associated

with lower IMF for all muscles and higher aCSA for the

erector spinae and psoas major but not the lumbar multifi-

dus. This aligns with the findings from Teichtahl et al.

(2015) [24] who also identified an association between

physical activity and lumbar multifidus IMF but not size.

These findings strengthen the hypothesis that exercise may

prevent age-associated increases in IMF, similar to what

has been shown for the thigh muscles in older adults [25].

However, due to the cross-sectional design of the study, we

cannot make causal inferences. Additionally, the strength

of the relationships is relatively small and can be explained

by two factors. First, we controlled for age, sex, and BMI,

so the strength of the relationship should be interpreted as

the variance explained beyond that explained by age, sex,

and BMI. Second, despite the wide use of IPAQ [14], the

IPAQ is based on self-reported measures of physical activ-

ity and has reduced accuracy and reliability to more objec-

tive measures of physical activity (eg, accelerometry) and

tends to overestimate the time spent in moderate and vigor-

ous physical activity [26,27]. Longitudinal studies, employ-

ing more objective measures of physical activity, are

needed to more fully delineate and understand the cause-

and-effect relationship between physical activity and para-

spinal muscle health.

Concerning the magnitude of paraspinal muscle health in

BP, we reached similar conclusions as Mengiardi et al.

(2006) [28], indicating that people with chronic BP have

higher levels of IMF compared to people with no pain.

However, the mean differences in IMF between groups in

this study were smaller (≤1.6% versus 9.1%). Such dispar-

ity may be due to differences in quantification methods (sin-

gle-voxel MR spectroscopy versus Dixon fat-water MRI).

While MR spectroscopy is highly accurate and sensitive to

map the metabolic status of muscular tissue [29], consider-

able sampling error occurs due to user-dependent position-

ing of the field-of-view [30]. Dixon fat-water MRI is

considered the current reference standard for quantifying

IMF across an entire muscle [31]. Additionally, the differ-

ences between studies can be explained by the increased

heterogeneity of the sample due the larger sample size (50

versus 9,564 participants with and without BP) and adjust-

ment for confounders that, in this and other investigations,

are related to paraspinal muscle health decline like age,

BMI, sex, and physical activity [28]. Next, we showed the
magnitude of the differences for both IMF and aCSA

between groups were more pronounced in people with

chronic BP versus no pain compared to those with acute BP

versus no pain. Muscle morphological mechanisms appear

to be time-specific after injury [7], which likely explains

the larger magnitude changes in lumbar paraspinal IMF and

aCSA in chronic BP compared to those with acute BP. Due

to the lack of measures on the duration and intensity of BP,

we were unable to more finely assess the relationship

between paraspinal muscle health and BP. More granular

clinical information could transform our understanding of

the clinical relevance of lumbar paraspinal muscle health in

the development of and maintenance for BP.

In addition to global differences in lumbar paraspinal

muscle health, we assessed IMF and CSA spatially along

the superior-inferior expanse of the lumbar spine. To date,

information about the spatial distribution in health and dis-

ease of lumbar paraspinal muscle composition and size is

limited [9,32]. We show that the spatial distribution of IMF

and aCSA is muscle-specific and consistent across the

groups. Interestingly, we identified a unique sawtooth pat-

tern in IMF for the lumbar multifidus. In a secondary analy-

sis, one rater (EW) identified the disc, lower endplate, mid

vertebral, and upper endplate levels in the 130 participants

with manual segmentations, showing that IMF is higher and

lower at the lower and upper endplates levels, respectively

(Supplementary Fig. 4). Complementary to Mhuiris et al.

(2016) [9], the secondary analysis demonstrates that lumbar

multifidus IMF is localized close to the laminae, spinous

process, and facet joints [9]. Since the lumbar multifidus

IMF varies across the lumbar spine, we recommend assess-

ing IMF across multiple slices to reduce variability in mea-

suring and reporting on IMF. Contradictory to our

hypothesis, we found that the differences in paraspinal mus-

cle health in chronic BP versus no pain were not prominent

at the inferior lumbar levels where spinal pathology is most

common [33] but more broadly distributed across the lum-

bar spine. The observed global changes may be explained

by unloading or disuse-mediated changes (eg, inactivity [6]

or pain-related avoidance behavior [34]), which are

expected to cause a generalized muscle health decline

across the entire muscle [6]. Here, we assessed the spatial

distribution of muscle health only along one dimension

(ie, the superior-inferior axis). Using a template-based spa-

tial parametric mapping approach, as commonly performed

in brain imaging, would permit the exploration of and

reporting on the 3D spatial distribution of IMF and its asso-

ciation with age, BMI, sex, and physical activity [35].

Doing so could improve the mechanistic understanding

of how paraspinal muscle health affects lumbar spine

function.
Limitations

While the UK Biobank provides a large, heterogeneous

sample from the UK, with considerable variability in age,
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BMI, sex, and physical activity, the cohort does not appear

to be fully representative of the UK population [30]. First, a

selection bias towards healthy volunteers exists in the UK

Biobank, likely resulting in the inclusion of participants

with less severe BP compared to the clinical population

seeking care for BP [30]. Due to the lack of additional

information on BP, we were unable to deeply characterize

the sample with respect to BP intensity, BP duration, and

BP-related disability or further interrogate the relationship

between lumbar paraspinal muscle health and these BP

measures. Given the possible selection bias towards less

severe BP, the differences in muscle composition and size

may be larger in the population of BP patients who are

actively seeking care for BP. Second, the ethnic background

of participants is predominantly Caucasian (97.2%) and

does not represent the diverse ethnicity of the UK or global

population [36]. Genetic factors are known to influence

muscle composition and size [37], so IMF and aCSA likely

vary with ethnic background, and the effects of ethnic back-

ground on muscle health need to be interrogated to investi-

gate how the associations with age, sex, BMI, physical

activity, and BP generalize to the population as a whole

[37]. Third, we excluded 71 participants with poor seg-

mentation quality, of which 25 participants had BP and

20 participants reported no pain. The excluded partici-

pants had higher BMI 35.2 (9.8) kg/m2 (p<.001) com-

pared to the participants included in this study (26.4 [4.1]

kg/m2), which may have influenced the results. However,

we believe this concern is reduced as the number of

excluded participants for poor segmentation quality

(n=71) was small relative to the overall sample of 9,564.

Lastly, training and testing were limited to the manual

segmentations from a single rater. Previously, we

reported excellent lumbar paraspinal muscle segmenta-

tion interrater reliability (ICC2,1≥0.940), mitigating con-

cerns regarding the use of a single rater.
Conclusions

Paraspinal muscle health is associated with age, BMI,

sex, and physical activity with the exception of the associa-

tion between lumbar multifidus size and age and physical

activity. People with BP have higher IMF and lower aCSA

than people with no pain (chronic BP>acute BP). The dif-

ferences were not localized but broadly distributed across

the lumbar spine. When interpreting measures of paraspinal

muscle health in the research or clinical setting, the associa-

tions with age, BMI, sex, and physical activity should be

considered.
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