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Abstract
Immersed boundary (IB) methods have been successfully implemented for different
applications. This paper focuses on the immersed boundary implementation for two
different governing equations, namely the diffusion equation and Euler equations,
using a bi-linear interpolation for the implementation of the boundary condition. The
concept of implicit interpolation is introduced which eradicates the problems faced
with the explicit interpolation in which it is required to move away from the boundary
in the fluid domain in order to complete the interpolation stencil.

Keywords Bi-linear interpolation · Computational fluid dynamics · Immersed
boundary method · Inviscid flow · Roe scheme

1 Introduction

Numerical simulations have been in use for the last few decades and have reached
high attention for simulating the physical phenomena. A typical Computational Fluid
Dynamics(CFD) problem includes geometry definition, mesh generation, numerical
solver and post-processing of the simulation results. The most time consuming step
is often the mesh generation, especially for complex geometries in traditional CFD.
The mesh has to conform to the boundary to be able to depict the geometry precisely.
Immersed boundary method is a recent approach to apply the boundary condition to
a non-conforming mesh. It simplifies the mesh generation process [1], especially for
complex geometries and for dynamic cases. It was proposed by Peskin [2] in 1972
to handle elastic boundaries for simulating blood flow in the heart [3]. As per Rajat
Mittal et al. [1], the IBmethods can be classified primarily in Continuous Forcing(CF)
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and Discrete Forcing(DF) approach. The CF approach is very useful for elastic bodies
whereas DF approaches are useful for solid objects. As part of the DF approach, “sharp
interface” immersed boundary approach is suitable for solid boundaries [1] and can
be implemented in two different ways. The first one is the Indirect Boundary Con-
dition(IBC) implementation and the second is the Direct Boundary Condition(DBC)
implementation. The Indirect Boundary Condition implementation does not provide
the required local accuracy. The DBC approach has proved to be the best candidate for
simulating compressible flow cases as evident from the work presented in [4, 5] and
[6]. Again, the sharp interface method can be implemented in multiple ways which
includes ghost cell and cut-cell approaches. Ghost cells are the cells inside the solid
region with at least one neighbour inside the fluid. The Cut-cell method uses a con-
trol volume which is entirely in the fluid domain but is an irregular polygon near the
boundary [7]. Such polygons result from the modified cells containing the boundary.

The first step for IB implementation is the proper cell classification, called tagging.
The cells in the solid domain, inside the geometry, are called solid cells. Fluid cells
lie in the fluid domain with complete stencils and the cells in the fluid domain with at
least one neighbouring cells in the solid domain are classified as intercepted cells. The
intercepted cells need special treatment as thesewill be used for the boundary condition
implementation using an interpolation function. The solid cells are not solved and for
fluid cells typical Finite Volume(FV) schemes are used. The classification of solid
and fluid cells can be done easily using any one of the methods including Ray tracing
[8–11], Level set approach [12–14], point in a polygon method and explicit minimum
distance approach [15].

There are numerous implementations of IBM for compressible and incompressible
flows. The work by Kumar et al. [16] focused on the issues of mass conservation and
pressure fluctuations. Picano et al. [17] implemented the pressure-driven turbulent
flow in the presence of buoyant particles. Ji et al. [18] used an iterative IB method for
solving viscous flows using finite volume. Roy and Acharya [19] coupled IBM with
large-Eddy simulations for turbulent flows.Balaras [20] used the bi-linear interpolation
for complex geometries and demonstrated flow over a cylinder as a benchmark case.
LaterYang andBalaras [21]modified and improved themethod formoving geometries
as well. Udaykumar et al. [22] used a sharp interface method for moving geometries
using cell modification, i.e. converting a cell to a trapezoid, more similar to a cut-cell
method. Many of the schemes focused on the ghost cell approach which includes the
work of Zhang et al. [23]. One major drawback of this method is that if the size of the
geometry or a part of the geometry is relatively thin such that there is no ghost cell
inside the geometry, it can not be captured by the numerical method. However, the
one-sided interpolation technique discussed in Yang and Balaras et al. [21] removes
these drawbacks.

Most of the work present in the literature are based on the explicit interpolation such
as the one presented byYang andBalaras [21]. In thismethod, for each intercepted cell,
interpolation is done by completing a local interpolation stencil. There are different
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interpolation schemes that can be applied for constructing the solution for the interface
cells. The simplest of these interpolation methods for a 2-dimensional problem is the
bi-linear interpolation as presented in Yang and Balaras [21]. Other notable work on
linear interpolation includes the work by Mittal et al. [24] which used tri-linear inter-
polation for 3-D cases. Kim et al. [25] also used bi-linear interpolation but it reverts
to a linear interpolation wherever the interpolation stencil is not complete [26]. Least
square methods are also used by some authors as interpolation function [27–29]. Qu
et al. [30] used the constrained moving least square method(CMLS) for the interpola-
tion which eliminates the instabilities observed in moving least square interpolation.
The moving least square enables the formulation with higher-order polynomials with
flexible interpolation stencils. However, using high-order polynomials for interpola-
tion could be a source of oscillatory behaviour in the solution [31]. Another popular
interpolation scheme is radial basis function for which examples can be found in [32,
33] and [34]. The problem with explicit interpolation appears when the interpolation
stencil is not complete and one or more cells constituting the interpolation stencil
are part of the intercepted cells. In order to perform explicit interpolation in these
cases, the interpolation stencil is moved further in the fluid domain. This is one of the
problems reported in Yang Balaras et al. [20] and this has been explained in detail in
[35].

In this paper, a one-sided bi-linear interpolation using an image point of the inter-
cepted cell is presented for two different governing equations. At first, it is applied for
the diffusion equation and then it is extended to the Euler equations.Moreover as stated
previously, in some cases, an explicit interpolation can not be performed because of
the incomplete interpolation stencils. For these cases, an implicit interpolation strat-
egy is presented. This eliminates the necessity to identify these special cases where
the interpolation cannot be performed and to apply a different interpolation strategy
which includes moving away from the boundary and selecting the next nearest fluid
cell available. A case with an inclined shock tube is presented which validates the
tagging as well as the implicit interpolation strategy for compressible flow cases. It
has to be noted here that, although the present implementation is for inviscid flows, the
implicit interpolation strategy can be implemented in the same way for compressible
and incompressible NS equations as well. Moreover, a new way of implementing slip
boundary condition has been introduced.

This paper consists of five different sections. Section 1 introduces the Immersed
Boundary approach and overall outlook of the paper. Section 2 focuses on the numer-
ical modelling including the interpolation strategy, boundary conditions and the
governing equations. Section 3 focused on the Results and discussions and Sect. 4
is the conclusion where the results obtained and drawbacks are discussed.
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2 Numerical model

2.1 Governing equations

2.1.1 Governing equations for thermal diffusion

The heat diffusion equation with a constant thermal conductivity (κ = 1) and without
any source term is given by

∂2T

∂x2
+ ∂2T

∂ y2
= 0 (1)

where T is the temperature.

2.1.2 Governing equations for inviscid compressible flows

The present study is based on the two-dimensional Euler equations. The Euler equa-
tions can be written as

ρt + (ρu)x + (ρv)y = 0, (2)

(ρu)t + (ρu2 + p)x + (ρuv)y = 0, (3)

(ρv)t + (ρv2 + p)y + (ρuv)x = 0, (4)

Et + [u(E + p)]x + [v(E + p)]y = 0, (5)

where E is the total energy per unit volume:

E = ρ

(
1

2
V2 + e

)
(6)

Equations (2) to (5) can be expressed in a compact from, suitable for CFD appli-
cations:

Ut + Fx + Gy = 0,

U =

⎡
⎢⎢⎣

ρ

ρu
ρv

E

⎤
⎥⎥⎦ , F =

⎡
⎢⎢⎣

ρu
ρu2 + p

ρuv

u(E + p)

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎣

ρv

ρuv

ρv2 + p
v(E + p)

⎤
⎥⎥⎦ . (7)

2.2 Numerical method

2.2.1 Diffusion equation

The diffusion problem is solved using a typical Finite Volume Method as described
in Versteeg and Malalasekera [36]. Once Eq. (1) is integrated over a control volume,
it gives
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∫
�V

∂2φ

∂x2
dx .dy +

∫
�V

∂2φ

∂ y2
dx .dy = 0. (8)

Assuming the areas for east, west, north and south faces to be Ae, Aw, An and As ,
respectively, such that Ae = Aw = �y and An = As = �x and �v as the control
volume. Converting volume integral to boundary integral, Eq. 8 finally becomes

[
Ae

(
∂φ

∂x

)
e
− Aw

(
∂φ

∂x

)
w

]
+

[
An

(
∂φ

∂x

)
n

− As

(
∂φ

∂x

)
s

]
= 0. (9)

The numerically discretised fluxes through the faces for the control volume can be
written as

East Face flux = Ae
φE − φQ

δQE
, (10a)

West Face flux = Aw

φQ − φW

δWQ
, (10b)

South Face flux = As
φQ − φS

δQS
, (10c)

North Face flux = An
φN − φQ

δNQ
. (10d)

Finally, the final fluxes can be discretised in the form

aqφQ = aeφE + awφW + anφN + asφS, (11)

where

aq =
(

Ae

δQE
+ Aw

δWQ
+ An

δNQ
+ As

δQS

)
; ae =

(
Ae

δQE

)
; aw =

(
Aw

δQW

)
;

an =
(

An

δNQ

)
; and as =

(
As

δQS

)
,

(12)

where δQE is the distance between points Q and E and all other distances are
defined in the same way, as shown in Fig. 1.

Equation (11) is applied to all cells in the fluid region, except for the interface cells.

2.2.2 Euler equations

Roe scheme is essentially a flux difference splitting scheme. It was first presented by
Roe [37] and since has been used and modified in a number of ways. For the present
case, the original Roe scheme has been used as presented in [38].
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Fig. 1 2-Dimensional mesh
representation for diffusion
problem

The inter-cell flux, as per [38], is given as

Fi+ 1
2

= 1

2
(FR + FL) − 1

2

m∑
i=1

α̃i |λ̃i |K̃ (i), (13)

where m = 3 for one-dimensional case and FR and FL are the flux values for
the right and left face of the i th cell calculated from the primitive variables from the
previous time step. α̃ is the wave strength and K̃ is the right eigenvector with averaged
variables.

Dimensional splitting is used to get the 2-D Roe scheme from 1-D Roe scheme
as defined in [38]. The sweeps are handled by a single subroutine. In the x-sweep,
following equations are solved:

⎡
⎢⎢⎣

ρ

ρu
ρv

E

⎤
⎥⎥⎦
t

+

⎡
⎢⎢⎣

ρu
ρu2 + p

ρuv

u(E + p)

⎤
⎥⎥⎦
x

= 0.

In the y-sweep, following equations are solved:

⎡
⎢⎢⎣

ρ

ρu
ρv

E

⎤
⎥⎥⎦
t

+

⎡
⎢⎢⎣

ρv

ρuv

ρv2 + p
v(E + p)

⎤
⎥⎥⎦

y

= 0.

The scheme is explicit and transient and for x-sweep, the explicit conservative form
looks like

U
n+ 1

2
i, j = Un

i, j + �t

�x

[
Fn
i− 1

2 , j
− Fn

i+ 1
2 , j

]
. (14)
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Fig. 2 Bi-linear interpolation with cell classification

Fn
i+ 1

2 , j
is the flux at the cell interface xi+ 1

2
as described in Eq. (13). Similarly, for

y-sweep

Un+1
i, j = U

n+ 1
2

i, j + �t

�x

[
G

n+ 1
2

i, j− 1
2

− G
n+ 1

2

i, j+ 1
2

]
. (15)

2.3 Tagging and immersed boundary implementation

For implementing immersed boundary, the tagging of the geometry with respect to
the Cartesian mesh is required. In the present work, tagging has been done using point
in a polygon approach. The tagging schematic is presented in Fig. 3. While moving
in the clockwise direction along the geometric points, if, for a particular cell centre,
| �AX �B| < 0 for all the points on the geometry, then the cell centre lies inside the
geometry; otherwise, it lies outside. Once, inside and outside have been determined,
one needs to find the intercepted cells. For that, one needs to look into the cells which
lie inside the fluid domain and for which the stencils are not complete.

Once the tagging is done, the cells can be broadly classified into three different
types namely intercepted/interface cells, solid cells and the fluid cells. After that,
the numerical solver is applied for the fluid cells. The solid cells are not solved and
for the interface cells, interpolation schemes have to be applied. Figure 2 shows the
classification of the cell types and stencil for bi-linear interpolation. The beauty of
this scheme is that it is possible to tag the geometry even if the width of the geometry
is less than the mesh size ("thin geometries") and the interpolation function can be
applied to it.

2.4 Bi-linear interpolation

2.4.1 Diffusion case

For implementing bi-linear interpolation with respect to immersed boundary, at first
an image point "I" has to be found out which is

−→
PQ = −→

I P which can be interpreted
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Fig. 3 Cross-product depiction

Fig. 4 Normal to the boundary

from Fig. 2. Also, it has to be noted that
−→
PQ is perpendicular to the boundary. The

geometry consists of set of points and ultimately a set of line segments joining two
consecutive points.

−→
PQ is perpendicular to the nearest line segments joining two

consecutive points on the geometry. One example is shown in Fig. 4. After that, the
image point is found out, upon this there are two different equations for a Dirichlet
boundary condition:

φP = (φI + φQ)/2. (16)

From bi-linear interpolation, Fig. 2

φI = a1φ1 + a2φ2 + a6φ6 + a5φ5; where φ5 = φp. (17)

The coefficients depend on the geometric location of the cell centres. Thus, from
Equations (16) and (17), φP can be found out. The image point, I as depicted in Fig.
2, lies along the normal to the geometry. There should be sufficient number of points
to define the geometry, especially when the geometry consists of curves.

In Fig. 2, cell number 5 is an interface cell; therefore, the coefficients are to be found
using the bi-linear interpolation described by Eq. (17). The ingenuity of the proposed
method lies in the way interpolation is done. In some of the previous cited papers
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Fig. 5 Problem with explicit interpolation as presented in [20]

[20], the interpolation is done locally and if the interpolation stencil is not complete,
it is required to move further away from the boundary in the fluid domain. However,
this might induce error in the interpolation process. Moreover, finding whether the
interpolation stencil is complete or not adds to the computational cost.

In this paper, we introduce the implicit interpolation strategy. This means that the
interpolation is not done explicitly but through the constructionof a systemof equations
which are solved at once. One such case is presented in Fig. 5 where the interpolation
stencil is not complete. As per [20], it is not possible to do a regular bi-linear local
or explicit interpolation for point I N2 as the interpolation stencil includes another
interface cell I N1. This becomes a special case and in order to perform a bi-linear
interpolation, the image point is moved further in the fluid domain. In this way, the
stencil for bi-linear interpolation is complete.

With implicit interpolation, the problem described above is not encountered. The
system of equations obtained for each of the interface cells are assembled in a matrix
and solved. Considering I N2 in Fig. 6, the equation for bi-linear interpolation for
primitive variable represented as f (x, y) can be written as

f (x, y) = B11 f (xF5 , yF5) + B21 f (xI N2 , yI N2) + B12 f (xF1 , yF1)

+B22 f (xF2 , yF2), (18)

where the coefficients B11, B21, B12 and B22 can be found by solving the following
matrix system

⎡
⎢⎢⎣
B11
B21
B12
B22

⎤
⎥⎥⎦ =

⎛
⎜⎜⎝

⎡
⎢⎢⎣
1 xF5 yF5 xF5 yF5
1 xI N2 yI N2 xI N2 yI N2

1 xF1 yF1 xF1 yF1
1 xF2 yF2 xF2xF2

⎤
⎥⎥⎦

−1⎞
⎟⎟⎠

T ⎡
⎢⎢⎣

1
x
y
xy

⎤
⎥⎥⎦ . (19)

Considering a Dirichlet boundary condition and applying Eq. (16) and Eq. (17),
Eq (18) will become
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Fig. 6 Implicit interpolation; Only one interface cell in the interpolation stencil

f (x, y)(2 − B21) = B11 f (xF5 , yF5) + B12 f (xF1 , yF1)

+B22 f (xF2 , yF2) + φB, (20)

where φB is the boundary value of the variable.
For a two-point system, the implicit interpolation scheme can be implemented eas-

ily. Considering interface cells I N3 and I N2 in Fig. 6 and assuming local coefficients
for I N3 as C11, C21, C12 and C22, the matrix system to find the flow variables looks
like

[
(2 − B21) 0

0 (2 − C21)

] [
f (xI N2 , yI N2)

f (xI N3 , yI N3)

]

=
[
B11 f (xF5, yF5) + B12 f (xF1 , yF1) + B22 f (xF2 , yF2) + φI N2

C11 f (xF2 , yF2) + C12 f (xF4 , yF4) + C22 f (xF3 , yF3) + φI N3

]
. (21)

This is a typical bi-linear interpolation that can be done in the explicit way as well.
For the problem faced in Fig. 5, the implicit interpolation strategy has to be used
to avoid the failure of explicit interpolation. Using Eqs. (16) and (17), the system
of equations for two interface cells in a single bi-linear interpolation stencil can be
written separately. For I N1:

f (xI N1 , yI N1)(2 − B21) = B11 f (xF6 , yF6) + B12 f (xF5 , yF5)

+B22 f (xF1 , yF1). (22)

Similarly, for I N2

f (xI N2 , yI N2)(2 − D21) − D11 f (xI N1 , yI N1)

= D12 f (xF1, yF1) + D22 f (xF2 , yF2). (23)

Also for I N3:

f (xI N3 , yI N3)(2 − C21) = C11 f (xF2 , yF2) + C12 f (xF4 , yF4)
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+C22 f (xF3 , yF3), (24)

where Bi j ,Ci j and Di j are the coefficients obtained using Eq. (19).
Therefore, the final matrix will look like

⎡
⎣(2 − B21) 0 0

−D11 (2 − D21) 0
0 0 (2 − C21)

⎤
⎦

⎡
⎣ f (xI N1 , yI N1)

f (xI N2 , yI N2)

f (xI N3 , yI N3)

⎤
⎦

=
⎡
⎣B11 f (xF6 , yF6) + B12 f (xF5 , yF5) + B22 f (xF1 , yF1)

D12 f (xF1 , yF1) + D22 f (xF2 , yF2)
C11 f (xF2 , yF2) + C12 f (xF4 , yF4) + C22 f (xF3 , yF3)

⎤
⎦ .

(25)

Therefore, for a problemwith N interface cells, the left side matrix will be [N ∗N ].

2.4.2 Euler equations

The sequence for tagging and the implicit interpolation is same as that presented in the
previous section for diffusion. For Euler equations, a Neumann boundary condition is
required for pressure and density. Therefore, the value of the primitive variable at I is
considered equal to its value at I N2, in Fig. 6, thus Eq (18) becomes

f (x, y)(1 − B21) = B11 f (xF5, yF5) + B12 f (xF1 , yF1) + B22 f (xF2 , yF2). (26)

For a two-point system, considering interface cells I N3 and I N2 in Fig. 6 and
assuming local coefficients for I N3 as C11, C21, C12 and C22, the matrix system to
find the flow variables looks like,

[
(1 − B21) 0

0 (1 − C21)

] [
f (xI N2 , yI N2)

f (xI N3 , yI N3)

]

=
[
B11 f (xF5 , yF5) + B12 f (xF1, yF1) + B22 f (xF2 , yF2)
C11 f (xF2 , yF2) + C12 f (xF4 , yF4) + C22 f (xF3 , yF3)

]
.

(27)

Similarly, for a three-point system, as inFig. 5, for I N1 and I N3, the implementation
of interpolation is very straightforward.Assuming the local coefficients for IN1 asD11,
D21, D12 and D22. The interpolation equation for I N2 can be written as

f (x, y)(1 − B21) − B11 f (xI N1 , yI N1) = B12 f (xF1 , yF1) + B22 f (xF2 , yF2). (28)

The matrix system to find the flow variables looks like

⎡
⎣(1 − D21) 0 0

−B11 (1 − B21) 0
0 0 (1 − C21)

⎤
⎦

⎡
⎣ f (xI N1 , yI N1)

f (xI N2 , yI N2)

f (xI N3 , yI N3)

⎤
⎦

=
⎡
⎣D11 f (xF6 , yF6) + D12 f (xF5 , yF5) + D22 f (xF5 , yF5)

B12 f (xF1 , yF1) + B22 f (xF2 , yF2)
C11 f (xF2 , yF2) + C12 f (xF4 , yF4) + C22 f (xF3 , yF3)

⎤
⎦ .

(29)
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Fig. 7 Bi-linear interpolation

Again, for a problemwith N interface cells, the left sidematrix will be [N ∗N ]. One
thing to be noted here is that after x-sweep, Eq. (14), the implicit bi-linear interpolation
is done for the interface cells such that the primitive variables are present for calculating
the fluxes for the y-sweep. Therefore, the interpolation is done twice for a single
time step: for x-seep and then for y-sweep. If dimensional splitting is not used, the
interpolation is done once for one time step.

2.5 Boundary conditions

The boundary can be either Dirichlet or Neumann. Both can be represented easily with
the interpolation scheme. For the Euler equations case, Neumann boundary condition
has to be applied on the wall for pressure and density and for velocity, a slip boundary
condition has to be implemented.

The Neumann boundary condition for pressure and density is very straight forward.
As shown in Fig. 7, the values are interpolated at point I , assuming that the primitive
variable value does not change in the normal direction such that pressure or densi ty
at point I is same as that of P and Q. For velocity, in order to implement slip boundary
condition, a two-step procedure is implemented:

1. The image point I , shown in Fig. 7, is not considered and the velocity is extrap-
olated at point P using the points 5, 6 and 10.

2. The velocity U is divided into tangential and normal components to the solid
surface. The normal component is neglected as it will be zero for a slip boundary
condition. The tangential component is broken into X and Y -directions contributing
to the velocity in those directions accordingly, as presented in Fig. 8. This is repeated
for V .

FromFig. 8 and 9, final velocity obtained inX-direction isUsinθcosδ−V sinθsinδ

and in y-direction is V sinδcosθ −Usinθsinδ.
The implementation of the Neumann boundary condition is also unique and gives

a more geometric sense to the boundary condition implementation.
The sequence of steps for IB implementation for Euler equation includes:

1. Defining the geometry discretely using a set of points. Define the number of ele-
ments in X and Y-directions for the mesh.
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Fig. 8 U velocity components

Fig. 9 V velocity components

2. Tagging of the geometry with respect to the background mesh. Identify the solid,
fluid and interface cells.

3. Initialise the fluid domain
4. Use Roe scheme for X-sweep
5. Use implicit bi-linear interpolation as described in Sect. 2.4.1 for pressure and

density. For velocity, use the slip boundary condition presented in Sect. 2.5
6. Use Roe scheme for Y-sweep
7. Use implicit bi-linear interpolation as described in Sect. 2.4.1 for pressure and

density. For velocity, use the slip boundary condition presented in Sect. 2.5.

3 Results and discussions

3.1 Diffusion problem

The schematic of the problem is described in Fig. 10, consisting of a domain bounded
by two concentric circles with Dirichlet boundary condition. The inner circle has a
temperature T1 and the outer circle has temperature T2. The heat conduction for this
problem is governed by Eq. 1, which is the heat diffusion equation with a constant
thermal conductivity, (κ = 1), and without any source term.
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Fig. 10 Geometry Definition

The analytical solution, as presented in [39], for this case, is given by Eqs. (30) and
(31):

Heat Transfer[watts] = qr = 2πk(T1 − T2)/ln(r2/r1), (30)

Temperature[K] = T (r) = (T1 − T2)

ln(r2/r1)
ln

(
r

r2

)
+ T2, (31)

where qr is the heat transfer rate, and T (r) is the temperature at radius r .
The numerical solution is shown in Fig. 11 for a 200 x 200 cells in the mesh:
The variation of temperature in the radial direction is compared with the analytical

solution in Fig. 12. The results match with the analytical solution and are accurate.
A convergence analysis is performed to verify the order of convergence that is

obtained by the present numerical algorithm. This consists of finding the error(norm)
(L2 or L1), against the number of points. In present case, convergence analysis has
been done using the L2 norm and is given by Eq. (32):

Error = L2 =
M∑
i=1

√
(Ti,analytical − Ti,numerical)2/Nx, (32)

where Nx is the total number points considered for the numerical calculation.
The convergence analysis for the numerical solution using L2 norm is shown in

Fig. 13. The order of convergence obtained is of second order, which is expected.
The error analysis for the change in the temperature in the normal direction is

presented in Fig. 15, which is basically the error calculation for the flux. Calculation
of the analytical fluxes has been modified such that the numerical and analytical fluxes
are compared on the same basis. For calculating the analytical fluxes, Eq. (33) is used.

In Fig. 14,

(
dT

dn

)
Analytical

= TBoundary − TAnalytical
�n

. (33)
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Fig. 11 Numerical temperature distribution in x and y-directions : Concentric cylinders at a temperature
differential

Fig. 12 Comparison of Temperature[T] for numerical and analytical solutions for concentric cylinders in
radial direction[R]

Similarly, for the numerical solution,

(
dT

dn

)
Numerical

= TBoundary − TNumerical

�n
, (34)

123



    5 Page 16 of 21 Md. S. Ali et al.

Fig. 13 Convergence Analysis: Temperature

Fig. 14 Calculating analytical temperature for concentric cylinder case. Here, TAnalytical is the analytical
temperature calculated at the cell centre and TBoundary is the temperature on the boundary

where TNumerical is the interface cell centre where solution is obtained using the inter-
polation function.

3.2 Euler equations

The shock tube problem schematic is shown in Fig. 16. The high pressure Pl = 10,
high density ρl = 11.6, ul = 0 and Vl = 0 is set on the left. The low pressure
Pr = 1.0, low density ρr = 1.16, ur = 0 and Vr = 0 is set on the right. When
the diaphragm ruptures, the shock wave moves to the right and the rarefaction wave
moves to the left. This problem has an exact solution which is explained in Toro [38],
and therefore, this problem is a good benchmark test for the numerical method.

The results obtained for this problem are presented in Fig. 17c. The convergence
for the inclined shock tube is represented in Fig. 18. It has to be noted that the order
of convergence for the shock tube case is found to be around 0.5 which is less than
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Fig. 15 Convergence for dT/dn with 1000 points on the geometry and assuming that the geometry is
represented by straight line in between two points. The error has been reported with respect to L2 norm

Fig. 16 Inclined Shock Tube schematic with an inclination of 300

the expected value of 1 and this is in agreement with the similar test cases of flow
discontinues and shock waves for a first-order flow solver [40].

3.3 Computational efficiency

The explicit and implicit interpolation methods are compared based on the CPU time
that is required for each typeof interpolation. For this, a case of straight immersed shock
tube is taken. The test case of inclined shock tube cannot be used for the comparison
as the explicit interpolation will fail in that case. The comparison is presented in
Table 1. The time for implicit interpolation is normalised by the CPU time of the
explicit interpolation. As expected, the implicit interpolation is more computationally
expensive than the explicit interpolation, but the increase is reasonable considering
the improvement in the overall robustness of the approach.
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Fig. 17 Pressure, Velocity and Density contours for inclined shock tube for 500 X 500 background mesh
with the angle of inclination of 1400

Fig. 18 Pressure convergence for inclined shock tube with implicit bi-linear interpolation for an angle of
rotation of 1400

Table 1 Comparison for computational time of explicit and implicit interpolation

S. No Mesh size Explicit time (ET) Implicit time (IT)

1 300*300 1 1.151
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Fig. 19 Demonstration of corner
cell problem for shock tube

3.4 Problems with shock tube for corner cells

For the two-dimensional cases, some problems can still be present with the sharp
corner cells, as found at the four corners of the shock tube problem presented earlier.
The non-availability of the fluid cells to fill the coefficients in the implicit bi-linear
equation matrix leads to the failure of even the implicit approach. As presented in
Fig. 19, it is clear that the bi-linear interpolation cannot be implemented at the corner
cells as one of the cells that constitute the interpolation stencil is a solid cell. For
these cases, other interpolation strategies like least square or radial basis functions are
recommended.

In order to get rid of this problem, one suggestion is to use a linear interpolationwith
three points. Even at the corners, it is ensured that three nearest points are available
from the fluid and interface regions and the interpolation has to be done implicitly.
Mathematically, it is similar to the bi-linear interpolation expressed in Eq. (19) except
that the fourth point has to be dropped.

4 Conclusion

The idea of implicit interpolation gets rid of the problems faced with explicit interpo-
lation especially when the interpolation stencil includes another interface cells. The
use of the image point is helpful for implementing the Neumann boundary condi-
tion for pressure and density. However, as with most of the IB methods drawback,
the problem of the corner cells for the shock tube case remains and can be solved
even using the three-point linear implicit interpolation. Although it is implemented
for inviscid compressible flows(Euler equations), same can be implemented easily
for NS solvers. Also, the implicit interpolation can be implemented for higher order
interpolation methods as well in a similar way. However, the computational cost is
expected to increase, as is the case for bi-linear implicit interpolation.
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