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SOMMAIRE

La modelisation sur ordinateur des ecoidements transsoniques autour de configurations

complexes est devenu un element vital du developpement de 1'aerodynamique des avions

modemes. Ce travail concerne la mise en oeuvre d'une methodologie particuliere de solution

des equations d'Euler, qui regissent les evolutions de fluides compressibles non visqueux.

Cette methodologie a ete developpee afin de predlre de tels ecoulements autour de configu-

rations complexes d'avions. L'application principale est la modelisation de 1'avion d'afFaires

Challenger CL-601 de Canadair dont une des caracteristiques est un couplage fort moteurs-

voilure. Le travail a commense par une etude de 1'etat actuel de 1'aerodynamique numerique

en milieu industriel et de I'application reservee aux equations d'Euler. L'etude a couvert

la signification physique de ces equations, leurs proprietes mathematiques ainsi que la

panoplie de methodes numeriques disponibles pour resoudre ces equations. La methode de

resolution des equations d'Euler proposee a ete implementee dans Ie programme MB TEC

(Multi-Block Transonic Euler Code).

Dans Ie modele numerique propose, Les equations d'Euler sont utilisees sous leur forme

instationnaire conservative, traduisant des bilans de masse, de quantite de mouvement

et d'energie. Cette forme instationnaire permet d'obtenir un systeme d'equations hyper-

boliques par rapport au temps qui peut etre resolu comme un probleme a valeurs ini-

tiales bien pose. L'ecoulement de depart est une approximation arbitraire de la solution

recherchee. La solution stationnaire est obtenue en integraiit les equations dans Ie temps

jusqu a convergence. Cette formulation permet egalement d'obtenir a 1'avenir, des solu-

tions instationnaires de 1'ecoulement. La solution numerique est obtenue en discretisant

ces equations selon une methode de volumes finis explicite. La discretisation s'appuie sur
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un maillage curviligne quadrilateral adapte aux contours de 1 avion. Les derivees spatiales

sont discretisees par des diflFerences centrees. Le schema est rendu sufi6samment dissipatif

par 1'addition de termes de viscosite artificielle, qui permettent la capture d'ondes de choc

et de discontinuites sans osciUation. L'integration des equations dans Ie temps se fait par

un algorithme de Runge-Kutta a cinq pas ayant d'excellentes proprietes de stabilite. Afin

d'accelerer la convergence des calculs, un pas de temps local est selectionne a chaque noeud

du maillage, limite par la condition de Courant, Friedridis et Lewy de 1'ecoulement lo-

cal. Les inconnues du calcul sont les valeurs de la densite, de la vitesse et de 1'energie de

1'ecoulement a chaque noeud du maillage. Le volume de controle servant a 1'application de

la methode en chaque noeud est la somme de tous volumes adjacents a ce noeud. Ce schema

possede de bonnes caracteristiques de precision et permet Ie calcul direct des variables a la

surface de 1'avion. La convergence des calculs est egalement amelioree par Ie remplacement

du residu en chaque noeud par une moyenne, calculee de maniere implicite, des residus

des noeuds voisins. Finalement, une condition sur 1'enthalpie, qui est une vaj-iable ddns les

calculs, permet un gain supplementaire de taux de convergence.

L'application ades configurations tridimensionnelles complexes se fait al'aide d'une strategic

multi-bloc particuliere qui fait 1'originaJite de la methode que nous avons developpee.

L'espace autour de 1'avion est divise en sous-domaines de forme simplement connexe et

topologiquement equivalents a des cubes avec six faces et huit sommets. Les equations

d Euler sont resolues sequentiellement dans chacun de ces sous-domaines. L information

numerique est transferee de bloc en bloc grace a une connectivite simple des noeuds des blocs

qui se font face. Le programme est contraint a un seul type de condition aux limites sur cha-

cune des faces de chaque bloc mais n'importe quelle face d'un bloc peut etre associee a un
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type arbitraire de conditions aux limites. On distingue : des conditions d'impermeabilite,

de symetrie, d'entree et de sortie du domaine flmde et surtout, des conditions d'entree et

de sortie des turboreacteurs. Les turboreacteurs a, double flux et a large taux de dilution

du Challenger influencent fortement 1'aerodynainique de 1'avion. Une modelisation precise

de 1'efFet de ces moteurs etait requise. Plusieurs methodes d implementation des conditions

de sortie out etc testees et une approche originale selectionnee.

Une methode progressive de validation de la strategic multi-bloc a etc utilisee qui garantit

la consistence du modele. En partant de configurations simples d aile isolee, les conditions

d'interface, la sommation des flux, 1'addition de la viscosite artiflcielle ainsi que d' autres

details numeriques out ete programmes de maniere a assurer la convergence des calculs

dans les cas les plus compliques. La precision du calcul a ete calibree en comparant les

resultats de calculs sur 1'aile ONERA M6 avec les donnees experiment ales. Un test sur Ie

modele isole du turboreacteur a double flux CF-34 de General Electric, qui sert a, propulser

Ie CL-601 Challenger, a servi a developper les conditions d'entree et de sortie des moteurs.

L application initiale au Challenger s'est faite en calculant des ecoulements sur des configu-

rations aile-fuselage et aile-fuselage-ailettes du CL-601 (40 blocs, 550,000 noeuds). Des com-

paraisons faites avec des donnees de soufilerie ont souligne la precision de la methode. Fi-

nalement, des calculs ont ete faits pour Ie Challenger CL-601 complet avec les turboreacteurs

en fonctionnement. Ce modele est constitue de 600 blocs et 1,571, 580 noeuds. Une tres

bonne comparaison avec des resultats de soufRerie et d'essais en vol a demontre une fois

de plus la precision des calculs, meme dans les cas les plus complexes. L'application de la

methode au CL-601 Challenger est 1'autre volet original de ce travail. Les resultats presentes

id sont les premieres et seules predictions obtenues a ce jour d'ecoulements transsoniques
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autour d'une geometrie complete d'un avion de Canadair. Un autre avion complet, Ie CF-

18 des forces canadiennes, a ete modelise en utilisant 108 blocs et 784, 168 noeuds. Des

comparaisons avec des resultats obtenus en soufflerie ont aussi coniirme la bonne precision

de la methode. Le programme utilise des maillages adaptes produits par des logiciels ecrits

specifiquement pour ce projet. une interpolation algebrique est utilisee pour generer un

maiUage de depart qm est ensuite ameliore par resolution d'equations elliptiques suivant la

methode de Thompson.

La formulation originate des conditions d'interface des blocs ainsi que ceUe developpee

pour les conditions d'entree et de sortie des reacteurs apportent la flexibilite, la fiabilite

et la precision reqmses pour la conception d'avions a haute performance. La solution

des equations d Euler autour d'un avion genere une quantite et une qualite d'information

importantes pour 1 interpretation de 1 aerodynamique d un avion. II reste a manipuler Ie

programme pour y ajouter les avantages de temps de calcul plus reduits.

Avec 1'autorisation de 1'Ecole Polytechnique, Ie texte de la these est redige en

Anglais.



ABSTRACT

The numerical simulation of transonic flows around complex configurations has become

a vital part of the aerodynamic design process of modem airplanes. The present work

proposes a methodology for solving the Euler equations governing the flow of inviscid

compressible fluids. This methodology was developed with the objective of predicting such

flows around complex aircraft configurations. The main application sought is the modelling

of Canadair's Challenger CL-601 aircraft featuring turbofan nacelle closely coupled with

the wing. The work started with a study of the present status of Computational Fluid

Dynamics in the aircraft industry aud of the particular use made of the Euler models. The

study then focussed on the physical and mathematical properties of the Euler equations and

a review of possible methods for solving these equations was made. The particular Euler

method proposed in this work was implemented in the MBTEC program (Multi-Block

Transonic Euler Code).

In the M^BTEC model, the Euler equations are cast in their unsteady conservative form,

indicating balances of mass, momentum and energy. The unsteady formulation yields a

system of equations which is hyperbolic with respect to time. This system can be solved

as an initial value problem. Starting with a uniform flow approximation, the final steady

flow is obtained by integrating the equations in time until convergence is reached. This

formulation will allow in the future predictions of unsteady transonic flows as weU. The

numerical solution is obtained by discretizing the equations using a finite volume explicit

method. The discretization is made using a structured body-fitted grid defined around

the aircraft. The spatial derivatives are centrally differenced. The scheme is stabilized

by the addition of artificial viscosity, leading to the definition of shock waves without



oscillations. The integration of the equations in time is made using a five-stage Runge-

Kutta algorithm with excellent stability properties. To further improve the convergence

of the computations, local time-stepping is used, advancing everywhere the solution at

the largest time-step allowed by the Courant, Friedriechs and Lewy local condition. The

unknowns are the values of density, the three components of velocity and the energy at every

node of the grid. The control volume used to accumulate the fluxes at a node point is the

sum of all the cells meeting at that node. This scheme has excellent properties of accuracy

and allows direct calculation of the unknowns on the aircraft surface. The convergence of

the computations is further enhanced by replacing the residual at each node point by an

average of the residuals at the surrounding nodes calculated implicitly. Finally, enthalpy

damping is used to further improve the convergence to steady state.

The application to complex three-dimensional configurations is by way of a particular multi-

block technique which is original in the method that we have developed. The space around

the aircraft is divided into subdomains or blocks, each simply connected and topologically

equivalent to a cube, with six faces and eight comers. The Euler equations are solved in

each block in sequence. The numerical information is transferred from block to block using

an effective block interfacing scheme. The program uses one type of boundary condition

per block face but any one of the following boundary conditions can be specified for any

face of any block in the field : solid surface condition, symmetry condition, inflow and

outflow conditions and, in particular, engine inlet and exhaust conditions. The high by-

pass turbofan engines of the CL-601 are closely coupled to the wing and affect significantly

its aerodynamics. An accurate modelling of the nacelle inlet and exhaust conditions was

required. Several formulations of these boundary conditions were tested and an original
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approach proposed.

A progressive testing method was used in order to validate the multi-block code. Starting

with simple isolated wing cases, we have adjusted the block interface boundary conditions,

the convective flux accumulation, the addition of artificial viscosity in a multi-block grid

and other numerical details to guarantee satisfactory convergence of the computations even

in the most complex cases. The accuracy of the code was checked by comparing computed

results with experimental data on the ONERA M6 wing. The program was then used

to model the isolated nacelle ot the General Electric CF-34 engine powering the CL-601

Challenger. This test case was used to develop the inlet and exhaust boundary conditions.

The initial application to the Challenger was made by modelling a wing / body and a wing

/ body / winglet configurations with 40 blocks and more than 550, 000 nodes. The com-

puted results were compared with wind tunnel data, indicating good correlations. Finally,

calculations were made for the complete, powered CL-601. This model, made of 600 blocks

and 1,571,580 nodes yielded excellent comparisons with experimental data, demonstrating

once more the excellent accuracy of the code in the most complex cases. The application

of the method to the CL-601 Challenger is also an original part of this work. The results

presented here are the first and only solutions ever made of transonic flow around complete

Canadair aircraft configurations. Another full aircraft configuration, the Canadian Forces

CF-18 clean aircraft, was also modelled, using 108 blocks and 784, 168 nodes. Compajisons

with. wind tunnel data further confirmed the accuracy of the method. All computations

were made using structured body-fitted grids generated by programs written at Canadair

specifically for this project. Algebraic interpolations are used to obtain initial grids which

are then smoothed using elliptic solvers, as proposed by Thompson.
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The new formulation proposed here for the block interface conditions and that of the

naceUe inlet and exhaust provide the reqmred flexibility, reliability and accuracy required for

regular use in the aircraft design cycle. Euler solutions provide a wealth of high quality data

about the aerodynamics of an airplane. It remains to add the benefits of lower computing

times to further reduce the turnaround times.

With the permission of Ecole Polytechnique, this thesis is written in English.



RESUME

Canadair, une compagnie de la divisiou aeronautique de Bombardier, congoit et fabrique

des "jets d'affaires" a longue distance franchissable ainsi que des "jets regionaux" pour Ie

transport de passagers sur courte distance. Ces avions volent en croisiere a des vitesses

variant entre Mach 0.70 et 0.90, done en regime transsonique. Pour doter ces avions des

meiUeures performances possibles (faible trainee, stabilite et manoeuvrabilite) et leur per-

mettre de se tailler une place sur un marche tres competitif, il faut leur donner des formes

aerodynamiques optimales. La recherche de ces formes optimales peut se faire de fagon em-

pirique, par des essais systematiques en souffierie, mais elle est mieux faite sur ordinateur,

par une etude parametrique de 1'aerodynamique de diverses configurations.

n faut done etre en mesure de predire avec precision 1'ecoulement transsonique autour d'une

geometric donnee dans des conditions de vol specifiques. Pour cela, il faut resoudre les

equations de Dynamique des Fluides qui regissent 1'evolution de 1'air autour de 1'avion.

Ces equations, connues sous Ie nom d'equations de Navier-Stokes forment un systeme

d'equations aux derivees partielles non lineaires, de nature mixte, difRciles a resoudre.

L'experience indique qu'il est possible de negliger, en premiere approximation, la viscosite

de 1'air et obtenir encore des resultats significatifs. Les equations regissant des ecoulements

compressibles non visqueux sont connues sous Ie nom d'equations d'Euler. Ces equations

permettent de representer des ecoulements rotationnels et non isentropiques et sont done

valides dans une enveloppe de vol comprenant des nombres de Mach fortement transsoniques

(avec des ondes de choc fortes) et des angles d'incidence eleves (avec des ecoulements tour-

billonnaires). Jusqu'a, ce jour, a Canadair, seuls des ecoulements potentiels subsoniques

pouvaient etre resolus dans Ie cas de 1'avion complet (grace a des methodes de panneaux).
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Les calculs transsoniques autour de configurations completes etaient faits au moyen du

programme des petites perturbations KTRAN. Des formulations plus sophistiquees sont

utilisees mais sont limitees a des cas plus simples (Potentiel Compressible FL022 our Euler

FL067 pour des ailes isolees, Navier-Stokes pour des profils bi-dimensionnels).

Le but de ce travail est de developper une methode precise, fiable et pratique, de resolution

des equations d'Euler pour des geometries complexes d'avion de type CL-601 Challenger,

avec voilure supercritique, ailettes marginales, turboreacteurs mantes sur Ie fuselage et

fortement couples avec 1'aile et un empennage en T. Plusieurs methodes existent pour

resoudre ces equations dans des cas plus ou mains simples, mais toutes celles qui pourralent

s'appliquer au Cliallenger sont la propriete confidentieUe de constructeurs aeronautiques

concurrents et 1 information sur ces methodes, leurs succes et leurs echecs est partielle.

Nous avons passe en revue ces diverses methodes et nous les avons evaluees pour une

application au Challenger. Nous avons ensuite selectionne une formulation de support au

developpement d un logiciel pour avion complet. Nous avons finalement implemente une

strategic de resolution multi-block et un traitement des conditions d'entree et de sortie des

moteurs qui, parce qu elles sont con^ues pour des besoins tres precis, sont originales a notre

programme.

Une revue non exhaustive de difFerentes methodes de resolution des equations d'Euler est

reprise au debut du texte : methodes explicites et implicites, discretisations centrees des

operateurs spatiaux, schemas a contre-courant. Cette revue couvre aussi les caracteristiques

des solutions des equations d'Euler, les types de conditions aux limites perinissibles et

touche aux raisons du succes de certaines methodes et aux probl ernes rencontres par

d'autres. Le choix de la formulation de base adoptee dans notre travail est explique par
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notre experience precedente, des contraintes pratiques de disponibilite, et du degre de con-

fiance requis des resultats.

Les equations d'Euler sont utilisees dans ce programme sous forme instationnaire conser-

vative. EUes traduisent sous cette forme des bilans de masse, de quantite de mouvement et

d'energie. La solution recherchee est ceUe d un ecoulement stationnaire en regime etabli.

La forme instationnaire des equations est utilisee parce qu eUe permet d obtenir un systeme

d'equations hyperbolique par rapport au temps qui peut etre resolu de maniere expllcite

comme un probleme a valeurs initiales bien pose. L'ecoulement de depart est une approxi-

mation ajbitraire de la solution recherchee (ecoulement uniforme). La solution. stationnaire

est obtenue en integrant les equations dans Ie temps jusqu a ce qu une convergence satis-

faisante soit obtenue. Cette approche permet egalement d'obtenir, en utilisant un pas de

temps uniforme dans tout Ie domaine, des solutions instationnaires de 1 ecoulement. La

solution numerique est obtenue en discretisant ces equations selon une methode de vol-

umes finis explicite. Dans cette approche, les equations sont integrees afin d exprimer les

relations sous forme d'un equilibre de flux entrant et sortant a travers les frontieres d'un

volume de controle et de la variation des proprietes de 1 ecoulement a 1 interieur de ce vol-

ume. L'integration des equations, qui est presentee dans Ie texte, transforme les equations

anx derivees partielles en equations diflFerentielles ordinaires qui peuvent etre resolues par

des methodes classiques. La discretisation s'appuie sur un maillage curviligne quadrilateral

adapte aux contours de 1'avion. Les derivees spatiales sont discretisees par des diflferences

centrees. Le schema est rendu suffisamment dissipatif par 1'addition de termes de viscosite

artificielle, qui permettent la capture d'ondes de choc et de discontinuites sans oscillation.

L'utilisation des coefficients de viscosite artificielle se fait de la maniere proposee par A.
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Jameson et modifiee par E. Turkel. L'integration des equations dans Ie temps se fait par un

algorithme de Runge-Kutta a cinq pas de Jameson et Schmidt decrit dans Ie texte et ayant

d'excellentes proprietes de stabilite. Afin d accelerer la convergence des calculs, un pas de

temps local est selectionne a chaque noeud du maillage, limite par la condition de Courant,

Friedrichs et Lewy de 1'ecoulement local. Cette condition specific que les calculs ne peu-

vent demeurer stables que si Ie domaine de dependance du schema numerique contient Ie

domaine de dependance des equations aux derivees partielles de depart. Les inconnues du

calcul sont les valeurs de la densite, des trois composantes cartesiennes du vecteur vitesse

et de 1'energie a chaque noeud du maillage. Le volume de controle servant a 1'application

de la methode est la somme de tous volumes adjacents au noeud. Ce schema possede de

bonnes caracteristiques de precision et permet Ie calcul direct des variables a la surface

de 1'avion. La methode consiste done a evaluer les flux convectifs et dissipatifs a travers

1 enveloppe du volume de controle de chaque noeud et de reevaluer iterativement les valeurs

des inconnues en chaque noeud par 1'integration d equations differentielles ordinaires. La

convergence des calculs est egalement ainelioree par Ie remplacement du residu en chaque

noeud par une moyenne, calculee de maniere implicite, des residus des noeuds voisins. Fi-

nalement, une condition sur 1 enthalpie, qm est une variable dans les calculs, permet un

gain supplementaire de taux de convergence. Cette methode a fait ses preuves dans des ap-

plications simples teUes que des ailes isolees, des ensembles aile-fuselage, etc. L'adaptation

de cette methode pour son application a des configurations tridimensionnelles complexes

tout-a-fait arbitraires ainsi que Ie calcul de 1'aerodynamique du CL-601 Challenger font

toute 1 originalite de notre contribution et constituent 1 essentiel de cette these. L'ecriture

d'un code Euler pour cette configuration particuliere a necessite Ie developpement d'une

strategic multi-bloc avec des conditions d'interface nouvelles, et une attention particuliere
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aux conditions d'entree et de sortie des moteurs dont une formulation originale est pro-

posee. Le calcul a egalement necessite la mise en oeuvre d'un systeme d'analyse complet,

commen^ant par la modelisation geometrique sur CADAM et finissant par la visualisation

des resultats sur des stations graphiques adequates.

L'application a des geometries complexes se fait a 1'aide d'une strategic multi-bloc. Dans

notre approche, 1'espace autour de 1'avion est divise logiquement en sous-domaines de formes

simplement connexes et topologiquement equivalents a des cubes avec six faces et huit

sommets. Les equations d'Euler sont resolues sequentiellement dans chacun de ces sous-

domaines. L'information numerique est transferee de bloc en bloc grace a une connectivite

simple des noeuds des blocs qui se font face. La necessite d'organiser ce transfert sans

deteriorer la precision du modele ni la convergence des calculs est une des difficultes tech-

nologiques principales que nous avons du resoudre pour obtenir des resultats satisfaisants.

La strategie multi-bloc et sa corrolaire d'utilisation de maillages de type H-H ont en efFet des

repercussions importantes sur tous les aspects du resoluteur : 1'evaluation et 1'accumidation

des flux convectifs, 1 agencement des flux dissipatifs de fa^on a garantir dans tous les cas

les proprietes de conservation du schema numerique (pas d'addition ni de soustraction de

masse, moment ou energie), Ie calcul des valeurs propres locales entrant dans la definition

des pas de temps et finalement 1'integration des equations dans chaque bloc en garantissant

1'unicite de la solution aux interfaces. Les techniques que nous avons adoptees au terme de

nombreux essais sont decrites dans Ie texte et constituent la trame de la methode que nous

proposons.

Le programme est actuellement contraint a un seul type de condition aux limites par face

de chaque bloc. On distingue
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- Les conditions d impermeabilite sur les surfaces solides.

- Les conditions aiix frontieres d'entree et de sortie du domaine.

- Les conditions d'entree de la soufBante du turboreacteur (debit d'entree specifie).

- Les conditions de sortie des gaz chauds du moteur et froids de la soufflante (rapport de

pression totale et de temperature totale du moteur specifies. Une formulation nouveUe,

s'inspirant des conditions imposees aux Umites exterieures du domaine, a ete testee avec

succes et adoptee.

- Les conditions de symmetric.

- Les conditions d interface de blocs voisins, origmales a notre approche.

Le resoluteur est structure en modules distincts

- Le module d'entree de donnees revolt les informations sur la topologie des blocs, les

coordonnees des noeuds du maillage, les parametres numeriques et les conditions de

vol.

- Le module d'interpretation de la topologie decode 1'information regue du mailleur, po-

sitionne les surfaces de 1'avion et arrange la correspondance entre faces adjacentes de

blocs voisins. Ce niodide decele et etiquette tous les cas "speciaux" qui necessitent un

traitement particulier.

- Le module de calcul geometrique evalue les volumes des cellules du maillage, les surfaces

des faces et les composantes des normales aux faces de chaque ceUule.

- Le module de gestion des blocs orchestre les calculs sequentiels dans chaque bloc, met

en memoire vive les donnees pertinentes au bloc actif et stocke sur un vecteur tampon

les donnees des blocs inactifs.

- Le module de resolution des equations : calcul des pas de temps, des flux convectifs,
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des flux dissipatifs, integration des equations, application des conditions aux limites,

moyennage des residuels, evaluation des parametres de convergence. Tous ces elements

sont largement affectes par la topologie H-H et la strategie multi-bloc du programme.

- Le module de calcul des forces et des moments, essentiel dans un programme qm sub-

divise la surface de 1 avion en zones appartenant a des centaines de blocs diiferents. Le

programme reconstitue la surface exterieure de 1'avion a partir des donnees topologiques.

et calcule ensuite les coefficients de pression, les forces et les moments.

- Le module de sortie des resultats.

Une methode progressive de validation de la strategie multi-bloc a ete utilisee, qui garan-

tit la consistence du modele. En partant de configurations simples d'aile isolee (1 bloc, 3

blocs, 6 blocs, 12 blocs), nous avons developpe les conditions d'interface, la sommation des

flux, la formulation de la viscosite artificieUe et d'autres details numeriques pour assurer

la convergence des calculs dans les cas les plus compliques. Les conditions aux limites

d entree et de sortie des moteurs, importantes en raison du couplage fort aile-nacelle du

CL-601, ont ete progressivement developpees et testees sur une version largement modifiee

d'un programme mono-bloc. Ces evaluations, conduites sur un modele simple d'entree

d'air et un autre modele simple de moteur a simple flux, ont permis de valider une ap-

proche originate des conditions de sortie des naoteurs. La precision du calcul a ete calibree

en comparant les resultats de calculs sur maillage fin (12 blocs, 293964 noeuds) de 1'aile

ONERA M6 avec des resultats experiment aux. Les distributions de pression obtenues a

M = 0.84 et a =3.06 demontrent qu'une precision nominale pour ce type de formulation

est atteinte. Le programme a ensuite servi a modeliser Ie turboreacteur a double flux CF-

34 de General Electric, qui sert a propulser Ie CL-601 Challenger. Ce test, utilisajit 11
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blocs et 250 000 noeuds, a servi a, valider les conditions aux limites d'entree et de sortie

du moteur dans 1'optique multi-bloc. Des resultats sont donnes pour un debit d'entree

correspondant a un regime de croisiere ("Mass Flow Ratio" J\fFR = 0.6838) a Mach 0. 74

et pour deux conditions de sortie des jets differentes. L application initiate au Challenger

s'est faite en modelisant des configurations aile-fuselage et aile-fuselage-ailettes du CL-601

(40 blocs, 550,000 noeuds). La comparaison des resultats avec des donnees de soufiierie

demontre que Ie code multi-bloc permet d'obtenir les predictions les plus precises jamais

faites de 1 ecoulement non visqueux sur cet avion. On montre egalement que Ie couplage

des resultats de ce calcul avec une evaluation interactive de couche Umite promet de donner

des resultats tres pres de la realite. Ces bans resultats ont permis 1 application finale a

des configurations complexes d'avion. Des calculs out ete falts pour Ie Challenger CL-601

complet avec les turboreacteurs en fonctionnement. Ce modele est constitue de 600 blocs et

1,571, 580 noeuds. La formulation proposee permet d'obtenir une convergence adequate des

calculs dans tous les 600 blocs et une transparence a 1'ecoulement calcule dans les milliers

d interfaces entre blocs voisins. La complexite de la configuration introduit de nombreux

points speciaux (degenerescence de faces entieres en Ugne ou en point, voisinage de surface

solides, de coins, etc) qui sont autant de defis a la stabilite du calcul. La capacite d'obtenir

de bans resultats dans ce cas constitue une validation nette de 1'approche proposee. Ces

resiiltats sont les premieres et seules solutions jamais obtenues en ecoulement transsonique

sur la configuration complete du Challenger et la precision obtenue s'apparente tres bien

avec ceUe de solutions Euler obtenues par d'autres methodes sur des configurations beau-

coup mains complexes. Un autre avion complet, Ie CF-18 des forces canadiennes, a ete

modelise en utilisant 108 blocs et 784,168 noeuds. Des comparaisons avec des resultats de

soufflerie confirment une fois de plus la bonne precision de la methode. Ce cas a permis
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de modeliser des ecoulements a grand angle d'incidence et de capturer les structures tour-

biUonaires generees par les bords d'attaque tranchants des extensions avants de 1'aile du

CF-18.

Le code utilise des maillages adaptes produits par des logiciels ecrits a Canadair specifiquement

pour ce projet. Une interpolation algebrique est utilisee pour generer un maiUage de depart

qui est ensuite ameliore par la resolution d'equations elliptiques suivajit la inethode de

Thompson. La topologie utilisee pour la generation du maiUage multi-bloc est directement

liee aux choix faits pour Ie programme Euler. Ces calculs ont ete efFectues sur 1'ordinateur

vectoriel CONVEX C-220 de CANADAIR a double CPU qui fait 50 MFLOPS par CPU.

Les resultats ont ete analyses sur un terminal graphique SILICON GRAPHICS R-4000-50

GTX. Le code est fortement vectorise. Un calcul typique demande 300 a 500 iterations

pour obtenir un niveau de convergence pratique des distributions de pression. Les calciLls

prennent entre 5 heures et 10 heures CPU sur 1'ordinateur CONVEX, suivant la complexite

de la geometrie et Ie nombre de noeuds du maiUage.

La formulation multi-bloc que nous proposons compte allie la flexibilite, la fiabilite et la

precision requises pour la conception d'avions a, haute performance. Le code est utilise sur

une base reguliere pour la conception du nouvel avion de Canadair, Ie Global Express. D

reste a mampuler Ie programme pour y ajouter les avantages de temps de calcul plus reduits,

puis a introduire la modelisation des effets visqueux et de la turbulence pour posseder un

code Navier-Stokes pour avion complet.
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CHAPTER 1 : INTRODUCTION

1. 1 BACKGROUND INFORMATION

1.1. 1 Trans art Aircraft Aerod namic Desi n and Anal sis

The aerodynamic design of airplanes, once a mostly experimental exercise, has become a

process involving the application of advanced theoretical methods as well as experimental

testing. In the highly competitive world of the Air Transport Industry, aircraft manufac-

turers have been thriving to develop and use methods which enable them to put together

quickly configurations which are optimal for a required mission (i. e. the safe transport

of passengers and cargo over various distances at minimum cost). For this purpose, the

aerodynainicist is caUed upon to achieve two important objectives :

1) The identification of the shapes of airfoils, wings and complete aircraft configurations

giving the best combination of lift, drag and stability and control characteristics.

2) The accurate prediction of these characteristics in support of performance guarantees,

well before the aircraft is built and flown.

To achieve these objectives, the aerodynamicist can rely on theoretical analyses (analytical

or numerical) and on the results of appropriate wind tunnel tests. In the past, the usual

procedure was to define, from theory and previous experience, several promising configu-

rations and then test them in the tunnel in order to select the optimal one. The tunnel

data was also a reliable source of information for predicting the aerodynamics of the full



scale airplanes, which were relatively small and flew at slow subsonic speeds. However,

the recent growth of the size aud speed of modern airplanes flying at high M:ach numbers

and Reynolds numbers has taken them beyond the range for which the tunnel data can be

relied upon with complete confidence. The increased competition is also calling for lower

development costs and dictating fewer, more focussed, wind tunnel tests. The emphasis is

therefore shifting towards more and more theoretical analyses. In the transonic flow icinge,

in order to obtain information on the non linear aerodynamic characteristics of aircraft it

is necessary to resort to elaborate Computational Fluid Dynamics (CFD) methods.

1. 1.2 Corn utational Fluid D namics Develo ment at Canadair

The CFD method presented here was developed as a good example of collaboration between

government, university and industry. The code was developed in order to satisfy a specific

need of Canadair, a division of Bombardier : the accurate modelling of inviscid transomc

flows about Business Aircraft configurations similar to the CL-601 ChaUenger, featuring

advanced supercritical wings, a wide-body fuselage, a T-tajl and -fuselage mounted high

by-pass turbofan engines (figure 1). The development of this CFD method was supported

in part by the Department of National Defence of Canada which saw an interest in the

modelling of vortical flows around the Canadian forces CF-18 airplane at high angles of

incidence. Finally, an agreement between Canadair and Ecole Polytechnique de Montreal

was reached which made this effort part of a Ph. D. program granting the author access to

the expertise and technical guidance available at the university

In order to understand the relevance of the Euler code in the overall aircraft design. cycle



of Canadair, it is useful to review the past and present CFD capability of the company.

Canadair uses computational aerodynamic methods to improve the aerodynamic perfor-

mance of its present products (Business Jets and Regional Jets with aft fuselage mounted

naceUes) and to design new aircraft that can compete successfully in the market. These

methods can be used to study a wide range of configuration options during the preliminary

design phase of an aircraft, thus increasing the prospect of identifying the optimum design.

This approach is more cost effective than wind tunnel testing. These codes are also used to

study problems involving complex flow physics that cannot be simulated realistically or in

sufficient detail in the wind tunnel. In addition, many codes developed at Canadair with the

support of the Department of National Defence (DND) of Canada have been used to obtain

aerodynamic data on military aircraft. Through two decades of continuing development,

the company has developed or acquired a large array of computational codes for the design

and analysis of aerodynamic configurations in subsonic and transonic flow. For the analysis

of complete aircraft configurations in 3-D subsonic flow, panel methods are used. Three

such codes are available at Canadair. The WBAERO code is the original, well estabUshed,

low order code [1]. In 1983, the author mitiated the development of the CANAERO code,

an improved version of WBAERO, using vortex sheets instead of vortex lines to represent

the lifting characteristics of wings [2]. The code was later further developed to include the

relaxation of wing and body wakes and the modelling of separated body vortices [3]. A

third panel code, VSAERO, purchased from Analytical M:ethods Inc. (AMI) of Redmond,

Washington (USA), is also used. VSAERO has a powerful post processing suite (OMNI3D)

allowing color display of pressures, wakes, velocity vectors and streamlines on a graphics

workstation.



Figure 1 Canadair CL-601 Challenger configuration.



The main thrust in the use of computational tools for transonic aerodynamics came with the

initiation of the Challenger Executive Jet program, in 1976. Several codes were brought

in the company for the analysis and design of transonic airfoil sections and wings. The

TRANDES code for wing section analysis and design uses a Transonic Small Perturba-

tion (TSP) formulation [4], whereas the BGK code solves the Transonic Full Potential

equation [5]. Both codes have the inherent limitation to quasi-isentropic and irrotational

flows. The BGK program has an interactive compressible boundary-layer calculation of

the Nash-MacDonald type. The program was recently coupled with an optimizer routine

to produce an airfoil design code [6]. In this approach, the coordinates of a starting airfoil

are automatically modified by the program in an iterative manner to produce a specified

pressure distribution. The design of three-dimensional wings has reUed mostly on the well

known FL022 FuU Potential non-conservative code written by A. Jameson of Princeton

University [7]. This code, together with the BGK 2D code, was used in 1976 for the design

of the Challenger. Its value was clearly illustrated in the successful design of the Chal-

lenger advanced supercritical wing. The program, originally developed for isolated wings

in transonic flows, was modified at Canadair to account for wing/body interactions. It gave

then reliable predictions of inviscid pressure distributions and drag rise characteristics for

wing/body combinations. However, since this code does not take into account the close-

coupled nacelles, the eflFects of these nacelles had to be investigated experimentally. More

recently, the modified FL022, the BGK program and an optimizer code, FL06QNM, were

used by the author in the design of the wings of the Canadair Regional Jet (RJ) [8]. Wind

tunnel and flight test results have confirmed the new design and the aircraft has recently

entered commercial service.



The first major step towards the modelling of transonic flow fields for com. plete aircraft

configurations was taken in 1984, when the Department of National Defence of Canada

(DND) contracted Canadair to develop a Transonic Small Disturbance code. The initial

code, caUed KTRAN was developed by the author who applied it to wing/body/pylon/store

configurations in 1986 [9]. Later, an enhanced version was produced, which can model com-

plex military aircraft configurations such as the CF-18 with under-wing pylons and stores

[10]. It can also model commercial airplanes with a fuselage mounted powered naceUe

and winglets [11]. The code uses simple Cartesian grids. A grid embedding technique is

used to provide flow details near specific components. A major advantage of the KTRAN

code is the modest amount of computer resources (CPU time, memory capacity) needed

to calculate the flow around realistic configurations. Because of the Small Perturbation

formulation, the KTRAN program is restricted to a certain range of transonic Mach num-

bers and to configurations in symmetrical flight at relatively smaU angles of incidence. The

program is also restricted to flows properly described by the Full Potential assumptions,

i.e. irrotational and quasi-isentropic flows. With the advent of more powerful computers

and the development of fast algorithms to solve the equations of fluid motion, the emphasis

in Computational Fluid Dynamics has shifted towards the use of Euler and Navier-Stokes

codes. The Euler equations represent a fluid with zero viscosity. They can be seen as

the limit of the Navier-Stokes equations for vanishing viscosity (infinite Reynolds number).

They are a better model of inviscid flow than the Full Potential equation because of their

ability to represent rotational effects and entropy variations in the flow field. Unlike the

FuU Potential equations, they are not restricted to transonic flows with weak shock waves

but can be used for flows with strong shock waves and highly supersonic flows. They can

provide, for instance, a better prediction ofinviscid airfoil characteristics at ofF-design con-



ditions. The Euler equations allow<also the modelling of vortical flow fields such as those

which develop around modern fighter aircraft with swept or delta wings at the high angles

of incidence required for transonic maneuverability. This is particularly true for aircraft

such as the Canadian Forces CF-18, which has a large wing strake at the junction with the

fuselage. Other applications of Euler codes include the analysis of missiles and stores at high

angles of attack. The highly non-linear flow that exists on these configurations in subsonic,

transonic and supersonic regimes can only be predicted by the Euler and Navier-Stokes

methods.

1.2 OBJECTIVES OF THE EULER CODE DEVELOPMENT

The subject of this thesis is the development of a transonic multi-block Euler flow solver

for complete aircraft configurations and its application to the Canadair CL-601 Challenger

airplane. This work is part of an even larger research effort by the staff of Canadair. The

research was conducted in the past three years, under the supervision of the author who

was the principal investigator of the project. This total project, funded partly by Canadair

and partly by the department of National Defence of Canada had four main objectives :

1. The coupling of a two-dimensional Euler code for isolated airfoils with laminar and tur-

bulent compressible boundary layer programs to predict airfoil characteristics in viscous

transonic flow. A subsequent link with an optimization procedure allowed the design of

airfoils producing prescribed pressure distributions.

2. The expansion of a two-dimensional unstructured grid Euler code into a Navier-Stokes

code by the addition of physical viscous fluxes and the modelling of turbulence (Baldwin-

Lomax algebraic model).



3. The development of a three-dimensional Euler code for arbitrary configurations using a

multi-block procedure and its application to the Canadair CL-601 Challenger and the

CF-18 aircraft configurations.

4. The development of supporting two-dimensional and three-dimensional grid generation

codes.

The author, as principal investigator in charge of the complete project was responsible

for selecting the formidations for each part of the project and for supervising the subse-

quent development. In addition, He was personally responsible for the writing of the three

dimensional multi-block Euler code (item 3 above) which is the subject of this thesis. Our

multi-block Euler code was developed to provide the most accurate inviscid flow solution

around business aircraft like the Challenger and military aircraft like the CF-18. A link

of the Euler code with boundary layer calcidations on wing surfaces was also planned to

provide a better estimate aerodynamics of the aircraft in cruise. This Euler code will be

used by Canadair:

1. To confirm the predictions of a wing/body Full Potential code for newly developed

aircraft configurations with supercritical wings (Global Express).

2. To estimate the effect of the aft fuselage mounted nacelle on the pressure distributions

of the wing at various flight conditions. Because of its accurate geometry model and its

sophisticated formulation, the Euler code gives better predictions of these effects than

the Transonic Small Disturbance code KTRAN presently used.

3. To improve the understanding of the nacelle aerodynamics in the presence of the down-

wash of the wing, analyze the flow in the inlet stream tube at various flight conditions

and estimate engine installed performance. By predicting isolated and installed nacelle



pressure distributions, the code will serve to determine powerplant installation eflTects.

4. To optimize aft fuselage shapes, naceUe and pylon positions and shapesl' in order to

minimize interference drag and obtain clean flow for this highly three-dimensional geo-

metry.

5. To obtain accurate predictions of the aerodynamic loads acting on the complete aircraft

configuration in the transonic regime. Up to now, loads on the complete aircraft could

only be obtained using subsonic panel methods. Additional aerodynamic extrapolation

and wind tunnel testing were still required to account for transonic effects.

The development of a reliable and accurate Euler code is therefore a major step forward in

the application of CFD to the design and analysis of aircraft configurations at Canadair,

which should result in more refined products and reduced amounts of wind tunnel and

flight testing. The first application of the new code is the Global Express long range,

high-speed executive airplane, planned for first flight in 1997. It must be emphasized that

although several Euler codes have been developed by the CFD community, only very few

of them can be considered as capable, accurate and reliable enough to be useful in an

aircraft design cycle and those codes are typically proprietary to the organizations that

have developed them. Many elegant codes, with impressive results in simple generic cases,

have not withstood the test of complete usefuhiess in an aircraft manufacturer environment

(ease of use, confidence in the results, etc. ). These were primary goals for the development

of the code described here. A longer term goal is to use the Euler code as a support for

developing a Navier-Stokes program for complete aircraft configurations. A proposal for

such development was prepared and the development is scheduled to begin in mid 1993

[12].
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1.3 OUTLINE

The text in chapter 2 is divided in foiu- parts : a study of the Euler equations and of the

nature of the solutions of these equations; a short summary of the best known schemes

developed to solve these equations (a background for evaluation of our proposed formida-

tion); a review of applications of Euler solvers in the industry (illustrating the objectives

of this work and indicating the successes and limitations of some formulations for prac-

tical problems); a presentation of choices we made in selecting the formulation proposed

here. Chapter 3 is a description of the surface modelling and grid generation techniques

developed in support of the three-dimensional multi-block Euler code. Chapter 4 is a de-

scription of the flow equations used in the present work, the discretization formulation and

the time-integration technique. The elements of theory specific to our method are discussed

in chapter 5 and 6. They are related to the application of boundary conditions for complete

aircraft configuration and to the formulation of the multi-block technique. Chapter 7 is a

presentation of the results obtained during the development of the code and the aerody-

namic characteristics calculated for various configurations of the CL-601 Chzdlenger and

the CF-18 complete aircraft configurations.



CHAPTER 2 : Solving Euler Equations : A Review

2.1 FORMULATION OF THE EULER E UATIONS

The best model available today for describing mathematically the fluid motion phenomena

encountered in most aeronautical problems is the set of unsteady compressible Navier-

Stokes equations representing the conservation of mass, momentum and energy. The

Navier-Stokes equations represent the flow of a gas in thermodynamic equilibrium. If

p, u, v, w, E and p represent the density, Cartesian velocity components, total energy

and pressure, respectively, the Navier-Stokes equations can be written in three-dimensional

form as .

9W , QF . 9G . OH 9R QS 9T9W-+Q1 + 9G. +9H. = 9^+9S. +9T.
9t 9x 9y 9z Qx 9y 9z

where W is the vector of dependent variables and F, G and S the convective flux vectors.

p

pu
W= pv , F=

pw
pE

pu
pu'1 +p

puv

puw

puH

pv pw
puv puw

, G = pv2 +p , S = pvw
pvw pw2 + p
pvH pwH

H is the total enthalpy which is given by

H=E+P.
p

The pressure is obtained from the equation of state

(2. 1. 2)

p=(7-l)/>[^-K"2+^+^2)] (2. 1. 3)
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The fliix vectors representing the viscous terms are :

0

TXX

R = rxv
Txz

UT^ + VT^y + WT^
-qx

, s=

0

T~xy

Tyy
ryz

UTj;y + VTyy + WTy^
-9y

, f=

The viscous stresses are given by :

Tij =
. 9ui , 9u^ 2, ^^.

t'l^, +^)-yv vv}

UTxz + VTyz + WT^z
- ^

(2. 1. 4)

The heat conduction terms are

9T 9T 9T
qx = -K- , gy = -K- , g^ = -K-

9x ' ~~ 9y " Qz
(2. 1. 5)

However, the complexity of these equations and the large computer resources needed to

solve them for useful configurations have sponsored the development of simpler models.

One of them is the use of an inviscid model for the outer flow coupled with boundary layer

calculations for representing the viscous effects near the surface of the airplane. The Euler

equations are obtained from the Navier-Stokes equations by neglecting all shear stresses

and heat conduction terms. They represent the most general description of inviscid, non-

heat conducting flows. They can be written in conservation form and in an absolute frame

of reference as :

9W . 9F 9G 9H9W , 9F, 9G . 9H
+ -- + -- + -- =

Qt 9x 9y 9z

They form a system of first-order partial diflferential equations which is hyperbolic in time.

An analysis of the entropy equation for inviscid continuous flow, in the absence of heat

sources indicates that entropy remains constant along a flow path [13]. The Euler equa-

tions represent therefore isentropic flow along a flow path in the absence of discontinuty.

However, the entropy can vary from one flow path to another. This variation of entropy in
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the direction normal to the local flow velocity is related to the variation of vorticity, as seen

from Crocco's form of the momentum equation in stationary in viscid flow without external

forces :

-vx(=T^7s-VH (2. 1. 7)

In this eqation C is the vorticity vector, s the entropy, T the temperature and H the total

enthalpy. In addition, the Euler equations aUow discontinuities in the solution across which

the entropy can vary. The properties of discontinuous solutions are given by the local form

of the conservation laws over a discontinuity called the Rankine-Hugoniot relations [13].

The various forms of discontinuities physically possible are :

- Contact discontinuities : with no mass j&ow through the discontinuity (Ai;n = 0), con-

tinuity of pressure (Ap = 0) and possible discontinuities in specific mass (A^» -^ 0) and

tangential velocity (AI;( 76 0).

- Vortex sheets or slip lines : also defined by a condition of zero normal mass flow (A^n =

0), continuity of pressure (Ap = 0) but allowable jumps in tangential velocity (At;t ̂  0)

and density (Ap -f- 0).

- Shock surfaces : these are solutions of the Rankine-Hugoniot relations with non-zero

normal mass flow (Ai;n ^ 0), discontinuity of pressure (Ap -^ 0) and density (A/? -f- 0).

but continuity of tangential velocity (AI?( = 0)

These types of discontinuities are important in the transonic flow solutions developed in the

present work. For physical reasons the discontinuous variation of entropy occurring through

a shock wave must be positive (compression shock). Expansion shocks with negative jumps

of entropy are valid solutions of the in viscid equations. It is therefore necessary to add

an entropy condition to the equations in order to suppress these non-physical solutions. A

good review of the properties of these equations can be found in a book by HofFman [14].
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2.2 NUMERICAL SOLUTIONS OF THE EULER E UATIONS

The solution of the Euler equations is a non linear convection dominated problem. During

the seventies, there were widespread efforts to develop methods for predicting transonic

flows with shock waves using the Transonic Small Disturbance and Full Potential equations.

In parallel, beginning in 1970, several algorithms were devised to solve the Euler and Navier-

Stokes equations. The pioneering work was done by Magnus and Yoshihara [15] but the

real impetus came with the introduction in 1970 by JMacCormack of his famous explicit

finite difference scheme [16]. Other schemes foUowed, trying to improve the efficiency of

the computation. This section looks at some of the most notable methods that were devised

to solve the Euler equations. The successes and failures of some methods must be linked

to the performance levels required for effective use in the aeronautical industry [17] :

- The ability to predict the flow past airplanes at different flight regimes.

- The possibility of interactive calculations for immediate improvement of designs.

- The possibility of integration of the predictive capability into an automatic design

method using computer optimization and artificial intelligence.

To meet these performance levels, CFD codes are developed with regard to :

- The ability to simulate main features of the flow (shock waves, vortices).

The ability to predict viscous effects.

- The ability to handle complex geometry.

The efficiency in computational and human effort.

The steady Euler equations can be solved by introducing a space discretization procedure

that reduces the problem to the solution of a large number of coupled non linear equa-

tions. These equations can be solved by iterative methods : for example, the Newton
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iteration method (Giles, Drela and Thompkins [18]) and the least squares methods (Bris-

teau, Glowinski, Periaux, Perrier, Pironneau, Poirier [19]). The other way of obtaimng

steady state solution is through the use of time-dependent solutions which have the follow-

ing advantages :

- Simplicity.

- The same code can be used for steady and unsteady calculations.

- They are a natural framework for designing non-oscillatory shock capturing schemes

reflecting the physics of wave propagation.

- They can be used on vector, pipelined and parallel computers : explicit time stepping

or iterative procedure at each time step for implicit schemes.

The present review wiU focus on time-dependent solutions, since the method selected for

the present work belongs to this fainily. During this review, it should be remembered that

good numerical schemes should be able to satisfy the following requirements :

- The numerical approximations should satisfy the conservation laws.

- Shock waves and contact discontinuities should be automatically captured.

- The final steady state should be independent of the time step.

- Physical invariant quantities in the flow field (entropy upstream of shocks and enthalpy

in steady tilow) should remain invariant in the numerical solution.

- Uniform flow should be an exact solution.

The reasons that led to the choice of the formulation selected for the present application

will be explained at the end of this chapter. To put those arguments in proper light, it is

useful to review various methods which have been developed to address the solution of the

Euler equations and to outUne their strengths and weaknesses. This review will focus only

on those methods which have had the greatest impact in the computation of fluid flows in
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aeronautics. Excellent reviews in more thorough terms can be found in the classical works

of Hirsch [13] and HofFmajia [14]. During the following discussion, various terms related to

the performance of the various schemes wiU be used : consistency, stability, convergence,

accuracy and overall computational efficiency. Prior to the discussion, it is useful to restate

what these terms mean in the present context.

Consistenc : A system of algebraic equations generated by the discretization process is said

to be consistent with the original partial diflFerential equation if, in the limit of grid spacing

tending to zero, the system of algebraic equations is equivalent to the partial differential

equation at each grid point. The consistency condition establishes therefore a relation

between a differential equation and its discretized formulation.

Stabilit : is the tendency of any spontaneous perturbation such as a round-ofF error in the

solution of the system of algebraic equations to decay. The stability condition establishes

therefore a relation between the computed solution and the exact solution of the discretized

equation. The two most common methods of stability analysis are the matrix method and

the von Neumann method. Both predict whether there wiU be a growth of the error between

the true solution of the numerical algorithm and the actually computed solution, the von

Neumann analysis is the most commonly used method of determining stability criteria and

is the easiest to apply. However it can only be used to establish necessary and sufficient

conditions for the stability of linear initial value problems with constant coefficients. For

problems with variable coefficients, non linearities and complex boundary conditions, the

method can only be applied locally with non linearities temporarily frozen. Although it is

strictly for interior points, it has been used to provide some information on the influence

of boundary conditions on numerical stability.

Conver ence : A solution of algebraic equations which approximate a given partial diflfer-
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ential equation is said to be convergent if the approximate solution approaches the exact

solution of the partial differential equation for each value of the independent variables as

the grid spacing tends to zero. The difference between the exact solution of the partial

differential equation and the exact solution of the algebraic equations is called the solution

error. The convergence condition establishes therefore a relation between the computed

solution and the exact solution of the diflFerential equation. According to Lax theorem,

for a weU posed initial value problem and a consistent discretization scheme, stability is a

necessary and sufl&cient condition for convergence.

Solution accurac : in practice, approximate solutions are obtained in finite grids, the

accuracy of a particular algorithm can be determined by applying it to a simple problem

which has exact solutions. The accuracy of Euler solvers has often been tested by their

application to the Burgers equation for which exact solutions can be found for various

initial and boundary conditions.

Corn utational eflftcienc : is the accuracy achieved per unit of execution time.

Li the following discussion, we will distinguish between explicit and implicit schemes. We

wiU also distinguish between the space-centered schemes and the upwind schemes.

Explicit methods are simple, easily vectorizable and aUow large flexibility in the treatment

of boundary conditions. The biggest problem of the explicit schemes is their conditional

stability which may place severe limitations on the size of the time step, especially with fine

meshes. This is a consequence of the famous Courant, Friedrichs and Lewy condition (CFL

condition) : If amax is the maximum speed of propagation of a one-dimensional problem,
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the time step At is limited by :

A«o- 'min

(2. 2. 1)

where Aa;nzin is the minimum grid spacing and a the maximum Courant number or maxi-

mum CFL number :

Af
(T = a

A^ (2.2.2)

As a consequence, explicit schemes may require large number of time steps (several thou-

sands) in order to reach a satisfactory level of convergence for steady state problems. This

situation has somewhat been improved by the use of several devices which will be discussed

later, including the use of multiple grids.

An alternative for problems when time accuracy is not required (steady state problems)

or when the time-scale of the unsteady phenomena is much larger than the time step

allowed by the CFL condition is to use implicit schemes. These schemes are unconditionally

stable and are limited oiily by accuracy requirements. In practice, however, too large time

steps may create non linear instability. In addition, the choice of a boundary condition

implementation may introduce a stability limit. Using implicit schemes, the solution can

be obtained therefore with a smaller number of iterations, at the expense of a higher

operations count per iteration.

2.2.1 Lax-WendroffT es of S ace-centered Schemes

These schemes for the Euler equations were the first to be derived. The most impor-

tant property of the Lax-WendrofF schemes is the combination of time and space-centered
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discretization. AU centered explicit or implicit schemes of second order accuracy with com-

bined space-time discretization are generally considered as belonging to the Lax-WendrofF

family.

2. 2. 1. 1 Explicit Schemes

a - First rder Schemes.

The Lax or Lax-Friedrichs schemes [20] were the first modem development in the field

of numerical discretizations of the Euler equations. Consider the linearized convection

equation with the dependent variable u :

Qu , Qu
- + a-- = 0
9t 9x

(2. 2. 3)

The basic idea of the Lax scheme was to replace the unstable explicit central scheme :

^»+1 -u^= -^«+l-<-l) (2. 2. 4)

by the stabler procedure :

,n+l _ a

<+1 = ^«+1 + <-l) - ^«+1 - <_l) (2. 2.5)

A similar procedure can be described for the conservative form of the equations; when an-

alyzed, the stabilization procedure is seen to be the addition of a dissipative term propor-

tionnal to the second derivative of u. Schemes for non-linear equations and two-dimensional

equations were derived but they are rarely used because of their low accuracy. First order

schemes have truncation errors proportional to second derivatives acting as added numer-

ical viscosity which damp high-frequency components and smooth out strong gradients.
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There have been attempts to improve the accuracy of the Lax scheme by introducing cor-

reeled viscosity terms, but these will not be discussed here. The most useful Lax-WendrofF

schemes are the second order schemes presented in the next section.

b - Second Order Schemes

Lax-WendrofF scheme.

The Lax-WendrofF scheme is the only second order, space-centered discretization on athree-

point support for the linear one-dimensional convection equation. The variants of this

scheme vary in the treatment on non-linearities and in their multi-dimensional aspects. The

most useful version is the two-step version described in 1964 [21]. Consider the conservative

version of the one-dimensional convection equation :

^2+^=0
9t 9x

The two-steps Lax-WendrofF scheme can be written as :

(2. 2.6)

Step 1 :

Step 2

where r = At/Aa;

^ = ^« + "m) - ^(^+i - /^-i)1

2'

<+1=<-^- ^)i+i

(2. 2. 7)

(2. 2.8)

MacCormack scheme.
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The most popular version of the Lax-WendrofF scheme is the two-step predictor-corrector

MacCormack explicit method [16] which is a second order time-accurate scheme. The first

step is a first order forward discretization in space. The second step is a first order backward

scheme. The first step in isolation is unstable for positive eigenvalues of the Jacobian matrix

A of the equation (for supersonic velocities) while the second step is unstable for negative

characteristic speeds of propagation. However, the combined scheme is stable and, due to

the cancellation of the truncation errors of each step, it is second order accurate. For the

equation presented above, the scheme can be written as follows

Predictor step

< = < - r(f?+i - f?) (2. 2. 9)

Corrector step :

<+1 = i« + o - ir(/f - /?_, ) (2. 2. 10)

Note that all second order three-points central schemes of the Lax-WendrofF family produce

oscillations around sharp discontinuities. They require generally the addition of artificial

dissipation terms. The issue of artificial viscosity will be discussed separately later in the

text. The Lax-WendrofF family of schemes is still widely used to discretize Euler and Navier-

Stokes equations, particularly in the form of the MacCormack predictor-corrector formu-

lation. The author used successfully this formulation in 1980 to calculate two-dimensional

transonic blade-to-blade flow in turbine cascades [22], [23]. Another example of the use of

the MacCormack finite difference algorithm is the code of Peery and Forrester of Boeing

[24] which was written to calculate Euler and Navier-Stokes solutions in unsteady two-

dimensional flow. The results that they obtained for turbine engine exhausts were a useful

reference in the construction of the engine model developed in the present work. Charles
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Koek of MATRA [25], in France calculated unsteady Euler equations using a finite volume

one-step scheme of Ron Ho Ni with the multiple grid procedure ofNi [26]. The basic scheme

used is a one-step Lax-WendrofF scheme said to be second-order accurate in space and time.

Chima of NASA Lewis and Johnson of the Colorado State University use tiine-marching

procedures to solve Euler and Navier-Stokes procedures [27] for two-dimensional flow. They

use the M:acCormack version of the two-steps Lax-Wendroff method. A coarse grid accel-

eration following the fine grid solution procedure of Ni [26] is also used. Arthur Rizzi of

FFA made calculations on wing-body combinations using an 0-0 transfinite interpolation

mesh [28]. He used a similar explicit time-marching finite volume method with an internal

mechamsm for temporal damping and use of local time step. AU spatial derivatives are

centrally difFerenced. The scheme is second-order accurate, has a simple structure and is

easily vectorizable.

2.2.1.2 Implicit Schemes

Implicit schemes of the Lax-WendrofF family have been developed by Lerat [29]. These

schemes are second-order accurate, unconditionally stable and have interesting dissipative

properties. However, they have not been widely used for aeronautical applications, as far

as we were able to determine. They will not, therefore, be discussed further. The Lax-

WendrofF family of schemes is derived from a combined space and time discretization. As

a consequence, the steady state numerical solution depends on the time-step used in the

computations. However small this error can be, it constitutes a drawback since it introduces

a numerical parameter in the predicted steady state flow.
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2.2.2 Central Schemes with Inde endent Time Inte ration

The idea behind these schemes is to make the final steady state solution independent of the

time step. To do this, one convenient way is to separate the time marching procedure from

the space marching procedure entirely. This is done by applying first a semi-discretization.

The problems of spatial discretization error, artificial dissipation and shock modelling can

then be studied independently of the time marching stability and convergence acceleration.

These schemes are based on central space discretizations and therefore do not distinguish

between upstream and downstream influences. The physical propagation of perturbation

along characteristics, which is typical of hyperbolic equations, is not considered in the

definition of this numerical model. The central differencing generates odd-even decoupling

(high frequency error) which, for non linear problems cau affect the smoothly varying

solution (interaction of modes creating low frequency errors). In addition, these schemes,

like the Lax-WendrofF schemes, generate oscillations in the vicinity of discontinuities. They

require therefore the addition of artificial dissipation terms to damp these oscillations. The

two most important schemes in this class are the implicit Beam-Warming schemes and the

Jameson explicit multistage Runge-Kutta scheme.

2. 2. 2. 1 Beam-Warming Schemes

Beam and Warming introduced their scheme in two papers published in 1976 [30] and 1978

[31]. A good account of their approach can be found in their notes for a lecture series given

at the Van Karman Institute in 1982 [32]. In one dimension, the time discretization and

linearization are obtained by applying linear multi-step integration schemes to the space

discretized equations considered as a system of ordinary differential equations in time.
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Beam and Warming use implicit operators reducing to tridiagonal or block tridiagonal

inversions which are performed efficiently with a Thomas algorithm. Considering again the

one dimensional convection equation :

^+^=0
9t 9x

The Beam-Warming approach leads to the semi-discretized scheme

(1 + ^un - ^Au"-1 = -^t[fffS+1 + (1 - 0)/,ra]

with Au" = un+l - un.

(2. 2. 11)

(2. 2. 12)

An important aspect of the scheme is the linearization of the flux derivative term f^+l as

foUows :

/"+1 = /" + AV(" = /" + A"(^n+1 - Un) (2. 2. 13)

which leads to the form :

[(1 + 0 + A^A$]Aun = -Af/^ + ̂ Au»-1 (2.2. 14)

This scheme is a three-level scheme containing un~~l, un and un+1 (for ̂ 0) and is second

order accurate for 0 = ^+^. Depending on the values of 6 and ̂ , one can obtain various

schemes : Euler explicit, explicit leapfrog, implicit trapezoidal, Euler implicit and a three-

point implicit scheme. When second order central diflFerences are applied to the implicit

operators, the implicit matrix transforms into block tridiagonal systems which can be eco-

nomicaUy solved. Since the time integration is independent of the space discretization, the

scheme can be readily generaUzed to two or three dimensions. However, this leads to costly

matrices to invert (block peatadiagonal matrix in a two-dimensional case). Therefore, an
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Alternating Direction Implicit (ADI) factorization is used. The principle of ADI is to sepa-

rate the operators into one dimensional components and split the scheme into a number of

steps eqmvalent to the number of dimensions of the problem. Each step involves only the

implicit operations originating from a single coordinate. The idea behind the ADI method

is the factorization of the operator in a product of one-dimensional operators. This factor-

ization introduces an error which is of the same size as the truncation error and therefore

does not affect the overall accuracy of the scheme. One of the best known application of

the Beam-Warming scheme is the ARC2D program developed at NASA Ames [33]. This

is a two-dimensional implicit Euler and Navier-Stokes code. The equations are written in

general curvilineeir coordinates. The physical domain is mapped on a computational rectan-

gular domain. The method is in fact a variation of the approximate factorization algorithm

in delta form (Beam-Warming) due to PuUiam and Chaussee [34] which diagonalizes the

implicit operators. The diagonal form has advantages over the standard block tridiagonal

algorithm in terms of efficiency and convergence characteristics. The method can be first

order or second-order accurate in time. All the space derivatives are second-order cen-

tral differences. J. Vadyak of Lockheed-Georgia uses a fully implicit ADI algorithm (Fully

implicit approximate factorization scheme) to study nacelle inlet flow fields [35]. The non-

iterative Beam-Warming algorithm used is cast in correction form. Second-order accurate

spatial discretization and first or second order temporal differencing are used in the code.

The ADI scheme is used to split the three-dimensional difference operator in three one-

dimensional operators. The code performs the solution of a block tridiagonal system of

linear simultaneous equations in each direction at each time step. To obtain the steady

state solution, the equations are integrated in time to convergence of the surface solution

properties. Explicit boundary conditions are used.
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2.2.2.2 LU Decomposition

An alternative approximate factorization method is the LU decomposition method : the

idea is to replace the operator in the Elder equation by the product of lower and upper

block triangular factors L and U. Two factors are used independently of the dimensions

and the inversion of each can be accomplished by the inversion of its diagonal block [36].

2.2.2.3 Jameson's Multistage Scheme

This finite volume scheme presented by Jameson, Schmidt and Turkel [37] in 1981 applies

a Runge-Kutta multistage time integration scheme to the central discretization of the flux

balance. The method is an efficient combination of dissipation terms, convergence accelera-

tion devices and multi-grid techniques and has produced very accurate and computationally

efficient codes. The method selected in the present work is based on Jameson's formula-

tion which will therefore be fully developed in the next chapter. The main features of the

method are :

- It uses the Euler time dependent equations in Cartesian coordinate system cast in strong

conservation form.

- A finite volume method is used to transform the system of hyperbolic equations into a

set of ordinary differential equations to be integrated in time.

- Discontinuities such as shock waves and contact discontinuities are automatically cap-

tared, spreading over a small number of cells.

- All spatial derivatives are centrally differenced. The scheme is second order accurate if

the mesh function is smooth enough.

- To prevent the tendency for odd-even decoupling and the appearance of wiggles in re-
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gions of severe pressure gradients, artificial dissipative terms are added. These are a

blend of second and fourth differences with coefficients depending on local flow charac-

terisics. The overall level of dissipation is controlled by a user-defiined parameter.

- A Runge-Kutta multistage algorithm is used to integrate the equations in time. Ad-

ditional stages are added to improve accuracy and extend the stability region of the

scheme. Four-stages and Five-stages schemes have been used. These schemes are fourth

order accurate in time for a linear equation in one dimesion. They are stable for a

Courant number : \cr\ <, 2V2.

- Various devices are used to accelerate convergence to the steady state :

- Local time step, to advance the solution everywhere at the maximum rate compatible

with a fixed Courant number and the local cell size.

- Enthalpy damping. An additional term proportional to the difference (H - H^

is added to the residual which has a damping effect on the problem. Jameson's

discretization guarantees H = ffoo at convergence, making this term tend to zero.

- Residual smoothing. After each explicit step, an additional implicit step is added to

average the variation of the residuals. This has the result of increasing the maximum

allowable Courant number and of smoothing the high-frequency variations of the

residuals. The latter property makes residual smoothing an essential feature of the

multi-grid convergence acceleration scheme.

- M:ultigrid acceleration. The convergence to steady state is accelerated by transferring

to coarser meshes since larger time steps can be used there. The corrections are

interpolated back to the fine grid where a smoothing operator removes the high-

frequency errors.

The method has been developed into very efficient codes for two-dimensional and three-
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dimensional applications. Jameson's best known codes are the FLO-52 and FLO-82 codes

for isolated airfoils [37] and the FLO-57 and FLO-67 codes for isolated wings which will

be discussed later. Several aircraft companies have used these programs as the basis for

developing more complex codes which have remained proprietary to each organization :

- At Lockeed, Raj [38] and Oiling and Mani [39] have developed efl&cient multi-block Euler

and Navier-Stokes codes based on this formulation (TEAM and TRANSAM). The codes

can model complete aircraft configurations and have been used mainly to study military

aircraft configurations at high angles of incidence.

- At Douglas, Shmilovich and Chang have had applications to simple aircraft-nacelle

configurations [40].

- Northrop was one of the first companies to develop a multi-block application, with the

particular application for the F-20 tigersharck (Busch, Jager and Bergman [41] ).

- British Aerospace has also developed a version of the program for application to multiple

store carriage. (Shepherd and Tod [42]).

- Israel Aircraft industry and Analytical Methods Inc have developed a version of the

program formulated for Cartesian grids (MGAERO). Although not as accurate as the

body-fitted grid version, it offers the advantage of automated grid generation for fairly

complex configurations (Epstein, Luntz and Nachshon [43].

Jameson has continually cooperatedwith several research establishments and aircraft com-

panies to further the application of this scheme :

- At Boeing, Chen, Yu, Rubbert and Jameson have developed variants for general naceUe

configurations [44].

- More recently, preliminary calculations were done using tetrahedral cells in an unstruc-

tured mesh. for the Douglas DC-10 airplane [45].
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2. 2.3 U wind Schemes

The upwind schemes were constructed with the idea of introducing the physical properties

of the flow equations in the discretization formulation. Two main variants of the method

can be considered :

- Flux Vector S littin FVS methods : here, only the information on the sign of the

Jacobian eigen values is introduced in the discretization; the flux terms are split and

discretized directionally according to the sign of the associated propagation speeds.

(Steger and Warming [46], Van Leer [47]).

- Godunov-t e methods : here, properties derived from the exact local solution of the

Euler equations are introduced in the discretization. These schemes foUow the pioneering

work of Godunov [48]. In his method, the conservative variables are considered piecewise

constant over the mesh ceUs at each time step; the time evolution is then determined

by the exact solution of the Riemann (shock tube) problem at the interface between

adjacent cells. In higher order extensions and variants of these methods, the local

Riemann problem is only approximately solved through approximate Riemann solvers

(Roe [49], Osher [50]). These methods are also known as Flux DiiFerence Splitting (FDS)

methods.

2. 2.3. 1 Basic Principles

The basic principle of the upwind schemes can be described by considering the following

linearized convection equation :

9u , _9u
- + a- = 0
9t 9x

(2.2. 15)
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For positive propagation speeds (a > 0), a stable first order explicit discretization of this

equation with the Courant number a is :

<+l=<-a«-<_0 (2. 2. 16)

A van Neumann analysis indicates that this scheme is stable for values of the Courant

number 0 <, cr <^1 but it is unstable for negative characteristic speeds. The analysis of the

truncation error shows that the scheme is only first order accurate in space and time and

that the equivalent equation has a dissipative term with a numerical viscosity coefficient

equal to : aAa;(l - o-)/2. The remarkable property of the scheme is that this viscosity term

vanishes for a = 0, i.e. when the characteristic eigenvalues pass through zero. This occurs in

stagnation regions and at sonic transitions. This property of vanishing numerical viscosity

is responsible for the sharp capture of discontinuities which is afforded by upwind schemes.

In. comparison, the numerical viscosity of a first order central scheme never vanishes and is

much higher. Note that the property of vanishing dissipation at sonic transitions can also

lead to non physical expansion shocks. The addition of an entropy condition to prevent

this may then be necessary. The simple example above can also serve to illustrate the other

nature of upwind schemes. Indeed, for negative propagation schemes (a < 0), a stable

scheme is :

<+1=U?-<T«^-<) f2. 2. 17)

the scheme is stable for negative values of the Courant number -1 <o- < 0. This shows that

an upwind scheme cannot be simultaneously stable for both positive and negative values.

The so-called upwind schemes, illustrated above, apply a discretization that depends on the

propagation direction of the wave or on the sign of the convection velocity a. The general

form of a first order accurate upwind scheme for the linearized scalar form of the Euler
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equations can be written as :

with :

<+1 -u^= -r[a+« - <_i) + a-«+i - <)]

r = Af/Aa;

a+ == maa;(d, 0) = (a + |a|)/2

and the stability limit is :

a~ = min{a, 0) == (a - |a|)/2

|cr| = r|a| < 1

(2. 2. 18)

(2. 2. 19)

(2. 2.20)

(2. 2.21)

(2. 2.22)

The origin of this upwind scheme can be traced back to Courant, Isaacson and Reeves

[51]. The upwind schemes introduce a directionally biased space discretization that takes

properly into account the propagation properties of a hyperbolic equation. In contrast,

the central difference methods use central discretization without regard to the direction of

propagation. The propagation properties of the equations are taken into account in these

methods by the introduction of artificial viscosity terms.

2. 2.3. 2 Flux Vector Splitting Schemes

The idea of one-dimensional flux vector splitting was introduced by Steger and Warming

[46]. This is an upwind method that defines the splitting of the fluxes according to the signs

of the eigenvalues. The flux splitting methods developed in one dimension can be extended

to multi-dimensional flows by applying one-dimensional splitting to each flux component

separately, in accordance with the sign of the associated eigenvalues. Two such methods

are those of Steger-Warming and Van Leer



32

Ste er and Warmin flux s littin .

The flux splitting approach is equivalent to writing the flux /(u) as the sum of a forward

flux and a backward flux

f(u)=f+{u)+f-{u) (2. 2.23)

where :

/ = A+.u and f~ = A~.u

A is the Jacobian of the flux vectors with respect to the conservative variables. Advantage

is taken here of the fact that the flux vector f{u) is a homogeneous function of degree one

of u, and therefore :

f=A.u (2. 2.24)

The Jacobian of the split fluxes f^ and /"- used by Steger and Warming are not continuously

diflFerentiable, since they have a discontinuous slope at sonic velocities. This may cause

discontinuities in the slope of the computed solution at the sonic transition. The Steger-

Warming flux formula does not provide any vanishing dissipation in any steady wave, which

makes the capture of shock waves not as good as with Van Leer's formulation discussed

next.

Van Leer flux s littin .

Van Leer introduced a different approach [47], with a certain number of conditions added

on to the split fluxes. He obtains this way a difFerentiable flux-split formula to represent
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the numerical flux f(u) of the convective terms of the Euler equations. In the relation :

f(u)=f+{u)+f-{u) (2. 2. 25)

/+(u) and f~(u~) and the associated Jacobians f^ and /"" must be continuous functions of

Mach number and are expressed as polynomials of the lowest possible order. It is required

in addition that :

df+(u)/du > 0 (2. 2.26)

df-(u)/du<0 (2. 2. 27)

The numerical flux based on the left and right state can be written as :

f(UL, UR) = f+(UL) + f-(un) (2. 2. 28)

Van Leer's formula makes dissipation vanish in steady shocks, leading to capture of these

shocks within one to two interior states. However, the scheme has numerical diffusion at

contact discontinuities, with or without slip, which are less weU captured. The CFL3D

code used at NASA Langley by Anderson and Batina [52] is an implicit finite volume,

upwind-differencing code. In this code, the spatial derivatives are split into forward and

backward contributions using flux vector splitting so that type-dependent derivatives can

be used. The flux-vector splitting is that of Van Leer [47]. The code incorporates also the

flux-differencing approach of Roe [49] which will be described later. The program can be

steady or unsteady and can be used either as an Euler or a Navier-Stokes code.

2.2.3.3 Godunov-type Schenies

The various numerical flux formulas used to represent the convective terms of the Euler and

Navier-Stokes equations are discussed in a paper by Van Leer, Thomas, Roe and Newsome
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[53]. The accuracy of the various schemes is discussed with relation to representing steady

non linear waves (shocks) and steady linear waves (entropy/shear waves). It has been

shown that the correct value of the flux vector can be found by solving the Riemann

problem governed by a one-dimensional inviscid flow equation at the interface :

ui + f(u)^ = 0 (2. 2.29)

Solving the exact Riemann problem at every interface leads to the Godunov flux formula.

Numerically, it is wasteful to do this at every interface. This is the reason why several other

methods use approximate Riemann solvers instead. The simplest flux formula is obtained

by averaging the flux values at the left and right side of the interface :

f(UL, UR) = j[f(uL) + f(uR)} (2. 2.30)

This leads to central difference schemes which are unstable and require the addition of

artificial dissipation to the flux. The scheme can be written as :

/(^, UR) = ^[/(^) + f(UR)] - ^Q{UL, UR). (UR - UL) (2. 2.31)

DiflFerent numerical fluxes vary in the selection of the matrix coefficient Q(UL, UR) of the

dissipation term.

Roe's a roximate Riemann Solver FDS Flux Difference S littin .

In the method proposed by Roe [49], [54], the numerical flux is based on the solution of

Riemann's problem with the initial values u^ for a; < 0 and UR for a; > 0 for the

linearized equation :

Uf + A{UL, UR^UX = 0 (2. 2. 32)
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where A(u^, Ufi) is the mean value of the Jacobian A(u) of F{u) required to have the

following properties :

1- A(u, u)=A{u).

2- A{uL, Uft) has a complete set of eigenvalues and eigenvectors.

3- A(u^, UR). (UR - UL) = f(uR~) - f{ui).

The numerical flux based on this "approximate Riemann solver" can be written as

f(uL, Up) = ^[f(uL~} + f(uR)} - ^\A{u^ UR)\. (UR - UL) (2. 2. 33)

where |A| is the matrbc with the same eigenvectors as A, whose eigenvalues are the abso-

lute values of the eigenvalues of A (which represent the characteristic speeds normal to the

interface). Because of the third property of A, if an eigenvalue of A(u^,, Ufl) vanishes, the

corresponding eigenvalue of the dissipation matrix vamshes as well. The Roe scheme leads

therefore to crisp representations of steady shocks and contctct discontinuities if aligned

with an interface (within one interior state). In order to avoid the appearance of expansion

shocks, which is possible with Roe's formiila, it is necessary to add an additional flux con-

tribution when an expansion through a sonic point is detected. This contribution is added

to the upstream point and subtracted from the downstream point to preserve conservation.

Note that computer codes based on Roe's scheme can be expensive because of a large in-

crease in the number of arithmetic operations required in the numerical approximation. In

addition, they do not satisfy the condition of constant total enthalpy at the steady state

because the dissipative terms entering the mass and energy equations are constructed inde-

pendently. Some applications of Roe's scheme at Ecole Polytechnique de Montreal can be

found in the work of Trepanier, Reggio, Zhang and Camarero [55], as weU as in the paper

on unsteady aerodynamics by M. Paraschivoiu [56]
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Osher's a roximate Riemann Solver.

Osher's scheme [50] is another approximate Riemann solver with properties similar to those

of the Roe's scheme. The flux formula of the Osher scheme is :

A"L, UR) = ^[/(^) + f(uR)] - ^ fu
R 

\A{u)\. du (2. 2. 34)

where the integral is calculated along a path piecewise parallel to the eigenvectors of A(u).

Because of the differentiability of this flux, steady shock waves are captured within one to

two interior states, instead of within zero to one interior states, as for Roe's scheme. In

Osher's scheme, the detection of the sonic point is essential and in consequence, expansion

shocks do not remain solutions of the scheme.

Other a roximate Riemann Solvers.

Another application of upwind methods can be found in the paper by Eberle of the german

aircraft manufacturer MBB [57]. The method used by Eberle is a one-step time dependent

finite volume scheme, based on characteristic Taylor expansion of conservative flow vari-

ables. A characteristic upwinding of the fluxes, inspired by the ability of the Godunov first

order scheme to resolve sharply discontinmties, is used. No added artificial viscosity is re-

quired. Good results are shown for the ONERA M6 wing and for a fighter type wing/body

combination [57]. Other approximate Riemann solvers have been described, such as the

scheme suggested by Harten and Lax [58]. These schemes wiU not be discussed here.
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Corn arisen of a roximate Riemann Solvers with other schemes.

A comparison of the results of the various upwind schemes for the Euler and Navier-Stokes

equations is made in reference [53]. This paper also compares these results with those

of the MacCormack and Jameson schemes. The MacCormack scheme is one of the most

popular fimte difference schemes for Euler and Navier-Stokes solvers, as seen previously.

The scheme leads to non-linear instabilities and requires extra dissipation terms with a

scalar coeiRcient proportional to the second pressure difference (similar to the one used

in Jameson's method). The Jameson/Schmidt/Turkel method uses a flux formula not

written in terms of interface values. A user-specified artificial viscosity coefficient is added.

This term does not enter the flux formula. A non oscillatory interpolation is used to

calculate the interface values from the discrete solutions. It is found that for the Euler

equation, the Jameson and MacCormack schemes with properly tuned artificiaj. dissipation

coefl&cients, yield acceptable answers with shock resolved in three cells. The quality of the

results may be worse for contact discontinuities and slip surfaces where there is no intrinsic

mechanism counteracting the numerical diffusion. On the other hand, Roe's scheme (FDS,

Flux Difference Splitting) is said to be the best for Navier-Stokes solutions where boundary

layers must be resolved. It is found to be more accurate than Van Leer scheme (FVS, Flux

Vector Splitting). The M:acCormack scheme performs better than the FVS schemes in the

boundary layer but renders the shock less weU, requiring twice as many cells as the Roe

scheme. Van Leer's formula requires four times as many as Roe. It is concluded that the

Jameson type scheme is best suited for Euler code and restricted to applications in which

contact/slip surfaces lie outside the region of interest. For Navier-Stokes solutions, it is

found to be at best, with trimmed dissipation coefficients, in competition with the FVS.
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2.2.4 Second Order U wind and Hi h Resolution Schemes

The replacement of first order upwind space diflFerences by second order accurate formulas

leads to the generation of oscillations around discontinmties. It was alsoshown that linear

second order upwind schemes always generate oscillations. It was therefore necessary to

find new ways to develop osciUation-free second order schemes which can provide physically

acceptable solutions and represent accurately shocks and contact discontinuities. The study

of the conditions required to satisfy these criteria was initiated by Godunov [48] who intro-

duced the concept of monotonicity. For non linear equations, Harten [59] introduced the

concept of bounded total variation of the solution as a more general criterion for osciUation-

free numerical schemes. Many schemes were developed to satisfy these requirements. It was

shown however that such schemes could only be first order accurate (Godunov theorem).

It was found finaUy that the only way to circumvent this limitation was to introduce non

linear discretizations. This concept was introduced by Van Leer [60] and by Boris and Book

[61] under the form of limiters which control the gradients of the computed solutions. A

complete discussion of these schemes is outside the scope of this presentation. We will only

briefly introduce the notion of Total Variation Diminishing (TVD) condition. The concept

originates from an important property of the scalar conservation law :

a" 4-^=0
Qt 9x

The Total Variation of a physically admissible solution of this equation is defined as :

. +00

(2. 2.35)

TV \Ux\da.
-00

(2. 2. 36)

This total variation has the property that it does not increase, provided that any dis-

continuity appearing in the solution satisfies au entropy condition. The Total Variation
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Diininishing (TVD) schemes introduced by Harten provide a unifying framework for the

study of shock capturing methods. TVD schemes are schemes with the property that the

total variation of the discrete solution cannot increase. This total variation is defined as :

+00

TV=^\Ui-u^\ (2. 2.37)

Because TVD schemes preserve the monotonicity of an initial monotone profile, they pre-

vent the formation of spurious oscillations. In fact, one of the most useful outcomes of the

development of the TVD schemes is the bridge which was established between upwind and

central discretizations. This allowed the central schemes to be formulated with an amount

of adapted dissipation satisfying TVD requirements. It can be shown, for instance, that the

use of a dissipative coefficient with a magnitude of at least half the wave speed produces a

TVD scheme, while the minimum sufficient value produces the upwind scheme. It is difR-

cult to generalize TVD schemes to more than one dimension. One way of generalizing the

use of one sided differencing to a system of equations is the Flux Vector Splitting method of

Steger and Warming . The fluxes can be spUt into components based on the characteristic

speeds and the TVD construction can be applied separately on each component. Examples

of 3-D TVD solutions of the Euler equations can be found in the work ofTakakura, Ishiguro

and Ogawa, of The Fujitsu and National Aerospace Laboratory of Japan [62]. They con-

ducted studies of two TVD schemes (Yee-Harten and Chakravarthy-Osher) for 3-D Euler

equations expressed in general curvilinear coordinates and showed accurate solutions for

the ONERA M6 wing.
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2. 2. 5 S ectral Methods

Among the areas likely to see concentration of future CFD research in the search for higher

orders of accuracy, Spectral Methods can be cited. An example is the work was done at

NASA Langley in this area [63], [64]. Spectral Methods are an extreme development of the

class of discretization schemes known as "Method of Weighted Residuals (MWR)". These

methods use trial functions (expansion or approximating functions) as the basis functions

for a truncated series expansion of the solution which, when substituted into the differ-

ential equation, produces the residual. They also use test functions (weight functions) to

enforce the miniinization of the residual. The choice of trial functions is what distinguishes

the Spectral Methods from the finite difference and finite element methods. It has been

suggested that a spectral method can require far fewer grid points than the best finite

difference method to achieve engineering accuracy of a full potential solution for a lifting

supercritical airfoil. The cost of a spectral multigrid method is comparable to that of the fi-

nite difference method. However, on most practical problems, in a direct comparison, finite

difference methods produce better and cheaper solutions. The accuracy of today's spectral

shock-capturing techniques for the Euler equations tends to be quite low. Exponentially

convergent solutions to the Euler equations can be obtained by resorting to shock-fitting

techniques, thus placing additional constraints on the Spectral Methods.

2. 2. 6 Artificial Viscosit

Von Neumann & Richtmyer introduced in 1950 the concept of artificial viscosity or artificial

dissipation in order to remove the unavoidable high-frequency oscillations of secoad-order
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central schemes around discontinuities [65]. These additional terms are supposed to sim-

idate the effects .of physical viscosity on the mesh scale locally around discontinuities and

be negligible (order higher than truncation error) in smooth regions. The artificial vis-

cosity also produces a mezins of avoiding expansion shocks. The Von-Neumann-Richtmyer

artificial dissipation terms were applied to the Lax-Wendroff scheme, modifying the flux

calculation in the following form :

f^+^ = 

2 
- J7-A, ^^(/, 4. i 

- fi) - -D(u,, u,+i). (u;+i - -u,) (2. 2.38)

Where D is any positive function of (^, 4. 1 - u;) tending to zero at least linearly with

(u,+i - u, ). The function D must have the dimensions of velocity, which means that JOAa;

has the dimensions of viscosity. Lax and WendrofF called D the artificial viscosity. D must

be at least proportional to Aa; to maintain second-order accuracy. The Van Neumann and

Richtmyer artificial viscosity has the form :

.* with viscosity _ f* _ r A 1. 2,

9x 9x
(2. 2.39)

It is therefore non linear and prop ortional. to Aa;2. When applied to the MacCormack

scheme, dissipation terms are added to both predictor and corrector schemes. la this

scheme, it has the effect of preventing the appearance of expansion shocks, of improving

the resolution of shock waves but also of smearing contact discontinuities. There have been

several attemps of using higher order artificial viscosity formulations (Third order scheme of

MacCormack and Baldwin, Steger scheme, Jameson's scheme [13]. these formulations will

not be discussed here, with the exception of the Jameson's scheme, which will be introduced

here and further discussed in the following chapter.
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Jameson s artificial dissi ati on.

In his finite volume explicit scheme, Jameson uses a blend of Second and fourth order

differences with excellent shock capturing characteristics. The same formidation has been

used by PulUam and Steger [66] into Beam-Warming codes with very good results. The

corrected flux is defined by :

with :

. * with viscosity __ ft
J^ "=/'+^-a'+i

<-+^ = et^^ui+l - Ui) - £^)_(^'+2 - 3u,+l + 3u, - y,_i)

(2. 2.40)

'8+?' (2. 2.41)

£<2) is the non linear adaptive coefficient for the second difference. eW controls the dissi-

pation near discontinuities and is the the coefficient of the dominant term around shocks.

Its expresssion is given by :

g(2) = K(2)maa;(^, ^_i) (2. 2.42)

where :

I, + Pi-1
V, = |^'-1-1 , ^' ' ^t-J
't-lp;+i+2^+p, _il ^.^

The second difference dissipation is not sufl&cient to remove all oscillations in smooth regions

of the flow. Tlierefore, a background dissipation term is added using a fourth difference.

This background dissipation term was found to produce oscillations near shocks. That is

the reason why it is turned off in these regions, when the other term is dominant. The

adaptive coefl&cient of the background dissipation is given by :

£<4) = maa;(0, (K<4) - e(2)) (2. 2. 44)

/<(2) and /t(4) are constants which are specified by the user. Typical values are /t(2) = (1/4)

and K,W = (1/128). £<2) is of the order 0(Aa;2) and eW is of the order 0(Aa;4) in smooth
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regions of the flow. In these parts of the flowfield, the dissipative fluxes are of third order in

comparison with the convective fluxes. In the neighbourhood of a shock wave, g(2) reduces

to first order or becomes of the order of one. The scheme then behaves like a first order

scheme. Caughey (Cornell University) and Turkel (University of Tel Aviv ) have studied

the effects of various forms of dissipative terms on solution accuracy, especially on non-

smooth meshes [67]. They use the spatial discretization of Jameson, Schmidt and Turkel

and a solution of the difference equation by either an explicit Runge-Kutta time stepping

scheme or the diagonalized Alternating Direction Implicit (DADI) method of Caughey

[68]. Multigrid acceleration is used in both cases. The dissipation is provided by an

adaptive blend of second and fourth diflFerences as described above. The study shows that

considerable errors in surface values can be introduced by the averaging required to calculate

derived quantities of interest and that spurious entropy gains can be reduced by modulating

the second difference dissipation with the local Mach number (this is the term needed to

control oscillations near shock waves. By multiplying this term by a function of Mach

number so that the second difference viscosity is small in regions of low speed, it is possible

to prevent the occurence of large second difference viscosities near trailing edges where V{

can be large for high angles of attack). Additional problems occur in multidimensional

problems when the mesh sizes are different in the various coordinate directions. In original

schemes, the artificial dissipation terms are properly scaled by multiplying them by a term

which is the sum of the spectral radii of the matrix in the various coordinate directions. In a

paper with Swanson of NASA Langley, Turkel discussed, in 1987, the artificial dissipation

model, including boundary treatment used by central diflFerence schemes for Euler and

Navier-Stokes equations. They examined modifications of the model such as eigenvalue

scaling suggested by upwind differencing [69]. In 1988, Turkel [70] proposed as scaling
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factor in each direction the spectral radius in that direction, thus improving the solution

on highly stretched meshes. This idea was put forward again in 1990. Turkel and Vatsa [71]

indicated that using the spectral radius of the Jacobian of convective fluxes to obtain scalar

coefficients of artificial viscosity could add too much viscosity to the slower waves. They

proposed to use instead matrix-valued coefficients for artificial viscosity which would give

appropriate viscosity for each wave component. Additional studies of Jameson's artificial

viscosity coefficients for multi-dimensional flow were carried out by Raj, of Lockheed [38].

He suggested two variations of the Standard Adaptive Dissipation (SAD) which he called

Modified Adaptive Dissipation (MAD) and Flux-limited Adaptive Dissipation (FAD). An

improved adaptive dissipation method for meshes of high aspect ratio cells is used in the

present work, as suggested by M:artinelli [72]. In applying artificial viscosity in Navier-

Stokes solutions, one must be careful to make sure that the numerical dissipation does not

overwhelm the physical dissipation. In Euler solutions, there is no physical dissipation and

therefore the problem is less critical.

2.2.7 Boundar Conditions for Inviscid Transonic Flow

In order to have a well posed problem, it is necessary to impose initial and boundary con-

ditions. In an explicit scheme, the influence of the boundary values propagate numerically

one space step at a time. In an implicit scheme, if the boundary conditions are treated in

an impUcit way, a change in the value at the boundary influences the values at all the node

points at the next time step, through the solution of the matrix system. The implementa-

tion of the boundary conditions has therefore a stronger influence on the solution with an

implicit scheme. The number and the type of boundary conditions to be specified in the
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solution of the hyperbolic Euler equations depends on the propagation properties of the

system or, more specifically on the informatiou which is propagated from the boundary to

the inside of the computational domain. The one-dimensional propagation properties of

waves in the direction normal to a boundary are given by the spectrum of the eigenvalues

of the Jacobians associated with the normal to the boundary. The problem is weU posed if

the fuU information on the ingoing and outgoing characteristics can be obtained from the

boundary conditions imposed on the variables.

Physical boundary conditions : The variables transported from the boundaries to the inside

of the domain are the only ones that can be imposed at the boundary. The other variables

must be part of the solution.

Numerical boundary conditions : from the numerical point of view, it is necessary to obtain

information on all the variables at the boundary before proceeding to the next step. The

additional boundary conditions required are called numerical boundary conditions and

have to be consistent with the physical properties of the flow and to be compatible with

the discretized equations. They should not, however, influence the physical boundary

conditions.

Ph sical boundar conditions.

For one-dimensional inviscid flow the number of physical boundary conditions that can be

imposed at the boundaries is shown in the table below, according to the nature of the flow

(a one-dimensional Elder equation has three dependent variables which can be designated
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Table 1 : Number of Boundar Conditions.
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Boundary type

Inlet

Outlet

Subsonic flow

Two conditions

MI and ua

One condition

U3

Su ersonic flow

Three conditions

ui, us and ^3

Zero condition

The physical conditions to be imposed are the entropy and the values of the characteristics

or Riemann variables. It is more practical, however, to impose the value of physical prop-

erties such as pressures or velocities, which can be set in experiments, and then calculate

the characteristic information in an iterative or approximate way.

Numerical boundar conditions.

The numerical boundary conditions remaining to impose are the difference between the

total number of the dependent variables and the number of physical boundary conditions

imposed. The characteristic boundary method adds the Riemann invariants for outgoing

characteristics to the imposed physical boundary conditions in order to obtain the missing

information at the boundary. The choice of the numerical boundary conditions can have a

large effect on the accuracy, stability and convergence rate of a numerical method.
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Non-reflectin boundar conditions.

Imposing the value of a physical property at a boundary may allow a perturbation wave

to be reflected at the boundary. Consider for instance the specification of a given pressure

pn+i 
^ p* ^ ^ subsonic outlet boundary, which is equivalent to imposing :

Ap = pn+1 -pn =p* -pn =Q (2. 2. 45)

Since the incoming characteristic is Aua = A-u - Ap//?c, imposing Ap = 0 corresponds

to generating an incoming wave of intensity Aus = Au reflected from the exit boundary.

In these relations c is the speed of sound, u the flow velocity and /? the density. Non

reflecting boundary conditions, as described by Engquist and Majda [73], express the phys-

ical boundary conditions in manner that local perturbations propagated along incoming

characteristics vanish

9uk
9t

=0

or, in a discretized form :

Aufc = 0

(2. 2. 46)

(2. 2.47)

for all k values corresponding to incoming waves. This procedure improves the accuracy

of the flow computations. For the subsonic outlet case mentioned, a condition for non-

reflecting boundary condition would be :

4p-=oAu3 = Au -
p"c»

Boundar treatment for multi-dimensional Euler codes.

(2. 2. 48)

A general multi-dimensional computational domain wiU typically contain free surface bound-

aries (far-field, inlet, outlet) and solid surface boundaries (body surfaces). In three dimen-
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sional flow, the number of physical boundary conditions to be applied at boundary surface

depends on the sign of the eigenvalues of the Jacobian matrix in a direction normal to the

boundary

2.2.7. 1 Far-field Boundary Conditions

Inlet and outlet boundaries can be set be far enough from the body for the disturbance

not to affect the freestream values. Since the disturbances can only be damped over large

distances, these boundaries must be located at a large distance from the body (for instance

: 50 chords away from an airfoil for a 2-D calculation). Unless a very coarse mesh is used

near these boundaries (reducing the solution accuracy), a very large number of mesh points

is then required to fill the computational domain (increasing the computing cost). It is

therefore advantageous to take the external boundary as close as possible to the body but

in order to do that, the far-field boundary condition must be adapted to match the far-field

flow to the interior flow field. An approximation of this far field is usually obtained by

introducing a perturbation field to the uniform flow and expressing it as an asymptotic

series in a perturbation parameter. In the case of airfoils, far-field expansions are derived

from thin airfoils with terms based on the circulation around the airfoil, calculated from

the lift coefficient. Several such formulations have been derived, leading to a correction of

the physical boundary conditions to account for the fact that the boundaries are located

at a finite distance from the perturbed flow area. Research into effective far-field boundary

condition can be found in an early paper by BayUss and Turkel [74]. A radiation bound-

ary condition is derived for the Euler equations Unearized about a constant steady state

with a mean flow. The formulation derived is also appUcable to Navier-Stokes solutions

since non linearities and viscosity are unimportant in the far-field. The formulation led to



acceleration to steady state of the explicit calculations and to a reduction of size of phys-

ical domain. In a report for an AGARD workshop, Pulliam and Barton [33] show results

indicating that the the implementation of characteristic boundary procedures using one

dimensional Riemann invariants greatly reduce or nearly eliminate the dependence of the

solution on the far-field boundary distance. Marcum and HofFman of Purdue University

developed a boundary condition procedure for Euler solvers which is a variation of the

method of characteristics [75]. These boundary conditions were used in conjunction with

a second-order accurate numerical procedure with a MacCormack explicit finite difference

method for both 2-D and 3-D flow. Thomas and Salas of NASA Langley investigated two-

dimensional transonic lifting flow and formulations of far field boundary conditions [76]. In

this study, the airfoil was represented by a point vortex and an expansion of the linearized

small disturbance equation in the far field was developed. The formulation was found ef-

fective in eliminating the dependence of the numerical results on the extent of the external

boundary. An extension of the method to three-dimensional computations was also out-

lined. The application of Fourier series developments of the flow disturbances along the

boundaries was also investigated by Giles, of MIT [77], who presented a unified theory for

the construction of steady and unsteady non reflecting boundary conditions for the Euler

equations. Giles investigated the mathematical basis of the boundary condition formula-

tions and gave an interesting explanation of the relations to standard quasi-one-dimensional

boundary conditions.

2.2.7.2 Wall Boundary Conditions

At a solid wall boundary, the normal velocity is zero and only one physical condition can

be imposed : Vn = 0. The other variables must be determined from the interior of the
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domain. There is no mass or other con vective flux penetrating the soUd body and only the

pressure term remains in the formulation of the fluxes at the wall. The waJl pressure can be

determined either by interpolation from the interior adjacent points or by solving the Euler

equations with one-side discretization at the wall. The extrapolation of density and velocity

to the surface from interior points can lead, in the absence of adequate grid resolution to

surface boundary errors. The situation is normally improved by using a constant free

stream enthalpy value at the surface and by setting boundary conditions on the velocity

normal and tangential components : Vn = 0 and Vf extrapolated to the surface; (PuUiam

and Barton [33]). A formulation of the finite volume method with node points directly on

the surface has advantages in this respect since no extrapolations are required to obtain

the values of the dependent variables on the body surface.

2. 2. 7.3 Kutta Condition

Inviscid flows around lifting bodies have an infinity of solutions depending on the circula-

tion which is generated around the airfoil. The Kutta condition specifies that the closest

approximation to the physical behavior of the flow is one with a value of the circulation

such that the flow separates smoothly from the airfoil at the sharp trailing edge. In po-

tential flow solutions, a cut simulating a vortex sheet is normally introduced downstream

of the trailing edge and a potential jump equal to the circulation introduced. The value

of the circulation is determined by imposing equal pressure or zero normal velocity at the

trailing edge points above and below the cut. As mentioned by Rizzi and Viviand in 1981

[78], the solution of the time-dependent Euler equations does not require any Kutta con-

dition to produce accurate results with the correct value of the circulation. This is due to

the existence of a mechanism in the time-evolution of the computed Euler solutions repro-
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during an essential physical phenomena leading to the generation of circulation and lift.

Initially, a lifting flow about an airfoil at incidence behaves in an irrotational manner and

a stagnation point is located on the upper surface of the airfoU, leading to a turning of the

flow around the shaip trailing edge. A very strong velocity gradient exists there in inviscid

incompressible flow which tends to expand. This leads to the formation of an eddy which

prevents infinite velocities, creating a surface of discontinuity (vortex sheet). The velocity

induced by this eddy on the upper surface moves the stagnation point] towards the trailing

edge point. After a while, the stagnation point reaches the trailing edge and the eddy is

convected downstream of the airfoil, leaving a circulation around the airfoil of equal and

opposite direction, in accordance with Kelvin's theorem. There are two possible mecha-

nisms in the numerical solution of the Euler equations which can generate this vorticity at

the trailing edge. A possible mechanism is the internal dissipation of the scheme needed for

stability which, like physical viscosity, provides a mechanism for the numerical generation of

vorticity and entropy (PuUiam and Barton [33]). A second possible mechanism, described

by Rizzi [28] is the creation of an expansion fan, of shocks and of a contact discoutinuity

resulting from the large acceleration at the sharp trailing edge. The transient appearance

of a shock wave would create vorticity and induce the vortex sheet surface to roll up into

an eddy. Although no explicit Kutta condition is required in Euler solutions, the config-

uration of the inesh and the actual implementation of the surface boundary conditions in

the vicinity of the trailing edge may have an effect on the accuracy of the prediction of

Uft. Pumam and Barton [33] found that a C mesh is better than 0 mesh for 2-D airfoil

calculations in transonic flow. This is because the trailing edge is a multi-valued point and

is treated as two distinct points (upper surface and lower surface) A jump in velocity can

therefore be captured at the trailing edge. In lifting transonic flow, the shock strengths
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diflFer on the upper and lower surface, leading to diflferent total pressure jumps. The total

pressure diflfers at the trailing edge and since the static pressure has to be the same, the

velocities must differ.

2.3 APPLICATIONS OF EULER CODES

2.3. 1 Nacelles Inlets and Exhaust Nozzles

An example of application of an Euler code to the simulation of powered naceUes at Boeing

can be found in reference [79]. The program used is a Jameson type cell-centered single-

block solver tuned to the solution of a turbofan nacelle. Comparisons made with panel

methods results at Mach 0.4 show good correlations. A model of a flow-through nacelle

includes the fan cowl and the center body. For powered naceUes, the mass flux or the

static pressure is prescribed at the fan face ; the total pressure, total temperature and the

flow direction are specified at the fan and turbine exit planes. At high angles of attack,

there is appearance of an artificial inviscid separation. This was found to be caused by

an inaccuracy in the evaluation of the surface pressure boundary condition, leading to the

formation of an artificial boundary layer (a thin layer of lower total pressure) adjacent to

the surface. A nodal point-oriented scheme, such as the one used in the code developed

here, requiring no extrapolation to compute surface pressure values, is believed to be an

improvement. The National Aerospace Laboratory (Japan) and Nihon University use a

finite volume explicit second-order MacCormack scheme to model inlet and exhaust flows

[80]. The boundary conditions used are :

- Far-fleld : locally 1-D Riemann invariant boundary condition;
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Downstream boundary far behind the nacelle : zero order extrapolation in ̂  direction;

Body surface, symetric plane and axis : tangeutial slip flow condition - no mass flux on

axis;

- Wake boundary : no condition;

- Fan inlet face boundary : one variable specified (M:ass Flow Ratio) and others obtained

from the solution (mass flux assumed uniform radially, velocity tangent to body of

inlet and spinner and linearly varying in between. Density and circumferential velocity

extrapolated. Pressure and energy given using adiabatic Bernoulli equation along a

streamline.

- Jet exit boundary : total pressure ratio and total temperature ratio and MFR specified.

2.3.2 Pro ellers Rotors and Pro eller Win Airframe Interference

Euler codes are very useful in simiilating flow-fields in the wake of propellers . The auto-

matic vortex capturing capability of the Euler solutions make unnecessary the modelling of

sophisticated wakes as found in Full Potential or other panel models. An example of appli-

cation of an Euler code to steady rotor flow can be found in reference [81]. In this model,

the Euler equations are formulated in a rotating cylindrical coordinate system attached to

the blade. Centrifugal and Coriolis forces are added, making the formulation fairly distinct

from the one described here. Hall and Delaney of Allison applied an Euler analysis to the

analysis of ducted propfan flowfields [82]. The equations were again cast in cylindrical co-

ordinate systems in a rotating refererence frame. A comparison of the inviscid Euler results

with experimental data indicates that the model is a very good approximation of the flow

in the ducted propfan arrangement. The effect of a propeller on the aerodynamics of the
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Fokker-50 aircraft was modelled by J.L. Kuijvenhoven of Fokker [83] using the multi-block

Euler code developed by Amendola, Tognaccini, Boerstoel and Kassies [84]. The program

is based on a the formulation of Jameson. Kuijvenhoven's paper shows very good compar-

isons between the computed pressure distributions and flight test data even on the portion

of the wing inside the propeller streamtube.

2.3.3 Hi h An Ie of Attack Aerod namics

The research in high-angle-of-attack aerodynamics has been dominated by two important

problems : first, the occurrence of vortex breakdown and of the subsequent buffet sollici-

tation of the fins on military aircraft such as the F-18; the second problem is the control

of airplanes at extreme angles of incidence, by controlling the forebody vortices. At the

McDonnell-Douglas Corp., St. Louis, Euler and Navier-Stokes codes are being used to

investigate numerically the vortex breakdown of delta wings at high angles of attack [85].

The fact that the vortex breakdown pattern of delta wings is only weakly dependent on

Reynolds number suggests that it may be in essence an inviscid phenomenon (vortex in-

stability) and therefore one that can be predicted by an Euler code. Another example of

Euler solution can be found in the work of van den Berg, Hoeijmakers, Sytsma of NLR [86].

In tliis reference, Euler solutions are calculated at M:=0.50 for a leading edge vortex flow

about a 65 degrees sharp-edge cropped delta wing at incidences close to vortex breakdown.

Using an 0-0 type body-fitted grid, it is shown that converged solutions can be obtained

at M=0. 5 up to an incidence of 21. 25 degrees. A "solution breakdown" (no convergence or

divergence) occurs at higher angles of incidence, which is said to be potentially indicative

of vortex breakdown. The TEAM code (Three-dimensional Euler Aerodynamic Method)
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developed at Lockheed has also been used on several configurations at high angles of in-

cidence [38], [39]. One of the references we used to validate our code for high angles of

incidence flows over delta wings was that of Hilgenstock, from DLR, Gottingen, Germany

[87] : the paper shows multi-block Navier-Stokes solutions for a 65 degrees sweep delta

wing and shows comparisons with experimental data and previous Euler calculations by

Rizzi and MuUer [88].

2. 3.4 Anal sis of Arbitrar Aircraft Confi urations

Three approaches to the treatment of complex aircraft configurations can be cited : an

unstructured grid approach (Douglas), a Cartesian grid approach (AMI) and a structured

multi-block approach. The Douglas Aircraft Company has experimented with a 3-D un-

structured grid Euler code "AIRPLANE" developed by Jameson and Baker for complete

airplane configurations [89]. The code uses a vertex centered finite volume method with

the control volume made of aU the tetrahedra meeting at a given node. Artificial dissi-

pation is added and a Runge-Kutta time stepping algorithm is used. Results are shown

for the ONERA M6 wing, in comparison with Jameson's FLO-67 results. A calculation

was made also for the McDonnel Douglas Tri-Jet configuration, using 384,914 nodes and

2,332, 022 tetrahedra. A converged solution was obtained in 300 iterations using a four-stage

Runge-Kutta scheme. The solution took 29 hours and 50 minutes on a CONVEX C210

computer (similar to the one used in the present work) but only 1 hour and 47 minutes

on a CRAY Y-MP. It is expected that using the 8 parallel processors of a CRAY Y-MP

should permit solutions within 20 minutes. This example is cited to illustrate the type of

large scale computations with. Euler codes which are required in the development of aircraft
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configurations. The particzdar performance of this code will be compared with that of the

code developed here in chapter 3. Israel Aircraft Industries and Analytical Methods Inc.

have produced the MGAERO Euler code which makes multi-grid calculations on equally

spaced Cartesian meshes with local refinement [90]. It removes the need for complex grid

generation but introduces the need for sophisticated boundary condition implementation.

Results have been shown for the ONERA M6, the supercritical wing research airplane and

the RockweU wing-body-canard. The code has also been tested by De Havilland and Shorts,

subsidiaries of Bombardier but is believed to fall very short of the accuracy provided by

the multi-block body fitted code developed in the present work. The next application of

the Euler formulation to complex aircraft configurations is the work of Ranjit Collercandy

of ONERA [91]. It illustrates the use of a multi-block structured body fitted grid. It

is also one of the best examples we have seen of the use of upwind schemes for complex

3-D configurations. The method uses ceU-centered upwind finite volume with an explicit

three-stages Stetter's predictor-corrector algorithm for time stepping the Euler equations.

The equations are cast in strong conservation form in Cartesian coordinate systems. Three

stencUs are used to discretize the fluxes in space : Van Leer's flux splitting approach, Roe's

flux difference splitting approach and a higher-order accuracy Van Leer's MUSCL approach

(Monotone Upwind-central Scheme for Conservation Laws). The latter scheme is obtained

from a linear combination of one-sided and central interpolations. To avoid oscillations and

ensure monotonicity, slope Umiters are introduced. In order to prevent entropy violation in

Roe's method, a fix suggested by Harten is used, limiting the modulus of the eigenvalues

and using a problem dependent parameter. The applications shown in the above reference

are :

- A NACA 0012 at M=0. 85 and alpha=l degree : excellent shock capturing from the
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upwind scheme, oscillation free.

A 3-D ONERA M6 Wing : 2-blocks H-mesh topology : good comparison with exper-

imental data at M=0.84 and alpha=3.06 degrees and sharp resolution of the lambda

shock.

A Transonic turbofan simulation and a model of the Hermes spaceplane configuration

with winglets, alone and atop the Ariane launcher with boosters.

2.3. 5 A lication of Euler codes to the Desi n of Confi urations

In a recent development by NASA [92], a practical wing and wing/body aerodynamic design

tool was obtained by the coupling of a 3-D Euler code (Jameson's FLO-57 or Lockheed's

TEAM) with a modified version of the QNMDIF Quasi- Newton numerical optimization

method. The method was applied to the design of a cranked-Delta wing/body configura-

tion and an arrow wing/body configuration in supersonic flow. A similar approach was

used by Jurgen Schone of the German DLR to design wings at supersomc speeds [93]. In

that case, the well known constrained optimization method of Vanderplaats (CONMIN)

was used. With the Euler codes, CFD has joined the wind tunnel and flight test as a prin-

cipal technology for aerodynamic design. An example of this is the "predictor-corrector"

approach developed at NASA Langley which is used by Boeing to design transonic na-

celles and winglets [94]. The predictor is the flow analyzer which in this particular case is

a multi-block Euler code based on Jameson's techniques. The design driver or corrector,

based on streamline curvature theory, converts the pressures computed by the flow analyzer

into changes in surface curvature. A double integration of this curvature yields the new

surface geometry.
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2.4 CONCLUSIONS AND CHOICE OF A METHODOLOGY

As seen in the above discussion, there has been a remarkable development of techniques

to solve the Euler equations in the past decade. This development, combined with the

rapid improvement in computing speeds, has made possible the modelling of realistic three-

dimensional inviscid flows around complete aircraft configurations. None of these methods

described above has come out with undisputed advantages over the others and most of them

are restricted to simple or particular cases. The methodology proposed in the present work

is the result of a combination of judgement, experience and external circumstances such as

the fulfillment of constraints particular to the Canadair application. The key elements in

the choice of the method are discussed in the following paragraphs.

2.4. 1 The Mesh : Structured Grid Versus Unstructured Grid

The advantage of structured grids is the simplicity and the straightforward treatment of the

mesh in the solution formulation. The disadvajitages are the mesh generation constraints

for complex configurations. Unstructured grids, on the other hand, are very flexible in

modelling difficult geometries. However, this is at the price of larger memory requirements

and heavier bookkeeping of the node connectivities leading eventually to larger computing

costs. Our experience with structured grid Euler solutions ranged from the use of 2-D

codes with an 0-mesh (FLO-52, FLO-82) and 3-D codes for isolated wings (FLO-67, FLO-

87). On the other hand, we had experience with a 2-D unstructured mesh generation code

(MESH2D) and an unstructured grid Euler solver for multi-element airfoils (FLO-72). Four

reasons eventually motivated our choice of the structured grid formulation :
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1. The better confidence in structured grid results. Although good results were produced

with the unstructured grid codes, these results were found to depend heavily on the

quality of the meshes generated around the wing. The structured grid results show also

some grid dependence but it is one that is better understood at this time.

2. The necessity to generate a 3-D grid generation package during a reasonable time scale.

The 3-D grid generation package was developed at the same time the solver was being

written. Our experience with 2-D structured and unstructured mesh generation codes

indicated that a 3-D structured grid generation code could be developed much faster

and with better confidence than a 3-D unstructured grid code. We were confident that,

using a block structured approach, we could develop grids accurate enough for the CL-

601 aircraft configuration.

3. The necessity to keep the memory size and computation times low. The computations

were to be carried out on a CONVEX C-220 computer with two 50 MFLOPS CPU'S.

The speed of this computer is about an order of magnitude less than that of CRAY

machines which are typically used in the industry to produce 3-D Euler and Navier-

Stokes solutions. Our experience with 2-D structured and unstructured grid Euler codes

indicated that the difference in computational cost and turn-around time for a 3-D

solution would be substantial, justifying the choice of the structured grid formulation.

2.4. 2 The Numerical Method : Finite Volume Versus Finite Element

Finite element methods have been used successfully to evaluate the aerodynamics of air-

craft, most notably at Dassault. The fimte element method is at its full advantage when

used with adaptive unstructured meshes. However, our experience with fimte element meth-
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ods for large scale computations was limited. We had more experience with finite volume

methods [22] and finite difference methods which we used to solve the Transonic Small

Disturbance equations for the complete CL-601 aircraft configuration [11]. In addition, the

baseline Elder methods we had experience with were all formulated in finite volume. It was

therefore a logical choice to use this method for the application to the complete aircraft

configuration.

2.4.3 The S ace Discretization : Central Versus U wind Discretization

Central discretizations have the advantage of simplicity. The codes are simpler and easier

to program. Their main disadvantage is that they require the introduction of artificial

viscosity terms with parameters that must be adjusted by the user for each particular

problem. A study quoted earlier indicated that with these parameters properly tuned,

central difference Euler solutions can be made practically as accurate as upwind difference

solutions. Upwind discretizations are theoretically more accurate than central diflFerence

discretizations. Their main advantage is the absence of parameters which must be adjusted

by the user for a particular configuration. However, these schemes are more time-consuining

to program and involve a larger number of arithmetic operations than the central schemes.

Although some excellent 3-D results have been shown, the theoretical background for the

multi-dimensional extension of the higher-order accurate upwind schemes still needs a better

definition. In practice, the code such as the one developed here will serve in industry to

model a liniited number of configuration types (commercial aircraft configuration with

fuselage-mounted engine and CF-18 fighter aircraft) for long periods of time. The effort

spent to adjust the artificial viscosity coefficients of a central scheme for flow conditions



61

of interest (cruise conditions and high angle of incidence condition; subsonic, transonic

and supersonic speeds) is not prohibitive. A central discretization scheme was therefore

selected.

2.4.4 Time Ste in : Ex licit Versus Im licit Solutions

Explicit methods are simple and have minimal costs per time step. The disadvantage is that

stability limitations on the step size can increase substancially the number of iterations

required to reach a steady state solution. Since the time step is not constrained by stability

limit, it is expected that implicit methods will yield convergence in a smaller number of

time steps. This is an advantage only if the decrease in the number of time steps outweighs

the increase in computational effort per time step. In practice, it is found that the explicit

methods with appropriate acceleration techniques are more cost effective. In addition,

the requirement for performing time-accurate unsteady calculations in the future is better

fulfilled with an explicit formulation. In the present work, an explicit multi-stage time-

integration is used. One advantage of the multistage scheme is that no startup procedure

is required; the scheme can be taylored to give a desired stability region and it has proved

extremely effective in practice.

2.4.5 Bod -Fitted Grid Versus Rectan ular Grid

the use of simple rectangular grids with its related advantages in turnaround time to obtain

a solution was considered at first. The experience with the KTRAN Transonic SmaU

Disturbance code [11] indicated that the possibility of setting up calculations very quickly



62

was a key criteria in the usefulness of a CFD code in the aircraft design cycle. A formulation

for the solution of Euler equations in rectangular coordinates is used in the M:GAERO code

[44]. However, it was finally decided that Transonic Small Disturbance and FuU Potential

codes would be used for rapid analyses and that the main use of the Euler code would

be the production of the most accurate inviscid flow solution possible. For this reason, a

formulation with body-fitted grids was selected.

2.4.6 Sin Ie Block Versus Multi-Block

The advantages of the midti-block approach are as follows

- A simplified grid generation process : simple topology and grids optimized for each

aircraft coniponent.

- A reduction of the core memory required by the flow solver. Only data related to the

block being solved for needs to be in memory at a time.

- Simpler logic for the flow solver.

- The possibility of zonal solutions with different types of equations in different blocks.

- The exploitation of the paiallelism of the computer by solving concurrently for various

blocks on parallel processors.

The disadvantages of the multi-block approach are the following :

- Possible loss of accuracy or conservation at block boundaries due to a lack of complete

continuity of grid lines at block edges.

- The need for carrying a large data structure to identify block connectivity.
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The midti-block approach that we propose here was designed to maximize the advantages

of this formulation while minimizmg the disadvantages. We wiU show, for instance, that

our block boundary treatment did not result in loss of accuracy. The multi-block approach

is the better choice in order to obtain accurate solutions on the complex configurations

considered in this work.

2.4. 7 Cell-Vertex Versus Cell Centered Schemes

The formulation finally selected was siniilar to that of Jameson [37]. The experience we

had with several codes developed by Jameson was one of the main reasons for this choice.

The code for complete aircraft configuration was to build on his formulation for 3-D Euler

solutions on isolated wings. A choice was still to be made between using a cell-centered

formulation (unknowns defined at the centers of the cells), as employed in the 2-D FLO-

52 and the 3-D FLO-57, and the cell-vertex formulation used in the 3-D FLO-67 code

(unknowns defined at the vertices of the ceUs). The cell-vertex formulation has numerous

advantages, in comparison with the cell centered formulation [95] :

- In the cell-vertex formulation, the approximation of the flux through a cell side is the

trapezoidal rule for integration and hence is second order accurate in ceU size whatever

the grid. In contrast, ceU-centered fluxes are averages of the quantities at the centers of

adjacent cells and are therefore second order accurate only on nearly uniform grids.

- No extrapolation is required to obtain values of the dependent variables on body surfaces

leading to better predictions of the surface pressures and velocities.

- For a quadrilateral ceU of side 0(h), and flux balance 0(/i2), the truncation error in
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the flux balance is 0(h3) or first order in the ceU-vertex formulation, irrespective of the

size of the adjacent ceUs. For a quadrilateral with opposing sides diflFering by 0(/i2),

the truncation error is 0(/i4) or second order. In contrast, the truncation error of the

cell-centered formulation depends on the sizes and shapes of adjoining ceUs (Roe [96])

- In 2-D, the ceU-vertex scheme has one spurious mode (chequer-board mode), whereas

the cell-centered scheme has three possible modes. It is expected therefore that the

damping of spurious mode wiU be easier in a ceU-vertex formulation.

For these reasons, we decided to use a ceU-vertex formulation.

2.4.8 Formulation of the Pro osed Euler Method

In summary, in order to fulfill the requirements for predicting inviscid transonic flow-fields

around the Challenger CL-601 Business Jet, the foUowing numerical solution methodology

was implemented :

- Fiidte volume solution of time-dependent Euler equations cast in conservation form in

Cartesian coordinates.

- Central space discretization with added adaptive artificial dissipation with a level con-

trolled by the user.

- Explicit integration using a Runge-Kutta time stepping procedure.

- Multi-block body-fitted structured grid with unknowns stored at the cell vertices.



CHAPTER 3 : Geometry Modelling and Grid Generation

3. 1 MODELLING OF THE AIRCRAFT GEOMETRY

The Euler code uses body-fitted grids and surface conforming boundary conditions and

requires therefore the most accurate representation possible of the aircraft sur face. The

geometry data of the aircraft is originally in the form of CADAM or CATIA models made

of (x,y, z) points, 3-D spUnes or 3-D surfaces. The modelling of the geometry is done on a

graphics terminal running the 3-D CADAM software. The surface of the aircraft is divided

into patches. Each patch is described by Unes or 3-D spUnes in sufficient number to define

properly the geometry of the patch. A CADAM alphanumeric attribute is assigned to each

one of these lines or spUnes, indicating to which patch it belongs. The attribute contains

also the information controlUng the generation of the patch surface grid and ultimately

that of the 3-D grid in the external flowfield subregion associated with that patch. A

CADAM half-model of the CL-601 aircraft is shown on figure 2. The patches on the wing,

winglet and taUplane are described by spUnes defining wing sections. The fuselage and the

various fairings are primarily defined by cross section cuts as sociated with longitudinal

body Unes outUning the patch edges. To preserve the accuracy of the geometry in the

inlet Up area, the CF-34 turbofan engine is represented by longitudinal splines defined in

successive radial planes located around the engine centeriine, as shown more closely in

figure 3. On CADAM, the user can verify the degree of continuity of the various curves and

determine the intersection of curviUnear surfaces describing various aircraft components.



3.2 GRID GENERATION

The majority of single-block programs written for isolated wings have subroutines which

generate, using conformal mapping or other procedures, a stacked C-grid around the wing.

For more complex configurations, it was necessary to develop an independent grid genera-

tion capability. Programs were written to generate 2-D and 3-D grids using algebraic inter-

polations from arbitrary boundaries. Procedures were also developed to obtain smoother

grids as solutions of elliptic partial differential equations. The generation of grids was val-

idated first for single-block domains, then extended to domains decomposed into multiple

blocks.

3.2.1 Al ebraic Grid Generation

The development of the grid generation programs was done in a progressive manner. Start-

ing with the basics, several unidirectional interpolation procedures were exanuned : La-

grange interpolation, Hermite interpolation and the use of tension splines. The AKIMA

cubic spline was selected for further use in the grid generation programs. Functions other

than polynomials were also examined. To control the variation of spacing along a grid line,

the hyperbolic tangent function was selected since it gave the best overall point distribution.

Multidirectional interpolation procedures were then evaluated. A two-directional transfi-

nite interpolation scheme was programmed with various forms of polynomials as blending

functions. The spline blended form was found to give the smoothest grid with continuous

second derivatives. Using the methodology specified above, a 2-D algebraic grid generation

code GRID 2D was written to generate 2-D grids as weU as curved surface grids in 3-D
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space. These programs can generate grids on a patch specified by 4 bounding curves or

supported by a number of section cuts. A 3-D grid generator, GRID3D, was also written

using 3-D transfinite interpolations [97]. The program can generate a grid inside a block

bounded by six faces, given the geometry of 2 or 4 of the faces of the blocks. The missing

faces are assembled from the boundaries of the input ones. If only two faces are specified,

two of the remaining four faces are assumed to be straight.

3.2.2 Elli tic Grid Generation

Emptic grid generation programs were also written, with a formulation based on a the

work of Thompson [98], these programs rely on the inherent property of elliptic systems to

produce non overlapping grids. The smoothing tendency of emptic systems leads to high-

quality grids with the advantage that boundary slope discontinuities are not propagated

into the field. Additional desired grid characteristics, such as orthogonality and local grid

concentration can also be appUed very reUably with eUiptic methods. A 2-D Emptic grid

generation program EGRID2D was written first. The program solves a Poisson equation,

with the right hand side made of the functions designed to control the orthogonality aud the

stretching of the grid. These control functions are calculated from the point distribution

on the boundaries. The equation is discretized using second order central differences for

all derivatives and solved using successive line overrelaxation. The program was later

extended to perform grid generation for curved surfaces in 3-D space [99]. The 3-D emptic

grid generation program EGRID3D was developed in a manner analogous to the 2-D

program. The three control functions required to define the global stretching of the grid

in this case are calculated from the point distributions on the six surfaces bounding the

3-D domain, linear transfinite interpolation is then used to calculate their values in the
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interior of the grid. To retain the desired stretching, these functions are calculated once at

the beginning of the solution process and held fixed throughout all iteration levels. Local

stretching in certain areas of the grid is obtained by adding a decaying exponential term

on one or more of the three stretching functions. In addition to the stretching control

functions, an inhomogeneous term is added to the elliptic equation in order to control the

orthogonality and spacing at the boundaries [99]. An imtial grid generated algebraically is

used to start the calculations.

3. 2.3 Multi-Block Grid Generation

A multi-block approach is used in the 3-D Euler code. In this approach, the space around

the aircraft is divided into subregions or "blocks". Suitable grids are generated inside

each one of these blocks and the flow equations are solved in each block in sequence.

This approach has several advantages. First, it simplifies the process of grid generation

since grids have to be generated inside blocks of relatively simple topology. Also, inside

each block, the grid can be optimized for the particular component of the aircraft which

supports the block. The amount of core memory required by the program can also be

reduced since only the data relative to the block being solved for is required at a time.

The logic of the flow solver can also be greatly simpUfied if the blocks are restricted to

simple topologies with single boundary conditions on each block face. The multi-block

approach was also selected with the long-term view of solving different flow equations

in diflferent blocks (zonal methods) and that of solving for different blocks in parallel on

supercomputers with adequate architecture. The problems of the multi-block formulation

are related to a possible loss of accuracy at the block interfaces and to reductions of the

rate of convergence Unked to the formulation of the interface boundary conditions. These
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problems are linked to the degree of continuity of the grid lines across block boundaries

and to the smoothness of the grid in this area. The process of multi-block grid generation

is made of the following steps :

3. 2.3. 1 Topological Block Decomposition

After the flow domain has been divided into blocks, the connectivity between the faces,

edges and vertices of all the blocks must be properly defined. This is done using a conceptual

model of the blocks defined around the aircraft configuration according to the following

conventional rules :

- All blocks are conceptually similar to a cube, with six faces. Some of the faces may be

collapsed onto a singular line or a singular point.

- The grid inside a block is an H-H type grid. Each block face corresponds therefore to a

constant value of one of the grid indices i, j or k.

- The blocks are simply connected with no cuts or solid surfaces inside. Boundary condi-

tions are applied only at the faces of the block and only one type of boundary condition

can be specified on one face.

- There is no gap or overlap between adjacent blocks which must be perfectly matched at

their common interface. A block face cannot be adjacent to more than one other block

face. In axisymmetric configurations, the face of a block can be adjacent to the opposite

face of the same block.

The faces, edges and vertices of each block are numbered in the order shown in figure 4

and given an attribute specifying their connectivity to the other blocks in the domain.

The conceptual model used for the topological block decomposition of the Challenger

wing/body/winglet configuration in 40 blocks is shown in figure 5(a).



70

3.2.3.2 Physical Block Decomposition On CADAM

In a second step, the space around the 3-D CADAM model of the aircraft surface is phys-

ically decomposed into blocks connected in the manner specified in the conceptual model

(figure 5(b)). In the physical space, the block boundaries are curvilinear surfaces defined

by edges or sectional cuts. These are lines or splines known on CADAM: as "elements".

The edges forming a face are grouped in "face sets" and those belonging to a block are

grouped in "block sets". The connectivity attributes are then attached to each element.

face set and block set. The number of grid points to be generated in the i, j and k direction

and the desired grid point spacing are also coded as part of the attributes of each block set.

3. 2.3.3 Automatic Geometry and Topology Extraction From CADAM

A program called MBLOCK was written to extract from CADAM the (x, y, z) coordinates

of aJl the points on the block elements. The program checks for errors or inconsistencies

that may have occurred in the coding of the topological information and outputs two data

files : a topology file to be used by the grid generation program and the Euler flow solver

and a second file with the geometry of the block elements written in a format corresponding

to the defined topology.

3. 2.3.4 Multi-Block Algebraic Grid Generation

In the next step, the GRID3D program is used to generate automatically the algebraic

grid inside each block (figure 5(c)). The only constraint of the algebraic grid generation

procedure is that blocks sharing the same face share the same grid points on that face, as

specified in the topology data. The implementation of the slope continuity of the grid Unes

across block boundaries is left to the elliptic smoothing step.
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3. 2.3. 5 Multi-Block Elliptic Grid Generation

The emptic grid generation program EGRID3D was extended to read the multi-block

topology file, the multi-block algebraic grid coordinates and produce multi-block grids

with complete continuity at block interfaces and smooth continuous surface grids on the

boundaries. To achieve this, the EGRID3D was allowed to smooth across the boundaries

of contiguous blocks forming a simply-connected domain. The continuity of the grid lines

across the outer boundaries of such groups of blocks is enforced by applying orthogonality

conditions at these boundaries. The grouping is done on CADAM by attaching an group

number to each block. At the end of the grid generation process, all groups are disassembled

and the grid coordinates are output for each block independently. Several algorithms were

added to the program to check the quaUty of the grid in a quantifiable manner. The

orthogonality of the grid lines, the skewness of the grid cells, the relative step size of

adjacent cells and the aspect ratios of the various ceUs are some of the characteristics that

can be used to judge the quality of a grid. One effective measure of the grid quality is the

normalized Jacobian of the transformation at every point in the grid. At a point where

this Jacobian is equal to 1, the grid is fuUy orthogonal. A negative value of the Jacobian

signals a negative ceU volume or area. A positive value of the Jacobian close to 1 is

therefore desired at every grid point. The grid generation program outputs the value of the

average Jacobian in each block and the location and value of the minimum Jacobian in the

block. The average and maximum cell expansion ratios and the maximum cell aspect ratio

are also given for each block. These parameters point to the locations of the grid where

improvements are needed. However, the final determination of the grid overaU quality is

done by visual inspection on a graphics workstation and through the analysis of the results
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of the flow solver using the grid.

3.2.4 Multi-Block Grid Generation Packa e

The body-fitted grids used in the applications presented here were generated using the CAD-

based MB GRID package developed at Canadair over the past three years. The MB GRID

package consists of three separate modules : the CAD-interface module MBLOCK, the

3D multi-block algebraic grid generator GRID3D and the 3D multi-block elliptic grid gen-

erator EGRID3D. The first program, MBLOCK, is a CAD interface which aUows the

construction of grids directly on the geometric model of the aircraft on the CAD system.

There are two main advantages in generating grids on the CAD system: a) the retention

of an accurate representation of the aircraft geometry, and b) the availability of a complete

set of CAD tools to construct the domain decomposition around the aircraft model (i. e.

generate surfaces, sectional cuts, block edges, etc. ). This is considered an important asset

of the MBGRID package, since the task of body-fitted grid generation involves a sub-

stantial amount of geometric modelling and manipulation. The MBLOCK program takes

also advantage of the interactive features of the CAD system to permit the manipulation

and visualization of diiferent parts of the grid construction. A system was devised to allow

individual blocks or block-faces to be viewed and processed in isolation. In addition, aU

the information necessary to define the grid can be specified at the CAD screen in the

form of element or group attributes. In this way, the information associated with the grid

construct is permanently stored in the CAD file and can be re-used to quickly modify the

grid when necessary. The MBLOCK program aUows the generation of multi-block grids

with a general structure, including block-faces with multiple neighbours and/or multiple

boundary condition types. The program has many built-in features designed to minimize
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the task of grid generation. For instance, the program assigns default values for most

parameters defining the grid. It also deduces automatically much of the topological infor-

mation associated with a grid, i.e. automatically generates block numbering, connectivity

information, block-face-element association, sectional cut numbers, etc.. Other important

features include :

- Auto-slaving of element spacings : if the spacing on one element is changed on CADAM,

it is automatically changed on all the elements slaved to the first one in a group. This

reduces the number of operations when modifying grids.

- Comprehensive error checking. The program checks the validity of the topology infor-

mation coded on CADAM and flags any discrepancies between the information attached

on interacting blocks.

Recent developments of the MBLOCK module [100] have allowed the generation of grids

with a very large number of blocks. This was accomplished by defining a block "super-

structure" consisting of block groups. Groups are defined as collections of blocks fanning

simply-connected, hexahedral domains. Typically, the number of groups is much smaller

than the number of blocks. The new version of MBLOCK allows the generation of grids

at the "group level", i.e. groups are constructed on the CAD system instead of individual

blocks, where each group is defined by its six faces. Group "faces" can .have partial or

multiple neighbours and/or boundary conditions. Once the groups are defined on the CAD

system, the program then automatically subdivides each group into blocks that individually

satisfy the topological conventions of the MBTEC Euler flow solver. All connectivity in-

formation associated with the block sub-structure is automatically deduced by MBLOCK

from the information specified at the group level. Once the grid construction has been

defined on the CAD system, MBLOCK then generates an input Me for the multi-block
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algebraic grid generator (GRID3D), and a topology file for both the elliptic grid gen-

erator (EGRID3D) and the MBTEC Euler flow solver. The algebraic grid generator,

GRID3D, is the second module of the MBGRID package. The program reads the input

file generated by MBLOCK and uses three-way transfinite interpolation to generate the

grid. GRID3D can generate multi-block grids in arbitrary hexahedral domains that may

include any number of degenerate boundaries. The program also allows the specification

of block faces with. segmented or discontinuous boundaries. The program is very efficient

computationally. It can generate a 1-million-point grid in less than 30 seconds on the CON-

VEX C220. The grids generated with the GRID3D module are used as starting grids for

the emptic grid generator. The EGRID3D emptic grid generator is the third module of

the package. The program solves a system of elliptic equations to generate grids in ar-

bitrary hexahedral domains that may also include any number of degenerate boundaries.

This elliptic grid generator is very versatile, allowing the user to orthogonalize, cluster, un-

cluster, specify variable spacings on any boundary, merge blocks or split block-groups, and

smooth any given algebraic grid, including the smoothing of arbitrary surfaces in 3D space.

It also provides detailed grid quality diagnostics, including the Jacobian, the expansion

ratios and aspect ratios of every cell. The code has been vectorized and paraleUized for the

2-CPU CONVEX C220. The pogram can smooth a 1-miUion-point grid in approximately

40 minutes CPU on the CONVEX C220.
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Figure 2 CADAM model of the CL-601 Challenger aircraft.

Figure 3 : CADAM model of the CF-34 turbofan iiacelle.
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CHAPTER 4 : Equations, Discretization, Time Integration

The discretization and solution methods used in the present work were derived from the

baseline single-block numerical algorithm proposed by Jameson, Schmidt and Turkel [37].

The algorithm is presented in this chapter. The following chapter will be devoted to the

development of the Multi-Block method using this algorithm which was the main object of

our investigations.

4. 1 FLOW E UATIONS

In a Cartesian coordinate system of the three spatial dimensions {x, y, z), the time depen-

dent Euler equations can be written :

9w-+9£+9^+9ff. = o
9t 9x 9y 9z (4. 1. 1)

where W is the vector of dependent variables and F, G and S are the convective fliix

vectors.

P pu pv
pu _ pu2 + p puv

W = pv , F = puv , G= pv2 +p , S =
pw

pE
puw
puH

pvw
pvH

pw

puw

pvw
pw2 +p

pwH

p is the pressure, p the density and u, v and w axe the velocity components in the x, y and

z directions. E is the total energy and Q the total enthalpy. For a perfect gas with a ratio

of specific heats 7 the pressure p and total enthalpy H are obtained through :

p=(f-l)p[E-^u2+v2+w2)} (4. 1.2)
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and :

H=E+P (4. 1.3)

The program uses a finite volume formulation. The system of Euler equations is integrated

to represent the total flux balance in a control volume (I enclosed by the surface 9SI:

9- f f f Wdfl+ ff FdS=0
9tJ J Jtt J Jan (4. 1.4)

4.2 DISCRETIZATION OF THE EULER E UATIONS

The solution is obtained by discretizing the flow domain into a large number of hexahedral

ceUs and by applying the integration described above to each cell. The unknown variables

are defined at the nodes of the grid. Each node (ij, k) has a control volume consisting of

the eight cells meeting at that node. At each node, the integrated equation can be written

as :

j-^kWi,^) + Q{W),^ = o (4. 2. 1)
K-J,A is the sum of the volumes of the eight ceUs meeting at node (i, j, k) and Q{^ is the

net flux through the surface bounding the control volume made of the eight cells.

Qi, j,k=Y, Fe. St
<=1

(4. 2. 2)

where F^ is the mean flux vector across the face t of the control volume and ̂  denotes

the directed area of the £th face. The finite-volume spatial discretization reduces, for a

Cartesian grid, to a central-difference scheme which is formally second order accurate.

To suppress odd-even point osciUation modes and osciUations near discontinuities such as

shocks, a dissipation term that goes to zero in the Umit of zero mesh spacing is added.
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The dissipation has a low background level to suppress odd-even point oscillations and it is

increased near discontinuities in the flow field. This dissipation is constructed in a manner

that preserves the conservation form of the equations : a dissipative flux D,^^ which is

the sum of three terms constructed for each of the computational coordinate directions, is

subtracted from the Qij, k-

j-^, kW^) + Q{W)^ - D(W)^ = 0
With :

D(W\, ^ = D.(W)^ + Dy(W)^ + D^W),,^

The contribution from the i-coordinate direction is :

(4. 2.3)

(4. 2. 4)

D^W)^ = d(W), +^ - d(W)^ (4. 2. 5)

With:

d(W)^ = R^. [e^ - e^. ^\^W^ - W^,,} (4. 2.6)

In the above equation, ̂  is a second difference operator. The scaling factor R, ^ is based on

an estimate of the maximum local wave speed. The artificial dissipation scaling coefficient is

redistributed between the three coordinate directions to avoid an imbalance of coefficients

in these directions in meshes with high aspect ratio ceUs [72]. The coefficients £,(2,)j(. and

£i, j, k are the second and fourth order adaptive dissipative coefficients. The dissipation near

discontinuities is controlled by e^2], _ :
i'i3, k '

£Q.k = K(2) .rnax(v^k, ̂ i-i, j, k) (4. 2. 7)

i/i, j, k is a sensor of the presence of a shock wave constructed by taking the second differences

of the pressure :

\Pi+l, j, k - 2Pi, j, k + Pi-l,j,k
vi, J,k =

Pi+l,j, k + 2Pi,j, k + Pi-l,j,k (4. 2. 8)
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and the background dissipation is controlled by e^4]^ :

e^=max{O^W-e^) (4. 2. 9)

The background dissipation is therefore switched off in regions where the second order

dissipation is greater than K,(4) Typical values for the constants K.W and K^ are (1/4)

and (1/128) respectively. Similar expressions are used for the dissipation in the j and k
directions.

4. 3 TIME INTEGRATION

In a fixed computational mesh, the control volume V;-j, fc is independent of time . The

integrated equation can therefore be written :

^(W,,^) + R(W) = o (4. 3. 1)

where R(W) is the residual, written as :

ii>(Ty)=i-(Q^-A.,,.)
i.3,k (4. 3. 2)

Qi,j, k and D^j^k are the total convective flux and the total dissipative flux through the

control volume V^k- The steady state solution is obtained by integrating the previous

equation with a well proven multistage Runge-Kutta scheme [101]. For steady flows, a

locally varying time step At is used. The maximum permissible time step is dictated by

the Courant-Friedrichs-Lewy (CFL) condition and is calculated at every iteration. A five-

stage scheme is presently used, computing each variable W with the following recurrence

formula in which o;i = 1/4, 0:2 == 1/6, 0:3 = 3/8, 0:4 = 1/2, and 0-5=1:

WW = W(t)
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WW = W{t) - aiAtR(W(°))

WW = W(t) - a^tR{WW)

W^=W(t)-a^tR(WW)

W^ = W(t) - a^tR(W(3))

W^ = W(t) - as^tR(W^)

W{t + Af) = W^ (4. 3. 3)

The artificial dissipation fluxes are calculated only at stages 1, 3 and 5 and frozen at their

previous values at the other stages of the scheme. This was found to decrease computing

time and increase the stability margin.

4.4 CONVERGENCE ACCELERATION TECHNI UES

4.4.1 Residual Smoothin

The liinitation of the maximum permissible time step imposed by the Courant number

can be relaxed if each residual is replaced by an average of its neighbours. The greatest

acceleration of the convergence is obtained if the residuals are averaged implicitly.

The following equation is solved locally :

(l-e^)(l-£y6^1-e^)R=R (4. 4. 1)

where R is the unsmoothed residual, ^, ̂  and ̂  the second difference operators and £^,

£y and £2 the smoothing coefficients given in input to the program.
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4.4.2 Enthalpy Dampine

Another convergence acceleration technique is to exploit the diflference between the transient

value of the locally computed enthalpy H and the steady state value which is constant and

equal to its value at infinity H in homoenthalpic flow. Assuming that the rate of change of

each variable is proportional to this difference, this information is used at the end of each

time step to obtain an improved estimate of a variable W [102]. The enthalpy in the jet

exhaust of a turbofan nacelle is different from that of the freestream. In this case therefore.

the enthalpy damping scheme is switched off.



CHAPTER 5 : Multi-Block Boundary Conditions

5.1 FAR-FIELD BOUNDARY CONDITIONS

At the outer boundaries of the grid, appropriate inflow, outflow or side flow boundary condi-

tions are imposed. To attenuate the spurious reflection of outgoing waves, the treatment of

these boundary conditions is based on the introduction of the Riemann invariants for a one

dimensional flow normal to the boundary. At a subsonic inflow boundary, four conditions

are specified corresponding to incoming characteristics. At a subsonic outflow boundary,

one condition is specified corresponding to the single incoming characteristic. The remain-

ing conditions are determined by extrapolation from the interior. The program allows also

supersonic boundary conditions in the far field. Li this case, aU the flow quantities are

specified at an inflow boundary and they are aU extrapolated from the interior at an out-

flow boundary. In the multi-block program, far field boundaries can be located on any one

of the six faces of any block and are identified by the parameter IBC = 0 (side boundary),

IBC = 1 or 2 (inflow or outflow boundary). The number of boundary conditions applied

at the inflow and outflow boundaries depends on the nature of the flow at the boundary

(subsonic or supersonic) and on the number of incoming and outgoing characteristics eval-

uated at the boundary. The formulation of the far field inflow and outflow boundary

conditions in subroutine BCFAR is described here, with the subscript "e" indicating

values extrapolated from inside the domain, the subscript "0" values calculated from the

specified inflow or outflow conditions and the subscript "/" the final values calculated at
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node points on the boundary. Pe , Pe and qe are the values of the pressure, density and 

velocity modulus calculated inside the domain, at node points adjacent to the boundary. A 

velocity normal to the boundary is first calculated using velocity components from inside 

the domain: 

(5.1.1) 

where ii is the normal to the boundary. The speed of sound calculated for the extrapolated 

local conditions is : 

C 
Pe 

e = ,
Pe 

(5.1.2) 

The values of Po , q0 and p0 and of the speed of sound Co corresponding to the far field 

conditions are evaluated at the beginning of the calculations from the specified free stream 

conditions. A normal velocity component corresponding to the free stream conditions is 

defined as 

qn O = Uo.ii (5.1.3) 

The Riemann invariant ER from interior values (i.e. outgoing wave) and the invariant FR 

from exterior specified conditions (i.e. incoming wave) are calculated as : 

The normal velocity at the boundary is then determined by the expression 

ER+FR 
qn

=

--2--

(5.1.4) 

(5.1.5) 

(5.1.6) 

This velocity is used to determine whether there is inflow or outflow at the boundary. For 

a subsonic inflow, the three components of the velocity at the boundary are calculated 
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as :

Uf=uo+(qn -qno). n^

Vf =VQ+ {qn - q^ o). ny

Wf=wo+ (qn - q^ o). n^

(5. 1. 7)

(5. 1. 8)

(5. 1. 9)

The entropy Sf at the boundary is set at its free stream value SQ. For a subsonic outflow.

the velocity components are calculated using the expressions :

Uf = Ue+ (qn - qn e)-nx

Vf=Ve+ (qn - qn e)-Hy

Wf =We+ (qn - qn e)-n^

(5. 1. 10)

(5. 1. 11)

(5. 1. 12)

The entropy Sf at the boundary is calculated in this case from values extrapolated from

the interior :

S, =p-i

The final value of the velocity modulus at the boundary is :

(?/ = u^+v2^+ wj

(5. 1. 13)

(5. 1. 14)

The final values of the density, pressure and of total energy are eventually calculated using
the following expressions :

(CC)=^1) -^)
pf = (Sf(CC))-^

pf = pf(CC)

^, -^4

(5. 1. 15)

(5. 1. 16)

(5. 1. 17)

(5. 1. 18)
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On a supersonic inflow boundary, all five conservative variables are given their free

stream values. On a supersonic outflow boundary, the five conservative variables are

extrapolated from the interior. On a side boundary, the variables are simply equated to

their values far upstream.

5. 2 SOLID SURFACE AND SYMMETRY BOUNDARY CONDITIONS

At node points lying on a solid boundary, flow tangency is enforced at the end of each

time step by setting to zero the normal component of velocity. The fluxes through the

ceU faces lying on such a surface are set to reflect this condition. In addition, when only

half of the flow field is being considered, symmetry is enforced on the plane of symmetry

of the configuration. In the multi-block code, any one of the six faces of a block can be

a soUd surface or part of a plane of symmetry. The program checks at every iteration

the boundary condition parameter IBC of each face and identifies the faces which are

either on a solid surface (IBC = 4) or on a plane of symmetry (IBC = 3). The velocity

components on the ceUs belonging to these faces are adjusted to be tangent to the boundary.

Subroutine BCIMP forces also the velocity at the junction between two such boundary

planes to be tangent to the direction of the intersection. This is the case at the wing-

body junction and at the junction between the fuselage and the plane of symmetry. The

H-H topology of the multi-block program results in blocks having a single grid line or a

single grid point located on a soUd surface. These are blocks which faces are not labeled

with an IBC parameter corresponding to 3 or 4, but with a parameter equal to 6 for

block interface. However, in order to preserve consistency with the calculations in the

neighbouring blocks, the program has to apply the solid surface boundary conditions at



those points. It was therefore necessary to write a procedure to interrogate all the face,

edge and corner neighbours of a block to determine whether any one of them has a face

on a solid surface. The program then determines whether a grid line or a grid point of the

current block is also located on that surface and raises a flag. Subroutine B GIMP reviews

all the flags and applies boundary conditions at the appropriate points. Our experience is

that no satisfactory convergence of the calculations can be obtained unless these boundary

conditions are properly applied in all blocks. In summary, there cannot be node points

where solid surface boundary conditions are applied in some of the blocks to which they

belong and not applied in others. As discussed in chapter 2, no Kutta condition is

needed in the Euler code at the trailing edges of lifting surfaces.

5. 3 ENGINE INLET BOUNDARY CONDITIONS

One of the most important objectives of the present development was the modelling ofpow-

ered engine nacelle flow fields. This required the implementation in the code of new types

of boundary conditions for the engine inlet and exhaust. The definition of accurate and

stable boundary conditions required a fair amount of experimentation. This experimenta-

tion was carried out using single-block grids around various configurations of an isolated

nacelle. These test cases provided substantial topological challenges requiring adjustments

in the program being developed. The results of these tests were subsequently incorporated

to the multi-block code. The development of the nacelle boundary conditions was carried

out in two phases :

- Phase I : Calculation of flows near an engine inlet.

- phase II : Modelling of both engine inlet and engine exhaust boundary conditions.

A subsonic engine inlet boundary condition is used in the code. At such boundary, where



the flow exits the computational domain, only one boundary condition can be specified.

The engine inlet Mass Flow Ratio (MFR), also known as the inlet Streamtube Area

Ratio, is input to the program and is used to calculate and impose an average mass flow

through the engine inlet face

Qn = (pqn fan) = (pq)^. (M FR). A^
ifan

(5. 3. 1)

Where A^ute is the cross sectional area of the inlet highlight and A fan is the cross section

area of the fan face. The remaining parameters are extrapolated from the inside of the do-

main. The development and testing of this inlet boundary condition were carried out using

a single-block model of a nacelle inlet. This approach was selected in order to discriminate

the effect of the boundary condition on the code stability from the effects of the multi-block

formulation.

5. 3. 1 Nacelle Inlet Grid

The geometry of the nacelle inlet configuration was defined as shown in figure 6 with

the outer cowUng continued as a solid waU to the far field downstream. This topology

is quite different from one that would be used typically for an isolated wing, as shown in

figure 7. Figure 6 shows the grid patching and will help to identify the key points of the grid

structure. To simplify the generation of the grid, an axisymmetric naceUe geometry was

used. The grid was generated in a two-dimensional mode around a cut through the nacelle

and the three-dimensional grid was simply obtained by rotating the two-dimensional grid

around the axis of symmetry of the naceUe. The grid was made to cover the right half of

the naceUe. It was thus possible to retain the formulation of the original program with a

vertical plane of symmetry. The grid was constructed using the algebraic and emptic grid
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generators also developed at Canadair. For testing purposes, a relatively coarse grid was

specified, with only 64 x 16 x 16 cells. The resulting grid is shown in figure 8, with a closer

view of the nacelle Ups shown in figure 9. The characteristics of the naceUe inlet grid are

as foUows (figure 6) :

- The engine inlet plane is represented by the grid plane 1=1.

- The cowling of the naceUe is represented by the grid plane j = 1. In this plane, the i

index varies from i = 1 at the engine inlet face to the maximum i = IL at the far-field

boundary downstream. The leading edge of the naceUe is located at i = NX/4)+1

where NX is the total number of grid cells in the i direction (NX = IL-1).

- AU the points on the j == JL grid plane, between i= 1 andi == NX/2)+1 are coUapsed

onto the axis of symmetry of the engine. All the grid cells with one face on the axis of

symmetry have one face degenerated into a single Une. The grid points on the j = JL

grid plane between i == NX/2)+1 and the maximum i = IL constitute the outer

boundary on which an inflow boundary condition is specified.

- The far-field outflow boundary is represented by the i = IL grid plane.

- In the new grid, the plane of symmetry is made of two grid planes : the upper half is

grid plane k = 1 and the lower half grid plane k == KL. In an isolated wing grid case,

the plane of symmetry is normally entirely covered by the k = 1 grid plane.

Several developments had to be incorporated to the starting isolated wing program in

order to perform calculations in the computational domain defined by this nacelle inlet

grid. These developments included :

- The implementation of symmetry boundary conditions at the k = KL grid plane,

instead of the usual side boundary conditions.

- The specification of adequate boundary conditions at the engine inlet plane.
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The implementation of the solution for the singular line at the axis of symmetry.

The implementation of inflow boundary conditions on only part of the j == JL grid

plane.

5. 3. 2 S mmetr Boundar Conditions at k = KL

In an isolated wing topology as shown in figure 7, the k == KL plane is the outboard far-

field side boundary of the domain. The variables at the node points in this plane are simply

set equal to their upstream values. In the isolated nacelle inlet case, the k == KL grid plane

is part of the plane of symmetry. The values of the variables in the plane of symmetry are

calculated through the same time-integration procedure applied at node points inside the

domain. The symmetry boundary conditions are applied by specifying a zero mass flux

through this boundary and limiting the momentum fluxes to their component due to the

pressure acting on the symmetry plane. An additional condition is applied at the junction

between the symmetry plane and the nacelle cowling. The flow there is forced to foUow the

direction of the intersection between these two surfaces. These conditions were implemented

at both the k = KL and the k = 1 grid planes. The specification of symmetry boundary

conditions at the k = KL plane has further repercussions in other parts of the code.

The limits of the flow calculation had to be extended in several subroutines to k = KL.

instead of the Umit k = KL-1 used for isolated wings, for which the variables at the

side plane k = KL are set equal to the upstream values. This required modifications to

subroutines EFLUX (Euler flux calculations), DFLUX and DFLUXC (calculation of

artificial viscosity fluxes), PSMOO (residual averaging) and EULER (time integration,

enthalpy damping).
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5.3.3 Inlet Bounda Conditions

A new subroutine, BCINLET, was written to impose the engine inlet boundary conditions

on the grid points located in the i = 1 grid plane. It was assumed, during the course of

this exercise, that the flow velocity in this plane is subsonic. At this boundary, the flow

exits the computational domain. On such a subsonic outflow boundary, only one boundary

condition can be imposed. The program solves for five basic unknowns : the density p, the

velocity components u, v and w and the total energy E. As only one boundary condition

can be specified in the inlet plane, the information on the four remaining parameters must

be extrapolated from the inside of the domain. The operating condition specified for an

engine inlet is the Mass Flow Ratio (MFR) at the nacelle highUght plane (leading edge

plane). The value MFR must be given in the input data. The boundary condition is

imposed at the engine fan face, located further aft on the nacelle than the highlight plane.

The condition is imposed in the form of an average mass flow Qn. Af^n at the fan face

(5. 3.2)Qn = {Pin fan) = {pq)^. {M F R~). ^S.
lfan

Where A^ute is the cross sectional area of the inlet highlight and A/^» is the cross section

area of the fan face. Qn is specified at every node point on the inlet plane, assuming a

constant distribution over the fan face. Qn is also given by the expression :

Qn= puna: + pV Hy + pwn^ (5. 3.3)

Where n^, ny and n^ are the components of the unit normal to the inlet face. More

information is therefore required from the inside of the domain in order to define each

variable. The fan face is defined in the computations by the index i = 1. The next grid

plane in the domain is the z = 2 plane where velocity ratios can be calculated as :

V2
^vu ^

U2 (5. 3. 4)
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and

y*?»iA ^
W2

U2
(5. 3.5)

These ratios are extrapolated to the inlet plane where Qn can therefore be rewritten as :

Qn = PlU-^. (nx + TvuUy + y-wu^z

pu, pv and pw can therefore be calculated at the inlet face as

PlUl =
Qn

(n^+rvuny+ r^n^

PlV-i = P^U-i.Tyu

PlW-i = plU-i.T^n

The value of the density p is also extrapolated from the inside of the domain :

(5. 3. 6)

(5. 3. 7)

(5. 3.8)

(5. 3.9)

Pl ==P2 (5. 3. 10)

The pressure at the inlet plane is calculated assuming that the total enthalpy H is constant

and equal to its upstream value Hyo :

P, =p,.1-.(H^-^ (5. 3. 11)

where q^ = u^ + v^ + w^ is the local velocity at the inlet plane. Finally, the last variable

pE is calculated with the expression :

^=^+¥
This procedure was tested and led to stable calculations of the inlet flow field

(5. 3. 12)
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5.3.4 Sin ular Line on the Axis of S mmetr

The axisymmetric grid generated for the nacelle inlet has a singular line on the axis of

symmetry (j = JL) where all the cell faces degenerate into a single line. The area of

the cell faces on the axis is zero. It was therefore necessary to by-pass the calculation of

projected cell areas and normals on these faces which could have produced divisions by

zero and ensuing overflows of the program. Two procedures were tested for evaluating the

flow on the axis of symmetry

- Initially, the values of the flow variables on this axis (j == JL, i = 1 to (NX/2)+1)

were taken to be equal to the average of the values on the surrounding node points

at j = JL-1. The best solution was obtained when taking values interpolated three-

dimensionally from those of the j = JL node points rather than by doing interpolations

in i = constant grid planes.

- A more exact treatment was then implemented by which the flow variables on the axis of

symmetry are computed by discretizing the equation there. This required modifications

of loops in the subroutine EULER performing the Runge-Kutta time integration and

further modifications to the calculations of the fluxes in subroutines EFLUX, DFLUX

and DFLUXC. On the axis of symmetry, j = JL, the node points k == 1 toKLare col-

lapsed onto the same location in every i = constant grid plane. The program however

calculates flow variables at each of these node points independently. A modification was

made to replace the variables at these points sharing the same physical location in space

by their average. This procedure ensured the uniqueness of the solution on the axis

of symmetry throughout the computations. The calculation of the second and fourth

order derivatives used for the artificial viscosity fluxes was done on this axis using the

symmetry property of the grid.
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5.3. 5 Domain Inflow Boundar Conditions

In the isolated wing topology, inflow boundary conditions are imposed on the entire j = JL

grid plane. With the inlet grid topology, the inflow boundary on the j = JL grid planes

extends only from i = NX/2)+1 to i = IL. A modification was made in subroutine

BCFAR to reflect this diff'erence.

5.3.6 Test in of Inlet Model

The inlet models were tested by running the code for 100 iterations on the grid described

earlier, using three levels ofmulti-grid cycles. The first test case was run at Mach 0. 75 and

a = 0' with a mass flow ratio MFR = 0. 75, using a fuU discretization of the equations

on the naceUe axis. Figure 10 shows the pressure distribution calculated in the plane of

symmetry which can be seen to be completely symmetrical with respect to the axis of the

naceUe. Flow stagnation regions form at the leading edge of the naceUe lip with subsequent

acceleration as the flow negotiates the entrance'to the fan. The flow is then decelerated

in the diffusion region ending at the fan inlet plane. A solution was then calculated for

the same case, but with the variables on the axis of symmetry obtained as averages of

the values at the surrounding node points. The solution was almost identical to that of

figure 10, indicating that the averaging process was fairly accurate in this case. There

was less than Ifield with the two approaches. However, the accuracy of the results with

an averaging procedure depends on the fineness of the grid and on the extent of the flow

gradients present in the field. It was therefore assumed that they could be less accurate

in some other cases and the rest of the calculations for the inlet was performed using the

fuU discretization on the singular Une. Calculations were then made, for a Mach number



0.65 and an angle of incidence a = 7°, with a mass flow ratio MFR = 0.85. As shown

on figure 4.7, the flow is asymmetrical with respect to the nacelle axis. The higher mass

flow ratio produces a higher acceleration of the flow in the intake and higher throat Mach

numbers. Additional calculations were made to visualize the effect of the mass flow ratio

on the diameter of the intake stream tube and on the stability of the calculations. A low

mass flow ratio MFR = 0. 25 was used on the results shown in figure 11, at a Mach number

M: = 0. 6 and a = 0 . The large diffusion that takes place in the stream tube is clearly

visible on this figure. On the other hand, a higher mass flow ratio MFR = 2. 0, at Mach

M = 0.3 and a = 0 produces a noticeable contraction of the streamtube in front of the

naceUe intake. This is shown in figure 12. The code was found to calculate weU the inviscid

flow field around a nacelle intake for various Mach numbers, angles of incidence, and mass

flow ratios. It was noticed that the blockage due to the speciiication of very small mass

flow ratios (smaller than 0.25) affected the convergence characteristics of the computations,

particularly at the beginning of the calculations. This was thought to be partly due to the

initial conditions used in the code (uniform flow everywhere, with the specified upstream

values). The specification of initial velocities in the intake duct more compatible with the

inlet mass flow ratio improve the impulsively started calculations.
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Figure 6 : Topology of the grid used to validate nacelle inlet
conditions.
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Figure 7 Topology of the C-H grid used for isolated wings.
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Figure 8 : Overall view of the grid generated for nacelle inlet
calculations.

Figure 9 : Close view of the grid generated for nacelle inlet
calculations.
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Figure 1() :pressu^ distribution in the plane of symmetry of the nacelle
inlet at M = 0. 75, a = 0° and MFR ~=:"0^
(Full discretization of the equations on the axis of symmetry.
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Figure 11 : Streamtube calculated in front of the nacelle inlet at
M = 0. 60, iQ; = 0° and MFR = 0. 25.
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Figure 12 : Streamtube calculated in front of the nacelle inlet at
M = 0.30, a = 0° and MFR = 2. 0.
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5.4 ENGINE EXHAUST BOUNDARY CONDITIONS

5.4. 1 Corn lete Nacelle Grid

The grid geometry defined for the complete nacelle is outlined on figure 13. The constraint

of a single-block grid prevented the modeUing of the flow inside the nozzle. The grid would

have had to negotiate a very sharp turn at the exhaust plane. The engine exhaust boundary

conditions were therefore tested using conditions specified on the back face of the nacelle.

The characteristics of the grid on the inlet side are the same as those described previously.

In the complete naceUe grid, the j == JL plane closes behind the nacelle and is no longer

solely an inflow boundary. The aft part of the grid plane has flow leaving the domain. The

i = 1 grid plane is still the inlet plane but the i = IL grid plane is now collapsed onto the

axis of symmetry behind the nacelle. The exhaust plane is the aft part of the j = 1 grid

plane, between i = 5/6)*NX+2 and i = IL. A grid was generated with (96x 32x 24) node

points. The grid is shown in figure 14, with a view closer to the naceUe shown in figure 15.

The program for complete nacelle flow fields was produced as a further development of

the nacelle inlet code. The modifications required to perform the calculations for the new

topology included :

- The modification of the far-field boundary conditions.

The treatment of the singular line downstream of the nacelle.

- The implementation of the engine exhaust boundary conditions.

5.4. 2 Far Field Boundar Conditions

The far-field boundary in the new grid topology is the part of the j = JL grid plane

extending from i = NX/2)+1 to i = IL. The flow is no longer necessarUy an inflow into

ane
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the domain at this boundary. The subroutine BCFAR was modified in order to calculate

the flow normal to the boundary and apply inflow or outflow boundary conditions according
to the direction of the flow.

5.4.3 Sin ular Line Downstream of the Nacelle

In the new grid topology, the i = IL grid plane is no longer an outflow boundary and is

coUapsed onto a singular line on the nacelle axis of symmetry. Modifications were made to

subroutine BCFAR not to impose far-field boundary conditions on these grid points and a

singular Uae treatment similar to the one discussed for the inlet was appUed to these node

points. Since the main purpose of the exercise was the validation of the engine exhaust

boundary conditions, a simple averaging procedure was used to calculate the flow variables

on the i == IL singular line. This procedure was shown in the previous section to be fairly

accurate for the grids used here.

5.4.4 En ine Exhaust Boundar Conditions

The modelling of an engine exhaust plume with an Euler code is an approximation, since it

does not include any of the viscous and turbulence effects which axe important in real flow.

However, the model is judged to be more accurate than those used in potential models

where the jet discontinuity is modeUed using wake planes. The model is also accurate

insofar as it produces a good description of the pressure distribution that develops on

all soUd surfaces adjacent to the exhaust plume. The Euler calculations can also give a

description of the wave structure inside a supersonic plume but their are not meant to

be a completely accurate model of the exhaust. The engine exhaust plane is a boundary
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with fluid flowing into the computational domain. The program was coded to accept both

subsonic and supersonic exhaust flow conditions. If the exhaust is subsonic, four parameters

must be specified and the fifth calculated from conditions inside the flow domain. If the

exhaust is supersonic, all five unknowns of the three dimensional Euler equations must be

specified at the exhaust boundary plane. A new subroutine BCNOZLE was written to

apply this boundary condition. The inputs to BCNOZLE are :

Mjef : Mach number of the exhausting jet.

TPR : Exhaust plane total pressure ratio.

TTR : Exhaust plane total temperature ratio.

6 : Swirl angle at the exhaust plane.

The ratios are with respect to the total normalized fluid characteristics in the far field

upstream .

(TTR) =

(TPR} =

TQ jet
TQ oo

-PO jet

(5.4. 1)

(5. 4. 2)

In the absence of a proper model of the inside of the nozzle, the jet at the exhaust plane was

assumed to be parallel to the axis of the engine at the center of the nozzle and parallel to

the edge of the engine cowling on the fringes of the exhaust plane. A local radial flow angle,

6, interpolated between the directions at the center and on the circumference, was used to

define locally the angle of the jet at other points in the exhaust plane. Since the present

calculations were carried out in a domain defined with a plane of symmetry, the swirl angle

6 at the engine exhaust was specified as zero for all cases discussed here. If the exhaust

is supersonic, all the flow quantities are specified at the exhaust plane. These values are

calculated from the total pressure, total temperature and the exhaust M:ach number which

must also be specified :
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5.4.4. 1 Supersonic Exhaust Boundary Conditions

When the value of Mjet is greater or equal to 1.0, the value of the five conservative variables

used in the program (p, pu, pv, pw, pE) must be specified at the node points on the exhaust

plane. The program calculates these parameters from the information given as input to the

subroutine BCNOZLE. The local radial flow angle at every node (ij, k) on the exhaust

plane is calculated first, using an interpolation between the direction 0^^ at the radius of

the exhaust and that of the nacelle axis at the center :

(Vi, j, k + Zi, j, k)
R

. exhaust
(5. 4. 3)

The total temperature and total pressure at the exhaust plane are then calculated from the

input ratios TTR and TPR and the normalized upstream value To oo used in the code :

TO jet = (TTR~). TQ

PO jet = (TPR). Po

(5. 4. 4)

(5. 4. 5)

The non-dimensional jet velocity is calculated using the exhaust Mach number and total

temperature :

,
2 _ 7M^To , e<
^= l+^l^ (5.4.6)

The three components of the jet velocity are then calculated using the radial jet flow angle,

the swirl angle and the circumferential location of the node point on the exhaust plane

Ujef == q. cosff

Ur = -q. sinO

Uf = Ur.tanS

lane

(5. 4. 7)

(5. 4. 8)

(5. 4. 9)
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Where :

vjet = Ur.COS(f)+ Ut. sin<f>

Wjet = Ur. sin(f>+ Ut. COS(f>

=^-K^
-A?~2~

(5. 4. 10)

(5.4. 11)

(5. 4. 12)

IS

NZ is the maximum number of computational cells around the axis, from the top to the

bottom of the axis of symmetry (NZ == KL-1). The pressure at the exhaust plane is

calculated as :

-PO jet

The density is obtained as :

[1 + ̂ M^]-^

_ PQ jet

TO jet ̂  ̂  2^lM^]^
The variable containiug the total energy is calculated as :

^e<=-^+,,^
7-1

(5.4. 13)

(5. 4. 14)

(5.4. 15)

5.4.4.2 Subsonic Exhaust Boundary Conditions

If the exhaust is subsonic, only four conditions can be specified at the exhaust plane. The

fifth parameter must be calculated using information from inside the flow domain. Three

different formulations of these boundary conditions were investigated :

- The first formulation was used by Samant and Yu of NASA (reference [103]) to model

propfan flows. This formulation was also used by Amendola, Tognacini, Boerstoel and

Kassies to model propeUer slipstream flows (reference [84]) This formulation will be

referred to in the text as the "NASA" formulation.
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- A second formulation tested was inspired by a paper from Hirose, Asai, Ikawa and

Kawamura (reference [80]) of the Japan NAL (National Aerouautical laboratory). This

formulation is designated as the "Japan NAL" formulation in the text.

- Finally, a third formulation was devised at Canadair, to be consistent with the boundary

conditions used on the outer boundaries in the code. This formulation wiU be referred

to as the "Canadair" formulation in the text.

a - "NASA" Formulation

This boundary condition was originally used for calculating propeUer slipstreams using an

actuator disk model. The angles 6> and ̂  and the total pressure and total temperature at

the exhaust, Py and TQ are evaluated using the relations described earlier. The modulus q

of the local flow velocity is extrapolated from the inside of the flow field and the velocity

components evaluated using the relations given earlier. In the case of a subsonic exhaust,

the value of Mjet given in input to the program is not used for any other purpose than

to indicate that the boundary is subsonic. In this case, the Mach number at the exhaust

plane is then evaluated using the expression :

^2=/^ '' ....
(7^o2^-(7-l)^) (5.4. 16)

Finally, the values of the local pressure, density and total Energy are calculated using the

expressions :

-PO jet

^~Mjeti

1

Pjet =
[1 + ^IM^]^

, - p° ^
1

10 3et [1 + :3T1^J^T

(5.4. 17)

(5.4. 18)
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_ Pjet , " ?Jet
'J^t = ^-Y + Pjet-^- (5. 4. 19)

This formulation of the boundary condition works well for propeller flows in which the

propeller is modelled using an actuator disk. In the models using this formulation, the mass

flow is imposed on the upstream face of the disk. This mass flow is the same coming out on

the downstream side of the disk. This is equivalent to setting an additional constraint for

the flow. In the present model of the jet engine, there is no direct correlation in the program

between the conditions at the inlet face and the conditions at the exhaust plane. Without

this additional constraint, this formulation of the boundary conditions, when tested, did

not lead to stable and converged results.

b- "JAPAN NAL" Formulation.

This formulation is very similar to the "NASA" formulation except that the mass flow at the

exhaust plane is now expUcitly imposed. Another difference is that the value extrapolated

from the inside of the computational domain is the density p instead of the velocity modulus

q. Once again, the value of Mjet given in iuput to indicate that the exhaust is subsonic but

is not used to set the values of the variables at the exhaust plane. (9, <^, TQ ̂ t and PQ j^

are again calculated using the formulae given in the section on supersonic exhaust. The

density, as already mentioned, is extrapolated from its value at the next grid plane in the

domain (j = 2 grid plane) :

Pjet = P2 (5.4. 20)

The specified mass flow ratio at the exhaust is used to calculate pujet

PUjet = PooqooMFR^haust (5. 4. 21)
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The x-component of velocity of the jet, normal to the exhaust plane is then :

- pu^
ujet = ~p^ (5. 4. 22)

The tangential and radial components of the velocity are then calculated in the manner

described earlier :

Ur = -UjeftanO (5.4. 23)

Ut = Ur. tanS (5.4.24)

The y and z components of the velocity in the exhaust plane are then given by :

Vjet = Ur. cos<f> + Ut. sincf) (5.4.25)

Wjet = Ur. sin<f) + Uf. cosef) (5. 4. 26)

The modulus of the velocity and the Mach number are then evaluated as :

?2=(^+^2+^2) (5.4. 27)

M2=w,. ^-^) (^
The pressure and the total energy component of the Euler flux term can finally be calculated

as .

Pjet =
PO jet

3T1^][1 + ̂ . Mf^

_ Pjet , " 9Jetf)Ejet = T^T + pj ^^f-

The use of this formulation leads to stable calculations.

(5.4. 29)

(5.4. 30)
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c - " CANADAIR" Formulation.

During the development of the code, it was felt that a formulation of the boundary con-

ditions consistent with the one used for the other inflow boundaries in the code should be

tested. This formulation, designed to absorb waves propagating in a direction normal to

the boundary, uses the Riemann invariants at the boundary to convect information on the

flow variables. The formulation is described here, with the subscript "e" indicating values

extrapolated from inside the domain, the subscript "j" values calculated from the speci-

fied exhaust jet conditions and the subscript "/" the final values calculated at node points

on the exhaust plane, pe, pe and qe are the values of the pressure, density and velocity

modulus calculated inside the domain, at node points adjacent to the exhaust plane. The

x-component of the velocity, which is also normal to the exhaust plane, is first extrapolated

from inside the domain :

qn e= Ue (5. 4. 31)

The speed of sound calculated for these extrapolated local conditions is :

c'^ (5.4.32)

Similarly, the values ofpj, qj and pj corresponding to the specified exhaust jet conditions

are evaluated, using the expressions given in the section on supersomc exhaust. A normal

velocity component and a local speed of sound corresponding to the specified jet conditions

can be defined as :

qn j = u,

c-^

(5. 4. 33)

(5. 4.34)
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The remaining componeuts vj and wj of qn j are calculated using the local flow angle 6

and the swirl angle S as indicated previously. The Riemann invariant ER from interior

values (i. e. outgoing wave) and the invariant FR from exterior or jet condition values (i. e.

incoming wave) are calculated as :

ER=qn^-2
c.

(T^

_c^_FR=^i+2-^-T)
At the boundary, the normal velocity is then determined by :

(5. 4. 35)

(5. 4. 36)

qn=
ER+FR

(5. 4. 37)

From this expression of ̂ n, the final values of the three components of velocity at the

exhaust plane are calculated as :

uf=u3+(.Qn-qnj)

Vj = V]

Wf = W]

And the final value of the velocity modulus at the exhaust plane is

1} = "^ + v} + w)

A measure of the total entropy of the exhaust flow is then calculated as

^=^
^ - p,

The total enthalpy of the jet is given as

^=(^s+^

(5. 4.38)

(5. 4.39)

(5. 4.40)

(5. 4. 41)

(5. 4.42)

(5.4.43)
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The final values of the density, pressure and of total energy are eventuaUy calculated using

the following expressions

(CC) = {-^-(H, - ^) (5. 4. 44)

(5. 4. 45)

(5. 4.46)

TTT+^/Y (5.4.47)

This formulation of the exhaust boundary conditions leads to very stable computations

with good convergence characteristics. It was selected as the permanent formulation of the

newly developed program since it was considered to be more consistent with the formulation

of the remaining boundary conditions in the code.

PS = {S, {CC})-^

Pf=Pj{CC}

"£/=A+4

5.4.5 Testin of the Corn let e Nacelle Model

The complete nacelle model was tested by running the program on the grid previously

described for 100 iterations and 3 levels of multi-grid cycles. The first result, shown in

figure 16 is for an upstream Mach number 0.85, an angle of incidence a = 0°, an inlet

mass flow ratio M. FR = 0.75 and a supersonic exhaust with a Mach number M,et = 1. 15.

The specified exhaust total pressure ratio is T PR = 1. 3 and the total temperature ratio

is TTR = 2.0. The figure shows the static pressure distribution in the plane of symmetry,

which is seen to be perfectly symmetrical . The total pressure plot in figure 17 outlines the

jet with its higher total pressure. There is no shock wave outside of the jet in the flow field

and the total pressure is constant. Figure 18 gives a view of the velocity vectors calculated

in and around the exhaust jet. The transition between the jet and the outside field appears

to be smooth. A minor difficulty arose at the perimeter of the engine because of the grid
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configuration and the lack of modelling of the flow inside the nozzle. Originally, exhaust

boundary conditions were appUed at aU the grid points on the exhaust plane, including

the ones at the perimeter, at the junction with the engine core cowl. It was found that

this was causing some unphysical expansion of the exhaust into the field at the corner

since the flow could not be constrained to be tangent to the core cowl there. The scheme

was changed to apply exhaust boundary conditions on the exhaust plane only to the next

to last point near the perimeter of the exhaust plane. The results were improved but

there was a residual acceleration of the flow at the comer which the flow is trying to turn.

The only satisfactory treatment which was later implemented on multi-block models is to

model the flow inside the nozzle and obtain the correct direction of the flow at the exhaust

perimeter. The present model gave nevertheless good results everywhere except in this

very local area. The Euler program uses enthalpy damping as a means of accelerating the

convergence of the calculations. This procedure assumes that in the steady state, the total

enthalpy of the fluid is constant and equal to its upstream value. This is no longer true

with an engine exhaust with fluid introduced into the domain at a total temperature and

total pressure different from the upstream values. In order to avoid steering the solution

towards wrong results, the enthalpy damping is not used in large parts of the flow field

inside and around the exhaust jet. During the calculations, it was found that the solution

had difficulties in converging at the beginning for high total temperature and total pressure

ratios. This was due to the initial flow field originally calculated by the program (impulsive

start in uniform flow with upstream values) which was a very poor approximation in the

exhaust jet area. This problem was encountered in the calculations at the engine inlet but

appeared to be worse at the exhaust, due to the very different flow conditions specified

at that boundary. It was possible to improve the initial convergence characteristics by
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substituting pjet and pjet to the upstream uniform flow values as initial flow field in the jet

area. However, on the Challenger multi-block model developed later, it was found that the

program did converge from an initial umform flowfield for normal operating total pressure

and temperature ratios. Unless otherwise specified, the results with subsonic exhaust flows

were obtained using the "Canadair" formulation of the boundary conditions. The results

shown in figure 19 are for an upstream Mach number 0. 74, an angle of incidence a == 0°,

an inlet mass flow ratio MFR = 0. 753 and a subsonic exhaust flow with a nominal Mach

number M, gt = 0. 915. The specified exhaust total pressure ratio is TPR = 1. 05 and

the total temperature ratio is TTR = 1. 18. These values were selected to be consistent

with the operating conditions of a typical engine, as found in the literature (reference [80]).

Figure 19 shows the static pressure distribution obtained in the plane of symmetry and

figure 20 the plot of the local static temperature in the same plane. Figure 21 shows

the iso-Mach lines calculated on the plane of symmetry and on the nacelle cowling. On

figure 22, the pressure distributions along the top line of the nacelle and on the intake wall

are shown, indicating the diffusion area upstream of the fan face. The pressure distribution

on the outer cowling is similar to distributions calculated on nacelles of the same type in

reference [80] with the exception of the acceleration at the end of the core cowl which is

due to the treatment at the comer of the cowl and the exhaust plane mentioned previously.

This acceleration disappear on multi-block models with proper grid topology and a proper

calculation of the nozzle flow, as will be shown later. The last test result presented here is

for an upstream Mach number M = 0. 75, an angle of incidence a = 8°, a low mass flow

ratio M^FR = 0. 375 and a supersonic exhaust with Mjet = 1. 15. The total pressure ratio

at the exhaust is TPR = 1. 3 and the total temperature ratio TTR = 2. 0. This case was

interesting because it associated a high angle of incidence with a very low mass flow ratio
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and fairly high total temperature and total pressure ratios at the exhaust plane. After an

order of magnitude of convergence, the solution started oscillating. Upon visualization on

a graphics workstation, it was realized that vortices had formed on the upper surface of the

naceUe. Figure 23 shows a plot of the Mach number obtained in the plane of symmetry in

such vortical conditions. Superimposed to this plot are the trajectories of particles involved

in the vortical flow. Figure 24 shows pressure distributions at the top line of the nacelle and

on the intake surface. The combination of a high angle of incidence and of a low inlet mass

flow ratio leads to high velocity peaks on the outer surface of the nacelle lip. This pattern

of flow induced at the leading edge is probably responsible for the appearance of vortices.

This behavior has been reported in other Euler code applications where it was thought that

the use of artificial viscosity, associated with velocity peaks and entropy fluctuations, were

responsible for generating this separated flow pattern. The density of the grid is probably

insufficient to faithfully represent the flow in this area and may be the reason for the lack

of adequate convergence of the results. This behavior, not reproduced in any of the other

applications discussed in the present work, is an interesting subject for further investigation

with various solvers. A more refined grid around the engine is also necessary to capture

correctly the shock pattern of expansion and compression waves in the exhaust plume. On

some of the test runs, these waves were noticeable near the exhaust plane where the grid is

the finest but the pattern was more diffused as the size of the mesh increased downstream

(figure 25). Another observation made on the results of this test case was the existence of

a vorticity layer between the exhaust jet and the surrounding flow field. The presence of

such a layer is also mentioned by Hirose, Asai, Ikawa and Kawamura (reference [103]). It

is mostly visible on total pressure plots displaying a zone of low total pressure around the

Jet.



FAR FIELD
BOUNDARY
J = JL PLANE

115

I = NX/4. 1.1

REGION III

I = (5/6)NX«-2

J . I PLANE
PARTLY SOLID
SURFACE

/

/ REGION I
/ /
/ /

REGION IV

EXIT PLANE ON
J . I PLANE

J = JL
AXIS OF SYMMETRY I = I

INLET PLACE

I = IL
AXIS OF SYMMETRY

I = NX/2*1

Figure 13 : Topology of the grid used for the complete nacelle
calculations.
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Figure 14 : Overall view of the grid generated for complete nacelle
calculations.

..... ^"w^

,^ssiiiiHm

fc^s:

Figure 15 : Close view of the grid generated for complete nacelle
calculations.
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Figure 16 :

Pressure distribution in the plane of symmetry of the complete
nacelle at M ==0.85, a = 0° and MFR == 0. 75" for a supersonic"
exhaust with M^ = 1. 15, TPR = 1. 3 and TTR = 2. 0.

Figure 17 : .ff^y.

Total pressure distribution in the plane of symmetry of the coniplete
nacelle at M = 0. 85, a = 0° and MFR = 0. 75 for a'supersonic
exhaust with A^e< = 1. 15, TPR = 1. 3 and TTJ? = 2. 0.
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Figure 18 :

Velocity vectors calculated in the plane of symmetry of the complete
nacelle at M = 0. 85, a = 0° aiid MFR = 0. 75 for a supersonic
exhaust with A/jet = 1. 15, TPR = 1. 3 and 7T7? = 2. 0.
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Figure 19

Pressure distribution in the plane of symmetry of the complete
nacelle at M = 0. 74, a = 0° and MFR = 0. 753 for a subsonic
exhaust with TPR == 1. 05 and TTR = 1. 18.
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Figure 20 : 
: :'^ ^: :::::::y:::'il:.':;:l:i;:::2;-^

Temperature distribution in the plane of symmetry of the complete
nacelle at M = 0.74, a = 0° and MFR = 0. 753 for a subsonic
exhaust with TPR = 1. 05 and TTR =1. 18
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Figure 22 :

Pressure distribution calculated along the top line of the complete
nacelle at M = 0. 74, ec == 0° and MFR = 0. 753 for a subsonic
exhaust with TPR = 1. 05 and TTR = 1. 18.
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Figure 23 :

Mach plot showing vortical flow in the plane of symmetry of the
complete nacelle at M = 0. 75, a = 8° and MFR = 0. 375'for a
supersonic exhaust with A/, e< = 1. 15, T PR == 1.30 and TTR = 2. 0.
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Figure 24 :

Pressure distribution calculated along the top line of the complete
nacelle at M = 0. 75, a = S° and I^IFR = 0. 375 for a supersonic
exhaust with M, ^ = 1. 15, TPR == 1. 30 and TTR == 2. 0.
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Figure 25 :

Pressure distribution in the plane of symmetry near the exhaust
of the complete nacelle showing shock and expansion patterns.
Solution calculated at M = 0. 75, a = 8° and 'MFR ==0. 375 for a
supersonic exhaust with M^ = 1. 15, TPR = 1. 30 and TTR = 2. 0.
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5. 5 INTERNAL BLOCK FACE BOUNDARY CONDITIONS

The boundary conditions at internal block faces are very important in a multi-block program

since the equations are solved in each block independently. Adjacent blocks have the same

number of grid points on the common face and the grid is continuous across the interface

making it possible to impose a boundary condition which makes the interface virtually

transparent to the flow field. This is done by carrying two layers of flow variables from

grid planes of the neighbouring block known as "halo grid planes" (figure 26). One layer

of flow variables on each side of the boundary is sufficient to calculate convective fluxes

at the interface but two layers on each side are necessary to calculate dissipative fluxes.

A block of grid points, augmented with the points in the "halo grid planes" is designated

as an u extended block". In this approach, the variables at block interfaces are calculated

virtually the same way as at interior grid points. Some authors use only one layer of

variable from a neighbouring block, relying on a modified calculation of the dissipative

fluxes at the interface [104]. This reduces the amount of additional information that needs

to be carried when solving for a block. Others allow some discontinuity of the grid lines

at the interface or admit neighbouring blocks with different numbers of grid points. An

interpolation procedure is then required. This formulation was tested by A. Kassies and

R. Tognaccini to domains with local grid refinement [105] but it requires special treatment

at interfaces to limit the loss of accuracy. The formulation proposed in the present work

gives a higher solution accuracy for H-H grids used on complex configurations, particularly

when using a central difference method with artificial viscosity. The difficulty with this

formulation is in the particular case of blocks adjacent to wings or solid surfaces, with

truncated halo regions. Special treatments are then required to maintain the consistency

and the stabiUty of the discretization. More is said about the scheme in the foUowing
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chapter. In subsequent testing, it was found that the multi-block algorithm implemented

here converges very well even with shock waves traversing block boundaries. The code was

written to handle interface orientations resulting from three different topologies, as shown

in figure 27 :

- Standard H-H topology : in this case, the bottom face (face 3) of a block interfaces with

the top face (face 4) of the block located underneath it. The orientations of the i, j and

k indices are the same in the two blocks. The index numbers of the grid points in the

halo of a block are the same as the index numbers of those grid points in the adjacent

block.

- C-H topology : this topology is useful around wing-type components. In this case, in

the wake behind the wing, the bottom face (face 3) of some blocks interfaces with the

bottom face (face 3) of the blocks located underneath them. The orientations of the i,

j and k indices are diflFerent in the interfacing blocks, with the i and k indices running

opposite to each other. Both index numbers of the grid points in the halo of a block

are running opposite to the index numbers of those grid points in the adjacent block. It

was necessary to devise an algorithm ensuring that the halo grid points selected are at

the proper physical location in space.

- 0-H topology : this topology is useful for high alpha computations since it was demon-

strated that this topology requires a fewer number of grid points to capture properly

upper surface vortices (Hitzel, reference [106]). In this case also, the bottom face (face 3)

of some blocks interfaces with the bottom face (face 3) of the blocks located underneath

them. Again, the orientations of the i, j and k indices are different in the interfacing

blocks, but only the k indices are running opposite to each other. This index numbers

of the grid points in the halo of a block is running opposite to the index numbers of
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those grid points in the adjacent block. The algorithm ensurcwesing that the halo grid

points selected are at the proper physical location in space for this case also.

In order to reduce the number of points required to cover the space around the aircraft, an

extension was written relaxing the constraint of identical numbers of grid points in adjacent

blocks. A formulation was implemented allowing a block to have a number of grid points

which is a multiple of the number of grid points in an adjacent face. It is thus possible to

have twice or three times as many grid points in one block than in the next, as shown in

figure 28. The difficidty here consists in the fact that the halo grid planes have a diflferent

number of grid points than the blocks in which they are located. It is therefore necessary

to apply interpolation procedures. These interpolations must be such that they maintain

conservation of the fluxes. This is better achieved when the number of ceUs on one face

is a subset of the number of cells on the adjacent face of the opposite block. A inismatch

in the number of grid points in neighbouring blocks has far reaching consequences in the

building of the extended block.

5. 6 SINGULAR LINES AND SINGULAR POINTS

The multi-block code accepts block faces which are coUapsed to a single line or a single

point, such as on an axis of symmetry, in front of an aircraft fuselage nose or behind the

fuselage tail. The program prevents the addition of "halo grid planes" to coUapsed block

faces. The flow variables at nodes sharing a common grid point on a singular line or pomt

are solved for independently and then replaced by their average during the calculations.

Singular points may also be located on a solid surface, at the junction between several

blocks. The program insures that identical boundary conditions are applied at all nodes

sharing this location in all blocks.
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CHAPTER 6 : Multi-Block Algorithm

6.1 TOPOLOGY DEFINITION

In the multi-block approach, the space around the aircraft configuration is divided into

subregions or blocks. The flow equations are solved in each block in sequence as they would

be in a single-block solver and appropriate transfer of information is arranged between the

various blocks. Following the investigation of several possible options, we propose and have

implemented in our code the following multi-block strategy which offers the balance of

flexibility and accuracy required for production work in the aeronautical industry :

1. All blocks are hexahedrons with arbitrary shape in space but conceptually similar to a

cube, with 6 faces. Some of the faces may collapse to a line or a point, giving physically

singular blocks.

2. The grid generated inside each block has an H-H structure as shown in figure 29 Each

face of such a block corresponds to a constant value of one of the grid indices i, j and k.

Each block edge corresponds to constant values of two of the grid indices.

3. Boundary conditions can only be appUed at a block face. There is no cut or solid

surface inside a block. At present, a face can only have one type of boundary condition

associated with it and aU the grid points on one block face must belong to the same type

of boundary. The code is written to perniit a proposed automatic grouping of blocks

into "block superelements". These superelements will effectively have different boundary

conditions on different patches of a superelement face.

4. There is a one to one ratio of grid points on opposing faces of adjacent blocks and the grid
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Unes are continuous across the block interfaces. The solver requires only CO continuity

of the grid lines across the block faces but in order to improve the accuracy of the

calculation, C2 continuity (continuous second derivative of the grid lines) was imposed

across most interfaces of the grid generated for the Challenger configuration. The only

exceptions occur at interfaces originating at solid boundaries where the orthogonality

requirements allow only a CO continuity in the H-H grid.

5. There are no interpolations at the block interfaces. The interfacing of adjacent blocks

is through the use of a halo of two grid planes from the adjacent blocks. When solving

for the equation at a cell vertex, the variables at the cell vertices located one mesh step

around this vertex in all three directions are used to calculate the Euler fluxes. However,

the calculation of the artificial viscosity coefficients at this vertex makes use of the flow

variables at two mesh steps around the vertex in all three directions. Initial experience

with the code indicated that in order to avoid solution discontinuities at block junctions,

it is important that the solution at block interfaces be calculated as much as possible

in the same manner as at block interior nodes. Since the artificial viscosity used in the

code affects the accuracy and stability of the solution, we have maintained the baseUne

artificial viscosity discretization and elected to carry halos of grid points two grid planes

deep inside adjacent blocks.

6. The solution is calculated once in each block at a given iteration level. The calculation

progresses through aU blocks in sequence, according to the block number. Once all the

blocks have been relaxed, the cycle is repeated. The code uses local time-stepping. For

steady flow calculations where intermediate solutions are not required, it is possible in

the MBTEC code to run more iterations in the blocks where the solution converges

more slowly, such as blocks with extensive supersonic flow.
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7. The block decomposition, topology definition and the grid generation are done outside of

the multi-block Euler code. A heavy emphasis was put on the ability to complete most of

the grid definition work on the same CADAM or CATIA workstation where the geometry

of the aircraft is defined. A translator program, MBLOCK, was written to extract from

the CAD drawing all the information required for input to the grid generation codes. In

addition to the aerodynaimc and numerical input data, the MBTEC program reads two

other input files : a topology file which defines the relationship of all blocks and block

boundaries and a grid coordinates input file which gives the x, y and z coordinates

of the grid points in all the blocks.

8. The program outputs several files which can be used to interpret the results : Conver-

gence characteristics, aircraft surface data for analysis with AMI'S OMNI3D software

and field data for analysis with SterUng Software's SSV-4D software. Both graphics

applications run on Silicon Graphics workstations.
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Figure 29 : H-H grid topology used in the multi-block code.
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6.2 ALGORITHM STRUCTURE

The program is written in a modular form with seven important parts :

1. Multi-block input module

2. Multi-block data interpretation module

3. Geometric data computation modiile

4. IMulti-block data management module

5. Flow solver module

6. Forces and moments calculation module

7. Output module

6. 2. 1 MuIti-Block In ut Module

This module is made of three subroutines : INPUT,MESHIN and FLOWIN The code

requires the input of three sets of data :

a. Numerical and Aerod namic In ut Data

- Title of the case.

- Numerical parameters controlling the calculations and the algorithm : number of iter-

ations, time stepping parameters, artificial viscosity coefficients, residual averaging and

enthalpy damping parameters.

- Aerodynamic flow conditions : Mach number, angle of incidence and yaw angle.

- Engine operating conditions. Inlet mass flow ratio; exhaust Mach number, total pressure

and total temperature. In the multi-block code, the inlet and exhaust planes may

be covered by several blocks. A short-cowled turbofan engine such as the CF-34 has

separate fan and core exhaust with different flow conditions. The input data defines

clearly the flow conditions pertaining to each block face located on the engine inlet or
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exhaust planes.

- Geometrical data used to normalize the aerodynamic forces and moments : wing refer-

ence area, reference chord and moment reference center.

b. Multi-Block To lo In ut Data

The information required to connect the various blocks into the correct physical domain

must be suppUed to the Euler code. This file, produced by the grid generator, is a direct

interpretation of the information coded on the CADAM drawing by the user, during the

domain decomposition phase. The multi-block Euler code requires information on the total

number of blocks (NBLK) as well as the following topological information for each block :

- The block index number (MB).

- The maximum grid dimension in each coordinate direction (IMAX, JMAX, KMAX).

- The index of the "group" or "block superelement" to which the block belongs

(GROUP). The topology requirements of the Euler code (one to one face matching, sin-

gle boundary condition per face, etc. ) result in large numbers of blocks for compUcated

aircraft configurations (600 blocks for the Challenger complete aircraft configuration.

However, in order to simplify the grid generation process, the grid is generated in the

smallest number of simply connected blocks that can be defined for the configuration (16

blocks for the ChaUenger). After a grid is defined in each one of these bigger blocks or

"block superelements", the grid generation program automatically subdivides them into

the larger number of blocks required to satisfy the Euler code topology requirements.

This procedure has two advantages : first, it ensure perfect grid continuity across the

boundaries of block belonging to the same group; secondly, the group information sup-

pUed to the multi-block Euler codes allows the solver to amalgamate groups together if

necessary to improve the efficiency of the solver.
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- For each one of the sbc faces of the block : the face index number (1, 1 to 6) and a

number indicating the boundary condition attached to the face (IBC) :

IBC = 0 : Side flow boundary

IBC = 1 : Inflow or outflow boundary

IBC = 2 : Inflow or outflow boundary

IBC = 3 : Plane of syinmetry boundary

IBC = 4 : Solid surface boundary

IBC = 5 : Block interface (wing cut)

IBC = 6 : Block interface

IBC = 7 : Engine inlet boundary

IBC = 8 : Engine exhaust boundary

IBC = 9 : Interior face collapsed to a singular line

Initially, inflow and outflow boundaries were marked separately. However, the non-reflective

boundary conditions used in the code permit the positioning of these boundaries relatively

close to the aircraft surface. the direction of the flow on some of these boundaries is

therefore not known a priori. ff IBC = 1 or IBC = 2, the program tests every node on

the boundary to establish whether it has inflow or outflow during the calculations. It then

applies the appropriate boundary condition.

- The block index number of the block adjacent to the face (IBLOK, 0 if the face is

on a solid surface of a far-field boundajy).

- The number of the aircraft component to which the face belongs (ICOMP). This

number is defined only for faces which are part of the aircraft surface. This infor-

mation is required in order to identify upper and lower surfaces of a wing and to

calculate the forces and moments acting on the aircraft surface.
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- A face reversal parameter (IREV). If this parameter is not zero, it means that the

adjacent block has a grid index running in the opposite direction; for example, in

the wake of a wing modelled with blocks making an overall C-topology : the upper

block has an i-index running downstream whereas the bottom block has an i-index

runmng upstream.

c. Mesh In ut Data

A file containing the x,y,z coordinates of the grid points for aU the blocks specified in the

topology file is read by subroutine MESHIN. This file is generated by the eUiptic grid

generation program. The file is usuaUy very large. In order to reduce the time required to

read the data, the file is unformatted and read in an asynchronous manner.

d. Flow Corn utation Restart Data

Euler calculation for complete aircraft configurations consume large amounts of CPU time

on the computer. During the course of this development, it was found useful to implement

a restart capability. At the end of a normal run, the program outputs a large file with the

values of the conservative variables at all the grid node points. It is subsequently possible

to read this file (subroutine FLOWIN) and continue the computations for an additional

number of iterations or to use it as an initial flow field for computations at sUghtly different

flow conditions. In order not to loose accuracy during the read and write operations, this
file is written unformatted.

6.2.2 MuIti-Block Data Inter retation Module

This module is made of the subroutines CONECT, TAG and TAG2. The program reads

the coordinates of the grid in each block independently. An interpretation of the data

structure of the multi-block grid is therefore necessary. The program uses the information
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in the topology file to interpret the grid characteristics, connect adjacent blocks, create

halo ceUs, identify boundary conditions for each face and flag the faces belonging to the

same aircraft component. The calculation of the Euler fluxes required to advance the

solution at a node point (ij, k) in the domain involves the variables at the vertices of the 8

ceUs surrounding the node point as shown in figure 30(a). The calculation of the artificial

viscosity fluxes requires the knowledge of the values of the conservative variables at five

node points along each axis, as shown in figure 30(a). There are two exceptions to this :

- At a solid boundary or on a plane or symmetry, where the solution is calculated using

only variables lying on the inside of the domain (figure 30(b)).

- At an inflow, outflow or side boundary, where the last node point to be calculated is the

one before the boundary. The Euler fluxes in this case are calculated in the same fashion

as for an interior node point but the artificial viscosity fluxes are calculated using only

four node points along the direction leading to the boundary since the fifth point is not

available (figure 30(c)).

The multi-block code was formulated in such a way that the block boundaries are trans-

parent to the solution. At a block boundary which is inside the flow field, the solution

is calculated as much as possible in the same fashion as at any point inside the block. It

was therefore necessary to provide at the edge of every block face inside the domain two

layers of node points from the adjacent block. These extra layers of grid planes wiU be

designated as the "halo grid planes". They provide two "halo cells" on the side of the

block as shown in figure 26. The data from the input topology file is used by subroutine

CONECT to identify the grid points from adjacent blocks making the "halo grid planes".

The geometry of the halo grid points and halo cells (x, y, z coordinates of those grid points,

ceU volumes and cell face areas and normals) are identified once at the beginning of the
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execution and carried by the program along with the data of the block's own grid points.

The flow variables at the halo grid points must be updated after each iteration to their new

values obtained in the solution of the blocks to which they belong. Subroutine CONECT

calculates for each block interface the index values of the associated "halo grid points"

to make this update possible. By interpreting the data from the input topology file, the

program determines and stores the following information for each block :

- The index number of the block adjacent to each one of the six faces of the "current"

block MB : IBLOK(1, MB). The index is zero if the face has no neighbour (face on

domain boundary or solid surface).

- The index of the block adjacent to each one of the twelve edges of the "current" block

MB : IEDGE(m, MB). The index is zero if the edge has no neighbour (edge on domain

boundary or soUd surface).

- The index of the block adjacent to each one of the eight corners of the "current" block

MB : ICORN(n, MB). The index is zero if the comer has no neighbour (corner on

domain boundary or solid surface).

This information is then used to construct an "extended" block, which is made of the

grid planes of the current block plus the halo grid planes, the number of which may be zero

or two for a given face, depending on the boundary condition on the face. The grid indices

in aU three spatial directions are modified to correspond to the extended block topology.

Special cases occur at blocks adjacent to aircraft surfaces. In order to avoid discretizing the

flow equations across soUd boundaries, subroutine CONECT assigns parametric values to

each block face indicating its location in relation to wing surfaces as shown on figure 31.

- Parameter JPAR3(I,MB) : this parameter indicates the location of face 3 of a block

(see index convention on figure 4) with respect to the wing :
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JPAR3(1, AIB) = 0 : face 3 not on a cut of any wing surface.

JPAR3(1, MB) = 1 : face 3 located on a wing cut downstream of a wing surface.

JPAB,3(1,MB) = 2 : face 3 located on a wing cut upstream of a wing surface.

JPAR3(1, ]V[B) = 3 : face 3 located on wing cut upstream of a wing surface and

downstream of another wing trailing edge.

Parameters JPAR4, JPAR5 and JPAR6 are similarly defined for faces 4, 5 and 6 of a

block.

Parameters KPAR3, KPAR4, KPAR5 and KPAR6 are defined to indicate whether

face 3, 4, 5 or 6 ofa block is located inboard (-1) or outboard (+1) of a wing tip.

- Parameters JKPAR3, JKPAR4, JKPAR5 and JKPAR6 are defined to indicate

whether face 3, 4, 5 or 6 ofa blockis located diagonally wing cut.

0 : face not diagonally located with respect to a wing surface.

-1 : face located inboard and downstream of a wing surface.

1 : face located outboard and downstream of a wing surface.

-2 : face located inboard and upstream of a wing surface.

2 : face located outboard and upstream of a wing surface.

The topology input data serves also to locate special points in the grid (singular lines, sin-

gular points, blocks faces adjacent to singular Unes or singular points) where the calculation

of convective and dissipative fliixes must be done in a non-standard fashion. These points

are flagged in subroutines TAG and TAG2 for processing by the flow solver. The utmost

care must be exercised in the treatment of these special points not to compromise the con-

vergence of the calculations. This item necessitated lengthy experimentation of possible

options.



I.J*2.K

142

i+a J,K

J.K

I.J K-2
J. K+1 I, J, K+2

. J. K^

/

/
/

/

.̂ t I

I.J-2.K (a)

;a.

I

s^
sg

/^

(b)

I
m

g

(c)

Figure 30 : Discretization cells used in the multi-block code.
(a) Standard cell; (b) Solid boundary cell;
(c) Inflow bouiidary cell.



143

CUT OPTIO S
UPSTREAM
BLOCK
JPR3 = 2

UPPER INBOARD UPPER
BLOCK
KPR3 = -I

S^A^OCMWNSTREAM
JKPR3 =-T

DOWNSTREAM UPPER
BLOCK
JPR3 = I

I

-k.
I

INBOARD LOWER
BLOCK
KPR4 = -I

WING

-"'
L.

DOWNSTREAM LOWER
BLOCK
JPR4 = I

I

I

--T^.

-"'

UPSTREAM
BLOCK
JPR4 = 2

LOWER
- -".^

OUTBOARD UPSTREAM
UPPER BLOCK
JKPR3 = 2

OUTBOARD UPSTREAM
LOWER BLOCK
JKPR4 = 2

OUTBOARD UPPER
BLOCK
KPR3 = I

OUTBOARD LOWER
BLOCK
KPR4 = I

OUTBOARD DOWNSTREAM
LOWER BLOCK
JKPR4 = I

Figure 31 : Wing cut options at block boundary interfaces.



144

6. 2.3 Geometric Data Corn utation Module

The calculation of the geometry characteristics of the grid in each block is organized by sub-

routine SETUP. The calculation is made through appropriate calls to subroutines MB-

GEOM, METRIC and NORMAL an the resulting information is stored in memory

or on disk for each block. Subroutine MBGEOM builds the matrix of (x, y,z) coordi-

nates for the "extended" blocks including the "halo" grid planes determined in subroutine

CONECT. In the multi-block method proposed here, the Euler equations are discretized

only at "inner block" grid points which are not on a far field boundary. The flow vari-

ables at grid points in the block interface "halo" grid planes are not updated. Subroutine

MBGEOM uses the topology input data to determine two index limits for each block :

- The maximum dimensions IL, JL and KL of the "extended" blocks, including the
"halo" grid planes.

- The lower and upper Umit of the flow update in all three coordinate directions : II to

12, Jl to J2, Kl to K2. The relation between these limits and the "extended" block

maximum dimensions will be discussed in the section related to the multi-block flow

solver.

The subroutine METRIC calculates the ceU volumes, the projected areas of all cell faces

and the total area of each block face. The subroutine NORMAL calculates the surface

normals on block boundaries and the tangent vectors at all intersections between soUd

surfaces. The normals are used in the soUd surface and far field boundary condition formu-

lations. The tangents vectors are used to impose an additional boundary condition at the

junction between soUd surfaces and between soUd surfaces and the plane of symmetry. The

grid geometric characteristics are calculated ouce for each block at the beginning of the

execution of the program and saved by subroutine SETUP in a large array from which the
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data is recovered each time a block is solved for. The multi-block code developed here uses

an H-H grid topology. This topology and the constraint of one type of boundary condition

per block face results in block junctions intersecting the wing surface as shown in figure 32.

This figure shows the junction of four blocks at a wing leading edge. Since the equations

are solved and the boundary conditions appUed in each block independently, it is important

to make sure that the normals to the surface used at the junction point in all four blocks

are the same. The program assigns to every node point a normal obtained as the average of

the four ceU faces joining at that node. At the leading edge node, the normals calculated in

the normal fashion would be different in the upper and lower blocks. Subroutine SETUP

uses the topology data to identify nodes with this problem and places a unique value of the

surface normal in all four blocks.

6. 2.4 Multi-Block Data Mana ement Module

The flow solver works on one block at a time, performing normaUy one complete time

integration cycle. The block being solved for is designated in the rest of the text as the

"current block". The grid information and variables at the grid points of the blocks not

being solved for must be preserved. The data is stored either in memory if the space

available on the computer is large enough or written to disk. At the end of a cycle in a

block, the current block updated variables are stored and the information pertaining to the

next block to be calculated is retrieved. An outer loop introduced in the program cycles

the flow solution through all blocks at each iteration. The information restored before

the calculation is performed includes the grid points x,y,z coordinates, the ceU volumes,

the ceU face areas and ceU face directed normals and the conservative variables at the

grid points. The solution is then advanced through one time step and the updated flow
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variables stored again in core memory for use at the following iteration for that block. This

information exchange is organized by subroutines RBLOK and WBLOK. RBLOK reads

from storage the geometric data and the flow variables of to the next block to be solved for

and transfers the information into arrays used by the flow solver. This subroutine retrieves

also the same information for aU the grid points in the "halo" of the block. At the end of

the iteration for the block, subroutine WBLOK writes the updated flow variables of the

'inner block" for use at the next iteration. There are three types of data which must be

manipulated by the multi-block flow solver :

1. The geometric characteristics of the grid cells. This large amount of data is calculated

and stored once at the beginning of the execution for all the blocks in the flow domain.

The data for each block is theu read by RBLOK before the solution is advanced in

that block.

2. The block topological data, the geometric data related to the block faces and the block

convergence characteristics. This smaller amount of information is calculated at the

beginning of the execution and stored in multi-dimensional matrices in which the block

number is one of the indices.

3. The flow variables. These are stored in core by WBLOK at the end of every iteration

in a block and read again by RBLOK at the beginning of the next iteration for the

same block.
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6.2.5 MuIti-Block Flow Solver Module

The multi-block formulation has an impact on the calculation of the Euler fluxes and the

artificial viscosity fluxes presented earUer in the text. The solver is also aiFected by the fact

that any boundary condition can be specified on any one of the faces of a block. Finally,

the flow solver was written to take into account the cases of the special points introduced

near aircraft surfaces by the H-H grid topology. The flow solution module is written for a

generic block with six faces and an H-H grid. This block is the "extended" block, which

is to the "inner" block modified by the addition of "halo" grid planes from neighbouring

blocks. Figure 4 indicates the orientation of a typical block with an H-H grid, as def ined

earlier. The faces are numbered in the following sequence :

Face 1 : "Upstream face" normal to the i direction (longitudinal direction)

Face 2 : "Downstream face" normal to the i direction

Face 3 : "Bottom face" normal to the j direction (vertical direction)

Face 4 : "Top face" normal to the j direction

Face 5 : "Inboard face" normal to the k direction! (lateral direction)

Face 6 : "Outboard face" normal to the k direction

The maximum limits of variation of the indices in the "extended" block are

i direction : from 1 to IL

j direction : from 1 to JL

k direction : from 1 to KL

Some of the grid planes are far field boundary planes or are halo grid planes belonging to

a neighbouring block. The variables at points on far field boundaries are updated when

the boundary condition is applied. The variables at points on the "halo" grid planes are

used for the block interface boundary condition and are not updated when solving for the
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'current" block. The actual range of grid points at which the solution is updated when

solving for the block depends on the boundary conditions attached to the six faces. The

range is defined as foUows :

i = il : first grid plane to be updated in the i direction

i = i2 : last grid plane to be updated in the i direction

j = jl : first grid plane to be updated in the j direction

j = j2 : last grid plane to be updated in the j direction

k == kl : first grid plane to be updated in the k direction

k = k2 : last grid plane to be updated in the k direction

These limits are calculated once for each block at the beginning of the execution. A

summary for the cases most often encountered is shown in table 2. For example, at the

front face of a block located at the inflow boundary, the solution is updated in subroutine

EULER only from i =il == 2. The variables at points on the grid plane ati = 1 are

obtained as a result of the application of the inflow boundary condition. If the downstream

face of the block is an interface with another block, the program adds a "halo" of two grid

planes from the adjacent block to be used for discretizing the equation at the interface.

The index Uinit IL of the "extended" block including the "halo" grid planes is therefore

higher than the original block index Umit by two. The solver calculates the solution from

il =2 to i2 = IL-2.
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Block Face Bounda Condition Index limit

1 Upstream

2 Downstream

3 Bottom

4 Top

5 Inboard

6 Outboard

1 Inflow

6 Interface

8 Exhaust

2 Outflow
6 Interface

7 Inlet

0 Side flow

1 Inflow/Outflow
3 Symmetry plane
4 Solid surface

5 Interface/cut
6 Interface

0 Side flow

1 Inflow/Outflow
3 Symmetry plane
4 SoUd surface

5 Interface/cut
6 Interfzice

0 Side flow

1 Inflow/Outflow
3 Symmetry plane
4 Solid surface

5 laterface/cut
6 Interface

0 Side flow
1 Inflow/Outflow
3 Synimetry plane
4 Solid surface

5 Interface/cut
6 Interface

il = 2
il = 3
il =2

i2 = IL-1
i2 = IL-2
i2 = IL-1

Jl=2
jl= 2
Jl=l
Jl=l
Jl=3
Jl=3

j2 = JL-1
j2 = JL-1
j2=JL
j2=JL
j2 = JL-2
j2 = JL-2

kl = 2
kl= 2
kl = 1
kl = 1
kl =3
kl =3

k2 = KL-1
k2 = KL-1
k2= KL
k2= KL
k2 = KL-2
k2 = KL-2
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6. 2. 5. 1 Calculation of the Permissible Time Step

The MBTEC program uses a fully explicit time stepping scheme. This scheme has a

maximum permissible time step Umited by the Courant-Friedrichs-Lewy (CFL) condition.

This condition states that for the computations to remain stable, the domain of depen-

dence of the numerical scheme must contain that of the partial diflFerential equations. The

information conveyed by a partial differential equation travels at speeds corresponding to

the characteristic wave speeds. The characteristic speeds for the Euler equations can be

found by diagonalizing the equations and solving for the eigenvalues. Let s be the highest

characteristic wave speed. In a given time At, the information propagates therefore as

far as over a distance given by s^t. Consider a simple one-stage numerical scheme. At

every iteration, the solution is advanced by a time step At while numerical information is

transferred over a distance Aa; corresponding to the support of the numerical scheme. The

CFL condition limits the maximum time step to a value such that :

Aa; > sAf (6. 2. 1)

The maximum permissible time step for this single-stage scheme is therefore :

At=^.
s

(6. 2. 2)

The expression CFL = s^ is known as the "Courant number". For the multi-stage scheme

used in MBTEC, it is found that the maximum Courant number that can be used is 2y^.

The code uses local adaptive time stepping as a means of accelerating the convergence to

steady state. This means that at each grid point, the solution is advanced by the highest

At compatible with local stabiUty of the scheme. Subroutine STEP calculates first the

average spectral radius of the Jacobian matrices in each one of the three directions in space.
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For the flux across the cell face in the i direction, it can be estimated as :

A. =|^|+c %+^+% (6. 2. 3)

where c is the speed of sound, u the local fluid velocity and S, the cell face directed area

in the i direction. The code calculates similarly the spectral radu \j and Xk in the j and

k directions. A conservative estimate of the local time step for a nominal Courant number

of 1 is given by :

At = ^ijk
\i + A, + \k (6. 2. 4)

where Sl, ^ is the control volume. The spectral radii calculated in STEP are also used to

scale the dissipative coefficients of the artificial viscosity. The constraints of the multi-block

code cause the presence of high aspect ratio mesh ceUs in the grid. To avoid large unbalances

of the coefficients in the i, j and k directions, the artificial dissipation is redistributed

between the three coordinate directions. This is done by scaling the spectral radii in the

following manner :

Ri=^Jr^+rki)

^, =A, (l+^+r,,)
^=^(l+^+r^)

(6. 2.5)

(6. 2. 6)

(6. 2. 7)

where :

A;
(6. 2.8)

(6. 2. 9)

(6. 2. 10)

The exponent a can be used to construct different dissipation schemes. The best results in

the present work were obtained with an exponent a = 1.

... = (XL\"
u - ^. TT

^

r^k = ^a
vfe

rki = (^)a
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The H-H topology used in the multi-block code generated special cases of blocks having a

face adjacent to a wing soUd surface. When calculating the spectral time step close to such

a boundary, care must be taken not to discretize across a solid surface in the halo of the

block. The MBTEC code uses a cell-vertex formulation in which the control volume for

a node point is made of the eight ceUs surrounding the node. The H-H block formulation

generates special cases where the control volume can be made of two, three, four or six

ceUs, as shown in figure 33. The evaluation of the spectral radii and of the time step was

formulated to cater for all these special cases. The dissipative coefficients, calculated in this

subroutine, are set to zero on aU faces with soUd surface or plane of symmetry boundary

conditions. The code also uses adaptive time stepping. In this scheme, the local time step

is modified by an adaptive coefficient built as a sensor of the pressure gradients in the three

coordinate directions

^adaptive = /3Af (6. 2. 11)

where

/?= 1 + min[min((CFL - l), 0), 2(i/, + ^, + ^)] (6. 2. 12)

CFL is the Courant number. The adaptive sensor v, in the i direction is defined as :

^ ^ \Pi+l, J, k - ^Pi, j,k+Pi-l, j, k |
'Pi+l,j, k + ̂ Pi,j, k + Pi-l,j, k ' (6. 2. 13)

The sensors Vj and nu,, in the j and k directions are defined simUarly. Near leading edge

where the H-H grid topology gives i+1 locations inside the airfoil, a mirroring procedure

is used which gives p;+ij,A = pi - l, j, k. A similar procedure was used in the j and k
directions near solid surfaces.
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3 CELLS
CONTROL VOLUME

WING

6 CELLS
CONTROL VOLUME

4 CELLS
CONTROL VOLUME

Figure 33 : Control volunies used in the niulti-block code.
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6. 2. 5. 2 Calculation of the Convective Fluxes

The algorithm used in the code requires the calculation of the convective fluxes Q(W^ ..

through the boundaries of the control volume defined around every node point in the grid.

A normal control volume is made of the eight hexahedral ceUs joining at the node. The

mass, momentum and energy fluxes are calculated through the faces of each one of the eight

ceUs making the control volume. These fluxes are then accumulated. The fluxes through

ceU boundaries internal to the control volume cancel each other and the remaining values

represent fluxes through the outer boundary of the volume, as described in chapter 4 :

9W,,,., =^^.^
e=i

(6. 2. 14)

On a soUd surface or on the plane of symmetry, the mass and energy fluxes are zero and

the three components of momentum fluxes are reduced to the contribution of the pressure

acting on the ceU faces. The multi-block code is formulated in a general manner which

allows this to occur at any one of the six faces of a mesh ceU, depending on the boundary

conditions. The calculation of the cell fluxes takes into account that in the multi-block

code, the control volume at special points can be made of two, three, four or six mesh ceUs.

instead of eight. Another special case occurs at points near block interfaces adjacent to

soUd surfaces. Tests were added not to accumulate fluxes through solid boundaries that

may exist in the halo of the block. This situation arises from the fact that the flow update

boundaries in two adjacent blocks are not always the same. Figure 32 shows an example

with an isolated wing case. Block 4, for instaace, has an interface with block 1 at its bottom

face and hence Jl = 3 for this block. However, the bottom face of block 5 is the wing

upper surface and therefore Jl = 1 in this block. The solution in block 4 uses the variables

at the first two grid planes in block 5 (i == IL-1 and i = IL). The variables atj = 1 and
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J = 2 in these "halo" grid planes are therefore located underneath the wiug and should

not be used without care. To signal that such a situation may arise, a separate boundary

condition code (IBC == 5) was introduced, for block interfaces that terminate on a soUd

surface (this boundary condition is referred to as "inter face/cut" in table 2).

Both the convergence of the code and the accuracy of the results are affected by the quality

of detail with which the fluxes are accumulated near such interfaces. An important part

of the formulation of the multi-block code was therefore devoted to clearly identifying cells

lying on soUd surfaces adjacent to leading edges or wakes and ceUs lying on interfaces adja-

cent to solid surfaces. A chaUenge was to organize in subroutine EFLUX the calculation

of these special cases without jeopardizing the overaU loop structure needed for efficient

vector computations.

6. 2. 5. 3 Calculation of the Artificial Viscosity Fluxes

The discretization scheme in the MBTEC code uses central spatial differencing and re-

quires therefore the addition of artificial viscosity to suppress osciUations. The addition of

the artificial viscosity to the Euler equation, the discretization of these equations and the

calculation of the dissipation fluxes D{W),^k were discussed in chapter 4. The actual

implementation of the artificial viscosity scheme in the code proved during the

present development to be the most critical part of the multi-block algorithm.

Special attention was paid to the formulation of the dissipative terms D(W)i^k near bound-
anes since improper treatment was found to lead to distortions of the flux balances and to

result in either loss of convergence or in the calculation of inaccurate results. A great deal

of experimentation was necessary in particular to arrive at a satisfactory calculation of
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these fluxes at the wing cut interfaces (IBC = 5). We were helped in this exploratory

work by three exceUent papers by Turkel [70], Caughey and Turkel [67] and Turkel and

Vatsa [71] discussing the effects of artificial viscosity on finite volume algorithms.

The successful discretization of the artificial viscosity terms in subroutine DFLUX required

attention to the following four items

- The formulation of the dissipative fluxes second order and forth order diflFerences near

soUd surfaces, especially near wing leading edges. In particular, it was found that

artificial viscosity fluxes D(W)ij^ calculated in different blocks joining at a wing leading

edge must be calculated in the same manner in all these blocks.

- The scaling of the artificial dissipative fluxes required to obtain the right balance of

dissipation in the three coordinate directions. This is necessary because of the high

aspect ratio cells typically present in multi-block grids generated to conform the topology

of this program. The calculation of the scaling coefficients j%, j^ was described in the

section on the evaluation of the time step.

- The treatment of the artificial viscosity across the wakes, where they must be calculated.

For the calculation of dissipative fluxes, it is better not to treat the wakes as solid

surfaces.

- The treatment of the artificial viscosity at block interfaces, particularly at the block

Junctions near solid surfaces. It is desirable to have a formulation of the dissipative

terms which is conservative, that is, which does not add mass, momentum or energy in

the field. To achieve this requires fEat all dissipative terms cancel when summed over

the entire flow field. We seeked therefore to ensure that, for each dissipative contribution

to a particular point, there was an equal and opposite contribution to a neiglibouring
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point. This was most difficult to achieve across block boundaries.

6.2.5.4 Time Integration

An algorithm was written to integrate the Euler equation in an arbitrary block with H-H

topology. The ordinary differential equation solved at each node point in the flow field is :

^V^W^k) + QW^ - D{W)^ = 0 (6. 2. 15)

This integration is performed for each block in subroutine EULER, using convective fluxes

QWi^k calculated in subroutine EFLUX and dissipation fluxes -D(TV). ̂  calculated in

subroutine DFLUX. The solution is advanced in time using the five-stage Runge-Kutta

integration scheme! presented in chapter 4 and the local time steps evaluated in subroutine

STEP. The maximum permissible time step is calculated at every iteration, the convective

fluxes at every Runge-Kutta stage and the dissipative fluxes at stages 1, 3 and 5; the

dissipation fluxes are frozen at their previous stage values at the other stages of the scheme.

Euler also calls subroutine BCIMP to apply the appropriate boundary conditions at block

faces. It applies the enthalpy damping and calls subroutine PSMOO for the residual

averaging designed to improve the convergence characteristics. The program uses flags

calculated in the topology interpretation subroutine TAG to identify blocks located in the

vicinity of jet engine exhausts. Enthalpy damping is switched off in these blocks.

6. 2. 5. 5 Application of the Boundary Conditions

The boundary conditions in the multi-block codes are applied in four separate subroutines.

subroutine BCFAR is used to apply far field boundary conditions on any one of the six

faces of a block. These conditions can be inflow, outflow or side flow conditions and relate
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to subsonic or supersonic boundaries. The formulation of the boundary conditions was

presented in the previous chapter. The solid surface and plane of symmetry boundary

conditions are enforced in subroutine B GIMP. Here too, any one of the six faces of a

block can be labelled as a solid surface. The program also detects intersections between

soUd faces and enforces the tangency of the flow there. Modifications were made to invoke

also BCIMP for block faces which are not solid surfaces, but which have one edge located

on such a surface. A boundary condition similar to the one applied on that edge in the

adjacent block sitting on the soUd surface is implemented. A siniilar procedure is used for

blocks having only a comer point located on a soUd surface. An index logic was devised in

order to garantee that all cases are being properly treated without undue checking at every

iteration. Subroutine BCIMP also equalizes the corrections to the residuals at all nodes

collapsed on a single point. This ensures the uniqueness of the solution there. The engine

inlet boundary conditions are appUed in subroutine BCINLET in the manner described

in the previous chapter. Engine exhaust boundary conditions are applied in subroutine

BCNOZLE.

6. 2. 5. 6 Residual Averaging

The residuals at the node points of every block are replaced by a weighted average of

residuals at neighbouring points. By smoothing the residuals and increasing the support

of the scheme, this procedure relaxes the restriction on the time step imposed by the

CFL condition. For maximum convergence improvement, theses averages are calculated

impUcitly. In a one dimensional case, the residual R(W)i is replaced by 'R(W), using the
following expression :

-^(W). -i + (1 + 2e)R(W), + eR(W)i+, = R(W)i (6. 2. 16)
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For aa infinite interval, this equation has the explicit solution :

1-7-
R^w^ = TT7- E ^^(^)i+. (6. 2. 17)

g=-oo

where :

£=(l-r)2 ' r<l (6. 2.18)

In the case of a finite interval with non periodic boundary condition, one has to choose

boundary conditions such that R(W), given by the expression above is a solution of the

impUcit equation, with R(W)i+q =0 if i+q Ues outside the interval. This solution can

be achieved by setting

R(W)n = R{W)n (6.2. 19)

R(W)i = R(W)i - r(R(W)i - R(W), ^)

for Il+l<, i<12

'R(w)i2 = -^-, :R{W)n

R(W), = R(W)i - r(R(W)i-R(W)i+,)

for II <i< 12-1

(6. 2.20)

(6. 2.21)

(6. 2. 22)

In the three-dimensional case of the present work, the smoothing is appUed in product
form :

(1 - £. ^)(1 - £y62y)(l - e^)R = R (6. 2. 23)

where R is the unsmoothed residual, <?^, ̂  and ̂  the second difference operators and £^,

£y and £z the smoothing coef&cients given in input to the program. Subroutine PSMOO

smooths the residuals in the i, j and k directions successively.
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6. 2. 5. 7 Convergence Monitoring

The program monitors the convergence of the numerical computations by calculating and

storing at every iteration the values of the maximum and average residuals of the discretized

equation in the field, the values of the maximum and average enthalpy and the location

in the field of the maximum residual and maximum enthalpy. The program also tracks

at every iteration the number of supersonic points in the field and the values of the lift

coefficient CL and the drag coefficient CD. The average contraction ratio of the residuals

over one iteration is also calculated at the end of the computations. In the multi-block code,

it is necessary to calculate and store these parameters for each block at every iteration. In

order to calculate the contraction ratio of the solution in each block, it is necessary to keep

constantly in memory the residual values of all the blocks. The program calculates the

forces acting on each face of each solid surface boundary at every iteration. The evolution

of the total aircraft forces and moments during the calculation is also monitored. The

multi-block code is formulated such that the variables at block interfaces are solved for

twice, once in each block. The variables in the "halo" grid planes are not updated during

a block iteration and remain frozen at their starting values during the Runge-Kutta time-

stepping. At an interface, these "halo" grid planes are on the left in one block and on

the right in the other block. This, together with some directional aspects of the flow

calculation, introduce very small differences in the values calculated at the interface inside

the two blocks. These differences are erased by replacing in both blocks the variables at

the interface by the average of the values calculated in the two blocks. At node points

where more than two blocks interface, the variables are replaced by the average of the

values in all joining blocks. This procedure, implemented in subroutine AVE, was found
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to lead to satisfactory convergence characteristics in most of the flow field when appUed

carefully. A special arrangement was necessary at wing cut interfaces. As shown before, the

control volumes used by the blocks located above the wing cut are diflferent from the control

volumes used by the blocks located underneath the wing cut, at the nodes in contact with

the wing surface. The averaging procedure described above is applied once per iteration,

after the solution has been advanced by one time step inside all the blocks. This by itself

did not appear to be sufficient to ensure proper convergence of the calculation at wing

cut planes near the wing surface. The reason is the fact that the convective fluxes across

the mesh ceUs are evaluated five times during a flow iteration, once at each Runge-Kutta

time stage. The dissipative fluxes are evaluated three times during each iteration. It was

discovered that the small differences due to the different control volumes on upper and

lower blocks were sufficient to cause the convective and dissipative fluxes to be more and

more different from one Runge-Kutta evaluation to the next and result in different variables

calculated at the end of the cycle. A new subroutine AVELE was written to average the

values of the conservative variables at wing leading edge, traiUng edge and tip points after

each Runge-Kutta stage. This procedure improved considerably the overall convergence

characteristics of the computations.

6. 2.6 Forces and Moments Module

In the multi-block code, any one of the six faces of a block can be a solid surface with

any orientation in space and may belong to the wing, the body, or any other component

of the aircraft. To obtain the forces and moments on an aircraft component requires

the accumulation of the forces and moments calculated, usually in different blocks, on

the various block faces making up that component. The following scheme was therefore
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implemented in order to calculate properly the forces and moments acting on the aircraft .

- In the topology input data, the block faces which are solid surfaces are identified with

the parameter IBC = 4).

- In the topology input data, the component to which a solid surface face belongs is

identified by the parameter ICOMP. The values ICOMP = 1 to 98 designate wing-type

components and the values ICOMP = 99 and above designate body-type components.

For example, the 600 blocks complete ChaUenger aircraft case has the following

component numbers :

Wing + winglet

Horizontal tail

Engine Pylon

Vertical fin

Engine nacelle

Fuselage

component # 1

component # 2

component # 3

component # 4

component # 99

component # 100

Subroutine SECPRP calculates the pressure coefficients at the nodes located on all

block faces identified as solid surfaces.

Subroutine PATCHF integrate these pressure coefficients to obtain the three force

components CX, CY, CZ and three moment components CMX, CMY, CMZ on

each block face identified as a solid surface. These forces and moments are calculated in

the global coordinate system used to model the geometry of the aircraft. This is such

that they can be added later without coordinate transformation. The values of these

forces and moments for each face are stored in memory for all blocks.

Subroutine COMPF adds the forces and moments of all the block faces belonging to

the same component. COMPF also calculates the forces and moments in the wind axis
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system and converts all the aerodynamic coefficients to the reference areas and lengths

given in the input for the complete configuration. The force and moment coefficients of

all the various components are then added to obtain the global aircraft characteristics.

In many cases, the upper and lower surface of an aircraft wing is made up of several

blocks in the chordwise and spanwise directions. The program uses the data in input to

reconstitute the complete wing surface pressure distribution. This is in view of the Unk to

an interactive boundary layer calculation. This data can then be interpolated to yield the

chordwise pressure distribution calculated on any wing section.

6. 2. 7 Out ut Module

The multi-block Euler code is used to analyze complex aircraft configurations. It was

therefore necessary to introduce new tools for sorting out the large amount of data that is

calculated. The multi-block program produces after each run several output files :

Printer output file

The program outputs a Une printer Me OUTPUT. OUT including :

- An echo of the numerical and aerodynamic input data.

- A list of the topology relationships of all the blocks, as calculated by CONECT

including : the index numbers of the faces, edges and comer neighbours for aU blocks,

the list of wiug cut options (JPR3, etc. ) calculated for aU blocks, the minimum and

maximum dimensions of the "inner" and "extended" blocks.

- The areas of all the blocks faces, as calculated by METRIC.

- The list of all the flags determined for special points by subroutines TAG and

TAG2.

- The number of grid points inside each "inner" and "extended" block as well as the
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total number of grid points in the field.

- The convergence parameters (maximum and average residuals : value and location)

for all blocks, after a number of iterations specified by the user in input.

- A summary of the convergence characteristics (starting and end residual values, av-

erage contraction ratios) for all blocks, at the end of the calculations.

- A list of forces and moments for each aircraft component and for the complete con-

figuration.

Convergence history output file

The program outputs a file OUTPUT. HIST containing the history of the con-

vergence of the residuals in each block. This file can be used to produce graphic

representations of the convergence characteristics.

Restart file

The program outputs an unformatted file OUTPUT. REST containing the values

of the conservative variables at all grid points in all blocks obtained at the end of the

calculations. This file can be used to restart the computations for additional itera-

tions or as an initial flow field for calculations at slightly different flight conditions.

Surface data graphics file

The program outputs a file OUTPUT. OMNI with the geometry, velocity and pres-



sure distribution on the surface of the aircraft. This file is used as input to the A.M.I.

OMNI3D software to visualize the surface geometry, the grid and the pressure dis-

tribution on a Silicon Graphics workstation. It is also used as input to the Canadair

program STREAMLINE which calculates the streamlines on the surface of the air-

craft, performs single-pass boundary layer calculations along these streamUnes and

determines possible locations of flow separation. This file is also used in conjunction

with the block topology information to obtain interpolated chordwise pressure dis-

tributions at any spanwise station along the wing. These pressure distributions can

then be compared with experimental data on line plots.

Field data graphics file

The program outputs a file OUTPUT. SSV with the (x, y,z) coordinates of the grid

points and the values of the conservative variables at every node of every block. This

file is used as an input to the Sterling Software SSV-4D program to visualize the

geometry, grid and field aerodynamic characteristics on a Silicon Graphics worksta-

tion. It includes also topological information to allow the visualization software to

predict flow field streamlines across block boundaries. It is also used as input to

the Canadair program OFFLINE which calculates off-body streamUnes around the

aircraft.



CHAPTER 7 : Applications

7. 1 VALIDATION OF THE MULTI-BLOCK PROCEDURES

To minimize the CPU and memory requirements of the three-dimensional Euler code during

its development, a generic test case was designed, with topology characteristics similar to

those of a typical wing configuration but sufficiently simple to guide the development of

the code. The testing of the program was carried out in steps designed to address concerns

specific to various stages of the code development. A simple grid was generated around an

isolated wiug with the geometry used for a wing-body configuration tested by NACA [107].

The wing has a symmetrical NACA 65A006 airfoil section, 45° sweepback an aspect ratio

4 and a taper ratio 0. 6. The domain around the wing was divided in 12 blocks as shown

in figure 34. The first sbc blocks are within the wing span and the remaining six blocks

outboard of the wing. Blocks 1 to 3 are located below the wing mean plane and blocks 4 to

6 above the wing mean plane. The wing upper surface corresponds to the entire face 3 of

block 5 and the wing lower surface to the entire face 4 of block 2. The testing was carried

out in three steps :

- Step 1 : 3-blocks test case

Objectives:

- Validate the H-H grid flow solver and the boundary conditions.

- Verify the interpretation of the topology data.

- Check the multi-block data storage in memory.

- Verify the interface boundary conditions in the i direction.
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A test case was designed using the inboard top three blocks of the 12 blocks grid. The three

blocks were numbered 1 to 3 in the downstream direction (figure 35). Relatively coarse

H-H grids were generated inside each block : block 1 had (9x12x6) grid points, block 2

(17x12x6) grid points and block 3 (9x12x6) grid points. Inflow boundary conditions were

appUed on face 1 of block 1 and outflow boundaries on face 2 of block 3. Solid surface

boundary conditions were applied on the bottom faces of blocks 1, 2 and 3 and symmetry

plane boundary conditions on the inboard faces of the three blocks. The top and outboard

faces of the three blocks were constrained to have a side flow boundary condition. The

case was run at Mach 0.8 and a = 0° and was therefore that of a flow in a channel with a

bump on the bottom floor bump in block 2. Figure 36 shows the results obtained after 200

iterations. The residuals converged by five orders of magnitude in aU three blocks. In this

solution, there is no averaging of the variables calculated at the interface of two adjacent

blocks. However, the converged solutions obtained in the two blocks at the interface are

for all practical purposes identical. There is an option in the program to force the values

of the variables at the block interfaces to be equal to their average. This option guaranties

a single value of the flow variables at the interface throughout the computations and was

found to give the same solution in the 3-block test case.

Step 2 : 6-blocks test case

Objectives :

- Verify the interpretation of the topology data.

- Verify the symmetry of the solution (wing upper and lower surfaces).

- Verify the interface boundary conditions in the j direction.

- Verify the wing cut boundary conditions.

This test case used the sue inboard blocks of the 12 blocks grid, as shown in figure 37. The
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three upper blocks were the same as in the 3 blocks test case. The three lower blocks had

the same number of points as the upper blocks. There was Cl continuity of the grid lines

across the block boundaries in both the i and j directions. Inflow boundary conditions were

applied to the upstream faces of blocks 1 and 4 and outflow boundary conditions to the

downstream faces of blocks 3 and 6. The plane of symmetry condition was appUed to the

inboard faces of all the blocks and a side boundary condition to the outboard faces of aU the

blocks as weU as on the the bottom faces of blocks 1, 2 and 3 and the top faces of blocks 4.5

and 6. A solid surface boundary condition was applied to the top surface of block 2 (wing

lower surface) and to the bottom surface of block 5 (wing upper surface). The interfaces

between blocks 1 and 4 in front of the wing and 3 and 6 behind the wing were given

the special boundary condition IBC = 5 (interface/wing cut) because they originate or

terminate on a soUd surface (wing trailing edge aud leading edge). The interface procedure

is the same as on all other block interfaces except on points located at the edge of the

wing where a special discretization was required. The flow in this case was therefore a

flow over a wing constrained by an infinitely large end plate at the tip. A calculation

was made at M = 0. 84 and a = 0.0° to test the symmetry of the soUd surface boundary

conditions. The top surface of the wing is a j =1 boundary plane in block 5 whereas the

bottom surface of the wing is a j = JL boundary in block 2. The boundary conditions

are therefore applied in different sections of the code and it was necessary to verify that

the solution was symmetrical. A run was made for 200 iterations, and convergence to five

orders of magnitude was obtained. Figure 38 shows the pressure distribution on a cut

located around the midspan and figure 39 shows a general view of the pressure distribution

obtained. This figure shows that a good level of symmetry is obtained, given the relatively

coarse mesh size in the field. The Uft coefficient calculated on the wing was C^ = 0.0013.
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A practical problem arose with this configuration at the leading edge. To impose the

boundary condition on the wing surface, the program calculates at every node point on the

soUd surface the vectors normal and tangent to the surface. The calculation at a given node

i is performed numerically using the coordinates of the surrounding node points, notably

at i-1 and i+1. In a C-grid wrapping around the airfoil, these i-1 and i+1 node points

are on the airfoU surface, ensuring continuity of the normal and tangent vectors calculated

at points near the leading edge. In a multi-block grid with H topology, the situation is

different. When solving for block 5 on top of the wing, the first node point on the airfoil

surface is the point at the leading edge. The information on the shape of the airfoil lower

surface is not available. As a result, the normal and tangent vectors calculated at the

leading edge point in the top and bottom blocks are not the same. The mesh spacing

of this test case is very coarse and the curvature of the thin leading edge of this wing

is poorly approximated by the straight Unes through the first grid points in the top and

bottom blocks. To improve the scheme, normal and tangent vectors common to the two

blocks were calculated in SETUP, using averages of the values calculated in each block.

This improved the results but the situation is responsible for the slight discontinuity of the

solution at the leading and trailing edge visible in the results presented in this relatively

coarse mesh case. Results presented further in the text with refined meshes will confirm

that complete continuity of the leading edge pressures was achieved.

- Step 3 : 12-blocks test case.

Objectives .

- Verify the interpretation of the topology data.

- Verify the interface boundary condition in the k direction.

- Verify the wing tip cut boundary conditions.
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This was a test case with interfaces in the i, j and k directions. The grid lines and slopes

were continuous across all block boundaries except for a discontinuity in slope in the j-plane

boundary between the blocks above and below the wing plane caused by the orthogonality

required near the wing surface. The blocks were numbered as shown in figure 34, with

inflow conditions applied to the upstream boundaries of blocks 1, 4, 7 and 10, and to the

bottom boundaries of blocks 1, 2, 3, 7, 8and9 . Outflow conditions were imposed on

the downstream faces of blocks 3, 6, 9 and 12 and to the top faces of blocks 4, 5, 6, 10,

11 and 12 and side flow conditions to the outboard faces of blocks 7 to 12. The special

boundary condition IBC = 5 (interface/wing cut) was applied aU the interfaces in the j

plane surrounding the wing mean plane : top faces of blocks 1, 3, 7, 8 and 9 and bottom

faces of blocks 4, 6, 10, 11 and 12. Calculations were made at Mach 0.94 and a = 3°.

Figure 40 shows the top surface pressure distributions. The flow is supersonic on the upper

surface. However, with only 17 points along the chord, the mesh is too coarse to capture

any existing shock wave. The coarseness of the mesh is also responsible for opened pressure

distributions at the leading and traiUng edges as discussed earlier. Several modifications

were made to the code during this testing phase. The final results of the test indicated that

the formulation of the multi-block code was working properly for a wing configuration. The

next step was to test the code using more refined grids and produce results with engineering

accuracy. This was done using the ONERA M6 wing geometry.
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Figure 36 :

Isobars on the floor bump (j=l) and velocity vectors calculated in.
plane of symmetry (k=l) and upstream ̂nd-downsTre"am'of the

). 3-block test case, M = 0. 80 and a = 0°.
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Figure 37 : Topology definition of the 6-block test case.
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Figure 38 : Sectional pressure distribution calculated at midspan on the
NACA L51F07 wing at M = 0.84 and a = 0° using 6 blocks.
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Figure 39

Upper surface pressure distribution calculated on the NACA
L51F07 wing at ]V[ = 0. 84 and o- = 0° using 6 blocks.
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Figure 40

Upper surface pressure distribution calculated on the NACA
L51F07 wing at M = 0. 94 and » == 3° using 12 blocks.
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7.2 ONERA M6 WING TEST CASE

The multi-block Euler code was also tested using the ONERA M6 wing because of the

avaUabiUty of reliable surface pressure data [108]. The wing has an aspect ratio 3. 8, a

taper ratio 0. 562, 30smgle symmetrical section nearly 10% thick. A grid with an H-H

topology made of 12 blocks was generated for this wing. The 6 inboard blocks cover the

span between the plane of symmetry and the wing tip. The other 6 blocks are located

beyond the wing tip. The blocks were numbered as shown in figure 41. Initial tests were

carried out using only the three bottom blocks, using solid surface boundary conditions on

the top faces and side boundary conditions on the side and bottom faces. These tests were

made to check the multi-block H-H solver, the correct selection of "face neighbours" and

validate the block internal face boundary conditions in the i-direction. In a second step, the

top three blocks 4, 5 and 6 were added to verify the selection of "edge neighbours" and the

application of the interface boundary conditions in the i and j directions simultaneously.

This case was also used to verify the symmetry of boundary conditions applied on the top

of block 2 and the bottom of block 5. The evolution of the residuals in each of the six

blocks during the computations and the evolution of the number of supersonic points in

block 5 are shown in figure 42 for calculations performed at Mach 0. 9 and = Oon a grid

with 181, 566 node points. After 500 iterations, the residuals have been reduced by five to

six orders of magnitude. The number of supersonic points in block 5 does not change after

350 iterations. FinaUy, calculations were made using the 12 blocks to verify the selection

of "corner neighbours" and the appUcation of interface boundary conditions in the three

spatial directions i, j and k.

A calculation was made for the ONERA M6, wing using the twelve previously defined
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blocks, at Mach 0.84 and = 3.06 with a 12-block grid containing a total of 293,964 node

points. The planform pressure distribution obtained after 500 iterations is shown in fig-

ure 43. It has the A shock structure, with a weak highly swept forward shock foUowed by a

stronger, nearly straight aft shock. The two shocks merge into a single one near the wing

tip. A comparison of the pressure distributions with experimental data measured at Re =

11. 7 x 106 [108] is shown on figure 44.

Calculations were also made on the ONERA M6 wing using Jameson's single-block FL067

program with a similar number of chordwise and spanwise stations. A comparison of

these results with MBTEC multi-block results, shown in in figure 45, indicates similar

accuracy. The differences seen can be attributed to the codes different grid topologies :

C-H grid topology for FLO-67, H-H grid topology for the multi-block code. At the wing

tip (rj = 0.96), the MBTEC results are actuaUy closer to the experimental data. This is

thought to be due to a better grid configuration off the wing tip in the multi-block model.
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7.3 CHALLENGER FORWARD FUSELAGE TEST CASE

The second calculation to be carried out with more refined grids was performed on the

Challenger forward fuselage, shown in figure 46. The grid was made of 8 blocks. Four

blocks were located upstream of the fuselage. The fuselage solid surface is represented by

the inboard faces of blocks 6 and 7. This case presented two special problems :

- First, the inboard faces of blocks 2 and 3 are degenerated as shown on figure 47. AU the

grid points on these faces are collapsed into a single Une. The points on the upstream grid

lines of the inboard faces of blocks 6 and 7 are also coUapsed into the point at the fuselage

nose. The variables at the grid points on these collapsed boundaries are calculated for

each grid point independently, but in order to guarantee that they converge towards

the same values related to their unique physical location, an averaging of the residuals

calculated at these grid points was done. A special procedure for the calculation of the

normals to these collapsed boundaries was implemented. Several tests were also included

in the code to prevent operation overflows due to the zero areas of the ceU faces on these

boundaries.

- Secondly, the intersection between the fuselage and the plane of symmetry in this grid

configuration is between the inboard faces of blocks 7 and 8 above the fuselage and

between the inboard faces of blocks 5 and 6 on the lower surface. The code was written

to apply special boundary conditions at the intersection between two solid surfaces or

between a solid surface and a plane of symmetry when both these intersecting surfaces

belong to the same block. To accommodate this particular grid topology, the multi-

block code had to be reprogrammed to allow also for the specification of exact boundary

conditions at intersections between surfaces modeUed in different blocks.

The number of grid points in the i, j and k directions in this test case is as follows :
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Block 1

Block 2

Block 3

Block 4

17x17x21

17x15x21

17x25x21

17x17x21

Block 5

Block 6

Block 7

Block 8

29x17x21

29x15x21

29x25x21

29x17x21

The domain was thus covered with 71,484 grid points. Inflow boundary conditions were

specified at all the upstream faces of blocks 1 to 4, at the top faces of blocks 4 and 8 and

at the bottom faces of blocks 1 and 5. The upper and lower far field boundaries were

set at such an angle that for most angles of attack of interest, they have inflow boundary

conditions. Outflow boundary conditions were applied at the downstream planes effaces 5

to 8. Side flow boundary conditions were applied to the outboard faces of aU eight blocks,

solid surface boundary conditions on the inboard faces of blocks 6 and 7 and symmetry

boundary conditions at the inboard faces of all the other blocks. Figure 48 shows the surface

pressure distribution obtained on the fuselage surface at Mach 0.82 and alpha=1. 5 degrees

after 100 iterations. The velocity vectors calculated in the plane of symmetry around the

fuselage are shown in figure 49. The pressure distribution on the top and bottom fuselage

Unes are shown in figure 50. This test indicated that the multi-block code was behaving
properly for isolated body configurations. The next step was the calculation for more

realistic aircraft configurations.

7. 4 CHALLENGER WING BODY WINGLET TEST CASE

The next results are for a Challenger wing/body/winglet symmetrical configuration at Mach

0.82 and = 1.5. The grid has 40 blocks and 550,000 node points. The block above the wing
and winglet has 65 chordwise grid points and 33 spanwise grid points, 7 of them over the
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winglet span. The calculatious were made using 100, 100 and 500 iterations in the coarse

grid, intermediate grid and fine grid respectively. The pressure distribution on the aircraft

surface is shown in figure 51 in the form of isobars displayed by the OMNI3D graphics

software on a workstation screen. These results in inviscid flow indicate the presence of a

strong shock on the wing upper surface, continuing on the winglet. The block edges on

the aircraft surface are superimposed showing that a continuous pressure distribution is

obtained across the block boundaries. The longitudinal Cp distribution on the top and

bottom centeriines of the fuselage are given in figure 52(a). The pressure distribution at

the wing break station is shown in figure 52(b). The pressure distribution at a winglet

mid-span section is shown in figure 52(c). The calculated wing/winglet Uft coefficient is CL
= 0. 71.

7. 5 CF-34 TRANSONIC NACELLE TEST CASE

The next calculations were performed on the Challenger CF-34 engine naceUe using a grid

with 11 blocks. A grid was generated for the nacelle, positioned in the same location as it

would be on the complete CL-601 aircraft. The engine model has the 2 degrees toe-out an-

gle and 1.5 degrees incidence it has on the aircraft. The complete space around the nacelle,

including the inlet and exhaust ducts, was covered with a grid centered on the engine lon-

gitudinal axis (figure 53). Because of the canted attitude of the nacelle, the calculation for

the CF-34 nacelle at M = 0.74 and a= 0 (measured with respect to the aircraft centeriine)

is the first Euler solution at Caaadair for a non-symmetrical configuration in yawed flow.

Calculations were made for an inlet mass flow ratio MFR = 0. 6838 and for two different

exhaust flow conditions .
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Fan Total Temperature Ratio

Fan Total Pressure Ratio

Fan Exhaust Mach Number

Core Total Temperature Ratio

Core Total Pressure Ratio

Core Exhaust Mach Number

Case 1

1.25

2. 10

0.49

3. 20

1. 60

0.35

Case (2)

1. 13

1.46

0.49

2. 88

1. 11

0.35

The pressure distributions obtained for case (1) are shown on figure 54. The flow in the

inlet duct is smoothly decelerated. For the inlet mass flow ratio specified, the peak velocity

on the outside of the nacelle is low and the pressure is fairly constant on a large part

of the fan cowl. For this high fan exhaust pressure ratio, the static pressure at the fan

nozzle exit plane, where the flow is locaUy sonic, is much higher than the freestream static

pressure. Since the static pressure near the fan cowl traiUng edge is only sUghtly higher

than freestream static pressure, the fan exhaust flow is underexpanded at the fan nozzle exit

plane. The flow then expands rapidly. As it moves downstream, the curvature effect of the

core cowl allows further expansion. The flow goes through several expansion-compression

cycles of reducing ampUtude. The presence of shock diamonds in the solution is further

evidenced in the OMNI3D surface pressure distribution in figure 55. This figure shows also

that the pressure contour are continuous across the shear layers surrounding both exhaust

jets. The plot in figure 56 gives the corresponding pressure distribution for case (2) with

lower total pressures and temperatures at the fan and core exhaust planes. The flow is stiU

sonic at the fan duct exit plane but the amplitudes of the expansion-compression cycles are

smaUer. Figure 57 gives the Mach number distribution in a planar cut across the engine as
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visualized on the workstation using the SterUng Software SSV-4D program. The first Euler

code results on the turbofan engine prompted many questions which wiU be addressed as

comparisons with experimental data become available. As shown in reference [79], the inlet

duct, fan and core cowl pressure distributions predicted by the Euler code should compare

favorably with test data provided a sufficient number of grid points is used. However, the

impUcations of the exhaust plume modeUing and the influence of grid fineness and the

artificial viscosity used in the code on the shear boundary between regions with different

total pressures and total enthalpy are yet to be fuUy determined.

7. 6 CHALLENGER WING-BODY CONFIGURATION

Additional runs were made on the Challenger wing-body configuration, in order to compare

the calculated pressure distributions with experimental results obtained during high speed

wind tunnel tests. The computational model was constructed with 40 blocks and a fine grid

generated with 405, 688 nodes. A view of the grid at the surface of the configuration was

shown is figures 58 (a) and (b). The MBTEC model has a square wing tip instead of the

round shape found on the aircraft. Results are shown here for calculations made at Mach

0.819 and for an angle of incidence a = 1.494°. The computations were made on a sequence

of three grids : 100 coarse grid iterations , 100 intermediate grid iterations and 500 fine

grid iterations . The total CPU time on the CONVEX C220 computer was 11 hours, 52

minutes and 36 seconds. The program required 54.5 Megabytes of memory to run this case.

The surface pressure distribution obtained on the surface of the configuration is shown in

figure 59, indicating a weU developed shock wave far aft on the wing chord. The inviscid

lift coefBcient calculated is CL = 0. 7487. A comparison of these pressure distributions with

experimental data obtained in the tunnel at a Reynolds number Re = 3. 8 mimon is shown
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on figures 60 (a) to (f) for sue stations on the wing span. Theoretical results obtained

with the KTRAN Transonic Small Disturbance code previously developed at Canadair [11]

are also shown on these figures. The Challenger has aft loaded supercritical wing sections

which are prone to substantial viscous eflFects. As expected, the inviscid theoretical results

display stronger shock waves located further aft on the chord. The pressure distributions in

the cove region, on the lower surface, also show a larger recompression than experimental

results. The coupling to a boundary layer is expected to bring these results closer to the

experimental data. Calculations by Mokhtarian [109] with a single-block Euler/Boundary

layer code at the same flow conditions indicated that, at tunnel Reynolds number, the shock

is 10% chord further forward with viscous corrections applied (figure 61). This correlates

very weU with the differences seen in figure 60 between inviscid theory and experimental

data. The results in figure 60 also indicate that the Euler results capture more accurately

the upper surface pressure plateau than the KTRAN results. The lower surface pressure

distributions are also closer to the experimental data. The MBTEC results are especiaUy

better near the wing tip (r) = 0.85), where the inviscid shock wave remains aft of the

experimental location.

7.7 CHALLENGER COMPLETE CONFIGURATION

The last application for the Challenger was the modeUing of the flow around the com-

plete aircraft configuration, including awing-body-winglet, as studied previously, fuselage

mounted CF-34 short cowl turbofan nacelles and naceUe pylons and a complete empennage

with a horizontal tail mounted in a T-taU fashion at the top of the fin. The particular

topology of the aircraft required a large number of blocks. The grid was constructed with

600 blocks organized into 16 groups. The outUne of the block edges on the surface of the
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aircraft are shown in figures 62(a) and 62(b). The fine grid generated for this configuration

contained 1,571, 580 nodes. A view of this grid is shown in figure 63. Because ofUmitations

of memory and computing time on the CONVEX C-220, the solutions presented here were

calculated using an intermediate level grid, which contained 242,994 nodes. A view of this

grid on the aircraft surface was shown on figures 64(a) and 64(b). Calculations were made

at Mach 0. 799 and o; = 0. 93 °, for comparison with available flight test data. The engine

inlet and exhaust conditions are identical to those of case (2) of the isolated naceUe test

case. The surface isobars obtained after 500 iterations on the intermediate grid are shown

in figures 65(a) and 65(b). Of interest is the detailed flow field captured by the program

in the nacelle and pylon areas. An additional top view of these results is given in figure 66

to indicate that the location of the block edges is transparent to the solution. A compar-

ison of these pressure distributions with flight test data is shown for six wing stations on

figures 67 (a) to (f). The theoretical inviscid results are seen to compare fairly weU with

the flight test results, obtained at a mean chord Reynolds number of about 12 million. The

program calculates a complete aircraft C^ = 0. 4368. The pressure distribution calculated

on the fuselage top and bottom centerUnes is shown in figure 68. The Cp distribution on

the horizontal tailplane at 45% semi-span is shown on figure 69. The tailplane is seen to be

downUfting. Figure 70 shows a cut of the naceUe pylon at half-span between the fuselage

side and the fan cowl. In figure 71, pressure distributions of the naceUe top and bottom

centerUne are shown along with the wing pressure distribution at the same spaawise station

(y = 88. 0). A closer view of the nacelle pressures is shown on figure 72. These results were

used to predict streamline patterns on the aircraft surface, as shown on figure 73. The abil-

ity to predict such streamlines and to carry out streamUne boundary layer calculations is

critical in the design ofwing/body fairings, wing/winglet junctions and aft fuselage shapes
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of airplanes. Additional calculations were made for comparison with wind tunnel test data.

The runs were made at Mach 0. 76, which is a typical long range cruise Mach number on

the aircraft, and at three different angles of incidence. The Uft coefficients obtained for the

complete configuration after 400 iterations are shown in table 3 in comparison with wind
the experimental values.

Table 3 : CL-601 corn lete confi uration residts at Mach 0. 76

MACH

0. 7607

0. 7602

0.7611

Alpha

2. 103°

2. 775°

3. 366°

CL (MBTEC) CL TWT-433

0.4986

0.5933

0.6719

0.408

0.516

0. 616

mea-A comparison of the pressure distributions obtained at a = 2. 10° with wind tunnel

surements is shown in figure 74, for six spanwise stations. A finer grid is probably required

to capture the shock wave as sharply as on the wing-body fine grid case in figure 60. How-

ever, the agreement is slightly better than the the comparison with flight test data shown

in figure 67 for a higher cruise Mach number. The pressure distributions calculated at two

winglet stations are shown in figure 75 in comparison with experimental data. The resulting
(^, a) curve is shown in figure 76, indicating that the theoretical results overestimate the

lift, as expected from an inviscid solution. The Uft curve slope is slightly underestimated.

The wind tunnel test included measurements of pressure distributions at longitudinal sta-
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tions on the rear fuselage located above and below the naceUe pylon. A comparison of

these pressures with calcidated results is given at two radial locations on the fuselage in

figure 77. The program predicts fairly well the general level of the pressures, despite the

existence of a fairly thick boundary layer this far on the fuselage. There were no naceUe

pylon pressure measurements available for this particular test condition. Figure 78 gives

the predicted pressure distribution near the pylon centerline. This figure shows that the

pylon has positive lift near the leading edge and negative lift on the rear, resulting in a

near zero lift for the complete pylon, a desired design characteristic. During execution, the

program monitors the evolution of the maximum and average residuals inside each one of

the 600 blocks. The convergence is the slowest in the blocks above the wing, where the flow

is supersonic. Figure 79 (a) shows the convergence characteristics of the average residual

in five blocks located above the wing, over 400 iterations, for calculations at Mach 0. 76 and

a = 2. 10 . The calculations were made for 200 iterations first, then restarted for 200 more

iterations. This is responsible for the peak at 200 iterations. However, the curves return

quickly to the overall trend, indicating between four and five orders of magnitude reduction

in the residual. Figure 79(b) gives the evolution of the number of supersonic points in the

same five blocks. There is no discontinuity at 200 iterations due to the restart process

and the curves are converged in most of the blocks after 400 iterations. The convergence

characteristics of the MBTEC program for a 600-block fuU aircraft case, is simUar to that

of a 12-block isolated wing shown earUer. A multi-grid procedure, to be implemented in the

near future, is expected to accelerate the convergence substantially. Since such a procedure

is best suited to solutions with few large grids, a grouping of small blocks wiU probably

be necessary when making calculations on multiple grid levels. After completing the eval-

uation of the code for the fuU CL-601 configuration, additional calculations were made for
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the wing-body geometry, over a range of Mach numbers in order to investigate the ability

of the code to predict the evolution of compressibility drag. The drag rise curve obtained

for CL =0. 6 is shown in figure 80. There are no scales shown to protect the confidentiality

of the data. Although the program overpredicts the lift for a given angle of incidence,

the Uft-drag relationships are much closer to experimental values. This was confirmed by

more recent theoretical and experimental results obtained on Canadair's new Global Ex-

press configuration. These are the results of the very first theoretical calculations made

at Canadair with a transonic flow code on the com lete Challenger configuration. These

results demonstrate that the MBTEC program can produce transonic flow information on

the aircraft surface pressure distribution with a level of detail similar or superior to the one

obtained with sophisticated 3D panel methods for subsonic ilow. In addition, the MBTEC

field code produces automatically information of the complete flow field surrounding the

aircraft and not just on the aircraft surface. Understanding the flow structure in the space

around the aircraft is a necessary step in the design of new configurations.
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Figure 48 :

Surface pressure distribution calculated on the Challenger forward
fuselage at M = 0. 82 n = l. o° using 8 blocks.
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Velocity distribution calculated in the plane of symmetry for the
Challenger forward fuselage at M = 0.82 a = 1. 5° using 8 blocks.
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Pressure distribution calculated in the plane of symmetry for the
Challenger forward fuselage at M = 0. 82 a = 1.5° using 8 blocks.
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Surface isobars for the Challenger wing/body/winglet at
M = 0. 82 a = 1. 5 °.

40-block MBTEC solution (100 + 100 + 500 iterations).
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Pressure distributions calculated on the Challenger
wing/body/winglet coiifiguration at M = 0. 82 a == 1. 5 °.
40-block MBTEC solution (100 + 100 + 500 iterations).
(a) Fuselage top and bottom centerlines;
(b) wing break section, station 148;
(c) Winglet mid-span station, waterline 80.
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Case (1) engine operating conditions.
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Pressure distribution in a vertical section of the CF-34 turbofan
nacelle. 11-block MBTEC solution at M = 0. 74 and Q = 0°.
Case (2) engine operating- conditions.
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ISOLATED CF-34 DOUBLE FLUX ENGINE
M = 0. 74 ALPEIA = 0.0

(2 degrees toe-out, 1. 5 degrees incidence)
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SSV-4D display of Macli numbers in the field arouiid the CF-34
turbofan nacelle. 11-block MBTEC solution at M = 0. 74 aiid

= 0 . Case (2) engine operati ig conditions.ft
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Figure 58(a) :

Challenger wing/body upper

surface grid.

. if^;-;

K:^-

-^''^. __ . '.^

^r"^

^../, ... -v^^
^-..,... -T,. ;.fr.Tf^>'i^-^tT-^T^r
^.. {"taS. 'V" ' I" 6i
"y-y »'».*'. ;. -?

<fe-

"s%

Figure 58(b) :

^^ Challenger wing/body lower surface grid.
J^



201

. \\

.. <:.

,^

CP
-1. 4000
-1. 3-)87
-1. Z974
-1. 2462
-1. 1949
-1. 1436
-1. 0923
-1. 0410
-0. 9897
-0. 3385
-0. 8872
-0. 8359
-0. 7B-1S
-U. 7333
-0. 6821
-O. B308
-0, 5735
. a. :i.?s;:

3 . Sii^S
<i, IStifi
D. )B97
D, 2-110
0. 2323
a. 3-136
0. 39.13
0. -1-162
U. -197-1
0. 5.1U7
0. 6000

Figure 59 Challenger wing/body surface isobars
40-block solution at M = 0. 819 and 0' = 1. 494°



202

Experimental (Upper) .,«
Expetimental (Lower)

-- KTRAN (InvBcid)

-1---".-+. ^_-1-1-.

::':??rt-""-: .--.-<-<--.

?;~~
!. .°

Cp " : ,
"s"; *;';.

!
. -4-

-p -
-at

(a) : 7; = 0.135

:'^1-""-..^
\4: . ' ''s

. ~^---

(b) : T? = 0. 265

x/c x/c

-p <"
--°4>i- Cp -

-7-"1 .'

'4---

A :

(c) : T? = 0.405
x/c ..

/

(d) : T? = 0.550
x/c

.. ^^^^^^^^^^^ -d .CT-a. iB---.

.OJB - - -^ _;

* -_. --~*' " t-

Cp ^ ^. -r.-__. _: 5^ "p - -A ^

l-t

T--'

x/c

. --?.

(f) : T? = 0.850
x/c

Figure 60 :

Challenger wing/body chordwise pressure distributions at
six spanwise stations. M = 0.819 and a = 1.494°.
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Figure 62(b) Block boundaries outlined on the lower surface of the
Challenger CL-601 aircraft.
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CL-601 complete configuration; pressure distribution at
45% semi-span of horizontal tallplane. M = 0. 799 and a = 0. 93°
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CL-601 coniplete configuration; pressure distribution at
mid-span of nacelle pylon. M = 0. 799 and a = 0. 93°.
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(b)

CL-601 complete configuration; surface streamlines predicted
from Euler solution at M = 0. 799 and a == 0.93°.
(a) upper surface streamlines; (b) lower surface streamlines.
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CL-601 complete configuration lift curve slope at Mach 0. 76
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CL-601 complete configuration at Mach 0. 76 and a = 2. 10°
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7.8 CF-18 COMPLETE CONFIGURATION

Another objective of the development of the MBTEC program was the ability to model

accurately various types of flows around the Canadian Forces CF-18 aircraft. The engine

inlets were covered by a streamlined surface for the exercise, which focussed on the abiUty

to model the aircraft general aerodynamics. Results for this airplane are included here as a

further validation of the method. The modeUing of the CF-18 aircraft required the addition

of several new topological capabiUties to the MBTEC code. A sting mounted wing-body

combination was considered first and used to tune the code to model accurately the wing

strake. This strake is treated in the code as a closed wing tip. The wing-body model,

made of 30 blocks, was used also to study the effect of the artificial viscosity coefficients on

the stability of the solution at high angles of incidence. In the input data to the program,

the parameters controUing the levels of the second and fourth order artificial viscosity
coefficients are called VIS2 and VIS4. At low angles of incidence, values VIS2 = 1.0 and

VIS4 = 1.0 are typically sufficient, in combination with a CFL (Courant, Friedrichs and

Lewy) input value of 5.0. It was found during this exercise that for angles between 15 °

and 20 , values of artificial viscosity coefficients VIS2 = 1. 5 and VIS4 = 1. 5 are needed.

In a second step, the complete aircraft, including horizontal and vertical tailplanes, was

modeUed. In order to conform to the 6% scale model for which experimental data was

obtained at the I.A.R. wind tunnel in Ottawa (private communication), the horizontal

tailplane was set at an angle of -9°. This tail angle was kept constant for low angles of

incidence as weU, even though it may not be a typical flying configuration. The complete

aircraft fine grid was constructed using 108 blocks. The domain decomposition of the space

around the aircraft, performed on CADAM, is represented on figures 81(a) and 81(b). The

fine grid generated for the CF-18 contains 784, 168 nodes. A view of this grid is shown in
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figure 82. The intermediate grid used for the calculations discussed here contains 114. 450

nodes. A view of the intermediate surface grid including an outUne of the block edges is

shown in figures 83(a) and 83(b). Calculations were made first at Mach 0. 95 and a = 2. 79°.

for comparison with available wind tunnel test data. The surface isobars obtained after

200 iterations on the coarse grid and 400 iterations on the intermediate grid are shown

in figures 84(a) and 84(b). An additional top view of these results is given in figure 85

to indicate that the location of the block edges is transparent to the solution. In this

particular case, the shock wave on the upper surface of the wing appears to be located very

near the junction of two blocks on the wing. The adequate convergence of the solution

in this case is a further argument verifying the validity of interface boundary conditions

used in the program. A comparison of these pressure distributions with wind tunnel test

data is shown for six wing stations on figures 86 (a) to (f). The experimental data was

obtained from the Institute of Aerospace Research through Canadair's Defence System

Division. The locations of the shock waves on the upper and lower surfaces of the wing are

predicted very well at the six spanwise stations (within 3% chord). The level of pressures

is predicted fairly well on the lower surface, but there are some discrepancies on the upper

surface, particularly near the leading edge. The theoretical results indicate higher suctiou

levels than measured experimentally at a Reynolds number of about 4. 19 miUion. High
angle of incidence calculations were made at Mach 0.60 and alpha = 16.9°. The isobars

obtained at the surface of the aircraft are shown on figures 87(a) and 87(b). At this angle

of incidence, there are vortices generated along the strakes and going over the wing. The

trace of these vortices can be seen on figure 88 where the normalized stagnation pressure is

plotted at various fuselage stations. These calculations indicate the abiUty of the program

to calculate stable solutions for highly vortical flow fields, as weU as for high transonic
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Mach numbers where strong shock waves are present. The Euler equations can capture

primary vortices such as those originating from the leading edge extension, but secondary

separation vortices and massively separated flows can only be captured by a Navier-Stokes

program. Additional correlations with experimental data are stiU required for the CF-18

configuration.
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Figure 81(a) : CADAM physical domain decomposition for the CF-18.

i I

Figure 81(b): close-up view of doniain decomiposition and geometry
modelling for the CF-18 aircraft.
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Figure 83(a): CF-18 aircraft upper surface grid (intermediate).
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Figure c

CF-18 clean configuration surface isobars at
M = 0. 95 and cy = 2. 79°. (a) upper surface isobars.
(b) lower surface isobars.
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Figure 85 :

CF-18 clean configuration upper surface isobars at
M = 0.95 and o = 2. 79°. With outliiied block edges.
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Figure 86 :

CF-18 clean configuration chordwise pressure distributions
at six spanwise stations. M = 0.95 and a = 2. 79°.
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Figure 87 :

CF-18 clean configuration surface isobars at
M = 0.60 and a = 16.9 . (a) upper surface isobars.
(b) lower surface Isobars.
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CF-18 CLEAN CONFIGURATION

Mach 0.60 Alpha = 16.9 degrees
MBTEC solution 200+400 iterations

Normalized Stagnation Pressure

1.7

0.5

Figure 88 :

CF-18 clean configuratioii normalized stagnation pressures
showing vortices emanating from the leading edge extensions.
M = 0. 60 and a = 16. 9°.
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7. 9 COMPUTING COSTS PRE AND POST PROCESSING

The MBTEC 3-D multi-block Euler code requires 100 Megabytes of memory to compute

the Euler solution for a grid with 800,000 nodes. The development of the program was sup-
ported by a significant increase of the computational capability of Canadair which occurred

in mid-1990, when the company acquired the CONVEX C-220 vector computer with two

50-Megaflops CPU'S with 128 Megabytes ofceutral memory. This memory is large enough

to allow core memory storage of all the variables. The code is written to take full advantage

of the Convex Vectorizing FORTRAN compiler and has been modified for preliminary par-

allel computation on the two CPU'S. The solution of the CF-34 turbofan fllow field reported

here required 8 hours and 30 minutes on a single CPU (100 + 100 + 500 iterations). A

complete network was established around the CONVEX, as shown in figure 89. The work

begins with the modelling of the surface geometry on a CADAM workstation attached to

the AMDAHL 5890 scalar mainframe computer. The geometry and topology information

is then retrieved and sent to the CONVEX via the company Ethernet backbone to perform
the multi-block grid generation. The coordinates of the grid are then downloaded on one of

the SiUcon Graphics workstation connected to the Advanced Aerodynainics Laboratory lo-

cal area network. The grid is visualized and inspected on the workstation using the SterUng
Software SSV-4D program. The Euler calculations are performed on the CONVEX. The

preparation of the data and the analysis of the numerical results is done on X-terminals

connected to the Silicon Graphics 4D/310-R4000 working as a server and through it to

the Ethernet network and eventually to the CONVEX. The MBTEC code outputs the

coordinates and flow variables of all the node points in aU blocks in a large data Ue. This

file is transferred to a SiUcon Graphics workstation and input to the SSV-4D program. It
is thus possible to display the grid and any other aerodynamic characteristic of the flow
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field which can be computed from the conservative variables (velocity vectors, streamlines, 

Mach number, temperature, entropy, stagnation temperature and pressure, total enthalpy, 

total energy, etc.). Color hardcopy plots can be obtained with the four-pass thermal plot

ter connected to the network. The code also outputs a file with the surface geometry and 

surface pressure distribution. This file is used to visualize the results using the OMNI3D 

software from Analytical Methods Inc. OMNI3D allows isobars to be displayed as well as 

pressure distributions on arbitrary sections. A third output file containing sectional pres

sure data on wing and fuselage sections is sent to the AMDAHL computer where a variety 

of Canadair written programs is used to produce two-dimensional plots on an electrostatic 

machine. 

,--------. - CONIIEX C220 

AM!lAIC. 5890 
SCALAR HA[N'RAME 

f:::
1-
::_=,�t==--=-=

-f
::I VECTOR COlf>t.lTER 

2 X !iO t£GAFLOPS 

128 H8 MEMORY 

10 G8 DISK 

CADAM NORKSTATION CADAM W<JlKSTAT[CN 

D 

S.G.I 40/31D-R4000 
GTX WORKSTATION 
48 MB RAM 
2.48 GB DISK 

ETIERNET 8ACK80t£ 

AEROOYNAH[CS LABORATORY LOCAL AREA J£TWORK ETIERNET 

S G.I. INDIGO 
ELAN WORKSTATION 
64 MB RAM 
432 MB DISK 

(CI) 

D 

S G.I. INDIGO 
ELAN WORKSTATION TEKTRONIX COLOR APPLE LASERWRITER 
:;;il�sK 

POSTSCRIPT PRINTER POSTSCRIPT PRINTER 

!CU (Cll (CI> 
HEWLETT PACKARD 17 INCH X·TERMINALS 

Figure 89 Canadair CFD computing setup 



CHAPTER 8 : Conclusions and Further Work 

8.1 CON CL US IONS 

This work has demonstrated a. new approach for efficient multi-block solutions of the Euler 

equations a.round arbitrary aircraft configurations. A complete method was proposed, using 

multi-block body-fitted structured grids, a. finite volume discretization and a. fully explicit 

solution. An original treatment of the block interface boundary conditions was proposed, 

designed to maintain the highest accuracy of the solution. This formulation, using two 

planes of ha.lo cells in neighboring blocks, introduces an additional computational overhead 

but it renders block interfaces virtua.lly transparent to the flow. The existence of these halo 

cells introduces difficulties a.t block corners near solid surface junctions. A careful treatment 

of the convective and dissipative fluxes in these areas of the flow field was necessary to ensure 

stable calculations. This formulation of the interface boundary conditions guarantees : · 

1. That the convergence characteristics of the scheme do not deteriorate with an

increase in the number of blocks.

2. That the solution remains stable even with strong shock waves traversing block

boundaries.

The CL-601 Challenger configuration has fuselage-mounted high by-pass turbofan nacelles 

located in close proximity to the wing and affecting the flow over its upper surface. In order 

to obtain accurate solutions 'for the complete aircraft, it was necessary to pay a. particular 

attention to the formulation of the nacelle inlet and exhaust boundary conditions. Several 

formulations were examined, coded and tested, using a. single-block version of the Euler 
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code. An original way of specifying naceUe exhaust boundary conditions was proposed, us-

ing an approach suggested by non-reflecting far-field boundary conditions used at the outer

boundaries of the domain. Extensive testing showed that our boundary conditions lead

to stable and converging calculations in all cases except for combinations of an extremely

low inlet Mass Flow Ratio and an unusually high naceUe incidence. The accuracy and

versatiUty of the code was verified by comparing theoretical results with experimental data

on several wings and with wind tunnel test and flight test data on two completely diflFerent

aircraft configurations. This work has also produced the very first Euler solutions for the

Canadair CL-601 complete aircraft configuration. These solutions provide details of the

flow characteristics around the aircraft with an accuracy which was previously unattain-

able on complete configurations in transonic flow. The VSAERO panel method and the

KTRAN Transonic Small Disturbance method previously used at Canadair had restric-

tions m this range of the flight envelope. With the body-fitted structured grid formulation,

the use of conservative equations and discretizations and the high accuracy block-interface

boundary conditions, the MBTEC code provides solutions for invisdd transonic flows of

similar accuracy than those obtained on simpler geometries with single-block codes using
central schemes with independent time integration. To our knowledge, the MBTEC pro-
gram has also produced the first Euler solutions for a complete CF-18 aircraft obtained

in Canada. This exercise indicated that the code can model vortical flows but additional

correlations with experimental data are needed. In addition to the solution method for the

Euler equations, we have established a complete procedure for analyzing transonic flows

around complex configurations : modelUng of the aircraft geometry on CADAM, genera-

tion of grids with programs written at Canadair specifically for the needs of this project,
solution of the Euler equations and analysis of results on workstations. The code was
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tested on coufigurations with increasing levels of complexity, in a manner which ensured

that most potential problems were addressed properly. As a result, the MBTEC program

has consistently demonstrated accurate calculations on complex aircraft configurations in-

eluding powered naceUes. The development of the 3-D Euler code was accompanied by

the parallel development of 2-D and 3-D algebraic and emptic multi-block grid generation

tools, described in reference [100]. The requirements of the Euler codes have led Canadair

to update significantly its computational and graphics faciUties. This was done through

the acquisition of a CONVEX vector computer and that of multiple workstations, printers

and plotters, aU connected through local and global high-speed networks. Efficient grid and

flow visualization software were also brought into the company for this project. The Euler

code has become the principal tool for verifying the design of the rear fuselage, the integra-
tion of fuselage-mounted naceUes and the design of naceUe pylons for all future Canadair

airplanes. The code is used on a daily basis in the design of the Global Express high speed
long range Business Jet.

8. 2 FURTHER WORK

Further improvements in the rate of convergence of the code wiU be obtained by introducing
a multigrid algorithm. In an experimental setup, the code was modified to run concurrent

block solutions on the two parallel CPU'S of the CONVEX C-220. In some cases a peak

parallel factor of 1. 8 was reached. Improvements in total turnaround time can be obtained

by programming concurrent solutions of diflferent blocks on multiple CPU'S. A strip-wise

interactive boundary layer was linked to the code and is presently being tested. This

wiU offer the possibiUty of performing coupled Euler/Boundary Layer calculations on all

surfaces of the aircraft, the MBTEC program is now being used as the starting point for
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the development of a Navier-Stokes program for complete aircraft configurations [12]. This

wiU be done by the modelling of physical viscous fluxes and the introduction of a turbulence

model for high Reynolds number viscous flow.
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