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To Eve, David and Annette 

"To be surprised, to wonder, is to begin to understand. This 

is the sport, the luxury, special to the intellectual man. The 

gesture characteristic of his tribe consists in looking at the 

world with eyes wide open in wonder. Everything in the world 

is strange and marvellous to well-open eyes. This faculty of 

wonder is the delight refused to your football 'fan,' and, on 

the other hand, is the perpetual ecstasy of the visionary. His 

�pecial attribute is the wonder of the eyes. Hence it was that 

the ancients gave Minerva her owl, the bird with ever-dazzled 

eyes." 

José Ortega y Gasset, The Revolt of the Masses 
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ABSTRACT 

Placed within the context of non-equilibrium molecular dynamics (NEMD) simulation 

of model polymer fluids, this work has three underlying threads: rheology of dumbbell 

fl.uids, rheology of rigid bodies and direct simulation of flow of atomic liquids. 

In the first two papers entitled Viscometric Functions for FENE and Generalized 

Lennard-Jones Dumbbell Liquids in Couette Flow: Molecular Dynamics Study and Mi

croscopie and Mesoscopic Results /rom Non-Equilibrium Molecular Dynamics Modeling 

of FENE Dumbbell Liquids a very extensive NEMD investigation on the properties of 

vibrating dumbbells is conducted. Generally accepted NEMD algorithm called SLLOD 

is used but its application is extended to new areas. The data are collected in terms of 

macroscopic ( e.g. viscometric fonctions), mesoscopic ( e.g. distribution fonctions) and 

microstructural ( snapshots) results. In addition, atomic liquids are investigated for new 

state points. The results at ail three levels of physical detail indicate that the underlying 

microstructure is responsible for trends observed in microscopie and mesoscopic variables. 

The contracted distribution fonctions are calculated in both position and velocity spaces, 

and the fluid structure is probed by two conformation tensors. It is observed that dumb

bells form a variety of short and long range structures depending on the imposed shear 

rate and the size of a single dumbbell. The dumbbell liquids exhibit shear thinning, non

zero first and second normal stress differences, and volumetric dilatancy. These effects are 

weakly sensitive to detail in shape of the intra-molecular potentials, and to the dominant 

frequency associated with vibrations of dumbbells. Furthermore, many new phenomena 

are observed for the first time including the disappearance of the Maxwellian distribution 

at high shear rates. The Gibbs distribution fonction in the configuration space collapses 

to one particle distribution for very stiff dumbbells. In general, dumbbells are more elas

tic than atomic liquids. 

Thermodynamical, microstructural and rheological data on fl.uids composed of rigid 

ellipsoids of revolution, of size corresponding to average end-to-end extension of vibrating 

dumhbells, are assembled in the paper Rheology of Several Hundred Rigid Bodies. Here, 

both the algorithm, based on the equations developed for suspensions, and the NEMD 
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results are new. The mierocanonieal equations of motion for the translational and an

gular momenta as well for the position of mass-centers and orientational unit vectors 

are derived from a Hamiltonian. These expressions are then augmented by SLLOD-like 

and Gaussian thermostat terms added consistently to equations for both the rotational 

and translational degrees of freedom. The thermodynamic data are generated along one 

isotherm and the rheology is investigated for two state points. At the intermediate shear 

rates, ellipsoids become aligned at an angle to the direction of flow, the stress tensor be

gins to be highly nonsymmetric, and the radial distribution fonctions become significantly 

anisotropie. At increasing shear rates, this configuration is replaced by the isotropic-like 

fluid which evolves to a considerably ordered structure exhibiting global orientation of 

particles in the direction of the vorticity axis. As in the case of vibrating dumbbells, 

the rearrangements at the mierostructural level are closely followed by trends in the vis

cometric fonctions. For example, at low densities the first normal stress di:fference may 

become slightly negative. 

The last paper entitled Direct Numerical Studies of Viscous Flow of Two Dimensional 

Liquids investigates flow of fluids composed of disks between parallel plates as well as in 

sudden contraction and expansion. The most of the methodology has been already devel

oped, but it is carried over to new situations and original data are generated for fl.ow in 

new geometries. An excellent agreement is found between the results of simulations and 

the well known flow structure, such as flow separation and formation of viscous eddies 

proving that the fl.ow behavior observed experimentally and predicted from the Navier

Stokes equations can be reproduced directly from the microscopie Newtonian equations 

of motion. The simulations are performed in the Newtonian regime, for medium sized 

systems comprising up to 8000 disks. In addition to the traditional stochastic and peri

odic boundary conditions, new di:ffusive boundary conditions are developed which include 

a stagnant fluid layer. Furthermore, the viscosity and thermal conductivity coefficients 

for two dimensional fluids are calculated from velocity and temperature profiles between 

parallel plates and confirmed by data obtained by a means of SLLOD and the Evans 

thermal conductivity algorithms. 

Direct simulations of the time evolution of a model macromolecular fluid yield a 
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complete set of microscopie, mesoscopic and macroscopic results. A major advantage of 

NEMD models is the fact that they are formulated in terms of ordinary rather than par

tial differential equations. They lead directly to the results and avoid complex numerical 

algorithms and complicated mathematical developments that are essential in obtaining 

predictions from most rheological models based on the kinetic theory. 
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RESUME 

Ces dernières années, la dynamique moléculaire à. l'équilibre (EMD) a été utilisée avec 

succès pour résoudre les problèmes relatifs à. la thermodynamique classique ou à. la con

ception de médicaments, et permet d'obtenir des résultats qui ne pouvaient être atteints 

qu'au prix d'expériences longues et coûteuses. La dynamique moléculaire hors équilibre 

(NEMD), est un domaine relativement nouveau qui est utilisé principalement pour des 

systèmes physiques soumis à. des forces externes. Dans ce travail, NEMD est appliquée 

pour étudier le comportement rhéologique et l'écoulement de plusieurs centaines de par

ticules sphériques, d'haltères en vibration, de particules rigides ou de plusieurs milliers 

de disques. Des études récentes ont montré que les équations de mouvement SLLOD qui 

ont été introduites initialement à. un niveau de description microscopique dans le contexte 

de la NEMD, peuvent être réinterprétées dans l'esprit de théories formulées au niveau 

mésoscopique. C'est le cas notamment des équations gouvernant l'évolution temporelle 

des variables internes. Les variables du système sont la position et la vitesse des partic

ules ( équivalentes, renormalisées) aussi bien que le vecteur d'orientation et quantité de 

mouvement en rotation dans le cas de particules anisotropiques. 

Le travail est divisé en trois grandes parties. Les deux premières présentent la 

rhéologie d'haltères vibrantes et de particules rigides utilisant respectivement les algo

rithmes SLLOD et SLLOD généralisés. La dernière partie est consacrée à. l'écoulement 

de disques bidimensionnels. 

Dans la première partie, de nouveaux résultats rhéologiques macroscopiques, issus de 

simulations d'écoulement Couette utilisant la dynamique moléculaire hors équilibre, sont 

présentés. Des liquides composés uniquement d'atomes, sont étudiés pour des nouveaux 

points d'états. Des nouveaux résultats sont obtenus pour deux types liquides haltères: (1) 

"finitely extensible nonlinear elastic" (FENE) et (2) Lennard-Jones généralisé (GLJ), et 

jusqu'à. une vitesse de cisaillement adimentionnelle de 15. Le liquide haltère présente un 

comportement rhéofl.uidifiant, une première N1 et deuxième N2 différence de contraintes 

normales différentes de zéro, ainsi qu'une dilatation volumique. Ces effets sont faible

ment sensibles au détail de la forme des potentiels intermoléculaires, et à. la fréquence 
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principale associées à la vibration des haltères. Cependant, la viscosité Newtonienne de 

liquides haltères dépend fortement de la taille des haltères. Le début du comportement 

rhéofluidifiant d'haltères FENE et GLJ est reporté à des vitesses de cisaillement plus 

élevées en comparaison avec les liquides atomes. 

Le papier intitulé "Microscopie and Mesoscopic Results from non-Equilibrium Molec

ular Dynamics Modeling of FENE Dumbbell Liquids" poursuit la discussion sur les 

liquides haltères, et l'étend à de nouveaux domaines. Ici, les résultats microscopiques 

et mésoscopiques sont présentés pour plusieurs fluides composés d'haltères élastiques 

et soumis à un écoulement selon la dynamique SLLOD. Les fonctions de distribution 

contractées sont calculées à la fois dans les espaces position et vitesse thermique. La 

structure du fluide est examinée à l'a.ide de deux tenseurs de conformation. On observe 

que les haltères s'organisent suivant une grande variété de structures qui dépendent de la 

vitesse de cisaillement imposée et des dimensions de l'haltère. L'hypothèse d'un champ 

de vitesse Maxwellien, n'est satisfaite qu'à faible vitesse de cisaillement. En cisaillement, 

la distribution des distances bout à bout de l'haltère est similaire à la fonction de dis

tribution de Gibbs (décrite dans l'espace de position), si les intéractions à l'intérieur des 

molécules sont plus fortes que les forces entre molécules. En moyenne, les haltères les 

plus longues sont obtenues pour une inclinaison de 50° à 30° par rapport à la direction de 

l'écoulement. Bien que les potentiels FENE et GLJ soient bien distincts, le comportement 

macroscopique des deux types de liquide est similaire lorsque la rupture des haltères est 

faible et lorsque l'extension bout à bout (moyennée et adimensionnalisée) des haltères 

FENE est maintenue proche de 0.9. La ressemblance des propriétés macroscopiques des 

haltères FENE et GLJ découle. de la simplicité des deux modèles. 

Dans la deuxième partie, une nouvelle dynamique moléculaire hors équilibre qui trouve 

son origine dans les théories mésoscopiques de suspensions, est utilisée pour apréhender 

la rhéologie de plusieurs centaines d'éllipsoides de révolution, qui inter-agissent avec le 

potentiel de Gay-Berne. Le rapport du puit de potentiel pour deux particules prises côte 

à côte et bout à bout est choisi égal à 2.5. L'équation de mouvement microcanonique 

pour la quantité de mouvement en translation et en rotation ainsi que pour la position 

du centre de masse et les vecteurs unitaires dérivent d'un Hamiltonien. Ces expressions 
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sont alors enrichies par les termes similaire à SLLOD et les termes qui maintiennent une 

température constante que l'on ajoute de façon consistante aux équations de translation 

et de rotation. Les données thermodynamiques sont générées le long d'un isotherme (la 

température adimensionelle est maintenue à 1). La rhéologie est étudiée en deux points 

d'états (la densité du nombre de particule - p - est égale à 0.25 et 0.4) qui se trouvent dans 

la phase isotropique si le système n'est pas soumis à un écoulement. Comme l'indiquent 

les configurations moléculaires, à des vitesses de cisaillement intermédiaires (vitesses de 

cisaillement adimensionalisées de l'ordre de 1 à 2), les éllipsoides s'alignent avec une incli

naison par rapport à la direction de l'écoulement, et le tenseur de contrainte commence 

à ne plus être symétrique. A des vitesses de cisaillement encore plus importantes, cette 

configuration se casse pour former l'arrangement transitoire d'un fluide isotropique, et 

ensuite se réorganiser en une structure très ordonnée qui présente une orientation globale 

des particules perpendiculaire à la direction de l'écoulement. Pour p=0.4, la première 

et la deuxième différence de contrainte normale sont positive et négative respectivement, 

mais à faible densité (p=0.25), N1 devient légèrement négatif. En plus du tenseur de 

contrainte, nous avons calculé le tenseur de conformation, le paramètre d'ordre, et les 

composantes de la fonction de distribution radiale. A vitesse de cisaillement élevée, la 

fonction de distribution radiale devient anisotropique de façon significative. De plus, nous 

avons étudié dans une perspective moléculaire le phénomène d'overshoot de la contrainte 

pour un écoulement en cisaillement simple, ainsi que l'évolution de la distribution des 

vitesses en translation, en fonction de la vitesse de cisaillement. 

Finalement, la troisième partie est dédiée à la simulation directe de l'écoulement 

d'atomes dans une géométrie bidimensionelle. Ainsi, le comportement du fluide qui est ob

servé 

expérimentalement et prédit par les équations de Navier-Stokes, est reproduit directe

ment par les équations de mouvement Newtoniennes microscopiques. Les simulations 

sont effectuées pour des écoulements entre deux plans, et également pour l'écoulement 

dans des contractions et expensions soudaines. Les résultats sont présentés en terme 

de profils de vitesse, de pression, de température, de densité, d'énergie potentielle, de 

contrainte de cisaillement, et de vorticité. En général, un excellent accord est obtenu 
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entre les profils simulés et les structures du fluide bien connues, telles que la séparation 

des lignes de courant, et la formation de tourbillons visqueux, prouvant ainsi que la 

micro-hydrodynamique est un outil pertinent pour liéer les phénomènes macroscopiques 

avec les méchanismes physiques. Les simulations sont opérées dans le régime New

tonien afin de minimiser les effets viscoéla.stiques, pour des systèmes de taille moyenne 

inférieure à 8000 disques. Ce nombre est suffisament important pour contrôler l'effet des 

frontières et l'effet du nombre de particules. Les conditions aux limites stochastiques 

et périodiques habituelles, sont employées dans la plupart des simulations, mais on a 

développé également des conditions aux frontières de diffusion, qui peuvent inclure une 

couche stagnante. Les problèmes d'échelle, qui sont liés à l'appliquation d'une force ex

terne importante sur un système microscopique ( dont la taille est de l'ordre de 100 A), 

se traduit en pressions et gradients de température extrêmes. En plus, la viscosité et 

les coefficients de conductivité thermique obtenus à partir des profils de vitesse et de 

température, sont présentés pour l'écoulement entre deux plaques. Ces résultats sont 

confirmés d'une autre manière, en modélisant l'écoulement Couette avec les équations 

de mouvement SLLOD et l'algorithme d'Evans pour la conductivité thermique (en deux 

dimensions). 

Les simulations directes de l'évolution temporelle d'un fluide macromoléculaire modélisé 

fournissent une gamme complète de résultats microscopiques, mésoscopiques et macro

scopiques. Un avantage majeur des modeles NEMD est le fait qu'ils sont décrits par des 

équations en dérivées ordinaires, plutôt qu'en différentielles partielles. Ils conduisent di

rectement aux résultats et évitent des calculs mathématiques et numériques complèxes qui 

sont nécessaires dans la plupart des modèles rhéologiques basés sur la théorie cinétique. 
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1 GENERAL INTRODUCTION 

1.1 Introduction 

Euler's fluid mechanics is formulated in terms of partial differential equations whose in

tegration is an important and one of the oldest parts of applied mathematics. However, 

closed analytical solutions have been found only for a sma.11 number of particular cases. 

Nowadays, with an arriva.! of fast digital computers, these equations can be solved nu

merically. Hence, one should realize the following steps in obtaining predictions when the 

spirit of Euler's fluid mechanics is followed: 1. casting physical phenomena into partial 

differential equations, 2. discretizing the equations in space and time in order to arrive 

at finite difference equations ( truncation of the power series ), and fina.lly 3. employing 

digital computers (round-off errors) ta yield solutions [1, 2, 3]. Until recently, the a.bave 

approach has been accepted in bath fluid dynamics and rheology; the computational fluid 

dynamics (CFD) and computational rheology (CR) have been considered as the final step 

in the solution of the fluid dynamics and rheological equations on digital computers. Since 

this scheme is neither direct nor simple, one ma.y contempla.te bypassing one or bath mid

dle stages in order to model the physics directly. In this work we study rheology and flow 

of model polymeric fluids without the recurrence ta the partial differential formulation of 

the conservation and constitutive equations. 

The techniques that remain at our disposa.! have been recently developed based on 

the idea that matter is not rea.lly continuous at the atomic level. Especia.lly, molecular 

dynamics (MD), lattice gases (a class of cellular automata, CA) and an older method 

of Brownian dynamics (BD) have been receiving much attention. As oppose to Monte 

Carlo (MC) techniques which can only provide static properties since the modeling is con

fined exclusively ta the configuration (position) space, MD, BD and CA are able to yield 

dynamic properties and are well suited for simulations of dynamic processes. An ever 

increasing number of papers published on MD, BD and lattice gases cornes out not only 

from theoretical physics and chemistry departments but also from chemical engineering 

schools - a sign that a.Il three methods have reached the theoretical maturity, and could 

be applied to problems of engineering significance. Another indication for the emergence 
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of a new branch of science is a number of books in print. For instance, in the field of 

molecular dynamics, besides more advanced Theory of Simple Liquids by Hansen and 

McDonald [4] and Statistical Mechanics of Nonequilibrium Liquids by Evans and Mor

riss [5], Molecular Dynamics and Computational Statistical Mechanics by Hoover [6, 7] 

there is an introductory text by Haile [8] Molecular Dynamics Simulations: Elementary 

Methods. In addition, several monographs include chapters on MD simulations of liquids 

[9, 10, 11, 12]. Similar lists might have been prepared for BD and CA. 

Both MD and BD yield predictions that are continuous fonctions of the independent 

variables and time, whereas lattice gases are discrete in space, time, and variables. MD 

and BD particles are of course discrete in space but their motion is continuons in time. 

MD is a deterministic technique since no stochastic forces, as for BD, are included in the 

equations of motion. Somewhat arbitrarily but motivated by pragmatic reasons we have 

decided to pursue MD simulations in this investigation, although we have performed some 

preliminary computations on the lattice gases. Unlike MD and BD particles which may 

be rela.ted to single polymer particles, to single a.toms or even to small volumes of fluid, 

lattice gases are built of abstract particles that collide a.ccording to some ad-hoc collision 

rules. Lattice gases have been extensively studied for turbulent but not for low Reynolds 

number flows, and there is no critical body of literature on theory nor on applications of 

CA to viscoelastic fluids. 

In MD simulations one computes the instantaneous positions, velocities ( or momenta) 

of all particles by solving a very large system of ODE; six equations are necessary for 

each particle. As the input to a simulation, one provides detailed microscopie properties 

of polymeric liquids (in the form of model potentials ). As the output from calculations, 

a trajectory of the system in 6 N dimensional space, where N is the number of particles, 

is obtained. In principle, all properties at any level of description can be calculated along 

a trajectory. For example, the viscometric fonctions are computed by statistical averag

ing of the components of the microscopie stress tensor. In other words, MD allows to 

correlate microscopie description of model polymeric liquids with their macroscopic prop

erties. This is often regarded as a computer analogue of laboratory work and therefore 

a "term computer (numerical) experimentation" is used. Actually, John von Neumann 
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who conceived and was responsible for the construction of first electronic serial computers 

also realized the possible applications of computational machines ( especially parallel) for 

doing numerical experiments. 

The general objective of this research project was to investigate the rheology and flow 

of viscoelastic fluids consisting of model polymeric particles, such as vibrating dumbbells, 

ellipsoids of revolution, or two-dimensional Lennard-Jones-like disks. The specific objec

tives were: ( 1) to extend the existing NEMD rheological algorithms for atomic liquids to 

model polymeric fluids, (2) to formulate new algorithms better suited for this purpose, 

(3) to develop fast NEMD computer codes capable of yielding results on work-station

type computers ( e.g IBM's RISC, SUN's SPARC), ( 4) to generate thermodyna.mical, mi

crostructural and rheological data for model polymeric liquids, and (5) to investigate the 

flow of model liquids directly. 

In the next two sections, we will review the literature on molecular dynamics simula

tions relating to systems of interest, in term of rheological and flow simulations. We will 

concentrate on the literature that has not been reviewed in our publications. Useful links 

between the papers will be given next. The papers are rather complete, each includes 

background information, theory, computational details and a set of MD results. The 

synthesis of the major achievements of this study will be given next, followed by a brief 

outline of the future work. The computer code for rheological modeling of rigid bodies is 

assembled in the appendix. 

1.2 Review of the Literature 

The last 15 years have seen a true explosion of the research work devoted to the study of 

simple liquids. Scientists of different backgrounds started to realize that substantial ad

vances in molecular simulations may be achieved by imposing external constraints on MD 

systems in such a way as to induce hydrodynamic fluxes. This new field of research has 

corne to be called nonequilibrium molecular dynamics (NEMD). In equilibrium molecular 

dynamics (EMD) the transport coefficients ( e.g. shear viscosity, thermal conductivity) 

are investigated by fluctuations around the equilibrium states. More specifically by cal-
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culation of the time autocorrelation fonction and by the subsequent evaluation of the 

Green-Kubo integrals (see for example Table II of ref. [13]). 

There are several major problems in the calculation of the autocorrelation fonctions. 

Since they represent the response to the fluctuation of the system, which could be minute, 

the signal to noise ratio is rather small. Moreover, the calculations are very inefficient. 

Usually, the postprocessing of MD results may take more CPU time than MD simulation 

itself [14]. For example, calculation of the velocity autocorrelation fonction, required in 

the evaluation of the self-diffusion, is proportional to the square of the number of time 

steps. Incidentally, time necessary to compute radial distribution fonction is proportional 

to the square of the number of particles. Also, the stress-stress correlation fonction de

pends on number of particles in a system and it displays a tail at long times. Most 

importantly, the shear viscosity values, calculated from EMD are up to 20% greater than 

the values obtained from the experiments [15] . 

On the other hand, in NEMD the signal to noise ratio is maximized by using large 

externally applied forces and gradients. The difficulties in the calculations of the auto

correlation fonctions are avoided in favor of direct computation of fluxes and transport 

coefficients; for example, the viscosity of atomic liquids is calculated from the stress ten

sor obtained from the Irving-Kirkwood formula [16]. When describing the perspective in 

NEMD H.  Hanley once said [9]: "A goal of NEMD is to connect the macroscopic rheo

logical laws and constitutive equations with the atomistic behavior of a fluid". This is 

almost exactly what we have set out to achieve in this work - we have simulated the flow 

and rheology of model particles and the connection between atomistic and macroscopic 

behavior has corne as a by-product of the simulations. 

In the introduction we purposely mentioned bath, computational fluid dynamics and 

computational rheology. For us, these terms convey different meaning. In CR the prob

lem is as follows: given well defined boundary conditions and velocity profiles one is asked 

to determine the interna! state of the liquid, for example in terms of the interna! stresses. 

In CFD the situation is more complicated - knowing the boundary conditions ( e.g. the 

nature of interactions of molecules with walls) and a constitutive model one calculates 

bath the flow field and the stresses (it follows that the computational non-Newtonian 
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or viscoelastic fluid dynamics is only a subset of CFD). By introducing the distinction 

between CFD and CR we aimed at showing drawbacks of the classical approach. In order 

to compute velocity structures by a means of CFD one needs to know the rheological 

properties (equation of state) for a given fluid. This is not the case for direct modeling 

of flow. 

There is an extensive body of NEMD literature on modeling of simple liquids, in

spired by the work of Lees and Edwards [17). Lees and Edwards's approach has become 

known as the molecular modeling of rheology since the flow field is imposed either by the 

boundary conditions ( called LE) alone or in conjunction with an imposed linear velocity 

profile within the simulation box. There are no fondamental differences, except for the 

directness and space-discreteness, between the classical CR and its molecular dynamics 

analogue. 

In case of the direct simulation of flow by NEMD the improvement over the traditional 

CFD is significant. One has to specify the boundary conditions and perhaps body forces, 

such as gravity, to induce the flow and the nature of microscopie interactions among fluid 

particles but a constitutive equation is not necessary, as hinted above. CFD is concerned 

with solving five partial differential equation for density, momenta and energy fields which 

are coupled to a rheological equations of state or to equation(s) for interna! state vari

ables, in case of the mesoscopic theories. These PDE are replaced by a system of ODE 

equations for MD simulations. For simple liquids, the equations of motion are not com

plicated, however their number could be high ( of the order 105), in order to generate data 

with the suffi.dent statistical accuracy. Before reviewing the literature on the rheological 

and flow calculations in the next two section we make two general comments. 

It has been realized that any fluid may exhibit the non-Newtonian behavior when the 

product of its relaxation time and the imposed shear rate ( i') is of the order of unity 

[18). As a matter of fact, this has been cited as one of the important reasons for the 

investigation of simple liquids. The logic is that the physical insight gained for atomic 

liquids could be extrapolated to complex polymeric liquids. For viscoelastic fluids the 

relaxation time is close to 10-2 s and the onset of shear thinning may be observed at 

relatively low shear rates. In case of simple liquids which have extremely fast relaxation 
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times, the viscoelastic behavior may be noticed if the imposed shear rate is of the order 

of 5 x 1011 s-1
, significantly higher than can be obtained in the laboratory. In colloidal 

suspensions,  particles are bigger and heavier than for atomic liquids and the :fl.uid relax

ation time of colloids could be as high as 10-3 s. Consequently, colloidal suspension are 

specially interesting from the MD point of view [19, 20]. 

Finally, we mention the subtraction technique (see [21] for the latest reference and 

[11] for the review) that is useful for studying nonequilibrium time dependent phenom

ena, such as the inception of the shear flow. In this method, unperturbed and weakly 

perturbed trajectories are followed and the response of the perturbed system is extracted 

from the knowledge of both trajectories. Since the neighboring trajectories tend to di

verge in time, with the largest Lyapunov exponent of the unperturbed system, after a 

while a correlation between the trajectories is blurred by the noise. Incidentally, the 

distance between the unperturbed and perturbed (by a small shear) trajectories is linear 

in 'i' [22]. 

1.2.1 NEMD Modeling of Rheology 

Since the latest literature on the molecular modeling of rheology is reviewed in Papers 

1-3, in this section we briefly describe the older publications. The introduction of NEMD

rheological simulation by Lees and Edwards [17] as well as by Ashurst and Hoover [23, 24] 

allowed to study the effect of imposed shear rates on the structural and dynamical prop

erties of simple liquida. A few years later, a shear induced phase transition between 

amorphous and ordered (string) phases was observed for the first time by Erpenbeck [25]. 

This discovery was questioned shortly after by Evans and Morriss [26] who maintained 

that the string phase is an artificial result of an imperfect algorithm. 

The classical SLLOD algorithm was introduced by the efforts of many people. Lees 

and Edwards formulated the boundary conditions [17], Ladd [27] put the SLLOD equa

tions into their final form, and Evans et al. [28] invented a method to contrai the kinetic 

temperature of a system of molecules by a means of Lagrangian multipliers; they called 

the rnethod Gauss 's principle of least constraint. Thus, the algorithm is often denoted as 
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SLLOD /LE/GAUSS. 

But it was only Reyes (for example [29, 30]) who produced a remarkable series of 

papers on every imaginable aspect of the rheology of liquid argon. On the other hand, 

Evans's contribution to NEMD has been mostly on the theoretical side. Among his many 

discoveries are inventions of NEMD algorithms for thermal conductivity [31) or for iso

choric and isobaric ensembles (5]. 

The work of Nosé and Hoover led to the formulation of another method for control

ling the temperature, nowadays called the Nosé-Hoover thermostat (see (32) and refs. 

therein). Hess [33] was the first to suggest the extension of NEMD to short polymeric 

chains. 

1.2.2 NEMD Modeling of Flow 

The applicability of NEMD simulations to hydrodynamics was demonstrated by showing 

that results of computer experiments remain in good agreement with the laboratory 

evidence and with the steady state hydrodynamic equations for incompressible flows; 

bath simple shear (Couette) and channel (Poiseuille) flows were investigated. In addition, 

studies on Rayleigh-Bénard convection, on flow at boundaries, on obstructed flows, and on 

flows in dilute gases were also published. In contrast to the NEMD rheological modeling, 

NEMD flow simulations do not require an imposed velocity profile. 

In one study [15), a dense Lennard-Jones fluid near its triple point was subjected to 

a moving thermal (stochastic) wall implemented by replacing velocities of ail particles 

crossing the system boundary with velocities drawn from the shifted (by macroscopic 

velocity) Maxwell-Boltzmann distribution, at a given temperature. Similar technique 

was used to model the heat transfer in liquid argon [34, 35]. The results indicated that 

the shear viscosity was Newtonian for shear rates up to i' = 1011 s-1
, especially away 

from the triple point. Close to walls, the fluid showed boundary surface effects, such as 

slip and temperature drop. These effect were especially significant in a layer immediately 

adjacent to the thermal wall whose thickness was of the order of a mean free path. 

Hannon et al. [36] subjected assemblies of argon atoms to a uniform acceleration 
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of 1012 m/s2 in order to induce gravity driven flows; in total 1152 atoms, enclosed in 

a parallelepiped with the ratio of side lengths equal to 32 :6:6, were used in the study. 

This extremely high acceleration was necessary to increase the signal to noise ratio. The 

heat generated during the simulation was removed by thermal walls, which are similar 

to stochastic walls described above. The velocity and temperature profiles were fitted to 

those predicted by the hydrodynamic equations yielding transport coefficients of shear 

viscosity and thermal conductivity. For the Lennard-Jones potential with a eut off radius 

equal to three molecular diameters, viscosities were 20% and thermal conductivities 10% 

lower that measured experimentally. For simulations with a larger number of particles 

(over 20,000) the agreement between the experimental data and NEMD dynamics results 

was even better [37]. If the extreme gravity field is replaced by sink and source of molecules 

which are supposed to emulated the pressure driven flows, as it has been done in a recent 

study [38], then the density along a channel becomes nonuniform. 

NEMD calculations were applied to investigate flows around a cylinder [39] and past 

a plate inserted perpendicularly to the direction of flow [37]. In both studies qualitative 

agreement was found between simulation and the macroscopic theory; the development 

and the propagation of wake oscillations were observed but the :flow had to be induced by 

very high gradients, as for NEMD flow experiments. Actually, it has been argued that the 

requirement of extreme gradients is a weak point of NEMD. Similarly, good qualitative 

agreement was demonstrated for the Rayleigh-Bénard hydrodynamic instability, when a 

convective current is produced in a cell driven by opposed temperature and gravitational 

fields [40, 41, 37]. Very recently [42], it was shown by NEMD modeling that the no

slip condition may arise naturally as a result of molecular roughness of walls [42]. In 

macroscopic theory, the non-slip condition has been presented either as a postulate or as 

a result from 19th century experiments. F inally, NEMD was used to study the heat and 

momentum transfer phenomena in dilute gases with Knudsen number (ratio of the mean 

free path of a particle to the characteristic length of the :flow system) less than unity 

[43, 44). 

It is clear that NEMD simulations of flow of simple liquids successfully model different 

types of flows. Both the N ewtonian behavior and the macroscopic flow fields have been 
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extracted from direct NEMD simulations for fluids whose properties were specified at the 

microscopie level. This is a starting point for our work presented in Chapter 6. 

1.3 Organization and Links Among Articles 

Modeling of industrial processing operations requires that the complex viscoelastic behav

ior of polymeric liquids be expressed in terms of the rheological constitutive equations. 

Together with the equations of the conservation of mass, momentum and energy, the 

constitutive equations are then discretized and solved on digital computers to yield flow 

predictions. The discretization of a partial differential equation of state (there are also 

integral equations but not as widely used) is an obligatory step if a rheological model was 

conceived at the macroscopic or at truly mesoscopic (e.g. conformation tensor) levels of 

descriptions. If however a model is proposed in terms of real or effective particles which 

move according to Newton equations of motion then only ordinary differential equations 

have to be discretized. ODE are easier to salve since they are not plagued by the math

ematical and numerical difficulties related to PDE [45]. 

In this work, we have followed an "effective particle" route, which we believe may 

eventually lead to industrial applications of NEMD to polymer processing. In computa

tional chemistry, as opposed to ( computational) chemical engineering, one is interested 

in obtaining a set of physico-chemical properties for a well specified material at equilib

rium, and therefore real particles investigated by EMD are favored. It stands to reason 

to suggest that the nature of long nonuniform polymeric chains could be simulated more 

efficiently by a way of model particles, from the practical point of view. Madel polymeric 

particles studied in this work include vibrating and pseudo-rigid dumbbells (Chap. 4), 

rigid ellipsoids of revolution (Chap. 5) and Lennard-Jones-like disks (Chap. 6); pseudo

rigid dumbbells are dumbbells whose intramolecular bond is very stiff ( Chap. 4). To our 

knowledge, only one investigation [46] has been devoted to rheology of model polymeric 

particles, although there are more publications on direct simulations of atomic liquids 

(see for example (37, 38]). 

In Chap. 4, we assemble results from a comprehensive investigation of vibrating 
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dumbbells from the rheologica.l perspective, at ail levels of description. Normally as in 

[46], rigid dumbbells (rigid rotors) are regarded as a particular case of vibrating dumbbell, 

when the bead-bead extension is maintained constant by an imposed constrain. In Chap. 

5, we have chosen an alternative route. We consider the dynamics of rigid rotors to be a 

particular implementation of the dynamics of rigid bodies. Accordingly, we develop the 

theory and generate a broad set of results for ellipsoids of revolution, which are similar 

in size and in eccentricity to dumbbells. Fluids consisting of ellipsoids of revolution are 

known to exhibit liquid crysta.l behavior [47]. Our investigation has been conducted for 

the state points that at equilibrium lie within the isotropie phase, but similar NEMD /rigid 

body approach could be followed in studying the rheology of the nematic and smectic 

phases. 

Chap. 6 is our first attempt to investigate mode! polymeric fluids by direct simu

lations. Here, we study middle-size ( around 8000 particles) two-dimensiona.l systems of 

beads in new geometries and with new boundary conditions. We plan, a.lthough not 

within this doctorate dissertation, to replace disks with two dimensiona.l vibrating dumb

bells as well as with rigid ellipsoids to obtain flow predictions for these particles as well. 
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Summary 

We report new macro-rheological results extracted from non-equilibrium molecular 

dynamics (NEMD) simulations of Couette flow. We investigate atomic liquids for 

new state points, and in addition two types of dumbbell liquids: (1) finitely ex

tensible nonlinear elastic (FENE) and (2) newly defined generalized Lennard-Jones 

(GLJ), up to a nondimensional shear rate of 15. The dumbbell liquids exhibit shear 

thining, non-zero first and second normal stress differences, and volumetric dila

tancy. These effects are weakly sensitive to details in shape of the intra-molecular 

potentials, and to the dominant frequency associated with vibrations of dumbbells. 

However, the Newtonian viscosity of dumbbell liquids strongly depends on the size 

of dumbbells. The onset of shear thining of FENE and GLJ dumbbells is delayed 

to higher shear rates in comparison with atomic liquids. ln general, for the en

tire investigated region, we see that dumbbell are slightly more elastic than atomic 

liquids. 
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1 Introduction 

Modeling of polymer processing operations can be fully appreciated by the poly

mer processing industry only if the flow predictions are sufficiently accurate. The 

accuracy can be achieved only if the rheological complexity of the polymeric fl.uids 

involved is expressed in the governing equations of the model. If this is attempted, 

however, the resulting system of partial diff'erential equations becomes so complex 

that the numerical solutions cannot be found [1]. One way to avoid these difficul

ties is to simulate the flows directly, i.e. molecule by molecule, with no recourse 

to partial differential equations. The ultimate goal of our research, at the Centre 

de recherche appliquée sur les polymères, is to perform this type of simulations of 

flows of polymeric liquids. The time evolution of polymeric fluid is modeled by 

using ordinary differential equations describing the time evolution of the molecules. 

These equations are easier to formulate and solve. There are of course many diffi

culties met in this approach. We believe, however, that in the long term much is to 

be gained in terms of mathematical and computational simplicity, by performing 

simulations at the microscopie level. The first step in the molecular simulations of 

flows of polymeric fluids is to investigate rheological properties of fluids that are 

defined at the molecular level. We make distinction between rheological simula

tions, where the velocity profile is given ( e.g. Couette flow), and the computational 

fluid dynamics where the velocity profile arises as a result of the simulation. In this 

paper we present results of rheological simulations. Flow simulations will be given 

in a subsequent publication [2]. 

Non-equilibrium molecular dynamics (NEMD) is a technique usèd to simulate 

the behavior of a system of interacting particles subjected to an external field. Al

though the modeling is performed on the microscopie scale, macroscopic transport 

coefficients can be extracted from the results by using statistical averaging. This 

has been well demonstrated, especially for simple liquids [3]. Recently, the tech-
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nique has been applied to predict the rheological properties of dumbbell liquids, 

whose intra-particle interaction are described by finitely extensible nonlinear elas

tic (FENE) potential [4] (thereafter called "FENE liquids"). This study extends 

the investigation to higher shear rates. The technique of NEMD is not constrained 

to atomic and dumbbell fluids; it may be easily generalized to short polymeric 

chains, as it was clone among others, by Hess [5] and recently by Berker et al. [6]. 

ln the former publication, the intra-particle (bonded) interactions were modeled by 

the usual Lennard-Jones potential multiplied by a constant, whereas in the latter 

article the intra-particle potentials incorporating bond-stretching, angle bending 

and tortion were used. 

The dumbbell :fluids that we investigate must not be perceived as truly molec

ular fluids. They are model fluids composed of small number of model molecules, 

relative to the Avogadro number. It is highly unlikely that it will be possible to per

form direct rheological and especially :flow simulations using molecular fluids that 

preserve the exact one-to-one correspondence between atoms in polymeric chains 

and in simulated particles. Even replacing methyl and methylene groups by sin

gle "computer" particles has been attempted only for medium size alkanes such 

as eicosane, ( C20H42 ) [7] for nonequilibrium simulations, and for short polymeric 

chains, of less than 400 monomers, in case of equilibrium modeling [8]. ln our 

simulations, the microscopie character of the dumbbell fluids is preserved by the 

Lennard-Jones type interactions between beads ( atoms) belonging to two different 

dumbbells, whereas the phenomenological component of the liquids is implied by 

thé FENE and GLJ potentials. It is appropriate to emphasize that the :fluids in

vestigated in this paper are artificial and some results may be tested exclusively 

against mesoscopic models. 

The FENE and GLJ model fluids are described in Sec. 2 in conjunction with 

the definition of the dynamic evolution equations called SLLOD [9]. Dimensionless 

quantities, statistical averaging and a few words about hardware are also given in 
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that section. We have decided to implement the SLLOD algorithm classically in 

terms of single bead motion rather than using the evolution equations for center-of

mass and end-to-end vectors of each dumbbell. The implications that follow from 

this choice are examined in Sec. 3. It has been thought that dumbbell liquids should 

exhibit different macroscopic properties than atomic fl.uids due to the appearance 

of new frequencies associated with vibrations. This notion is investigated in detail 

in Sec. 4, together with a related topic of the average size of a single dumbbell and 

issues related to physical and numerical breakage of dumbbells. Sec. 5, which con

tains the figures of the viscometric fonctions of monatomic and molecular liquids, 

discusses the main results of this work. Macroscopic predictions from computer 

simulations of dumbbell fl.uids and from elastic dumbbell theories are compared in 

Sec. 6. The conclusions are presented in Sec. 7. 

2 Equations of motion and potentials 

The model fl.uid is represented by 256 atoms or 128 dumbbells that are placed in 

a primitive cell of size adjusted in such a manner that the density of the liquid 

corresponds to the density of liquid argon. The cell is surrounded by its infinitely 

many images to simulate a homogeneous macroscopic system. We consider liquid 

argon as a convenient benchmark example. Since the inception of molecular dy

namics, liquid argon has been a favorite subject of computer experimentation due 

to its ideal physical properties. Therefore, the abundant computer generated data 

is available for the purpose of comparison. As opposed to quite a few molecular 

dynamics studies that concentrate on elucidating the exact physical properties of 

one well defined fluid (be it liquid argon, nitrogen, or light alkanes ), we investigate 

rheological properties within a group of liquids. 

Newton's equations governing the time evolution of the atoms are coupled to 
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where, 
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(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

In the above equations, the Einstein summation convention is implied, and all 

symbols have their traditional meanings: ri, Pi, and Fi are position, momentum 

and force vectors of the ith particle, m stands for mass of a single atom (bead). 

Subscripts, such as a, denote components of these vectors and of the tensor X, 

in the Cartesian coordinates. u denotes the hydrodynamic velocity field in case 

of incompressible and isothermal fluid. In general, u depends on the location r,

V stands for the total volume of the primitive cell, Fi includes components due 

to bonded and inter-molecular interactions, as shown below, u is the total stress 

tensor. The scalar pressure P will be introduced in Sec. 3.

lt has been shown [10] that Eqs. (1)-(4) represent a Hamiltonian dynamic 

system in which the time evolution is generated by the Hamiltonian fonction: 

(7) 

representing the total energy of the fluid. J ½PBU2 is the kinetic energy of the fluid 

in the laboratory frame of reference; PB is a bulk density of the fluid. The kinetic 

energy J{ is based on the peculiar (thermal) motion of particles and 4> denotes the 
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total potential energy of the system of interacting particles per unit volume. 

ln order to interpret physically Eqs. (1)-(4), we compare them with the gov

erning equations that arise in the standard rheological modeling. We recall that 

a rheological model always begins with a selection of state variables ( called inter

nal state variables) characterizing the interna! structure of the complex fluid under 

consideration. The equations governing the time evolution of the interna! state 

variables are then coupled to the hydrodynamic equations. The final system of 

equations possesses a Hamiltonian structure ( or a generalized Hamiltonian struc

ture - see [11]). We note that if we regard the position coordinates r1 ... rN and 

the momenta p1 • .• PN as the interna! state variables then Eqs. (1)-(4) become 

in fact governing equations of traditional rheological modeling (see more in [10]). 

Furthermore, Eqs. (1) and (2) may be viewed as describing the motion of particles 

suspended in a carrier fluid whose time evolution is governed by Eq. (3) (12]. Eq. 

(4) serves as a coupling link between (1-2) and (3). The Langevin dynamics is an

alternative (to NEMD) approach to study suspensions at the microscopie level.

Following Lees and Edwards [13] (LE), we supplement.the time evolution equa

tions (1-4) with the "sliding bricks" boundary conditions (see [14] for a particu

larly enlightening explanation of the workings of this type of boundary conditions). 

ln addition; we follow Evans et al. (15] and incorporate the Gauss thermostat 

multiplier (a) in Eqs. (1)-(4). From the physical point of view this modifica

tion is equivalent to the condition of constant temperature ( see more on this in 

Sec. 3 and in [16]). ln case of simple shear (Couette) flow, Eqs. (1)-(4) become 

SLLOD/LE/GAUSS, 

ri/3 
Pi/3 
- + rhX-r/3,
m 

(8) 

Pi/3 - Fi/3 - Pi-r X-r/3 -
api/3, (9) 

a = 
°Efl::1 ( Fi/3Pi/3 - Pi/3Xf3-yPi-y) (10) 

Efi:1 Pi/3Pi/3 
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Three types of potentials are used in the simulation. Atom-atom interactions 
in atomic liquids and inter-particle interactions in dumbbell liquids are described 
by the Lennard-Jones (12-6) potential (LJ), whereas the intra-particle forces in 
dumbbell fluids are derived from the modified finitely extensible nonlinear elastic 
potential, due to Rudisill and Cummings [4], or from the generalized Lennard-Jones 
(GLJ) potential, to be defined below. Thus, 

where, 
F.-/3 _ � F'.-·/3 _ _ � 8cp(ri;)

1 - L.., IJ - L.., 
a l j=l,j,/:i j=l,j,/:i rij(3 (11) 

For algorithmic simplicity we say that dumbbell 1 consists of beads 1 and 2, dumb
bell 2 is built from beads 3 and 4, ... , dumbbell � is constructed from beads N - l 
and N. Hence, 

'-Pi;(ri;) 
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r.pfiJ (ri;) r.pf.ENE(r--)IJ IJ GLJ( )'-Pij ri; 
for 
for 
for 

interdumbbell interaction 
intradumbbell interaction (12) 
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where, u and t: are the Lennard-Jones parameters which denote the collision diam
eter and the depth of the potential well. The potentials are defined as , 
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(14) 

(15) 

where H denotes a spring constant and A is an arbitrary parameter that modifies 
the attraction term in the classical LJ potential. For inter-molecular forces, the 
eut-off radius was set to 2.5a. All intra-particle potentials studied are drawn in 
Fig. 1 and summarized in Tab. 1. req denotes a midway position between the 
minimum (rmin ) and the maximum extensions (rmax) of a single FENE dumbbell. 
Thus the FENE potential is symmetric around r = req• In the other study [4), 
req and rmax were chosen as 0.9a and 1.4a to eliminate the possibility of dumbbell 
bond crossings. This is also true here with the exception of the longest dumbbells. 
Arbitrarily, in case of GLJ liquids, a dumbbell is considered broken if its bead-bead 
extension exceeds 1.7a. The forces between beads in a broken dumbbell, however 
minuscule, are taken into account above 1.7a until the eut-off radius of 2.5cr. 

From the microscopie perspective, the Lennard-Jones parameters defined at the 
molecular level, have no meaning for GLJ potential, and they cannot be meaning
fully related to H, req, nor to rmax of the FENE potential. ln this light, SLLOD 
particles should be thought as renormalized pseudo-particles or effective particles. 

We emphasize that bead-bead potentials result in central forces only. Further
more, the interactions between two dumbbells are approximated by a sum of four 
Lennard-Jones site-site potentials. An alternative inter-molecular potential could 
be conceived by considering dumbbells as ellipsoids of revolution. Such a poten
tial was developed by Gay and Berne [17] and was successfully applied to model 
the behavior of liquid crystals; see for example [18). Currently, we investigate the 
Gay-Berne potential in conjunction with the SLLOD algorithm in the context of 
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rheological modeling [19]. ln general, the Gay-Berne potential, which could be 

considered as a generalization of the Leonard-Jones site-site potentials in case of 

multi-bead molecules, depends on the relative orientation of long axes of the two 

interacting molecules as well as on the vector that connects their centers-of-masses. 

It is also important to realize that neither of the above approaches makes an al

lowance for interactions among three or more dumbbells. 

The starting configurations for NEMD runs are prepared by using the following 

procedure. Firstly, all beads with velocities drawn from the Maxwellian distribution 

are placed on the faced-centered-cubic (FCC) lattice. During the initial 500-1000 

steps all velocities are rescaled in an ad-hoc manner to drive the system to the 

equilibrium; pragmatically, we consider the equilibrium to be reached if there is 

no drift in thermodynamic quantities such as hydrostatic pressure, potential en

ergy or kinetic temperature. Over the next 10,000-30,000 steps, the system follows 

the classical molecular dynamics trajectory. Subsequently, the molecular dynamics 

equations are replaced by the SLLOD equations. The data are collected only after 

few thousand time steps, when the transitional effects, such as the stress overshoot, 

die out. In this study, we present the results that were obtained with Verlet neigh

borhood (20] switched off. We also use linked lists-cells but only in modeling of two 

dimensional systems [2]. 

Dimensionless quantities, denoted by * superscript and defined on the ha.sis 

of the Lennard-Jones parameters, are used in the simulation. For example, the 

dimensionless mass, length, time and temperature are defined as, 

M* = M �, L* = Ll_, t* = t �, T* - T kB 
· 

m u V� - t '
(16) 

m denotes the mass of a single atom of argon, and kB is the Boltzmann con

stant. Hence, dimensionless unit quantities of mass, length, time, and temperature 

correspond to 6.63 x 10-26 kg, 3.405 x 10-10 m, 2.156 x 10-12 
s, and 119.8 K. It

follows that dimensionless unit quantities of shear rate, energy, velocity, pressure, 
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and viscosity are 4.64 x 1011 s-1
, 1.65 x 10-21 J, 157.9 m/ s, 41.9 x 106 Pa, and 

9.03 x 10-5 Pas. ln molecular dynamics simulations, density is understood as a 

number of beads ( atoms) in a unit cube of volume equal to o-3
, thus the dimen

sionless unit quantity of density of liquid argon, is synonymous to 1679.4kg/m3
• 

Finally, the spring constant H* and the dimensionless group b* are written as,

2 H* ( * * )2 H* = H �' b* = r max - r eq 

E T* (17) 

Three series of numerical experiments are performed for atomic argon: close 

to its triple point (T* = 0.722, p* = 0.842), near the liquid-vapor line (T* = 1, 

p* = 0.7), and in the liquid phase (T* = 1, p* = 0.8). The rheological macro

scopie properties of argon at the triple point for the whole range of ,:t* (21], and 

near the liquid-vapor line in the Newtonian regime [5] were investigated, but the 

other results are new. The dynamic properties of dumbbell fluids are determined 

at (T* = 1, p* = 0.8) for nine series of experiments, as indicated in Tab. 1. 

The calculations were performed on work-station type computers, such as SUN 

SPARC II and IBM RISC 320. Rather long runs were necessary to minimize the 

effects of fluctuations; an average simulation demanded 8 hours of CPU time includ

ing the overhead for taking averages and storing parts of trajectories. The number 

of time steps in production runs was varied between 50,000, for ,y* in the vicinity 

of 1, and 300,000 for ,y* below 0.1. The time step was normally set to 0.005 but it 

was decreased to 0.001 at high shear rates. 

The errors in viscometric fonctions were estimated in a pragmatic manner, simi

larly as it was clone by Rudisill and Cummings [4]; physically more correct, but also 

more involved techniques for estimation of errors my be found in [3, 22]. Here, the 

variables were calculated at each time step and averaged over bins of at lea.st 5,000 

steps long. Since the shortest production runs lasted 50,000 steps, at least 10 bin 

averages were computed. Subsequently, these averages were considered as indepen

dent observations and used to calculate an overall average, and associated with it a 
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standard deviation. Thus the mean values and the confidence intervals, plotted in 

the graphs, correspond to overall averages and one standard deviation, respectively. 

3 Stress tensor and kinetic temperature 

The fact that the equations of motion were introduced in the classical (atomic) 

rather than in molecular ( center-of-mass) representation, requires a consistent treat

ment of the stress tensor, and of the Gaussian thermostating multiplier a; in molec

ular dynamics terminology, the negative of the stress tensor is often called the pres

sure tensor. In simple words, the atomic approach demands that six first order 

différentiai equations are solved for each bead, the stress tensor is placed at beads 

and the total kinetic energy is maintained constant by thermostating. On the other 

hand, if the equations of motion are cast into the molecular form, six equations are 

solved for translational velocities and coordinates of the center-of-mass. The other 

six equations are necessary to describe the motion of the bead-bead vector. In this 

representation, the stress tensor is positioned at the center-of-mass implying that 

the momentum transfer takes place when the center of mass crosses an arbitrary 

surface. In addition, the sum of the translational energies is kept constant [23] 

indicating that the vibrational and rotational energies are not included in the def

inition of a. In this study the stress tensor was placed at beads, whereas Rudisill 

and Cummings [4] followed the other approach. 

In the atomic representation the total stress tensor is always symmetric due to 

the interactions under the central forces only. The stress tensor is a sum of the 

kinetic part, which is represented by the first term on the right hand sicle in Eq. 

4, and the two potential contributions, which are due to the Lennard-Jones, FENE 

or GLJ interactions. ln case of dense atomic liquids the kinetic part of Uaf3 is 7 - 8 

times smaller than the potential term [5]. 
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The viscometricfunctions, namely the viscosity (77 ), the first (N1 ) and the second
(N2 ) normal stress differences, as well as the hydrostatic pressure (P) are defined
as:

17(-y) 

N1(-r)
N2( i')
P(i') 

O"xy(i')

O"xxb) - O"yy( 'Y),

O" YY ('Y) - O" zz( 'Y) '
-}( O"xx( 'Y) + O"yy{ 'Y) + O"zz( 'Y)).

(18) 

(19) 

(20) 

(21) 

Similarly to the results from real experiments, N1 and N2 obtained from the com
puter simulations are associated with large relative errors, due to the fluctuations
at low shear rates. Hence presentation of the results in terms of the first and the
second normal stress coefficients -ip1 ( ,f) = N��..:,,) and 'lj;2 ( i') = N��..:,,) is impractical in
the Newtonian regime; division of N1 and N2, which at i'*-----+ 0 are of the order of
their standard deviations, by a very small shear rate leads to a large uncertainty in
'!p1 and -ip2 .

ln general, the temperature of any macroscopic system is specified in terms of
the thermodynamic temperature which is defined as the partial derivative of the
total interna! energy of the system with respect to its entropy. ln order to ensure
the compatibility of the NEMD results with macroscopic phenomena, it is necessary
to find the thermodynamic temperature for microscopie systems. This calls for the
calculation of the entropy from NEMD simulations. A first atternpt of this type
was reported by Evans [24] who used histograms to approximate the distribution
fonction at low density for a srnall nurnber of molecules. At low shear rates the
entropy of a fluid consisting of 108 atorns was investigated by Baranyai and Evans
[25]. It has been observed that at low densitiès, the thermodynamic temperature is
smaller than the kinetic temperature and the discrepancy increases with shear rate
[24]. We are not aware of a technique that would allow to determine the entropy or
the thermodynamic temperature for a system similar to ours. We recognize the fact
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that it is not at all clear how the kinetic temperature relates to the thermodynamic 

temperature, in case of nonequilibrium steady states; for monatomic fluids modeling 

an ideal gas at equilibrium both temperatures are the same. The uncertainty in es

tablishing the temperature will in general be also carried over to pressure, since the 

kinetic temperature is related to the trace of the kinetic contribution to the stress 

tensor, as follows from Eq. 4. Therefore, the thermodynamic pressure, defined as 

the negative of the partial differential of the total internai energy of the system 

with respect to its volume, may not correspond to the hydrostatic pressure which 

is equal to be the negative of one third of the trace of the stress tensor. Motivated 

by the necessity, we employ the kinetic temperature and the hydrostatic pressure 

which are convenient in comparing NEMD results among themselves. However, 

the temperature and the pressure defined in this manner might not be reliable in 

correlating experimental and NEMD data. 

We conclude this section by making a comment that the molecular representa

tion seems to be more frequently used in conjunction with shorter molecules [23]. 

This is true especially for the mesoscopic elastic dumbbell theories which tend to be 

developed in the configurational (position) space only. However, it is known that at 

least in the Newtonian limit, the use of the atomic and molecular representations 

leads to the same predictions. Moreover, at higher shear rates, the distribution 

fonctions that are produced by the both sets of the equations of motion correspond 

well withthe Zwanzig solution for dilute gases [23]. Thus, it appears that the choice 

of either of the representations is arbitrary. 

4 Oscillating diatoms and rigid rotors 

Historically, there have been two major advantages in using rigid rotors in place 

of vibrating diatomic molecules. It has been deemed that the rigid molecules are 
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able to incorporate most properties of real homonuclear molecules yielding predic

tions that correspond closely to those obtained for oscillating diatoms, at lower 

computational costs. Although the former reason is a valid one, the latter is of less 

importance in modeling of dumbbell fluids. 

A FENE dumbbell is a theoretical concept that has proved itself to be extremely 

useful as a starting point, in the formulation of the rheological models [26). The 

microscopie homonuclear molecules are characterized by a high frequency of vibra

tions that is of an order of magnitude higher than that of the frequencies associated 

with translations and rotation. This necessitates a very small time step that cor

responds to a fraction of the vibrational period. ln this context, the rigid rotors 

approximation give significant savings in computational time by elimination of fast 

vibrations, however at a cost of more complex computational schemes that must 

incorporate the constrained bond length. On the other hand, the FENE potential 

has its origins in the macroscopic rheology where it was first introduced as an im

provement over the simple infinitely extensible Hookean spring potential. ln the 

mesoscopic elastic dumbbell theories the strength of the FENE bead-bead bond is 

considered to be an adjustable parameter which is included in the definition of b*

[26); see Eq. 17. The microscopie effect of this is such that the vibrational motion 

of beads has a frequency which is comparable to the other frequencies present in 

the system. In addition, the FENE spring constant may be increased to result, in 

the limit, in the strongly bound microscopic-like molecules. As a matter of fact, 

this was the philosophy followed in this study. 

ln the paper, a pseudo-rigid rotor fluid is considered as a special case of the 

FENE durnbbell fluids, namely H* --? oo. According to the principles of statisti

cal mechanics, the vibrational energy reservoir for N durnbbells always stores N [* 

amount of energy. This is why vibrations become faster but are of lower magnitude 

as the bead-bead bond cornes to be stiffer. From the perspective of statistical me

chanics, rigid rotor limit cannot be reached just by letting H* --? oo. In order to 
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investigate rigid rotors one has to replace Eqs. (1 )-(3) by the time evolution equa

tions that take into account rigid body motion. Results of this type of simulations 

will be reported in a separate publication [19]. 

The inset in Fig. 2a shows vibrations of a single representative FENE dumbbell 

in unstrained isokinetic fluids as a fonction of the spring constant; we recall that 

the equilibrium position corresponds to 0.9 and the maximum and minimum exten

sions to 1.4 and 0.4, respectively. In order to determine the frequency of vibrations, 

the bead-bead distances of all dumbbells were Fourier transformed separately and 

then averaged to produce the amplitude spectra presented in Fig. 2a. A complex 

fonction G(f), where f is the frequency, may be expressed in terms of its amplitude 

A(f) and phase </>(!) spectra, according to 

G(f) = A(f) eitf>(J), (22) 

where, i denotes yCî, A(f) is real and positive (see p. 372 of ref. [27]). 

At high values of the spring constant the bond becomes stiff, but the fre

quency of vibrations increases. H* = 37.5, 375, 3750, 37500 correspond to b* =

9.375, 93. 75,937.5, 9375, for the state point investigated in this study; in mesoscopic 

elastic dumbbell models b* is usually between 30 and 1000 for infinitely diluted so

lutions [28]. At H* = 3750, the frequency of vibrations is around 14 and hence it 

is necessary, even at small shear rates, to decrease the time step to 2.5 X 10-3 so it 

corresponds to approximately 30 integrations per one vibration. In Sec. 5, it will 

become clear that the viscometric fonctions at H* = 375 and 3750 are nearly the 

same, therefore no simulations are performed for H* = 37500. 

ln a similar manner, dominant frequencies of vibrations were identified for un

strained GLJ liquids (Fig. 2b ). These frequéncies are similar as for FENE liquids 

with the spring constant being equal to between 375 and 3750. For A = 3, broken 

dumbbell were not taken into consideration in determining of the average amplitude 

spectrum. 
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On the assumption that at equilibrium the total energy per isolated FENE 

dumbbell Etd may be approximated as the sum of the average potential intra

particle and the vibrational kinetic energies, 

E>: = �intra + E;ib = 64. + 64. 
= 1 0 

id N/2 128 . ' (23) 

and neglecting the dumbbell-dumbbell interactions, it is possible to calculate the 

frequency of vibrations of a single FENE dumbbell in one dimension as, 

(24) 

where, 
* ( * *) ( 2Etd ) X1 = rmax - req 1- exp -H*( * - * )2 •

r max req 
(25) 

The numerical values of E;ib and �intra were taken from Figs. 12d and 13a in 

[16], in the Newtonian limit. As shown in Tab. 2, there is an excellent agreement 

between the predicted frequency of vibration of a single FENE dumbbell and the 

dominant frequency of vibration determined from the Fourier analysis for dumbbell 

liquids (Fig. 2a). 

It is worthwhile to add that a typical period of oscillation related to transla

tional motion was estimated by Hess [5] from the Einstein frequency to be 0.4, in

case of atomic fluids. This is very close to the predicted period of vibration for 

H* = 37.5 and shows that, at equilibrium for small values of the spring constant, 

there is only one time scale present in the system. 

As illustrated in Fig. 2c for H* = 375, the dominant frequency of vibration of

the unstrained fluid is replaced by an amplitude spectrum that contains high and 

low frequencies, under shear. The former may be associated with the long range 

slow structural rearrangements that take place in the fluid, especially at high shear 

rates. The latter, characterized by smaller magnitudes, might be explained by fast 

vibrations of single dumbbells which are locked inside linear structures (strings), 
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and are unable to rotate nor vibrate freely due to the caging effect exerted by 

neighboring strings [16). 

It is important to observe that frequencies of vibration of dumbbells have al

most no impact on the viscometric fonctions. One notable exception is a small 

reduction in the Newtonian viscosities of dumbbell fluids at higher frequencies of 

vibrations. Rather, the macroscopic results seem to be strongly correlated with an 

anisotropie structure whose existence is evident even at the smallest shear rates 

from the results at the mesoscopic level of description [16). This spatial structure 

is related to the packing of dumbbells in the primitive cube and hence it depends 

on the average end-to-end extension of a single dumbbell. For this reason, Fig. 

3 summarizes averages of the square of end-to-end distances for FENE and GLJ 

dumbbells, as fonctions of the shear rate. 

GLJ dumbbells tend to break, especially for A= 3 and at high shear rates, as 

plotted in Fig. 4. The breakage of GLJ dumbbells may be considered as a micro

scopie realization of the shear-induced degradation ( extension of polymeric chains) 

of polymeric liquids, as was done by Hess [5) for short polymeric chains. An exces

sive degradation of a dumbbell liquid leads in the limit to atomic fluid-like behavior. 

Also, the number of broken dumbbells depends on the size of the primitive cube, 

since two beads are allowed to recombine only if they originally belonged to the 

same dumbbell. The likelihood of a bead encountering the other matching bead is 

related to the size of the primitive cube. If trajectories of beads are calculated in 

the so-called physical coordinates, as oppose to the virtual coordinates which are 

confined to the primitive cube [16], then all dumbbells may be broken relatively 

fast, for example, within 150 000 time steps (�t* = 0.0025), at 1* = 5.5 for A= 3. 

Even for FENE liquids, for i* > 5 and for H* = 37.5 dumbbells break; in 

numerical sense breaking occurs when the bead-bead distance is either smaller or 

larger than allowed by the FENE potential. The breaking is eliminated by an in

frequent "widening" of the FENE potential curve to force the offending dumbbells 
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to fall within the permitted limits. Since this procedure is invoked only a few times 

during simulation it has no effect on the final result. 

5 Viscometric functions 

In order to investigate the fini te size effects in the macroscopic results for monatomic 

fluids, several simulations were performed for 108 and 512 particles. With the ex

ception of runs consisting of 108 atoms at high shear rates, all macroscopic results 

were reproducible for different populations within the statistical uncertainty. Since 

at the very high shear rates, not studied here, differences were observed between 

systems consisting of 256 and 2048 molecules (21) it stands to reason to suggest 

that the particle number effects are in general a fonction of the shear rate. That 

is, larger systems must be investigated at elevated shea.r rates. 

All viscosity curves are alike but not identical (Figs. 5 a-d). In case of atomic 

fluids, the Newtonian viscosity appea.rs to be independent of pressure, but va.ries 

with temperature. This cornes as no surprise since such a behavior is consistent 

with the classical kinetic theory of visçosity. The transition between the Newto

nian and the non-Newtonian regimes is sudden, and it corresponds well with the 

structural rearrangements (see also [16)) taking place at the microscopie level. The 

slopes of the viscosity curves are exactly the same for argon in the liquid phase and 

close to the liquid-vapor line, but they are different than the slope of the viscosity 

line close to the argon triple point. 

As a result of the same inter-particle potential used, the shapes of the viscosity 

curves for the FENE fluids for r;q = 0.9 and r�ax = 1.4 are reminiscent of those of 

atomic liquids. However, as a consequence of the introduced intra-molecular inter

actions, the transition from the Newtonian regime is shifted to higher shea.r rates. 

The N ewtonian viscosity of the FENE fluids increases with the spring constant to 
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attain the highest value for the pseudo-rigid rotors fluid, that is, for H* = 3750 

(Fig. 5b ). This indicates that for dumbbell fl.uids the Newtonian viscosity depends 

on the type of the intra-particle potential. At the lowest shear rates the rotational 

and the vibrational kinetic energies are not well equilibrated for H* = 3750 [16), 

suggesting that for this spring constant the viscosity in the limit of small shear 

rates has not yet reached its Newtonian value. 

Although the onset of shear thinning and the slopes of the viscosity curves in 

the non-Newtonian regime are independent of the average end-to-end distance of 

FENE dumbbells, the Newtonian viscosity is not. As a matter of fact, the viscosity 

in the limit of small shear rates increases rapidly for longer dumbbells, as shown 

in Fig. 5c. For very small dumbbells (r;q < 0.67) and for 0.2 < 7* < 2.0, the 

computational fl.uid separates into two horizontal layers: a void space and a layer 

that contains all the particles. At the macroscopic level of description this leads to 

an abrupt reduction in shear viscosity (Fig. 5c). 

lnterestingly, most of the characteristics of the viscosity curves of FENE liq

uids seem to be preserved for the generalized Lennard-Jones liquids. For example, 

the onset of shear thinning is delayed to higher shear rates than for atomic flu

ids, and the viscosity decreases as rapidly as for FENE dumbbells liquids, in the 

non-Newtonian region. In addition, the viscosity of GLJ dumbbell fluids for A= 3 

approaches the viscosity of atomic fluids due to breaking of GLJ dumbbells, at in

termediate shear rates (Fig. 5d). Lastly, the Newtonian viscosity for all GLJ fluids 

is similar as a result of opposing effects related to dumbbell size and rigidity of the 

bead-bead bond; the GLJ dumbbells at A= 5 are the longest but also most rigid. 

The first and the second normal stress differences, predicted from the FENE and 

GLJ models (Figs. 6&7) and also observed experimentally for viscoelastic liquids, 

are positive and negative, respectively. However, our micro-rheological models fore

tell that -N; is approximately half of Nt, whereas for polymeric fluids it is known 

that -N; remains below 20% of Nt [29). ln the Newtonian limit, Nt tends to 
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zero, for both atomic and dumbbell fluids. As opposed to liquid argon, where Nt

is insignificant for amorphous phase, and sharply increases only in the ordered re

gion, for dumbbell fluids Nt grows gradually until it attains a local maximum at 

1* � 5 that corresponds to the phase change. In contrast, the second normal stress 

difference, for both types of fluids decreases monotonically until the random phase 

is replaced by strings, as observed at the microscopie level [16]. Not surprisingly, 

Nt and N{ peak at higher absolute values for FENE and GLJ than atomic :fluids 

indicating that dumbbell fluids are more viscoelastic. 

At high shear rates, N{ and N2 reverse their trends and either descend towards 

zero or remain approximately constant; note that scatter in the dumbbell data is 

noticeably larger than in the atomic results, at high shear rates. At the micro

scopie level, this behavior may be explained by the observed formation of strings 

that move with ease in the direction of flow as opposed to the disordered phase that 

has no dominant direction. This leads to lower Uxx, but also to comparable Uyy and 

Uzz· It should be noted that some curves of Nt and N2 have two local extrema, 

e.g. Fig. 8a; the second extremum, at higher shear rate may signify secondary

structural rearrangements. Finally, the functional dependence of r,*, Nt, and N{

with respect to 1*, as shown in Figs. 5b, 6b and 7b, remains similar for H* = 375

and H* = 3750 confirming that the pseudo-rigid rotor limit has been reached.

Very small FENE dumbbells that show phase separation for 1* of between 

0.2 and 2.0 manifest slightly different behavior. Specifically, N1 becomes nega

tive around 1* = 1 (Fig. 6c) and N2 exhibit a slight drop for 1* = 0.35 = (Fig. 

7c). This is reminiscent of experimental and computational observation made for 

liquid crystal polymers (see Figs. 9&10 in [30] and Fig. 12 in [31]). 

Both atomic and dumbbell fluids exhibit volume dilatancy which manifesta itself 

by the increase in pressure with shear rate (Figs. 8 a-d). For this reason, the vis

cosity tends to be higher for isochoric than for isobaric systems, as it was shown by 

Hood et al. [32]. The trend in the pressure is closely followed by the inter-particle 



38 

potential energy [16], which is at the minimum in the Newtonian limit, but then 

increases due to the structural anisotropy which impedes dumbbells from assuming 

random positions. 

6 Comparison to the elastic dumbbell theory 

In the microscopie simulations, the imposed velocity profile is expressed in terms 

of forces that act on each particle. This approach leads to several consequences. 

For example, one may rightfully argue that the molecular simulations are no longer 

truly microscopie since they incorporate the imposed velocity in a way that would 

be physically appropriate for magnetic, electric or gravity field. In addition, NEMD 

simulations do not ensure the incompressibility of molecular fluids. This is similar 

to a problem that we have encountered in modeling of flow of two dimensional 

liquids [2]. In brief, it is not possible as yet to model the pressure driven :flows 

directly, rather a uniform gravity field has to be applied to all particles in the 

system. 

Another important difference between microscopie and mesoscopic rheological 

models is the use of boundary conditions. In mesoscopic modeling, the :flow field 

is given, usually either as the steady shear or the steady elongational flow. It 

is immaterial how the flows are induced. Equations of state are then solved to 

obtain the material fonctions. On the other hand, the microscopie simulations do 

require the explicit implementation of flow. This is accomplished through Lees

Edwards boundary conditions alone, or in conjunction with the SLLOD equations 

of motion. 

Fig. 5 reveals that both Lennard-Jones atomic and FENE dumbbell fluids 

exhibit shear thinning with power law slopes of less than -1, 77(-y) = k-rn-1
, thus 
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n < O. This implies that the criterion for stability, 

(26) 

which requires that the shear stress increases with the shear rate, is not satisfied 

[29], since 

(27) 

For atomic fluids, it has been noted by Heyes [33], that there is a limiting value of 

the shear stress that can be maintained by the amorphous liquid before it is com

pelled to reorganize. This is also true for dumbbell liquids. The above-mentioned 

criterion for stability does not incorporate elasticity and should be considered as 

an approximation. In fact, Demarquette and Dealy have recently observed that for 

concentrated polystyrene n may be marginally less that zero [34]. For completeness, 

it should be added that NEMD rheological simulations of long n-alkanes, such as 

hexadecane [6], lead to power law slopes that fall within the range predicted by 

the stability analysis. It is believed that this behavior is due to complex intra

molecular interaction within a single chain of alkanes. In other words, dumbbells 

are too simple to account for complex viscoelastic behavior of polymeric liquids. 

Similarly to microscopie results, mesoscopic dumbbell theories predict power 

law slopes that are independent of the value of the spring constant. However, in 

contrast to our dumbbells the slopes do not violate the criterion for stability. The 

mesoscopic elastic dumbbell models are unable to predict monotonically decreasing 

1P1 or N2 [28, 26]. 

7 Conclusions 

The rheological models that have been developed in the context of NEMD still 

have many drawbacks. The major disadvantage is the lack of an efficient tech

nique to calculate the entropy as well as the thermodynamic temperature and the 
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thermodynamic pressure. This implies that the averaged microscopie results may 

not be related, with certainty, to macroscopic phenomena. By following a simi

lar reasoning, one may question the thermostat which was designed to maintain 

constant the kinetic rather than the thermodynamic temperature. It is a common 

practice to consider molten polymers as incompressible fluids and yet no NEMD 

technique exists that could explicitly use incompressibility in establishing a flow 

pattern. With respect to the Erpenbeck string phase [35], much attention must be 

given to investigate its very existence, and thus to verify or disprove the structural 

stability of the model, at high shear rates; see more on this in [16]. This may only 

be accomplished for very large systems with a suffi.cient number of molecules that 

would allow to develop a profile unbiased thermostat in three dimensions with an 

adequate statistics. There are indications, such as the viscosity curve that implies 

instability at the macroscopic level, that the string phase is indeed stabilized by 

the Gaussian thermostat. 

Scaling is yet another problem that is implicit in micro-rheological models that 

incorporate macromolecular structure by means of empirical potentials. Here, two 

questions are left unanswered: ( 1) how are macroscopic parameters of polymeric 

fluids translated to microscopie level, and (2) how is shear rate scaled back to ex

perimentally attainable values ? 

At the macroscopic level, the viscometric fonctions are obtained for atomic and 

molecular fluids whose bonded interactions are modeled by FENE or GLJ poten

tials. The FENE and GLJ fluids are studied with respect to the strength of the 

bonded interactions and to the average size of a single dumbbell. The phenom

ena associated with viscoelastic fluids, such as shear thinning, Newtonian viscosity, 

non-zero normal stress differences, and volumetric dilatancy are observed for atomic 

but also for dumbbell fluids. Atomic liquids tend to thin at lower shear rates and 

are less elastic than dumbbell liquids. 

Although FENE and GLJ potentials are quite distinct, the macroscopic behav-
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ior of both types of liquids is similar, if the breakage of GLJ dumbbells is small 

(A� 4) and the average dimensionless end-to-end extension of FENE dumbbells is 

maintained close to 0.9. The resemblance of the macroscopic properties of FENE 

and generalized Lennard-Jones dumbbells is a manifestation of simplicity of both 

models. More complex intra-molecular potentials would have to be investigated to 

account for observed variation in the experimental results of polymeric fluids. In 

addition, the role played by inter-molecular potentials in determining the Newto

nian viscosity of dumbbell fluids is yet to be investigated. Apparently, inter- rather 

than intra-molecular potentials are important in case of the Newtonian viscosity of 

n-alkanes [6]. For dumbbell fluids, the choice of an intra-molecular potential seems

to have no effect on the slopes of viscosity curves in the non-Newtonian regime, nor 

on the location of the onset of shear thinning. 

Very small FENE dumbbells exhibit phase separation and associated with it 

reduction in viscosity and change in shapes of N1 and N2, at intermediate shear 

rates. As a matter of fact, both the first and the second normal stress differences 

show trends that are characteristic of liquid crystal polymers, but more investiga

tions are necessary to confirm these trends for systems consisting of large number 

of particles. 

It is noted that the properties of dumbbell liquids are related to the conforma

tion of single dumbbells, especially their average end-to-end extensions, and that 

the frequency of vibrations of dumbbells is less important. In addition, the vis

cometric fonctions of oscillating and pseudo-rigid rotor dumbbells (H* � oo) are 

similar, but in the Newtonian limit. These observation should be considered as a 

molecular dynamics justification for the "rigid-in-average" assumption introduced 

in some mesoscopic elastic dumbbell models (36, 37). 
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Figure Captions 

• Figure 1. Inter- (GLJ, A= l) and intra-molecular potentials used to construct

dumbbell liquids; T* = 1, p* = 0.8. GLJ with A=l implies classical Lennard

Jones (12-6) potential. The reader may note that the effect of changing H*

in the FENE potential is shown in Figures 5b, 6b, 7b and Sb. Similarly, the

consequence of varying r;
q 

and r�ax in the FENE potential may be examined

in Figures 5c, 6c, 7 c and Sc. The result of increasing the attraction term in

the GLJ potential may be observed in Figures 5d, 6d, 7d and 8d.

• Figure 2. A veraged amplitude spectrum of the bead-bead extension, with the

zero frequency amplitude removed: a) unstrained FENE fluids (r;
q 
= 0.9, and

r�ax = 1.4). in the inset, vibrations of a single FENE dumbbell, represented

by the change in the end-to-end distance, as a fonction of time, b) unstrained

GLJ fluids, c) FENE fluid under shear T* = 1, p* = 0.8, H* = 375, r:q = 0.9,

and r�ax = 1.4. Vibrations of all unbroken dumbbells during 8192 time

steps were transformed separately into the frequency domain and then the

average amplitude spectra were computed. The zero frequency amplitude

approximates the end-to-end distance that corresponds to the minimum in

the intra-molecular potential. For example, for GLJ fluids at ;.t* = 0 this

distance is 0.867, 0.898, and 0.954 for A = 3, 4, 5, respectively.

• Figure 3. Average of the square of the end-to-end distance for a few selected

FENE and GLJ dumbbell liquids; T* = 1, p* = 0.8. All GLJ and FENE

dumbbells with r;
q 

= 0.9 and r�ax = 1.4 are similar in size "on average"

although their vibrational frequencies may differ. The macroscopic results

(Figures 5, 6, 7 and 8) depend on average size of the dumbbells, but not



48 

on their vibrational frequencies, neither on the detailed shape of their intra

molecular potentials. 

• Figure 4. Average number of GLJ dumbbells that are not broken; T* = 1,

p* = 0.8. A dumbbell is considered broken if the end-to-end distance exceeds

1.7a. GLJ dumbbell liquid at A= 3 was prepared from GLJ at A= 4 by a

linear decrease in A over 10000 steps.

• Figure 5. Viscosity as a fonction of shear rate for: (a) atomic, (b,c) FENE,

and ( d) GLJ dumbbell fluids; dumbbell fluids at T* = 1, p* = 0.8. Mul

tiple symbols at a given shear rate denote replicates. Note large errors at

very small and very large shear rates. The former are the manifestation of

large fluctuation in relation to the imposed external force. The latter stem

from the interplay between the shear induced long range anisotropie struc

ture in the fluid that may be stabilized by the linear thermostat and a small

size of the primitive cube. In Figure c, the arrows indicate a dramatic de

crease in viscosity due to separation of FENE liquids which are composed

of very small dumbbells (r:
q 

< 0.67). For example, for a FENE fluid de

fined by H* = 375, r;
q 

= 0.5 and r�
ax 

= 0.9, for ,y* = 0.35 , 0.6 , 0.8, 1.5,

11* = 0.05011, 0.01311, 0.00015 , 0.000115, respectively; the numbers written in

subscript signify one standard deviation.

• Figure 6. Shear rate dependence of first normal stress difference for: (a)

atomic, (b,c) FENE, and (d) GLJ durnbbell fluids; FENE fluids at T* = 1,

p* = 0.8. Note limited reproducibility of replicates in the shear thinning

reg1me.

• Figure 7. The variation in second normal stress difference against shear rate

for: ( a) atomic, (b,c) FENE, and ( d) GLJ dumbbell fluids; dumbbell fluids

at T* = 1, p* = 0.8.
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• Figure 8. Pressure as a fonction of shear rate for: (a) atomic, (b,c) FENE,

and (d) GLJ dumbbell fluids; dumbbell fluids at r = 1, p* = 0.8. The results

were not corrected for the effect of the eut-off radius. Note large increase in

pressure for long FENE dumbbells, in Figure c.



Table 1: Dimensionless parameters used to define FENE and GLJ dumbbells. 

Potential H* * req 
r�ax A 

FENE 37.5 0.9 1.4 -

FENE 375 0.5 0.9 -

FENE 375 0.68 1.08 -

FENE 375 0.9 1.4 -

FENE 375 1.3 1.7 -

FENE 3750 0.9 1.4 -

GLJ - - - 3 

GLJ - - - 4 

GLJ - - - 5 

Table 2: Predicted (Equations 23-25) and observed dominant (Figure 2a.) fre

quencies of vibrations of a single dumbbell in an unstra.ined FENE fluid. 

H* predicted J* observed J* 

37.5 1.5 1.4 

375 4.4 4.8 

3750 13.8 14.0 

37500 43.6 44.0 
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Summary 

The microscopie and the mesoscopic results are presented for several finitely ex

tensible nonlinear elastic (FENE) dumbbell fluids investigated under imposed flow 

according to SLLOD dynamics. The contracted distribution fonctions are calcu

lated in both position and velocity spaces, and the fluid structure is probed by two 

conformation tensors. It is observed that dumbbells form a variety of short and 

long range structures depending on the imposed shear rate and the size of a single 

dumbbell. The assumption of Maxwellian distributed bead velocities, which is often 

used in the elastic dumbbell theories, is shown not to be satisfied but at low shear 

rates. Under shear, the distribution of the end-to-end distances is similar to the 

Gibbs equilibrium distribution fonction in configuration space if intra-molecular 

interactions are much stronger then inter-molecular forces. On the average, the 

longest dumbbells are found at between 30° and 50° to the direction of flow, and 

the shortest at between -50° and -30°. 
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1 Introduction 

According to the rheological theories formulated at the mesoscopic level of descrip

tion, the state of the complex polymeric fluid under flow is determined by the five 

fondamental hydrodynamic fields of density, momenta and energy, and additional 

fields called internai state variables describing the internai structure of the fl.uid. 

All other physical quantities can be found from the knowledge of these fields. It 

has been recently shown [1) that the SLLOD [2) equations of motion that were 

originally introduced at the microscopie level of description within the context of 

non-equilibrium molecular dynamics (NEMD), may be reinterpreted in the spirit of 

mesoscopic theories, as equations governing the time evolution of the internai state 

variables. These variables are position and peculiar velocities of SLLOD ( effective, 

renormalized) particles. Thus, SLLOD can be seen as yet another standard rheo

logical theory. In this paper we apply it to investigate dumbbell fluids. 

The physical insight gained from studying the dynamic behavior of :fluids by 

micro-rheological simulations, such as SLLOD, can be put to practical use in the 

formulation of more macroscopic models. This is especially important for meso

scopic theories that make explicit assumptions about statistical quantities which 

describe model fluids, for example about distribution of bead velocities in case of 

the mesoscopic elastic dumbbell theories [3). Sometimes, additional corrections are 

incorporated in mesoscopic theories to improve predictions; corrections for hydro

dynamic interactions or excluded volume effects are typical examples. Molecular 

dynamics simulations, as those presented in this paper, have potential to examine 

the implications involved in selection of critical assumptions, and to estimate the 

significance of additional corrections. 

Another motivation to investigate liquids which are defined at the molecular 

level, is based on the notion that all liquids have common properties ( e.g. finite ex

pansion, flow, etc.) and hence at the microscopie level all liquids must be similar. It 



76 

is recognized that many polymeric liquids exhibit similar viscometric behavior. We 

recall a widely accepted practice in experimental rheology to lump results for sev

eral polymers into one master curve. ln addition, results from NEMD calculations 

conducted at shear rates too high to be attained in the laboratory when normal

ized, show surprisingly good resemblance to those obtained from experiments for 

viscoelastic liquids. For example, when the Carreau macroscopic four parameter 

viscosity model was used to fit computational NEMD results for liquid argon, it 

predicted the zero-shear viscosity to be exactly the same as determined from ex

periments [4). Clearly, there is more than a coincidental similarity that pervades 

all liquids, making the traditional distinction between simple and complex liquids 

less important at the micro-rheological level. ln other words, starting from the 

molecular dynamics simulation of dumbbell liquids, one may extract information 

that is also pertinent to polymeric liquids. 

It has been often stressed, especially in the context of computational physics and 

chemistry, that the microscopie simulations have many similarities to laboratory ex

periments, and hence the term "computer experiments" was coined. lndeed, one 

can distinguish between the actual simulation ( experiments) when the trajectory 

of the system of particles is calculated by means of ordinary differential equations 

and the "post-processing" (measurements) stage when the average properties are 

extracted from positions and velocities of beads along the trajectory. In analogy 

to real experiments, the average behavior of beads may be sampled by a variety 

of probes that yield information not only about macroscopic quantities such as 

pressure, but also about mesoscopic variables such as distribution fonctions. The 

beauty of micro-rheological simulations is related to the fact that the macroscopic 

phenomena may be directly related to the underlying microstructure. Further

more, as opposed to laboratory experiments where only a part of data is recorded 

by instruments, in molecular dynamics calculations, everything can be determined. 

There exists a parallelism between problems encountered in experimental rheology 
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and in micro-rheological simulations. Every experimentalist is well aware of the dif

ficulties in collecting data in low and high shear rate regimes. Similarly, in NEMD 

calculations which are performed at low shear rates, the external force is small in 

comparison with the fluctuations. Consequently, long running times are necessary 

to minimize errors. ln addition, at high shear rates the state of the microscopie 

system is often "arrested" in a small volume of the phase space for long times. 

Again, long runs are required to allow the system to sample the entire phase space. 

ln Sec. 2 we emphasize some features of the FENE dumbbell models and of the 

numerical technique, the thorough description of the simulations has been given 

in detail elsewhere [5]. We investigate the FENE dumbbells only upto a certain 

shear rate to minimize computational artifacts that may appear as a result of the 

thermostating mechanism that is incorporated in the equations of motion. One of 

them is formation of the so-called string phase, a process which is not well under

stood theoretically. Hence, in Sec. 3 we examine the issues which relate to the 

emergence of the long range order for both atomic and dumbbell liquids. ln Secs. 

4.1-4 we describe a contraction process that leads from the N-particle probability 

density fonction to viscometric fonctions, and give a set of results at different level 

of physical detail. These include photographs of instantaneous configurations at 

the molecular level, distribution fonctions in contracted configuration, and velocity 

spaces as well as the conformation tensor results at the mesoscopic level. We also 

compare the molecular dynamics and mesoscopic elastic dumbbell models and re

view their predictions. ln Sec. 5, we summarize the major findings of this work. 

2 Numerical technique 

The "computer" fluid consists of 128 dumbbells or 256 beads (atoms) that are 

enclosed in a cubic (primitive) cell. The periodic boundary conditions (PBC) are 
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constructed by populating the entire space by images of the primitive cube. ln 

the :flow ( x) and neutral ( z) directions, standard orthogonal PBC are implemented, 

whereas in the direction of the velocity gradient (y), the Lees-Edwards "shearing 

blocks" PBC are used [6]. The system evolves under SLLOD dynamics [2], as 

described in more detail in [5], 

(1) 

(2) 

(3) 

For Couette :flow, the tensor K (X.ch = �' u is the streaming velocity) has only

one non-zero component that signifies the imposed shear rate, namely X:cy = "Y·

N = 256, ri and Pi denote position and thermal momenta coordinates of each 

bead, rij = lri - ril, and m stands for mass of a single bead. a is a Lagrangian

like multiplier, often called Gaussian thermostat, whose fonction is to remove heat 

generated by the viscous dissipation [7]. The usual summation convention is used in 

Equations 1-3. Lastly, cp denotes either inter-molecular (Lennard-Jones type, LJ) 

or intra-molecular (finitely extensible nonlinear elastic type, FENE [8]) potentials, 

and, 

LJ( ) { 4t[(t)12 _(t)6]
u, r·. - ,, ,, Tij IJ -

0 

:!:i,i._ < 2.5 
u 

:!:i,i._ > 2.5 
u - ' 

(4) 

(5) 

t and a are the Lennard-Jones parameters that denote the depth of the potential 

well and the collision diameter, respectively. H stands for a spring constant, Teq

corresponds to the minimum in the FENE potential, Tmin and Tma:c are the min

imum and the maximum extensions of a single FENE dumbbell. In subsequent 
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sections, the standard nondimensional variables (denoted by * ) are used (see also 

[5]). Tab. 1 summarizes the conversion factors between the nondimensional unit 

quantities and the SI units. 

To be considered as an alternative to the traditional rheological equations of 

state, the microscopie dumbbell models must be able to predict a range of be

havior observed for viscoelastic liquids. To this end, we investigate three types 

of dumbbell fluids composed of either small (r;
q 

= 0.5, r�
ax 

= 0.9), medium 

(r;
q 

= 0.5, r�
ax 

= 0.9), or large (r;
q 

= 0.5, r�
ax 

= 0.9) dumbbells. More

over, the medium dumbbells are studied for three values of the spring constant: 

H* = 37.5, 375, and 3750, to determine the effect of frequency of vibration on 

results at different levels of description. A larger spring constant leads to faster 

vibrations. 

Equations 1-3 are solved in the atomic representation [5, 9] by the Verlet [10] 

half-step leap-frog method that implies that the velocities are calculated at t + �t, 

in the middle of each time step. Initially, however, it is necessary to take a half-step 

in velocities, from t - �t to t, and to iterate between Equations 1 and 3 to ensure 

consistency of these equations [11, 12]. Convergence ( �a < 10-5) is reached rapidly

in 3 to 5 iterations but it may take longer at high shear rates. The convergence 

criterion should not be set lower than 10-5, particularly for calculations in single

precision numbers, since a may oscillate between two distinct values. The velocities 

at t + �t are then computed from new (a) at time t as well as from the old velocities 

at time t - �t. Finally, the positions at time t + ô.t are calculated. 

We have also solved the SLLOD equations of motion by means of the Gear 

predictor-corrector method [13]. This technique is easily applicable to different 

types of equations of motion, since it does not require the reformulation of the 

algorithm once the equations of motion are altered. The iterations, similar to those 

encountered in the leap-frog method, are avoided but at the price of a smaller time 

step. Moreover, occasional resettings of velocities are required to eliminate the 
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effect of the energy drift. Another disadvantage of using the Gear method cornes 

from the fact that Equation 1 is really discontinuous for particles that leave the 

primitive cube, and are reintroduced at the opposite wall; several past positions 

are taken into account by the Gear algorithm in predicting the new position. This 

problem, which results in the aggravated energy drift, is especially important in 

case of x coordinate where the second term on the right hand side, due to the shear 

rate, changes its sign. Thus the boundary conditions must be applied in such a way 

as to alter not only the very last position, as it is done for the Verlet methods, but 

also positions prior to it. Alternatively, one may introduce two sets of coordinates: 

the physical, in which a trajectory is computed, and the virtual, that are confined 

to the primitive cube and utilized in calculation of forces, stresses, etc. We feel that 

unless there is a need to reproduce exact trajectories, the Verlet leap-frog algorithm 

offers more advantages, and consequently is employed in all production runs. 

3 Long range order 

Since the averaged motion of all particles is expected to conform to the imposed 

linear velocity profile, the SLLOD equations lead to a biased thermostat [14] for 

atomic liquids at high shear rates. In other words, any disturbance in the :flow field 

is taken as the thermal motion and suppressed. In this section, we would like to 

make a few comments about the appearance of the Erpenbeck [15] string ( ordered) 

phase whose physical existence has never been proved, nor disproved, for that mat

ter, to our satisfaction. Specifically, it is not clear if formation of the string phase 

is independent of thermostating, or if the string phase is a transient phenomenon 

with respect to time and shear rate. 

It should be emphasized that formation of the string phase has been reported 

only for atomic liquids. A recent study that describes rheological properties of n-
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hexadecane subjected to very high shear rates by means of the SLLOD algorithm, 

makes no reference to the string phase [16]. In this investigation of dumbbell liq

uids, small domains of the string phase within the primitive cell may be identified 

(see Figs. 1 c,d). However, the ordered phase has been never observed to per

sist throughout the entire domain of computation, but at the highest shear rates. 

These observations lead to a conclusion that additional degrees of freedom present 

in more complex systems, such as in a liquid composed of short polymeric chains, 

in effect impede formation of highly organized linear structures. The discussion 

that follows refers only to relatively simple systems of atomic and dumbbell fl.uids, 

and is relevant to the so-called structural stability of the FENE micro-rheological 

models. 

Considering a two dimensional system, Evans and Morriss [14] attempted to 

show that the formation of the string phase is a computational artifact which stems 

from the enforced linear velocity profile; incidentally, the string phase may appear 

in two, as well as in three dimensional systems [17]. Loose and Hess put forward an 

interpretation [18], that Evans and Morriss' results were perhaps effected by poor 

statistics due to the insuffi.cient number of molecules. ln brief, the initial implemen

tation of the profile unbiased thermostat (PUT) required that the computational 

domain be divided into small cells containing two particles. The streaming veloc

ities would then be calculated in every cell and used to find the peculiar kinetic 

energy and the kinetic temperature; the peculiar kinetic energy of a particle is 

calculated on the basis of the peculiar velocity v which, in turn is obtained by 

subtracting the average local (streaming) velocity of the fl.uid u from the particle 

laboratory velocity c. Eventually, all velocities would be scaled accordingly, to 

maintain the total thermal kinetic energy constant. We observe, however, that the 

cell-averaged instantaneous velocity, to be employed in calculations of the kinetic 

temperature, may be taken over cells which contain more than 30 molecules [19]. 

Lastly, it has been said [14] that it is not possible to have simple shear fl.ow of two 
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coexisting phases that exhibit different thermodynamic and transport properties, 

yet such fl.ows were simulated using the SLLOD equations of motion. We accept 

this argument but would like to point out that oscillations in the dynamic struc

ture tend to occur in the transitional region between fl.ows of purely amorphous 

( chaotic) and ordered phases. For example, for the atomic liquid undergoing shear

ing, at T* = O. 722 and p* = 0.842, the oscillations occur only in a narrow shear rate 

interval around 7* = 2.25. At a time, the liquid may remain in one phase for tens of 

thousand of time steps; macroscopically, such behavior corresponds to two distinct 

values assumed by the viscometric fonctions, (see Fig. 13a in [5]). According to 

our computer experiments, no two phase liquid structures could persist unchanged 

in the shear flow throughout an entire simulation run. At the microscopie level this 

is shown in two photographs (Figs. 1 a,b) which represent instantaneous configura

tions of particles taken during the same run but at different time steps. In Fig. lb, 

the long range order permeates the whole primitive cube. Although the region lying 

to the right is slightly distorted it may not be regarded as an amorphous phase. It 

is also possible that the structural arrangements reflect the finite size effects since 

the coexistence of chaotic and ordered phases was observed for systems with few 

thousand molecules. For example, Heyes [20] showed that for a system consisting of 

2048 molecules, two phases may coexist not only at 7* = 2.5 but also at ,t* = 5.0. 

Similar observations were reported by Yamada and Nosé [21] and by Heyes [22]. 

We consider the Evans and Morriss [14] objection to the model to be a very 

serious one. As a mat ter of fact, the objection threatens the so-called structural 

stability of the model at high shear rates where strings permeate the flow. Unfor

tunately, we do not have the necessary computational resources to investigate the 

formation of the ordered phase for systems with large number of particles, for which 

PUT could be implemented with sufficient statistics. The structural stability im

plies that there is no singularity in a model. In other words, if a single parameter is 

changed, for example a method of thermostating, the prediction of a model should 
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not be significantly affected. However, the lack of the string phase, which is perhaps 

brought about by PUT, leads to a typical singularity, that is to the disappearance 

of power law like shear thinning [14]. Although, it has been customary to estab

lish a relationship between the macroscopic phenomena and the formation of the 

microstructure by using molecular simulations, in the context of NEMD modeling 

of atomic and dumbbell fluids the existence of the long range order in the form of 

the string phase is yet to be thoroughly investigated. 

4 Results and discussion 

4.1 Three levels of description 

Models that describe the dynamic behavior of viscoelastic fl.uids may be conceived at 

three levels of detail: 1) folly microscopie models that employ computational tech

niques of molecular [23, 8] and Brownian [24] dynamics, 2) mesoscopic models that 

have roots in the kinetic theory [3, 25], and 3) macroscopic models that originate in 

the continuum theory [26]. In order to formulate mesoscopic or macroscopic models 

it is sufficient to use the physical understanding and hence the variables which are 

available at these levels of description. For example, the mesoscopic models use 

internai state variables such as one molecule distribution fonction, configuration 

space distribution fonction, and a conformation tensor [27]. In this section, we give 

an account of the passage between FENE micro-rheological models, and results at 

the three levels of description. 

In the most detailed manner, the state of a system consisting of N identical 

beads ( � dumbbells), is represented as a point in 6N dimensional phase (r) space 

which is spanned by coordinates that are represented by positions and momenta or 

velocities of beads. In statistical mechanics, it is customary to introduce the N-
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particle probability density fonction J(r, t) that describe the distribution of points 
N N 

in the phase space; r = rL r�, r5, r�, ... cJ_1, cJ, superscripts and subscripts de-

note dumbbells and beads respectively, and c's signify laboratory velocities. Specif

ically, J(r, t)dr is the probability of finding the system in a given microstate, in 

the infinitesimal volume element of the phase space dr around r at time t. The 

convention of using superscripts for dumbbells and subscripts for beads will be fol

lowed later for other variables. 

The most obvious result from the SLLOD simulation is a trajectory that por

trays the path followed by a system in the phase space. The set of trajectories 

passing through all points in r can be converted to the N-particle nonequilibrium 

distribution fonction in the phase space defined in terms of bead positions and 

their peculiar (thermal) velocities. In this article we report only the steady state 

distribution fonctions. To emphasize that from now on the distribution fonction is 

based on the peculiar rather than on the laboratory velocities we define fv, 

In a similar manner the subscript vis added to r to denote the newly defined phase 

space. The explicit functional dependence of fv on t is dropped to reflect the steady 

state nature of the distribution fonction. 

The fonction fv represents the most detailed description of the dynamic state 

of the fluid, but at the same time is not immediately usefol. Even the hardware 

necessary to calculate and store fv for 256 bea.ds is outside of reach of today's 

technology. The alternative is to take pictures or make movies to represent a state 

of the fluid at an instant and then to rely on the human capability of pattern 

recognition to gain a physical insight. Such an analysis will be given in Sec. 4.2. 

At the mesoscopic level, the microscopie FENE model yields a set of predictions 

that are derived from Equation 6 either by calculating statistical averages over 
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fv 
or by reducing the N-particle distribution fonction to more tractable single 

particle distribution fonctions in velocity and configurational spaces. In the next 

few paragraphs, we formally introduce variables and fonctions whose importance 

will become apparent in Sec. 4.3. Firstly, we define two distribution fonction which 

are obtained by contracting the phase space. 

(7) 

is termed a contracted single dumbbell configuration distribution fonction, whereas

(8) 

denotes contracted two bead peculiar velocity distribution fonction in a homoge

neous fluid. 

Arbitrarily, but motivated by the physical significance we contract W(r, R) for

ther to obtain as the final result distributions of end-to-end distances w(R) in Fig. 

2, and alignment angles '11 ( </>) in Fig. 3, where for ith dumbbell, </> is calculated as, 
. Ri 

</J' = tan-1( Rn. (9)
:c 

In addition, we compute the correlation between the average end-to-end distance 

with the alignment angle, as shown in Fig. 4. 

The analogous procedure in case of the velocity distribution fonction 3(v1, v2) 

leads to a single bead distribution 3( v1), as well as the center of mass (V = vi ;va) 

and the relative (v = v1 - v2) velocity distributions, 3(V) and 3(v) respectively 

(see Figs. 5 and 6). Furthermore, additional velocity distribution fonctions are 

constructed by observing that v may be decomposed into the vibrational (vu) and 

the rotational (v J.) components (see Fig. 7). 

It is possible to calculate 3(v1), 3(V) and 3(v) in the limit of small shear 

rates on the assumption that bead peculiar velocities are arranged according to the 

Maxwellian distribution, 

(10)
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The integration is performed in spherical coordinates by using the appropriate 

coordinate transformation, 

which leads to, 

-( ) 4 ( m )3/2 ( m v2 

) 2 

.::. V 
= ,/i kT exp - kT V . {12) 

A similar integration gives, 

(13) 

For completeness, 

(14) 

The equilibrium velocity distribution fonctions are shown as dashed lines in Figs. 

5 and 6. 

ln the same spirit, the equilibrium distribution of the end-to-end distances may 

be obtained from the Gibbs expression by neglecting the inter-particle interactions 

and integrating out velocity and most of the position coordinates. This is correct 

for H - oo, but fails for small values of the spring constant. Using <.pFENE defined 

in Equation 5, 

where 

R2 ( 'PFENE(R)
) R2 [1 _ ( R-reg )2]! 

\ll(R) - 4 7r exp - kT -
. rmcu:-req 

( ) 
- J (-'PFENE(R))dR -

J,Tm.a:z: R2[1- ( R-req )2]! dR' 15 
exp k T Tmon Tma:.-Teq 

(16) 

k8 denotes the Boltzmann constant. The above expression may be derived also 

from the dumbbell diffusion equation [28]. 

The changes that take place in sheared fluid may be observed and qualified at 

the microscopie level. Although useful, this type of characterization is not adequate 
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to reveal the general nature of collective structural modes in sheared fl.uid in a way 

that would be compatible with neutron and light scattering experiments, and that 

could aid in calculation of thermodynamic properties. ln this paper, the structure 

of the FENE fl.uids is probed by two complementary techniques at the mesoscopic 

level. Configuration of a single dumbbell in space is investigated in terms of the 

first conformation tensor � whereas the spatial structure formed by a system of 

dumbbells is analyzed by using the second conformation tensor C, to be defined 

later. 

The conformation tensor � is especially convenient to probe the average align

ment of FENE dumbbells under shear, 

(17) 

The functional dependence of� on r disappears since the Couette fl.ow field implies a 

homogeneous structure. The mean square end-to-end distance of dumbbells is triv

ially related to the radius of gyration and is given by the trace of the conformation 

tensor, 

(18) 

ln case of dumbbells, the traceless part of the normalized conformation tensor 

is the same as the alignment tensor whose largest eigenvalue is termed the bire

fringence parameter. The conformation tensor may be illustrated graphically as an 

ellipsoid in three dimensional space with its axes equal to two times the eigenvalues 

of �- Conversely, as in this section, each ellipsoid may be represented by three 

ellipses which are obtained as traces of cross-sections of the ellipsoid with z = 0, 

y = 0, and x = 0 planes. Directions of the ellipses are defined by three alignment 

angles, denoted as x:�, x:�, x��' that indicate the angles between the long axes of 

the ellipses and the abscissas in xy, xz, and yz Cartesian coordinates; see Fig. 8 

and Tab. 2. Clearly, x�� may be considered as an approximation to the birefrin

gence extinction angle. 
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In general, it is possible to define a second conformation tensor by a straightfor

ward generalization of the normalized first conformation tensor to include elements 

of the global structure of the FENE :fluids. The new tensor is a fonction of a 

distance r that separates centers of masses of two arbitrary dumbbells, which are 

located at Ri, Ri, and similarly to � is obtained by taking an average, this time over 

the N-particle configuration distribution fonction. Replacing the long integration 

by the ensemble average < ... > to facilitate abbreviate notation, and normalizing 

by the single dumbbell density Pd which is equal to f, we write C as, 

It is easy to observe that C is reminiscent on the dumbbell pair distribution fonction 

g, but incorporates the anisotropy which is characteristic of :fluids under shear, 

(20) 

Heyes [29, 20] introduced the pair angular distribution fonction for atomic :fluids, 

that di:ffers by a constant from the second conformation tensor, 

(21) 

g is plotted in Fig. 9 whereas the diagonal and off-diagonal components of C are 

shown in Figs. 10 and 11, respectively. 

Lastly, the components of the potential and peculiar kinetic energies are consid

ered as mesoscopic variables since they represent averages of microscopie quantities 

which may not be measured by macroscopic instruments. The graphs in Fig. 12 

display the variation of translational ( center-of-mass), rotational and vibrational 

thermal energies with shear rate. In this study, the total kinetic energy of a system 

consisting of 128 dumbbells at T* = 1, 
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is maintained constant at 384t, thus at small shear rates, 

The inter-particle and bonded potentials are shown in Fig. 13, as obtained from, 
N-l N If cI>(-r) = g>inter('Y) + <I>intra('Y) = L L<f'f;J 

+ L<f'i,FENE_ (24) 
i j>i i=l 

We add that for homonuclear molecules the total and reduced masses which are 
associated with translational and relative velocities are 2m and ½m, respectively 
[30]. The consistency of the velocity and the energy data (Figs. 7 and 12 c,d) may 
be verified by integrating square of velocities over velocity distributions to obtain 
kinetic energies; see Tab. 3. For example, 

l<vib('Y) = ½ fo
00 

;v11B(v11)dv11,
l<rotb) = 

½ 1o=

; Vi3(v1.)dv1.,
(25) 

(26) 

It is important to realize that at high shear rates, the tails of the rotational a.nd 
the vibrational velocity distributions decay slower than at equilibrium. Thus the 
integration should be carried out until v1 = vÔ � 10 to avoid underestimating of 
the kinetic energies. 

At the most general macroscopic level of description, the dynamic state of a 
polymeric fluid is characterized by a set of fonctions derived from viscometric ex
periments conducted usually in plate-plate, cane-plate or capillary viscometers. 
These fonctions could also be recovered from the results of molecular simulations 
as the final stage of the reduction process, from the definition of the total stress 
tensor, 

1 N N-l N ( . ) (� PiaPiP � � ) Uo,p 'Y = -V L...,, -- + L...,, L...,, ri;aFij(J ,
i=l mi i=l j>i 

where the forces ( FiiP) are calculated from, 
(27) 

(28)
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Actually, Fiif3 takes two different forms for intra- and inter-molecular interactions, 

as shown in Sec. 2. Here, V denotes the total volume of the primitive cube. In the 

standard rheologica.l notation [31], the viscosity (77), the first (N1 ) and the second 

(N2 ) normal stress differences are, 

O"xy (')') 

ï 

-
O"xx('Y) - ayy (-y), 

and in addition the hydrostatic pressure P is, 

(29) 

(30) 

(31) 

(32) 

Although this level of description is devoid of the richness of detail of the original 

formulation, it is a.ctua.lly here tha.t predictions of the model ma.y be verifi.ed with 

the experimental data. The viscometric fonctions of dumbbell fluids are described 

in the complementa.ry publication [5]. 

The distribution fonctions '11, 3 and the both second conformation tensors � 

and C were obtained by sampling the configuration and velocity spaces every 25 

steps, during 100,000 steps runs, to a.voici the correlation between values at the 

successive time steps. Histograms were constructed, for '11 and 3 to account for 

the distributions, and the total area of all vertical rectangles was then normalized. 

From the same runs, the correlation between the average end-to-end distance and 

the alignment angle was found by counting the number and adding up the exten

sions of dumbbells that fell within small intervals (!:::.</> = 1.8°) and then averaging 

end-to-end distances within each interval. The errors associa.ted with kinetic and 

potentia.l energies (Figs. 12 and 13) denote one standard deviation and were calcu

lated on the basis of subaverages, each taken over 10% of a simulation run [5]. 

We summarize this section by sta.ting tha.t the insistence on formula.ting a. rhe

ological mode! at the most detailed level has two consequences. Firstly, more 
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macroscopic predictions are found through the graduai contraction of the origi

nal N-particle distribution fonction. Numerically, this corresponds to computation 

of time averages. Secondly, the complex mathematics that must be used in order to 

obtain predictions from mesoscopic and macroscopic models of viscoelastic fluids is 

avoided. 

4.2 Microscopie results - visual observations 

Within the context of molecular simulations, results are considered reproducible 

at all levels of description, as allowed by statistical uncertainties, if they do not 

depend on initial conditions. For atomic liquids, even at the same :Y*, not ail 

string phases are alike ! In photographs similar to Fig. lb, we have observed 

that a type of the string phase depends on the pre-shearing history of a sample. 

If two string structures generated at the same shear rate, are projected onto the 

yz plane and differ by a certain angle of rotation, the macroscopic results would 

not the same. This is especially true for the :first and second normal stress dif

ferences, whereas viscosities are less sensitive to details in the structure of atomic 

fluids, above the phase transition. To ensure the reproducibility at intermediate 

and high shear rates, fresh samples were always pre-sheared, at :Y* corresponding 

to the phase transition (between amorphous and ordered phases), before imposing 

the final shear rate. Curiously enough, smaller time steps were not found to lead 

to improved reproducibility. In case of dumbbell fluids, the viscometric fonctions 

are easier to reproduce, provided that computer runs are suffi.ciently long. How

ever, fresh samples of dumbbell fluids must be always pre-sheared for :Y* > 10, to 

avoid so-called arrested states, where the system's trajectory is confined to a small 

volume of the phase space. 

We now describe new long and short ranged structures observed at the mi-
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croscopic level, by a means of three dimensional computer visualization. If the 

equilibrium bead-bead extension of a single dumbbell (r;q) is chosen to be less that 

0.67 then under moderately low shear rates (0.2 < -y* < 2.0), the liquid sepa

rates into a void-like space and a horizontal layer that contains all dumbbells; such 

an arrangement is called the separated structure. This leads not only to distinct 

macroscopic and mesoscopic results [5] than for larger dumbbell fl.uids. 

As Figs. le and ld demonstrate, medium and also large dumbbells may form 

small domains consisting of two strings. Within each domain dumbbells are aligned 

perpendicular rather than parallel to the direction of fl.ow. This structure is local 

and transient with respect to shear rate. It disappears for 1* > 10 where more 

global structure such as string phase becomes more important. 

Small peaks displayed by the normal components of the second conformation 

tensor (as defined in Equation 19) and by the dumbbell pair distribution fonction 

at small r* (Fig. Sc) indicate that it is in fact possible for two big dumbbells 

to pass through each other. Sometimes, this passing cannot be completed as the 

result of changes in end-to-end distances of dumbbells due to vibration. Conse

quently, a local structure composed of two dumbbells is formed. This structure is 

stabilized for small shear rates but disintegrates into two separate dumbbells in the 

non-Newtonian regime. 

4.3 Mesoscopic results - statistical averaging 

Since for large values of the spring constant (H*), the intra-molecular interactions 

dominate the inter-molecular forces, it is possible to neglect the latter and con

sider single dumbbells as if there were isolated. This assumption proved to be 

very successful in the estimation of the dominant frequency of vibrations [5]. The 

total potential energy may then be approximated by the sum of intra-molecular 
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contributions due to all dumbbells. Subsequently, the contracted single dumbbell 

equilibrium distribution fonction W(R) is found explicitly as shown in Equation 15. 

For H* = 3750, Fig. 2 clearly indicates that the equilibrium distribution fonction of 

the end-to-end distances corresponds very well to similar distributions for slightly 

sheared dumbbell fluids, especially for longer dumbbells. As a matter of  fact, the 

fit is even better for H* = 3750, but is poor for H* = 37.5, when the assumption of 

isolated dumbbells is no longer valid for estimation of W(R). ln case of H* = 37.5, 

W(R*) may even exhibit several local extrema. 

Three additional observations follow from Fig. 2. (1) At higher shear rates, due 

to the formation of the anisotropie structure that impedes free vibration of dumb

bells, W(R*) becomes sharper except for the phase transition region (see W(R*) for 

i* = 5, r;
q 

= 1.3, and r�
ax 

= 1. 7) where dumbbells start to form a highly oriented 

spatial structure and hence are more likely to become shorter or longer than in 

folly developed flows of chaotic and ordered phases. (2) The theoretical equilib

rium distribution fonctions are off-set to the right with respect to the computed 

distributions at low shear rates, since dumbbells in the liquid tend to be slightly 

smaller than freely vibrating dumbbells. (3) Dumbbells that form the separated 

structure (Sec. 4.2) are smaller on the average than in the absence of separation. 

At the mesoscopic level of description, this phenomenon is observed most clearly in 

Fig. 4b but it can also be noted in Fig. 2 for i* = 0.8, r;
q 

= 0.5, and r�
ax 

= 0.9) 

and in Fig. Sa (center and bottom). 

The fact that NEMD models include inter-molecular potentials should be rec

ognized as the most significant difference between our models and the mesoscopic 

elastic dumbbell theories, for which the inter-particle potentials are not taken into 

account and the behavior of a polymeric fluid is determined by the interplay be

tween intra-molecular and solvent-polymer interactions. 

The radial one dumbbell distribution fonction '11( </>) (Fig. 3) and the first confor

mation tensor (Fig. 8) convey complementary messages. The alignment of dumb-
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bells at a certain angle to the direction of flow is noticeable even at the smallest 

shear rates. In the separated structure, dumbbells are perpendicular to the direc

tion of flow, on the average (Fig. 3a). Since </> is defined in the xy plane, the neutral 

direction z has been integrated out in \J!(q,). This implies that dumbbells that are 

approximately perpendicular to flow, as shown in Figs. 1 c,d, are not accounted 

for correctly in \J! ( </>). However, at the intermediate shear rates 1* � 8 - 10, their 

presence may be inferred from the shapes of ellipses that represent the first confor

mation tensor in xz and yz planes (Figs. 8 b,c). Above -y*� 10, the characteristic 

structure that is related to dumbbells parallel to the neutral direction disappears, 

as corroborated by a sudden decrease of the long axis of the 1* = 14 ellipsis (Fig. 

Sb, bottom): This phenomenon contributes to the so-called secondary structural 

rearrangements that affect the macroscopic results at -y* � 10, such as a minor 

change of slopes of the viscosity curves [5]. We conclude this paragraph by noting 

that only for -y-+ 0 there is no correlation between the average end-to-end distance 

and the alignment (Fig. 4). 

In the zero-shear limit, the diagonal components of the second conformation 

tensor are essentially the same, but in the non-Newtonian regime the fluid becomes 

rapidly anisotropie. In case of medium size dumbbells, the first peaks in C:c:c, Cyy, 

and Czz signify that at the elevated shear rates the centers of masses of dumbbells 

are located doser to each other in the y and z (� 1.1) than in x (� 1.9 - 2.0) 

direction (Figs. 10 a-c). In this light, g represents average characteristics of the 

diagonal components of the second conformation tensor (Fig. 9), analogously to 

the hydrostatic pressure that gives an average of the normal stresses; both g and P

are not suitable to describe the state of a highly sheared fluid. The off-diagonal ele

ments of C show that even at small shear rates, dumbbell fluids may be anisotropie, 

especially in the xy plane (see Fig. 11). In the spirit of modern thermodynamics 

[32], we feel that new meso-rheological theories for complex viscoelastic fluids ought 

to include a second state variable, such as C, that would perhaps convey the global 
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structure of a polymeric liquid. 

The formation of the string phase leads to a solid-like behavior in the direc

tion of the velocity gradient and in the neutral direction z, as observed by Heyes 

[20, 11], who measured the force and the stress autocorrelation fonction as well as 

the directional self diffusion coefficients for atomic liquids. A fl.uid-like behavior is 

preserved in the direction of flow. Similarly, for dumbbell fluids the fluid and solid 

resembling properties are observed in x and z directions, respectively. However, 

as opposed to atomic systems, the liquid like behavior is noted in the direction 

of the velocity gradient, for the intermediate shear rates. Dumbbells tend to be 

aligned within the strings in the direction of fl.ow, but it is actually possible to 

have dumbbells with beads belonging to two different strings (Figs. 1 c,d). Such a 

structure extends throughout the primitive cube and is stabilized in the horizontal 

direction (z) by the fact that both strings are subjected to the same shear. The 

structural constrains and the lack of gradients within horizontal planes create an 

impediment to the dumbbell self-diffusion in the z direction. This is corroborated 

by the translational z kinetic energy which monotonically decreases above :Y* � 1 

for all values of H* (Figs. 12 a,b ). 

If a bead leaves its place in the original string and diffuses in the y direction, 

it eventually assumes a position in a string that moves with a different streaming 

velocity. The energy barrier at r�
ax

, within a single FENE dumbbell, prevents the 

infinite extension of the bead-bead bond and exerts a force on the dumbbell to place 

itself in the horizontal plane either in the direction of flow or perpendicular to it. 

This aids in the self-diffusion of dumbbells in the y direction. The crossover of the 

translational kinetic energies- in the x and y directions (Figs. 12 a,b) is related to 

the phase transition at :Y* � 5. However, at larger values of H* the kinetic energy 

of translation in the direction of the velocity gradient tends to overshoot the kinetic 

energy of the center of mass, in the direction of flow. At high shear rates, both 

ene!gies seem to diverge indicating that the fluid becomes more solid-loke in the y 
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direction (Figs. 12 a,b); see also Figs. 10 b,c for :Y* = 14. Finally, a jump in the 

translational z kinetic energy (Figs. 12a), around :Y* � 10, may be related to the 

same structural rearrangements which are also reflected in the change of slopes of 

the viscosity curves and caused by the destruction of small two-strings structures 

containing dumbbells normal to the direction of flow. 

We terminate the discussion of the kinetic energies by making three comments. 

(1) The sum of the translational energies is approximately constant, for the whole

range of shear rates, indicating that thermostating either total or the center of 

mass energy should not significantly influence the results. The total kinetic energy 

is constant during simulations, thus the sum of the vibrational and the rotational 

energies remains nearly unchanged (Figs. 12 a-d). (2) At larger values of the spring 

constant, especially for H* = 3750, the bead-bead distance in dumbbells becomes 

constrained around the equilibrium position, with increasing shear rates (see also 

Fig. 2). Since the equilibrium position corresponds to the minimum in the trough 

of the FENE potential, it follows that the intra-particle potential energy of du_mb

bells decreases, as shown in Fig. 13a. This also explains, to a certain extend, the 

profound decrease in the vibrational kinetic energy for H* = 3750 observed in Fig. 

12d. (3) Although, at high shear rates the peaks in the velocity distributions corne 

to be slender, taller, and are displaced towards the low velocities (Figs. 5-7), the 

tails of the distributions store significant parts of the kinetic energies. 

4.4 Comparison to the elastic dumbbell theory 

Unlike NEMD dumbbell models, mesoscopic elastic dumbbell theories have been 

developed for diluted polymeric solutions by neglecting inter-molecular interac

tion (see Sec. 4.3). Therefore, it cornes as no surprise that both types of models 

exhibit many distinct features. For example, the excluded volume effects and hy-
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drodynamic interactions are treated exactly for micro-rheological models, but only 

approximately for classical dumbbells [3], At the microscopie level, the microscopie 

FENE potentials take into account physical dimensions of beads (Equation 5), 

whereas at the mesoscopic level, beads are considered to be points. It is custom

ary for mesoscopic dumbbell models to rely on the assumption of the Maxwellian 

velocity distribution, which has been shown not to be satisfied even at relatively 

low shear rates (Figs. 5 and 6). There have been attempts, notably by Bird and 

his students [3], to introduce anisotropie velocity distributions by redefining Equa

tion 10. Although this procedure is legitimate, it emphasizes the fact that velocity 

distribution itself is part of a mesoscopic model, rather than a prediction as for 

micro-rheological simulations. ln addition, both types of models consider temper

ature to be defined in the kinetic rather than in the thermodynamic sense. 

Nonequilibrium one dumbbell configuration space distribution fonctions were 

calculated numerically within the context of the mesoscopic theory by Fan [33] 

who concluded that the direction of the maximum extension of dumbbells becomes 

aligned to the direction of flow, at high shear rates. Our results indicate that on 

the average the longest dumbbells are approximately at between 30° and 50° to the 

direction of flow regardless of shear rate (Figs. 4 a-c). However, it should be noted 

that at high shear rates a relatively small number of dumbbells is aligned at large 

angles to the direction of flow, as corroborated by a large scatter in data in Figs. 

4 a-c, and in addition by the dominant angle of alignment as shown in Figs. 3 a-c 

and 8 a-c. 

We have already noted that at high shear rates dumbbells tend to rernain doser 

to the equilibrium position r;q (Fig. 2). The opposite effect was reported by Fan 

(33]. These observations may be reconciled, however, by noticing that in case of 

concentrated solutions the conformation of dumbbells is controlled by the shear 

depended spatial structure which is unlikely to be forrned in diluted solutions. 
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5 Conclusions 

We have shown how direct simulations of the time evolution of a model macro

molecular fluid yield a complete set of microscopie, mesoscopic and macroscopic 

results. A major advantage of the model is the fact that it is formulated in terms of 

ordinary, rather than partial differential equations. It leads directly to the results 

and avoids complex numerical mathematics that is essential in most rheological 

models based on the kinetic theory. ln addition, we have pointed out similarities 

and differences in the development and in predictions of the microscopie and the 

mesoscopic elastic dumbbell models. 

The major accomplishments of this work may be summarized as follows: 

1. The string phase that pervades atomic liquids at the higher shear rates is

shown to be less important for dumbbell fluids. It is believed that the ordered

phase would not occur for model liquids which incorporate more degrees of

freedom than dumbbell fluids. ln this light, further research on model fluids

should be concentrated either on investigation of problems related to the

formation of the string phase as outlined in Sec. 3 and in [5], or on studying

multi-bead fluids.

2. At the molecular level, several new structures are identified for the first time.

For 0.2 < -r* < 2.0, very small FENE dumbbells (r;q < 0.67) form the

separated structure. It is conceivable that such a structure is stabilized by

the small physical size of the primitive cube. On the other hand, two very

large dumbbells may Iock themselves into a cross-like arrangement that seems

to break at high shear -rates. This structure forms when two big dumbbells

attempt to pass through each other. ln case of medium size dumbbells (r;q =:=

0.9, r-:nax = 1.4), a distinct crosslinked arrangement is observed that consists

of two parallel strings that lie in the horizontal plane; each string contains

_ only one bead of each dumbbell. This structure ceases to be seen for ,y* >
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10. At high shear rates, neither atomic nor dumbbell data are reproducible,

unless fresh samples are pre-sheared. ln case of atomic :fluids, oscillations are 

observed between amorphous and ordered phases, in the transitional regime. 

3. Original mesoscopic results are calculated directly for dumbbell fluids in terms

of configurational and velocity distribution fonctions as well as in the form of

the first and second conformation stress tensors. Even at small shear rates,

the anisotropie effects are observed in the system, such as dumbbells aligning

themselves at 45° to the direction of flow. At higher shear rates, the alignment

increases to approach 0°. Dumbbells that are at between 30° and 50° to the

direction of flow are the longest, and those at around -40° are the shortest,

regardless of the shear rate and the spring constant. With the exception of

the Newtonian limit, the alignment angle and the average end-to-end distance

are correlated. Only at low shear rates, velocities of beads and dumbbells are

arranged according to the Maxwellian distribution. In the complementary

publication [5], it was found that the viscometric fonctions of dumbbell :fluids

depend strongly on the size, but not on the frequency of vibrations of a single

dumbbell. Similar conclusions may be drawn for mesoscopic, and to a certain

extend for microscopie results.

6 Acknowledgments 

We would like to express our gratitude to Joel Welling of the Pittsburgh Super

computing Center for making available a three dimensional visualization software 

package called P3D, which was indispensable.in preparing the photographs. Finan

cial support for this project was provided by the Natural Sciences and Engineering 

Research Council of Canada and Fonds pour la formation de chercheurs et l'aide à

la recherche of the Province of Québec. 



100 

References 

[1] M. Grmela. Coupling between microscopie and macroscop1c dynamics in

NEMD. Phys. Lett. A, 174:59-65, 1993.

[2) D. J. Evans. Nonequilibrium molecular dynamics. ln Ciccotti G. and W.G. 

Hoover, editors, Molecular-Dynamics Simulation of Statistical-Mechanical Sys

tems, pages 221-240. North-Rolland, Oxford, 1986. 

[3) R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager. Dynamics of 

Polymeric Liquids, volume 2. John Wiley & Sons, New York, 2 edition, 1987. 

[4) D. M. Heyes. Non-Newtonian behavior of simple liquids. J. Non-Newt. FI. 

Mech., 21:137-155, 1986. 

[5) B. Z. Dlugogorski, M. Grmela, and P. J. Carreau. Viscometric fonctions for 

FENE and generalized Lennard-Jones dumbbell liquids in Couette flow: Molec

ular dynamics study. J. Non-Newt. Fl. Mech. (in press), 1993. 

[6) A. W. Lees and S. F. Edwards. The computer study of transport processes 

under extreme conditions. J. Phys. C: Solid State Phys., 5:1921-1929, 1972. 

[7) D. J. Evans and G. P. Morriss. Nonequilibrium molecular-dynamics simulation 

of Couette fl.ow in two-dimensional fl.uids. Phys. Rev. Lett., 51(19):1776-1779, 

1983. 

[8) J. W. Rudisill and P. T. Cummings. The contribution of interna! degrees of 

freedom to the non-Newtonian rheology of model polymer fluids. Rheol. Acta, 

30:33-43, 1991. 

[9] A. J. C. Ladd. Equations of motion for non-equilibrium molecular dynamics

simulations of viscous flow in molecular fluids. Mol. Phys., 53(2):459-463,

1984.



101 

[10] L. Verlet. Computer 'experiments' on classical fluids. I. Thermodynamical

properties of Lennard-Jones molecules. Phys. Rev., 159(1):98-103, 1967.

[11] D. M. Reyes. The nature of extreme shear thinning in simple liquids. Mol.

Phys., 57(6):1265-1382, 1986. 

[12] D. M. Reyes. Transport coefficients of Lennard-Jones fluids: A molecular

dynamics and effective hard-sphere treatment. Phys. Rev. B, 37(10):5677-5696,

1988.

[13] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Clarendon

Press, Oxford, 1987.

[14] D. J. Evans and G. P. Morriss. Shear thickening and turbulence in simple

fluids. Phys. Rev. Lett., 56(20):2172-2175, 1986.

[15] J. J. Erpenbeck. Shear viscosity of the hard-sphere fluid via nonequilibrium

molecular dynamics. Phys. Rev. Lett., 52(15):1333-1335, 1984.

[16] A. Berker, S. Chynoweth, U. C. Klomp, and Y. Michopoulos. Non-equilibrium

molecular dynamics (NEMD) simulations and the rheological properties of

liquid n-hexadecane. J. Chem. Soc., Faraday Trans., 88(13):1719-1725, 1992.

[17] L. V.  Woodcock. Origins of shear dilatancy and shear thickening phenomena.

Chem. Phys. Lett., 111( 4,5):455-461, 1984.

[18] W. Loose and S. Hess. Rheology of dense model fluids via nonequilibrium

molecular dynamics: shear thinning and ordering transition. Rheol. Acta,

28:91-101, 1989.

[19] B. Z. Dlugogorski, M. Grmela, and P. J. Carreau. Direct numerical studies of

viscous flow of two dimensional liquids. ln preparation, École Polytechnique,

1993.



102 

[20) D. M. Heyes. Shear thinning and thickening of the Lennard-Jones liquid. J.

Chem. Soc., Faraday Trans. 2, 82:1365-1383, 1986. 

[21] T. Yamada and S. Nosé. Two-phase coexistence of string and liquid phases:

Nonequilibrium molecular-dynamics simulation of Couette flow. Phys. Rev. A,

42(10):6282-6291, 1990.

[22) D. M. Heyes. Sorne physical consequences of large shear rates on simple liquids. 

J. Chem. Phys., 85(2):997-1009, 1986.

[23] S. Hess. Rheological properties via nonequilibrium molecular dynamics: From

simple towards polymeric liquids. J. Non-Newt. Fl. Mech., 23:305-319, 1987.

[24) J. W. Rudisill and P. T. Cummings. Brownian dynamics simulation of model 

polymer fluids in shear flow. 1. Dumbbell models. J. Non-Newt. Fl. Mech., 

41:275-288, 1992. 

[25) M. Grmela. Thermodynamic and rheological modeling: Polymeric liquid crys

tals. ln A.A. Collyer and L.A. Utracki, editors, Polymer Rheology and Pro

cessing. Elsevier, London, 1990. 

[26) R. B. Bird, R. C. Armstrong, and O. Hassager. Dynamics of Polymeric Liquids, 

volume 1. John Wiley & Sons, New York, 2 edition, 1987. 

[27] M. Grmela and P. J. Carreau. Conformation tensor rheological models. J.

Non-Newt. Fl. Mech., 23:271-294, 1987.

[28) R. C. Armstrong. Kinetic theory and rheology of dilute solutions of flexible 

macromolecules. I Steady state behavior._ J. Chem. Phys., 60(3):724-728, 1974. 

[29) D. M. Reyes, J. J. Kim, C. J. Montrose, and T. A. Litovitz. Time dependent 

nonlinear shear stress effects in simple liquids: A molecular dynamics study. 

J. Chem. Phys., 73(8):3987-3996, 1980.



103 

[30] J. D. Johnson, M. S. Show, and B. L. Holian. The thermodynamics of dense

fluid nitrogen by molecular dynamics. J. Chem. Phys., 80(3):1279-1294, 1984.

[31] J. M. Deal y. Official nomenclature for material fonctions describing the re

sponse of a viscoelastic fluid to various shearing and extensional deformations.

J. Rheol., 28(1):181-195, 1984.

[32] F. M. Dennery, D. Fargue, and A. Truyol. Contemporary thermodynamics.

Intl. Chem. Eng., 32(1):73-81, 1992.

[33] X.-J. Fan. Viscosity, first normal-stress coefficient, and molecular stretching

in dilute polymer solutions. J. Non-Newt. Fl. Mech., 17:125-144, 1984.



104 

Figure Captions 

• Figure 1. lnstantaneous configurations of 256 beads enclosed in the primitive

cube under shear. The cube is centered at (0,0,0) and has sicles of 6. 72450-

for atomic, and 6.83990- for FENE fluids, respectively. The green arrow de

notes the direction of flow ( x ), normal to the photograph, towards the reader,

whereas the red arrow points in the direction of the velocity gradient (y).

Bead diameter is 0.25 of the collision diameter. a,b) Atomic fluid, typified

by liquid argon close to its triple point (T* = O. 722, p* = 0.842), is sheared

at -r* = 2.25. The photographs are taken at two different time steps by

placing the camera at (800-,0,0). Note the oscillations between the amor

phous and ordered phases during the same run. c,d) FENE fluid at T* = 1,

p* = 0.8, r;
q 

= 0.9, and r�
ax 

= 1.4, under shear at 7* = 10. The photographs

represent two exposures of the same instantaneous configuration taken by a

camera located at (80u,O,O), and at (80u,-20u,O). Note the dumbbells with

beads belonging to di:fferent strings.

• Figure 2. Reduced one dumbbell configuration distribution fonction in terms

of bead-bead separation; T* = 1, p* = 0.8, and H* = 375. The da.shed lines

represent equilibrium distribution obtained by neglecting the inter-molecular

interactions. The tails of the distributions are not shown, with the exception

of those lying at the extreme left and right in the figure to preserve clarity.

') * - 0 5 * - 0 9 "") * - 0 9 * - 1 4 
... ) * - 1 3 * - 1 7I r e

q - · , r max - · , 11 r e
q - • , r max - • , lll r e

q - • , r max - • • 

• Figure 3. Distribution of dumbbell alignment angles as a fonction of shear

rate; T* = l, p* = 0.8, and H* = 375. a) r;
q 

= 0.5, r�ax 
= 0.9, b) r;

q 
= 0.9,

r�
ax 

= 1.4, c) r;
q 

= 1.3, r�ax 
= 1.7. Note difference in scales of the ordinates.

Distributions for H* = 37.5 and H* = 3750 (r;
q 

= 0.9,r�
ax 

= 1.4) have
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similar widths and heights with respect to 7* as in b ). 

• Figure 4. The correlation between the average end-to-end distance and the

alignment angle; T* = 1, p* = 0.8, and H* = 375. a) r:
q 

= 0.5, r�
ax 

= 0.9,

b) r;
q 

= 0.9, r;.
ax 

= 1.4, c) r;
q 

= 1.3, r;.
ax 

= 1.7. The scatter at high and

low angles is a result of small sample size. 

• Figure 5. Distribution of bead peculiar velocities; T* = 1, p* = 0.8, H* = 375,

r;
q 

= 0.5, and r�
ax 

= 0.9. The dashed line corresponds to the equilibrium

(Maxwellian) distribution.

• Figure 6. Reduced one dumbbell velocity distribution fonction in terms of

the peculiar center of mass and relative (insets) velocities; T* = 1, p* = 0.8,

and H* = 375. a) r;
q 

= 0.5, r�
ax 

= 0.9, b) r:
q 

= 0.9, r�
ax 

= 1.4, c)

r;
q 

= 1.3, r;.
ax 

= 1. 7. The dashed lines, are derived on the assumption that

bead peculiar velocities are Maxwellian distributed. The equilibrium and the

small shear rate results are essentially the same.

• Figure 7. Distribution of dumbbell vibrational and rotational (insets) veloci

ties; T* = 1, p* = 0.8, and H* = 375. a) r:
q 

= 0.5, r�
ax = 0.9, b) r;

q 
= 0.9,

r�a
x = 1.4, c) r;

q 
= 1.3, r;.

ax 
= 1.7. Distributions at the higher shear rates

are significantly different than in the Newtonian limit.

• Figure 8. Pictorial representation of the conformation tensor in terms of

orientation ellipses in xy, xz, and yz planes; T* = 1, p* = 0.8, H* = 375. a)

r;
q 

= 0.5, r;.
ax 

= 0.9, b) r;
q 

= 0.9, r�
ax 

= 1.4, c) r;
q 

= 1.3, r�
ax 

= 1. 7. The

axes are plotted in nondimensional quantities that have physical significance

of square of dimensionless distance. ln symbols such as xy, the first let ter

denotes the abscissa, whereas the second signifies the ordinate.
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• Figure 9. Dumbbell pair radial distribution fonction dependence on shear

rate; T* = 1, p* = 0.8, H* = 375. a) r:
q 

= 0.5, r:iax = 0.9, b) r;
q 

=

0.9, r:i
ax = 1.4, c) r:

q 
= 1.3, r:i

ax 
= 1.7. ln case of small dumbbells, the

diagonal components of C are almost indistinguishable, for :Y* < 2.5. For 

large dumbbells, the differences among Cxx, C
yy 

~ Czz, and g are small but

easy to notice, as shown in the inset in c). Normal components of C for

medium dumbbells, are however remarkably different (see Figure 10).

• Figure 10. Normal components of the second conformation tensor for different

shear rates; T* = 1, p* = 0.8, H* = 375, r;
q 

= 0.9, and r:i
ax 

= 1.4. a) Cxx,

b) C
yy

, c) Czz. 

• Figure 11. Variation of the radial elements of the second conformation tensor

with shear rate; T* = 1, p* = 0.8, H* = 375, r;
q 

= 0.9, and r:iax 
= 1.4. Note

different scales of the ordinates.

• Figure 12. Distribution of kinetic energies among translational (a for H* =

37.5, and b for H* = 3750), rotational (c), and vibrational (d) reservoirs as

a fonction of strain rate; FENE fluids at T* = 1, p* = 0.8, r;
q 

= 0.9, and

r�ax = 1.4.

• Figure 13. Variation of the intra- ( a) and inter-particle (b) potential energies

with shear rate; FENE fluids at T* = 1, p* = 0.8, r;
q 

= 0.9, and r:i
ax 

= 1.4.



Table 1: Nondimensional unit quantities used in this work. 

Nondimensional unit quantity SI conversion factor 

mass 6.63 X 10-26 kg 

length 3.405 X 10-to m

time 2.156 X 10-12 
S 

temperature 119.8 I< 

shear rate 4.64 X 1011 s-1 

velocity 157.9 m/s 

density 1679.4 kg/m3 

spring constant 8.36 x 10-2 N/m 

energy 1.65 X 10-21 J 

pressure 41.9 x 106 Pa 

viscosity 9.03 x 10-5 Pa s 
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Table 2: Alignment angles and average of the square of the end-to-end distance 

from the conformation tensor analysis for the FENE fluids at T* = 1 and p* = 0.8; 

the numbers in subscript denote one standard deviation. With the exception of the 

largest dumbbells, x:� decreases with the shear rate.

H* 
* 

req 
* 

rmax i'
* x;� [deg] x;� [deg] X�� [deg] R!2

37.5 0.9 1.4 4.5 13.0 0.6 88.7 0.8781s 

37.5 0.9 1.4 8.5 4.3 9.8 86.0 0.75612 

37.5 0.9 1.4 15 1.2 -0.7 -74.0 0.775950 

375 0.5 0.9 0.2 33.7 1.4 -86.8 0.238335 

375 0.5 0.9 0.8 4.8 0.0 -89.8 0.226730 

375 0.5 0.9 10 0.6 -1.4 90.0 0.2474641 

375 0.9 1.4 0.17 40.4 -5.9 1.6 0.8036531 

375 0.9 1.4 2.6 17.1 0.3 89.6 0.8098856 

375 0.9 1.4 8 2.9 -5.5 -86.0 0.804416 

375 0.9 1.4 14 1.1 0.6 82.7 0.8108511 

375 1.3 1.7 0.1 46.6 50.0 -26.3 l.691555

375 1.3 1.7 5 -88.0 29.9 -2.1 1.72654 

375 1.3 1.7 10 3.1 0.1 88.3 1.68361 

3750 0.9 1.4 0.1 39.5 -33.0 -88.3 0.80924720

3750 0.9 1.4 1 25.9 -1.7 87.0 0.8093583s 

3750 0.9 1.4 3.5 12.6 -0.2 89.9 0.8096312 
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Table 3: Check of consistency in the velocity data. The rotational and the 

vibrational energies were calculated either by integration over the velocity distri

butions or directly in the simulations; the numhers in subscript correspond to one 

standard deviation. 

H* ,;.t* }'* 1vib J<;ot J<:ib J{:ot 

(integrated) (integrated) 

37.5 4.5 67.70 133.13 67.9094 132.1898 

37.5 8.5 64.2 133.7 63.71.1 135.31.6 

37.5 15 68.1 122.6 73.61.4 121. 71.s

375 0.17 63.21 127.97 63.6439 128.1655 

375 2.6 47.19 138.81 47.1649 138.8653 

375 8 62.09 135.9 6l.60s2 137.51.5 

375 14 75.0 122.1 75.11.4 125.12.9 

3750 0.1 53.2 132.1 54.23.0 132.01.4 

3750 1 10.44 150.31 10.9353 150.4659 

3750 3.5 23.68 150.7 24.1154 150.71.0 
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Summary 

A novel nonequilibrium molecular dynamics, originating in mesoscopic theory of 

suspensions, is introduced to investigate the rheology of several hundred ellipsoids 

of revolution, interacting via the Gay-Berne potential. The ratio of the strength 

parameters for two particles in side-by-side and end-to-end configurations is taken 

as 2.5. The microcanonical equations of motion for the translational and angular 

momenta as well as for mass-centers and orientational unit vectors are derived from 

a Hamiltonian. These expressions are then augmented by SLLOD-like and Gaus

sian thermostat terms added consistently to equations for both the rotational and 

translational degrees of freedom. The thermodynamic data are generated along 

one isotherm (nondimensional temperature maintained at unity). Rheology is in

vestigated for two state points ( viz. particle number density - p - equal to 0.25 

and 0.4) that lie well inside the isotropie phase if no external flow is applied. As 

indicated by snapshots of molecular configurations, at the intermediate shear rates 

(nondimensional shear rate approximately 1-2), ellipsoids become aligned at a cer

tain angle to the direction of flow and the stress tensor begins to be nonsymmetric. 

At even higher shear rates, this configuration breaks clown leading to the formation 

of a transitory isotropie-type fluid, and then to the build-up of a highly ordered 

structure exhibiting global orientation of particles in the direction of the vorticity 

axis. For p = 0.4, the first (N1) and the second (N2) normal stress differences 

are positive and negative respectively, but at low densities (p = 0.25), N1 becomes 

slightly negative. ln addition to the stress tensor, we compute the conformation 

tensor, the order parameter and the components of the pair radial distribution 

fonction. At high shear rates the radial distribution fonctions become significantly 

anisotropie. Furthermore, we investigate the phenomenon of the stress overshoot 

at the inception of the simple shear flow from a molecular perspective, and study 

the evolution of the distribution of translational velocities as a fonction of the shear 
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rate. 
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1 Introduction 

Non-equilibrium molecular dynamics (NEMD) is now a standard tool for collecting 

rheological data for short and medium sized alkanes [1, 2, 3, 4], and for model poly

meric liquids [5, 6, 7]. Although in many respect similar, these two approaches to 

molecular modeling of rheology have different objectives. The former is concerned 

with reproducing exact experimental data by attempting to mirror the physical 

world, as much as it is computationally possible. In this approach, it is common 

to replace methyl or methylene groups of alkanes by a single computer particle 

(site) and to account for removed hydrogen atoms by selecting appropriate dihe

dral potentials. It is obvious that the number of sites that may be included in a 

single molecule is limited, even on the fastest supercomputers, and realistic polymer 

molecules cannot be modeled. 

On the other hand, the objective of NEMD investigations of model polymeric 

particles, such as vibrating or rigid dumbbells (rigid rotors), is to formula.te mi

crorheological models that could ultimately be implemented in polymer processing 

operations yielding predictions ( e.g. on surface quality) that are outside of reach 

of more traditional partial differential equations based techniques. The viscoela.stic 

properties of vibrating dumbbell liquids (Newtonian viscosity, shear thinning, stress 

overshoot, etc.) derived from NEMD simulations are similar to those observed for 

real polymeric liquids [5, 6, 7]. On the other hand, the rigid rotor fl.uids are yet to 

be thoroughly investigated at the microrheological level. 

In this work we approach rigid dumbbells from a slightly different point of view. 

Rather than considering them as a particular implementa.tion of vibrating dumb

bells we recognize that they are in fact a group of rigid bodies. In this context, 

our goal is to develop a novel NEMD algorithm for rigid bodies and to apply it to 

generate rheological data. 

At equilibrium, the nature of rigid rotor fl.uids was studied by a way of two algo-
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rithms. These algorithms require that the atomic positions of beads be transformed 

into the mass-center and relative coordinates and the components of forces along 

molecular axis be removed to satisfy the constraint of constant bead-bead length. 

This is accomplished either by following an ingenious geometric construction [8, 9) 

or by introducing spherical polar angles [10) in case of the first algorithm, or alter

natively by using angular velocities [11). The former technique has been popular in 

collecting thermodynamical data for systems of diatorriic homonuclear molecules, 

such as N2 [9], whereas the latter has been employed for generating some microrhe

ological results for rigid dumbbell fluids [5], despite the fact that this algorithm 

requires the evaluation of higher order derivatives of potential leading to compli

cated expressions. The simulation procedure becomes considerably sirnplified if 

the computation is clone for rigid bodies rather than for rigid rotors. In addition, 

for rigid bodies the intermolecular interactions are modeled directly by interbody 

forces in place of a sum of four bead-bead potentials. 

The SLLOD (12] equations of motion were originally developed for atomic liq

uids by incorporating the macroscopic Couette velocity field in the equations of 

motion for single particles. The extension of these equations to rigid rotors was 

given by Rudisill and Cummings [5], but only for the translational equations of 

motion; the equations for rotation of molecules were microcanonical. ln this work, 

we propose a new form of the SLLOD algorithm with extra terms due to the explicit 

coupling between the velocity field and the rotational motion of particles. 

ln the next section, we briefly review our implementation of the interrnolecular 

Gay-Berne potential. Elsewhere [6, 7), we have investigated the microscopie and 

mesoscopic properties, as well as the viscometric fonctions of fluids consisting of 

finitely extensible nonlinear elastic (FENE)· and generalized Leonard-Jones (GLJ) 

dumbbells. Consequently, this work may be considered as an extension of the prior 

studies since the vibrating but stiff dumbbells, characterized by the average nondi

mensional bead-bead displacement of 0.9, are approximated by similarly sized rigid 
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ellipsoids of revolution. 

Since our goals were to study the rheology of systems composed of rigid bodies, 

we have confined ourselves to the investigation of the isotropie phase only; the rhe

ology of smectic and nematic phases will be a subject of a subsequent publication. 

In Sec. 3.2, we verify by a means of thermodynamic ( equilibrium) calculations that 

the system of rigid bodies, before the imposition of shear, is indeed well within 

the isotropie phase. The results presented in Sec. 3.2 were obtained for the isoki

netic ensemble (NV Erot,trans, both the rotational and the translational energies 

were thermostated separately) using the equations of motion derived in Sec. 3.1. 

We modify these equation in Sec. 4.1 in order to make them compatible with the 

macroscopic Couette velocity field, by adding a few supplementary terms. ln case 

of the translational equations of motion, we keep the classical SLLOD expressions 

normally employed for atomic liquids. For the rotational equations of motion, we 

introduce new terms. ln Sec. 4.2 we discuss the viscometric fonctions, and in ad

dition the structural results. In the final section we assemble the major findings of 

this work. 

2 Potential 

A convenient means to simulate interaction of rigid molecules, each consisting of 

several single a.toms or beads, is to replace site-site interactions by a single inter

molecular potential. A potential of this type was first described by Corner [13] 

and la.ter cast into an elegant analytical form by Berne and co-workers [14, 15, 16]. 

Of particular interest to us is the so-called Gay-Berne [16] potential that may be 

equally well applied to study long eccentric molecules comprising of several atoms 

and to short rigid rotors consisting of two beads. 

Long molecules simplified as ellipsoids of revolution have been extensively used 

in equilibrium modeling of liquid crystals [17, 18, 19, 20, 21]. Equilibrium molecular 
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simulations revealed the appearance of the vapor-liquid phase transition and also 

the isotropic-nematic, nematic-smectic and isotropic-smectic liquid crystal phase 

changes [20). In these investigations, one type of the Gay-Berne potential was 

studied for molecules whose ratio of major ( u .... ) and minor ( u1) axes was set equal 

to 3 [16, 17]. This potential was deemed to represent the interaction between two 

linear molecules, each consisting of four Lennard-Jones atoms separated by a dis

tance of 2/3 u; u is the collision radius or a distance at which the attractive and 

repulsive terms of the classical Lennard-Jones 12-6 potential cancel each other. It 

should be added for completeness that systems composed of hard ellipsoids of rev

olution [22, 23] and of molecÙles interacting via site-site potentials (24] also exhibit 

the phase transition between the isotropie and nematic phases. 

Our main objective, is to investigate rheology of viscoelastic materials. Since 

we are interested in comparing the rheology of rigid bodies with the behavior of 

FENE and GLJ fluids we assume a_ = 1.9. In other words, we are pursuing the 
(71 

physics of less anisotropie molecules. 

The interaction anisotropy between two cylindrically symmetric molecules whose

orientation in space is defined by two unit vectors Pi, Pi along their respective ma

jor axes and by the vector rij that connects their mass-centers, enters into the 

Gay-Berne potential by a means of two anisotropy parameters K, and JC, 

JC -

(�)½ -1 

(:7)½+1' 
(f .... 
- = 1.9, 
u1 

( f= )½ - 1 
f-- €-

---1 --, -=- = 2.5. 
( f= )2 + 1 €__ 

f--

(1) 

(2) 

It is obvious that the geometric anisotropy of a single molecule is embodied in 

the defi.nition of K, whereas the purpose of /C is to correct the discrepancy in the 

depth of the potential energy well between the site-site and the simple Gaussian 

overlap model potential [14], which was a precursor to the Gay-Berne potential. 
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The expression f= in Eq. (2), considered normally as a fitted quantity, is the ratio 
f __ 

of depths of the potential well for side-by-side = and end-to-end __ configurations, 

in case of atom-atom interactions. The exponent ½ in Eq. (2) is another parameter 

that could be adjusted, although historically it has been always set to ½; we are not 

aware of any publication in which this term has been changed. A similar comment 

is also applicable to yet another additional adjustable parameter, called v, origi

nally introduced by Gay and Berne [16], but never used in simulations; it is always 

equal to one. Finally, in statistical thermodynamics investigations of mesogenic 

molecules f':__ = 5 (17, 18, 19, 20, 21]. 

For simplicity we introduce nondimensional quantities, denoted in this section 

by an asterisk which would be dropped thereafter, based on the parameters of the 

Lennard-Jones potential, such as (j and t:; for a complete list of nondimensional 

quantities see [6] and App. B of [25]. Using these quantities the Gay-Berne equa

tions are enunciated as follows, 

1 -.,.2 
i v- (r" ... (p". + p" ·))2 (r" ... (p". - p" ·))2 * (" A A ) (---"-' -)- { 1\., [ tJ ' J 'J ' J ]}2 t:ii Pi,Pi,rii = 1 2(" ,. )2 2 1--2 l+v-(" ,. ) + 1 v-(" ,. ) , (4)

- K Pi · Pi 1\., Pi · Pi -1\., Pi · Pi 

Where, 

r�- = r� -r� r�- =I r�- 1•J ' J' •J ') • 
(6)

ln Eq. (4), we have introduced a normalization factor (1 -K-
2)½ to make certain 

that t:* for side-by-side configuration is unity. A comparison between the Gay-Berne 

and the sums of four Lennard-Jones atom-atom potentials for both side-by-side and 

end-to-end configuration is presented in Fig. 1. For these configurations, especially 

for the end-to-end geometry, the two potentials are almost indistinguishable from 

each other. As shown in Fig. 2, the Gay-Berne potential tends to smooth the inho-
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mogeneities introduced by interactions of single beads. After examining a number 

of two-dumbbell geometries, similar to these in Fig. 2, we conclude that the Gay

Berne potential approximates closely intermolecular bead-bead potential. 

Although Eqs. (3)-(5) lead to rather complex expressions for forces, 

(7) 

from the computational point of view it is 10 times faster to calculate forces from 

the analytical formulae than by taking gradients of the Gay-Berne potential nu

merically. 

3 Equilibrium Calculations 

3.1 Details of the model, algorithm and computational 

procedure 

The Hamiltonian for a system of rigid bodies interacting through a Gay-Berne 

pair potential is expressed in terms of position rand momenta M of mass-centers, 

orientational unit vectors p, and angular momenta m, 

I N P. P. 1 N N-1 N 
( P A M) '°'

ia ia 
'°' J-1 M M '°' '°' ,1. ( A A 

) 1-l r , ,P, = 2 � . + 2 � icm ia ia + � �'fJii Pï,P;, ri;.i=l m, i=l i=l j>i 
(8) 

The summation convention is used in Eq. (8). This Hamiltonian leads to the 

following equations of motion, 

81-l 

8 N 
a I: <Pij,ri i=/=j,j=I 

(9) 

(10) 

(11)



- -M· x â1{ -p
A 

· x â1{ = -M· x W· -p
A 

· x _!_ � ,1... 
' âM ' â A ' =-4 1 â A • L..,, '/'IJ. 

i Pi p, i·#j,j=l 
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(12) 

The angular velocity w is related to the angular momentum M by M0 = 100 w0 , in 

the system of coordinates fixed in the body; /00 are diagonal elernents of the inertia 

tensor .L.. In this system, off-diagonal elements of both the inertia L and the inverse

inertia tensor i-1 disappear. In addition to constant total energy and vanishing 

translational momenta, these equations of motion also preserve two other quanti

ties, namely I:�
1 

Mi · Pi, and for each particle Pi · Pi (26]. The angular velocity 

and momenta are in the body frame. On the other hand, Eq. (11) describes the 

motion of the unit vector p as seen from the system; see also Eq. (2) of ref. (27]. 

Eqs. (8)-(12) are N-particle extension of equations introduced by Sudarshan and 

Mukunda [28] (see also [26]). We use x and · for the vector and scalar products, 

respecti vely. 

In order to guarantee that the norrn of Pi i = 1, ... , N is constant also in nu

rnerical calculations ( the equations are solved in Cartesian rather than in spherical 

coordinates), we shall replace ( 11) by, 

where >./s are Lagrange multipliers 

P
A 

.• (P
A

. x w-) 
>-· =- ' 

1 -1 

1 A A 

Pi· Pi 

(in nurnerical calculations Pi · (Pi x �) is not strictly zero). 

(13) 

(14) 

Gauss 's principle of least constraint, first introduced within the context of rnolec

ular dynamics by Evans et al. [29] is applied to Eqs. (10&12) to give, 

F� - a1P 1 ' (15) 

(16)



Where, 

Ef:1 �. (Pi X Ff - Mi X�) 

Ef:1 wi · Mi
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(17) 

(18) 

The Lagrangian multiplier a2 is obtained by setting the total rotational kinetic 

energy constant, 

(19) 

and by substituting (19) into (16). Subsequently, a2 is found by a straightforward 

algebraic manipulation. 

For the sake of numerical accuracy we also include the second term in the nu

merator in the equation for a2• During shearing, a1 and a2 serve as energy sinks 

taking away the energy generated by the viscous dissipation. 

We have performed calculations for 256 rigid bodies which were originally placed 

on the faced-centered-cubic (FCC) lattice and the standard periodic boundary con

ditions were applied in three orthogonal directions. In the course of equilibra

tion, the translational velocities were rescaled whereas the rotational velocities were 

left to equilibrate by themselves. After two-three thousand time steps, although 

the entire equilibration lasted 10,000 time steps, we have always observed that 

Etrans = � Erot, as expected from statistical mechanics. The Verlet order parameter 

[30] and Haile's implementation of the Boltzmann H-function [31] were computed

to verify the melting of the FCC lattice and the emergence of the Maxwellian dis

tribution. 

The mass of a single ellipsoid of revolution was taken as nondimensional two 

to ensure that the dimensional density of fluids composed of rigid bodies would in 

fact correspond to density of :fluids built from vibrating dumbbells. For example, 

in nondimensional quantities p = 0.4 as used in this paper becomes p = 0.8 in refs 

[6, 7]. The moments of inertia were calculated on the basis of the ellipsoids' repul-
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sive cores (see Fig. 2), taking major and minor axes as 0.95 and 0.5 respectively, 

thus Izz = 0.2, and I:r::r: = I 
YY 

= 0.461. The static properties are not effected by 

these choices, however the dynamic properties do depend on them. 

For all runs, the nondimensional temperature was maintained constant and 

equal to unity. The particle number density, defined as a number of pa.rticles in a 

eu bic box of unit sicles, was varied between 0.05 and O. 725 to generate the ther

modynamic data along one isotherm (T = 1). On the other hand, the rheological 

calculations presented in Sec. 4 were performed for two particle number densities 

viz., 0.25 and 0.4 as a fonction of the shear rate. 

The Gear five-value predictor-corrector method (App. E of ref. (25]) was em

ployed to integrate Eqs. (9)-(12) using a time step of 0.0025. In order to minirnize 

the total energy drift ( for microcanonical runs) as well as the translationa.l and rota

tional temperature drifts (for isokinetic runs), and thus avoiding frequent rescaling 

of velocities, no eut-off radius was used, at the cost of longer execution (2.3 sec. per 

integration, including various overheads, on RISC 320). The temperature drifts are 

similar for the translational and rotational temperatures and depend on the fluid 

density. For example, for T = 1 and a time step of 0.0025 these drifts are (per inte

gration), 2.3 10-9 for p = 0.05, 4.1 10-s for p = 0.4, and 2.2 10-7 for p = 0.6. After 

reaching steady state, a process that might have ta.ken up to 100,000 times steps 

for points within the nematic phase, for each run 10 subaverages were calculated 

over 1000 time steps periods. Subsequently, these subaverages were considered as 

independent observation and used to calculate an overall average and its standard 

deviation. 

3.2 Equilibrium Results 

As the density of the liquid is increased the molecules are not able to rota.te freely 

and are forced to assume structurally preferred configurations. A very sensitive 
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probe into the density induced evolutionary changes within the fluid is provided 

by the total potential energy 4>. As demonstrated in Fig. 3, when the density of 

model molecules is sufliciently low, the configurational energy decreases proportion

ally to the particle number density p. This proportionality relation follows from 

the fact that at low densities molecules are separated by long distances and the 

intermolecular interaction is mostly due to the attractive Gay-Berne forces (Fig. 

1). For this reason, the velocity autocorrelation fonction is always positive for low 

density fluids. Since there is no predominant direction exhibited by the ensemble 

of molecules and the fluid is above its critical point but doser to its vapor region 

(see the caption of Fig. 4) this initial part of the 4>(p) curve defines the field of 

existence of the vapor-like isotropie phase, also denoted by isotropie phase region 

I. 

Before carrying on with the discussion we make a short digression devoted to 

computational techniques designed to probe the liquid's structure at the molecular 
level. For example, the directional global order is examined by the conformation 

tensor �: 
1 � A A 

Co,(3 = N < Li Pi0tPi/3 >t .
i=l 

(20) 

ln 3-D space, � is often visualized as an ellipsoid ( e.g. [7]) whose axes correspond 

to eigenvectors of the conformation tensor. The largest eigenvector, normalized to 

unity and stripped of its arrow to become headless, is called director (n). It points 

along the ellipsoid 's major axis. Distribution of orientational unit vectors around 

lÎ is conveniently measured either by specifying the lengths of the two other minor 

axes or by defining the order parameter S, 

S 
3 �( A A )2 1 

t = - < Li n · Pi >t --. 2N 
i=l 

2 (21) 

The notation < ... >t stands for time average. By the same token, St denotes 

a time averaged order parameter. An instantaneous order parameter is indicated 

simply by S. According, to their definitions, St and S may vary between zero for a 
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perfectly isotropie phase, for which < Cxx >t
=< Cy

y 
>t=< Czz >t , and unity in the 

limit of a faultless alignment. The trace of the conformation tensor is unity since 

molecules are rigid and their direction is space is specified in terms of orientational 

unit vectors. 

The orientation independent pair radial distribution fonction for monatomic 

liquids, 
2 N-l N 2 < N(r,.6.r) >t g(r) = N < L L 8(r - ri;) >t

= N 4 2.6. , (22) 
P i j>i P 1rr r 

conveys two types of information about the local liquid structure. First, the overall 

appearance of g(r) allows to identify the state of matter of the simulated material 

[31]. On the other hand, peaks in g indicate location and the relative significance 

of coordination spheres. N(r, D..r) denotes number of molecules (js) in a concentric

spherical shell of thickness D..r around molecule i; here, we follow the nomencla

ture used in App. A of ref. [31]. Unfortunately, g is not immediately usefol for 

cylindrically symmetric particles due to its averaging action. For molecular liquids 

exhibiting directional ordering, it is necessary to resolve g into tensorial compo

nents. In general, the resolution of g may be carried out in relation to the system 

coordinates, 
2 < y:_JY-1 r_l'! . 

Tijo, Tij� > 
( ) 

i=l J>i r;;r;; t 
90t{) r = N 4 2 " ' 

p 1rr u.r 
(23) 

leading to a symmetric tensor g. The summation E�ï1 Ef>i has a similar meaning

as N ( r, D..r) except that it may assume real values since the addition is done over real 

numbers rather than integers as before. Alternatively, the pair distribution fonction 

may be resolved into elements of a 2 x 2 tensor, according to the instantaneous 

director. The diagonal components of such a tensor are called parallel gu(r) and 

perpendicular g .L ( r) pair radial distribution fonctions, 

(24) 

(25)



Where rijil and rijl. are the components of rij along and normal to IÎ. 
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For simulations of liquid crystals, it is convenient to introduce two other fonc
tions, namely the longitudinal g11(r11) and transverse g1.(r1.) pair distribution fonc
tions, to help distinguish among several liquid phases, 

( ) _ 2._ < N(r11, �r11) >t 911 r11 - N P 2L2 �rll '

g1.(r1.) = 2_ < N(r1.,�r1.) >t
.Np 21r Lr 1.�r 1. 

(26) 

(27) 

Where, L denotes sicle length of the primitive cube. ln case of the longitudinal pair 
distribution fonction, the space around each molecule is divided into rectangular 
parallelepipeds of thickness �rll perpendicular to ft. For the transverse pair distri
bution fonction, the concentric cylindrical shells of thickness �r 1. and length L are 
taken. 

Upon forther compression, the isotropie phase becomes more liquid-like (region 
11) as one can infer from the fact that the total potential energy of the ensemble of
molecules begins to rise (Fig. 3). On the average, ellipsoids are doser together, and
the repulsive forces among them corne to be more significant. A sudden increase
in pressure in region II (Fig. 4) confirms lower compressibility that is character
istic of the liquid phase. ln this region, it is possible for the liquid to form local
directionally-ordered clusters that are promptly destroyed as indirectly indicated
by significant fluctuations in the structure factor (Fig. 5). Perhaps the most com
plete justification for the evolution in the nature of the fluid cornes from the parallel
(g11(r)) and perpendicular (g1.(r)) pair radial distribution fonctions (Figs 6 a&b).
For p = 0.25, both fonctions are structureless with a small but noticeable local 
minimum at r � 2. The complete absence of such a minimum is an evidence for a 
low-density gas phase [31]. On the other hand, well defined but not deep trougii-s 
at the same location signify liquid phase, as shown for p = 0.5 and 0.625 in Figs 6 
a&b. 

_ The isotropic/nematic phase transition is similar in appearance as the one oh-
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served elsewhere, for T = 0.95 for mesogenic molecules; compare Figs 3-5 with ref. 

[20]. This transition is reflected by discontinuities in pressure and potential energy 

and an important increase in the order parameter. The exact location of the two 

phase region, or in other words the location of the horizontal line connecting two 

branches of the pressure and potential curves may be determined by the free energy 

calculations. However, this was not attempted here. 

According to the conclusions drawn by de Miguel et al. [20] for their type of the 

Gay-Berne fluid, above the triple point temperature (isotropic/nematic/smectic) of 

T = 0.8, isotropie phase evolves to a stable nematic phase. At the lower temper

atures, Miguel et al. observed a direct phase transition between the isotropie and 

smectic phases. We have no suffi.cient thermodynamic data to estimate the triple 

point temperatures but may verify the build-up of the nematic phase. This will be 

done next. 

The longitudinal pair distribution fonction is structureless for the isotropie 

phase, but displays symmetric peaks for the nematic phase (Fig. 6c). Similar 

peaks, though of much larger amplitude, indicate smectic phase (Fig. 11 of ref. 

[20]). However, there is one important difference that allows one to differentiate 

between the phases. For the isotropie phase, the distance between two neighboring 

peaks of 911(r11) pair distribution fonction is slightly less than half of the molecular 

end-to-end distance (0.9u), as seen in Fig. 6c, whereas in case of the smectic phase 

the peak-to-peak separation is doser to the entire end-to-end distance (Fig. 11 of 

ref. [20]). In other words, each plane within the smectic phase consists of rows of 

directionally ordered molecules. This alignment is preserved for the isotropie phase, 

but no rows are present. Similar configurational information as presented by 911(r11) 

is shown by the transverse distribution fonction (Fig. 6d), which is structureless 

for the isotropie phase, both for regions I&II, but displays cylindrical coordination 

shells for the nematic phase. Finally, snapshots of the isotropie and nematic phases 

are given in Fig.7. 
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The dynamical equations introduced in Sec. 3.1 are applicable only if the system 

composed of the model molecules is not subjected to external force. If the model 

molecules are subjected to a fl.ow (playing a role of an external force) then Eqs. 

(10)-(18) have to be modified. ln particular, it has to be specified how the fiow 

influences the motion of the model molecules and how the macroscopic quantities of 

interest ( e.g. the stress tensor) are expressed in terms of trajectories of the model 

molecules. 

In the case of molecules modeled as Lennard-Jones-like particles or as chains of 

Lennard-Jones-like particles, the modification is known under the name of SLLOD 

dynamics [12]. The SLLOD dynamics combined with hydrodynamics ( i.e. an 

infinitely dimensional dynamical system) has been shown to be Hamiltonian (32]. 

The Hamiltonian fonction that generates the combined dynamics is the total energy. 

This new result can be used for example to derive systematically the expressions for 

the stress tensor that are compatible with the dynamics of model molecules and to 

provide new simple profs of some well known results about SLLOD dynamics. It has 

been shown (12), for example, that in a simple shear fl.ow (i.e. k
8

u =:Y= const, u is
r11 

the field of the fluid velocity) �� = ')'Uxy V, where gis the stress tensor (the stress

tensor used in this paper equals minus the stress tensor used in (32)), Vis the total 

volume and 'H is the Hamiltonian of the system composed of the model molecules. 

This result cornes from the Hamiltonian structure proven in [32] as follows. The 

total Hamiltonian that is conserved during the time evolution is 'H+ f dr½pu2 where 

pis the mass density field of the fluid. We have thus dd� = -;t J dr½pu2 = ')'Ux11V.

The second equality follows immediately from ac;�> = div (-puu + g) and from 

the integration by parts. Similarly, the so-called adiabatic incompressibility of the 

phase space [12) can be proven from the Liouville theorem for Hamiltonian systems. 
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ln this paper, the molecules are not modeled as Lennard-Jones-like particles but 

as Gay-Berne-like ellipsoids of revolution. The question arises of how the SLLOD

like modification of particle dynamics extends to the rigid body dynamics. This 

question has been addressed for a particular case of rigid body dynamics in (33, 34] 

and for the general case in [35]. The total system of the time evolution equations 

composed of Eqs. (10)-(18) coupled to extended hydrodynamical equations is shown 

again to represent a Hamiltonian system. The stress tensor arising in the analysis 

( i.e. the stress tensor that is compatible with the molecular dynamics (10)-(18) 

- for other type of consideration of the stress tensor see [36, 37]) is given by the

standard formula; see Eq. (35). The state variables of extended hydrodynamics 

are p(r), u(r), !!:_(r), and �(r), denoting respectively the mass density field, velocity 

field, angular momentum field and conformation tensor field. If it is assumed that 

the two last fields!:!:..,� evolve in time much faster than the classical hydrodynamics 

fields p, u then one finds that !:!:.. = KO., where n = rot u is the vorticity field and 

K is a constant. ln this paper we put K = 1; a detailed analysis of this coefficient 

will be given elsewhere. The SLLOD-like extension of Eqs. (10)-(18) becomes then, 

ri 

pi -

Pi -

Mi -

01 -

0:'.2 -

).i 

pi 
-+ri· X,
mi 

-

F':" - P · · X - a1P · 
' ' =

" 

A A 

n ).

A 

-pi x wi - Pi X_ - iPi, 

-M· X w· + p· X F� -M· X n- 02M·
' =t ' ' ' - ,, 

I:f:1 Pi· (Fi - Pi· _K)

I:f:1 pi' pi

I:f:1 � • (Pi x Ff - Mi x � - Mi x n)

I:f:1 �·Mi 

Pi · (Pi x � + Pi x n) 

Pi· Pi 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34)
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The Hamiltonian nature of this dynamics proven in [35] guarantees again that 

all the well known results about SLLOD dynamics (see the previous paragraphs) 

are valid. It can be also verified immediately that if i' = 0 then Eqs. (28)-(34) 

reduce to Eqs. (10)-(18). 

The equations are solved by the Gear 5 value method using time steps of between 

0.00125 for high and 0.0025 for low shear rates. The original SLLOD equations for 

spherically symmetric particles are a particular case of Eqs. (28)-(34), by omitting 

the variables p and M. Similarly to the classical SLLOD/LE/GAUSS algorithm, 

the Lees-Edwards (LE) boundary conditions are applied in the direction of the ve

locity gradient. 

The results were easily reproduced at low shear rates, but less so in the viscoelas

tic regime, where it was necessary either to pre-shear liquid samples or to execute 

long runs (100,000-200,000 time steps) before taking statistics. As for equilibrium 

computations, every production run was divided into 10 bins, each 1000-2000 time 

steps long. Bin averages were ca.lcula.ted and used to obta.in an overall average 

and its standard deviation. Several points were reproduced (see figures in the next 

section) by imposing shear on fluid samples having different initial molecular con

figurations. 

4.2 Rheological and microstructural results 

The viscometric fonctions, such as the two shear viscosities (T/i, T/z), the normal 

stress differences (N1, N2), and the hydrostatic pressure (P) are extracted from the 

stress tensor g [38], 

according to, 

1 N P. P. N-1 N

( . ) 
� ia i/3 

'°' � Fr fra(3 / = -
V 

< � . · + � � Tija ij/3 >t,
i=l m, i=l j>i 

T/1 ( -r) 

(35) 

(36)
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T/2 ( 1') 
O"yx('î) 

(37) 
'Y 

N1 (-y) O"xx('r) - O"y1,,{-y), (38) 

N2er) O"yy('î) - O"zz( 'î ), (39) 

P('r) =- }( O"xxb) + O"yy( 'Y) + O"zzb)). (40) 

Where V denotes the total volume of the primitive cube. 

The stress tensor is nonsymmetric in general for molecular fluids when molecules 

interact according to binary molecule-molecule potential rather than according to 

bead-bead intermolecular potentials; for the latter, � is strictly symmetric. We 

recall that the stress tensor can be asymmetric if the total angular mornenturn of 

the fluid is a sum of r x u and the angular momentum of the particles suspended 

in the fluid (see for example [39, 40]). We observe that a degree of asymmetry is 

related to the magnitude of the imposed shear rate; in the limit of small shear rates 

gis always symmetric on the average. 

In Tab. 1 we have collected the conformation tensor results for the two fluid 

densities. The ellipses, defined by the largest and the second largest eigenvectors of 

� are drawn below the table to facilitate the perusal of the conformation stress data. 

In this sketch, inclination of each ellipse corresponds to an angle between the major 

axis of an ellipse and the direction of flow (x). This angle is acute at low shear 

rates. At around 7 = 4.5, the major and minor axes of the ellipses become similar

in length, indicating that an isotropie phase, transitory with respect to the shear 

rate, has been formed; see -y = 4.5 for p = 0.25 and -y = 5 for p = 0.4 below Tab. 

1. At even higher shear rates, the ellipses become preferentially oriented normally

to flow along the neutral direction z, which is also the direction of the vorticity. 

Other indicators, such as the total potential energy (Fig. Sa), hydrostatic pres

sure (Fig. 8b ), and the structure factor (Fig. 9) exhibit features that point to the 

same structural rearrangements as the conformation tensor ellipses. As a result of 

the initial alignment of ellipsoids (for 0.2 < 7 < 2) <P, P and St monotonically 
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increase but only the structure factor reaches a maximum for i' '.::::'. 2 - 3, depending 

on the fluid density. If the shear rate is increased the structure factor declines 

substantially indicating the formation of an isotropic-like phase (St does not reach 

the truly isotropie plateau). Neither � nor P passes through a maximum, rather 

their increase is accelerated with the shear rate. The fluid is able to support such 

a rapid ascent in the total potential energy and in the hydrostatic pressure only 

until /y = 5 before being forced to reorganize. Initially, this reorganization leads to 

lower � and P but soon both variables resume their upward trends that coincide 

with the shear thinning region of the viscosity curves (Fig. 10a). 

The Newtonian viscosity of the liquid crystal polymers in solutions increases 

with the concentration of particles to reach a maximum at the phase transition 

between that isotropie and nematic phases. Our NEMD results collected only for 

two particle number density points tend to support this laboratory observation. 

Namely, the Newtonian viscosity for the higher density fluid p = 0.4 is three times 

higher than for the lower density fluid p = 0.25 (Fig. 10a). At around -y = 1, the 

stress tensor becomes nonsymmetric, and the viscosity curves for the two densities 

bifurcate with respect to the shear rate. The difference between the upper (771) 

and the lower ( 772) branches of two viscosity curves is most significant during the 

initial structure formation. In the viscoelastic region, the distance between 771 and 

772 appears not to depend on the shear rate. Both N1 and N2 are not zero, even for 

slightly anisotropie liquids (Figs. 10 b&c). The fact the N1 for p = 0.25 is initially 

negative may be related to the particle number density. We have also observed the 

negative first normal stress difference for very small vibrating dumbbells [7]. 

In addition to the conformation tensor, the spatial ordering of the rigid bodies 

is probed by the diagonal components of the resolved (tensorial) pair radial distri

bution fonctions (Figs. 11 a-c; see Eq. 23), and by the longitudinal as well as the 

transverse pair radial distribution fonctions (Figs. 11 d-e; see Eqs. 24&25). As 

oppose to the dumbbell fluids [7], where the solid-like phase is formed in the neutral 
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direction z and in the direction of the velocity gradient x, for rigid bodies all three 

diagonal components of the pair radial distribution fonction are fluid-like. At the 

low shear rates and for both fluid densities, the radial distributions fonctions are 

structureless. However, all three radial components of g have well defined peaks at 

the position of the first coordination neighbors, when the microstructure oriented 

along the vorticity axis is built, This microstructure has features very unlike the 

nematic phase as it follows from comparison between Figs. 12 d&e and Figs. 6 

c&d. As a matter of fact the distance between peaks for two computer experiment 

(p = 0.4, :Y = 9 and p = 0.25, :Y = 10) is close to 1. 7 what would indicate the 

appearance of the shear-induced smectic-like phase (see also snapshots 12 d&c). 

If we compare the microstructural results for rigid bodies (Fig. 12) with those 

for vibrating dumbbells (Fig. 1 of ref. [7]) it is immediately evident that for large 

shear rates dumbbells are not aligned on the average in the direction of vortic

ity. There is a small tendency on the part of dumbbells to build local cross-string 

spanning structure which consists of two strings with each bead of every dumbbell 

belonging to a separate string. The structure is transient with respect to the shear 

rate, it appears for /y '.:::= 8, never pervades the entire primitive cube and disappears 

for :Y > 10. It is possible that the vibrational degree of freedom may contribute 

sufficiently to the nature of vibrating dumbbells to induce their more disorderly 

behavior. It is also important to realize that rigid bodies that the dynamics of 

rigid bodies includes rotations around the molecular axis,. whereas for dumbbells 

the rotation around the bead-bead axis is not taken into account. It is know that 

at the macroscopic level, rigid fi.bers may in fact align themselves parallel to the 

vorticity axis. 

In case of atomic liquids, smaller assemblies ( e.g. 256) of particles exhibit well 

defined phase transition zones between isotropie and ordered phases [41). No strings 

are built for rigid ellipsoids of revolution neither in the direction of flow (Figs. 12 f

j) nor in the direction of vorticity (Figs. 12 a-d). A limited volume of such systems, 
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allows no simultaneous existence of the two phases, leading to oscillations between 

purely amorphous and string arrangements [6]. The dramatic change in the fluid 

structure around :Y= 5 for the higher density fluid manifested by a sudden decrease 

in T/i and TJ2 may reflect not only the physical response of the system to shearing 

but also small particle number and periodic boundary effects. 

lt has been known for some time [42] that in case of dilute gases the macroscopic 

transport processes are related to the changes in the velocity distribution fonction. 

For fluids of rigid bodies and at increasing shear rates, distributions of the trans

lational velocities display three distinct trends, shown �ith arrows in Fig. 13. 

Firstly, more translational energy is stored in tails of the distributions at the higher 

shear rates than at the equilibrium. Since within the shear induced microstructure 

molecules are not as free to move as within the isotropie fluid, maxima of the dis

tribution curves are shifted to low velocities. We have observed similar distortion 

in the translational velocity distribution, marked by the graduai disappearance of 

the Maxwellian distribution (solid line in Fig. 13), for vibrating dumbbells [7). 

ln addition to viscometric fonctions that show shear thinning and large normal 

stress differences, the viscoelasticity of fluid composed of rigid bodies is manifested 

by the stress overshoot (Fig. 14a). The stress overshoot is a transient effect related 

to the imposition of the Heaviside shear rate fonction on the fluid sample which 

was initially at equilibrium; stress overshoot is normally plotted in terms of the 

transient viscosity TJ+, for constant shear rate flows. According to our results the 

overshoot is more pronounced for axy than ayx and exists only for shear rates within 

the shear thinning region; for example, there is no shear overshoot for 1' = 1, as 

shown in inset in Fig. 14a. The diagonal elements of the stress tensor (Fig. 14b) 

also display an initial overshoot. The fact that both a:c:c and azz equilibrate to 

the same value is reflected in approximate equality: N1 � -N2 which holds at the 

higher shear rates (see Fig. 10b ). The overshoot in the diagonal and off-diagonal 

elements of g is the macroscopic manifestation of microstructural rearrangement, 
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which are evidenced in plots of the instantaneous structure factor S and compo

nents of the conformation tensor � (Fig. 14c). Only when the ordering of the liquid 

structure has been accomplished the viscosity begins to fluctuate around its steady 

state value. 

5 Conclusions 

This work presented a nonequilibrium molecular dynamics algorithm obtained from 

a particular implementation of the nonlinear Onsager-Casimir type equations in

troduced by Grmela [35) within the context of mesoscopic hydrodynamics of sus

pensions. The original system of coupled equations was reduced to result in a novel 

SLLOD-type dynamics of rigid particles. 

Together with the data for more elongated molecules [18, 20) the thermodynamic 

results indicate that the liquid-vapor phase transition for Gay-Berne fluids takes 

place around p = 0.1 and below T = 1. At this temperature but at much higher 

densities, the nematic phase is stable. At the lower temperatures, the isotropie 

phase evolves directly to the smectic phase. Similarly to rigid bodies, dumbbells 

display the transition between isotropie and nematic phases [24); in general, the 

thermodynamic data for dumbbell liquids is very incomplete. At the mesoscopic 

level of description, the nematic and smectic phases may be conveniently differ

entiated by probing the fluid structure with longitudinal pair correlation fonction 

Y11(r11)-
When a fluid composed of rigid bodies is subjected to an imposed shear rate an 

oriented microstructure is formed in the direction of the fluid flow. At the interme-: 

diate shear rates, this microstructure is destroyed and replaced by an isotropic-like 

phase. At even higher shear rates, ellipsoids become oriented along the vorticity 

axis. These structural reorganizations have not been observed by us [7] (for vibrat

ing dumbbells) nor by Rudisill and Cummings [5) (for rigid rotors and vibrating 
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dumbbells). 

Trends in macroscopic ( viscometric fonctions, pressure) and mesoscopic ( e.g.

pair distribution fonctions) variables are all related to changes in the underlying 

microstructure. Even the transient phenomena, such as the stress overshoot, are 

traced to rearrangements taking place among the rigid bodies. Once the new order 

is established at the microscopie level, the transient effects die out; no stress over

shoot is observed at low shear rates when the shear induced orientation of particles 

is small. 

As oppose to the other investigation [5], in our studies ail molecular liquids ex

hibit shear thinning. The onset of shear thinning appears for the same shear rate, 

for both types of fluids ( compare Fig. 5b of ref. [6] with Fig. 10a for p = 0.4). 

However, the shapes of viscometric fonction are unlike for rigid bodies and vibrat

ing dumbbells. Finally, the stress tensor is nonsymmetric for systems of rotating 

rigid bodies. 

The microstructural and rheological predictions for ellipsoids of revolution are 

quite different from those obtained for vibrating dumbbells in spite of the fact that 

parameters in the Gay-Berne potential have been chosen in such a way that the po

tential used in the dumbbell dynamics [6, 7) and the Gay-Berne potential are very 

similar (Figs. 1&2). The difference in rheological predictions reflects the difference 

in dynamics between dumbbells and ellipsoids of revolution. Also thermostating 

has been introduced differently for dumbbells and for ellipsoids of revolution. The 

total kinetic energy is thermostated for vibrating dumbbells, whereas for rigid bod

ies the translational and rotational kinetic energies are thermostated separately [7). 

The method of thermostating is perhaps not very important since for thermostated 

vibrating dumbbell liquids the kinetic energy is partitioned approximately equally 

between the translational and internai energy reservoirs [6]; there is no equilibration 

among different modes in either reservoir, especially at the higher shear rates. 
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Table 1: Components of the conformation tensor; numbers in subscript indicate 

one standard deviation. The diagonal elements of �' namely Cxx, Cyy and Czz define 

the average orientation of particles, whereas trends in these variables are indicative 

of structural rearrangements taking place in the fluid at the molecular level. 

p 'Y Cxx Cxy Cxz Cyy Cyz Czz 

0.25 1.0 0.331193 0.054111 -0.002899 0.306610 0.000253 0.3623s2 

0.25 2.0 0.37812 0.009084 0.00013 0.288791 0.000288 0.333096 

0.25 3.0 0.44212 0.00862 -0.00311 0.241999 -0.000737 0.3161s 

0.25 4.5 0.38416 0.022753 0.00211 0.21512 0.001568 0.40121 

0.25 5.5 0.30694 -0.06243 -0.02762 0.187392 -0.000045 0.5061s 

0.25 7 0.22611 -0.03923 0.02642 0.155179 0.000445 0.61819 

0.25 10 0.13412 -0.06520 0.02730 0.105695 -0.001132 o. 76021

0.4 1 0.409081 0.150274 -0.000699 0.276140 0.00266 0.315096 

0.4 1.5 0.48316 0.181480 0.00513 0.249557 0.00711 0.26815 

0.4 2 0.542391 0.1825s -0.00314 0.218840 0.002453 0.239s1 

0.4 3 0.54517 0.08710 -0.01523 0.179010 0.00110 0.28421 

0.4 4 0.41515 0.03050 -0.003587 0.164197 0.002359 0.42b4 

0.4 5 0.314350 0.012439 0.004459 0.149955 -0.000772 0.53611 

0.4 6 0.174464 -0.004926 0.031i2 0.085649 -0.004452 0.74011 

0.4 7 0.134370 -0.007920 -0.025154 0.071253 0.003926 0.79412

0.4 9 0.072648 -0.012417 0.036285 0.040141 -0.020450 0.887384 
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Figure Captions 

• Figure 1. Comparison between the site-site potential for rigid rotor molecules,

whose bead-bead extensions were set to 0.9a, and the Gay-Berne potential for

ellipsoids of revolution (Eqs 1-6). All figures are plotted using nondimensional

quantities; the asterisks are dropped.

• Figure 2. Graphical visualization of the site-site ( a,b) and Gay-Berne ( c,d)

potentials between two molecules: a,c) both molecules lie on the same plane

and their orientational unit vectors, along their respective major axes, are

parallel, b,d) same as (a,e) but the unit vectors are perpendicular. In gener

ating the figures, the first molecule was stationary, whereas the second was

moved around by translation only. The isolines were projected onto the xy

plane to contour the repulsive core.

• Figure 3. The total configurational energy - <I> = E�11 Ef>i </>ii - for a sys

tem of 256 ellipsoids as a fonction of density. Every other point has been

replicated, but due to the closenèss of the data some replicates are indistin

guishable. ln this and in the subsequent figures, the error bars are drawn

between (an average value minus one standard deviation) and (an average

value plus one standard deviation).

• Figure 4. An isotherm (T = 1) for a Gay-Berne fluid (K = 1.9, /C = 2.5).

In the inset, de Miguel et al. data collected for another Gay-Berne fluid

(K = 3, IC = 5), in the vicinity of the liquid-vapor phase transition; see Fig.

1 in ref. [18}. The pressure was calculated as minus one third of the trace of

the stress tensor, exactly as defined in Sec. 4.2. When plotting P(p) in the

inset (T = l ), we have made no adjustment for the fact that our molecules are
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smaller in size than those in ref. [18). Such an adjustment, would translate 

the pressure curve by a certain distance to the right. ln any case, there is no 

indication that the isotherm (T = 1) passes through the two phase region. At 

the higher temperatures, such as T = 1, the isotropie phase evolves first to 

the nematic phase which later, for higher densities, goes to the smectic phase 

(not shown); compare also with Fig. 15 in ref. [20). 

• Figure 5. The order parameter plotted against the density. At the inter

mediate densities, a line has been drawn approximatively as a guide to the

eye.

• Figure 6. (a,b) The diagonal elements of the angular resolution of the pair

radial distribution fonction (g11(r), 9.L(r)) according to the instantaneous di

rector Îl. (c,d) The longitudinal (911(r11)) and transverse (g.L(r.L)) pair distri

bution fonctions. Both 911(r11) and 9.L(r .L) are fonctions of the components

of the center-to-center headless vector, which are parallel and perpendicular

to n respectively. Thus, in general neither 911(r11) nor 9.L(r .L) vanish at zero.

Note that in Figs c&d data for p = 0.7 are plotted in place of p = 0.5.

• Figure 7. Snapshots of the spatial arrangement of molecules in the isotropie

(a, p = 0.4) and nematic (b, p = 0.675) phases. The ordinate (n11) is parallel to

the instantaneous director, whereas the abscissa is arbitrary but perpendicular

to Îl ( n 1.). The axes are drawn in units of a, and the number of molecules is

the same (256) for both densities. In 3-D, before projecting onto n11n1. plane,

each line segment corresponds to the molecular end-to-end distance (1.9u).

For reasons of clarity, in Fig. 12 line segments of length 0.90' are plotted.

• Figure 8. The total potential energy <I> (a) and pressure P (b) follow the same

trends if plotted against the shear rate (-r). For convenience, the equilibrium

results for the two densities are drawn on the ordinates; compare with Figs
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3&4. 

• Figure 9. The average order parameter (S) against the shear rate (7). The

lines have been drawn as guides to the eye. The equilibrium results are shown

on the vertical axis.

• Figure 10. The viscometric fonctions viz. the viscosity 17 (a), the first N1 (b)

and second N2 ( c) normal stress differences plotted against the shear rate 1'.

In the limit of small shear rates, N1 and N2 tend to zero, but the Newtonian 

viscosity cannot be unequivocally determined. 

• Figure 11. The diagonal elements of the tensorial pair radial distribution

fonction 9xx(r), 9
yy

(r), 9zz(r) (a-c), as well as longitudinal g11(r11) (d) and

transverse 9.L(r.L) (e) pair distribution fonctions plotted against the shear

rate ,y.

• Figure 12. Graphical representation of evolution of the molecular configu

ration under increasing shear rate. The ordinates are always along the in

stantaneous direction of IÎ, which in most cases (b-i) seems to be very close

to the orientation of the system z-axis. The abscissae are perpendicular to

IÎ painting approximatively along either y (b-d) or x (f-j) axes. In (j), the

director is normal to the figure. The orientations of n.11 and 7Î1. in space in

relation to the system coordinates are indicated at the upper right corner of

each graph.

• Figure 13. Distribution (3) of the translational velocities V. The arrows

indicate the evolution of the distribution fonction at increasing shear rates.

The equilibrium curve was obtained by plotting

3(V) = � r-½ exp( - �
2

) V2
, (41) 

for nondimensional mass equal to 2 and by setting T = l.
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• Figure 14. Formation of the molecular structure and structural relaxation

after the imposition of a step shear rate -y+ 
= 7 (a-c) and -y+ 

= 1 (inset in

a) at time zero, in terms of viscosity TJ (a), normal components of the stress

tensor g (b ), and the diagonal elements of the conformation tensor � ( c). Data 

in Figs b&c were generated for p = 0.4 and -y+ 
= 7. The instantaneous order 

parameter S is also given in Fig. c. 
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Synopsis 

Direct simulations of macromolecular fluids are carried out for fl.ows between par

allel plates and in expanding and contracting channels. The macromolecules are 

modeled as FENE dumbbells with soft disks or Lennard-Jones dumbbell-dumbbell 

interactions. The results are presented in terms of profiles and contour plots of 

velocity, pressure, temperature, density, and fl.ow fields. ln addition the data for 

potential energy, shear stress, and the normal components of the stress tensor are 

collected. In general, an excellent quantitative agreement is found between the 

simulated profiles and the well known fl.ow structures, such as flow separation and 

formation of viscous eddies proving that micro-hydrodynamics is a viable tool in 

linking macroscopic phenomena with the underlying physical mechanisms. The 

simulations are performed in the Newtonian regime, for medium-size systems com

prising up to 3888 dumbbells. This number is sufficiently large to control boundary 

and particle number effects. The flow is induced by the gravity. The traditional 

stochastic (thermal) and periodic boundary conditions are employed, but also dif

fusive boundary conditions, that could include a stagnant fl.uid layer and repulsive 

potential walls ,  are developed. The scaling problems, which are related to the appli

cation of a large external force in microscopie system ( of the size of the order lOOÂ), 

result in extreme pressure and temperature gradients. In addition, the viscosity and 

thermal conductivity coefficients obtained from velocity and temperature profiles 

of the channel :flow are presented. These results are confirmed independently from 

modeling of Couette flow by the SLLOD equations of motion and from the Evans 

algorithm for thermal conductivity. 
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1 Introduction 

Classical modeling of fluids proceeds according to the following scheme: (i) physical 

phenomena whose behavior are determined by interactions of atoms and molecules 

(always discrete at the microscopie level) � (ii) modeling in the form of continuous 

partial differential equations � (iii) discretization of the partial differential equa

tions � (iv) solutions on digital computers (Toffoli, 1984). By modeling the flow of 

liquids directly, that is molecule by molecule, the scheme becomes simplified. The 

partial differential equations are replaced by a system of ordinary differential equa

tions. Direct modeling can also be seen as a physically motivated discretization. 

ln classical models the discretization plays the role of adjusting the models to the 

solution tool. In direct models the discretization takes up the role of modeling it

self. It has been shown (Hannon, Lie and Clementi, 1988), that the direct approach 

gives flow predictions that are in qualitative agreement with results of classical hy

drodynamics. In this paper, we explore direct modeling of fl.ows of polymeric fluids 

in two dimensions. Two types of flows are considered: flow between parallel plates 

as well as in expanding and contracting channels. The macromolecules composing 

the fluids are modeled as dumbbells. The intermolecular potential ( i.e. the poten

tial between beads of different dumbbells) is assumed to be either soft disks or the 

shifted Lennard-Jones. The intramolecular potential ( i.e. the potential between 

two beads of the dumbbell) is assumed to be the FENE (finitely extensible nonlin

ear elastic) potential. In order to be able to compare simple and macromolecular 

fluids, we also carry out simulations for simple fluids, i.e. for fluids composed of 

beads interacting through the soft disks or the shifted Lennard-Jones potentials. 

The simulations are carried out in two dimensions in order to lessen the demand 

on our computer facilities. At the macroscopic level, in the Navier-Stokes theory, 

the equations of continuity and motion can be simplified from three into two dimen

sions if there is a sufficient degree of symmetry in the system and the effects of some 
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of the boundary conditions may be neglected. In other words, the physical behavior 

of a fluid predicted from 2-D equations is the same as the behavior predicted for the 

2-D part of a 3-D system. At the microscopie level, however, this analogy breaks

clown. The physics represented by the potentials in 2- or 3-D may not be consistent. 

This is evident in the calculation of transport coefficients which are different for 

two and three-dimensional fluids even at the same state point. Incidentally, this 

is reminiscent of many phenomena in physics, compare for example the formula 

for an electric field around a charged conducting sphere with the expression for an 

electric field in the vicinity of a charged cylindrical conductor. Thus the rheological 

and flow data generated for 2-D and 3-D geometries are in general different, at the 

macroscopic level. The restriction to two-dimensional geometries prevents us from 

comparing quantitatively our results with results of observations and results from 

classical models. The quantitative comparison shows a good agreement. 

Being unable to compare the NEMD-computed viscosity and thermal conduc

tivity data with the experimental result for simple (usually argon) fluids, we have 

followed an alternative route. We have calculated coefficients of shear viscosity 

and thermal conductivity in two dimensions using the SLLOD/LE/GAUSS (Evans, 

1986) and Evans (Evans, 1982) algorithms; LE stands for Lees-Edwards shear

ing blocks boundary conditions (Lees and Edwards, 1972) and GAUSS denotes a 

method for thermostatting by a means of Lagrangian multipliers (Evans, Hoover, 

Failor, Moran and Ladd, 1983). These coefficients have been found to correspond 

very well with the viscosities and thermal conductivities extracted from the velocity 

and temperature profiles in flow between parallel plates. 

The outline of the paper is as follows. The molecular mode! is introduced in 

Sec. 2. It consists of the boundary conditions and the equations of motion that 

incorporate the inter and intraparticle potentials. The passage between the micro

scopie and the macroscopic levels of description for model fluids and the technical 

details of simulations are elaboràted in Sec. 2.2. Discussion of the channel flow 
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in Sec. 3.1 illustrates the technique, and it is designed to emphasize that direct 
simulations represent an alternative to the continuum approach. The entry effects 
in a four-to-one contraction and steady recirculating eddies that develop in flow 
over a back-step are modeled together in Sec. 3.2 to take advantage of the periodic 
boundary conditions perpendicular to the direction of flow. 

2 Details of the model 

2.1 Equations of motion and potentials 

Initially, the primitive geometries are filled with disks or dumbbells that emulate 
either the liquid argon or a mode! polymeric fluid in two dimensions. There are 4608 
disks (2304 dumbbells) between parallel plates and 7776 disks (3888 dumbbells) 
in contracting and expanding sections of the channel (Tab. 1 ). A dumbbell is 
constructed from two disks by introducing stronger bonded interactions between the 
disks. The state point selected, namely k�T 

= O. 722 and pcr2 
= 0.832 is the same as 

the one chosen by Hannon et al. (1988). Here, kB denotes the Boltzmann constant, 
t = 119.8 kB and a = 3.405 x 10-10 m are the Lennard-Jones parameters that 
correspond to the depth of the potential well and to the collision diameter, T and 
p have their standard meaning of temperature and bead number density; the latter 
denotes number of single disks in a unit cube with the sides equal to cr. The disks 
interact either through the soft disks (SD), shifted Lennard-Jones (SLJ) or finitely 
extensible nonlinear elastic (FENE) (Rudisill and Cummings, 1991) potentials: 

{ t(..!!....)12 !!.i.<1 5)..SD( . ·) _ r;, a - · 
<p·. r,:, -

i:, 0 � > 1.5,
{ 4t[( 17 )12 ( 17 )6 1]

,1..SLJ( .. ) _ Tij Tij 4 
'l'ij r,:, -

0 

!!.i.<2¼ 
17 -

!!.i. > 21-' 
17 

(1) 

(2)
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rmin < Tij < rmax 

(3) 

where, 

The ratios ro- of 1.5 and Û define the so-called eut-off radii beyond which there is 
., 

no inter-molecular interaction; ri denotes coordinates of an ith particle. Note that 

there is no 4 before t in SD potential. In addition, H denotes the spring constant, 

whereas rmin and rmax are the minimum and maximum extension of the FENE 

bond set to 0.90- and 1.90-, respectively, req
=l.4. 

Four fi.rst order differential equations per molecule are solved either by the Verlet 

leap-frog method (Allen and Tildesley, 1987), or by the velocity form of the Verlet 

algorithm (Heermann, 1986), 

V· l (4) 

(5) 

where, i = 1, ... , N (N is the number of beads), g = (g, 0), F;'s are forces derived 

from potentials according to: 

N N l ô

Fi = L Fij = - L --</>i;(ri;). 
• 

'..J,. ·-1 '..J,. mi Ôri 1=l,1.,...J ,_ ,1.,...J 

(6) 

Note that <PÔ may assume different forms depending if the interaction is of inter 

(Eqs. 1&2) or intramolecular (Eq. 3) type. 

The Verlet algorithms are easier to code than the Gear predictor-corrector 

method and, even at large time steps, they allows no significant energy drifts. 

Although, the Gear algorithm produces trajectories doser to the exact solution 

(Berendsen and van Gunsteren, 1986), the averaged properties obtained along leap

frog computed trajectories are known to be correct. In preliminary runs, for a single 

harmonie oscillator, we observed that 4 or 5 value Gear rnethods are more exact 
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and show less energy drift if a single second order rather than two first order equa

tions are solved. Thus for the Gear algorithm, Eqs. 4&5 should be combined as 

one second order equation, from the numerical point of view. We note in passing, 

that Eq. 5, solved by the Verlet leap-frog method have no implied time arrow, 

but the entropy dissipation is achieved through the numerical dispersion (round-off 

errors) and averaging. In addition, Eq. 5 together with Eqs. 1-3 and 6 exhibits 

the Galilean invariance, similarly as shown by the macroscopic Navier-Stokes equa

tions. 

An empirical, gravity-like force gis applied uniformly to ail particles in the sys

tem, to induce flow; as a matter of fact flows described in Sec. 3.1 and 3.2 should 

have an adjective phrase "gravity driven" before their names. The minimum value 

of g is selected in such a manner that the resulting flow patterns (signal) are sta

tistically recognizable against the background fluctuations (noise). In this sense, 

g decreases with the system size since the magnitude of fluctuations is inversely 

proportional to the square root of the particle number. The channel flow is in

vestigated for nondimensional g = 0.002, 0.01 0.02 and the flow in a four-to-one 

contraction is modeled for g = 0.02, 0.05, 0.1. We note that g = 0.02 is of the 

order of 7.33 x 1013 ;½- It is remarkable that in spite of the extreme gradients, 

which are necessary to scale the macroscopic geometries to molecular proportions, 

in terms of the nondimensional quantities, the microscopie and macroscopic fluid 

structures are surprisingly similar. 

The selection of nondimensional time step of between 0.001 and 0.005, used in 

this work, was based on the considerations relating to the magnitude of the energy 

drift and to the amplitude of the fluctuations in the total energy. In addition, for 

FENE dumbbells the time step was further limited to avoid the breaking up of 

dumbbells that may occur as the outcome of numerical calculations. Specifically, 

for small values of the spring constant (H < 10), the FENE potential curve is es

sentially fiat close to reg but it rises rapidly close to rmin and rmax• This asymptotic 
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increase of potential with respect to the dumbbell's extension may be undetected by 

a numerical algorithm if a time step is too long resulting in fl.oating-point exception 

errors. On the other hand, for stiffer dumbbells (H > 1000), the FENE poten

tial increases gradually and the longer time steps are allowed. Furthermore, larger 

gravitational forces, say for g > 0.05, in conjunction with more flexible bonded in

teractions tend to facilitate the dumbbells' break-up. If the breaking of dumbbells 

occurs seldom, it is possible to "widen" the arms of the potential curve for one or 

two time steps to allow the dumbbell's extension to fall back within the permitted 

region. In principle, the modeling can be clone for very flexible FENE springs and 

the larger gravities provided that the selected time step is sufficiently short, at the 

price of longer simulations runs that are necessary for ensuring the statistica.l va

lidity of the results. This is why we were able to conduct simulations for H = 37.5 

with g = 0.05, in case of the flow between parallel plates, and only for H = 3750, 

for modeling the flow in a contracting/ expanding channel. 

The SD potential has been thoroughly investigated in the context of the rheo

logical NEMD simulation of two-dimensional :fluids, see for example (Evans, 1980; 

Evans, 1982). The SLJ has a much desired property of no discontinuity in potential 

and forces at the eut-off radius, and is of significant interest in equilibrium molec

ular dynamics. The viscosity curves for both potentials will be presented in Sec. 

3.1. Small eut-off radii used in this study imply a reduced number of interactions, 

and more importantly, enable a computationally efficient implementation of cell 

linked-lists; see App. G in (Bird, 1976) or App. H in (Allen and Tildesley, 1987) 

for the code. A relatively large number of molecules that we use is mainly possible 

because of this technique. 

It is worth to emphasize that the simulations are unusually straightforward. 

What is to be clone is to solve a system of first order equations, however large, 

together with the chosen boundary conditions. All thermodynamic and transport 

pi:_operties of model liquids are adjusted solely through potentials (including po-
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tentials expressing interactions of molecules with boundaries). Both SD and SLJ 

signify simple liquids, but in general, they may be replaced by more complex ex

pressions to simulate directly flow of viscoelastic fluids. 

ln the subsequent sections of this paper, the standard nondimensional quanti

ties (see App. B in (Allen and Tildesley, 1987)), based on t: and u, are used but 

the asterisks are omitted. 

2.2 Boundary conditions and computational details 

ln this paper we explore four types of boundary conditions. The first type of the 

boundary conditions are the so-called stochastic or thermal (TB) walls. These 

boundary conditions have been implemented for both geometries to model the ef

fects of the physical walls. The periodic boundary conditions are implemented 

perpendicular to flow to allow for the reintroduction of molecules that leave the 

domain of computation. This is necessary for inducing the flow. Incidentally, if 

the gravitational force is replaced with mass sinks (vacuum) and with sources of 

molecules (piston-like), as suggested in the recent literature (Sun and Ebner, 1992), 

then the density becomes nonuniform along a channel. 

The next two types of boundary conditions are put into effect only for modeling 

of flows between parallel plates. They include either a layer of stagnant fluid (SL) 

at each plate or a stagnant layer bounded by a repulsive potential wall (PW). Each 

stagnant layer occupies 2\ of the total channel volume. The particles entering the

layer have their velocities reset according to the Maxwell-Boltzmann distribution 

but are free to leave the layer with no velocity adjustment. At every times step, the 

total translational momentum of all particles in each stagnant layer is ensured to be 

zero. The upper and the lower stagnant layers are joined to create a periodic-like 

boundary condition also in the y direction. Particles may diffuse from the bottom 

stagnant layer to the top stagnant layer and their velocities are not adjusted in any 
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manner during this process. It is clear that for this type of boundary conditions, 

the domain of calculations is confined to the surface of a torus. 

Finally, we introduce yet another variation of the boundary conditions where no 

diffusion is allowed between the two stagnant layers. Rather two repulsive potential 

walls (PW) are positioned at a distance of 0.55 above the upper stagnant layer and 

0.55 below the lower stagnant layer. The interactions between the potential walls 

and the approaching particles take place according to the SD potential with the 

eut-off radius of 2.5. 

As shown in Tab. 1, the entire domain of computation is divided into 441 

(21 x 21) boxes for flow between parallel plates and 735 boxes for flow in expand

ing/ contracting channel; there are 15 x 21 boxes in each expanded subsection, and 

15 x 7 in the contracted subsection. 

The instantaneous thermodynamic ( e.g. potential energy) and rheological (stress 

tensor) quantities are computed directly in every box, that is with no recourse to 

distribution fonctions. The average quantities are then found by dividing each sim

ulation (200,000 or 300,000 time steps) into 10 intervals (bins) consisting of either 

20,000 or 30,000 tirne steps, depending on the run, and taking 10 subaverages for 

every property in each box. These subaverages are subsequently used to compute 

the overall average and the standard deviation. In case of flow between parallel 

plates, in order to reduce the statistical uncertainty, the averages are calculated for 

horizontal layers, each including 21 boxes, and then presented in form of profiles 

( Fig. 1). The data for flow in exp an ding/ contracting channel are presented in terms 

of isolines obtained by intrapolating the box averages. Since a number of molecules 

that could be found in any given box is small the fluctuations are quite significant, 

especially for g = 0.02. This is why the isolines for g = 0.02 are not as smooth as 

for the other values of the gravity. 

It should be stressed that every simulation consists of three steps. During the 

equilibration, the formation of the velocity and temperature profiles is monitored 
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and the execution is terminated once the steady state is reached. In the second 
stage, the average laboratory velocities are calculated in every box to be used af
terwards in the final run in computation of the kinetic temperature (T), and the 
kinetic part of the stress tensor (g). Thus in this paper, both T and a- are based 
on the peculiar rather than laboratory velocities. In nondimensional quantities, for 
two-dimensional systems of particles, for a kth box, 

I N k 

2Nk <�(via - Ua(r)) (via - Ua(r)) >t,

•=l 

1 N" N" 
- Ak 

< L (via - Ua(r)) (vi,0 - u,0(r)) + L LTijaFij,0 >t.
i=l i=l i'#j 

(7) 

(8) 

In the :first expression the summation convention is assumed. The laboratory veloc
ity field is denoted by u(r), t stands for the averaging procedure described above. 
The mass of a single bead is unity, Ak is an area of a single box, and Nk is the 
number of beads in a kth box. The second summation in the potential contribution 
to the stress tensor (the last term on the right hand sicle in Eq. 8) is carried over 
ail interactions within a box and over interactions between beads inside the box 
and beads in surrounding boxes; this is handled in a CPU-economic manner by 
a means of the linked-cell approach. If the interaction takes place between two 
beads that belong to separate boxes than the potential contribution to the stress 
tensor is apportioned equally to each box. For the SLLOD modeling, Eqs. 7&8 
are simplifi.ed for two reasons. Firstly, the SLLOD method implies homogeneous 
shear and the domain of simulation (primitive cell) is not subdivided into boxes. 
Secondly, the SLLOD equations of motion are written in terms of peculiar rather 
than laboratory momenta and thus only two runs ( equilibration and production) 
a.te required since u(r) in Eqs. 7&8 vanishes. 
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3.1 Flow between parallel plates 
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It has been demonstrated that viscosities and thermal conductivities in three di

mensions obtained from direct simulations of the flow between parallel plates, cor

respond perfectly to the available experimental data (Hannon, Lie and Clementi, 

1986). On the other hand, the transport coefficients in two dimensions may not be 

calculated from the equilibrium molecular dynamics since the Green-Kubo equa

tions predict the coefficients that diverge at low shear rates; flows in two dimensions 

at low shear rates are associated with inherent instabilities that are not accounted 

for in the Green-Kubo equations (Evans and Morriss, 1983). ln this work we report 

the transport coefficients in the Newtonian limit that are calculated by both the 

direct simulations and the homogeneous NEMD algorithms. 

The transport coefficients of a model fluid can be adjusted at the microscopie 

level by selecting inter and intramolecular potentials. Distinct potentials result in 

dissimilar viscosities and thermal conductivities, and eventually in different flow 

patterns. For this reason, in Figs. ·1 a&b and 2 a&b one observes a variety of veloc

ity and temperature profiles; due to the presence of the stagnant layers the profiles 

are in general less pronounced than for flows between thermal boundaries. It is not 

surprising that runs characterized by small viscosities (Tab. 2) have large centerline 

velocities and temperatures. For example the soft disk potential generates the least 

viscous fluids (F ig. 1 and Tab. 2). The profiles produced by the molecular FENE 

liquids depend on the value of the spring constant. For H = 37.5, the centerline 

velocity is slightly lower but at H = 3750 noticeably higher than for SD atomic 

fluids; see Fig. 1 b for g = 0.01. Although, the temperature at the wall is main

tained at O. 722 due to the viscous dissipation caused by the high gravity force, the 

temperature curves trace well defined fourth order polynomials, as expected from 

the standard hydrodynamics (Fig. 2 a&b ). For all simulations of FENE fluids the 
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average rotational velocities differ by a factor of 2 from the vibrational velocities. 

For positions of -30 to 30 along the plate-plate distance, the effect of the bound

ary condition on the fluid density (Fig. 3) and pressure (Fig. 4) is small and thus 

one can fit the quadratic and fourth order polynomials to velocity and temperature 

profiles, respectively (Hannon et al., 1986; Hannon et al., 1988); the pressure is

defined as minus half of the trace of the stress tensor. Using this approach, the 

transport coefficients are computed and summarized in Tab. 2. In addition, the vis

cosity can be calculated from the knowledge of the shear stress and velocity profiles 

(Tab. 2, col. 5), directly from the definition. For Newtonian fluids - <7yx = µ4f:. 

The shear stress profile in the channel (not shown) is linear with the exception 

of the boundary layer where the values of <ryx are altered by the influence of the 

boundary conditions. 

ln order to verify the results of the direct modeling, we have carried out sim

ulations with SLLOD and Evans algorithms, for data points that correspond to 

the density and the temperature at the center of the channel. The Newtonian 

viscosities have been obtained by extrapolating the viscosity curves to shear rates 

approaching zero (Fig. 5a). Similarly, by extrapolating the external field strength 

to zero (not shown) the thermal conductivity coefficients were computed. These 

results are assembled in Tab. 3. Obviously, the data in Tabs. 2&3 are very similar, 

a sign that the direct and homogeneous NEMD algorithms are consistent. This is 

analogous to real experiments, when one or several laboratory techniques may be 

used to investigate one phenomenon at the same time. As an additional benefit, 

the SLLOD algorithm gives the pressure (Fig. 56) and the potential energy per 

particle (not shown), which correspond very well to the values generated by the 

direct approach (Fig. 4a and Tabs. 2&3). 

Finally, as shown in Fig. 6, dumbbells that are doser to the centerline tend to 

be longer and those near the boundaries shorter, on the average. The large error 

bars associated with three data points in Fig. 6 indicate that the numerical algo-
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3.2 Flow in contraction and in expansion 
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The entry flows and flows over a back-step, considered as benchmark problems in 

computational fluid mechanics, have sparked a significant experimental interest, 

especially within the context of polymeric fluids (Boger, 1987; White, Gotsis and 

Baird, 1987). The geometry of the channel and the type of the boundary conditions 

used in this study are shown in Fig. 7. Each channel wall is built from four 

stochastic (thermal) plates. Other kinds of the boundary conditions have not been 

modeled since the objective has been to observe the formation of fl.ow structures 

rather than analyze interactions of particles with physical boundaries. The domain 

of calculations is divided into 735 boxes as pictured in Fig. 7 by horizontal and 

vertical solid lines. This number of boxes is a compromise between the magnitude 

of fluctuations in every box and our desire to obtain well defined contour plots for 

the properties of interests. 

Our results are generated for both dumbbells and atomic fluids in a channel 

characterized by a four-to-one contraction. Direct modeling of flow of atomic liquids 

is performed for the shifted Lennard-Jones as well as the soft disks potentials. 

As before a model polymeric particle is constructed with the help of the FENE 

potential and the interaction between two model particles are accounted for by a 

sum of four bead-bead forces derived from the SD potential. The simulations are 

performed for low Reynolds numbers; for example, we estimate that the Reynolds 

numbers associated with the flow of SLJ atomic particles are approximately 2 for 

g = 0.02 and around 12 for g = 0.1, for runs 218 and 242, respectively. 

From Figs. 8, a-f which present the comparison of the flow patterns, it follows 

that in the two corners of the upstream part of the channel, two recirculating 
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vortices could be formed, especially for g = 0.02 and 0.05, but the large fluctuations 

in these areas make drawing definitive conclusions not possible. On the other hand, 

the entry length L,, (Fig. 9a) is estimated to be 0.6, for g = 0.02; L,, is the distance 

between the beginning of the contracted section and the location where the fully 

developed flow is first observed. This seems to be consistent with values observed 

in macroscopic experiments and calculated by the traditional algorithms of the 

computational fluid dynamics, (see for example- L,,/ R = 0.49+0.llN& - in (Boger, 

Hur and Binnington, 1986)). Unfortunately, at the higher Reynolds numbers the 

contracted section is too short to allow for the formation of the fully developed 

flow and to avoid the effects of the sudden expansion farther downstream. Thus for 

other runs the estimation of the entry length was not attempted. The characteristic 

recirculating eddies form inside the back-step and their size is related to the imposed 

gravitational force and the underlying microscopie potentials; the eddies for the 

atornic SD fluids are the largest and those for SLJ are the srnallest. The larger 

fluctuations that appear to be present for FENE simulations ( compare Fig. 8c&8d) 

are attributed to the srnaller tirne step and hence shorter cornputational runs (Tab. 

1 ). 

For g = 0.02, the signal to noise ratio was insufficiently high to result in srnooth 

isolines of the physical quantities (Figs. 8-12) . Upon increasing g to 0.05 and 

0.1, the viscous dissipation becomes significant, as was also the case for the flow 

between parallel plates. The highest ternperatures exist along the centerline of the 

expanded sections, perhaps due to the fact that the thermal boundaries ( that act 

as energy sinks) are far away (Figs. 10 a-c). One notes that the isolines of the 

rotational (Fig. 9d) and vibrational (not shown) velocities follow the contours of 

the temperature, which was calculated from the translational kinetic energy. This 

observation indicates that the temperature of the dumbbell fluid could have been 

based on the interna! motion of durnbbells. The ternperature and pressure fields 

influence significantly the density of the fluids ( compare Figs. 11 with 10 and 12). 
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The impact of the temperature on the density appears to be more pronounced; this 

may be readily noticed at the boundaries where the fluids are more dense (Figs.11 

a-c). It is worthwhile to point out that at the entry to the contracted section the

pressure builds up. 

No alignment of dumbbells is observed in the bulk flow, but in the vicinity of 

the thermal plates dumbbells are aligned parallel to walls , on the average. Lastly, 

the potential contribution to the diagonal and off-diagonal components of the stress 

tensor are approximately five times as significant as the kinetic contribution. 

4 Concluding remarks 

Results of this paper indicate that direct simulations represent a viable alternative 

method of calculating flows of rheologically complex fluids. Its main advantage 

is that partial differential equations are completely avoided. The discrete equa

tions that serve as an input for digital computers have a clear physical meaning, 

and the modeling can be made easily faithful to the complexity of intermolecular, 

intramolecular and molecules-boundary interactions. At this stage however some 

problems that remain unsolved in direct simulations prevent a widespread use of 

the method. Among these problems we mention in particular the problem of treat

ing effectively the incompressibility and the problems related to the concepts of 

entropy and temperature. These problems represent an interesting challenge. Our 

strategy to solve these open problems is to combine appropriately (in the spirit of 

( Grmela, 1993)) the classical and the direct simulations methods. 

The analysis of the generated data results in the following conclusions: 

1. ln the Newtonian limit, the NEMD simulations of flow and rheology of flu

ids composed of disks lead to similar coefficients of viscosity. Similarly, a close 

agreement is found between coefficients of thermal conductivity calculated from 

the temperature profiles and from the Evans algorithm. These results indicate that 
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the NEMD algorithms are consistent among themselves. 

2. In case of the flow between parallel plates, stagnant layers of fluid at the plates

affect the density and pressure profiles less that the thermal boundaries do. 

3. Observations of the fl.ow structures in 2-D contraction/expansion geometries

confirm that the direct simulations and the classical hydrodynamics have common 

microscopie origins. The realistic fl.ow predictions from the direct simulations have 

been obtained for large gravitational forces which are necessary in systems consist

ing of small (in comparison to Avogadro) number of molecules. 
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Table 1: Summary of the computational details. TB denotes thermal bound

ary at the channel's wall, SL is an abreviation for a stagnant layer and SL/PW 

signifies a stagnant layer in conjuction with a repulsive wall ( the periodic boundary 

conditions are always used in direction perpendicular to flow). The intermolecular 

potentials are either soft disks (SD) or shifted Lennard-Jones (SLJ), and the in

tramolecular potential is the finitely extensible nonlinear elastic (FENE). 

run no. geometry gravity time step potential boundaries molecules 

217 plates 0.02 0.005 SD TB 4608 

211 plates 0.02 0.005 SLJ TB 4608 

322 plates 0.02 0.005 SLJ SL 4608 

221 plates 0.002 0.005 SLJ TB 4608 

g05* plates 0.01 0.005 SD SL/PW 4608 

g08* plates 0.02 0.005 SD SL/PW 4608 

105* plates 0.01 0.001 SD/FENE SL/PW 2304 

h03* plates 0.01 0.0025 SD/FENE SL/PW 2304 

h07* plates 0.02 0.0025 SD/FENE SL/PW 2304 

218 cont./exp. 0.02 0.005 SLJ TB 7776 

242 cont./exp. 0.1 0.005 SLJ TB 7776 

fe5* cont./exp. 0.05 0.005 SD TB 7776 

co7* c6nt./exp. 0.1 0.0025 SD TB 7776 

lo4* cont./exp. 0.05 0.0025 SD/FENE TB 3888 

co3* cont./exp. 0.1 0.0025 SD/FENE TB 3888 

* For these simulations the velocity form· of the Verlet algorithm was used, the

production runs lasted 200,000 steps. Otherwise, the leap frog algorithm was em

ployed and the duration of the production runs was 300,000 steps. 

boxes 

441 

441 

441 

441 

441 

441 

441 

441 

441 

735 

735 

735 

735 

735 

735 
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Table 2: Transport coefficients and thermodynamic properties extracted from 

the simulations; numbers in subscript denote one standard deviation. 

run no. pressure potential viscosity ( vel.) viscosity (stress) ther. conductivity 

217 13.06713 2.147710 1.83284 1.83411 11.3439

211 11.04712 l.0550s3 2.678789 2.68011 13.2543 

322· 9.265354 0.84213 2.76011 2.76020 11.7222 

221 5.678729 0.4430939 3.548so 3.55779 5.4913 

Table 3: Transport coefficients and thermodynamic quantities obtained from 

SLLOD/LE/GAUSS and Evans's algorithm for thermal conductivity; numbers in 

subscript denote one standard deviation. 

potential density temperature pressure potential viscosity ther. conductivity 

SD 0.798 3.473 13.050249 2.146610 1.8310 11.3632 

SLJ 0.802 2.146 11.0278a1 1.058010 2.57655 13.7839

SLJ 0.807 1.626 9.2366s2 0.846012 2.6613 12.1613 

SLJ 0.821 0.745 5.696334 0.44903s 3.209ss 6.11,3 
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Figure Captions 

• Figure 1. The translational (a,b), rotational and vibrational (c) velocity pro

files for atomic (a,b) and molecular (b,c) fl.uids obtained by direct simulations

of fl.ow between two parallel plates as a fonction of the position inside the

channel. In figures that follow TB, SL and PW denote thermal boundary,

stagnant layer and potential walls. SD and SLJ are soft disks and shifted

Lennard-Jones intermolecular potentials, whereas FENE signifies finitely ex

tensible nonlinear elastic intramolecular potential. All data are in nondimen

sional quantities.

• Figure 2 a,b. Comparison between the temperature profiles generated by

direct simulation of flow between parallel plates for different atomic ( a, b) and

dumbbell fluids (b ).

• Figure 3 a,b. Profiles of the particle number density in the channel between

parallel plates show the effect of the temperature and the type of boundary

conditions.

• Figure 4 a, b. For the flow between parallel plates the pressure is constant

except at the plates.

• Figure 5. Results generated by 2-D version of the SLLOD/LE/GAUSS al

gorithm in terms of ( a) viscosity, and (b) pressure plotted against the shear

rate.

• Figure 6. The average dumbbell extension is determined by the dumbbell's

location in the fl.ow field and by the rigidity of it 's intramolecular bond.

• Figure 7. The domain of simulation and the boundary conditions for modeling

of the contraction/expansion problem.
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• Figure 8. Formation of the f:low structures for the gravity induced f:low of

atomic f:luids described by the shifted Lennard-Jones (a,b), and the soft disks

( c,d) potentials. The molecular f:luids characterized by the FENE intramolec

ular and SD intermolecular potentials are shown in (e,f).

• Figure 9. The translational (a,b,c) and the rotational (d) velocity field for

atomic ( a,b) and molecular ( c,d) fluids.

• Figure 10 a-c. Isolines of the temperature, which is based on the translational

kinetic energy, exhibit the consequences of the viscous heating at the channel's

center, and cooling at the boundaries.

• Figure 11 a-c. The plots of particle number density show the influence of

both the temperature and pressure.

• Figure 12 a-c. The effect of the boundary conditions is more pronounced for

atomic f:luids, especially for the lower values of the gravity.
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5 CONCLUSIONS 

5.1 Contribution to Knowledge 

Our investigations of model microscopie fluids have resulted in a novel NEMD algorithm, 

led to new rheological, thermodynamical and microstructural data, and contributed to 

the understanding of the nature of the model fluids. The investigations have expanded 

the body of knowledge available to the humanity in general, and have produced interest

ing rheological results in particular. The most important achievements are described in 

the subsequent paragraphs. 

1. Novel EMD Hamiltonian equations of motion are developed for rigid bodies and then

tested for a particular implementation of the Gay-Berne (GB) potential. Follow

ing Grmela [1], these equations are extended to nonequilibrium systems by adding

SLLOD-like terms to the equations for orientational unit vectors and angular mo

menta.

2. The viscometric fonctions are obtained for atomic and molecular fluids whose bonded

(intramolecular) interaction are modeled by the finitely extensible nonlinear elas

tic (FENE) and the generalized Lennard-Jones (GLJ) potentials. ln addition, the

viscosity and the normal stress differences are computed for fluids composed of ellip

soids of revolution interacting according to the Gay-Berne potential. The FENE and

GLJ fluids are studied with respect to the strength of the bonded interactions for

several sizes of dumbbells. Vibrating dumbbells whose average end-to-end distance

is 0.9 (in nondimensional units) are approximated by ellipsoids of revolution. The

phenomena associated with viscoelastic fluids, such as shear thinning, Newtonian

viscosity, non-zero normal stress difference, and volumetric dilatancy are observed

for atomic and molecular fluids; however the curves of the viscometric fonctions are

quite different than for vibrating dumbbells and ellipsoids of revolution. The stress

tensor for fluids composed of rigid bodies is nonsymmetric and hence two shear vis

cosities are calculated. In the Newtonian limit both viscosity curves collapse into
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one line. At the intermediate and higher shear rates, where the anisotropie e:ffects 

are important, T/1 = T is significantly above T/2 = �- Atomic liquids tend to thin 

at lower shear rates and are less elastic than molecular liquids. 

3. The mesoscopic results are calculated directly in the simulations in terms of the

contracted distribution fonctions in position and velocity spaces. The orientational

and structural data are collected in the form of the conformation tensor and using

several resolved pair distribution fonctions, one of them we denote as the second

conformation tensor. Moreover, for rigid body fluids we compute the structure

factor. The mesoscopic results not only confirm the structural rearrangements that

take place at the microscopie level, but give additional information, such as the

correlation between orientation of dumbbells and their average length. For all model

liquids, the Maxwellian distribution of translational velocities is distorted at the

higher shear rates. The nature of the very sti:ff dumbbell fluids is determined by the

intramolecular interactions. At high shear rates, dumbbell fluids are liquid-like in

the direction of flow and solid-like in the vorticity direction and (for the extremely

high i') in the direction of the velocity gradient. The rigid body fluids are liquid-likè

in all directions.

4. At the molecular level, several new structures are identified for the first time, both

for the vibrating dumbbells and for the rigid body fluids. When a fluid composed

of rigid bodies is subjected to an imposed shear rate an oriented microstructure

is formed in the direction of the fluid flow. At the intermediate shear rates, this

microstructure is destroyed and replaced by an isotropic-like phase. At even higher

shear rates, ellipsoids become oriented along the vorticity axis. Very small FENE

dumbbell liquids tend to separate into horizontal layers (perpendicular to the ve

locity gradient, parallel to the direction of flow). Medium size FENE dumbbells

build cross-spanning local microstructural arrangements which consists of two par

allel strings that lie in the plane of constant velocity; each string contains only

one bead of each dumbbell. On the other hand, two very large dumbbells may Iock

themselves into a cross-like arrangement that breaks at high 7. For increasing shear
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rates, the generalized Lennard-Jones dumbbells break if the intra-molecular bond 

is not stiff enough. Finally, the transient phenomena, such as the stress overshoot, 

are related to the formation of the directional order at the microstructural level. 

5. Our thermodynamical results for Gay-Berne fluids remain in agreement with the

published data for more elongated molecules [2, 3]. For the isotherm T=l, we

observe the isotropic-nematic but no vapor-liquid phase transition.

6. It is shown that various NEMD algorithms yield consistent results, for fluids com

posed of disks. A stagnant layer of fluid adjacent to the stochastic wall tends to

moderate the effect of the boundary condition on the bulk fluid. Flow structures

obtained by direct simulations for flows in contracting and expanding channels are

similar to those predicted by classical hydrodynamics and observed in experiments.

7. The computer codes developed in the course of this work are in the public domain

and are freely available upon request.

5.2 Suggestions for Future Work 

With the advent of fast computers, it has become feasible to investigate problems of 

engineering significance from the molecular point of view. The equilibrium molecular 

dynamics (EMD) simulations have corne to be an accepted computational tool widely 

applied to problems of physical and medicinal chemistry ( especially thermodynamics and 

drug design), materials science, physics and inany other areas. This has led to the appear

ance of new fields of research, such as computational materials science, computational 

chemistry, computational solid and liquid state physics, computational astrophysics, etc.

Recently, the molecular simulations have proliferated to chemical engineering to such an 

extent that during the annual AIChE meetings the sessions devoted to thermodynamics 

have been taken over by the Monte Carlo and EMD related calculations; papers on lattiç_e 

gases have been also presented. 

The work included in this thesis is one of the first application-driven attempts to use 

nonequilibrium molecular dynamics (NEMD) in polymer rheology. We have combined 
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what is essentially methodology of theoretical and computational physics and chemistry 

with a well established procedures of chemical engineering with respect to formulating 

phenomenological models. We have not carried the process to the very end, that is to 

the modeling of a specific polymer processing operation. It will take some time until the 

direct methods gain enough maturity and robustness to be employed to such applica

tions. Thus we make no specific recommendations for the immediate implementation of 

NEMD simulations within the context of the industrial polymer processing. However, in 

the subsequent paragraphs we give suggestions that could guide one on the way to the 

fulfillment of such a goal. We believe that in the course of this work a significant step 

forward has been made towards the ultimate industrial use of NEMD simulations. 

It has taken several hundred years for classical (partial differential equations) methods 

to be developed to the point of yielding helpful predictions from the industrial perspec

tive, by means of software packages. Yet, many problems simply cannot be solved by the 

continuum approach. Although useful these methods may not assist in answering some 

important questions, for they predict neither the morphology (e.g. fi.ber filled systems), 

nor mechanical/ surface properties of the processed polymers. Large scale computational 

rheology or computational fluid dynamics calculations provide general information (pres

sure drop, flow structures) but fail to deliver detailed knowledge of a certain polymer 

property ( e.g. surface quality ). As the polymer processing industry grows mature, the 

problems to be tackled will shift from more general to more particular in nature. Applica

tions seem to be endless for direct simulations, but one must be careful not to overestimate 

the current state-of-art of these techniques. 

The specific suggestions for future research are enumerated below. The first spans 

directly from this work and is an attempt to improve direct simulation techniques to 

such an extend that they could be considered as an alternative to the classical methods. 

The second suggestion is a logical continuation of the first. Perhaps, it could be carried 

out, in cooperation with the industry, to result in the first commercial NEMD software 

package. In addition, it is feasible to investigate elongational viscosity by NEMD /SLLOD 

simulations, provided that the appropriate boundary conditions are found. Furthermore, 

EMD/NEMD algorithms may be applied to study advanced nanoscale ceramic/polymer 
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composites, such as nanostructured electro-viscoelastic fl.uids; extension of Stockmayer 

fluids ( see for example [4]) to nonequilibrium systems could be a convenient starting 

point. Nanostructured materials have become an exiting area of research in recent years 

mostly from the experimental point of view [5]. The computational techniques (such as 

NEMD) should provide an additional physical insight into the nature of these materials. 

Many other areas of polymer science could also be approached from the MD perspective, 

e.g. solid state polymer electrolytes.

1. Unsolved problems of NEMD.

• As observed experimentally, many polymeric fluids are incompressible but the

incompressibility has not been incorporated into NEMD simulations. Under

extreme gradients imposed on NEMD systems, this leads to an unacceptable

density variation throughout a simulation domain.

• U p to know, ail NEMD constant temperature calculations have been performed

in reality for isokinetic systems, that is by controlling one or several kinetic (to

tal, translational, rotational, vibrational) energies. In order to avoid computa

tional artifacts and be able to relate NEMD results to laboratory experiments,

the thermodynamic temperature should be used instead, requiring a method

for calculation of the entropy for dense microscopie fluids. However, no such

method exits. By the same token, thermodynamic rather than hydrostatic

pressure ought to be used in NEMD simulations.

• The entropie dissipation in NEMD modeling cornes about by the way of av

eraging and of round-off errors. A direct method of introducing the dissipa

tion within NEMD algorithms would perhaps result in simulations requiring

a smaller number of particles. To this end, we have attempted to implement

several methods in the course of this work, but with no positive results to

report.
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2. Novel approach to computational rheology and to computational fluid dynamics.

Recently, Grmela [1] has formulated a system of coupled partial and ordinary differ" 

ential equations that describe the behavior of suspensions by means of macroscopic 

(density and velocity fields), mesoscopic (conformation tensor and angular momen

tum fields) and microscopie ( translational and rotational degrees of motion of single 

particles) variables. Although interesting on its own theoretical merit, due to the 

introduction of the angular momentum field within the context of hydrodynamics 

of suspensions, the system gives explicit coupling among variables at different levels 

of the physical description. H implemented numerically (provided that appropriate 

boundary conditions and potentials could be specified), the system would give pre

dictions either at all levels of description, or separately at one particular level. In 

the latter case, equations formulated at other levels could be neglected. Judging 

by the complexity of the problem which in essence combines NEMD ( or Brownian 

dynamics) and traditional simulations in one scheme, the equations would have to 

be coded on vector and/or parallel machines. 3-D visualizations routines could be 

incorporated to display simultaneously both macroscopic and microstructural in

formation. 
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APPENDIX: COMPUTER CODE 

As an example, we include computer code used for simulations of the behavior of a sys

tem of 256 rigid ellipsoids of revolution. Similar programs were developed for atomic and 

vibrating dumbbell fluids in case of rheological computations, and Lennard-Jones-like 

disk fluids for direct simulation of flow. The code is written in C and it compiles with 

any ANSI compliant compiler. Although the program was executed almost exclusively 

on RISC 320 with AIX 3.1.5 operational system, it was tested on SPARC station/SunOS 

(with GNU gcc compiler), 386/ AT&T UNIX 3.2, 386/ESIX 4.0.3, and 486/386BSD 0.1. 

Our approach was to make the program modular, easy to debug and test . The fonc

tion prototypes which correspond to names of subroutines are listed in the include file 

rb.h. In this appendix, the subroutines are presented in the order in which they appear it 

the Makefile; rb.h is first. The global variables are declared in rb.h within the structure 

CurrentTrajectory. Since rb.h is included in all files, the structure CurrentTrajectory is 

common to all subroutines. 

The flow of information in the program is controlled by driver() who initially sets 

up the faced-centered cubic lattice and assigns translational velocities to all particles by 

calling fcc() and maxwell() (in file max.c) respectively. If the current execution is a con

tinuation of an old run then a call to restore(} is issued. During the equilibration, driver() 

may issue calls to scale_maxwell() and scale_rot() if necessary. 

The Gear order five predictor-corrector method gear5() is used to integrate the equa

tions of motion. Runge-Kutta rk4() and the leap-frog() subroutines were also written 

to assist in evaluation of the Gear algorithm. Both gear5(} and rk4() call other rou

tines for evaluation of right hand sides of the equations of motion, for calculations of 

forces and for applications of the boundary conditions: e.g gear5() - rh_sides() -

gay_berne() - ( virtual_pos(), ders()). Subroutine leap_frog() by-passes rh_sides() call

ing directly gay_berne(). 

Macroscopic and mesoscopic quantities are calculated either at every time step ( ex

tra()) or every 25 time steps ( radial()). The averages are taken on-the-fly ( av_stress(), 

av_results(), av_velocity()) during the execution, contributing to the overhead CPU time. 
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If necessary, particle trajectories could be also stored ( trstore()) and then post-processed 

to extract the properties of interest or to prepare snapshots of the configurations . 

In addition, subroutine urng() contains code for the universal random number gen

erator (see header in urng.c). Subroutine order() monitors melting of the FCC lattice, 

calculates the order parameter ( using the director found in extra()) and verifies the ex

istence of the Maxwellian distribution fonction. Finally, the file utility.c contains an as

sembly of short codes used mostly for the dynamic allocation and deallocation of memory. 



#Makefile 
FILES= .driver.c urng.c fcc.c order.c max.c store.c forces.c ders.c\ 

extra.c leap_frog.c gears.c average.c utility.c rk4.c radial.c 

OBJECTS � driver.a urng.o fcc.a order.o max.a store.a forces.a ders.a\ 
extra.a leap_frag.o gear5.o average.a utility.a rk4.a radial.a 

HD= rb.h 

LIBS • -lm 

cc - cc 
#CC a gcc 
CFLAGS = -0 

make: $(0BJECTS) 
$(CC) $(CFLAGS) $(0BJECTS) $(LIBS) -o rb25gl0c 

driver.o . driver.c $(HD) . 

fcc.o . fcc.c $(HD) . 

order.o . order.c $(HD) . 

max.o . 
max.c $(HD) . 

store.o . store.c $(HD) . 

forces.o . forces.c $(HD) . 

extra.o extra.c $(HD) 
gears.o . gear5.c $(HD) . 

rk4.o . rk4.c $(HD) . 

leap_frog.o leap frog.c $(HD) 
average.o . average.c $(HD) . 

utility.o utility.c 
urng.o . urng.c . 

ders.o ders.c $(HD) 
radial.o radial. c $ (HD) 
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/*** rb.h ***/ 
/* This is an include file that contains all definitions 

and parameter for simulation of rheology of rigid bodies 
using the gear5 algorithm. */ 

/* Functions prototypes. */ 
/* In file utility.c */ 
double **dmatrix(int nrl, int nrh, int ncl, int nch); 
float **matrix(int nrl, int nrh, int ncl, int nch); 
double •dvector(int nl, int nh); 
float *Vector(int nl, int nh); 
int •ivector(int nl, int nh); 
void free dmatrix(double **m, int nrl, int nrh, int ncl, int nch); 
void free-matrix(float **m, int nrl, int nrh, int ncl, int nch); 
void free-dvector(double •m, int nl, int nh); 
void free-vector(float *m, int nl, int nh); 
void free-ivector(int •m, int nl, int nh); 
void mderror(char *p); 
void doublechange(double *tbc); 
void intchange(int •tbc); 
void floatchange(float •tbc); 
/* In file fcc.c */ 
void fcc(void); 
/* In file urng.c */ 
int urng(void); 
double gauss(void); 
/* In file order.c */ 
void order(void); 
/* In file max.c */ 
void maxwell(void); 
void check maxwell(void); 
void scale-maxwell(void); 
void scale-rot(void); 
/* In file-store.c */ 
void store(void); 
void restore(void); 
void trstore(void); 
/* In file forces.c */ 
void virtual_pos(void); 
void gay berne(void); 
/* In fiÏe gears.c */ 
void gearS(double step); 
void rh sides(void); 
/* In fÎle rk4.c */ 
void rk4(double step); 
/* In file ders.c */ 
void ders(double pi[], double pj[J, do\Ù)le r[), do\Ù)le derv(J); 
double pot(do\Ù)le pi[], double pj[J, do\Ù)le r[J); 
/* In file extra.c */ 
void extra(void); 
/* In file average.c */ 
void av stress(void); 
void av-results(void); 
void av-velocity(void); 
/* In fÎle radial.c */ 
void radial(void); 

struct currentTrajectory { 
int istep, /* current time step */ 
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fstep, /* first time step */ 
lstep, /* last time step */ 
shear step, /* when to start shearing */ 
isokin step, /* when to start isokin calculations */ 
ncut; - /* number of potential interactions */ 

double **rv, /* mass-canter virtual position - in primitive cube */ 
**rp,**grp[4],**Rrp, /* mass-center physical positions */ 
**P,**gP[4],**RP, /* momenta of mass-canter */ 
**P,**gp(41,**Rp, /* unit vector along long axis */ 
**m,**gm(4],**Rm, /* angular momenta */ 

}; 

**pot_forces, /* forces -dp(V)/dp(xi), etc. */ 
**rot_forces, /* forces -pi x dp(V)/dp(pi) */ 
••stresspot, /* pot part of stress tensor */ 
••stresstkin, /* trans part of stress tensor */
**stresstot, /* total stress tensor */ 
••conf, /* conformation tensor */ 
ttemp, /* translational temperature */ 
rtemp, /* rotational temperature */ 
tekin, /* translational kin energy */ 
ktx,kty,ktz, /* components of tekin */ 
rekin, /* rotational kinetic energy */ 
krx,kry,krz, /* components of rekin */ 
tvel, /* translational velocity */ 
rvel, /* rotational velocity */ 
ver, /* Verlet order parameter

·•1
dor, /* direction order parameter */ 
dorx,dory,dorz, /* components of der */ 
tvelor,/* transl velocity order parameter */ 
ortx,orty,ortz, /* components of tvelor */ 
rvelor,/* rotat velocity order parameter */ 
orrx,orry,orrz, /* components of rvelor */ 
momx,momy,momz,mz, /* total trans and rot mom */ 
epot, /* potential energy */ 
etot, /* total energy */ 
press, /* total energy */ 
strain, /* total strain */ 
strain rate, /* strain rate */ 
dummyl�dummy2; /* to hold space in store file */ 

/* Particles */ 
#define NDIM 3 /* Humber of dimensions */ 
#define NPART 256 
#define NLAYERS 8 
#define NCALPAR 4 

/* Number of particles (2*NCALPARA2*NLAYERS). */ 
/* Number of layers in the (2*NCALPAR). */ 
/* To calculate number of particles in a layer.*/ 

/* Geometry */ 
#define LX 10.079369 /* Of Direction of flow 
#define LY 10.079369 /* lf Direction of velocity gradient 
#define LZ 10.079369 /* 2f LZ must be equal to LX 

*/ 
*/ 
*/ 

/* To avoid placing particles outside of the simulation 
LY>•NLAYERS/(2xNCALPAR)*LZ */ 

box we 

/* Diagonal 
#define Il 
#define I2 
#define I3 
#define IIl 
#define II2 
#define II3 

elements of I and IA -1 tensors */ 
0.461 

0.461 
0.2 
2.169197397 
2.169197397 
5.0 

should have 
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1 

0 

50 

/* o for a new run. */ 
/* Number of steps for equilibration. 
/* How often to rescale velocities >O. 
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/* Initialization */ 
#define RESTART 
#define NSEQUIL 
#define NRESVEL 
#define NSMIC 
#define NSKIN 
#define NSSHEAR 

0 

0 

20000 

/* Number of steps for microcanonical ens. 
/* Number of steps for isokinetic ens. 

/* Temperature and 
#define TREF 
#define RCUTOFF 
#define STRAIN RATE 
#define TSTEP -

friends */ 
1.000 /* 
1000.0 /* 
10.0 /* 
0.00125 /* 

/* Number of steps for SLLOD. 

Reference temperature • .
Square of the eut-off radius. 
strain rate. 
Tilne step. 

trajectory */ 
•rb25g10c.store"
•rb25g10b.store"
•rb25g10c.traj"
"rb25g10c.stress"
"rb25g10c.result"
"rb25g10c.velocity"
"rb25g10c.radial"
"rb25g10c.veldist"

*/ 
*! 
*! 
*/ 

*/ 
*/· 
*/ 
*/ 
*/ 

/* Start, restart and 
#define STORENAME 
#define RESTORENAME 
#define STORETRAJ 
#define STORESTRESS 
#define STORERESULT 
#define STOREVELOCITY 
#define RADIAL 
#define VELDIST 
#define NSTORE 
#define NTRAJSTORE 
#define BINSIZE 

100 /* How often 
1000000 /* How often 
2000 /* Number of 

to store results for restarting. */ 
to store trajectory. */ 
steps in every bin. */ 



/* driver.c */ 

/* Performs administrative functions calling subroutines to 
do particular tasks. 

*/ 

#include <stdio.h> 
#include <math.h> 
#include <time.h> 
#include "rb.h" 

struct currentTrajectory theTrajectory; 

void main(void) 
{ 

int i, j ,k; 
unsigned long tl,t2,t3; 
struct tm *local; 
time t tlt,t2t,t3t; 
doubÏe **rv,**rp,**P,**P,**m,r2; 

tl=clock(); tlt•time(NULL); locai=localtime(&tlt); 
fprintf(stdout,"Time before initialization: %s11,asctime(local)); 

for(i=O;i<20000;i++) urng(); /* Warm-up the urng. */ 

/* Memory for dynamic variables */ 
for(i=O;i<=3;i++) { 

} 

theTrajectory.grp(i]-cùnatrix(l,NDIM,l,NPART); 
theTrajectory.gP(i]=dmatrix(l,NDIM,1,NPART); 
theTrajectory.gp(i]=-dmatrix(l,NDIM,1,NPART); 
theTrajectory.gm(i]=dmatrix(l,NDIM,1,NPART); 

theTrajectory.rv=dmatrix(l,NDIM,l,NPART); rv-theTrajectory.rv; 
theTrajectory.rp-cùnatrix(l,NDIM,l,NPART); rp=theTrajectory.rp; 
theTrajectory.P-dmatrix(l,NDIM,l,NPART); P�theTrajectory.P; 
theTrajectory.p=dmatrix(l,NDIM,l,NPART); p=theTrajectory.p; 
theTrajectory.m=-dmatrix(l,NDIM,l,NPART); m-theTrajectory.m; 
theTrajectory.Rrp=dmatrix(l,NDIM,l,NPART); 
theTrajectory.RP=dmatrix(l,NDIM,l,NPART); 
theTrajectory.Rp=dmatrix(l,NDIM,l,NPART); 
theTrajectory.Rm=dmatrix(l,NDIM,l,NPART); 
theTrajectory.stresspot=dmatrix(l,NDIM,l,NDIM); 
theTrajectory.stresstot=dmatrix(l,NDIM,l,NDIM); 
theTrajectory.stresstkin=dmatrix(l,NDIM,l,NDIM); 
theTrajectory.conf=-dmatrix(l,NDIM,l,NDIM); 
theTrajectory.pot forces=-dmatrix(l,NDIM,1,NPART}; 
theTrajectory.rot-forcessdmatrix(l,NDIM,1,NPART); 
for(i•l;i<•NDIM;i++) { 

for(j-=l;j<=NPART;j++) { 
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theTrajectory.pot forces(i](jJaO.O; theTrajectory.rot forces(i][j]=O.o; 
theTrajectory.Rrp(iJ(j]•O.O; theTrajectory.RP[iJ[j]•07o; 
theTrajectory.Rp(iJ[j]=O.o; theTrajectory.Rm(iJ[j]=O.O; 

} } 

if(!RESTART) { 
theTrajectory.fstep=l; theTrajectory.strain=O.O; 
for(i=l;i<=NDIM;i++) { /* zero everything - just in case */ 

for(j=l;j<=NPART;j++) { 
rv(i][j]=O.O; rp[i][j]=O.O; P(i][j]=O.O; p[i][j]=O.O; m[iJ[j)=O.O; 



} 

} } 
for(i=O;i<=J;i++) { 

for(jal;j<•NDIM;j++) { 
for(k•l;k<=NPART;k++) { 

theTrajectory.grp(i](j][k]=O.o; 
theTrajectory.gP(i)[j][k]=o.o; 
theTrajectory.gp(i][j][k]=o.o; 
theTrajectory.gm(i)[j][k]aO.O; 

} } } 
fcc(); maxwell(); 
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/* Zero these array ·/

else { 
restore(); theTrajectory.fstep2theTrajectory.istep+l; 

} 
theTrajectory.lstep=theTrajectory.fstep+NSEQUIL+NSMIC+NSXIN+NSSHl!:AR-1; 
theTrajectory.shear_step=theTrajectory.fstep+NSEQUIL+NSMIC+NSKIN; 
theTrajectory.isokin_step=theTrajectory.fstep+NSEQUIL+NSMIC; 

/* start the calculation loop */ 
for(theTrajectory.istep=theTrajectory.fstep; 

} 

theTrajectory.istep<=theTrajectory.lstep;theTrajectory.istep++) { 

/* Scale temp during equilibration */ 
if(theTrajectory.istep<•(theTrajectory.fstep+NSEQUIL)) { 

if(theTrajectory.istep%NRESVEL-=O) { scale maxwell(); scale rot();}; 
if((theTrajectory.istep=-(theTrajectory.fstep+NSEQUIL))&& -

(NSEQUita-OIINSMIC==O)&&(theTrajectory.istep!=l)) 
{ scale_maxwell(); scale_rot(); }; 

} 

/*leap(TSTEP); rk4(TSTEP); */ 
gear5(TSTEP); extra(); order(); av stress(); av results(); av velocity(); 
if(theTrajectory.istep%25-0) radial(); - /* Radial dist. func. */
if(theTrajectory.istep%NSTORE-o) store(); /* Restart */ 
if(theTrajectory.istep%NTRAJSTORE-O) trstore(); /* Trajectory */ 

if(theTrajectory.istep>-theTrajectory.isokin_step) { 
if((theTrajectory.ttemp>l.OOl)ll(theTrajectory.ttemp<0.999)) { 

scale maxwell(); 

} 

fprintf(stderr, "Trans energy flow rescale %7d\n",theTrajectory.istep); 
} 
if((theTrajectory.rtemp>l.OOl)ll(theTrajectory.rtemp<0.999)) { 

scale rot(); 
fprintf(stderr, "Rot anergy flow rescale %7d\n11,theTrajectory.istep); 

} 

if(theTrajectory.istep%10=-0) { 

} 

fprintf(stdout, "%5d%11.Je%11.Je%11.Je%11.Je%11.Je%11.Je%11.Je%11.Je%11.Je 
theTrajectory.istep,theTrajectory.ttemp,theTrajectory.ktx, 
theTrajectory.kty,theTrajectory.ktz,theTrajectory.rtemp, 
theTrajectory.krx,theTrajectory.kry,theTrajectory.krz, 
theTrajectory.epot,theTrajectory.etot); 

/* check_maxwell();*/ 

/* Release memory for dynamic variables */ 
free dmatrix(theTrajectory.rv,l,NDIM,l,NPART); 
free:dmatrix(theTrajectory.rp,l,NDIM,l,NPART); 



} 

free dmatrix(theTrajactory.P,1,NDIM,l,NPART); 
free-dmatrix(thaTrajectory.p,1,NDIM,1,NPART); 
free-dmatrix(theTrajectory.m,1,NDIM,l,NPART); 
free-dmatrix(thaTrajectory.pct forces,1,NDIM,l,NPART); 
free-dmatrix(theTrajectory.rct-forces,l,NDIM,l,NPART); 
free-dmatrix(theTrajectory.stresspot,l,NDIM,l,NDIM); 
free-dmatrix(theTrajectory.stresstot,l,NDIM,l,NDIM); 
free-dmatrix(theTrajectory.stresstkin,1,NDIM,l,NDIM); 
free-dmatrix(theTrajectory.ccnf,l,NDIM,l,NDIM); 
free-dmatrix(theTrajectory.Rrp,l,NDIM,l,NPART); 
free-dmatrix(theTrajactory.RP,l,NDIM,l,NPART); 
free-dmatrix(theTrajectory.Rp,1,NDIM,1,NPART); 
free-dmatrix(theTrajectory.Rm,l,NDIM,l,NPART); 
for(I=o;i<=l;i++) { 

} 

free dmatrix(theTrajectcry.grp[i],l,NDIM,1,NPART); 
free-dmatrix(theTrajectcry.gP[i],1,NDIM,l,NPART); 
free-dmatrix(theTrajectcry.gp[i],l,NDIM,l,NPART); 
free:dmatrix(theTrajectcry.gm[iJ,l,NDIM,l,NPART); 

t3=clcck(); t3tatime(NULL); local•localtime(&t3t); 
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fprintf(stdout,"Clock cycles � tu, Total time: ta", t3-t2,asctime(local)); 
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/* fcc.c */ 

/* This routine sets up the face-centered cubic lattice (FCC) for 2knA2 atoms 

*/ 

in a parallelepiped (see description of k and n in rb.h). A simpler 
program te set up the lattice in a cubic box for 256 atoms may be found in 
Dieter w. Heermann, Computer Simulation Methods in Theoretical Physics, 
Springer-Verlag, 1986 p122. 

#include <stdio.h> 
#include <math.h> 
#include "rb.h" 

extern struct currentTrajectory theTrajectory; 

void fcc(void) 
{ 

int i,j,k; 
double r,dist,dist4,dist2,*Posx,•Posy,*Posz,lxh,lyh,lzh; 

fprintf(stdout, "Setting the initial positions and directions of molecules ••• 
dist=LZ/NCALPAR; 
dist4=dist/4.0; 
dist2=dist/2.0; 

/* Get some useful pointers. */ 
Posx=-theTrajectory.rp(l]; 
Posy=theTrajectory.rp(2]; 
Posz:oatheTrajectory.rp(3]; 
*Posx++;*Posy++;*Posz++;

/* Place particles on the FCC lattice - loop over no. of layers / 2 */ 
for(k=O;k<NLAYERS/2;k++) {/* note y is vertical */ 

/* Get odd planes x-z */ 
for(j=O;j<NCALPAR;j++) { 

for(i=O;i<2*NCALPAR;i++) { 
*Posz++=dist4+i*dist2; 
*Posx++=dist4+j*dist+i%2*dist2;
*Posy++-=dist4+k*dist;

} } 
/* Get aven planas x-z */ 
for(j•O;j<NCALPAR;j++) { 

for(i•O;i<2*HCALPAR;i++) { 
*Posz++•dist4+i*dist2; 
*Posx++=dist4+dist2+j*dist-i%2*dist2;
*Posy++-=dist4+dist2+k*dist;

} } } 
/* Shift centre of box to the origin */ 
Posx=theTrajectory.rp[l]; 
Posy=theTrajectory.rp[2]; 
Posz=theTrajectory.rp[JJ; 
lxh=O.S*LX;lyh=0.5*LY;lzh=O.S*LZ; 
for(i•l;i<=NPART;i++) { 

} 

Posx[i]-•lxh; 
Posy[i]-=lyh; 
Posz[i]-=lzh; 

/* Set orientations - in z (neutral) direction */ 
Posx=theTrajectory.p(l]; 



} 

Posy=theTrajectory.p(2]; 
Posz=-theTrajectory.p(J]; 
for(i=l;i<=NPART;i++) { 

Posx(i]•O.O; Posy(i]•O.O; Posz(i]=-1.0; 
} 
theTrajectory.dorx:-=o.o; theTrajectory.dory=o.o; theTrajectory.dorz=1.o; 
/* Set orientations randomly - not recommended for higher densities 
for(i•l;i<�NPART;i++) { 

Posx(i]=urng(); Posy[i]=urng(); Posz[i]=urng(); 
r=sqrt(Posx[i]*Posx[i]+Posy(i]*Posy(i]+Posz(i]*Posz(i]); 
Posx(i]/=r; Posy[i]/=r; Posz[i]/=r; 

}*/ 
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/* order.c */ 

/* This routine calculates the Verlet and direction order parameters, 
and in addition the kinetic part of the H-funtion for velocities (see Haile 1 
it is useful for equilibration. 

*/ 

#include <stdio.h> 
#include <math.h> 
#include "rb.h" 

extern struct CUrrentTrajectory theTrajectory; 

void order(void) 
{ 

int i,indexl,index2,index3,px[601),py[601),pz[601); 
double hx,hy,hz,fx[601],fy[601],fz[601]; 
double dist,•Posx,•Posy,*Posz,**P; 
double r; 

/* Verlet order parameter */ 
theTrajectory.vor•o.o; dist=4.0*M PI*NCALPAR/LX; 
Posx=theTrajectory.rp(l]; Posy=thëTrajectory.rp(2]; Posz•theTrajectory.rp[3); 
for(i=l;i<•NPART; i++) 

theTrajectory.vor+=cos((Posx[i]+Posy[i]+Posz(i])*dist); 
theTrajectory.vor/zNPART; 

/* Direction order parameter */ 
Posx=theTrajectory.p(l]; Posy=theTrajectory.p(2]; Posz•theTrajectory.p(3]; 
theTrajectory.dor=o.o; 
for(i•l;i<=NPART;i++) { 

r-Posx(i]*theTrajectory.dorx+Posy(i]*theTrajectory.dory 
+Posz(i]*theTrajectory.dorz;

theTrajectory.dor+-r•r; 
} 
theTrajectory.dor=l.S*theTrajectory.dor/NPART-o.s; 

/* Verify that r is constant */ 
for(i=l;i<=NPART;i++) { 

r=Posx[i]*Posx(iJ+Posy(i]*Posy(iJ+Posz[i]*Posz[i]; 
if(r>l.00051 lr<.9995) { 

r-sqrt(r); Posx(i]/=r; Posy[i]/-r; Posz(i]/•r;

} 
} 

fprintf(stderr,"p %4d in step %5d %13.6e%13.6ell3.6e%13.6e\n", 
i,theTrajectory.istep,Posx[i),Posy(i],Posz(i],r); 

/* Translational velocity distribution */ 
P=theTrajectory.P; 
for(i=O;i<=600;i++) { px[i]=O; py[i]=O; pz[i]=O; } 
for(i=l;i<•NPART;i++) { 

indexl•(int) ((0.5*P(l][i]+15.0l5)*20.0); /* o.s is for mass */
if(indexl>-l&&indexl<601) { px[indexl]+sl; } 

else { fprintf(stderr,"order: tvelx out of bounds%5dll3.3e\n",i,P(l)(i]);} 
index2=(int) ((0.5*P[2][i]+15.015)*20.0); 
if(index2>-l&&index2<601) { py[index2]+=1; } 

efse { fprintf(stderr,"order: tvely out of bounds%5d%13.3e\n",i,P[2)[i]);} 
index3= ( int) ( (o. S*P[ 3] [ i] +15. 015) *20. O) ; 
if(index3>-l&&index3<60l) { pz[index3]+=1; } 



} 
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else { fprintf(stderr,"order: tvelz out of bounds%5d%13.3e\n",i,P[3'".]);} 
} 

hx•l.O/(NPART*0.05); 
for(i=o;i<•600;i++) { 

} 

fx[i)•(double)px[i]*hx; fy(i]=(double)py(i]*hx; 
fz(i]=(double)pz[i]*hx; 

hx=O.O; hy=o.o; hz=O.O; 
for(i=O;i<•600;i++) { 

} 

if(px[i]!=O) { hx+=fx[i]*log(fx[i));} 
if(py[i]!=O) { hy+=fy[i]*log(fy[i]);} 
if(pz[i]!=O) { hz+=fz[i]*log(fz[i]);} 

hx•=o.os; hy••o.os; hz•-o.os; 
theTrajectory.ortx-hx; theTrajectory.orty•hy; theTrajectory.ortzahz; 
theTrajectory.tvelor=(hx+hy+hz)/3.0; 
/* Rotational velocity distribution - reuse pointers */ 
P=theTrajectory.m; 
for(i=O;i<=600;i++) { px[i)=O; py[i]=O; pz[i)=O;} 
for(i=l;i<=NPART;i++) { 

} 

indexl=(int)((IIl*P[l)[i]+l5.015)*20.0); /* 0.5 is for mass */ 
if(indexl>-l&&indexl<601) { px[indexl]+•l;} 

else { fprintf(stderr,"order: rvelx out of bounds%5d%13.3e\n",i,P[l][iJ);} 
index2•(int) ((II2*P[2][i]+l5.015)*20.0); 
if(index2>-l&&index2<601) { py[index2]+•1;} 
else { fprintf(stderr,"order: rvely out of bounds%5d%13.3e\n",i,P[2][i]);} 

index3=(int)((II3*P[3)[i]+l5.015)*20.0); 
if(index3>-l&&index3<601) { pz[index3)+=1;} 

else { fprintf(stderr,"order: rvelz out of bounds%5d%13.3e\n",i,P[3][iJ);} 

hx=l.O/(NPART*0.05); 
for(i=O;i<=600;i++) { 

f�[i]•(double)px[i]*hx; fy[i]•(double)py[i]*hx; fz[i]•(double)pz[i]*hx; 
} 
hx•o.o; hy•o.o; hz•o.o; 
for(i=O;i<=600;i++) { 

} 

if(px[i]!=O) { hx+=fx[i]*log(fx[i]);} 
if(py(i]!•O) { hy+•fy[i]*log(fy[i]);} 
if(pz(i]!=O) { hz+=fz[i]*log(fz[i]);} 

hx*=0.05; hy*=0.05; hz*=0.05; 
theTrajectory.orrx=hx; theTrajectory.orry=hy; theTrajectory.orrz=hz; 
theTrajectory.rvelor-(hx+hy+hz)/3.0; 



/* max.c */ 

/* Subroutine maxwell() initializes the translational momenta

according to the Maxwell-Boltzmann distribution. Subroutines 
scale maxwell() and scale rot() rescale the translational and 
rotational velocities. Note: the mass of a single molecule 
is 2. 

*/ 

#include <stdio.h> 
#include <math.h>

#include "rb.h" 

extern struct CUrrentTrajectory theTrajectory; 

void maxwell(void) 
{ 

int i,j; 
double **P,rtemp,sum; 
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tprintf(stdout, "Setting the initial translational and angular momenta ••• \n") 

P•theTrajectory.P; 

} 

/* TRANSLATIONAL MOMENTA */ 
/** Adjust the second moment */ 
rtemp=sqrt(2.0*TREF); 
for(i=l;i<=NDIM;i++) { 

for(j=l;j<-NPART;j++) P[i][j]=rtemp•gauss(); 
} 
/** Set the momenta to zero */ 
sum=O.O; for(j•l;j<•NPART;j++) sum+•P[l][j]; 
sum/=NPART; for(j•l;j<�NPART;j++) P[l][j]-•sum; 
sum-o.o; for(j�l;j<•NPART;j++) sum+-P[2][j); 
sum/•NPART; for(j=l;j<=NPART;j++) P(2][j]-•sum; 
sum=O.O; for(j=l;j<•NPART;j++) sum+•P[J][j]; 
sum/=NPART; for(j=l;j<=NPART;j++) P[J][j)-=sum; 

/* To check the velocity distribution - normally not used. */ 
void check maxwell(void) 
{ 

-

int i-, j; 
double **P,Px,Py,Pz,temp,vel,PiPi; 

P=theTrajectory.P; 

/* TRANSLATIONAL MOMENTA */ 
Px=O.O; for(j=l;j<=NPART;j++) Px+=P[l][j]; 
Py=O.O; for(j=l;j<=NPART;j++) Py+=P[2][j]; 
Pz=o.o; for(j•l;j<=NPART;j++) Pz+=P[J][j]; 
temp•o.o; vel=O.o; 
for(j=l;j<=NPART;j++) { 

PiPi•P[l][j]*P(l)[j]+P[2J[j]*P(2][j]+P[3][j]*P(3][j]; 
temp+=PiPi; vel+=sqrt(PiPi); 

} 
temp/=(6.0*NPART); /* from kinetic energy; mass is 2 */ 
vel/=NPART; vel=vel•vel; 
vel*=M_PI/16.0; /* from average speed; mass is 2 */ 



fprintf (stderr," (Trans.) TREF=%11. Je T(<p"2>) =%11. Je T(<p>) =%11. Je\n", 
TREF,temp,vel); 

} 

void scale_maxwell(void) 
{ 

int i,j; 
double **P,alpha,sum; 

P=theTrajectory.P; 

/* TRANSLATIONAL MOMENTA */ 
/** Set the momenta to zero */ 
sum•O.O; tor(j=l;j<•NPART;j++) sum+=P[l)[j); 
sum/•NPART; for(j•l;j<=NPART;j++) P[l][j]-•sum; 
sum=O.O; for(j•l;j<=NPART;j++) sum+=P[2][j]; 
sum/=NPART; for(j•l;j<=NPART;j++) P[2][j]-=sum; 
sum=O.O; for(j=l;j<•NPART;j++) sum+=P[3][j]; 
sum/=NPART; for(j=l;j<=NPART;j++) P[J](j]-•sum; 
alpha•O; 
for(j=l;j<=NPART;j++) { 

alpha+•P[l](j]*P(l][j]+P(2J(j]*P[2](j]+P(JJ(j]*P[3][j]; 
} 
alpha•sqrt(6.0*NPART*TREF/alpha); 
for(iEl;i<=NDIM;i++) { 

for(j=l;j<=NPART;j++) P(i](j]*•alpha; 
} 
fprintf(stderr,"(Trans.) alpha=%11.Je\n",alpha); 

} 

void scale rot(void) 
{ 

-

int i, j; 
double **m,alpha; 

m=theTrajectory.m; 

/* ROTATIONAL ENERGY */ 
alpha•O; 
for(j•l;j<•NPART;j++) { 

alpha+=IIl*m[l](j]*m(lJ(jJ+II2*m(2](j]*m(2)[jJ+II3*m[3][j)*m[3](j]; 
} 
alpha•sqrt(2.0*NPART*TREF/alpha); 
for(i•l;i<=NDIM;i++) { 

for(j•l;j<•NPART;j++) m(i](j]*=alpha; 
} 
fprintf(stderr,"(Rot.) alpha=%11.3e\n",alpha); 

} 
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/* store.c */ 

/* These routines store and restore the restart files. 
Subroutine trstore() stores the trajectory. 

*/ 

#include <math.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include "rb.h" 

extern struct CUrrentTrajectory theTrajectory; 

void store(void) 
{ 

int i,j,k; 
double strain,strain_rate,dummyl,dummy2,**rv,**rp,**P,**P,**m; 
double **grp(4],**gP[4],**gp(4],**gm(4];
FILE *fp; 

if((fp=fopen(STORENAME,"wb"))=NULL) { 
fprintf(stderr,"cannot open file\n"); 
exit(l); 

} 
strain=theTrajectory.strain; strain rate=theTrajectory.strain rate; 
dummyl=theTrajectory.dummyl; dummy2;theTrajectory.dummy2; 

-

rv=theTrajectory.rv; rp=theTrajectory.rp; P=theTrajectory.P; 
p=theTrajectory.p; m=theTrajectory.m; 
for(k=O;k<4;k++) { 

} 

grp(k]=theTrajectory.grp(k]; gP(k]=theTrajectory.gP[k]; 
gp(k)=theTrajectory.gp(k]; gm(k]=theTrajectory.gm(k]; 

if(fwrite(&theTrajectory.istep,sizeof(int),1,fp)!•l) { 
fprintf(stderr,"W error\n"); 

} 
if(fwrite(&strain,sizeof(double),1,fp)!-1) { 

fprintf(stderr,"W error\n"); 
} 
if(fwrite(&strain rate,sizeof(double),l,fp)!=l) { 

fprintf(stderr,"W error\n"); 
} 
if(fwrite(&dummyl,sizeof(double),1,fp)!•l) { 

fprintf(stderr,"W error\n"); 
} 
if(fwrite(&dummy2,sizeof(double),1,fp)!�l) { 

fprintf(stderr,"W error\n"); 
} 
for(i=l;i<=NDIM;i++) { 

for(j=l;j<=NPART;j++) { 
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if(fwrite(&rv[i][j],sizeof(double),l,fp)!=l) fprintf(stderr,"W error\n"); 
if(fwrite(&rp[i][j],sizeof(double),l,fp)!=l) fprintf(stderr,"W error\n"); 
if(fwrite(&P[i][j],sizeof(double),l,fp)!=l) fprintf(stderr,"W error\n"); 
if(fwrite(&p(i][j],sizeof(double),l,fp)!=l) fprintf(stderr,"W error\n"); 
if(fwrite(&m[i][j],sizeof(double),l,fp)!=l) fprintf(stderr,"W error\n"); 
for(k=O;k<4;k++) { 

if(fwrite(&grp(k][i][j],sizeof(double),1,fp)!=l) 
fprintf(stderr,"W error\n"); 

if(fwrite(&gP[k][i][jJ,sizeof(double),1,fp)!=l) 
fprintf(stderr,"W error\n"); 



} 

} 
} } 

if(fwrite(&gp[k][i][j],sizeof(double),1,fp)!=l) 
fprintf(stderr,"W error\n"); 

if(fwrite(&gm[k][i][j],sizeof(double),l,fp)!•l) 
fprintf(stderr,"W error\n"); 

fclose(fp); 

void restore(void) 
{ 

int i,j,k; 
double strain,strain_rate,dummyl,dummy2,••rv,**rp,**P,**P,**m; 
double **grp[4],**gP(4],**gp(4],**gm(4]; 
FILE *fp; 

rv=theTrajectory.rv; rp=theTrajectory.rp; P=theTrajectory.P; 
p=theTrajectory.p; m=theTrajectory.m; 
for(k•O;k<4;k++) { 

} 

grp(k]=theTrajectory.grp(k]; gP[k]=theTrajectory.gP[k]; 
gp(k]=theTrajectory.gp(k]; gm(k]=theTrajectory.gm(k]; 

if((fp=fopen(RESTORENAME,"rb"))-==NULL) { 
fprintf(stderr, 11cannot open file\n"); exit(l); 

} 
if(fread(&theTrajectory.istep,sizeof(int),l,fp)!=l) { 

fprintf(stderr,"R error (nstep)\n"); exit(l); 
} 
if(fread(&strain,sizeof(double),1,fp)!=l) { 

fprintf(stderr,"R error (strain)\n"); exit(l); 
} 
if(fread(&strain rate,sizeof(double),1,fp)!•l) { 

fprintf(stderr-;11R error (strain_rate)\n"); exit(l); 
} 
if(fread(&dummyl,sizeof(double),l,fp)!•l) { 

fprintf(stderr,"R error (dummyl)\n"); exit(l); 
} 
if(fread(&dummy2,sizeof(double),1,fp)!=l) { 

fprintf(stderr,"R error (dummy2)\n"); exit(l); 
} 
theTrajectory.strain=strain; theTrajectory.strain_rate=strain_rate; 
the�rajectory.dummyl=-dummyl; theTrajectory.dummy2=dummy2; 
for(i=l;i<•NDIM;i++) { 

for(j•l;j<•NPART;j++) { 
if(fread(&rv[i](j],sizeof(double),l,fp)!=l) { 

fprintf(stderr,"R error (rv)\n"); exit(l); 
} 
if(fread(&rp[i][j],sizeof(double),l,fp)!=l) { 

fprintf(stderr,"R error (rp)\n"); exit(l); 
} 
if(fread(&P[i][j],sizeof(double),1,fp)!•l) { 

fprintf(stderr,"R error (P)\n"); exit(l); 
} 
if(fread(&p[i][j],sizeof(double),l,fp)!•l) { 

fprintf(stderr,"R errer (p)\n"); exit(l); 
} 
if(fread(&m[i][j],sizeof(double),1,fp)!=l) { 

fprintf(stderr,"R errer (m)\n"); exit(l); 
} 
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} 

} } 

for(k=0;k<4;k++) { 
if(fread(&grp[k][i][j],sizeof(double),l,fp)!=l) { 

fprintf(stderr,"R errer (grp)\n"); exit(l); 

} 

} 
if(fread(&gP[k][i][j],sizeef(double),l,fp)!=l) { 

fprintf(stderr,"R errer (gP)\n"); exit(l); 
} 
if(fread(&gp[k][iJ[jJ,sizeef(deuble),l,fp)!=l) { 

fprintf(stderr,"R errer (gp)\n"); exit(l); 
} 
if(fread(&gm[k][i][j],sizeef(double),l,fp)!-1) { 

fprintf(stderr,"R errer (gm)\n"); exit(l); 
} 

fclese(fp); 

veid trstore(void) 
{ 

static int first=l,whence; 
int i,j,terminate=-1; 
float ••rv,••rp,**P,**P,**m,strain; 
FILE *fp; 

296 

rp=matrix(l,NDIM,l,NPART); rv=matrix(l,NDIM,l,NPART); 
P=matrix(l,NDIM,l,NPART); p=matrix(l,NDIM,l,NPART); m=matrix(l,NDIM,l,NPART); 

for(i=l;i<=NDIM;i++) { /* Store floats */ 
for(j=l;j<=NPART;j++) { 

rv[iJ[j]=(float)theTrajectery.rv[i][j]; 
rp(i][j]=(float)theTrajectery.rp[i][j]; 
P[iJ[j]=(fleat)theTrajectery.P[i][j]; 
p[i][j]=(float)theTrajectery.p[i][j]; 
m[iJ[j]=(float)theTrajectery.m[i][j]; 

} } 
strain=(float)theTrajectory.strain; 

if(first) { /* Open the file */ 
first=0; 
if((fp=fopen(STORETRAJ,"wb"))-=NULL) { 

fprintf(stderr,"Cannot open file (first)\n")ï exit(l); 
} } 
else { 

} 

if((fp=fopen(STORETRAJ,"r+b"))=NULL) { 
fprintf(stderr,"Cannot open file (append)\n")ï exit(l); 

} 
if(fseek(fp,whence,0)!=0) { 

fprintf(stderr,"Cannot backup (trstere)\n"); exit(l); 
} 

if(fwrite(&theTrajectory.istep,sizeef(int),l,fp)!=l) { 
fprintf(stderr,"Write errer (istep)\n"); exit(l); 

} 
if(fwrite(&strain,sizeof(fleat),l,fp)!=l) { 

fprintf(stderr,"Write errer (strain)\n"); exit(l); 
} 
fer(i=l;i<=NDIM;i++) { 

fer(j=l;j<=NPART;j++) { 



} 

} } 

if(fwrite(&rv[i][j],sizeef(fleat),1,fp)!=1) { 
fprintf(stderr,"Write errer (rv)\n"); exit(1); 

} 
if(fwrite(&rp[i][jJ,sizeef(fleat),1,fp)!=l) { 

fprintf(stderr,"Write errer (rp)\n"); exit(1); 
} 
if(fwrite(&P[iJ[jJ,sizeef(fleat),1,fp)!=1) { 

fprintf(stderr,"Write errer (P)\n"); exit(1); 
} 
if(fwrite(&p[i][j],sizeef(fleat),1,fp)!=1) { 

fprintf(stderr,"Write errer (p)\n"); exit(1); 
} 
if(fwrite(&m[i][j],sizeef(fleat),1,fp)!=1) { 

fprintf(stderr,"Write errer (m)\n"); exit(1); 
} 

whence=ftell(fp); 
if(fwrite(&terminate,sizeef(int),1,fp)!=1) { 

fprintf(stderr,"Write errer (m)\n"); exit(1); 
} 
fclese(fp); 

free matrix(rv,1,NDIM,l,NPART); free matrix(rp,l,NDIM,l,NPART); 
free-matrix(P,l,NDIM,1,NPART); free matrix(p,l,NDIM,l,NPART);
free:matrix(m,l,NDIM,1,NPART); -
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/* forces.c */ 

/* Routine gay berne() evaluates forces and handles the minimum image. 
Routine virtual_pos() calculates virtual from physical positions. 

*/ 

#include <stdio.h> 
#include <math.h> 
#include "rb.h" 

extern struct currentTrajectory theTrajectory; 

void virtual_pos(void) 
{ 

int i,j; 
double sidehl,sideh2,sideh3,bring,**Pos,••Vir_pos; 

sidehl=O.S*LX; sideh2z0.5*LY; sideh3=0.S*LZ; 

Pos=theTrajectory.rp; Vir_posatheTrajectory.rv; 
for(i�l;i<=NDIM;i++){ 

for(j•l;j<=NPART;j++) Vir_pos(i][j]=Pos(i][j]; 
} 
for(i-l;i<=NPART;i++){ 

if(Pos(3][i]> sideh3 )  { 
bring=floor(Pos(J][i]/LZ+0.5); 
Vir_pos(3][i]=Pos(3][i]-(bring*LZ); 

} 
if(Pos(3][i]<(-sideh3)) { 

bring•ceil(Pos(J][i]/LZ-0.5); 
Vir_pos(3][i]=Pos(3][i]-(bring*LZ); 

} 
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if(Pos(l][i]> sidehl ) { /* We'll recal. if nec. for istep>shear_step */ 
bring=floor(Pos[l)[i)/LX+0.5); 
Vir_pos(l][i]=Pos[l][i]-(bring*LX); 

} 
if(Pos(l][i]<(-sidehl)) { 

bring=ceil(Pos[l][i]/LX-0.5); 
Vir_pos(l][i]=Pos[l][i]-(bring*LX); 

} 
if(Pos(2](i]> sideh2 ) { 

bring•floor(Pos[2J[i]/LY+0.5); 
Vir_pos[2][i]•Pos(2][i]-(bring*LY); 
if(theTrajectory.istep>•theTrajectory.shear_step) { 

Vir_pos[l][i]=Pos(l](i]-theTrajectory.strain*bring; 
if(Vir_pos[l][i]> sidehl ) { 

bring=floor(Vir,_)>OS(l](i]/LX+0.5);
Vir_pos(l][i]=Vir_pos(l][i]-(bring•LX); 

} 
if(Vir_pos(l][i]<(-sidehl)) { 

bring=ceil(Vir_pos(l][i]/LX-0.5); 
Vir_pos(l][i]=Vir_pos(l][i]-(bring*LX); 

} } } 
if(Pos(2][i]<(-sideh2)) { 

bring=ceil(Pos(2][i]/LY-0.5); 
Vir_pos[2][i]=Pos[2J[i]-(bring*LY); 
if(theTrajectory.istep>=theTrajectory.shear_step) { 

Vir pos(l][i]=Pos(l][i]-theTrajectory.strain*bring; 
if(Vir_pos(l][i]> sidehl) { 



} 

bring=floor(Vir_pos(l][i]/LX+0.5); 
Vir_pos(l][i]•Vir_pos(l][i]-(bring*LX); 

if(Vir_pos(l][i]<(-sidehl)) { 
bring=ceil(Vir_pos(l][i]/LX-0.5); 
Vir_pos(l][i]=Vir_pos(l][i]-(bring*LX); 

} } } 
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if(Vir_pos(l][i)>sidehll IVir_pos(l](i]<-sidehl){ 
fprintf(stderr,"*** ERROR %d %.Se\n",theTrajectory.istep,Vir_pos(l][i]); 
exit(l); 

} 
if(Vir_pos[2][i)>sideh21 IVir_pos[2][i]<-sideh2){ 

fprintf(stderr,"*** ERROR %d %.5e\n",theTrajectory.istep,Vir_pos(2][i]); 
exit(l); 

} 
if(Vir_pos(3](i]>sideh3I IVir_pos[3](i]<-sideh3){ 

} } } 

fprintf(stderr,"*** ERROR %d %.5e\n",theTrajectory.istep,Vir_pos[3][i]); 
exit(l); 

void gay berne(void) 
{ 

-

int i,j,ncut; 
double rd2,epot,**pforces,**rforces,**Stresspot,**P,Pi[3],Pj[3],r(3],derv(l0]; 
double posix,posiy,posiz,xij,yij,zij,kx,ky,kz,sidehl�sideh2,sideh3; 
double a,b,vol,xj,bring,**Pos,**Vir_pos; 

vol=l.O/(LX*LY*LZ);epot=O.O;ncut=O;sideh1=0.5*LX;sideh2=0.5*LY;sideh3=0.5*LZ; 
Stresspot=theTrajectory.stresspot; 
Pos•theTrajectory.rp; Vir_pos=theTrajectory.rv; 
pforces=theTrajectory.pot forces; rforces•theTrajectory.rot forces; 
p•theTrajectory.p; 

- -

for(i=l;i<=NDIM;i++) { 
for(j•l;j<=NPART;j++) { pforces(i][j]=O.O; rforces(i][jJ=O.O;} 

} 
for(i=l;i<=NDIM;i++) { for(j•l;j<•NDIM;j++) stresspot[i][j]=O.o;} 

virtual_pos(); 

for(i=l;i<NPART;i++){ /* Outer force loop */ 
posix=Vir_pos(l][i]; posiy=Vir_pos[2][i]; posiz=Vir_pos(3][i]; 
for(j=i+l;j<=NPART;j++) { /* Inner force loop */ 

xij=posix-Vir_pos(l][j]; yij=posiy-Vir_pos(2][j]; zij=posiz-Vir_pos(3][j]; 
if(zij<(-sideh3)) zij+=LZ; 
if(zij> sideh3 ) zij-=LZ; 
if(xij<(-sideh1)) xij+=LX; /* If istep>shear_step recalculate xij */ 
if(xij> sideh1 ) xij-=LX; 
if(theTrajectory.istep<theTrajectory.shear_step) { /* Minimum image */ 

if(yij<(-sideh2)) yij+=LY; 
if(yij> sideh2 ) yij-=LY; 

} 
else { /* Lees-Edwards BC */ 

if(yij> sideh2 ) { /* ABOVE */ 

} 

yij-•LY; xj•Vir_pos(l][j]; xj+=theTrajectory.strain; 
bring=floor(xj/LX+0.5); xj-=(bring*LX); xij•posix-xj; 
if(xij> sidehl ) xij-=LX; if(xij<(-sidehl)) xij+=LX; 

if(yij<(-sideh2)) { /* BELOW */ 
yij+=LY; xj=Vir_pos(l][j); xj-=theTrajectory.strain; 



} 

bring=ceil(xj/LX-0.5); xj-=(bring*LX); xij=posix-xj; 
if(xij> sidehl ) xij-=LX; if(xij<(-sidehl)) xij+=LX; 
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} } 
rd2=xij•xij+yij•yij+zij•zij; 
if(rd2<RCUTOFF) { 

} } 

ncut+=l; 
pi[0)=p[l][i]; pi[l)=p(2][i]; pi(2]=p[3][i); 
pj[0)=p[l)(j]; pj(l)=p(2J[j]; pj[2)=p[3J[j]; 
r[0]=xij; r[l)=yij; r[2J=zij; 

ders(pi, pj, r, derv); epot+=derv(0J; 
pforces[l][iJ-=derv(l]; pforces(l][j]+-=clerv[l]; /* sign !!! */ 
pforces(2][i]-=derv[2]; pforces(2J[j]+-cierv[2]; /* includes minus */ 
pforces[3][i]-=derv[3]; pforces(3)[j]+-clerv[3]; 
rforces(l][i]+=pi[2]*derv(5J-pi[l]*derv(6]; 
rforces(2][i]+=pi(O]*derv[6]-pi(2]*derv[4]; 
rforces(J][i]+=pi[l)*derv(4]-pi[0)*derv(5]; 
rforces(l](j)+=pj(2]*derv(8]-pj(l)*derv[9]; 
rforces[2)[j]+=pj(0]*derv[9]-pj[2)*derv[7); 
rforces(J][j)+=pj[l]*derv[7]-pj[D)*derv(8]; 

stresspot[l)[l]-•derv[l]*xij; Stresspot(2](1J-=derv(l]*Yij; 
Stresspot[JJ(l]-•derv[l)*zij; Stresspot(2)[2)-=derv[2]*Yij; 
Stresspot(3)[2J--clerv(2]*zij; Stresspot(3](3J-=derv(3]*zij; 
Stresspot[l)[2)--=derv[2]*xij; Stresspot[1][3)-=derv[3]*xij; 
Stresspot[2)[3]-•derv[3]*Yij; 

} /* Inner loop and outer loop end. */ 
for(i=l;i<=NDIM;i++) { for(j�l;j<=NDIM;j++) Stresspot(i][j]*=vol; } 
thèTrajectory.epot=epot; theTrajectory.ncut=ncut; 



/* extra.c */ 

/* This subroutine calculates mesoscopic and macroscopic 
instantaneous variables. 

*/ 

#include <stdio.h> 
#include <math.h> 
#include "rb.h" 

extern struct CUrrentTrajectory theTrajectory; 

void extra(void) 
{ 

int i,j; 
double krx,kry,krz,PiPi,temp,vel; 
double **P,**m,**P,**Stresstkin,**Stresstot,vol=LX*LY*LZ; 
double **conf,al,a2,a3,q,r,theta,x1,x2,xJ,lambda; 

/* Get kinetic contribution to the stress tensor */ 
P=theTrajectory.P; Stresstkin=theTrajectory.stresstkin; 
stresstot=theTrajectory.stresstot; m=theTrajectory.m; 
p=theTrajectory.p; 
theTrajectory.mz=o.o; theTrajectory.momx=o.o; 
theTrajectory.momy=o.o; theTrajectory.momz=o.o; 
for(i•l;i<=NPART;i++) { 

} 

theTrajectory.mz+=p[l](i]*m[l][i]+p[2][i]*m[2][i]+p(3][i]*m[3](i]; 
theTrajectory.momx+=P[l][i]; 
theTrajectory.momy+=P[2][i]; 
theTrajectory.momz+•P[3)[i]; 

for(i•l;i<=NDIM;i++) { for(j=l;j<•NDIM;j++) Stresstkin[i][j]•O.O; } 
for(i•l;i<=NPART;i++) { 

} 

Stresstkin[l)[l]+-P[l][i]*P[l](i]; Stresstkin[l](2]+=P[l][i]*P[2)(i]; 
Stresstkin[l][3]+=P[l)[i]*P[3](i]; Stresstkin[2][2]+=P[2)[i]*P[2][i); 
stresstkin[2][3]+•P[2J[i]*P[3][i]; Stresstkin[3][3]+=P[3](i]*P(3][i]; 
Stresstkin[2](l]+=P(2][i)*P(l][i]; Stresstkin[3][l]+=P(3][i]*P[l][i]; 
Stresstkin[3) [2] +=P( 3) [ i] *P[2] [ i]; 
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theTrajectory.ktx=Stresstkin[l][l)/4.0; theTrajectory.kty=Stresstkin[2][2]/4.0 
theTrajectory.ktz=Stresstkin[3](3]/4.0; 
for(i•l;i<•J;i++) { 

for(jcl;j<•J;j++) { 
Stresstkin[i][j]/=(2.0*vol); /* mass is 2 */ 
Stresstot(iJ[j]=Stresstkin[i][j]+theTrajectory.stresspot[i)[j]; 

} } 

temp=O.O; vel=O.O; krx=O.O; kry=O.O; krz=o.o; 
for(j=l;j<=NPART;j++) { 

PiPi•P[l][j]*P[l][j)+P[2][j]*P[2][j]+P[J)[j]*P[J][j]; 
krx+•IIl*m[l](j]*m[l)[j]; kry+•II2*m[2][j)*m[2][j]; 
krz+=II3*m[3](j]*m[3](j]; temp+•PiPi; vel+=sqrt(PiPi); 

} 
theTrajectory.krx=o.s•krx; 
theTrajectory.kry=O.S*kry; theTrajectory.krz=O.S*krz; 

theTrajectory.ttemp=temp/(6.0*NPART); /* from kinetic energy; mass is 2 */ 
theTrajectory.rtemp=(krx+kry+krz)*0.5/NPART; 
theTrajectory.press=(Stresstot[l][l]+Stresstot[2][2]+Stresstot[3][3])/3.0; 



} 
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theTrajectory.tekin=temp*0.25; /* mass is 2 */ 
temp=o.o; 
for(j=l;j<•NPART;j++) { 

temp+=IIl*m[l][jJ*m[l][j]+II2*m[2][j]*m[2][j]+II3*m[3][j]*m[3][j]; 
} 
theTrajectory.rekin=o.s•temp; 
theTrajectory.etot=theTrajectory.tekin+theTrajectory.rekin+theTrajectory.epot; 
theTrajectory.tvel=vel/(2.0*NPART); /* from average speed; mass is 2 */ 

/* Conformation tensor */ 
confstheTrajectory.conf; 
conf[l][l]•O.O; conf[1][2]=0.0; conf[1][3]=0.0; conf[2][2]=0.0; 
conf[2][3]•0.o; conf[3][3]=0.0; 
for(j•l;j<=NPART;j++) { 

} 

conf[l][l]+•p[l][j]*p[l][j]; conf[1][2]+=p[l][j]*P[2][j]; 
conf[1)[3]+=p(l](j]*p(3](j]; conf[2][2]+=p[2](j]*p[2][j]; 
conf[2](3]+=p[2][j]*p[3J[j]; conf[3][3]+•p[3](j]*p[3][j]; 

conf[l][l]/=NPART; conf[1)[2]/=NPART; conf[1][3]/=NPART; conf[2)[2]/=NPART; 
conf[2)[3)/=NPART; conf(3][3]/•NPART; 
if(theTrajectory.istep>50) { /* skip first 50 steps - see the end of fcc.c */ 

al•-conf[l][l]-conf[2][2]-conf[3][3]; 

} 

a2•conf ( 1] [1] •conf[2] [2] +conf [1) [1] •conf p] [3] +conf (2] (2] •conf [3 ][ 3 ]-
conf [1] (2] *conf[l] (2 ]-conf(l) (3 ]*conf[l] [3 ]-conf[2) [3] *conf [2] [ 3]; 

a3=conf[1][2]*conf(1][2]*conf[3][3]+conf[l][3]*conf[l][3)*conf[2][2]+ 
conf[2][3)*conf[2](3]*conf[l][l]-conf[l][l]*conf[2][2]*conf[3][3]-
2.0*conf[l](2]*conf[l][3]*conf[2][3]; 

q=(al*al-3*a2)/9.0;r=(2.0*al*al*al-9.0*al*a2+27.0*a3)/54.0;lambda=q*q*q-r•r; 
if(lambda<O) { fprintf(stderr,"extra: eigenvalue problem\n"); exit(l);} 
theta=acos(r/sqrt(q*q*q)); xl•-2.0*sqrt(q)*cos(theta/3.0)-al/3.o; 
x2=-2.o•sqrt(q)*c0s((theta+2.o•M_PI)/3.0)-al/3.0; 
x3•-2.0*sqrt(q)*cos((theta+4.0*M_PI)/3.0)-al/3.0; 
lambda=abs(xl); 
if(X2>lambda) lambcla•x2; if(x3>lambda) lambda•x3; 
xl=conf(2][3]*conf[l](2]-conf(l][3]*(conf(2][2]-lambda); 
x3=xl/(conf[1][3]*conf[2][3]-conf[1][2]*(conf[3][3]-lambda)); 
xl/=(conf[1][3]*conf[1](2]-conf[2][3]*(conf[l][l]-lambcla)); 
r=sqrt(l.O+xl*xl+x3*x3); theTrajectory.dorx•xl/r; 
theTrajectory.dory=l/r; theTrajectory.dorz=x3/r; 
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/* gears.c */ 

/* This routine performs the Gear five value integration, 
for the first order ODE. The algorithm uses the Nordsieck representation·. 
Subroutine rh_sides() calculates right band sides of the 
equations of motion. 

*/ 

#include <stdio.h> 
#include <math.h> 
#include 1

1rb.h11 

extern struct CUrrentTrajectory theTrajectory; 

#define GEARO 
#define GEARl 
#define GEAR2 
#define GEAR3 
#define GEAR4 

0.3486111111111111111 
1.0 
0.9166666666666666667 
0.3333333333333333333 
0.0416666666666666667 

void gear5(double tstep) 
{ 

int i, j ,k; 
double cl,c2,c3,c4,crvl,crv3,crv4,crv5; 
double **Posl,**Pos2,**Pos3,**Pos4,**Pos5,**Vell,**Vel2,**Vel3,**Vel4,**Vel5; 
double **gpl,**gp2,**gp3,**gp4,**gp5,**gml,**gm2,**gm3,**gm4,**gm5; 
double **PosR, **VelR, **Poscorr, **Velcorr; 

if(theTrajectory.istep>=theTrajectory.shear step) { 
/* Gentle ramp for preshearing 

-

} 

theTrajectory.strain rate=4.5+2.5*(theTrajectory.istep -
-theTrajectory.fstep)/15000.0; */

theTrajectory.strain rate=STRAIN RATE; 
theTrajectory.strain+•tstep*LY•theTrajectory.strain_rate; 

else { theTrajectory.strain_rate=o.o;} 

Posl=theTrajectory.rp; Pos2=theTrajectory.grp(O]; Pos3=theTrajectory.grp(l]; 
Pos4=theTrajectory.grp(2]; Pos5=theTrajectory.grp(3]; 
Vell=theTrajectory.P; Vel2=theTrajectory.gP[O]; Vel3•theTrajectory.gP[l]; 
Vel4=theTrajectory.gP[2]; Vel5=theTrajectory.gP[3]; 
gpl=theTrajectory.p; gp2=theTrajectory.gp(O]; gp3=theTrajectory.gp(l]; 
gp4=theTrajectory.gp(2]; gp5•theTrajectory.gp(3]; 
gml=theTrajectory.m; gm2=theTrajectory.gm(O]; gm3•theTrajectory.gm(l]; 
gm4=theTrajectory.gm(2]; gm5=theTrajectory.gm[3]; 

/* Predictor */ 
cl=tstep; c2=cl•tstep/2.0; c3=c2•tstep/3.0; c4=c3*tstep/4.0; 
for(i•l;i<=NOIM;i++) {. 

for(j=l;j<=NPART;j++) { 
Posl(i](j]+=cl*Pos2[iJ[jJ+c2*Pos3(i][j)+c3*Pos4[i][jJ+c4*Pos5[i][j); 
Pos2(i][j]+=cl*Pos3[iJ[jJ+c2*Pos4[i][j]+c3*Pos5(i](j]; 
Pos3[iJ[j)+•cl*Pos4[i][jJ+c2•Pos5[iJ[j]; Pos4[i][j]+-cl•Pos5[i][j]; 
Vell[iJ[j]+=cl*Vel2[iJ[jJ+c2*Vel3(i][j)+c3*Vel4[i](j)+c4*Vel5[i)[j]; 
Vel2[i][j)+=cl*Vel3[i](j)+c2*Vel4[i][j)+c3*Vel5[i][j]; 
Vel3[i](j]+=cl*Vel4[i][j)+c2*Vel5[i][j]; Vel4[i][j]+=cl*Vel5[i][j]; 

gpl[i][j]+=cl*gp2[i][j]+c2*gp3[i][j]+c3*gp4[i](j]+c4*gp5(i][j]; 
gp2[i][j]+=cl*gp3[i][j)+c2*gp4(i][j]+c3*gp5[i][j]; 



} 

} } 

gp3[i][j]+=cl*gp4[i][j]+c2*gp5[i][j]; gp4[i][j]+=cl*gp5[i][j]; 
gml[i][j]+=cl*gm2[i][j]+C2*gm3[i][j]+C3*gm4[i](j]+c4*gm5[i][j]; 
gm2[i][j]+=cl*gm3[iJ[jJ+c2*gm4[iJ[jJ+c3*gm5[i][jJ; 
gm3[i][jJ+=cl*gm4[iJ[j]+c2*gm5(iJ[j]; gm4[iJ[j]+=cl*gm5(i][jJ; 

/* Evaluate right hand sides (forces). */ 
rh_sides(); 

/* Corrector */ 
crvl=GEARO*cl; crv3=GEAR2*cl/c2; crv4=-GEAR3*cl/c3; crv5-GEAR4*cl/c4; 
Poscorr=dmatrix(l,NDIM,1,NPART); Velcorr•dmatrix(l,NDIM,1,NPART); 

PosR=theTrajectory.Rrp; 
VelR=theTrajectory.RP; 
for(i=l;i<=NDIM;i++) { 

for(j=l;j<=NPART;j++) { 
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Poscorr[i][j]=PosR(i][j]-Pos2[i][j]; Velcorr[i][jJ=VelR[i][j]-Vel2[iJ[j]; 
Posl[i][j]+•crvl*Poscorr[i][j]; Pos2[iJ[j)=PosR[i][j]; 
Pos3[i][j]+=crv3*Poscorr[i][j]; Pos4[i][j]+=crv4*Poscorr[i][jJ; 
PosS(i][j]+=crvS*Poscorr[iJ[jJ; Vell[i][j]+•crvl*Velcorr[i][j]; 
Vel2[iJ[jJ=VelR[iJ[j]; Vel3[iJ[jJ+=crv3*Velcorr[i][jJ; 
Vel4[i][j]+=crv4*Velcorr[i][j]; Vel5[i][j]+=crv5*Velcorr[i][j]; 

} } 
PosR=theTrajectory.Rp; 
VelR=theTrajectory.Rm; 
for(i=l;i<=NDIM;i++) { 

for(j=l;j<=NPART;j++) { 

} } 

Poscorr[i][j]=PosR[i][j]-gp2[i][j]; Velcorr[i][j]=VelR[i][j]-gm2[i][j]; 
gpl[i][j]+=crvl*Poscorr[i][j]; gp2[i][j]=PosR[i][j]; 
gp3[i][j]+•crv3*Poscorr[i][j]; gp4[i][j]+=crv4*Poscorr[i][j]; 
gp5[i][j]+•crv5*Poscorr[i](j]; gml(i](j]+•crvl*Velcorr(i][j]; 
gm2[i][j]•VelR[i][j]; gm3(i][j]+=crv3*Velcorr[i][j]; 
gm4[i][j]+-crv4*Velcorr[i][j]; gm5[i][j]+•crv5*Velcorr[i][j]; 

/* Release memory. */ 
free dmatrix(Poscorr,1,NDIM,1,NPART); 
free:dmatrix(Velcorr,1,NDIM,1,NPART); 

void rh sides(void) { 
int f;-j; 
double **rp,**P,**P,**m,**Rrp,**RP,**Rp,**Rm; 
double num,numst,den,alpha,lambda,tl,t2,t3; 

rp=theTrajectory.rp; P-theTrajectory.P; 
p=theTrajectory.p; m-theTrajectory.m; 
Rrp=theTrajectory.Rrp; RP=theTrajectory.RP; 
Rp=theTrajectory.Rp; Rm•theTrajectory.Rm; 

/* Get Gay-Berne forces */ 
gay_berne (); 

/* Compute the right hand sides */ 
if(theTrajectory.istep<theTrajectory.fstep+NSEQUIL+NSMIC) { 

/* Translational equations */ 
for(i=l;i<sNDIM;i++){ 

for(j=l;j<=NPART;j++){ 
Rrp(iJ(jJ=P(i](j]*0.5; /* 0.5 for mass */ 



RP[i][j]=theTrajectory.pot_forces(i][j]; 
} } 
/* Rotational equations */ 
for(j=l;j<=NPART;j++){ 

} } 

tl=m[l][j]*IIl; t2=m[2][j]*II2; t3=m[3](j]*II3; 
Rp[l][j]=t2*p(3][j]-t3*p[2][j]; 
Rp[2][j]=t3*p[l][j]-tl*p[3][j]; 
Rp[3][j]=tl*p[2][j]-t2*p[l][j]; 
lambda=l.O/(p[l][j]*p[l][j]+p[2][j]*p[2][j]+p[3][j]*p[3][j]); 
lambda*=(p[l][j]*Rp[l][j]+p[2][j]*Rp[2][j]+p[3][j]*Rp[3][j]); 
Rp(l][j]-=lambda*p(l](j]; 
Rp[2][j]-=lambda*p(2][j]; 
Rp[3] [j]-=lambda*p[3] [j]; 
Rm[l][j]•t2*m[3][j]-t3*m[2][j]+theTrajectory.rot_forces(l][j]; 
Rm[2][j]=t3*m[l][j]-tl*m[3][j]+theTrajectory.rot_forces(2][j]; 
Rm[3][j]=tl*m[2][j]-t2*m[l][j]+theTrajectory.rot_forces[3][j]; 

if(theTrajectory.istep>=theTrajectory.fstep+NSEQUIL+NSMIC) { 
/* get alpha */ 
num-o.o;den=O.O;numst=o.o; 
for(i=l;i<=NDIM;i++) { 

for(j=l;j<=NPART;j++) { 
den+=P(i](j]*P(i][j]; 
num+=P[i][j]*theTrajectory.pot_forces(i][j]; 

} } 
for(j=l;j<=NPART;j++) numst+=P[l][j]*P[2][j]; 
alpha=(num-theTrajectory.strain_ra�e•numst)/den; 

/* Translational equations */ 
for(j=l;j<=NPART;j++){ 

Rrp[l][j]=P[l][j]*O.S+theTrajectory.strain rate*rp(2][j]; 
Rrp[2][j]=P[2](j]*0.5; Rrp(3][j]=P[3][j]*075; 
RP[l](j]=theTrajectory.pot_forces(l][j]-theTrajectory.strain_rate 

*P[2](j]-alpha*P[l][j];
RP[2][j]=theTrajectory.pot_forces(2][j]-alpha*P[2](j]; 
RP[3][j]=theTrajectory.pot_forces(3][j]-alpha*P(3](j]; 

} 
/* Rotational equations */ 
den=o.o;num=o.o; 
for(j=l;j<=NPART;j++){ 

t1=m(l][j]*II1; t2=m(2][j]*II2; t3=m[3][j]*II3; 
Rp[l][j]=t2*p(3][j]-t3*p[2][j]+theTrajectory.strain_rate*p[2][j]; 
Rp[2][j]=t3*p(1][j]-tl*p[3][j]-theTrajectory.strain_rate*p(l][j]; 
Rp(3][j]=t1*p(2][j]-t2*p[l][j]; 
lambda=l.O/(p(l](j]*p(l][j]+p(2](j]*P[2](j]+p(3][j]*P[3][j]); 
lambda*=(p(l](j]*Rp(l][j]+p[2][j]*Rp[2][j]+p(3][j]*Rp(3](j]); 
Rp(l][j]-=lambda*p(l][j]; 
Rp[2][j]-=lambda*p(2][j]; 
Rp[3][j]-=lambda*p(3](j]; 
Rm[l](j]=t2*m[3][j]-t3*m[2][j]+theTrajectory.rot_forces(l](j] 

+theTrajectory.strain rate*m(2][j];
Rm[2][j]=t3*m[l](j]-tl*m[3](j]+theTrajectory.rot_forces(2][j] 

-theTrajectory.strain_rate*m{l][j];
Rm[3][j]=tl*m[2][j]-t2*m[l][j]+theTrajectory.rot_forces(3][j]; 
den+=tl*m[l][j]+t2*m[2][j]+t3*m[3][j]; 
num+=tl*Rm[l][j]+t2*Rm[2][j]+t3*Rm(3][j]; 

} 
lambda=num/den; 
for (j=l; j<=NPART;j++) { 
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} } } 

Rm[l][j]-=lambda*m[l][j]; 
Rm[2][j]-=lambda*m[2][j]; 
Rm[3][j]-=lambda*m[3][j]; 
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/* rk4.c */ 

/* This routine perfcrms the Runge-Kutta integraticn. Not 
used in production runs - cnly te compare the energy 
and temperature flows in the gear5 routine. 

*/ 

#include <stdio.h> 
#include <math.h> 
#include "rb.h" 
extern struct currentTrajectcry theTrajectcry; 

vcid rk4(dcuble dt) { 
int i, j ,k,kml.; 
double k1,**krp(4],**kP[4],**kp[4],**km[4],**irp,**iP,**ip,**im; 

if(theTrajectcry.istep>=theTrajectcry.shear step) { 
theTrajectcry.strain rate=STRAIN RATE; -

} 
- -

else { theTrajectcry.strain_rate=O.O;} 

fcr(i=O;i<=3;i++) { 
krp[i)=dmatrix(l,NDIM,1,NPART); kP[i)=dmatrix(l,NDIM,1,NPART); 
kp[i]=dmatrix(l,NDIM,1,NPART); km[i)=dmatrix(l,NDIM,1,NPART); 

} 
irp=dmatrix(l.,NDIM,1,NPART); iP==dmatrix(l.,NDIM,1,NPART); 
ip=dmatrix(l.,NDIM,1,NPART); im=dmatrix(l.,NDIM,1,NPART); 

/* Save initial positions and velccities. */ 
fcr(i=l;i<=NDIM;i++) { 

for(j=l;j<•NPART;j++) { 
irp[i][j]=theTrajectcry.rp(i][j]; iP[i][j]=theTrajectcry.P[i][j]; 
ip[i][j]=theTrajectcry.p(i][j]; im[i][j]=theTrajectcry.m[i][j]; 

} } 
rh sides(); 
/*-Save k[l]. */ 
fcr(i=l;i<=NDIM;i++) { 

for(j=l;j<=NPART;j++) { 
krp[O][i)[j]=dt*theTrajectcry.Rrp[i][j]; 
kP[O][i][j]=dt•theTrajectcry.RP[i][j]; 
kp[O][i][j]=dt*theTrajectcry.Rp(i][j]; 
km[O][i][j]=dt*theTrajectcry.Rm[i)[j]; 

} } 

/* Get cther ks. */ 
fcr(k=l;k<=3;k++) { 

/* set pcs and vel first. */ 
kml=k-l; kl=((int)(k+3)/3)/2.0; 
for(i•l;i<=NDIM;i++) { 

fcr(j=l;j<•NPART;j++) { 
theTrajectcry.rp[i][j]=irp[i](j]+krp[kml.][i)[j]*kl.; 
theTrajectcry.P[i][j]=iP[i][j]+kP[kml][i)[j]*kl.; 
theTrajectcry.p[i][j]=ip(i][j]+kp[kml][i)[j]*kl; 
theTrajectcry.m(i][j]=im[i)[j]+km[kml][i)[j]*kl; 

} } 
/* Call forces - we need te adjust the strain. */ 
theTrajectcry.strain+m0.5*(k%2)*dt*LY*theTrajectcry.strain_rate; 
rh sides(); 
/*-Save kpcs's and kvcl's. */ 
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} 

for(i=l;i<=NDIM;i++) { 
for(j=l;j<=NPART;j++) { 

krp[kJ(iJ(jJ=dt*theTrajectory.Rrp(iJ[j]; 
kP[kJ(i](j]=dt*theTrajectory.RP[i][j]; 
kp[k][i][j]=dt*theTrajectory.Rp[i][j]; 
Jcm[k][i)[j]-dt*theTrajectory.Rm(i)[j]; 

} } } 
/* Get positions and velocities. */. 
for(i=l;i<=NDIM;i++) { 

for(jal;j<=NPART;j++) { 
theTrajectory.rp[i](j]=irp(i)[j]+(krp(O](i](j]+ 
2.0*krp(l][i](j]+2.0*krp[2](i][j]+krp(3][i][j])/6.0; 
theTrajectory.P[i](j]•iP[i][jJ+(kP[O][i](j]+ 
2.0*kP[l][i][j]+2.0*kP[2][i][j]+kP[3][i](j])/6.0; 
theTrajectory.p(i][j]•ip(iJ[j]+(kp[O][i](j]+ 
2.0*kp[lJ[i](j]+2.0*kp[2][iJ[j]+kp[3][i][j])/6.0; 
theTrajectory.m(i][j]=im[i][jJ+(km[O][i][j]+ 
2.0*km[l][i](j]+2.0*km[2][i][j]+km[3][i][j])/6.0; 

} } 

for(i=O;i<=3;i++) { 
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free dmatrix(krp(i],1,NDIM,l,NPART); free dmatrix(kP[i],1,NDIM,1,NPART); 
free:dmatrix(kp[i],1,NDIM,1,NPART); free_dmatrix(km[i],1,NDIM,1,NPART); 

} 
free dmatrix(irp,1,NDIM,1,NPART); free dmatrix(iP,1,NDIM,1,NPART); 
free:dmatrix(ip,1,NDIM,1,NPART}; free_dmatrix(im,1,NDIM,1,NPART); 



/* leap_frog.c */ 

/* This routine performs the leap-frog integration. The routine is net 
complete since it does net incorporate rotational equations of motion. 
Used to test energy and temperature flows, not used in the 
production runs. The mass of a single particle is 2. 

*/ 

#include <stdio.h> 
#include <math.h> 
#include "rb.h" 

extern struct CUrrentTrajectory theTrajectory; 

void leap(double tstep) 
{ 

int i,j,nwhile; 
static double alpha=o.o; 
double **Pos,**Vel,**Forces, **half_vel,oalpha,alpha_coeff, 

htstep,epsilon,num,den,numst,hgts,hgts2; 

Pos=theTrajectory.rp; Vel•theTrajectory.P; 

if(theTrajectory.istep>•theTrajectory.shear step) { 
theTrajectory.strain rate=STRAIN RATE; -
theTrajectory.strain+=tstep*LY*theTrajectory.strain_rate; 

} 
else { theTrajectory.strain_rate=O.o; } 

gay_berne(); 

Forces=theTrajectory.pot_forces; htstep=o.s•tstep; 
if(theTrajectory.istep<theTrajectory.fstep+NSEQUIL+NSMIC) { 
/* to check the velocity form 

for(i=l;i<=NDIM;i++) { 

} 

for(j=l;j<=NPART;j++) { 
Pos(i][j]+=O.S*(Vel[i][j]*tstep+Forces[i][j]*htstep*tstep); 
Vel[iJ[j]+•Forces[i][j)*htstep; 

} 

gay berne(); 
forîi•l;i<=NDIM;i++) { 

for(j=l;j<aNPART;j++) Vel[i][j]+=Forces(i](j]*htstep; 
} */ 
for(i•l;i<=NDIM;i++) { 
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for(j=l;j<aNPART;j++) { 
Vel(i][j]+=Forces(i][j)*tstep; 
Pos(i][j]+cVel[i][j]*htstep; 

/* Vel denotes mass-center momenta */ 
/* o.s for mass */ 

} } 

} 

if(theTrajectory.istep>=theTrajectory.fstep+NSEQUIL+NSMIC) { · 
half vel•dmatrix(l,NDIM,l,NPART); 
epsiÏon=lOO.o; nwhile•O;
while(epsilon>l.Oe-5) { 

alpha coeff=l.0/(1.0+alpha*htstep); 
for(i�l;i<=NPART;i++) { 

half vel[2][i)=alpha_coeff*(Vel[2](i]+htstep*Forces(2](i]); 
half:vel(3][i]=alpha_coeff*(Vel(3][i]+htstep*Forces(3][i]); 



} 
} 
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half_vel(l][i]=alpha_coeff*(Vel(l)[i]+htstep*(Forces(l)[i]-
theTrajectory.strain_rate*half_vel(2. ); 

} 

} 
num•O.O;den=o.o;numst•o.o; 
for(isl;i<=NDIM;i++) { 

for(j=l;j<=NPART;j++) { 
den+3half_vel[i][j]*half_vel(i][j]; 

} } 

num+=half_vel[i][j]*Forces[i][j]; 

for(i=l;i<=NPART;i++) numst+=half vel(l][i]*half vel[2][i]; 
oalpha=alpha; alpha�(num-theTrajeëtory.strain rate•numst)/den; 
epsilonzfabs(l-oalpha/alpha); 

-

if(nwhile>lOO) { 
fprintf(stderr,"*** Number of iterations for alpha > 100\n"); 
fprintf(stderr,"*** See subroutine leap\n"); 
fprintf(stderr,"n=%d o=%.5e alm%.5e ep=%.9e\n", 

break; 
} 
nwhile+=l; 

theTrajectory.istep,oalpha,alpha,epsilon); 

for(i=l;i<•NPART;i++) { 
Vel[2](i]+•(Forces(2][i]-alpha*half_vel(2][i])*tstep; 
Vel[3](i]+•(Forces(3](i]-alpha•half_vel[3][i])*tstep; 
Vel[l][i]+•(Forces(l][i]-alpha*half vel[l][i]-

theTrajectory.strain_rate*half_vel(2][i])*tstep; 
} 
hgts=theTrajectory.strain_rate•htstep; 
hgts2=theTrajectory.strain rate•tstep; 
for(i=l;i<=NPART;i++) { -

/*Pos(l][i]+=Vel[l][i]*htstep+hgts*Pos(2][i]; Pos(2J[iJ+�Vel[2][i]*htstep; 
Pos(3)(i]+-Vel[3][i)*htstep; Pos[l][i]+•hgts•Pos(2)[i];*/ 
Pos(l)[i]+=Vel[l][i)*htstep+hgts2*Pos(2)[i); Pos[2J[iJ+=Vel[2J[iJ*htstep; 
Pos(3)[i)+•Vel[3][i]*htstep; 

} 
free_dmatrix(half_vel,l,NDIM,l,NPART); 
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/* average.c */ 

/* This routine stores average stresses and kinetic anergies and other 
useful quantities. The bin averages are taken over each bin and then the 
global average and the st. dev. are found. 

*/ 

#include <math.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include "rb.h" 
extern struct currentTrajectory theTrajectory; 

void av stress(void) 
{ 

-

static int first•l,scounter--1,*nstepa,counter; 
int i,j,k,kp9,kp18,kp27; 
double tp[9],binav[46],binstdev(46); 
static double **data,avdata[46]; 
FILE *fp; 

if(first) { 

} 

counter--NSEQUIL+NSMIC+NSKIN+NSSHEAR; 
if(counter<BINSIZE) { 

} 

fprintf(stderr,"av stress: BINSIZE must be greater then NSEQUIL+NSMIC+NSKI 
exit(l); 

-

first=O; counter=counter/BINSIZE-1; 
data=dmatrix(O,counter,o,45); nstepa=ivector(O,counter); 

if((theTrajectory.istep-theTrajectory.fstep)IBINSIZE=O) { 
for(i=O;i<•45;i++) avdata(i]•O.O; scounter+•l; 

} 
k=O; 
for(i•l;i<=3;i++) { 

for(j•l;j<=3;j++) { 
tp[k]=theTrajectory.stresspot[i)[j]+theTrajectory.stresstkin[i][j]; 
k+•l.; 

} } 
k•O; 
for(i•l.;i<•J;i++) { 

for(j•l;j<=3;j++) { 
kp9•k+9; kp18•k+18; kp27•k+27; 
avdata[k]+-theTrajectory.stresspot[iJ[j]; 
avdata[kp9J+=kp9; 
avdata[kplS)+=theTrajectory.stresstkin[i][jJ; 
avdata[kp27]+=tp[k]; 
k+=l; 

} } 
avdata(36J+-0.33333333333*(tp[OJ+tp[4]+tp[S)); 
avdata(37]+=tp[4]-tp[O]; avdata[38]+atp(S]-tp[4); 
k=O; 
for(i=l;i<•J;i++) { 

for(j=-=i;j<=J;j++) { avdata[k+39]+=theTrajectory.conf[i)[j]; k++; } 
} 
avdata[45)+=theTrajectory.conf[l)[l]+theTrajectory.conf[2)[2) 

+theTrajectory.conf[3)[3];

if((theTrajectory.istep-theTrajectory.fstep+1)%BINSIZE=O) { 



nstepa(scounter]=-theTrajectory.istep; 
for(i=O;i<=45;i++) data(scounter][i]•avdata(i]/(double)BINSIZE; 
/* get bin averages */ 
for(i=O;i<=45;i++) binav(i]=O.o; 
for(i=O;i<=scounter;i++) { for(j=O;j<=45;j++) binav(j]+=data[i][j];} 
for(i=O;i<=45;i++) binav[i]/=(scounter+l); 
for(i=O;i<=45;i++) binstdev[i]=o.o; 
for(i=O;i<=scounter;i++) { 

for(j=O;j<=45;j++) { 
binstdev(j]+-(data(iJ[jJ-binav(j])*(data[iJ[j]-binav(j]); 

} } 
if(scounter>O) { for(i•O;i<=45;i++) binstdev(i)/•scounter; } 
for(i=O;i<=45;i++) binstdev(i]•sqrt(binstdev(i]); 
if((fp=-fopen(STORESTRESS,"w11))-NULL) 

{ fprintf(stderr,"Cannot open file (first)\n"); exit(l); } 
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fprintf(fp," nstep Ppotll Ppotl2 Ppot13 Ppot21 Ppot22 
for(i=O;i<sscounter; i++) 

fprintf(fp,"%7d %10.3e %10,Je %10.Je %10.Je %10.3e %10.Je %10.Je %10.Je %1 
nstepa[i],data[i)[OJ,data[i)[l],data[i][2],data[i][J], 
data[i)[4],data(i)[5],data(i](6],data[i][7],data(i)[8]); 

/* fprintf(fp,"\n nstep Ppoti11 Ppoti12 Ppoti13 Ppoti21 Ppot 
for(i=O;i<=scounter; i++) 

fprintf(fp,"%7d %10.Je %10.Je %10.3e %10.3e %10.3e %10.Je %10.Je %10.3e %1 
nstepa(i] ,data(i] (9) ,data[i] [10] ,data(il[ll] ,data[i] [12], 
data[i][13),data(i)(l4),data[i][l5),data[i][l6),data(i)[l7]); */ 

fprintf(fp,"\n nstep ptkinll ptkin12 Ptkinl3 Ptkin21 ptkin2 
for(i=O;i<=scounter; i++) 

fprintf(fp,"%7d %10.Je %10.Je %10.Je %10.Je %10.Je %10,Je %10.Je %10.Je %1 
nstepa[i],data(i](l8],data[i][l9],data[i][20),data(i)[21], 
data(i][22),data(i)[23],data[i][24),data(i][25],data[i][26]); 

fprintf(fp,"\n nstep Ptotll ptot12 Ptot13 Ptot21 ptot22 
for(i=O;i<•scounter; i++) 

fprintf(fp,"%7d %10.3e %10.Je %10.3e %10.Je %10.3e %10.Je %10.Je uo.Je %1 
nstepa(i],data(i][27],data(i][28],data(i][29),data(i][J0], 
data(i][Jl],data(i)[32J,data[i][33),data[i][34),data(i)[35]); 

fprintf(fp,"\n nstep cotell cote12 cote13 cote22 cote23 
for(i=O;i<=scounter; i++) 

fprintf(fp,"%7d %10.3e %10.Je %10,Je %10.Je %10.3e %10.Je %10.Je\n", 
nstepa(iJ,data(iJ[39],data[i)[40],data(i][41),data(i)[42), 
data[i][43],data(i][44],data[i][45]); 

fprintf (fp, "\n nstep Press Nl N2\n"); 
for(i=O;i<=scounter; i++) 

fprintf(fp,"%7d %10.Je %10.Je %10.Je\n", 
nstepa(i),data[i][36],data[i)[37],data[i][38]); 

fprintf(fp,"\n"); 
for(i=O;i<=S;i++) { 

j=i+l8; k=i+27; 
fprintf(fp,"%3d %12.Se (+/-)%9.2e %3d %12,Se (+/-}%9.2e %Jd %12.Se (+/-)%9 

binav[i),binstdev(i],j,binav[j],binstdev(j),k,binav(k],binstde 
} 
fprintf(fp,"\n"); 
/* for(i=9;i<=l7;i++) 

fprintf(fp,"%3d %12.Se (+/-)%12.Se\n",i,binav[i],binstdev(i]); 
fprintf(fp,"\n"); 
for(i=l8;i<=26;i++) 

fprintf(fp,"%3d %12.Se (+/-)%12.Se\n",i,binav[iJ,binstdev(iJ); 
fprintf(fp, 11\n"); 
for(i=27;i<=JS;i++) 

fprintf(fp,"%3d %12.Se (+/-)%12.Se\n",i,binav[i],binstdev[i]); 
fprintf(fp,"\n"); */ 



} 
} 

for(i=J6;i<=JS;i++) 
fpr.intf (fp, "%Jd U2. Se (+/-) U2. Se\n", i,binav( i] ,binstdev( i)); 

fprintf(fp, 11\n"); 
for(i=J9;i<=45;i++) 

fprintf(fp,"%Jd %12.Se (+/-)%12.Se\n",i,binav(i],binstdev(i]); 
fprintf(fp,"\xOC\n"); 
fclose(fp); 
if(theTrajectory.istep==theTrajectory.lstep) { 

free_ivector(nstepa,o,counter); free_dmatrix(data,O,counter,o,45); 
} 

void av results(void) { 
statië char c(6)(80); 
static int first=l,scounter=-1,*nstepa,counter,intstore[JJ); 
int j,i; 
static float floatstore(15); 
float store(17]; 
static double **data,avdata[l7]; 
double binav(17],binstdev(17]; 
FILE *fp; 

store[O]•(float)theTrajectory.strain; 
store[l]=(float)theTrajectory.rtemp; 
store[2]=(float)theTrajectory.rekin; 
store[J]=(float)theTrajectory.ttemp; 
store[4]=(float)theTrajectory.tvel; 
store[SJ-(float)theTrajectory.tekin; 
store(6]=(float)theTrajectory.epot; 
store[7]•(float)theTrajectory.etot; 
store(S)=(float)theTrajectory.mz; 
store(9)=(float)theTrajectory.dor; 
store(lO]•(float)theTrajectory.vor; 
store(ll]=(float)theTrajectory.tvelor; 
store(12]=(float)theTrajectory.rvelor; 
store(13]•(float)theTrajectory.ncut; 

if(first) { 
first=O; 
intstore(O]•NDIM; intstore(l]=NPART; intstore[2)=NLAYERS; 
intstore[J]=NCALPAR; intstore(4]•RESTART; intstore(S]=NSEQUIL; 
intstore[6)•NRESVEL; intstore[7]=NSMIC; intstore[S]•NSKIN; 
intstore(9]•NSSHEAR; intstore(lO]=NSTORE; intstore[1l]=NTRAJSTORE; 
intstore[12]=BINSIZE; intstore(lJ)•-1; intstore(14]•-1; 
intstore(lS)=-1; intstore(16)=-1; intstore[17]=-l; 
intstore[lS]=-1; intstore(19]=-1; intstore(20]=-l; 
intstore[21]=-1; intstore(22]=-l; intstore(23]=-l; 
intstore(24]=-l; 

#ifdef double 
intstore(25]=1; 

#else 
intstore(25]=0; 

#endif 
intstore(26]=-1; intstore(27]=-1; intstore[28]=-1; 
intstore[29]=-1; intstore(JOJ=-1; intstore[Jl]=-1; 
intstore[J2]=-1; 

floatstore[O]=LX; floatstore[l]=LY; floatstore(2]=LZ; 
floatstore(J]=TREF; floatstore(4]=RCUTOFF; floatstore(S]=TSTEP; 
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} 

floatstore[6]=theTrajectory.strain rate; floatstore[7]=-l.O;
floatstore[B]=-1.0; 

-

strcpy(c[O],STORENAME); strcpy(c(l],RESTORENAME); 
strcpy(c[2],STORERESULT); strcpy(c(J],STORETRAJ); 

strcpy(c[4],STORESTRESS); strcpy(c[5],STOREVELOCITY); 

counter=NSEQUIL+NSMIC+NSKIN+NSSHEAR; 
if(counter<BINSIZE) { 
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fprintf(stderr,"av_result: BINSIZE must be greater then NSEQUIL+NSMIC+NSKI 
} 
counter-counter/BINSIZE-1; 

data•dmatrix(O,counter,0,12); nstepa=ivector(O,counter); 
} 
if((theTrajectory.istep-theTrajectory.fstep)tBINSIZE=O) 

{ for(i=O;i<=lJ;i++) avdata[i]=O.O; scounter+=l; } 
for(i-o;i<=lJ;i++) avdata[i]+=store(i]; 
if((theTrajectory.istep-theTrajectory.fstep+l)tBINSIZE-=O) { 

nstepa(scounter]=theTrajectory.istep; 

} 

for(i-o;�<=lJ;i++) data[scounterJ[i]=avdata[i]/(double)BINSIZE; 
for(i•O;i<=lJ;i++) binav[i]=O.O; 
for(i•O;i<•scounter;i++) { for(j•O;j<•lJ;j++) binav(j]+-data[i][j];} 
for(i•O;i<mlJ;i++) binav[i]/=(scounter+l); 
for(i•O;i<•lJ;i++) binstdev(i]•O.o; 
for(i=O;i<sscounter;i++) { 

for(j�o;j<=lJ;j++) { 
binstdev[j]+•(data[i][jJ-binav[j])*(data[i][j]-binav[j]); 

} } 
if(scounter>O) { for(i=O;i<=lJ;i++) binstdev[i]/=scounter; } 
for(i=O;i<slJ;i++) binstdev[i]•sqrt(binstdev[i]); 
if((fpa:fopen(STORERESULT,"w"))=-NULL) 

{ fprintf(stderr,"Cannot open file (storedata)\n"); exit(l); } 
for(i•O;i<:aJ2;i++) fprintf(fp,"%d 11 ,intstore[i]); 
fprintf(fp,"\n"); 
for(i=O;i<=B;i++) fprintf(fp,"%2.6lf ",floatstore[i]); 
fprintf(fp,"\n"); 
for(i=O;i<=S;i++) {fprintf(fp,c(i]);fprintf(fp," ");} 
fprintf(fp,"\n"); 
fprintf (fp," istep ncut strain rtemp rekin 
for(i=O;i<=scounter;i++) 

fprintf(fp,"%7d %5.lf U4.7e %14.7e %14.7e U4.7e %14.7e %14.7e\n", 
nstepa[i],data[i][lJ],data[i][OJ,data(i](lJ, 
data(i](2],data[i][3J,data(i][4],data[i][5]); 

fprintf ( fp, 11 \n istep epot etot mz dor 
for(i=O;i<=scounter;i++) 
· fprintf(fp,"%7d U2.5e %12.Se %12.Se U2.5e %12.Se %12.Se %12.Se\n",

nstepa[i],data[i)[6J,data[i][7),data(i][8], 
data(i][9),data[i][10],data[i][ll],data(i][l2]); 

fprintf(fp, 11\n"); 
fprintf(fp,"ncut U2.5e (+/-)%12.5e\n",binav[13],binstdev[l3]); 
for(i•O;i<=12;i++) 

fprintf(fp,"%4d u2.se (+/-)%12.Se\n",i,binav(i],binstdev[i]); 
fprintf(fp,"\xOC\n"); 
fclose(fp); 
if(theTrajectory.istep==theTrajectory.lstep) 

{ free_ivector(nstepa,O,counter); free_dmatrix(data,o,counter,o,13);} 



void av velocity(void) 
{ 

-

static int first=l,scounter=-1,•nstepa,counter; 
int i, j ,k; 
static double **data,avdata[lB]; 
double binav(lB],binstdev(lB]; 
FILE *fp; 

if(first) { 
counter-NSEQUIL+NSMIC+NSKIN+NSSHEAR; 
if(counter<BINSIZE) { 
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fprintf(stderr,"velocitystore: BINSIZE must be greater then NSEQUIL+NSMIC+ 
} 

} 

first=O; counter-counter/BINSIZE-1; 
data=dmatrix(O,counter,0,17); nstepa=ivector(O,counter); 

if((theTrajectory.istep-theTrajectory.fstep)%BINSIZE=-O) { 
for(i=O;i<=17;i++) avdata[i]=O.o; scounter+=l; 

} 
avdata[O]+•theTrajectory.ktx; avdata[l]+•theTrajectory.kty; 
avdata(2]+=theTrajectory.ktz; avdata[6]+=theTrajectory.krx; 
avdata[7]+•theTrajectory.kry; avdata[S]+-theTrajectory.krz; 
avdata[3]+=theTrajectory.ortx; avdata[4]+•theTrajectory.orty; 
avdata[S]+•theTrajectory.ortz; avdata(9]+•theTrajectory.orrx; 
avdata[lO]+•theTrajectory.orry; avdata(ll]+•theTrajectory.orrz; 
avdata[12]+=theTrajectory.dorx; avdata[13]+•theTrajectory.dory; 
avdata[14]+•theTrajectory.dorz; avdata(15]+=theTrajectory.momx; 
avdata[16]+=theTrajectory.momy; avdata(l7]+=theTrajectory.momz; 
if((theTrajectory.istep-theTrajectory.fstep+1)%BINSIZE=O) { 

nstepa(scounter]•theTrajectory.istep; 
for(i=O;i<=17;i++) data(scounter][i)•avdata[i]/(double)BINSIZE; 
for(i=O;i<•17;i++) binav(i]•O.o; 
for(i=O;i<•scounter;i++) { for(j•O;j<•17;j++) binav(j]+=data[i][j]; } 
for(i•O;i<•17;i++) binav[i]/•(scounter+l); 
for(i=O;i<=17;i++) binstdev(i]=O.O; 
for(i=O;i<•scounter;i++) { 

for(j•O;j<•l7;j++) { 
binstdev(j]+•(data(i][j]-binav(j])*(data[i][j]-binav[j]); 

} } 
if(scounter>O) { for(i=O;i<=17;i++) binstdev(i]/=scounter; } 
for(i•O;i<=17;i++) binstdev(i]•sqrt(binstdev(i]); 
if((fp•fopen(STOREVELOCITY,"w"))z=NULL) { 

fprintf(stderr,"Cannot open file (velocitystore)\n"); exit(l); 
} 
fprintf ( fp, 11 istep Ktx Kty Ktz ortx orty 
for(i=O;i<=scounter; i++) { 

fprintf(fp,"%7d tl0.3e U0.3e %10.3e %10.3e %10.3e %10.3e %10.3e %10.3e %1 
nstèpa(i],data[i][O],data(i][l],data[i][2],data[i][3], 
data[i][4],data(i](5],data[i][l2],data(i](l3],data(i][l4]); 

} 
fprintf(fp,"\n"); 
fprintf (fp, 11 istep -X<rx Kry Krz orrx orry 
for(i=O;i<=scounter; i++) { 

fprintf(fp,"%7d tl0.3e tl0.3e %10.3e tl0.3e tl0.3e tl0.3e tl0.3e %10.Je %1 
nstepa(i],data[i](6],data(i][7],data(i][B],data(i](9], 

data(i][lO],data(i][l1],data[i][l5],data(i](l6],data(i][l7]); 
} 
fprintf(fp,"\n"); 
for(i=O;i<=5;i++) { 

k=i+6; 



} 
} 

fprintf(fp,"%3d %12.Se (+/-)%12.Se 
} 
fprintf(fp,"\n"); 
for(i=12;i<•17;i++) 

%3d %12.Se (+/-)%12.Se\n",i, 

fprintf(fp,"%3d %12.Se (+/-)%12.Se\n",i,binav(i],binstdev(i]); 
fprintf(fp,"\xOC\n"); 
fclose(fp); 
if(theTrajectory.istep==theTrajectory.lstep) { 

free ivector(nstepa,O,counter); 
free:dmatrix(data,O,counter,0,45); 

} 
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/* utility.c */ 

/* Contains some utility routines - all but last three taken from 
"Numerical Recipes in C". The last three exchange order of _bytes 
in binary numbers - there are useful when restarting a simulation 
on big-endian machine with a restart file created on a 
small-endian machine (e.g. 386/ESIX <---> SPARC/SunOS). 

*/ 

#include <malloc.h> 
#include <stdio.h> 

double **dmatrix(int nrl, int nrh, int ncl, int nch) 
{ 

void md�rror(char *P)i 
int 1.; 
double ••m; 

/* Allocate pointers to raws */ 
m•(double **)malloc((unsigned) (nrh-nrl+l)*sizeof(double*)); 
if (lm) mderror("allocation failure 1 in dmatrix()")i 
if ( lm) printf ("allocation failure 1 in dmatrix() \n"); 

/* Allocate raws and set pointers to them */ 
m -= nrl; 
for(i=nrl;i<=nrh;i++) { 

} 

m[i]=(double *)malloc((unsigned) (nch-ncl+l)*sizeof(double)); 
if(!m[i]) mderror("allocation failure 2 in dmatrix()"); 
if(!m[i]) printf("allocation failure 2 in dmatrix()\n"); 
m(i] -• ncl; 

return m; 
} 

float ••matrix(int nrl, int nrh, int ncl, int nch) 
{ 

void mderror(char *p); 
int i; 
float ••m; 

/* Allocate pointers to raws */ 
m=(float **)malloc((unsigned) (nrh-nrl+l)*sizeof(float*)); 
if (!m) mderror("allocation failure 1 in dmatrix()"); 

/* Allocate raws and set pointers to them */ 
m -- nrl; 
for(i=nrl;i<=nrh;i++) { 

} 

m[i]=(float *)malloc((unsigned) (nch-ncl+l)*sizeof(float)); 
if( !m[i]) mderror("allocation failure 2 in dmatrix() "); 
m[i] -= ncl; 

return m; 
} 

double *dvector(int nl, int nh) 

{ 
void mderror(char *p); 
double •m; 
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} 

/* Allocate a vector */ 
m=(double *)malloc((unsigned) (nh-nl+l)*sizeof(double)); 
if (lm) mderror("allocation failure 1 in dvector() "); 
m -• nl; 
return m; 

float •vector(int nl, int nh) 
{ 

} 

void mderror(char *p); 
float *m; 

/* Allocate a vector */ 
m•(float *)malloc((unsigned) (nh-nl+l)*sizeof(float)); 
if (lm) mderror ( "allocation failure 1 in vector () ") ; 
m -= nl; 
return m; 

int •ivector(int nl, int nh) 
{ 

} 

void mderror(char *p); 
int •m; 

/* Allocate a vector */ 
m-(int *)malloc((unsigned) (nh-nl+l)*sizeof(int)); 
if ( lm) mderror("allocation failure 1 in vector() "); 
m -- nl; 
return m; 

void mderror(char *P) 

{ 

} 

void exit () ; 

fprintf(stderr, "*** ERROR ***\n"); 
fprintf(stderr, 11%s\n", p); 
fprintf(stderr, "*** EXITING ***\n"); 
exit(l); 

void free dmatrix(double **m, int nrl, int nrh, int ncl, int nch) 

{ 
-

} 

int i; 
for(i=nrh;i>=nrl;i--) free((char*)(m[i]+ncl)); 
free((char*)(m+nrl)); 

void free matrix(float **m, int nrl, int nrh, int ncl, int nch) 

{ 
-

} 

int i; 
for(i•nrh;i>mnrl;i--) free((char*) (m[i]+ncl)); 
free( (char*) (m+nrl)); 

void free dvector(double *m, int nl, int nh) 

{ 
-

free((char*) (m+nl)); 

} 
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void free vector(float •m, int nl, int nh) 
{ 

-

free((char*) (m+nl)); 
} 

void free ivector(int •m, int nl, int nh) 
{ 

-

free((char*)(m+nl)); 
} 

void intchange(int •tbc) 
{ 

} 

char *bytel,*byte2,*byte3,*byte4; 
unsigned char store; 

bytel=(char•)tbc; 
byte2=bytel+l; byte3=byte2+1; 
store=*byte4; *byte4=*bytel; 
store=*byte2; *byte2•*byte3; 

byte4-byte3+1; 
*bytel•store;
*byte3=store;

void floatchange(float *tbc) 
{ 

} 

char *bytel,*byte2,*byte3,*byte4; 
unsigned char store; 

bytel=(char*)tbc; 
byte2•bytel+l; byte3•byte2+1; 
store-•byte4; *byte4•*bytel; 
store=*byte2; *byte2=•byte3; 

byte4=byte3+1; 
*bytel=store;
*byte3•store;

void doublechange(double *tbc) 
{ 

} 

char *bytel,*byte2,*byte3,*byte4; 
char *byte5,*byte6,*byte7,*byte8; 
unsigned char store; 

bytel=(char*)tbc; 
byte2=bytel+l; byte3=byte2+1; 
byte5=byte4+1; byte6=byte5+1; 
store=*byte8; *byteS•*bytel;
store=•byte7; *byte7•*byte2;
store=*byte6; *byte6=*byte3;
store=*byte5; *byte5•*byte4;

byte4=byte3+1; 
byte7=byte6+1; byte8=byte7+1; 

*bytel•store;
*byte2•store;
•byteJ=store;
*byte4=store;
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/* urng.c */ 

/* The universal random number generator is described by G. Marsaglia 

*/ 

and A. Zaman in TOWARD A UNIVERSAL RANDOM NUMBER GENERATOR, Statistics 
& Probability Letters 9 (1990) 35-39. 

We have adapted the algorithm to perform calculation on long integers 
(32 bits). This maltes the algorithm less portable but faster. 
The program returns numbers between O and 16 777 215 and it requires 
four initial guesses. gl, g2, g3 must be in the range 1 to 178, and 
net all 1, while g4 may be any integer from o to 168. 

The algorithm that uses floating point calculation was written by 
Jim Butler, and was based on a FORTRAN program posted by David 
LaSalle. Check SIMTEL20 (or serveur on MUSIC) in directories c and 
FORTRAN for listings of these programs. 

According to its authors, this generator "passes all the standard 
tests, and all the latest - more stringent - tests for randomness, 
has an incredibly long period 2Al44 ••• 11• 

The generator is 1.3 times slower than RANP. 

#define Gl 12 /* 4 */ 
#define G2 34 /* 5 */ 
#define GJ 56 /* 6 */ 
#define G4 78 /* 7 */ 

int urng(void) 
{ 

static unsigned int uni[97]; /* register for Fibonacci */ 
static unsigned int •pto97=uni-l; /* initialized for not accessed */ 
static unsigned int *pto33=-uni-l; /* initialized for not accessed */ 
static int first=1; /* to initialize the generator */ 
static unsigned int c=362436,d=7654321,dm=16777213; 
int guess_glsG1,guess_g2=G2,guess_g3=G3,guess_g4-G4; 
int i,j,m; 

if(first) { /* initialize the generator */ 
if (guess_g1<=0

1 
guess_gl>=l79) guess_g1=12;

if (guess_g2<=0 guess_g2>=179) guess_g2=34;
if (guess_g3<=0 c,uess_g3>=179) guess_g3=56;
if (guess_g4<=-1 1guess_g4>=168) guess_g4=78; 
if (guess_gl==l&&guess_g2=l&&guess_g3=1) guess_gl=l2; 
pto97 = uni; 
for(i=O;i<97;i++) { 

for(j=O;j<24;j++) { 
m=(((guess_gl*guess_g2)%179)*guess_g3)%179; 
guess_gl=guess_g2;guess_g2sguess_g3;guess_g3=m; 

} 

} 

guess_g4=(53*guess_g4+1)%169; 
•pto97<<=1;
if((m*guess_g4)&0x20) *pto97+=1; 

pto97++; 

pto97=uni; 
pto97+=96; 
ptoJJ=uni+32; 

/* shift up by one */ 
/* get a sixth bit */ 

/* point to 97th element 
/* point to 33rd element 

*/ 
*/ 



first-=O; 
} 

/* This is the generator */ 
if(pto97<uni) pto97=uni+96; 
if(pto33<uni) pto33=uni+96; 
*pto97=(*pto97-•pto33)&0xffffff;
if(c>=d) c-=d;

else c+=(dm-d); 

!* 
/* 
!* 
/* 

start calculation of random */ 
numbers 
update Fibonacci mod(2A 24) */ 
update arithmetic sequence */ 

pto97--; /* update pointers to Fibonacci*/ 

} 

pto33--; 
return((*(pto97+1)-c)&Oxffffff); /* return a random 

/* Generates random variate from the gaussian distribution 
with zero mean and unit standard deviation. Taken from 
Allen and Tildesley, microfiche F. 24. 

*/ 

#define Al 3.949846138 
#define A3 0.252408784 
#define AS 0.076542912 
#define A7 o.008355968 
#define A9 0.029899776 

double gauss(void) 
{ 

int i; 
double sum,r,r2; 

sum=o.o; 
for(i=O;i<l2;i++) sum+•urng()/16777215.0; 
r-(sum-6.0)/4.0; 
r2=-r•r; 
return( ((((A9*r2+A7)*r2+A5)*r2+A3)*r2+Al)*r ); 

} 

number 
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/* ders.c */ 

/* This subroutine calculates derivatives of the Gay-Berne potential 
(phi) using the analytical expressions. As input, it 
accepts two unit vectors pi(J], and pj(J], as well as the 
center-to-center vector r(J]. As output, it gives derv(lO] that 
contains: derv(O]=phi 

derv[l)-pd(phi)/pd(xi)=-pd(pot)/pd(xj) 
derv[2)=-pd(phi)/pd(yi)=-pd(pot)/pd(yj) 
derv[J)-pd(phi)/pd(xi)=-pd(pot)/pd(xj) 
derv[4)=pd(phi)/pd(pxi) 
derv(5]•pd(phi)/pd(pyi) 
derv(6]-pd(phi)/pd(pzi) 
derv[7]-pd(phi)/pd(pxj) 
derv(S]=pd(phi)/pd(pyj) 
derv(9)=pd(phi)/pd(pzj), 

where pd denotes a partial derivative. 
Subroutine pot(double pi[], double pj(], double r[]), accepts the 
same imput as ders() but returns only phi - used to verify the 
results from ders(), not used in production runs. It may be used to 
calculate the derivatives numerically. Note: the Gay-Berne 
parameters are hard-coded in the define statements. 

*/ 

#include <math.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include "rb.h" 

#define KAPPA 
#define K 
#define KAPPAH 
#define KAPPA2 
#define KAPPAN 
#define KH 
#define PI180 

0.566160520607 
0.225148226553 
0.283080260304 

0.320537735095 
0.824295010846 

0.112574113276 
0.017453292520 

void ders(double pi[], double pj(], double r[], double derv[]) 
{ 

double ru(J],rr,rupimpj,rupippj,pipj,sigma,rrms,epsl,eps2; 
double rrms2,rrms6,pippj[3],pimpj[3]; 
double sigma_1,sigma_2,sigma_ls,sigma_2s,eps2_1,eps2_2,eps2_1s,eps2_2s; 
double eps,potp,axi,ayi,azi,bxi,byi,bzi; 
double kele2,exi,eyi,ezi,sig,sigma st,sxi,syi,szi; 
double rrms7,potd,epsl_l,ele2t2,eps1K,sigl,sig2; 

/* calculate model potential */ 
rr=r[O]*r(O]+r[l]*r[l]+r[2]*r[2]; rr=sqrt(rr); 
ru[O]•r(O)/rr; ru[l]=r(l]/rr; ru(2]=r[2]/rr; 
pimpj[O)=pi[O]-pj[O]; pimpj[l]•pi[l]�pj[l]; pimpj[2]=pi[2]-pj[2]; 
pippj[O)=pi[O)+pj[O]; pippj(l]=pi[l)+pj[l); pippj[2):a:pi[2)+pj[2); 
rupimpj=ru(O)*pimpj[O]+ru(l]*pimpj(l]+ru[2)*Pimpj[2]; 
rupippj=ru[O]*pippj[O]+ru[l]*pippj(l]+ru(2]*pippj[2); 
pipj-pi[O]*pj[OJ+pi[l]*pj[l]+pi[2]*pj[2]; 
sigma l=rupippj/(1.0+KAPPA*pipj); 
sigma-2=rupimpj/(1.0-KAPPA*pipj); 
sigma-ls=sigma l*rupippj; sigma 2s=sigma 2*rupimpj; 
sigma-st=l.O/(Î.O-KAPPAH*(sigma=ls+sigma=2s)); sigma=sqrt(sigma_st); 
eps2_Î=rupippj/(1.0+K*pipj); eps2_2=rupimpj/(1.0-K*pipj); 
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} 

eps2_1s=eps2_l*rupippj; eps2_2s=eps2_2*rupimpj; 
eps2=eps2_ls+eps2_2s; eps2=1.0-KH*eps2; 
rrms=1.0/(rr-sigma+l.O); 
rrms2-rrms*rrms; rrms6=rrms2*rrms2*rrms2; 
epsl 1=1.0/(l.O-KAPPA2*pipj*pipj); 
epsl�KAPPAN*sqrt(epsl 1); /* normalize epsl for side-by-side */ 
/* get potential */ -
potp=rrms6*rrms6-rrms6; eps=epsl*eps2*eps2; derv(0)=4.0*potp*eps; 
/* get derivatives over components of r */ 
/** derivatives of epsilon **/ 
axi=(pippj[O)-rupippj*ru(O])/rr; ayi=(pippj[l)-rupippj*ru[l])/rr; 
azi=(pippj(2]-rupippj*ru(2J)/rr; bxi=(pimpj(OJ-rupimpj*ru(OJ)/rr; 
byi=(pimpj(l]-rupimpj*ru(1])/rr; bzi=(pimpj(2J-rupimpj•ru(2])/rr; 
kele2=-2.0*epsl*eps2*K; 
exi=kele2*(eps2 l*axi+eps2 2*bxi); 
eyi=kele2*(eps2-l*ayi+eps2-2*byi); 
ezi=kele2*(eps2-l*azi+eps2-2*bzi); 
/** derivatives-of sigma **/ 
rrms7=rrms6*rrms; 
potd=6.0*(rrms7-2.0*rrms7*rrms6); 
sigl=sigma st•sigma*KAPPAH; 
sxi=potd•{ru(O]-sigl*(sigma_l•axi+sigma_2*bxi)); 
syi=potd*{ru(l]-sigl*(sigma_l*ay�+sigma_2*byi)); 
szi=potd•{ru(2J-sigl*(sigma_l*azi+sigma_2*bzi)); 
/** derivatives over r **/ 
derv[1)=4.0*(potp•exi+eps*sxi); 
derv[2]=4.0*(potp•eyi+eps•syi); 
derv[3)=4.0*(potp•ezi+eps*szi); 
/* get derivatives over unit vectors */ 
/** derivatives of epsilon over pi */ 
sig=KAPPA2*epsl*eps2*epsl l*pipj; /* reuse variables */ 
epslK=epsl*K; kele2•K*epsÏK*(eps2_2*eps2_2-eps2_1*eps2_1); 
sig2•4.0*eps2*potp; e1e2t2•2.0*sig2*eps1K*(eps2_l+eps2_2); 
kele2•sig2*(sig-kele2); 
derv[4]•kele2*pj[O]-e1e2t2*ru(O]; /* over pi */ 
derv[5]•kele2*pj(l]-ele2t2•ru(l]; 
derv[6]=kele2*pj[2)-ele2t2*ru[2); 
/** derivatives of epsilon over pj */ 
ele2t2=2.0*sig2*epslK*(eps2_1-eps2_2); 
derv[7]=kele2*pi[O]-e1e2t2*ru(OJ; /* over pj */ 
derv[S)=kele2*pi(l)-e1e2t2*ru(l]; 
derv(9]=kele2*pi(2]-ele2t2*ru(2J; 
/** derivatives of sigma over pi */ 
sig1•-potd*sigl*2.0*eps; 
kele2=sigl*KAPPA*(sigma_2*sigma_2-sigma_l*sigma_l); 
e1e2t2=2.0*sigl*(sigma l+sigma 2); 
derv(4)+-ele2t2*ru(O]+kele2*pj[O); /* over pi */ 
derv[5]+-ele2t2*ru(l]+kele2*pj[l); 
derv(6]+=ele2t2*ru(2]+kele2*pj[2); 
/** derivatives of sigma over pj */ 
ele2t2=2.0*sigl*{sigma 1-sigma 2); 
derv(7]+•ele2t2*ru(O]+kele2*pi[O); /* over pj */ 
derv[B]+•ele2t2*ru(l]+kele2*pi(l); 
derv[9]+•ele2t2*ru(2]+kele2*pi(2]; 

double pot(double pi[], double pj(J, double r[)) 
{ 

double ru[3J,rr,pipjp,pipjm,rupi,rupj,pipj,sigma,rrms,epsl,eps2; 
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} 

/* calculate modal potential */ 
rr=r(O]*r[O]+r[l]*r[l]+r[2]*r[2]; rr=sqrt(rr); 
ru(OJ=r(OJ/rr; ru(l]=r(l]/rr; ru(2J=r[2]/rr; 
rupi•ru(O]*pi[O)+ru(l]*pi(l)+ru(2]*Pi(2]; 
rupj=ru(OJ*pj(OJ+ru[l]*pj(l]+ru[2J*pj(2]; 
pipj-pi(O)*pj(O]+pi[l]*pj(l]+pi[2)*pj(2]; 
pipjp=(rupi+rupj)*(rupi+rupj); 
pipjm=(rupi-rupj)*(rupi-rupj); 
sigma=pipjp/(1.0+KAPPA*pipj)+pipjm/(l.O-KAPPA*pipj); 
sigma=l.0/sqrt(l.O-KAPPAH*sigma); 
eps2=pipjp/(l.O+K*pipj)+pipjm/(1.0-K*pipj); 
eps2=1.0-KH*eps2; rrms=l.O/(rr-sigma+l.O); 
rrms•rrms*rrms•rrms; rrms•rrms*rrms; 
epsl�KAPPAN/sqrt(l.O-KAPPA2*pipj*pipj); 
return(4.0*epsl*eps2*eps2*(rrms•rrms-rrms)); 
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/* radial.c */ 

/* calculate radial distribution function. This routine has 
hard-coded parameters - may be used only for 256 molecules. */ 

#include <stdio.h> 
#include <math.h> 
#include "rb.h" 
extern struct CUrrentTrajectory theTrajectory; 

void radial ( ) 
{ 

static double ••g; 
double sidehl,sideh2,sideh3,bring,xij,yij,zij,rd,rdpot; 
double posix,posiy,posiz,xj,rdsr,gl,g2,g3,g4,g5,g6,g7,g8,g9,glO,gll,gl2; 
double lon,trans,r,deltar,rho,f,vel,faccm,avcm[lOl]; 
static int first=l,maxcm[lOl],steps=O; 
int i,j,binno; 
FILE *fp,*fp1; 

steps++; 
if(first) { 

g=dmatrix(l,12,0,600); 

} 

for(i•l;i<•l2;i++) { for(j•O;j<=600;j++) g[i][j]=O.O; } 
for(i=O;i<=lOO;i++) { maxcm[i]=O;}; 
first=O; 

/* get xij, yij, zij */ 
sidehl•O.S*LX; sideh2=0.5*LY; sideh3=0.5*LZ; 
for(i=l;i<NPART;i++){ /* outer force loop */ 

posix•theTrajectory.rv[l)[i]; posiy-theTrajectory.rv[2)[i]; 
posiz•theTrajectory.rv(J][i]; 
for(j=i+l;j<•NPART;j++) { /* Inner force loop */ 

xij•posix-theTrajectory.rv[lJ[j]; yij•posiy-theTrajectory.rv[2J[j]; 
zij-posiz-theTrajectory.rv[JJ[j]; 
if(zij<(-sidehJ)) zij+=LZ; if(zij> sidehJ ) zij-•LZ; 
if(xij<(-sidehl)) xij+=LX; if(xij> sidehl ) xij-=LX; 
if(theTrajectory.istep<theTrajectory.shear_step) { 

if(yij<(-sideh2)) yij+•LY; if(yij> sideh2 ) yij-=LY; 
} 
else { 

if(yij> sideh2) { /* ABOVE */ 

} 

yij-•LY; xj=theTrajectory.rv(lJ[j]; xj+•theTrajectory.strain; 
bring•floor(xj/LX+0.5); xj-•(bring*LX); xijaposix-xj; 
if(xij> sidehl ) xij-=LX; if(xij<(-sidehl)) xij+=LX; 

if(yij<(-sideh2)) { /* BELOW */ 

} } 

yij+=LY; xj=theTrajectory.rv[l][j]; xj-=theTrajectory.strain; 
bring=ceil(xj/LX-0.5); xj-=(bring*LX); xij=posix-xj; 
if(xij> sidehl ) xij-=LX; if(xij<(-sidehl)) xij+•LX; 

rd•xij•xij+yij•yij+zij•zij; rdsr-=sqrt(rd); 
binno•(int)(rdsr•JJ.333333333); 
if(binno<OI lbinno>599) { 
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fprintf(stderr,"Wrong binno *** stop (rdsr•%13.Je%13.Je%13.Je%13.Je)\n" 
rdsr,xij,yij,zij); 

exit(l); 
} 
g[l][binno]+=xij•xij/rd; g(2][binno)+=xij•yij/rd; 



g[3J[binno)+•xij•zij/rd; g(4J[binno]+=yij•yij/rd; 
g(SJ[binno]+=yij*zij/rd; g(6)[binnoJ+•zij*zij/rd; 
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/* get transverse and longitudinal */ 
lon•theTrajectory.dorx•xij+theTrajectory.dory*yij+theTrajectory.dorz•zij; 
lon=lon•lon; trans=rd-lon; 

} 

} 

g(7][binno]+=lon/rd; g(S][binnoJ+=trans/rd; 
binno=(int)(sqrt(lon)*33.333333333); 
if(binno<Ollbinno>599) { 

fprintf(stderr,"%13.3e%1J.3e%13.3e%13.3e\n",lon,xij,yij,zij); 
fprintf(stderr,"%13.3e%13.3e%13.3e%13.3e\n11 , 

lon,theTrajectory.dorx,theTrajectory.dory,theTrajectory.dorz); 
fprintf(stderr,"Wrong binno *** stop lon %7d\n",binno); exit(l); 

} 
g[9J[binno]+•l.O; 
binno=(int)(sqrt(trans)*JJ.333333333); 
if(binno<OI jbinno>599) { 

fprintf(stderr,"Wrong binno *** stop trans\n"); exit(l); 
} 
g(lOJ[binno]+=l.O; 

for(i•l;i<•NPART;i++) { 
vel•O.S•sqrt(theTrajectory.P(l][i]*theTrajectory.P[l][iJ+ 

theTrajectory.P(2J[i]*theTrajectory.P[2J[i]+ 
theTrajectory.P[3J[i]*theTrajectory.P(3J[i]); 

binno=(int)(vel*lO.O); 
if(binno>99) binno�99; maxcm[binno)++; 

} 

if(theTrajectory.istep-=theTrajectory.lstep) { 
if ( ( fp•fopen (RADIAL, 11w11 ) ) =-NtJLL) {

fprintf(stderr,"cannot open file\n"); 
exit{l); 

} 
rho-NPART/(LX*LY*LZ); 
for(i=O;i<s599;i++) { 

r-((double)i+0.5)/33.3333333333; 
deltar=0.03; /* change this */ 
f=l.0/(2.0*M_PI*r*r*deltar•rho•steps*NPART); 
gl=g[l][i]*f; g2=g[2][i)*f; g3=g(3J[i]*f; g4-=g[4J[i]*f; 
gS=-g[SJ[i]*f; g6=g(6J[i]*f; g7=gl+g4+g6; 
g8ag[7J[i]*f; g9=-g(8J[i]*f; glO=g8+g9; 
f=l.O/(LX*LX*deltar*rho•steps*NPART); /* twice the volume */ 
g11-g[9J[i]*f; 
f=2.0/(LX*2.0*M_PI*r*deltar*rho*steps*NPART); 
g12=g(10][i]*f; 
fprintf(fp,11%12.3e%12.3e%12.3e%12.3e%12.3e%12.3e%12.3e%12.3e%12.3e%12.3e%l 

r,gl,g2,g3,g4,g5,g6,g7,g8,g9,gl0,gll,gl2); 
} 
free dmatrix(g,l,12,0,600); 
closë(fp); 
if((fpl•fopen(VELDIST,"wb"))-NULL) { 

} 

fprintf(stderr,"Cannot open file\n"); 
exit(l); 

facClD=O.O; 
for(i=O;i<=99;i++) { facC1D+=(double)maxC1D[i]; }; facC1D*=O.l; 
for(i=O;i<=99;i++) { avC1D[i]=(double)maxcm[i]/facC1D; } 
for(i=O;i<=99;i++) { 

fprintf (fpl, "%12e%12. Je\n", (i+0.5) •0.1, avcm[i]); 
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} } close(fpl); 
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