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Résumé 

La vision informatique traite de la construction de descriptions explicites de la 

géométrie des objets du monde visuel à partir d'images. Elle tente d'obtenir des 

résultats similaires à ceux si facilement et si rapidement obtenus par la vision humaine. 

En général, la vision informatique consiste en trois aspects principaux : l'acquisition, 

le traitement et la compréhension des images. Le traitement des images s'intéresse 

principalement aux transformations image à image, alors que la compréhension des 

images traite plutôt de l'inférence et de l'interprétation de la structure tridimension

nelle de scènes à partir d'images. 

Dans le domaine de la compréhension des images, un important problème qui a été 

étudié de façon extensive concerne l'inférence de la structure à partir du mouvement, 

où l'on désire reconstruire la forme et estimer le mouvement tridimensionnel d'objets 

rigides à partir d'une séquence temporelle d'images. 

Deux approches de base ont été proposées pour attaquer ce problème : celle basée 

sur le flux optique et celle basée sur les caractéristiques de l'image. Les algorithmes 

basés sur le flux optique tentent de retrouver le mouvement instantané à partir des 

dérivées spatiales et temporelles locales des valeurs d'intensité de l'image, alors que 

les algorithmes basés sur les caractéristiques de l'image calculent des déplacements 

rigides ou des paramètres cinématiques. Jusqu'à maintenant, les cas avec deux images 

ont été étudiés plus extensivement que les séquences d'images, en partie à cause du fait 

que les paramètres décrivant la réalité sont difficiles à mesurer pour des expériences 

avec des images réelles. En fait, pour réussir avec succès une expérience d'inférence 

de la structure à partir du mouvement, il faut aussi tenir compte de problèmes liés à 

l'acquisition et aux traitements des images. 

Il y a deux étapes majeures dans les approches basées sur les caractéristiques de 

l'image. La première étape consiste à établir des correspondances entre certaines 
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caractéristiques sélectionnées de l'image, de façon à ce que des caractéristiques cor

respondantes dans les images proviennent d'une même entité physique dans la scène. 

La deuxième étape consiste à estimer les paramètres de la structure et du mouve

ment à partir des images. Puisque de plus en plus de techniques de correpondance 

pratiques et fiables sont proposées, la première étape ne représente plus maintenant 

un obstacle impossible à surmonter. 

Alors que les approches basées sur les caractéristiques de l'image sont applicables 

tant à de petits qu'à de grands mouvements entre des images successives, les ap

proches basées sur le flux optique ne s'appliquent qu'à de petits mouvements. Même 

si la restriction de petits intervalles inter-image simplifie à la fois l'établissement des 

correspondances entre les images et l'estimation des paramètres du mouvement à par

tir du flux optique, la fiabilité des paramètres du mouvement èalculés en présence de 

bruit est intrinsèquement limitée puisque plusieurs techniques dans ce domaine sont 

basées sur les dérivées premières et secondes du flux otique, et requièrent donc les 

troisièmes dérivées des valeurs d'intensité de l'image. La petite quantité de mouve

ment est souvent noyée dans l'erreur du flux optique estimé, même lorsque qu'il peut 

être estimé à un niveau de précision sous-pixel. 

Il est facile de voir que l'information de structure, obtenue à partir de deux ima

ges monoculaires ou d'une paire d'images stéréoscopiques, sur une grande scène est 

limitée en étendue et en résolution. Il existe donc un besoin au niveau de la vision 

dynamique, monoculaire ou stéréoscopique, dans le contexte de séquences étendues 

d'images. Récemment, beaucoup plus d'attention a été portée à ce sujet en raison 

de la maturation des algorithmes développés pour les cas avec deux images et des 

avantages suivants: 

• Le changement progressif de point de vue amène en vue les parties cachées de

la scène, permettant ainsi une description plus complète de la structure de la
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scène. 

• La réduction de la distance de vision rapproche éventuellement les objets éloignés,

permettant ainsi une description plus détaillée de ces objets.

• Puisque l'évolution de la direction et de la position du point de vue fournit

habituellement plusieurs images de la même partie de la scène, une fusion de

ces observations redondantes peut produire une description de la scène plus

précise et plus consistante.

• En plus, le comportement cinématique et dynamique du système de senseurs

peut aussi être estimé.

Même si beaucoup de travail sur l'estimation du mouvement et de la structure 

d'objets rigides à partir de séquences d'images bruitées a été réalisé au cours des 

dernières années, le problème est loin d'être résolu pour les raisons suivantes: 

• Premièrement, des images réelles sont toujours contaminées par du bruit, ce

qui fait que l'estimation des transformations 3-D et la fusion de vues mul

tiples doivent prendre en considération les incertitudes variables des points

3-D estimés. En général, la composante de profondeur d'un point, déterminée

par mouvement ou par triangulation, est beaucoup moins fiable que la com

posante latérale. Des poids scalaires affectent indistinctement l'incertitude des 

différentes composantes. En plus, la corrélation entre les erreurs des points 3-D 

ne peut pas être prise en compte adéquatement par ces poids scalaires. 

• Deuxièmement, la relation entre les projections des points 3-D sur l'image et les

paramètres de mouvement est non-linéaire. Il est donc critique de formuler une

méthode itérative de façon à obtenir la solution la plus exacte avec les calculs

les plus efficaces possibles, plutôt que de laisser l'espace de recherche croître

avec le nombre de points.
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• Troisièmement, dans le cas de longues séquences d'images, la quantité de données

à être traitées augmente considérablement, en comparaison avec le cas à deux

images. Une approche réalisant un compromis raisonnable entre la précision et

l'efficacité est donc nécessaire pour des applications réelles.

• Finalement, puisque la correspondance est habituellement établie entre des

paires d'images consécutives, elle sera inévitablement limitée par une quantité

d'ambiguïté qui tend à s'accumuler avec le temps. Obtenir une correspondance

précise pour plusieurs images consécutives, en limitant les erreurs accumulées,

est donc un difficile prérequis pour l'estimation du mouvement et de la structure

3-D.

Cette thèse est donc dédiée à l'estimation du mouvement inconnu d'un système 

de senseurs et de la structure 3-D de la scène, en tentant de résoudre les problèmes 

mentionnés ci-haut. Notre approche appartient à la catégorie de celles basées sur les 

caractéristiques de l'image. En particulier, nous utilisons comme caractéristiques les 

correspondances entre les points des images. Cette étude est d'une importance gran

dissante en vision informatique en raison de sa nature passive et de ses applications 

diverses. Par exemple, il est connu que les données des senseurs de certains véhicules 

ne sont pas appropriés pour mesurer précisément leur mouvement en raison d'erreurs 

causées, par exemple, par le glissement des roues. Toutefois, la vision dynamique à 

partir de séquences d'images monoculaires ou stéréoscopiques peut offrir des capacités 

puissantes aux véhicules ou aux robots se trouvant dans cette situation. Elle peut 

améliorer la détection et l'évitement d'obstacles en mettant en relation la position 

d'un obstacle avec celle du véhicule, même lorsque l'obstacle quitte le champs de vi

sion du système de caméra. En plus, une amélioration au niveau de la reconnaissance 

des objets est possible puisque plusieurs vues d'un objet peuvent être enregistrées et 

fusionnées lors de la navigation, ce qui rend possible la génération d'une carte globale 
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d'un environement inconnu. En conséquence, la vision dynamique avec un système de 

caméra monoculaire ou stéréoscopique peut être applicable en général à la navigation 

robotique, l'inspection automatique et la reconnaissance et la manipulation d'objets. 

Notre travail apporte de nouvelles contributions de plusieurs façons : 

1. Les formulations proposées supposent une trajectoire de mouvement arbitraire

afin de permettre un contrôle saccadé de la caméra et d'éviter les collisions

possibles. Les paramètres de mouvement sont représentés par une matrice de

rotation et un vecteur de translation.

2. Des observations répétées d'une partie de la scène sont fusionnées et l'information

sur la structure de la scène, acquise à partir des images précédentes, est

systématiquement intégrée aux nouvelles estimations, ce qui rend possible le

traitement de longues séquences d'images monoculaires ou stéréoscopiques de

façon récursive par lot et la fusion d'observations multiples de la même partie

de la scène.

3. La fiabilité variable des observations et des estimés est prise en considération

dans la construction des fonctions d'objectif afin d'améliorer la précision des

estimés.

4. Les dimensions de l'espace de recherche lors de l'optimisation non-linéaire sont

sérieusement réduites en exploitant les liens entre les paramètres de structure

et de mouvement, afin que la stabilité et l'efficacité de l'optimisation soient

obtenues.

5. Il est démontré que le facteur d'échelle associé à deux images consécutives de la

séquence monoculaire est déterminé par le facteur d'échelle des deux premières

images.
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6. Des simulations et des expériences méticuleuses avec de longues séquences

d'images monoculaires et stéréoscopiques de scènes réelles, incluant l'étape de

calibration des caméras, ont été réalisées afin d'étudier les performances des

méthodes d'optimisation développées dans cette thèse. Dans les expériences,

les paramètres réels du mouvement et certains aspects de la structure de la

scène, connus avec exactitude, étaient aussi disponibles pour comparaison.



Abstract 

Dynamic vision provided by a monocular or stereo camera system has the capa

bility of recovering the geometric structure of the visual environment. This ability 

is critical towards applications such as visually guided robot navigation, automatic 

surveillance, object recognition and so on. The research on this topic has been very 

active in the computer vision field. 

This dissertation addresses the issue of optimal motion and structure estimation 

from monocular and stereo image sequences of rigid scenes, i.e., in which the 3-

D distance between two points on any object in the scene remains constant. The 

proposed solutions have the following characteristics: 

1. lnstead of considering constrained motion, the proposed formulations allow ar

bitrary interframe motion, represented as a rotation matrix and a translation

vector.

2. Repeated observations of a portion of a scene over successive images are fused,

and the information about the structure of the scene, acquired from previous

images, is systematically integrated into the new estimations, which makes it

possible to deal with long monocular or stereo image sequences with a recursive

batch framework.

3. The varying reliabilities of the observations and estimates are effectively taken

into account in the construction of objective fonctions so as to improve the

accuracy of the estimates.

4. The dimension of the search space in the nonlinear optimization is drasticallyre

duced by exploiting the relationship between structure and motion parameters,

so that stability and efliciency of the optimization are achieved.
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5. It is shown that the scale factor associated with any two consecutive images in

a monocular sequence is determined by the scale factor of the first two images.

6. Simulations and careful experiments with long monocular and stereo image

sequences of real world scenes, including camera calibration section, have been

conducted to study the performance of the optimization methods developed in

this dissertation. The obtained estimates have been compared to the motion

and structure ground truth available.
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Chapter 1 

Introduction 

1.1 Motivation of this research 

Computer vision concerns the construction of explicit descriptions of the geometry of 

objects in the visual world from images. lt aims at achieving results similar to those 

vividly and effortlessly obtained by human vision. In general, computer vision consists 

of three main aspects: image acquisition, image processing and image understanding. 

While image processing is mainly concerned with image-to-image transformations, 

image understanding is primarily interested in the inference and the interpretation of 

the three-dimensional structure of scenes from images. 

An important and extensively studied problem in image understanding, concerns 

the inference of structure from motion, where one wishes to reconstruct the shape 

and to estimate the 3-D motion of rigid objects from the temporal succession of their 

images. 

Two basic approaches have been proposed to attack the problem: the optical flow 

based approach and the feature based approach [l]. Algorithms based on optical flow 

attempt to recover the instantaneous motion, relying on local spatial and temporal 

derivatives of the image intensity values, while feature based algorithms recover rigid 
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displacements or kinematic parameters. Two-view cases have been studied more 

extensively than image sequences so far, partly due to the fact that the ground truth 

in experiments with real images is hard to acquire [7]. In fact, a successful structure 

from motion experiment has to deal with problems in image acquisition and image 

processing, besicles the problems in structure from motion itself. 

There are two major steps in feature based approaches. The first step is to estab

lish correspondences for selected feature primitives in images, so that the matched 

feature primitives arise from the same physical entities in the scene. The second step 

is to estimate the structure and motion parameters from the concerned images. As 

more reliable and practical matching techniques emerged, such as [59], [60], [61], [62], 

.the first step is no longer an intractable obstacle to overcome. 

Concerning the second step, several important contributions have been made in_ 

the recent past, namely the well known eight-point algorithm for motion estimation 

[42], [44], [45], [46], [47], and its 3-D version, least-squares estimation of motion 

parameters for 3-D point correspondences [13], [23]. The degenerate configurations 

associated with the eight-point algorithm were investigated as well in [43], [44], [45]. 

It has been pointed out that three non-colinear 3-D point correspondences over two 

time instants determine motion uniquely [9), [7) for the approach proposed in [13], 

[23]. Accordingly, motion estimation algorithms based on line correspondences in 

the images were presented in [36), [37]. However, for the line correspondence case, a 

certain number of lines seen in three successive frames is required in the estimation 

algorithms, these algorithms are therefore less popular among researchers in computer 

vision community, as are the approaches posed in [38] which handle situations of 3 

points in three frames, 2 points in 4 frames and 1 point in 5 frames. Recently, a matrix

weighted least-squares estimation of motion parameters for 3-D point correspondences 

was presented [71], which gives accurate motion parameters for noisy images. This 

approach requires a minimum of four points for motion uniqueness. In addition to the 
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closed-form solutions, many different versions of iterative optimization formulas have 

been constructed to further improve the motion parameters from an initial solution 

(48], (58], [65]. 

While feature based approaches are applicable to both small or large interframe 

motions, the optical flow approaches are only applicable to small motions. Although 

the restriction of small interframe motion simplifies both image matching and motion 

parameter computation from optical flow, the reliability of the computed motion 

parameters in the presence of noise is intrinsically limited, since many techniques in 

this area are based on the first and second derivatives of optical flow and thus require 

the third derivatives of intensity values [1], [4], [63]. -The small amount of motion is 

easily overridden by the error in the estimated optical flow, even if the optical flow 

can be estimated to subpixel accuracy. 

It is easy to see that the structure information obtained from two monocular or 

stereo views of a large scene is limited in extent and resolution. Therefore, there 

is a necessity to address the issue of dynamic vision, monocular or stereo, in the 

context of extended image sequences. More attention has been recently devoted to 

this issue, due to the maturing of the algorithms developed for the two-view case and 

the following advantages provided by image sequences: 

• The progressive change of view-point brings occluded parts of the scene into

view, thus allowing a more complete description of the scene structure.

• The reduction of the viewing distance eventually draws abjects that are far

away to proximity, and allows a detailed analysis of these abjects.

• Since the evolution of the viewing direction and position usually provides multi

ple images of the same part of the scene, a fusion of such redundant observations

can result in more accurate and consistent descriptions of the scene.



• Moreover, the kinematic and dynamic behavior of the sensor system can also

be estimated.

Although much work on the estimation of the motion and structure of rigid ob

jects, from noisy image sequences, has been conducted in last few years [65], [53], 

[40], [11], the problem is far from being solved in the following respects: 

• Primarily, the real images are always contaminated by noise, hence the estima

tion of the 3-D transformation and the fusion of multiple views ought to take

into account the varying uncertainties in the estimated 3-D points. Generally

speaking, the depth component of a point deter:rµined by motion or triangulation

is considerably less reliable than the lateral components. Scalar weights [26],

[31] indiscriminately affect the uncertainty in the different components. Fur

thermore, the correlation between errors in the :3-D point can not be properly 

accounted for by these scalar weights. 

• Secondly, the relationship between the image projections of 3-D points and

the motion parameters is nonlinear. Therefore, it is critical to formulate the

iterative scheme in such a way to achieve the most accurate solution and most

efficient computation possible, instead of letting the search space increase with

the number of points as in [53], [11].

• Thirdly, in the case of long image sequences, the amount of data to be processed

increases drastically as compared to the two-view analysis. An approach which

has a reasonable trade-off between accuracy and efficiency is thus required for

real applications.

• Finally, as matching is usually established between pairs of consecuti ve images

in a sequence, it will inevitably be plagued by an amount of ambiguity which

tends to accumulate over time. How to get an accurate matching over many
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frames, by limiting the accumulated error, is therefore a difficult prerequisite 

for the task of motion and 3-D structure estimation. 

This dissertation is thus devoted to the issues of estimating the unknown motion 

of a sensor system and the 3-D structure of the scene, with efforts to resolve the above 

problems (some of our work has been published in [76], [77], [78], [79], [80], [81 ]). As 

shown in Figure 1.1, a sensor system is a monocular or stereo camera system moving 

in a static environment. Our approaches belong to the category of feature based 

approaches. In particular, we use point correspondences as features. The study is 

of ever-growing importance in computer vision, because of its passive nature as well 

as its diverse and potential applications. For exampl'e, it has been reported that the 

outputs of vehicle sensors themselves are not suitable for accurate motion recovery 

because of errors in dead reckoning resulting from problems as wheel slippage [8]; 

[52). However, dynamic vision from monocular or stereo image sequences can offer a 

powerful visual ability for the vehicles or robots in those situations. It can improve 

obstacle detection and avoidance by relating the position of an obstacle to the position 

of the vehicle, even when the obstacle leaves the field of view of the camera system. 

Furthermore, object recognition will be improved since multiple views of objects can 

be registered and fused during the course of navigation, which makes it possible to 

generate a global map of an unknown environment. Consequently, dynamic vision 

through a monocular or stereo camera system can be applicable in general to robot 

navigation, automatic inspection, object recognition and manipulation. 

1.2 New contributions of the work 

Our work provides new contributions in several aspects: ( 1) The proposed formu

lations assume arbitrary motion trajectory to allow saccadic camera control and to 

avoid possible collisions. The motion parameters are represented as a rotation ma-



I 

I 

1L 

I 

I 

I 

I 

6 

Figure 1.1: A monocular or stereo camera system moving in a static environment. 



trix and a translation vector. ( 2) Repeated observations of a portion of a scene over 

successive images are fused, and the information about the structure of the scene, 

acquired from previous images, is systematically integrated into the new estimations, 

which makes it possible to deal with long monocular or stereo image sequences with 

a recursive-batch framework, and feasible to fuse multiple observations of sorne part 

of the scene. (3) The varying reliabilities of the observations and estimates are effec

tively taken into account in the construction of objective fonctions so as to improve the 

accuracy of the estimates. ( 4) The dimension of the search space in the nonlinear op

timization is drastically reduced by exploiting the relationship between structure and 

motion parameters, so that stability and efficiency of the optirnization are achieved. 

(5) It is shown that the scale factor associated with any two consecutive images in a

monocular sequence is determined by the scale factor of the first two images. (6) Sim-. 

ulations and carefol experiments with long monocular and stereo image sequences of 

real world scenes, including camera calibration section, have been conducted to study 

the performance of the optimization methods developed in this dissertation. In the 

experiments, ground truth concerning the motion parameter and some aspects of the 

scene structure were also available for comparison. 

1.3 Outline of the dissertation 

The dissertation is organized as follows: 

Chapter 2 describes the theoretical background and some fondamental techniques 

in motion and structure estimation. The uncertainty problem in estimated positions 

of 3-D points from motion or stereo is discussed first. The motion representation, 

the local and global coordinate systems to be used are then introduced. The min

imum variance estimation is outlined in this chapter. Finally, batch and recursive 

approaches, these two commonly used main approaches for estimating motion and 
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structure, are compared according to their merits for the nonlinear problem that we 

want to solve. 

Chapter 3 studies the subject of estimating motion and structure from monocular 

image sequences and includes a discussion about the relationship among the scale 

factors involved in any monocular image sequence. Both simulation and experiments 

with an image sequence of a real world scene are provided to demonstrate the perfor

mance of the proposed recursive-batch approach. The camera calibration principle 

which was used in the experiments is briefly described in this chapter. The strategy of 

combating the error accumulation in matching over many frames, uing a normalized 

cross-correlation, is also presented. 

Chapter 4 deals with the counterpart of the monocular problem: motion and struc

ture from stereo image sequences. Starting from a newly proposed matrix-weighteq 

closed-form algorithm, we then process stereo image sequences with a recursive-batch 

approach. Simulation and experiment are presented to assess the performance of our 

approaches. 

Chapter 5 summarizes the whole work and discusses directions for future research. 



Chapter 2 

Preliminaries 

In this chapter, some theoretical background and fondamental techniques in motion 

and structure estimation are described. The uncertainty problem in estimated posi-,

tians of 3-D points from motion or stereo is discussed first. Then, relative and global 

motion representations with respect to the local and the global coordinate systems 

are introduced. The minimum variance estimation principle is outlined, and finally, 

two commonly used techniques for motion and structure estimation, namely batch 

and recursive approaches, are compared in the context of the nonlinear problem we 

want to solve. 

2.1 U ncertainties in the estimated 3-D positions 

from motion or stereo 

We will first relate the positional uncertainty of 3-D points, reconstructed by means of 

triangulation, to the image positional uncertainty due to image quantization process. 

Properly modeling this uncertainty is essential, in order to limit its impact on motion 

and structure estimates. 

Figure 2.1 demonstrates intuitively the relation between the image quantization 

noise and the estimated positions of 3-D points. One can see that identical amounts 
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of image quantization noise induce positional uncertainties, which depend upon the 

spatial location. The farther the object is from the cameras, the larger the volume of 

the corresponding 3-D uncertainty. The same thing happens if the relative position of 

the object with respect to the cameras is invariant, but the distance between the two 

cameras decreases. The depth component of a 3-D point location is the less reliable 

component. These phenomena must be taken into consideration whèn addressing the 

problem of optimal motion and structure estimation. 

Positional uncertainty is not caused by image quantization alone, but may also 

corne from inproper camera calibration, feature matching errors, etc .. 

Several 3-D noise models were developed to represent 3-D uncertainties caused by 

image errors. A symmetrical 3-D noise distribution model was used in [40], 

x( t;) 

y(t;) 

z( t;) 

= 

Xtru ( t;) 

Ytru(t;) 

Ztru( t;) 

+ 

nx(t;) 

ny(ti) 

nz(ti) 

(2.1) 

where noisy 3-D coordinates (x(t;),y(t;),z(t;))T of a feature point Pin an arbitrary 

3-D world coordinate system / are calculated from binocular images, ( Xtru ( ti), Ytru ( t;),

Ztru(t;))T are the noise-free 3-D coordinates of Pin/ and nx(t;), ny(t;) and nz(t;) 

are the noise components, assumed to be Gaussian processes with zero mean. The 

measurements of 3-D coordinates are taken at discrete time t;. This observation 

noise model is therefore an approximation of the observation noise model which can 

be derived from image noise mode! through triangulation. An ellipsoïdal mode! was 

adopted in [52], which is similar to the symmetric 3-D distribution model. 

Two other simplified models, based on scalar weights, were utilized in [26], [31 ]. 

The motivation for using scalar weights is that uncertainty grows with distance, so it 

can be modeled by weighting points inversely with distance. 

Sorne 2-D image noise models, in which the measured image coordinates of the 
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feature points are assumed to consist of the true coordinates corrupted by additive 

independent zero mean Gaussian noise, were also proposed in [65], [14]. Because the 

symmetrical 3-D noise distribution model or any other simplified model cannot ap

propriately capture the 3-D uncertainty shape depicted in Figure 2.1, where nearby 

points have a fairly compact uncertainty, whereas distant points have a more elon

gated uncertainty, these models will impair the quanlity of the motion and structure 

estimates. In our work, we use a 2-D image plane noise model as used in [65] , [14]. 

It implicitly results in the desired distribution shape in 3-D, represented by a 3 x :3 

error covariance matrix, through the mapping from 2-D feature points to their 3-0 

coun terparts. 

2.2 Motion representation 

In this section, the motion representation for a monocular or stereo camera system 

will be introduced. Different situations concerning the position of the monocular 

or stereo camera system with respect to the scene are considered. Two coordinate 

systems, global and local, together with their relationship, are also introduced. 

We assume that objects move rigidly in front of a monocular or stereo system. 

This implies that the 3-D distance between two points on any object in the scene 

remains constant. We can then interpret the motion in two different ways: it can 

correspond to the displacement of the scene, while the monocular or stereo camera 

system remains stationary, or vice versa. In another way, we see the motion from 

the rigid scene. Each of these two interpretations has its own applications; we will 

primarily discuss the first one. 

In general, there rrtay be several objects moving independently within the field of 

view of the vision system. We assume here a situation of a single moving rigid object 

(scene), with enough point matches in each consecutive image pair to guarantee that 
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Figure 2.1: The uncertainty in the estimated coordinate of 3-D points from motion 

or stereo. 



the linear algorithms [46], [71] are applicable, since the methodology for treating one 

moving object and several independently moving objects is mathematically the same. 

Due to the rigidity assumption, a motion of the observed abject between consec

utive time instants can be represented as a rotation matrix around a chosen origin of 

a coordinate system followed by a translation vector. The rationale of this preference 

of motion representation is that it comprises fewer motion parameters than the kine

matic model used in (11], (40], [53]. In addition, there are some closed-form algorithms 

available for the computation of an initial solution of the motion parameters. 

2.2.1 Representation of relative motion 

Considering the ith point on the object, its position Xt,i at time t1 and its position Xk,i

at tk are related by a rotation matrix Rk,I ( we reserve the bold face form of R for later 

usage) and a translation vector T k,I in the camera-centered coordinate system ( to be 

specified in Chapter 3 and Chapter 4 for the monocular and stereo cases, respectively) 

as 

k ?. l. (2.2) 

where we impose 

(2.3) 

The rotation matrix corresponds to a rotation I about the x-axis, then a rotation 

/3 about the y-axis, and then a rotation a about the z-axis: 

(2.4) 

where 

1 0 0 

Rx = 0 cos1 - sin, (2.5) 

0 sin, cos, 
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cos/3 0 sin/3 

Ry = 0 1 0 (2.6) 

-sin/3 0 cos/3 

casa - szna 0 

Rz= szna cosa 0 (2.7) 

0 0 1 

Alternatively, the rotation matrix corresponds to a rotation angle 0 about an arbitrary 

axis n: 

ni + (1 - ni)cos0 

R = n1 n2( 1 - cos0) + n3sin0 

n1 n3( l - cos0) - n2si n0 

n� + ( 1 - n� )cos0 

n1n3(l - cos0) + n2sin0 

n2n3(l - cos0) - n 1sin0 

n5 + (1 - n�)cos0 
(2.8) 

Sometimes, a quaternion expression of a rotation matrix is more convenient for the 

rotation computation: 

R= 2(q2q1+qoq3) 

2( q3q1 - qoq2) 

2(q1q3 + qoq2) 

2( Q2Q3 - qoqi) (2.9) 

where the unit quaternion q can be thought as a vector with four components, q =

(q1, q2, q3, q4) T, corresponding to a rotation </> about a unit vector w (50]: 

(2.10) 

When k = l + 1 in (2.2), we have, 

(2.11) 

Since Rk,k-I, Tk,k-t represent the motion between consecutive instants, it is therefore 

interframe motion. 



Note that the expression (2.2) can be recursively transformed into 

Comparison between (2.2) and (2.12) yields the following identities 

L Rk,iTi,i-1, 
i=l+l 

k > l, 

k > l. 

Letting l = 0, we may write the recursive equations (2.13) as: 
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(2.12) 

(2.13) 

(2.14). 

It can be easily shown that reverting time leads to similar identities, namely 

1+1 
L R1,i-1Ti-l,i = -Rk)Tk,1· (2.15) 
i=k 

Since there are probably more common visible points in two consecutive images than 

in non-consecutive ones, it seems more promising to use consecutive images for cal

culating the interframe motion. 

2.2.2 G lobai motion representation 

We now consider the global motion of the camera system as seen from a static scene. 

To do this we define a global coordinate system, which is fixed with the scene. Let 

the global coordinate system coïncide with the camera-centered coordinate system 

called local coordinate system at time t0 . These two coordinate systems are shown 

in Figure 2.2. 
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global motion .... ,... 
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\ 

tk
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Figure 2.2: A moving monocular or stereo camera system in a static environment, 

with the two coordinate systems depicted. 
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In the global coordinate system, the current attitude, including position and ori

entation, of the camera system at time h can be achieved by moving the camera 

system, from its original attitude at time t0 , by a rotation about the origin, repre

sented by a rotation matrix Rk, followed by a translation, represented by a vector 

Tk . Letting Ck ,i be any point on the camera system at time tk , represented in the 

global coordinate system, Ck ,i and C0,; are related by 

(2.16) 

A similar relation transforms a position vector Xk,i of an object point at tk, represented 

in the local coordinate system, back to the global coordinate system: 

(2.17) 

which is the global structure. Proceeding from tk-l to tk, we get 

(2.18) 

this, combined with (2.2), leads to the global motion of the camera, 

(2.19) 

It can be seen from (2.17), (2.18) and (2.19) that once the interframe motion 

Rk,k-i, Tk,k-l and the local structure Xk,i, Xk-l,i are computed, we can update the 

global attitude, Rk and Tk, of the camera system from its previous attitude and 

current interframe motion, and further update the global structure representation 

Xo,i of the relative structure Xk,i· Therefore, we can build up a visual map along 

the trajectory of the moving camera system, and specify the relative position of the 

camera system with respect to the scene. In other words, the task of building up the 

extended visual map along the navigation path as well as the global position of the 
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camera system at different instants, can be decomposed into the subtasks of obtaining 

the interframe motions and local structure, and then combining these intermediate 

estimates. Consequently, the expressions of motion and structure in (2.17) and (2.19) 

are of interest for autonomous navigation. 

In the more complicated situation where both the camera system and abjects 

are moving, the only motion which can be recovered from the images is the relative 

motion between the camera system and each object. 

Note that, with the motion representation we adopt in this research, no restriction 

is imposed on the type ofinterframe motion. However, as pointed out in the literature, 

for the monocular case, if the magnitude of an interframe translation vector is equal 

to zero, the depths of the feature points cannot be determined. Moreover, a more 

accurate estimation can be obtained if the interframe motion leads to the following 

conditions: 

• feature correspondences occupy a wider field of view of the monocular or stereo

camera system;

• a larger number of feature correspondences can be found in the image sequences;

• a longer average length of displacement vectors between corresponding features

is achieved.

In the remainder of this dissertation, we always implicitly assume that the magnitude 

of any interframe translation vector is nonzero. 

2.3 Minimum Variance Estimation 

The minimum variance estimation is outlined here since it will be used in the following 

two chapters to obtain a few 3-D structure estimators. 
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Suppose an m-dimensional observation vector y 1s related to a n-dimensional 

parameter vector m by a linear deterministic system 

y= Am+fi
y (2.20) 

where A is am x n matrix, ô
y 

is a random vector with zero mean, Eôy = 0, and an 

error covariance matrix 

(2.21) 

The best linear unbiased estimator of mis given by ( Gauss-Markov theorem or linear 

minimum variance estimator) (see, e;g., [51], [69], [70]) 

(2.22) 

with an error covariance matrix 

(2.23) 

The estimator in equation (2.22) can be seen as a weighted least squares estima

tor with weighting matrix r; 1 , i.e., the objective fonction is to minimize (y -

Am)Tr; 1 (y - Am) (70], or as a linear mean-square estimator where no a priori 

information about the parameter vector m is available, i.e., r m -l is a zero matrix 

[69]. 

If, in addition, ô
y 

has a Gaussian distribution, the estimator in (2.22) is an esti

mator that minimizes Ellm* - mll2 among all estimators (not limited to the class of 

linear estimators ). There are two important properties of minimum variance estimates 

stated in the following two theorems [51]. 

Theorem 1. The minimum variance linear estimate of a linear fonction of m, 

based on the ramdom vector y, is equal to the same linear fonction of the minimum 

variance linear estimate of m; i.e., given an arbitrary px n matrix S, the best estimate 

of Sm is Sm*. 
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Theorem 2. If m* = Ky is the linear minimum variance estimate of m, then 

m* is also the linear estimate minimizing E[(m - m*)TP(m - m*)] for any positive

semidefinite n x n matrix P. 

ln a nonlinear problem, equation (2.20) becomes 

y= f(m) + ôy, (2.24) 

where fis a nonlinear fonction (in our cases, f will represent the nonlinear relationship 

between the motion parameters, the 3-D structure, and the 2-D image projections). 

From a preliminary estimate m0 of the parameter vector m, we can linearize the 

fonction f by the first order Taylor series expansion,. 

of(mo) 
y� f(mo) + om 

(m - mo) + ôy . 

Then, the objective fonction to be minimized becomes: 

8f(mo) 1 8f(mo) 
[ l T [ l y - f(mo) - om (m - mo) r; y - f(mo) - om (m - mo) . 

Comparing to (2.24), the above objective fonction may be replaced by 

(2.25) 

(2.26) 

(2.27) 

In other words, the optimal parameter vector m* is the one that minimizes the matrix

weighted discrepancy between the computed observation f ( m) and the actual obser

vation y. If the noise vector ôy 
is uncorrelated and its components have the same 

variance a2 , minimizing equation (2.27) is equivalent to minimizing 

IIY - f(m)ll 2 -

(2.28)

The estimate m* which minimizes (2.27) has an error covariance matrix approxi

mately estimated according to equation (2.23): 

rm• = E[(m" - m)(m* - m) Tl = [
8f(m*f r

-1 ôf(m*)]
-1

ôm Y ôm 
(2.29) 
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Notice that the equation (2.20) is a good model only if the noise term ôy has a zero 

mean. In an estimation problem, if y denotes the raw data corresponding to initial 

measurements, it is often true that the error ôy approximately satisfies the above 

condition. 

One of the advantages of using a mm1mum vanance criterion is that one does 

not need to know the exact noise distribution, which is very difficult to obtain in 

most applications. The above objective fonction (2.27) does not require knowledge 

of more than second order statistics of the noise distribution, which can often be 

estimated in practice. The second advantage of the minimum variance estimator is 

that m* is invariant under changes of scale, which is-desirable for monocular motion 

and structure estimation (see Appendix D). 

For a general nonlinear system, the estimator determined by minimizing expressio� 

(2.27) or (2.28) is not exactly a linear minimum variance estimator. However, if 

the noise is not very large and the correct convergence is reached, the behavior of 

a nonlinear system is well approximated by the J acobian matrix of f in a small 

neighborhood around the actual parameters, and can be approximated by a linear 

system. So, we will use the minimum variance estimation principle to construct 

several objective fonctions for the monocular and stereo problems. 

2.4 Two main approaches: batch and recursive 

There are two main types of approaches commonly used in the computer vision com

munity to estimate the interframe motion and the local structure, namely the batch 

and the recursive types. 

ln recursive or sequential approaches, like the Extended Kalman Filtering, the 

nonlinear objective fonction between the image observations and the motion param

eters is linearized by a first order Taylor series expansion. The motion and structure 
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update proceeds from the first observation to the last in a sequential manner. 

To be more specific, if we take the monocular case as an example, the nonlinear 

relationship between motion parameters mk,k-1 which consists of six variables for 

rotation Rk,k-l and translation Tk,k-1, and the 2-D image projections Ùk,i and ih-i,i 

can be expressed as: 

Ùk,i = f(p) + Ôük ,il i = 1, • • •, n. (2.30)

where Uk-t · = ( Xk-i i Yk-i,;) T Uk · = ( � �) T f represents the nonlinear relation-
,

i 
Zk-t,i' Zk-1,i ' ,i Z/c,i ' Zlc,i ' 

ship (motion and projection), and p represents the motion parameters mk,k-l· The 

image observation noise Dük,i is assumed to be white. The objective is to estimate the 

parameter vector p and structure {xk,i}, {xk-i,i} through processing the observed 

image points {uk,i} and {uk-1,d-

Since l{alman Filtering is only applicable to linear systems, we have to lineariz� 

the nonlinear fonction first. From a preliminary estimate p(0) of the parameter vector 

p which is provided by a least-squares method, we can linearize the nonlinear fonction 

f in the vicinity of p(o) by a first order Taylor series expansion, 

(2.31) 

This is approximately a linear measurement equation, in which Ùk,i and ùk-l,i are the 

observations. Then, the objective fonction to be minimized becomes: 

If we further assume that the components of the image noise ôük,i are mutually inde

pendent and the covariance matrix is 8fil, for i = 1, · · ·, n. Note that also we have 

a time-invariant system, i.e., parameter p remains unchanged with respect to point i 

of the matched points {uk,i} and {ük-1,d-

As pointed out in the literature, the criterion of Kalman Filtering is still the 

minimum-variance. For our problem and assumptions, the Extended Kalman Filtering



minimizes finally the following objective equation in a sequential manner: 

L IIYi - Ji(P(i))Pll2
i=l 

where f>(i) is the estimated p based on the previous i points, 

and 

J
·(A(i)) = 8fT(pUl)

t p 
Ôp . 
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The crucial difference cornes from the place where the matrix Ji is evaluated. Re

menber that Kalman Filtering deals with two systeqi equations: state equation and 

its measurement equation, so inside the Kalman Filtering, the mappirig matrix of the 

measurement equation corresponds to the matrix J;(p(il) for our problem. During 

the computation, the Extended !{alman Filtering updates the motion and structure 

estimates sequentially by the well known four-equation structure from the first obser

vations Uk,l and iik-i,1 to the last observations iik,n and llk-1,n• Since in the process, 

f>(i) is the estimated parameter vector p based on the previous i points, the corre

sponding Jacobian matrix J;(p(i)) might be evaluated far from the true parameters,

and then results in an inaccurate system model. This can further prevent the esti

mates from approaching the correct solution in later processing. Therefore, as noted 

by many researchers [65], [54], [53], sequential methods which are derived for linear 

systems generally are not suitable to salve nonlinear problems. 

On the contrary, if we use nonlinear batch optimization, the Jacobian matrices Ji 

are always updated, based on all observed points available to minimize the following 

least-square summation, 

L IIYi - Ji(P)Pli 2 , 
i=l 

where 
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and 

In other words, The matrix J;(p) is updated by the whole observed image points here 

in the batch method, while the matrix J;(p(il) in the previously mentioned sequential 

method is updated by i observed image points. Consequently, the convergence prob

lem of sequential methods is eliminated here. Nonlinear batch optimization gives a 

more accurate solution for a nonlinear problem, at the cost of more computation. 

From the above discussion of batch and recursive approaches, we see that sequen

tial processing can be clone simultaneously in the course of collecting data, so less 

memory is required and the processing is fast, while batch processing can only be 

accomplished after the data collection is fulfilled for a prescribed batch size, which 

causes high memory consumption and expensive computational cost. Since the data: 

size in processing monocular or stereo image sequences is larger (in orders) than in 

the two-view case, we have to make a reasonable trade-off between accuracy and ef

ficiency. In particular, we have to combine batch and recursive methods in a certain 

way in order to keep the merits of these two methods and overcome their defects for 

solving nonlinear problems. The smallest batch size consists two consecutive images. 

To obtain more accurate motion and structure estimates, the number of consecutive 

images inside a batch can be increased. This consideration originated our recursive

batch approaches for motion and 3-D structure estimation from monocular and stereo 

image sequences, which will be discussed in detail in the following two chapters. 



Chapter 3 

Estimating motion and 3-D 

structure from monocular 

sequences 

This chapter presents, in the case of monocular sequences, an optimal strategy to com

pute the three-dimensional motion and scene structure from matched image points. 

This strategy is optimal with respect to a matrix weighted least-squares criterion, 

and is characterized by stability, accuracy and efficiency. We will first review the re

cent literature concerning this problem ànd then present our approach. We will also 

discuss the scale problem associated with the estimated structure from monocular 

image sequences. 

3.1 Review of the related work 

Estimating motion and structure of a rigid object from a sequence of monocular 

images involves two main steps: ( 1). the matching of primitives (points, lines, surfaces, 

etc.) between consecutive images, and (2) the estimation of the motion and structure 

based on the matched primitives. Since our work focuses on the second step, we will 

not review the extensive literature related to the matching problem. In this work, 

we used a general two-view matching algorithm presented in [59] to compute the 
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displacement field of our monocular image sequences. 

Although both monocular and stereo · camera systems can endow machines with 

the ability to perceive structure from motion, there is in general a major di:fference 

between motion and structure estimations from sequences produced by these two 

types of systems. In the stereo case, once the baseline is calibrated, the absolute 

translation vector and structure can be obtained through triangulation, while in the 

monocular case the translation vector and structure can only be determined up to 

a common scale factor. Nevertheless, if absolute a priori data is available about 

the structure and (or) the translation vedor, the global scale factor can further be 

determined. Stereo motion is inherently :redundant since it provides several means 

of motion and structure estimation (left sequence, right sequence or 3-D sequence 

resulted from stereo pairs). Exploiting advantageously this redunclancy in volves a 

larger computation load since it requires both stereo and temporal matchings. 

Several linear two-view algorithms have been proposed ((42], (44], (45}, (46], [471) 

to solve for motion parameters from two rnonocular views. The backbone of these 

algorithms is the introduction of " essential parameters" to make the original nonlinear 

problem linear in terms of the essential parameters. The essential parameters are 

summarized in a 3 by 3 matrix E clefined in terms of motion parameters (see Appendix 

B for reference). A set of equations are established that relates the image coordinates 

of the matched points to the elements of the matrix E. Since those equations are linear 

and hornogeneous in the elernent of E, the essential parameters can be determined 

up to a sca1e factor. Then the motion parameters are solved from the essential 

parameters. Finally the relative depth ( depth scaled by the magnitude of translation) 

of each point is determined from the motion parameters and its observed projections. 

The essential parameter matrix E has 8 degrees of freedom. Each point correspon

dence gives one linear equation for E. This is why at least 8 point correspondences 

are needed to solve for E. The relative motion between the camera and the rigid scene 
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has 6 degrees of freedom (3 for rotation and 3 for translation). There is therefore a 

dependency among the 8 essential parameters. It results in a high sensitivity of the 

estimatecl motion and structure solutions to the presence of noise. The motion and 

structure solutions from the linear algorithms can be further optimizecl iteratively to 

improve the accuracy. 

To improve the linear solution, several nonlinear optimization strategies were pro

posed. An earlier two-step approach of motion and structure estimation from monoc

ular perspective images was proposed in [48]. Its first step consists of estimating the 

motion parameters, using a robust linearalgorithm that gives a closed-form solution 

for motion parameters and scene structure. Its second step improves the results from 

the linear algorithm using a nonlinear optimization or a maximum likelihood esti

mation strategy. Since preliminary estirriates are available, the algorithm reaches the 

global minimum quickly and reliably. Korsten and Houkes proposed a generic method 

of estimating geometry and motion of a surface from image sequences [82]. It uses 

the idea of linearizing a nonlinear parameter estimation problem around a previous 

guess. After the linearization, standard parameter estimation methods, closed form or 

iterative, can be applied to the problem. Spetsakis and Aloimonos [58] presented two 

ways to take into consideration the dependency among the intermecliate variables in 

E. They formulate the problem as a quadratic minimization problem with a nonlinear

constraint . Their finit strategy of solution is a variation of Newton's method, and the 

second is a decomposition of the problem into two parts, rotation and translation, in 

order to reduce the dimensionality. 

To directly deal with long monocular image sequences, Broida and Chellappa [65] 

presented recursive and batch estimation approaches to extract a type of specialized 

object motion parameters, 2-D constant translation and rotation, from a 1-D sequence 

of noisy images of known structures. It was also noted that for nonlinear optimization, 

batch methods are superior to sequential ones. The drawbacks of sequential methods 
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were explained in [54) and Chapter 2 of this thesis. Recently, Broida and Chellappa 

extended their research to smooth 3-D motion using diredbatch methods to process 

a whole image sequence [11]. N onlinear optimization is used in the formulation of the 

batch strategy, and conjugated Gradient search is adopted for the iterative process. 

Kumar, Tirumalai and Jain proposed a similar batch approach [53). The prohlem is 

formulated in terms of a nonlinear least squares minimization, and solved iteratively 

using the Levenberg-Marquardt method. A deficiency of these approaches is that 

they do not exploit the relationship between the motion parameters and the structure. 

This results in a high dimensional search space, and generates problems of instability. 

When the number of 3-D points increases the dimension of the parameter space 

increases quickly. Indeed, in order to combat the effect of noise, the common strategy 

is to use more point correspondences to form an overdetermined system. However, 

when the number of points increase, the dimension of the parameter space increases 

at the same pace, and quickly produces a prohibitively large search space. It is 

therefore essential, for any practical algorithm for long sequence to explore and utilize 

the relationship between the structure and motion, in order to limit the size of the 

optimization problem. 

To retain the advantages of both closed form and iterative nonlinear optimization 

methods in case of two monocular views, and to overcome the inefficiency and insta

bility problems of optimization algorithms previously mentioned, we propose here a 

recursive-batch nonlinear optimization approach for motion and structure estimation 

from monocular image sequences. This approach, in which the motion parameters 

are not constrained to remain constant, is well adapted to the intrinsic nonlinear

ity of the problem (induced by motion and projection), and possesses the following 

· characteristics:

1. Using the proposed recursive-batch approach, the observation data in a monoc-
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ular image sequence is subdividecl into groups and estimation is clone in a se

quential fashion among groups of data. Within each data group, estimation is 

clone in a batch fashion. In this way, advantages of sequential processing are 

kept and the performance of the algorithm is drastically improved, as compared 

to a direct nonlinear lterated Kalman Filtering [69]. 

2. A matrix-weighted nonlinear objective fonction has been constructed in the

optimization process to properly weigh the data according to the uncertainty

of each information element.

3. The dimension of the search space in the optimization process is reduced by tak

ing into account the relationship between the structure and motion parameters,

so that it is equal to the number of motion parameters only (3 for translation

and 3 for rotation) and does not depend upon the number of 3-D points.

4. The nonlinear optimal solution can then be achieved in two steps. The first

step consists of using a linear algorithm to compute a good initial solution.

There are few cases where such an initial solution can not be acquired [44], [43].

The second step uses a matrix-weighted objective fonction and a parameter

decomposition strategy. The nonlinear optimization is accomplished using the

Gauss-Markov theorem [51}, to get approximate minimum variance estimates

of motion and structure.

The scale problem.of the structure is also studied. It is shown that the scale factor 

of any two consecutive images in a monocular image sequence is determined by the 

scale factor of the first two images. A simple equation is established to show this 

relationship. Therefore, when many image frames are involved, the number of scale 

factor is still one, instead of many. 

A major achievement described in this chapter consists of the ability of the pro-
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posed estimation strategy to handle long sequences of natural scenes. In our ex

periment, an image sequence consisting of 20 images were obtained using a camera 

mountecl on a robot manipulator, which has been calibrated to correct lens distor

tions. The point corresponclences in the image sequence were established automati

cally. The computer simulations and the experiments with real images have shown 

that the optimization method developed not only greatly reduces the computational 

complexity, but also yields a substantial improvement over the results produced by 

linear algorithms. 

3.2 Camera set-up 

We assume a pin-hole camera with unit focal length. Let the origin of the camera

centerecl coordinate system coïncide with the projection center of the camera and the 

z axis coincide with the optical axis. As visible rigid objects move within the field 

of view of the camera system, a sequence of images is acquired. This is illustrated in 

Figure 3.1, where Xk-l,i is the camera-centered coorclinate vector of the ith point on 

the object at time tk-l and llk-l,i is its image coordinate vector. 

At instant k, the image vector of the ith space point xk,i is given by:

1 
Xki = - Xki =

' 

z 
' 

k,i 
(3.1) 

where uk,i = ( uk,i,l, uk,i,2f represent the image coordinates. The interframe motion

can then be expressed in terms of the projections in consecutive images by: 

(3.2) 



31 

X k-1, i

Xk .,] 

U
k .

,] 

0 y 

Figure 3.1: Camera-centered coordinate system. 
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3.3 About the scale of the estimated structure 

As mentioned before, in general, there is a scale factor problem associated with any 

monocular image sequence. The scale factor problem arises because, in the perspec

tive projection expression (3.1), multiples of all three coordinates (xk,i, Yk,i Zk,i) of 

any space point produce the same image. In this section, we discuss in detail the scale 

problem inherent to structure estimation from monocular sequences. It will be shown 

that there exists a proportional relationship between the scale factor introduced in 

processing any pair of consecutive images and the scale factor corresponding to the 

first image pair of the sequence. Consequently, only one global scale factor is involved 

in a monocular image sequence, instead of many. 

If at tüne tk, the relative displacementbetween the camera and any 3-D point in 

the scene is unknown: the image correspondences { uk-i,i} f---7 { uk,d, i = 1, ... , n , can 
. 0 

only yield the rotation Rk,k-l and the unit translation vector Tk,k-l · The intrinsic 

scale factor ak =li Tk,k-I Il remains undetermined [45], [46], this problem will be 

clearer in the following derivation. However, we will show that the kth scale factor 

ak is proportional to the first scale factor a1 =Il T1,0 Il- First, the coordinates of any

3-D point on the observed abject in the local coordinate system, as shown in Figure

3.2, at time t1 can be related by interframe motion R1,0, T1,0 to its coordinates at 

time t0 , 

X1i = R1 0Xoi +T1 0, i = 1, ... , n. 
1 1 ' 1 

Dividing equation (3.3) by a1 yields 

X1 · Xo · o 
,i R ,

i

+ T - = 1 0- 10 ·
0'.1 

'. Œ1
' 

(3.3) 

(3.4) 

The magnitude of the translation vector a1 and the absolute depth of the abject 

points z1 ,i and zo,i cannot be determined by monocular vision. This can be seen from 

(3.4), which still holds when a1 , x1,i and Xo,i are multiplied by any nonzero constant. 
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Note that from image vectors uo,i, u1 ,i and motion parameters R1 ,0, T1,0, we can 

obtain the following two vectors from one of the two-view algorithms, (50]. 

which satisfy 

A" X1,i 
X1,i=-, 

Œ1 

z Xo,i 
Xo,i = -,

Œ1 

Similarly, at time t2 we have 

where, 

Combining equations (3.8) and (3.5) yields 

If we define 

z Xf,i Œ1 -
X1i = -. = -X1i , 

Œ2 Œ2 
, 

from the expression in (3.9), we get 

Thu�, from t0 up to tk , we have, 

where /3i is defined as 

/3j 
= ll�j,i Il _

llxj,ill 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

which can be determined from some 3-D points on the object that are visible in three 

frames at tj-l, tj and tj+1 , respectively. 
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From equation (3.12), we observe that once a1 is determined (given, or computed 

using. other information) then ak, k = 2, ... , are determined as well. However, it is 

important to notice that, in order to determine the value of (:h, at least one space 

point should remain visible at all three instants tk-l, tk and tk+i and its image cor

respondences should be known. In fact, we can relate any ak to any ai, k > j,

by 

(3.14) 

Once the scale factor for any consecutive image pair is given, all other ai can be 

determinecl based on expression (3.14). In the following discussion, without loss 

of generality, we always assume that at tk, a1 is unknown and f3k-l, ... , (31 are all 

computed. 

Finally, for any three nonzero 3-D vectors x = (x1, x2, x3)T , y = (y1, y2, y3)T and 

llax-ayJJ. 
IJax -azll 

llx-yJJ
llx-zll' 

(3.15) 

where a is a non-zero constant. This means that the distance ratio of the scaled 

3-D vectors is the same as that of the real 3-D vectors. In the presence of noise, the

distance ratios of the computecl 3-D vectors can be used as one of the measures to 

assess the accuracy of a motion and structure estimation algorithm from monocular 

image sequences, without requiring evaluation of the actual scale factor. 

3.4 Motion and structure optimization 

As mentioned earlier, batch methods generally outperform sequential methods for 

nonlinear problems. In addition, the estimation of early interframe motions of an 

image sequence can benefit from the processing of later image frames if there are 

multiple observations of some part of the scene. In principle, it should be desirable 
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to use all of the image projections in a sequence as input, all the interframe motion 

parameters as variables, and iteratively miriimize the squared sum of the discrepancies 

between the observed image projections and the back projections from the computed 

structure. However, it is only feasible under the assumption of smooth motion, and 

only when the number of point correspondences and the number of image frames are 

small as in [11]. In a general situation, the above total batch method is impractical 

due to possible violations of a smooth motion assumption, the enormous memory 

requirement and the excessive computational cost caused by the large number of 

point correspondences and image frames. On the other hand, a sequential technique 

possesses some desirable properties: old observations can be discarded once they have 

been used for estimation, and a relatively small amount of data and computation is 

required for updating estimates. 

In order to achieve good performance without suffering from excessive compu

tational cost, we use batch processing only for those data that have considerable 

interactions, where the improvement of the batch methods is most signi:ficant. Since 

there is no smooth consti:aint enforced upon our motion parameters, a natural data 

set for batch processing consists of all the points in two consecutive image frames. 

Sequential technique is used for those loosely related data, i.e., images which are 

far apart. The framework of our recursive-batch approach for motion and structure 

estimation from monocular image sequences is shown in Figure 3.2. 

At time tk , there are two sets of data available, { ùk,i} and { ùk-i,i}, i = 1, · · 

•, n. These are point projections at the previous and current instants. Since the 

information accumulated through all preceding frames can be well conveyed by the 

estimated structure XÎ:-i,i, represented in the local coordinate system at the previous 

instant, { uk-i,d i = 1, · · ·, n can be implicitly represented by XÎ:-i,i, i = 1, · · ·, n.

Each xL1 ,i has an error covariance matrix r x;;_1
,i, which is obtained by the structure

estimator and indicates the expected accUracy of the estimate. The interframe motion 
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Figure 3.2: The framework of our recursive-batch approach for motion and structure 

estimation from monocular image sequences. 
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from the ( k - l )th frame to the kth frame, represented by mk,k-l designating the pair 

( Rk,k-l and Tk,k-d, transforms the noise free structure Xk-1,i at tk-l into Xk,i at tk: 

(3.16) 

In reality, only the estimated structure xk-l i is available at time tk, which can be 

expressed as 

(3.17) 

Given any set of motion parameters mk,k-l, we can establish a prediction Xk,i of the 

structure Xk,i at the current time tk: 

(3.18) 

and estima te the prediction error: ôx.
k
,, ·.· Rk,k-l ôx;;_1,,, so the error covariance of the

predicted structure Xk,i is given by 

The image observation Uk,i is related to the structure Xk,i by 

Uki = Uki(Xki) + ôü
k ., i = 1, ... , n

' 1 , . ,; 

(3.19) 

(3.20) 

where uk,i(xk,i) is the noise-free image point and ôük
,i is the observation noise in Uk,i• 

Using (3.16), equation (3.20) can also be written as 

(3.21) 

This is a nonlinear equation that relates the previous structure xk-l,i, the new obser

vations uk,i and the interframe motion mk,k:..1. A direct sequential approach [65] solves 

for 1nk,k-l through updating sequentially on i, which results in a long convergence 

period and poor performance. 
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We assume that the components of the image noise ôük ,i caused by quantization 

error, calibration error, feature matching error, etc., are zero mean, mutually inde

pendent, and independent of Xk,i, with a error covariance matrix o-�I. 

From the two sets of observations {xk,i} and {uk,i}, i = 1, · • ·,n, we form our 

objective fonction as a nonlinear weighted least squares sum: 

(3.22) 

Its parameter set consists of the interframe motion mk,k-1 and the unlmow structure 

Xk,• = {xk,i i = 1,· · ·,n}. This objective fonction contains two terms for each point 

i. The first term mea.sures the discrepa.ncy between the improved structure estima.te

of Xk,i and the predicted structure Xk,i .. The second term corresponds to moving the 

previous estimated structure xj;_1,i according to the current motion estimate Ink,k-l, 

then projecting the resu]t onto the image plane to obtain uk,i and comparing it to 

the actual observation uk,i. The reason why we take weighted least squares other 

than unweighted least squares is because �he reliability of each information element is 

not the same. The inverses of the error covariance matrices in the objective fonction 

are symmetric and positive de-fini te. They àccount for the different reliabilities of the 

different information elements. That is, a more reliable information element will have 

a larger ,veight in the objective fonction, a,nd a less reliable information element will 

have a smaller weight. 

It is shown in (2.11) that the structure Xk,i depends upon the interframe motion 

l1îk,k-l, once the previous structure Xk-l,i is fixed. Then, once the interframe motion 

mk,k-l is known, the optimal estimation of the structure xï;,i at time tk can be directly 

determined from mk,k-l, the image projections uk,i and the previous structure esti-



39 

mate xk-l i, without resorting to an iteration process. We can thus reduce the number 
, 

of search parameters of the objective fonction in the iterative process. Namely, we 

rewrite the minimization of the objective fonction, owing to its continuity, as: 

(3.23) 

where 

(3.24) 

This indicates that the whole minimization can be decomposed into two phases, the 

iterative search phase in motion space and the noniterative estimation phase (mini

mum variance estimation) for fixed motion parameters in structure space. 

We now describe the minimum variance structure estimator for any set of giv

ing motion parameters. Linearizing Uk,i(xk,i) within a small neighborhood of the 

predicted structure Xk,i with a given motion mk,k-l yields 

(3.25) 

By substituting this expression of uk,i(xk,i) into (3.24), the objective fonction becomes 

quadratic in Xk,i· Or, more procisely, we have two measurements about the structure 

(3.26) 

and 

(3.27) 

These two equations have the same parameter vector xk,i, and Xk,i and iik,i are known. 

The optimal structure estimate xk,i can be computed based on the linear minimum 

variance estimation presented in Chapter 2: 

(3.28) 



where 

and the error covariance matrix is 

I 

auk,;(xk;) 
axk,i 

40 

(3.29) 

where A is a 5 x 3 matrix and r is a 5 x 5 matrix. One of the important aspects of 

this procedure is that the minimum variance estimation provides at each instant an 

assessment of the structure uncertainty in the form of the error covariance matrices 

r x• .. This uncertainty is then transfered to the next estimation step, and thus, in 
k,1 

case of multiple observations of the same part of the scene, the redundancy of the 

observations is implicitly taken into account by the structure estimator (3.28). 

At time tk, the nonlinear weighted least squares minimization in (3.22) is thus per

formed in such a way that for each mk,k---l , the matrix-weighted square discrepancies 

in equation (3.22) are computed from the predicted structure xk,i, the noniterative 

structure estimate xk,i and the observed i!llage projection iik,i· The motion param

eters mk,k-l which minimize the objective fonction (3.22) is determined using an

iterative search in a 6-D motion space, and the corresponding optimal structure xt • 
'· 
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motion slibspace (6-D itcrative) 

Figure 3.3: An illustration of the deçomposition strategy used in the search space. 
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is obtained using equation (3.28). This optimization process is illustrated in Figure 

3.3. 

In summary, two measures are taken which make our approach significantly more 

efficient than those described in [53] and [65]: (1) the recursive-batch method with 

a batch corresponding to an image frame; (2) the exclusion of structure from the 

iterative search space by exploring the relationship between the motion parameters 

and the structure. 

Given a monocular image sequence, .a linear algorithm [50] is used to directly 

compute an initial guess of mk,k-l, thus avoiding divergence and speeding up the 

computation. The image frames are pi·ocessed sequentially, and the accumulated 

information is kept in the form of the 3-D structure (i.e. no past image frames need 

to be kept). The points in each frame are processed in a batch fashion to obtain 

the current interframe motion and the updated structure. Our approach is thus of a 

recursive-batch type. 

Any unbiasecl linear minimum variance estimator in batch form can be converted 

into one of the two categories of recursive forms: information form or covariance 

form. The information form is often more useful than the covariance form in analyt

ical studies. In on-line applications, where speecl of computation is often the most 

important consideration, the covariance form is preferable to the information form. 

This is because a smaller matrix needs to be inverted in the covariance form [70]. In 

order to facilitate the implementation of the motion and structure estimation, we use 

the well known inverse theorem [55), [69], [70] to change equation (3.28) into the 

following covariance recursive form (the derivation is shown in Appendix E): 

(3.30) 

where the gain matrix is 
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and the error covariance matrix is 

(3.31) 

because that only 2 x 2 matrix inverse is required in (3.30) compared to 3 x 3 matrix 

inverse required in (3.28). 

3.5 Uncertainty updating and the complete opti

mization procedure 

In this section, we will first discuss how to update the relative motion and the struc

ture uncertainties. These uncertainties estimates, in the form of error covariance 

matrices, are not only crucial for obtaining" the expected accuracy of the estimates, 

but also important for processing the next image frame based on the current computed 

estimates. The uncertainties in the estimates of the corresponding global motion and 

structure can be obtained in a similar way. The complete optimization procedure will 

then be presented. 

3.5.1 U pdating the motion and structure uncertainties 

Let a rotation matrix R be expressed as: R = R(>..) with À= (a (3 î), where a, (3 

are two variables representing the rotation axis and Î represents the rotation angle 

around this axis ( alternatively a, (3, Î can represent the three rotation angles around 

z, y, x axes, respectively). The interframe motion vector mk,k-l is thus defined as: 

(3.32) 

At time tk, each visible point provides 2 "observations": the predicted structure, xk,i, 

and the current image observations, Ûk,i, 
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with the error covariance matrix 

\Vhen we obtain the interframe motion estimate mk,k-l which minimizes the objective 

fonction (3.22) using the space decomposition method described in the last section, 

its error covariance matrix is, according to equation (2.23), 

(3.33) 

The uncertainty of the estimated optimal structure xk,i can then be derived as 

follows. Let the previous relative structure xk-l,i and the current relative structure 

xk,i be related by the interframe motion Rk,k-l and Tk,k-1,

(3.34) 

We expand the above equation in the vicinity of the estimated optimal motion pa

rameters and the optimal structure at the previous instant, (mk,k-i, x;;_
1
J, by Taylor 

Polynomial, while neglecting the terms of order higher than two, 

After rearranging the above equation, we have 

8f1 (1n*k k-1, x
*
k-1 i·)

' ' Dm• . + R* 8 
OITik,k-1 k,k-1 k,k-1 x;;_1,i.

(3.35) 

(3.36) 
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Where predicted structure xk,i = f1 (mk,k�i,Xk-i,i). The error covariance matrix of 

xk,i is 

(3.37) 

Notice that equation (3.37) is different from equation (3.19), where mk,k-l is a given 

variable vector only. So, after the optimal motion and structure estimates, the un

certainty of the structure x!,i is 

(3.38) 

where 

A= (I 

and 

r = ( r x
0

· k,i o ) .
rÜk,, 

In the ab ove block matrix, r x
k 

i is detetmined as in equation (3.37). The traces of 

error covariance matrices r m• and r x• . give us the expected square norm of the 
k,k-1 k,i 

error in the corresponding estimated vectors. 

3.5.2 Updating global motion and uncertainty 

Between instants t1 and tk, the trajectory of the moving section of the scene (when 

the camera is stationary) is defi.ned by the expressions: 

Rk,k-1Rk-1;k-2. ·. R1+1,t, k > l, 

L Rk,iTi,i-1, k > l.

i=l+l 

(3.39) 
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When the scene is static and the camera moving the following expression can be used 

to update the global position of the camera: 

(3.40) 

For example, let us assume that we wish to represent the current motion with respect 

to t0 , and at each time instant, we update it from the previous position. Let 

(3.41) 

Where lTlk,k-l represents interframe motion (Rk,k-1, Tk,k-1)- And mk,o and mk-i,o 

represent global motions at instants tk and tk-l respectively. This equation can be 

linearized in the vicinity of the estimatecl motion mZ k-l and mL10 . Then, the
' ' 

clifference between the estimatecl motion and the true motion parameters, neglecting 

the tenns of order higher than two, is 

ôm• 
k,o 

(3.42) 

So the error covariance matrix of the global motion can be updatecl at each time tk

by 

rm• 
k,O 

where k > l. 

+ 

(3.43) 
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In summary, the recursive-batch optimizàtion algorithm for motion and structure 

estimation from monocular image sequences can be described as follows: 

Step 1 Compute x0; and r x• . , for all point i. 
, O,t 

Compute the scaled 3-D scene points x0,1, · · · , xô,n at ta using the five-step two

view linear algorithm shown in AppendixB (see also [54)). Their error covariance 

matrices at time ta can also be obta.ined. Let 

* * [ * * Xa · = za · Ua · 1 Ua · 2,i ,1. ,t, ,i, 
(3.44) 

(3.45) 

Where uô,i,l and uô,i,2 are the image projections of 3-D coordinates XÔ,i· If we 

denote u'!' = [ua* . 1 u
a* 1· 2 l]T and bu,· == [bu•. bu•. ü]T, then the error covariance

i ,i, , , O,t,l O,i,2 

matrix of XÔ,i is 

(3.46) 

This error covariance matrix is always positive definite, see Appendix F for proof. 

Step 2 At tk, k � l: 

(2.1) Linear solution: from Ûk,i, Ûk-1,i, compute the initial solution 1nk,k-l (i.e., 

Rk,k-i, Tk,k-i), using the five-step linear two-view algorithm presented in Appendix 

B (see also [50]). 

(2.2) Optimization: compute xt,;, and mï;,k-l (i.e., Rk,k-i, Tk,k-i) by improving 

1l1k,k-l according to (3.23) and (3.28). 

(2.3) Computer mk,k-1' and r xk,i using equations (3.33) and (3.38).

(2.4) In the case of a moving scene and a stationary camera, compute Rj_ a, Ti 
0' ' 

and r m• using equations (2.14) and (3.43). In the case of a moving camera and a 
k,O 

stationary scene, use equations (2.19) and (3.43). 
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Step 3 Terminate the procedure if at the last monocular image, otherwise k :=

k + 1, and go back to step 2). 

3.6 Simulation and experiments 

To assess the performance of the recursive-batch optimization algorithm for motion 

and 3-D structure estimation from monocular image sequences, simulations as well 

as experiments with a real monocular image sequence of a natural scene have been 

conductecl. 

3.6.1 Simulation 

The objective of the simulation is to investigate the performance of our approach, 

when the ground truth is known and the noise level is controllecl, by precisely mea

suring errors in the estimates. In addition, a statistical assessment can be achieved 

through numerous trials. 

In the simulation, 3-D points are generated randornly for each trial, between 

depth 0 and 200 meters, with a unifonu distribution. The simulated camera has a 

square image frame whose field of view (si�e to sicle) is about 44° . The error in the 

image projections of the space points is sirnulated by additive zero-mean independent 

Gaussian noise, whose variance is equal to that of a uniform digitization with a 

256 x 256- pixel image. To establish the scale factor, we supposed that the average 

distance I:� { z0,i} of the visible points is known, noting that 

(3.4 7) 

where { zo,i} can be computed from the two-view linear algorithm shown in Appendix 

B.
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We let the simulated monocular camera system move along a zigzag path, while 

undergoing slight rotations through the static environment similar to the movement 

of a human head, as illustrated in Figure 3.4. 

In order to simulate reasonable conditions of visibility, only those points lying 

within a range of 20 meters in the local coordinate system are used for motion analysis. 

Fifty images were generated in this way, and the visible 3-D points of the last view 

were totally different from those of the :first. For the first pair of images about 300 

points were used to compute the initial structure at t0 , while 70 points were used for 

the remaining images. 

The true rotation matrix Rk of the monocular camera system with respect to the 

global coordinate system was 5° around à rotation axis (0.3m, 0.3m, lm) for odd k, 

and -5° arouncl the same rotation axis for even k. The given translation vector Tk

of the monocular camera system with respect to the global coorclinate system was 

(0.5, -0.5, 1.2k) for odcl k, and (-0.5, 0.5, 1.2k) for even k, with meter as the unit. 

After 50 images, the forward distance travelled by the monocular camera system was 

equal to 60 meters. 

The error in rotation was measured as the relative error in the rotation matrix, 

defined as the Euclidean norm of the matrix difference between the estimated and 

true rotation matrices, divided by the norm of the true rotation matrix, 11 R-R\\ /IIR\\.

Since li.RI -RI\\ = Il .R-RII, the geometrical meaning of the relative error in a rotation 

matrix is that it measures the root mean-squared error (RMSE) in the 3 unit vectors 

of a rotated orthonormal frame. This error measure gives a relatively stable measure 

over a wide range of rotation angles, so it can be used as a normalized measure 

to compare the accuracy between different rotations. The error in the interframe 

translation vector Tk,k-l is defined as the direction error, i.e., the Euclidean norm of 

the vector difference between the estimated unit translation vector and the true unit 

translation vector. The error in the global translation vector Tk consists of a direction 
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Figure 3.4: The navigation path of the monocular camera system in the simulation. 
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error as well as an absolute error, i.e., the Euclidean norm of the vector di:fference 

between the estimated and true translation vectors. For the iterative optimization, 

the "dunlsf" subroutine in IMSL library was used. 

The simulation consists of 100 trials to obtain average errors. For each trial, a 

di:fferent set of 3-D points was used. 

Figure 3.5 shows the estimation error for the interframe motion. We can see that 

the average direction error in the interframe translation and the relative error in the 

interframe rotation have been reduced by more than 65% as compared to the errors 

produced by the linear algorithm. 

To measure the error in the estimated structure, we use the root mean-squared 

error (RMSE) of the positional errors of the 3-D points. A 3-D point Xi is estimated 

up to a scale factor by axi . VIe cletermine the scale factor a such that 

(3.48) 

is minimizecl. This measure indicates the. best scale fit to the 3-D positions. 

We have computed RMSE at each frame for the local structure, with respect to 

the current camera reference, and the global structure, with respect to the global 

coordinate system. The results are depicted in Figure 3.6 and 3.7 respectively. 

A substantial decrease in the local structure error in Figure 3.6 appears in the 

first few frames only. This is due to the overdetermination available through more 

views. But the local structure error does not continue to decrease further with time 

since new points corne in and old points go out continuously. The global structure 

error shown in Figure 3. 7 increases with time because of the accumulated error in /3ï's 

in (3.12). It shows that a single scale factor a1 can not fit well every frame due to the 

presence of noise. This is a very important phenomenon in long monocular sequence 

analysis. 

F igure 3.8 illustrates the estimation error for the motion with respect to the global 
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Figure 3.5: Simulation results: errors in the estimated interframe motion. (a) error 

in the interframe rotation matrix Rk,k-l; (b) the direction error in the interframe 

tr�nslation vector Tk,k-1·
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coordinate system, which at t0 coïncides with the camera coordinate system. We can 

see that the global motion error increases gradually. This is because the global motion 

was computed from the interframe motions as in (2.19), so its error was accumulated 

through every related interframe motion. lu Figure 3.8, we notice that the direction 

of translation is improved in the early stages, but due to the increasing magnitude of 

the translation vector, it degrades later when the accumulated error predominates. In 

the simulation, only certain type of interframe motion ground truth was used. More 

simulations with different kinds of interframe motions are needed to be conducted for 

investigating the relationship between the a.ccuracy of the estimates and the motion 

type. 

3.6.2 Experiments with monocular image sequences 

Principles of camera calibration 

Before describing our experiments with real monocular image sequences, we will first 

describe the camera calibration procedure which was adopted in the experiments. 

The calibration of cameras is considered to be an essential part of an artificial 

vision system. An accurate calibration of cameras is especially crucial for applications 

that involve quantitative measurements such as dimensional measurements, depth 

from stereoscopy or motion from images. 

The objective of camera calibration is to estima.te the interna! and external pa

rameters of each camera. To acquire a large field of view, the lenses for a vision system 

must be wide-angle ones. Therefore, nonlinear distortion is significant. The camera 

model used in our experiments is a distortion model which accounts for major sources 

of camera distortion: radial, decentering and thin prism distortions, characterized by 

a set of distortion parameters (see [66] for details). The calibration consists of two

steps. lu the first step, calibration parameters are estirnated using a closed-forrn so-
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Figure 3.8: Simulation results: errors in the estimated global motion. (a) error in the 

global rotation matrix Rk; (b) the direction error in the global translation vector Tk ; 

(c) the absolute error in the globaltranslation vector Tk .
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lution based on a distortion-free camera model. In the second step, the parameters 

estimated in the first step are improved iteratively through nonlinear optimization, 

taking into account camera distortions. Aècording to the minimum variance estima

tion principle, the objective fonction to beminimized is the mean-squared discrepancy 

between the observed image points of a set of known points in space, called control 

points, and their inferred image projections that are computed based on the estimated 

calibration parameters. In our calibration process, the control points are the corner 

points of the black squares on the calibration plate, shown in Figure 3.9. 

The camera model used in the calibration process will be briefly introduced in the 

following. 

Let ( x, y, z) represent the coordinates of any visible point P in a fixed refer

ence system ( world coordinate system) and let ( Xe, Yc, zc
) represent the coordinates of 

the same point in a camera-centered coordinate system (note that these coordinate 

systems are inclependent of the coorclinàte systems used for estimating motion and 

structure). As illustrated in Figure 3.10, the origin of the camera-centered coordinate 

system coincides with the optical center of the camera, and the Zc axis coïncides with 

its optical axis. The image plane, which corresponds to the image sensing array, is 

assumecl to be parallel to the (xc, Yc) plane and at a distance J to the origin, where 

f represents the (effective) focal length of the camera. The i-elationship between the 

'Yorld and camera-centered coordinate systems is given by 

(3.49) 

where R = (ri,i) is a 3x3 rotation matrix defining the camera orientation and T =

(t1, t2, t3)T is a translation vector defining the camera position. 

We now define in the image plane the image coordinate system ( O', u, v) where O' 

represents the principal point of the image plane (i.e., the intersection of the image 

plane with the optical axis) and where the u and v axes are chosen parallel to the 
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Figure 3.9: The calibration plate used in our experiments. The control points are the 

corner points of the black squares on the plate. 
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Xe and Yc axes. It should be stresse<l that, owing to possible misalignments of the 

CCD array, O' <loes not necessarily coïncide with the geomètrical center of the image 

plane. The image plane coordinates of the point P are given by the equations 

u (3.50) 

Finally, if we denote by (r, c) the position of the corresponding pixel in the digitized 

image, this position is related to the image plane coordinates by the expressions 

r - r0 (3.51) 

where (r0, c0) denotes the pixel position of the principal point O'. The coordinates 

(r, c) can be considered as the row and column numbers in a CCD array. In other 

words, the Xe and Yc axes are chosen to be parallel to row and column directions, 

respectively. As can be noticed in Figm;e 3.10, the adopted conventions impose Su 

to be negative and Sv to be positive. Combining (3.49), (3.50) and (3.51) lea.ds to 

the following expressions that relate the pixel position, the world coordinates and the 

various parameters to be calibrated 

u r - r0 ----

f fu

1·1,1X + r1,2Y + r1,3Z + t1 def 
---'------'------- = u

r3,1 x + r3,2Y + r3,3Z + t3 
(3.52) 

V C- Co 

f fv 

r2 1X + r2 2Y + r2 3Z + t2 def 
' ' ' := V 

r3,1X + r3,2Y + r3,3Z + t3 

where ( ù, v) defines the coordinates in the normalized image plane that is located at 

z = 1, and fu = suf and fv == s
v
f are called the row focal length and the column 

focal length, respectively. The internal parameters r0, c0, fu, fv determine the image 

coordinates of a. point, given the spatial position of the corresponding 3-D point with 

respect to the camera. T and R are called the external parameters of the camera. 
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These external parameters characterize the geometrical relation between a camera 

and a scene, or between different cameras. 

Because of several types of imperfections in the design and assembly of lenses com

posing the optical system, expressions (3.50) do not hold true and must be replaced 

by expressions which explicitly take into account the positional error thus introduced: 

u' = u+ liu(u, v) 

v' -
v + ôv(u, v) 

(3.53) 

where u and v are the non-observable, distortion-free image coordinates and u' and v' 

are the corresponding coordinates with distortion. As indicated by (3.53), the amount 

of positional error along eaèh coordinate usually depends upon the point position. In 

order to compensate for the dîstortion, we need to analyze the various sources of 

distortion and model their effects in the image plane. Three types of distortion are 

considered in the calibration process. The :first one is caused by imperfections of the 

lens shape, and manifests itself by radial positional errors only. The second and the 

third types of distortion are generally caused by improper lens and camera assembly 

and generate both radial and tangential errors in image point positions, as shown in 

Figure 3.11. 

Taking into account the radial distortion, the decentering distortion and the thin 

prism distortion along the u and v axes, we obtain the following total distortion model 

when assuming that terms of order higher than 3 are negligible: 

ô11 ( u, 'V) 

ôv(u,v) 

s1 (1? + v2 ) + 3p1ti
2 
+ p 1v2 

+ 2p2uv + k1u(u2 
+ '1>2), 

s2(u2 
+ v2) + 2piuv + p2u2 

+ 3p2v2 
+ k1v(u2 

+ v2).

(3.54) 

Letting g1 = s1 + p1, g2 = s2 + P2 , g3 = 2p1, g4 = 2p2 , expressions (3.54) become: 

(g1 + g3)u2 +g4uv + g1v2 
+ k1u(u2 

+ v2), 

= g2u2 
+ g3uv f(g2 + g4)v2 

+ k1v(u2 
+ v2) .  

(3.55) 
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Figure 3 .11: Radial and tangential distortion 
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Then, the relationship between the distortion-free image point ( u, v) and its corre

sponding pixel location is given by: 

(3.56) 

v + ôv(u,v) (c - co)/sv. 

Introducing the new variables: 

u (r - ro)/ fu (3.57) 

A (c - co)/ fvV

equation (-3.56) becomes 

u 
A 

8,.(u,v) 
(3.58) 

f 
- u-

f 
V ôv( u, V) 

f 
v-

f 

Because the exact u, v cannot be obtained from actual noise-contaminated observa

tions, the arguments of the modeled distortion are replaced by û , v, which leads 

to 

u A (/ ( A A) U - u
,. 

u, V (3.59) 

f 

A (/ ( A A) 
V - U

V 
U

1
V. 

This replacement is reasonable because (a) the distortion at the exact image plane 

projection is approximately equal to that in the actual projection, and (b) the actual 

distortion coefficients in c5� and c5� will be estimated based on û and 'Û. So, the actual 

model fitting will be better than what is stated in (a). 

Finally, the complete camera model with the considered three types of geometrical 

distortion is: 

(3.60) 



r2,1x +r2,2Y+ r2,3z+t2 A+ A2+_·AA+( + )A2+kA(A2+A2)
= V 92U g3UV g2 g4 V l V U V . 

'r3,1X + 'r3,2Y 
+ 'r3,3Z + t3
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(3.61) 

It is clear that these expressions are linear with respect to the distortion coefficients 

k1, g1, 92, 93, 94. The calibration problem eau now be stated in the following terms: 

Given a suffi.cient number of visible control points (xi, Yi, zi) and their correspond

ing pixel locations (r:, <), estimate in some optimal sense the set of external and 

internal non-distortion parameters: 

(where a, f3 and , are three independent parameters of the rotation matrix R) and 

the set of distortion parameters: 

In the pararneter estimation process, we first use the projections of the control 

points around the center of the images, where d is approximately zero, to compute m 

in closed-form. The projections of all the control points in the images are then used 

to iteratively improve m and d, where d Can be found analytically when mis fixed. 

The flowchart of the calibration procedure is illustrated in Figure 3.12. 

Once the calibration is clone for the êamera, the estimated parameters m and d 

can be used to compensate for the distortion and determine the 3-D back-projection 

line of each sensed point. First, the meéj,sured r and c values of the sensed point 

give û and v according to (3.57). Then, the values of û, v are used to evaluate the 

right-hand sicles of the two equations in (3.60) and (3.61), whose values correspond to 

the distortion-corrected projection of the point in the normalized image plane ( ü, v). 

Finally, the two equations in(3.60) and (3.61) determine the back-projection line of 

the sensed point in the world coordinate system. 
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Experiments with a monocular image sequence 

A TM-8L10 PULNiX camera of f = 8.5mm wide-angle lens was used in the exper

iments. Unlike some other high i·esolution cameras, the TM-840 imager cells are 

nearly square (ll.5µm (h) x 13.5µm (v) ) instead of the more common long vertical 

cells. Therefore the vertical resolution and physical pixel positioning is best in the 

EIA (NTSC) TV format. In order to compute the internal parameters (focal length 

and principal point position) and to compensate for lens distortion, this camera was 

calihrated together with another camera where the two cameras form a stereo setup, 

using the method brie:fly described before (see [66] for detail). The calibrated data 

is listed in Table 3.1, in which NSCE (normalized stereo calibration error) parameter 

measures the mean of the ratio of the lateral triangulation error to the lateral standard 

deviation of the pixel digitization noise at any estimated depth. Therefore, NSCE�l 

implies a good calibration in which the residual distortion is negligible compared with 

image digitization noise at that depth. 

The camera was mounted on the tip of a robotic manipulator as shown in Figure 

3.13. Since the laboratory where our six-joint robot manipulator was installecl is quite 

small ( about 3rn X 3m only ), it is hard to stretch the manipulator forward sufliciently 

to create long image sequences. Instead, we let the manipulator rotate laterally 

around a vertical revolute joint. After each image was grabbed, the manipulator 

was controlled to rotate by 2.25° around the vertical revolute joint. Viewed from 

the camera coordinate system, the translation is almost horizontal, but the· exact 

translation is unknown. The interframe rotation angle 2.25° is the only ground truth 

available in our experiments. 

The image sequence obtained by then1onocular camera, as shown in Figure 3.14, 

consists of 20 images. The scene in the first image is totally different from that in 

the last. The depth of the scene is about 0.6 to 2 meters. 
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Figure 3.13: The calibrated camera was mounted on the manipulator to grab image 

sequences. 
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2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

17 18 19 20 

Figure 3.14: The image sequence of a real scene, used in experiments. 
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Table 3.1: Calibration dataJor the f=8.5mm lens camera. 

Focal length: fu -639.10026

fv 527.09577

Center coordinate: ro 251.07143 

Co 260.01047 

distortion parameter: k1 0.17645 

g1 -0.00390

g2 0.00093

g3 0.01522

g4 0.00373

test parameter NSCE 1.30032 

For any pair of consecutive images of the monocular image sequence, matching was 

automatically clone using the method presented in [59). This matching method uses 

multiple attributes associated with a pixelto yield a generally overdetermined system 

of constraints, taking into account possible structural discontinuities and occlusions. 

In the algorithm, intensity, edgeness, and cornerness attributes are used in conjunc

tion with the constraints arising from intraregional smoothness, field continuity and 

discontinuity, and occlusions to compute dense displacement fields. A multiresolution 

structure is employed to deal with large disparities. However, if we track a feature 

point successively among many consecutive images with the disparity values provided 

by the algorithm [59), we observe that after 4 to 5 frames the accumulated disparity 

error is as much as 4 to 7 pixels. This makes the motion and structure estimation 

erroneous. Since the disparity values obtained between any two consecutive images 

by the matching algorithm [59] were within a range of 2 pixels around the correct 
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values, we used a post-refining process of intensity-based normalized cross-correlation 

to reduce the amount of mismatching. 

This normalized cross-correlation was done between a 9x9 intensity window cen

tered at the feature location in the earlier image, and a 9x9 window in the latter 

image, scanning a 5 x 5 neighborhood centered at the preliminary matching location. 

This refining process related a feature point to its earliest past so that the error in 

interframe matching would not quickly accumulate through multiple views. The fea

ture points consisted of manually selected corners in the image. This selection could 

be automatically clone by a simple corner detector such as in [59]. The matching for 

the first image pair is shown as vector lines in Figure 3.15. 

The points are classified into two categories: old and new. The old points are 

visible both in the current image arid the previous one. The new points are visible in 

the current image but not in the previous one. A point is no longer considered as old 

if its neighborhood changed drastically due to motion. Only the old points (about 70 

for each image pair) were included in the iterative optimization. The structure of the 

new points was estimated after motion. 

The first two interframe motions and the last two interframe motions are listed in 

Table 3.2, the complete interframe motion estimates are shown in Appendix G. The 

estimated angle of interframe rotation is about 2.39° to 2.61 ° as listed in Table 3.3. As 

can be seen, they are qui te accurate compared to the ground truth of 2.25° . During 

the interframe computation, the nonlinear optimization converges and the magnitude 

of the average difference between image points projected from the structure estimates 

and the observed image points is less than half a pixel. 

The accuracy of the estimated structure was tested using the lengths of several 

lines of the 3-D structure. Any line with end points Xi and x� has a true length 

li = llxi - x�II- From the 3-D points determined up to a scale factor a, Xi = axi, 

x� = ax:, its scaled length is t = ll.i; - i�II- In a noise free situation l; = ai;, while in 
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Figure 3.15: Matching for the first image pair shown as vector lines. 
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the presence of noise, li has errors. We can determine the scale factor, o:, such that 

the following root mean-squared error 

Rl\1SE = (3.62) 

is minimized. So, RMSE indicates the best scale fit between the estimated structure 

and the true structure. 

However, it should be noted here that this type of error measure is not as good as 

the positional error measurement we used in simulations. Identical amounts of error 

in the two end points may be cancelled out in the length measurement. We used 

length measurement since the global positions of points are not available here. 

We measured 65 lines in the entire scene (see Figure 3.16), and recorded the visible 

lines in each view. The value of RMSE was computed at each frame using these visible 

lines. These RMSE values indicate that the structure estimation has an accuracy of 

about 6 to 32 mm, with respect to the world reference. We have observed that the 

most part of the error concerns the depth components and is due to the relatively 

small interframe motion. The integration of multiple views may reduce the error, as 

shown in the table. But the error in motion parameters is accumulated, which makes 

the improvement on th� estimatecl structure saturated soon. 

Note that a wide angle lens was used in this experiment. A tele lens will result 

in unreliable estima tes as discussed in [50]. A forward ( or backward) camera motion 

may lead to more accurate motion parameter estimations (501, but structure estimates 

will be very bad for points near the foctis of expansion of the images. 

3.7 Summary 

V\Te have thus far investigated the problerri of optimal motion and structure estimation 

for long monocular image sequences. It was shown that any scale factor of two 
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Figure 3.16: The samples of the lines havè bcen measured in the scene. 
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Table 3.2: Motion estimations resulting from the linear algorithm and the nonlinear 

optimization. 

motion parameters linear· algorithm nonlinear optimization 
motion M1,o 
translation ix -0.004081 -0.000615
(scaled) iy -0.140111 -0.192057

iz -0.1.16833 -0.044210
length 0.182476 0.197081 

rotation axis Nx 0.927024 0.896551 

Ny 0.127492 0.049395 

Nz -0.352664 -0.440179
rotation angle 0(0) 2.955706 2.514551 
motion M2,1 
translation tx -0.012594 -0.005608
(scaled) iy -0.040259 -0.190828

tz -0;116480 -0.042419
length 0.123883 0.195567

rotation axis Nx 0.987225 0.894357

Ny 
0.088764 0.057969

Nz -0.132316 -0.443582
rotation angle 0(0) 3.777868 2.510903
motion M18,11 
translation ix 0.019225 -0.010592
(scaled) iy -0.073187 -0.200072

iz -0.136523 -0.042506
length 0.156091 0.204812 

rotation axis Nx 0.959765 0.890507 

Ny 0.069962 0.060714 

Nz -0.271949 -0.450900
rotation angle 0(0) 3.484531 2.400253
motion M19,1s 
translation ix -0.070523 0.000453 
(scaled) iy -0.202018 -0.206084

iz 0.438972 -0.041304
length 0.488345 0.210183

rotation axis Nx 0.950502 0.890109 

Ny -0.062418 0.058372 

Nz -0.304383 -0.451993
rotation angle 0(0) 3.422166 2.438417 
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corresponding consecutive images can be expressed as a proportional fonction of the 

scale factor of the first image pair. A recutsive-batch nonlinear optimization approach 

has been presented to estimate the motion and three-dimensional structure of the 

scene from long monocular image sequences, allowing arbitrary interframe motion 

between any two consecutive images in the sequences. 

The fonda.mental difference between our approach and some others in dealing with 

long image sequences is that we have fully used the relationship between motion and 

structure. By using this relationship, the extremely large parameter space wa.s re

duced to a 6-dimensional ( the 6 independent motion variables) space. In addition, 

we acloptecl the recursive-batch method by preserving and updating the structure 

through tiine. In order to improve the numerical stability and reduce the computa

tional cost, an initial motion solution of the nonlinear optimization was provided to 

the nonlinear optimization stages by means of a linear algorithm. Finally, the different 

uncertainties of the different components of the space points were taken into account 

in the optimization process. These strategies formulate the intractable optimization 

problem into a practical one, while still obtaining a good performance. Our method 

gives accurate results from the first two frames, on the contrary, the conventional 

Kalman filtering method needs a long period of up to 30-40 frames to converge. 

Our objective was to validate our motion and structure analysis with thorough ex

periments, in orcler to establish the credibility of our approach. Both simulations and 

experirnents with real image scquences were conclucted for assessing the performance 

of the proposed a.pproach. Our experiments with long image sequences, automatic 

matching and a calibrated camera provide a detailed assessment of the accuracy of 

the estimated motion and structure in real world situations. Despite the presence 

of quantization, calibration and matching errors induced through the long image se

quences, the motion and structure estimated from the nonlinear optimization appear 

satisfactory, ba.sed on the available partial ground truth. 
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Table 3.3: Estimated motion a.nd structure. k: tiine index; 0: rotation angle (degree); 

RMSE: root mean-squared error (mm). 

k 1 2 3 4 5 6 7 8 9 10 

0 2.51 2.51 2.43 2.58 2.51 2.45 2.50 2.46 2.48 2.48 

RMSE 32 13 21 13 17 12 10 20 17 16 

.. 

11 12 13 14 15 16 17 18 19 

0 2.54 2.41 2.57 2.61 2.39 2.47 2.57 2.40 2.44 

RMSE 23 14 31 14 11 13 6 9 27 



Chapter 4 

Estimating motion and 3-D 

structure from stereo image 

sequences 

This chapter deals with the counterpart of the monocular problem: optimal motioq 

and structure estimation from stereo image sequences. Starting from a newly pro

posed matrix-weighted closed-form algorithm, we process stereo image sequences with 

a recursive-batch approach. Simulation and experiment are presented to assess the 

performance of our approaches. 

4.1 Review of related work 

We consider in this chapter a stereo camera system, with a fixed but general stereo 

configuration, moving in a static environment. The evolution of the viewing direction 

and position of the stereo camera system usually induces multiple images of the same 

part of a scene. Our objective is to estimate the unknown motion of the stereo camera 

system and the 3-D structure of the scene, by fusing partially overlapping views so 

that a more accurate and consistent description of the visual world can be derived. 

Different components of a 3-D point determined through stereo triangulation have 

different uncertainties: typically, the depth component of an estimated 3-D point is 
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much less reliable than the other two lateral components. The accuracy of structure 

and motion estimation depends on how the varying uncertainties in the estimated 3-D 

points are treated, and how the nonlinear optimization is performed. Least-squares 

closed-form solutions for motion estimation based on estimated 3-D points from tri

angulation have been proposed in [13], [18], [23), [24), [34]. One of the most important 

advantages of the closed-form solutions is that the corresponding algorithms are fast 

and the solutions are guaranteed. However, since the various 3-D points and the 

different components of a 3-D point are ti'eated equally in the objective fonction, a 

least-squares solution is not optimal. 

Estimation based on a proper error modeling can essentially improve the accuracy 

of the estima.tes . Hallam [22] used Gaussian noise to model the errors in range data 

and employed Kalman filtering to estimate the motion of a mobile robot. Broida and 

Chellappa [65) and Young and Chellappa [40] modeled errors in images by independent 

Gaussian noise and used Kalman filtering to estimate motion parameters based on 

correspondences through a monocular image sequence. Ayache and Faugeras [14] 

applied similar techniques to estimate motions and fuse stereo images. Matthies and 

Shafer [52] studied some related issues of error modeling for stereo navigation. They 

model the error of a 3-D point, which is constructed through stereo triangulation, 

by a 3-D random vector with Gaussian distribution ( called ellipsoïdal model). Given 

a set of corresponding 3-D points {xi} before motion and {x'i} after motion, the 

interframe motion, represented by a rotation matrix R and a translation matrix T, 

is determined to minirnize 

�{Rxi + T-x'i}T ¼{Rxi + T-x'ï}, (4.1) 
i=l 

where the weighting matrix V'i is the inverse of Rr Xi R-1 
+ f x' i, f X; and f X' i being the 

error covariance matrices of x; and x'i, respectively. A closed-form solution to this 

problem was not found, neither in the general case, nor for a simplified case where 
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the weighting matrix ½ is not a fonction of R. Their method consists of solving 

the problem iteratively using a least-squa1:es solution as an initial guess. Kiang et al 

[26] replaced the matrix ½ in ( 4.1) by a scalar wf. The distribution of error in the

3-D position of a point is then simplified to an uncertainty line segment along the

projection line. The scalar weight wf is estimated based on some relative geometrical 

configurations between the two corresponding uncertainty lines. A few iterations lead 

to improved accuracy, compared to a least-::squares solution. A simpler scalar weight, 

which is inversely proportional to the depth of a point, has also been used by Moravec 

in (31 ]. 

Although scalar-weighted closed-form solutions may yield better results than un

weighted closed-form solutions, scalar weights still indiscriminately treat the uncer

tainties in the different components of a 3-D point. This implies that either the 

reliable components are under-trusted or the unreliable components are over-trusted. 

Furthermore, the correlation between errors in the 3-D point cannot be properly ac

�ounted for by scalar weights. A matrix-weighted method is a correct solution to

these problems. 

Although most of the above mentioned models were developed to represent 3-

D triangulation errors induced by errorsin the image planes, these models are not 

directly related to the image plane noise, and assume a symmetrical 3-D noise distri

bution. However, the distribution of errors in a 3-D point is not simple and cannot 

be assumed to be symmetrical. In fact, the shape of the probability distribution has 

a shrunken end towards the camera and a swollen end away from the camera, as 

shown in Chapter 2. A symmetrical ellipsoïdal model or any other simplified model 

not only will limit the performance of the estimation but also will cause bias in the 

estimates. V"hile the 3-D error distribution of a point is complex, the distribution 

of 2-D errors in image plane is simpler. For an iterative algorithm, modeling 3-D 

errors will not gain any substantial efficiency over modeling 2-D image errors. In this 
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chapter we consider a 2-D image plane noise model which will implicitly result in a 

desired distribution shape in 3-D. 

With a long stereo image sequence, the amount of data to be processed is drasti

cally larger than that for two stereo image pairs. Kalman filtering [25], [20], [29], [55] 

[35), [30], [21], [39] is a method used to compute a weighted least-squares solution for 

a dynamic system. It is a sequential technique in the sense that the observation data 

are sequentially fed into the algorithm and new estimates are recursively computed 

from previous estimates and current observations. In contrast, a batch technique is 

such that all observations are processed together in a batch fashion and estimates are 

determined directly from all observations. A sequential technique ha.s some desirable 

properties. First, old observations can be discarded once they have been used for 

estimation. This is a must if the whole data set is so large that it exceecls the ca

pacity of memory ( e.g., in an extended navigation). Second, the technique is efficient 

since a relatively small amount of computation is required for updating estimates 

with each observation. Third, since a new estimate is computecl at every time of 

observation, one cloes not neecl to wait for a complete set of observations to be col

lected before receiving estimates. However, sequential techniques have a relatively 

poor performance for nonlinear problems. As discussed in (54] and in Chapter 2, the 

estimated system matrices (i.e., Jacobian matrices) used for earlier observations are 

not updated after new observations are collected. Because the system ma.trices of a 

nonlinear system depend on thé estimated system parameters, the system matrices for 

earlier observations are evaluated with parameters values close to the initial solution, 

and therefore, are very inaccurate. Those inaccurate system matrices almost always 

cause an early divergence, which requires many image frames to graduately "pull" 

the state trajectory back. The linear-model based error covariance matrices, which 

determine the amount of parameter updating, are unable to reflect such a divergence 

and underestimate the errors in the current estimates [33], [19] [54]. Consequently, 
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these error covariance matrices impede the correction of divergence and parameter 

updating. This explains why Kalman filtering requires many image frames (typically 

20 to 30 frames) to converge to an acceptable solution. Such a slow· convergence also 

implies a slow response to system changes, such as those caused by change of motion 

direction. 

Starting from a newly proposed closed-form matrix-weighted least-squares solution 

to motion parameters from 3-D point correspondences [71], we employ a recursive

batch approach to deal with stereo image sequences in this chapter. This closed-form 

solution computes the motion parameters that minimize (4.1), in the case where the 

weighting matrix ¼ is simplifi.ed so that it does not depend upon the unknown rotation 

matrix R. This method leads to a remarkable improvement over miweighted or scalar

weighted closed-form solutions. Its solution can be directly used in situations where 

the speed of the algorithm is critical to the intended applications. In the recursive

batch approach, the observed projection data are divided into groups of images, each 

data group consisting of two pairs of stereo images. Estimation is clone in a sequential 

�ashion among these groups. Within each group the estimation of the motion and the 

structure is completed in a batch fashion for all the corresponding projected points. 

From the view-point of Kalman filtering, the states (the motion parameter solutions) 

are directly observed (provided by a batch solution, either non-iterative or iterative). 

The recursive Kalman filtering equations âre used to properly weigh the uncertainties 

in observations (the 3-D structure computed from triangulation) as well as states (the 

motion parameter solutions) and update the uncertainty in the new states. In other 

words, by properly de:fining states and observations, we couvert the nonlinear Kalman 

filtering problem to a linear Kalman filter-ing problem, which is, with regard to the 

formulation to which the Kalman filter is applied, equivalent to a batch solution! In 

this way, advantages of sequential processing are kept and the performance of the 

algorithm is drastically improved from direct nonlinear iterated l{alman filtering. 
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Since the dimension of the parameter space for ea.ch data group consisting of two 

pairs of stereo images, as described before, is still very large (including the 3-D co

ordinates of all points as well as the motion parameters), a direct search in such a 

large space is compu,tationally prohibitive. Instead of using direct batch processing, 

we explore the nature of the problem so that the search space is reduced to motion 

parameters only. In order to reduce the number of iterations and prevent divergence, 

the closed-form matrix-weighted least-squares solution is used as an initial solution 

for batch optimization within each data group. It should be mentioned that our for

mulation is independent of the way the batch solution are computed. While iterative 

optimal solutions lead to more accurate results, the non-iterative matrix-weighted 

solution often suffices, especially in situations where the speed of the algorithm is 

critical. 

We also investigate the representation of motion of the stereo camera system 

and 3-D structure of the scene in di:fferent coordinate systems: the local and global 

coordinate systems. In self-guided navigation, the use of the local reference system is 

preferable. However, if the navigation has to refer to a map or to construct a global 

3-D map of the sensed world, a representation in the global coordinate system is more

appropria te. 

To study the performance of proposed approaches, simulation and careful experi

ments with a real stereo image sequence have been carried out. 

4.2 Stereo modeling 

Most of the previous published works use a simplified stereo camera system in which 

the two image planes are coplanar and the corresponding image coordinate vectors 

( corresponding to row or column directions) in the two image planes are para.Hel. In 

reality, however, it is difficult to align two cameras physically so · that the internal 
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optical geometry of the cameras satisfies the above requirements. As a matter of 

fact, such an alignment is often not desirable. For example, the comrnon field of 

view of the two cameras covers a larger s_cene if the two cameras gaze at the scene of 

interest. In this research, we use a genetal stereo setup, since it agrees more closely 

with situations of real applications. 

4.2.1 Optimal determination of a 3-D point from a pair of 

noisy stereo projections 

For convenience, we choose the coordinate system centered at the left camera as the 

local ( camera-centered) reference for the stereo system. The orientation and position 

of the right camera, with respect to the left camera, is specifi.ed by a rotation matrix 

111, and a translation vector B. A vector Xr = ( Xr , Yr , Zr) T represented in the right

camera-centered system is related to x1 = (x1, yz, zz) in the local system by 

Xt = Mxr +B, ( 4.2) 

where Af and B are usually determined through camera calibration. Since we can 

always derive a normalized pin-hole camera model from a real model in which the focal 

length is equal to 1 and the image plane is at z = 1, for a 3-D point x = (x, y, z) T, 

its corresponding image vector X satisfi.es: 

The first two components u 

point. 

X= x/z. 

( x / z , y/ z) T in X are the image coordinates of the 

Thus, the depths z1 and Zr of the point, in the local and the right-camera-centered 

systems, respectively, can be determined-from (4.2): 

( 4.3) 
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This is a vector equation with three scalar equations and two unknow11s. In the 

absence of noise, the three scalar equations are always consistent since the true depths 

are the solutions. Equation ( 4.3) expresses the epipolar constraint: X1, lvIXr and B 

are coplanar (linearly dependent). Geometrically, the constraint means that two 

projection lines intersect in space. In the presence of noise, the epipolar constraint 

may be violated. We need to determine the optimal 3-D position of a point from 

the noise contaminated · observations so · as to further estimate motion parameters. 

Let the noise-contaminated observations in the left and right images be ii1 and Ür, 

respectively. vVe have a 2-D image plane noise mode! as: 

( 4.4) 

where Dur and Du1 are additive noise vectors. They account for image quantization 

noise, edge detecting error, feature matching error etc .. 

We assume that the correlation between image errors is negligible. \Ve also assume 

the same error variance in its di:fferent components (This is not true for CCD arrays 

with rectangular sensing cells, but an extension for this case is straight-forward, ac

cording to the above discussion). Let u1 (x) and ur (x) represent the projections of 

the estimated 3-D point x in the left and right images, respectively. According to the 

principle of minimum variance estimation:, the optimal 3-D point x should minimize 

(4.5)

This is a nonlinear minimization problem. The best linear estimation, in the least

squares sense, is obtained by solving for z1 and Zr which minimize 

(4.6) 

The estimated x is then determined by 

(4.7) 
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The geometrical interpretation of this approximate solution is the following: Owing 

to noise, the two projection lines of the point from left and right cameras, respectively, 

do not intersect in space. The solution in ( 4. 7) is the midpoint of the shortest line 

segment that connects these two projection lines, as shown in Figure 4.1. From 

this approximate solution, a few iterations can be performed to minimize ( 4.5). To 

conclude, from a pair of stereo projections Ü1 and Ûr, we have constructed a fonction 

c( Û1 , Ûr) that gives the estimated 3-D position of a point: 

(4.8) 

The errors in the estimated position x need also to be determined. From (4.8), 

we have 

(4.9) 

or, 

(4.10) 

The error covariance matrix of the estimated 3-D point xis thus, 

(4.11) 

assuming ôu
1 

and Dur 
are uncorrelated. 

4.3 A recursive-batch approach to process stereo 

image sequences 

Suppose that the stereo camera system is moving in a static surrounding and a se

quence of stereo images is taken. We füst discuss the issue in the estimation of 

interframe motion, which serves as a backbone in the analysis of long sequences. Two 

methods are discussed, a closed-form matrix-weighted least-squares solution and an 

iterative optimal solution. Using each of these two methods for two-view analysis, we 
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X 

Figure 4.1: The estimated 3-D point in (4.7) is the midpoint of the shortest line 

segment that connects the two projection lines. 
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proceed to deal with long image sequences. A recursive-batch approach is adopted to 

fuse multiple stereo views in order to achieve higher performance without suffering 

from excessive computational cost. 

4.3.1 Closed-form solution from two stereo pairs 

We consider now how to determine the motion parameters of the scene in the local 

system from two consecutive pairs of stereo images without iteration. In this system, 

let a point x0,; at time t0 be moved to x1,; at time t1. They are related by 

( 4.12) 

where R1 ,0 is a rotation matrix and T1,0 is a translation vector describing the inter

frame motion. To simplify the following derivation, R and T are used instead of R1,0

and T1,0. The objective here is to determine R and T from a sequence of estimated 

3-D point correspondences: { ( Xo,i , :x.1 ,i)}:

1) Unweighted and scalar-weighted closed-form solutions

In the presence of noise, it is necessary to take into account the different uncertainties 

in the points that are constructed by stereoscopic triangulation. Using the estimated 

3-D positions :x.1 ,; = x1,; + ôx1
,; and Xo,i = Xo,i + ôx0

,;, equation ( 4.12) gives

( 4.13) 

where 

( 4.14) 

Suppose that the errors in the observed points are uncorrelated between instants t0

and t1. It follows from (4.14) that the residual vector ô; has a error covariance matrix 

(4.15) 
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We now suppose that the observation vector consists of a sequence of 3-D points at 

two time instants and that the errors in these observations are uncorrelated between 

the different points and the instants. Based on the principle of weighted least squares, 

the motion parameters should thus be determined by minimizing 

I:{Rxo,i + T- X1,iVri1 {Rxo,i + T- X1,i}, ( 4.16) 
i=l 

where n is the number of 3-D points. Letting a denote a three dimensional vector con

sisting of the three independent parameters of the rotation matrix R, the expression 

(4.16) is a nonlinear fonction of a six-dimensional parameter vector 

( 4.17) 

The objective is thus to determine m which mi11imizes (4.16). 

A close-form solution to m that minimizes a special case of ( 4.16), namely: 

� /IR:x:o,i + T - x1,il1
2

, ( 4.18) 
i=l 

has a.lready been described in the literature [34], [18], [23] [13], [24]. This objective 

fonction leads to an unweighted least-squares solution in that the weighting matrix 

fi1 is replaced by an identity matrix. The fi1 has been replaced by a scalar w; in 

[26] to minimize

I: w?IIRxo,i + T- X1,i11
2

, ( 4.19) 
i=l 

which becomes to a scalar-weighted least-squares solution. However, since the depth 

component of a point is significantly less reliable than its lateral components, and 

the errors in these threè components have considerable correlations ( the uncertainty 

volume is elongated and tilted), an unweighed or even a scalar-weighted objective 

fonction cannot properly treat these uncertainties. 



92 

2) A Closed-Form Solution with a Matrix-Weighted Objective Function

VIe now introduce the closed-form solution for the matrix-weighted objective fonction 

(4.16) presented in [71]. First, we need to simplify the weighting matrix in (4.15) so 

that it does not depend on the rotation matrix being computed. With a small rotation, 

the rotation matrix is roughly equal to an identity matrix, R � I, and the weighting 

matrix in ( 4.15) does not clepencl very müch on R. So, the weighting ma.trix can be 

approximated by 

( 4.20) 

If the rotation is so large that the simplification in ( 4.20) is not a.llowed, we ca.n 

use the weighting matrix in ( 4.15) but R in ( 4.15) is replaced by a. fixed rotation 

matrix which is estimated by a closed-form sca.lar-weighted least-squares solution to 

be discussed soon. 

We first state the matrix-weighted centroid-coincidence theorem (MWCC theo

rem for short), whose proof is included in Appendix C. lts unweighted version was 

originally proved in [23]. 

MWCC Theorem. If R* and T* minimize (4.16) with the weighting matrix r;1

not depending on either R or T, then the matrix-weighted centroids of {x:1 ,i} and 

{R*xo,i + T*} must coïncide: 

n n 

I:r;-1 {R*xo,i + T*} = I:ri1x1,i• ( 4.21) 
�1 �1 

Before looking for a closed-form solution to the matrix-weighted problem, we now 

consicler the scalar-weightecl lea.st-squarès solution that minirnizes (4.19). Replacing 

fi1 by matrix (1/n)I, the MWCC theorem gives the unweighted centroicls coincidence 

theorem originally presented in [23]: 

1 �
{R* A T*} 

1 � A 

- 6 Xo,i + = - L...Jxl,i•
n i==l n i==l 

( 4.22) 



Replacing fi 1 by a scalar matrix w; I, the MWCC theorem takes the form 

n n 

L w;{R*xo,i + T*} = I: w;x1,i 
i=l i=l 

which can be rewritten as 

Letting 

n n n 

R*"' 2A "' 2T* "' 2A L,; wi Xo,i + L,; wi = L,; wi x1,i. 
i=l i=l i=l 

n n 

_ "' 2A 
I
"' 2 Xo = L,; wi Xo,i L,; wi , 

i=l i=l 

it follows from ( 4.24) that 

Then, 
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(4.23) 

( 4.24) 

(4.25) 

( 4.26) 

If R* and T* minimize the scalar-weighted objective fonction (4.19), we conclude 

from ( 4.26) that R* must minimize 

L IIRwi{xo,i - Xo} - wi{x1,i - xi}ll
2 . (4.27) 

i=l 

Noticing that the term under the summation has a form IIRx - Yll2, we have

(4.28) 

Because Ris orthonormal (RT R = I), (4.28) is a linear fonction in the elements of R. 

The rotation matrix R* that minimizes (4.27) can be solved for in closed-form (with 

a noniterative algorithm) by the method presented in Appendix A. An alternative 

way to solve for R to minimize ( 4.27) consists of using singular value decomposition, 

as presented in [13). Once R* is determined, T* is determined based on ( 4.25). 
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We forther consider the matrix-weighted solution. Since r;-1 is a positive definite

matrix, there is a matrix Wi, obtained by Cholesky decomposition [75], such that 

( 4.29) 

Because r;- 1 is just a 3 by 3 matrix, Wi can be computed by a non-iterative algorithm.

The objective fonction ( 4.16) can then be rewritten as 

n 

1=11wi{Rxo,i + T- x1 ,dll 2 -

'i=l 

From ( 4.21) of the MWCC theorem, we have 

It follows that 

n n n 

1= r;-1 R*:Ro,i + L r;-1 T* = L r;-1 :x:1 ,i• 
i=l i=l· i::::l 

n n n n 

T* = {1= r;1 }-1 L r;1x1,i - {1= r;1 }-1 L r;-1 R*xo,i-
i::::l i=l i=l i=l 

( 4.30) 

( 4.31) 

(4.32) 

Substituting Tin ( 4.30) by the right-hand sicle of ( 4.32), we get an expression which is 

quadratic in the elements of R. This implies that when using general matrix weights, 

we cannot simplify the objective fonction to a linear expression in the elements of R 

as we did for the unweighted or the scalar-weighted cases in (4.28). This is due to the 

fact that matrix multiplication is generally not commutative except for some special 

cases. To give a concise form of the qliadratic expression, we represent a rotation 

matrix by the corresponding vector ( denoted by bold font) which consists of its rows. 

Letting R = (R1, R2, R3]T , we have 

Rx = C(x)R (4.33) 

where the mapping from a three-dimensional vector x to a 3 by 9 matrix C(x) is 

T 

X Ü Ü 

C(x) = O x 0 

Ü Ü X 

( 4.34) 



From ( 4.32), it follows that 

i=l i=l 

Then 

i=l i=l 

Wi{C(xo,i)R* + d - CR* - x1 ,i} 

WdC(xo,i) - C}R* - Wi{x1,i - d} 

With n point correspondences, define a new matrix A and a new vector b by 

A= 

b= 

bn 
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(4.35) 

(4.36) 

( 4.37) 

( 4.38) 

According to ( 4.36), if we substitute R* and T* into the objective fonction in ( 4.30), 

we get 

\\AR* - b\\. ( 4.39) 

Therefore, the solution to the rotation matrix R* must be such that ( 4.39) is mini

mized. The nine-dimensional vector R * in ( 4.39) is sub ject to the constraint that it 

represents a rotation matrix. An iterative algorithm is required to search for a R* 

that satisfies the constraint and minimizes ( 4.39). To acquire a closed-form solution, 
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we begin by solving for an intermediate R that minimizes ( 4.39) without the rotation 

matrix constraint: 

( 4.40) 

The rotation matrix R* is then resolved with the rotation matrix constraint through 

minimization of 

IIR* - Rll2 ( 4.41) 

usmg the method presented in Appendix A. Finally, the translation is determined 

according to ( 4.35): 

T* = d- CR*. ( 4.42) 

Since the constraint in the corresponding vector of the rotation matrix is not consid

ered in minimizing ( 4.39) but, instead, it is compensated latei- in minimizing ( 4.41 ), 

the performance is penalized. However, such a penalty is expected to be much less 

significant than the penalty caused by improper weighting with typical stereo setups. 

The simulation results have showed that this closed-form solution is significantly more 

reliable than both unweighted and scalar-weighted least-squares solutions. 

Because the noise may cause a degenerate matrix to become nondegenerate, the 

uniqueness question should be studied in the absence of noise. A rigid motion can 

be uniquely determined from three nonlinear points. However, the above algorithm 

for the matrix-weighted solution requires at least 4 point correspondences, since the 

constraint in the intermediate rotation matrix .R is not considered. In ( 4.39), R* is 

a 9-climensional vector. Each point correspondence gives 3 scalar equations in the 

corresponding noise-free equation: 

AR*= b. ( 4.43) 

It seems that 3 point correspondences might be enough to uniquely determine R*. 

However, this is not the case, since the matrix A may not have a full rank. We 
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consider a noise-free case, for which we can replace r;1 by (1/n)I for all i. Based on 

the derivation of the closed-form solution of the matrix-weighted objective fonction, 

it can be seeri that ( 4.43) is equivalent to the noise-free equation that corresponds to 

(4.27): 

R{xo,i - :xo} = {x1,i - xi}. ( 4.44) 

Since three points are always coplanar, the three vectors Xo,i - x:0 , i = 1, 2, 3, are 

coplanar. Consequently, R cannot be uniquely determined by three point correspon

dences based on ( 4.44) without imposing a constraint on R. With four non-coplnar

point, Ris uniquely determined by ( 4.44). So, four point correspondences are enough

in general to uniquely determine the intermediate matrix R. The fitting of a rotation

matrix to the intermediate matrix R will improve the rotation matrix, but will not

affect uniqueness. Once the rotation matrix is determined, the translation vector can

be cleterminecl by (4.25) (or (4.42) for the matrix-weighted solution).

In summary, while 3 point correspondences is the minimum number needed for 

the unweightecl or scalar-weighted solutions cliscussed in Subsection 4.3.1, the closed

form matrix-weighted least-squares solution requires at least 4 point correspondences. 

This is due to the fact that the constraint on the rotation matrix R is not considered 

in solving ( Ll.39) for the intermecliate rotation matrix R.

4.3.2 · Iterative optimal solution from two stereo pairs 

From two pairs of stereo images with 3-D point correspondences, the parameters to 

be estimatecl are the structure of the points 

(4.45) 
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and the motion parameter vector mas defined in ( 4.17). Let t denote all the param

�ters to be estimated from two pairs of stereo images:

t = (xT, mT)T , ( 4.46) 

and let the two-dimensional image coordinate vector of the i-th point in image j

(j = 1 for left image and j = 2 for right image) at time tk be uk,j,i• Suppose 

observation vector ii consists of all image vectors at time t0 and t1 . Given t, the 

noise-free projection vector u can be directly determined through projection: 

u = f(t). ( 4.4 7) 

In the presence of noise, the contaminated observation vector ii is given by 

ii = f(t) + bu. ( 4.48) 

The noise tenn ôu accounts for mea.surement noise in the image plane. Supposing bu

has an approximately zero mean, and a error covariance matrix <J
2 I, as discussed in 

Section 4.3.1 the optimal t minimizes 

(4.49) 

This objective fonction is based on the 2-D image plane noise model ( 4.48), while the 

complicated 3-D uncertainties in the measured 3-D points will be implicitly taken into 

account; The matrix-weighted or the scalar-weighted least-squares solution is used 

as an initial solution for an iterative algorithm (e.g., Levenberg-Marquardt method 

or conjugate gradient method) that improves the initial solution to minimize (4.49). 

The expected error in the parameter t is provided by a error covariance matrix similar 

to (2.29). 

However, several points should be considered. 

(1) The above method is computationally expensive. The main reason for this is

the large dimension of the parameter space. For two pairs of stereo images with n 



99 

point correspondences, the parameter spacei s (3n+6)-dimensional. For example, with 

20 point correspondences, the iterative algorithm has to search in a 66-dimensional 

spacel 

(2) The direct extension to deal with long image sequences is computationally

prohibitive and complicated. If many images are used, u include all image points that 

have ever appeared in some images. The number of such points may be extremely 

large in the case of extended navigation. Due to occlusions and other reasons, a point 

can disappear and reappear many times in an image sequence. In other words, there 

is only a moderately large number of points that are currently visible in each time 

instant. 

(3) The model is not suited for recursive computation. In extended navigation, it

is impossible to store all the data. The old information should be stored in a concise 

manner and be efliciently used. 

We present in the following a modified method, in which the structure of 3-D 

points is not included in the search space, and the corresponding model can be directly 

extended to recursive computation from long image sequences. 

Let the true but unknown 3-D position of the i-th point at time tk, in the local 

c;oordinate sy stem, be xk,i and the collection of all such points at time tk be xk,•· 

Given two pairs of stereo images, ( corresponding to instants t0 and t1), the parameter 

vector t to be estimated consists of the interframe motion parameter vector m, and 

the structure of the 3-D points x0,. at time t0 : t = (m T, xJ,.) T ( equivalently, we can 

consider the structure at time t1). The set of image observation vectors consists of 

all noise corrupted versions ûk,j,i of Uk,j,i• The objective fonction in (4.49) can now 

be rewritten i n  detail as 

n 2 1 

f(m, Xo,.) = L L L o--2 lluk,j,i(m, Xo,;) � Ûk,i,dl2 
i=l j=l k=O 

(4.50)

where uk,j,i(m, x0,;) is the noise-free projection computed from m and Xo,i, and o-2 is 
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the image noise variance. 

The above model is a natural mode! with two pairs of stereo images. Another 

alternative model, although less natural, is useful for our recursive estimation from 

long image sequences. We consider as an "observation" at tiine t0 , the estimate Xo,i

computed by the method presented in Section 4.2. The objective fonction to be 

minimizecl then becomes 

n 2 

f(m, xo,.) = L {(xo,i - xo,i) Tr;;Jxo,i - Xo,i) + L a-2 llu1,j,i(m, xo,i) - ii1,i,dl2 } 
i=l j=l 

(4.51) 

where we assume that (a) errors in Xo,. estimated from images before t1 are un

correlated, (b) errors in the measured image coordinates of points { ii1 ,j,i} are all 

uncorrelated and have the same variance a2 and ( c) errors in previously estimated 

x0,. are uncorrelated with the errors in the currently measured image coordinates of 

points. Due to the non-symmetrical nature of the distribution of errors in the 3-D 

coordinates of a point constructed by triangulation, the objective fonction in ( 4.51) 

is not as good as that in ( 4.50), it is developed for recursive estimation from long 

nnage sequences. 

The objective fonctions in ( 4.51) are neither linear nor quadratic, and an iterative 

algorithm is required. to get. a solution. Instead of performing a computationally 

expensive direct optimization, we reduce the dimension of parameter space first. Since 

the objective fonctions are continuous, we have 

f(iü, x0,.) = min f(m, Xo,.) = min{minf(m, x0,.)} = ming(m, x0,.) (4.52) 
m, x0,. m ?Co,. m 

where 

( 4.53) 

is the smallest "cost", computed by choosing the "best" structure x0,., with a given 

motion parameter vector m. This means that the space (m, x�,.) is decomposed 
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into two subspaces, corresponding to m and x0,., respectively. In the subspace of 

m, an iterative algorithm (e.g, Levenberg-Marquardt method or conjugate gradient 

method) is used. In the subspace of x0,., an non-iterative method is used that gives 

the best x0,. for any given rn. According to the decomposition shown in ( 4.52), the 

search space in 

rrtAng{m, x0,.) 

is just the 6-dimensional motion parameter space. With a good initial solution of 

m provided by the matrix-weighted solution, few iterations are needed to reach the 

optimal solution. Since the dimension of xis very large (3n-dimensional with n point 

correspondences ), this decomposition significantly reduces the computational cost. 

We now consider how to compute the best x0,. in (4.53), without resorting to 

itera.tions. In (4.51), there are two terms for each point, one is a matrix-weighted 

discrepancy of Xo,i - Xo,i 

{X · - X ·}Tr-1 {x · - ·Xo

A ·}0,1 0,1 . 
_
Xo

,
i 0,1 ,1 ( 4.54) 

the other is 

L o--2 llu1,j,i(m, Xo,.) - Ü1,j,ill2• (4.55) 
j=l 

The latter term can be approximated by the estimated 3-D position at time t1 through 

triangulation. We have described in Section 4.2 a method to get an estimate x1 ,i that 

minimizes ( 4.55). The corresponding error covariance matrix r xi,; of the point x1 ,i

can also be estimated. In other words, we have two sample data here for the same 

unknown parameter vector Xo,i• One is p = Xo,i with the error covariance matrix 

r p = r Xo,i and the other is the point moved back from X1 ,i: q = RT {x1 ,i -T} with 

the error covariance matrix r q = RTr x
1
,;R. According to the principle of weighted 

least squares, the optimal Xo,i should minimize 

(4.56) 
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For a given motion, the optimal x�,i that minimizes ( 4.56) is thus directly computed 

( without iteration) by 

Based on ( 4.57), a sequence of best points can be calculated for any given motion 

parameter vector m, and the corresponding residual in ( 4.51) is then computed. After 

the best m is determined by an iterative algorithm to minimize the residual in ( 4.51), 

the corresponding set of points is the best solution for the structure. 

Through investigation of the nature of the objective fonctions (4.51), we have 

explored the relationships between m and x0,. so that the constraint related them is 

fully utilized. The computationally almost intractable optimization problem in the 

space of t = (m T, xJ,.) is decomposed into two levels: (a) At the higher level is an 

iterative algorithm in the 6-dimensional subspace of m starting with a good initial 

solution; (b) At the lower level is a non-iterative optimization algorithm that directly 

computes the optimal solution in the large subspace of x0, •. 

4.3.3 Estimating errors 

Since the actual errors in the solutions depend on random noise, it is reasonable 

to estimate the expected errors. More specifically, we estimate the error covariance 

matrix of the estimated parameters. These error covatiance matrices not only enàble 

us to assess the expected accuracy of the estimates, but also are important for further 

estimation using the obtained estimates
'. 

In the objective fonction in (4.51), each point has three "observations": Xo,i, ii1,1 ,i

and û1 2 i· We define a 7-dimensional observation vector Yi which consists of these 
' '  

three observations. Namely ü in (4.48) consists of Yi, i = 1, 2, · · ·, n. Suppressing 

x0,. in ( 4.48) we have 

Ü = f(m) + ôu (4.58) 
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where f(m) is the computed observation from m (x0,. is computed from m and image 

plane observations as discussed in Subse�tion 4.3.2). 

The estimated error covariance matrix r m of motion parameter vector m is given 

in (2.29) where Ais replaced by 
ar(m) 

âm ' ( 4.59) 

which is evaluated with the optimal estimates of m and x0 , •• According to the 

assumption that the image noise components in Du are uncorrelated between different 

points, the error covariance matrix of Du is a block diagonal matrix. 

For e:fficiency, the error matrix of a point Xo,i is estimated based on the space

decomposition methocl. In Subsection 4.3.2, the error covariance matrix of q was 

given by r q = R-1 r x;,i R, which is a conditional error covariance matrix conditioned 

on the given motion parameters. For error estimation here, the error covariance 

matrix of q is unconditional and should take into account the errors in the estimated 

motion parameters. From the definition of vector q(m) = R-1(:xi,l - T), the error

covariance matrix of q should be 

r - R-lr R . âq(m) r â
q(m)

T
q - X + --- lll __ _,,l . âm am 

( 4.60) 

According to (2.29) the error covariance matrix of the estimatecl 3-D position of the 

point xT,o in ( 4.57) is estimated by 

(4.61) 

The diagonal elements of this error covariance give the expected error variances of 

the corresponcling components of the estimated vector. 

4.3.4 A recursive-batch approach 

With a stereo image sequence, the paraineters to be estimated include the 3-D po

sitions of feature points of a scene, represented in some coordinate system and the 
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interframe motion parameters between every pair of consecutive instants. The global 

attitude of the camera system can be determined from interframe motions based on 

(2.19). 

Based on the foregoing discussion, we know that the estimation of structure and 

interframe motions are closely related. The accuracy of the estimated structure influ

ences the accuracy of the estimated motion parameters, and vice versa. Due to this 

type of interaction between the structure and interframe motion, a higher estimation 

accuracy can be obtainecl if all the image frames to be considerecl are processed in 

a batch fashion. In reality, however, this is a computationally prohibitive task if the 

image sequence is long. 

In fact, a 3-D point may not be visible for a long time. It will likely go out of 

the field of view and disappear from the stereo image sequence after a while. This 

implies that in a long stereo image sequence, the relation between two pairs of stereo 

images is weak if the two pairs are far apart. Consequently, the accuracy of the 

estimatecl structure in a section of a scene will not affect very much the accuracy of 

the èstimated structure of a different section of the same scene. 

As cliscussecl in Chapter 2, Kalman filtering techniques have some clesirable advan

tages. For a linear problem, theoretically, the result of J( alman filtering is the same as 

�hat of a batch method. However, for a rionlinear problem, the result of Kalman fil

tering is not as good. The key problem with Kalman filtering for a nonlinear problem 

is that the system Jacobian matrix for each old obse�vation is not updated when new 

observ9,tions are processed. This is a fondamental structure of sequential processing. 

If all observations are processed in a batèh fashion, the modification of parameters is 

very reliable and the system matrix of every observation is updated at each iteration 

from all observations. In other words, with a sequential algorithm, the contribution 

or influence of the later observations to the evaluation of the system matrices for the 

early observations are neglected ( this is not a problem for a linear problem since the 
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system Jacobian matrix is constant). 

In order to achieve good performance without excessive computational cost, we 

need batch processing only for those data that have considerable interactions. The 

above observations motivate our recursive-batch approach which is illustrated in Fig

üre 4.2. In this approach, the observed stereo sequence is processed in relatively small 

groups. For each group of data, estimates are determined in a batch fashion from old 

estimates and the current group of data. The approach is recursive because the pro

cessing step is repeated for each batch of data and the newly estimated result depends 

on previous result. From a global point of view, the data is processed sequentially by 

feeding through a processing algorithm that cover a certain length (batch size) of the 

sequence. This approach has the following adv!ntages: 

(1) It can process virtually very long image sequences with a limited memory.

(2) Since old estimates can be used for new estimates, and a limited amount of

computation is required to update estimates, the algorithm is relatively efficient. 

(3) The algorithm outperforms a straight sequential technique ( e.g, Kalman fil

tering technique) because the data is processed in a batch fashion in which each 

overlapping batch sufficiently covers the interaction among data. 

If the batch size of the recursive-batch approach is so large that the batch cov

ers the whole image sequence, the recursive-batch approach degenerates into a pure 

batch approach. On the other hand, if the batch size is equal to one 3-D point, the 

recursive-batch approach becomes an iterated extended Kalman filter. The choice 

of an appropria.te batch size is important. For the problem studied in this research, 

a natural batch size corresponds to all observations in a single stereo image pair. 

With each new pair of stereo images, a new interframe motion needs to be estimated 

and the structure of points is updated. · The performance may be further improved 

if several stereo pairs are processed as a batch set ( the batch will slide through the 

sequence so that batches are overlapping). However, this will significantly increase 



prev1ous accumulated 
structure 

tk-1
3-D points

observation

t
k 

new 3-D points 
observation 

Matr1 x-We 1 ghted 

Closed-Form method 

estimated local 
structure at t 

k 

ini t ial-so lut ion 

object1ve funct1on 
to improve mot1on �-

"-----------'I 

6-D 1terat1ve

Batch 

106 

Figure 4.2: Detailed illustration of recursive-batch approach for processing long stereo 

sequences. 
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the computational cost. 

4.3.5 Recursive-bat ch updating 

The model represented by the objective fonction ( 4.51) is very sui table for recursive

batch updating. With each new pair of stereo images, the interframe motion is 

computed in closed-form as explained in Subsection 4.3.1. The motion parameters 

are further optimized by the method presented in Subsection 4.3.2. The fusion of the 

estimated structure accumulated up to previous time instant with the new pair of 

stereo images updates the structure, which will be used further for the next pair of 

stereo images. In other words, the structure of points in the local coordinate system 

is the parameter vector that is updated through the stereo image sequence, while the 

interframe motion determines how the previous structure evolves into the current time 

instant. In order to provide the following recursive step with the updated structure 

and the associated uncertainty, we need fo compute the local structure at the current 

instant together with its error covariance matrix. 

After the interframe motion parameter vector mk+I,k is estimatecl based on points 

{ xk ,;} before motion and { Xk+i,;} after motion, we compute the error covariance ma

trix of the motion parameter vector r mk+i,k as discussed in Subsection 4.3.3. The 

structure at time tk+i can be updated in .a way similar to that for the structure at 

time tk : Let Xk,i be the estimated structure of xk ,i provided by the processing of the 

previous interframe motion mk,k-l (for the first interframe motion, it is estimated 

from stereo triangulation), and f xk,i be the associated error covariance matrix. Mov

ing the point Xk,i to time tk+i gives 

( 4.62) 



108 

with the associated error covariance matrix 

( 4.63) 

From triangulatio1i at time tk+l we get . the estimated position q of xk+i,i and the 

associated error covariance matrix r q· According to (2.22), the updated estimates of 

Xk+1,i is given by 

(4.64) 

with a error covariance matrix from (2.23) 

( 4.65) 

The algorithm starts at time t0 with the s�ructure estimated through triangulation and 

the associated error covariance matrix as in Section 4.2. Then the recursive estimation 

proceecls by incrementing tk to get the following stereo pair. The interframe motion is 

first estimated using the batch method together with the associatecl error covariance 

matrix of the motion parameters as in Subsections 4.3.3. The structure after the 

interframe motion and its error covariance matrix are estimated using the method 

presentecl in this subsection. These estima.tes are used for the next recursive step as 

the estimates fo1: structure before the next interframe motion. 

4.3.6 Local and global representations 

As discussed in Chapter 2, when a stereo camera system moves in a static envirnn

ment, the two coordinate systems are used to represent the local and global motion of 

the camera system as well as the structurë of the scene. The structure representation 

in the local coordinate system is useful for path planning with respect to the motion 

of the navigation system on which the camera system is mountecl. For example, it

can be used directly to plan for the direction and distance of the next motion. Its 
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representation in the global coordinate system is useful for extended visual map gen

eration, since what is perceived in the moving local coordinate system needs to be 

registed on a map which is represented in the fixed global coordinate system. The 

global attitude of the current camera system is also a critical information for map 

guided navigation, where the navigation system constantly needs to kèep track its 

current position on a map. 

Equations (2.19) give the relation that can be used to update the current global 

attitude of the camera system (represented by a vector mk+l (i.e., Rk+i, Tk+1) that 

consists of 6 independent motion parameters) from the previous attitude mk (i.e., 

Rk, Tk) and the current interframe motion mk+i,k (i.e., Rk+i,k, Tk+l ,k ). They 

define a vector updating fonction h: 

( 4.66) 

Letting the difference between the estimated and true vector be denoted by 8 with 

the vector as a subscript, from ( 4.66) we have 

( 4.67) 

So the error covariance matrix of the global attitude of the stereo camera system is 

updated by 

( 4.68) 

where f mk+i,k is the error covariance matrix of the interframe motion parameter vector 

mk+l ,k estimated by the method presented in Subsection 4.3.3. 

Similarly the global position of the perceived structure can also be updated to 

take into account the new observations in the current stereo pair. Let p = Xo,i be 
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the current estimate of a point. The global position of the new observed point xk+I,i, 

represented in the local coordinate system, is given from (2.17): 

(4.69) 

with an associated error covariance matrix 

(4.70) 

According to (2.22), the updated global structure of the point is given by 

( 4. 71) 

Based on (2.23) the error covariance matrix of the global point is estimated by 

(4.72) 

The following is an outline of the recursive-batch algorithm used to estimate motion 

and 3-D structure from stereo image sequences: 

Step 1): Let k = O. Get stereo pair at time t0 with stereo point correspondences. 

For all points compute the estimated 3-D position Xo,i, at time t0, and the associ

ated error covariance matrix as in Section 4.2. At time t0 , the local and the global 

coordinate systems coïncide: R0 = I and T0 = O. 

Step 2): Get stereo pair at time tk+I with stereo point correspondences. For all 

points compute the estimated local 3-D position xk+I,i at time tk+I, and the associated 

error covaria,nce matrix (Section Ll.2). 

Step 3): Compute the closed-form matrix-weighted solution for the interframe 

motion parameter vector mk+I,k from 3-D point correspondences from tk to tk+I 

(Subsection 4.3.1). 

Step 4): Further optimize the above solution for mk+I,k, through a few iterations, 

and compute the associated error covariance matrix (Subsection 4.3.2). 
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Step ,5): Update the local coordinates of the points at time tk+i and the associated 

�rror covariance matrices (Subsection 4.3;5). 

Step 6): Update the global attitude of the stereo camera system mk (i.e., Rk and 

Tk), and the associated error covariance matrices (Subsection 4.3.6). Update global 

position of points and the associated error covariance matrices (Subsection 4.3.6). 

Step 7): If not at the last pair of stereo images, let k � k + 1 and go to Step 2). 

Otherwise, stop. 

4.4 Simulation and experiments 

4.4.1 Simulation for two pairs of stereo images 

The purpose of the simulation for two-view situations is to compare the performances 

of unweighted, scalar-weighted ( a scalar weight is inversely proportional to the depth) 

and the matrix-weighted closed-form solutions. 

For the first simulation, the 3-D points were generated randomly for each trial, 

between depth 2m and 15m, with a uniform distribution. The field of view of the two 

stereo cameras with a squared image plane was about 53°. The two stereo cameras 

were arranged in such a way that the optical axes of the two cameras intersect at the 

center of the block where the random points were generated. They were separated 

a.long the y-axis by a baseline of 0.5m. Only those points that fall into the field of

view of both stereo cameras at instants t0 and t1 were used for motion analysis. The 

variance of Gaussian noise added to the image points was equal to that of a uniform 

digitization noise in a 256x256-pixel image. The true motion was a rotation about 

a rotation axis (lm, 0.2m, 0.lm)T by an angle of 8°, followed by a translation of (-

0.14m, 1.35m, -0.92m) T. Figure 4.3 shows the simulation results, where the rotation 

error is measured as the relative error in the rotation matrix, the translation error 
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is measured as the norm of the error vector as in the simulation with monocular 

image sequences. The average error was obtained through 500 random trials each 

with a different set of 3-D points. For the matrix-weighted least-squares solution, the 

weighting matrices were simplified to be independent of �otion (that is, the rotation 

matrix R in the weighting matrices was replaced by an identity matrix I). We can 

see in Figure L1,3 that the matrix-weighted solution outperforms other 11011-iterative 

methods, given a suffi.cient number of poiri.ts. But the iterative optimization gives the 

most accurate results, at the cost of more computation. 

For the second simulation, everything was similar to the first simulation, except 

that the rotation angle here was 30° instead of 8° . In this simulation, the output 

of the rotation matrix from the scalar�weighted closed-form method was used as 

the rotation matrix in the weighting matrices of the matrix-weighted closed-form 

approach. Comparing the three closed-form solutions as shown in Figure 4.4, the 

matrix-weighted approach still yields better performance than the other two methods, 

when enough points are provided. 

From these two simulations, we conclude that the proposed matrix-weighted closed

form algorithm for motion parameters works in a wide range of situations, with sat

isfactory speed and accuracy properties. 

4.4.2 Simulation for stereo image sequences 

The performance of the proposed recutsive-batch algorithm for the processmg of 

stereo image seque:rices have also been explored through simulation, in which the 

ground truth and the amount of noise can be well controlled and the errors in the 

estimates can be accurately measured. In particular, this performance enables us to 

perceive the relationship between errors in motion and in structure in the local and 

the global coordinate systems. 
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Figure 4.3: Simulation results from two pairs of stereo images: errors in the estimated 

interframe motion. (a) error in the interframe rotation matrix ( the true rotation angle 

is 8° , the rotation axis is (lm, 0.2m, O.lmf ); (b) error in the interframe translation 

vector (the true translation vector is (-0.14m, 1.35m, -0.92rn) T). 
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Figure 4.4: Simulation results from two pairs of stereo images: errors in the estimated 

interframe motion. (a) error in the interframe rotation matrix (the true rotation angle 

is 30° , the rotation axis is ( lm, 0.2m, 0.lm) T); (b) error in the interframe translation 

vector (the true translation vector is (-0.14m, 1.35m, -0.92m) T). 
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As in the simulation of monocular image sequences, the error in rotation in the 

simulation of stereo image sequences was also measured as the relative error in the 

rotation matrix (i.e. the norm of the difference matrix between the estimated and 

true rotation matrices divided by the norm of the true rotation matrix, where the 

norm of a matrix R = [r;j ] is de:fined as the square root of the smn over all the 

squared elements rl. The error in the translation vector T is de:fined as the norm 

of the difference vector between the estimated and true vectors. The relative error 

in the translation vector is the error in translation divided by the norm of the true 

vector. Notice that relative error may become large if the true vector itself is small. 

The error in the image projections of points was simulated by additive zero-mean 

indepenclent Gaussian noise. For the iterative optimization, the "dunlsf" suhroutine 

in IMSL library was used. 

ln the simulation, the 3-D points were generated between z = lm to z = 80m with 

a uniform distribution. The simulated stereo cameras have a field of view of about 38° 

and a resolution of 512 X 512 pixels. The stereo setup has a baseline length of 0 '.2m, 

and the optical axes of the two cameras form a vergence angle of 10°. The stereo 

camera system navigates forward through the scene with slight rotations and lateral 

translations. To keep a relatively constant number of visible point in each image, only 

those points that lie in the depth range [2 , 10m], in the local coordinate system, are 

used for motion analysis. This arrangement was designed to simulate situations where 

the stereo system navigates through a zigzag path and the points in the last view are 

totally different from those in the first. The sequence we obtained consisted of 40 

stereo frames. In the sequence, the stereo camera system has traveled a distance of 60 

meters in depth in total. About 60 point correspondences were available between two 

consecutive stereo frames. The exact number of point correspondences available may 

vary slightly from frame to frame. Average errors of the algorithms were accumulated 

through 50 random trials, each with a completely new set of scene points. The global 
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orientation and position of the stereo camera system at any instant were specified by 

a rotation matrix Rk and a translation vector Tk as defined in Chapter 2. The true 

rotation matrix Rk of the stereo camera system with respect to the global coordinate 

system was 8° around a rotation axis (0.3m, 0.3m, lm) for odd k, and -8° around 

the same rotation axis for even k. The given translation vector T k of the stereo 

camera system with respect to the global coordinate system was (0.5, -0.5, 1.5k) for 

odd k, and (-0.5, 0.5, 1.5k) for even k, �ith meter as the unit. Figure 4.5 and 4.6 

show the average error in the local and global attitude of the stereo camera system, 

respectively. Three algorithms were employed for estimating interframe motions: 

unweighted least-squares, matrix-weighted least-squares and iterative optimization. 

The solution of the matrix-weighted least-squares was used as initial solutions for the 

iterative optimization. 

'lVe can see that the error of the estimated global attitude of the stereo camera 

system has accumulated through navigation, which reflects the nature of the problem 

here, because errors are accumulated through every related interframe motion by us

ing the formula in (2.19). We can also -see that the error after iterative optimization 

is much smaller than that of the two closed-form solutions. It does not exhibit a long 

divergence period as observed in iterated nonlinear Kalman filtering. The result is 

accurate starting from the beginning ( time t1 when the second stereo frame is avail

able). By comparison, the local and global motion solution of the matrix-weighted 

least-squares is superior to that of the unweighted least-squares. 

Figure 4.7 and 4.8 demonstrate relative error in the estimated local and global 

structure from the matrix-weighted least:..squares and iterative optimization. Since 

the structure estimator of linear approaches is based on triangulation using least 

squares, the structure estimator of the unweighted least-squares is the sarne as that 

of the rnatrix-weighted least-squares. But at the cost of more computation, the local 

and global structure frorn iterative optirnization are more accurate. 
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Figure 4.5: Simulation results from stereo image sequence: error in estimated inter

frame motion. (a) error in interframè rotation matrix Rk,k-t; (b) error in interframe 

translation vector Tk,k-t
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Figure 4.6: Simulation results from stereo image sequence: error in estimated global 

motion. (a) error in global rotation matrix Rk; (b) error in global translation vector 

Tk 
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Figure 4. 7: Simulation results from a stereo image sequence: error in the estimated 

local structure. 
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Figure 4.8: Simulation results from a stereo image sequence: error in the estimated 

global structure. 
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4.4.3 Experiments 

In our experiments with long image sequence, the stereo system consisted of two TM-

840 high resolution PULNiX CCD cameras with f=8.5mm wide-angle lenses, mounted 

on the tip of a high-precision six-joint robot arm. Every digital image grabbed from 

each camera has 480x512 pixels. After each stereo image pair was grabbed the 

manipulator was imposed a rotation of 2.25° ( this is the only motion ground truth 

available) about a vertical revolute joint. The stereo cameras were calibrated in order 

to compensate for lens distortion, and compute internal and external parameters of 

each camera [66]. The calibration principle usecl in the stereo image experiments was 

briefl.y describecl in the experimental part of Chapter 3. The calibrated internal and 

external parameters of the two stereo cameras are listed in Table 4.1 and Table 4.2 

for the left and the right cameras, respectively. 

The relative orientation between the stereo cameras (M and B) was directly com

puted from the external parameters of the stereo cameras, as illustrated in Figure 

3.10. Since the relative position of the two cameras were calibrated with respect to 

the world coordinate system through 

Xz X 

Yt 
=R1 y 

+T1 (4.73) 

Z/ z 

and 

Xr X 

Yr 
=Rr y 

+Tr, ( 4.74) 

Zr z 

then we have 

Yr (4.75) 

z,. 
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Table 4.1: Calibration data for the left f=8.5mm lens camera. 

Focal length: fv. 
-639.10

fv 527.09 

Cen ter coordinate: ro 251.07 

Co 260.01 

Distortion parameter: k1 0.17645 

91 -0.00390

92 0.00093 

93 0.01522 

94 0.00373 

External parameters: 

Rotation angle (0) ·. 0 6.2704 

Rotation axis nx 0.8791 

ny 
0.4119 

nz 0.2396 

Translation (mm) t1 -147.74

t2 -191.45

t3 390.83
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Table 4.2: Calibration data for the right f=8.5mrn lens camera. 

Focal length: fu -639.11

fv 
527.87 

Cen ter coordinate: ro 243.85 

Co 261.79 

distortion parameter: k1 0.17727 

91 -0.00440

92 0.00081

93 0.01768

g4 0.01098

External parameters: 

Rotation angle (0) 0 6.8387 

Rotation axis nx -0.9249

ny 0.3654

nz -0.1041

Translation (mm) t1 -150.28

t2 -200.69

t3 434.35
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which means that M = R1R; and B = -R1R;Tr + T, in our experiments. In 

particular, the rotation angle was 11.86°, the rotation axis was (0.99, 0.01, 0.04)T 

and the translation vector B was (0.00, 0.09, 0.01) T ( unit: meters ). Due to the 

relative configuration of the stereo cameras and the depth range of the scene, the 

common field of view of the stereo cameras was about 362-pixel wide. The stereo 

image sequence consists of 10 consecutive stereo image pairs shown in Figure 4.9. 

The observed scene was approximately 1.2m away from the stereo system. 

The algorithm described in [59] was used to compute stereo and temporal match

ings. It is a general matching algorithm without any epipolar line constraints. One 

example of stereo matching in our experiments is shown as crosses in Figure 4.10. 

The image matching algorithm [59] establishes correspondence for each pixel. Since 

matching is more accurate where the image texture is abundant, the feature points 

used for motion computation consisted of a set of manually selected corner points in 

the first left image. These corners were then tracked automatically in consecutive left 

images by temporal matching, and the matching was refined by an intensity-based 

normalized cross-correlation process to eliminate the possible accumulated error over 

multiple frames. The depth map from the last stereo image pair is shown in Figure 

4.11. 

The feature points are classified into two categories: old and new. The old points 

are visible both in the current image and the previous one. The new points are visible 

in the current image but not in the previous one. A point is no longer considered as 

old if its neighborhood changed drastically due to motion. Only the old points ( about 

56 for each image pair) were included in the iterative optimization. The structure of 

the new points was estimated after motion. 

In our experiment, two solutions were computed, the matrix-weighted close-form 

solution and the iterative optimal solution. These two solutions are very close but the 

iterative optimal solution is slightly better in tenns of the root mean-squared error in 
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Figure 4.9: The stereo image sequence used in the experiments. 
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Figure 4.10: Matching for the first pair of stereo images shown as crosses. 
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Figure 4.11: The dcpth map is shown as an inteusity image from fifth sterco image 

pair. 
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the estimated structure. This indicates that the matching is roughly correct on the 

corner points. It also indicates that the noise level is much higher in the experiments 

than in the simulation, so that, in the real experiments, we cannot expect that the 

improvement brought about by the iterative optimization will be as remarkable as in 

the simulation. On the contrary, it shows that the performance of the matrix-weighted 

closed-form solution is rather stable in the processing of real stereo image sequences. 

The first and last interframe motions, are listed in Table 4.3. The estimated angle of 

interframe rotation from the optimizati01i is listed in Table 4.4. As can be seen they 

are quite accurate. We have noted in the experiments that if point correspondences 

are well spread in some stereo image pairs, covering as large a common field of views 

as possible, then the corresponding motion and 3-D structure estimates are more 

accurate and stable. 

In orcler to test the accuracy in the structure estimation, we manually measured 

the length li of approximately 40 lines in the scene as ground truth, like the lines 

�hown in Figure 3.16. From the estimatèd length t we can compute the root mean 

squarecl error of the estimated structure as 

RMSE= 

and its rnean error as 

Table 4.4 illustrates for each view the RMSE and ME values for visible lines. It 

can be seen that the 3-D structure error increases with the frame number. One reason 

for this is that the corner points in the latter frames were not as well spread as in the 

first few frames, which may have resulted in a less accurate motion estimation ( as the 

interframe translation ground truth was not available in the experiments, it is hard 

to assess the accuracy of the estimated motion for each frame). The second reason is 

that the number, the lengths and the directions of the visible lines varied from frame 
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to frame, which also made the values of the structure error different. Finally, since 

corner points are usually located where the depth of the scene changes drastically, 

small mismatches may cause large errors in the estimated structure. 

What we should mention here is that we used wide angle lenses. This implies 

that a pixel corresponds to a larger area in the scene than with a normal lens or a 

tele-lens. Also, a short baseline was used (about the distance between human eyes). 

If a tele-lens or wider baseline were ern.ployed, the structure error would decrease 

significantly. 

It should be mentioned that if outliers exist in the <lat.a to be processed, method 

of robust statistics [72], [73] can then beinvoked to detect the outliers and suppress 

their harmful effects. 

4.5 Further assessment of the estimated struc-

ture 

We now roughly estimate the structure uncertainty caused by each image pixel, in 

order to get a better assessment of the structure accuracy obtained in the experiments 

on monocular and stereo image sequences. Let us look at Figure 4.5, where b rep

resents the length of the base-line between the two stereo cameras, and d represents 

the average depth of the scene concerned. 

Let w and h represent respectively the width and the half height of the volume of 

the structure uncertainty induced by onè image pixel. We can calculate the values of 

w and h from 

and 

h - w

d b
(4.76) 

( 4.77) 
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Table 4.3: Motion estimations resulting from the matrix-weighted linear algorithm 

and the nonlinear optimization ( unit m). 

motion parameters linear nonlinear 
motion M1,o 
translation tx -0.003 -0.002

ty -0.044 -0.047

tz -0.007 -0.008

length 0.045 0.048 

rotation axis Nx 0.872 0.858 

N y 0.112 0.099 

Nz -0.474 -0.502

rotation angle 0(0) 2.299 2.169 

motion Mg,s 
·translation tx -0.001 0.001 

ty -0.045 -0.046

tz 
-0.009 -0.010

length 0.046 0.047 

rotation axis Nx 0.853 0.855 

Nv 0.072 0.035 

Nz -0.516 -0.516

rotation angle 0(0) 2.237 2.192

Table 4.4: Estimated motion and structure. k: time index; 0: rotation angle ( degree); 

RMSE: root mean square error (mm); ME: mean error (mm). 

k 1 2 3 4 5 6 7 8 9 

0 2.16 2.18 2.08 2.33 2.20 2.30 2.19 2.22 2.19 

RNISE 9.79 9.64 19.05 22.92 26.49 29.38 26.56 27.49 30.30 

ME 6.64 5.74 9.67 13.25 17.45 20.40 19.39 20.33 23.43 
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In our experiments, cl equals 1200mm, b equals 100mm and f equals 550. Then 

w and h are 2.2mm and 26mm, respectively, while 2h equals to 52mm. For one end 

of any horizontal line parallel to the baseline b, the uncertainty induced by image 

quantization is w, while for one end of any vertical line perpendicular to the baseline, 

the uncertainty is 2h. Note that the vertical uncertainty 2h is much larger than the 

horizontal uncertainty w.

Since each line has two ends, and we have measured both horizontal and vertical 

lines in the scene, the estimated structure error from both monocular and stereo 

experiments shown in Table 3.3 and 4.4 fall into the allowable structure error range of 

the image pixel, which is roughly three times of the average uncertainty Jw2 + (2h)2

(52.05mm) according to [5]. 

4.6 Summary 

Our approach to motion and structure analysis through long image sequences is char

acterized by the following aspects: 

(1) A closed-form matrix-weighted solution is used to obtain a reliable solution to

interframe motion. 

(2) To further improve the closed-form solution, an iterative optimization is for

mulated, using a space decomposition strategy to reduce the cost of computation and 

· improve the numerical stabfüty of the algorithm. The parameter space is decomposed

in such a way that the structure of points is not included in the search space. This

framework can be directly extended to a recursive estimation from long stereo image

sequences.

(3) A recursive-batch approach is employed to process long stereo image sequences.

Simulation and careful experiments have been carried out to investigate the perfor

mance of our methods. The experimental results have been compared to the available 
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d 

Figure 4.12: The uncertainty in the estimated coordinate of 3-D points, due to image 

quantization. 
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ground truth. 



Chapter 5 

Conclusions and discussions 

5.1 Conclusions 

The problem of dynamic motion and 3-D structure estimation from monocular and 

stereo image sequences has been studied in this dissertation. Our formulation con

sidered the case of general motion, represented as a rotation matrix and a translation 

vector. Our approach falls into the category of the feat ure based approaches ( using 

point correspondences for motion and structure computations). 

It was seen that nonlinearity and the large dimensionality of the parameter space 

are two obstacles to the solution of the motion problem. ln order to substantially 

improve the accuracy of the estimated motion and 3-D structure, and the stability 

as well as the efficiency of our optimization methods, two main measures have been 

undertaken. The first is applied in the data part, i.e., the varying reliabilities of the 

observations and estimates have been taken into account in the construction of the ob

jective fonctions. The second is applied in the search procedure, i.e., the dimension of 

the search space in the nonlinear optimization is drastically reduced by exploiting the 

relationship between structure and motion, so that the search space only includes the 

6 independent motion parameters. Since good initial motion solutions are provided 
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by closed-form formulations for both the monocular and stereo cases, few iterations 

are required to converge to an optimal solution. 

To process monocular and stereo image sequences a recursive-batch framework 

has been adopted, which combines the advantages of recursive and batch methods by 

preserving and updating the previous structure through time. In the case of multiple 

observation of some part of a scene, this method can provide more accurate estimates 

by exploiting the redundancy in the observation of the structure. 

Experiment with real image sequences is commonly regarded as diffi.cult in com

puter vision community. Great efforts have been made in this research to complete 

careful experiments with long stereo and monocular ·image sequences of a real world 

scene, including the camera calibration section, to investigate the performance of the 

proposed optimization methods. The estimates obtained have been compared to the 

motion and structure ground truth available. 

The scale factor problem which is intrinsic m monocular image sequences was 

analyzed. It was shown that the scale factor associated with any two consecutive 

images in a monocular sequence is determined by the scale factor of the first two 

images. 

5.2 Future work 

Due to the time limitation, I have not made the selection of feature points from the 

image sequences fully automatic. As described in our experiments of the monocular 

and stereo image sequences, the initial selection of feature points was clone manually. 

However, once the initial selection is performed, the tracking of the feature points in 

the successive images was completed automatically. Algorithms for fully automatic 

feature point selection which can select the most reliable feature points from the 

starting image and track them in the following images of the sequence is obviously 
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an important and interesting topic for the work of future. Unlike other features, 

corner point correspondences do not suffer from the aperture problem in the matching 

process. Because of this advantage, corner points play an important role in the 

analysis of long image sequences (In fact, the manually selected feature points used 

in our experiments of the monocular and stereo image sequences consisted mostly of 

corner points.). 

Although our recursive-batch framework set up one model for fusing redundant 

observations, new strategies for fusing multiple views in image sequences should be 

explored further. For example, the new strategy can be based on a new noise model 

other than that of Gaussian noise. 

In reality, it is possible that there are several objects moving independently in 

different ways in the observed scene, segmentation algorithms which are able to handle 

general scenes consisting of both static and moving abjects should be intensively 

studied. As many other motion and 3-D structure estimation approaches , we assume 

also that the necessary segmentation is clone. In order to apply our approach to non

static environment, a robust segmentation is critical to the final results of the motion 

and 3-D structure estimates. 

As more kinds of 3-D cameras using laser scanners developed, a reliable and high 

precision vision system should comprise both passive and active vision systems. To 

build such a vision system is an attractive project which can find many application 

fields. 
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Appendix A 

Least-squares fitting of a rotation 

matrix 

Given two matrices C = [C1, C2, · · ·, Cn], and D = [D1, D2, · · ·, Dn], where 
Ci and Dï are 3-component vectors, we look for 3x3 matrix R which minimizes the 
norm: 

IIRC - DII = min subject to: R is a rotation matrix. (A.1) 

Define a 4 by 4 matrix B by 
B =LB/Bi (A.2) 

i=l 

where 
Bi

=[ 0 (Ci-Di)T l Di - Ci [Di+ Ci]x (A.3) 

where we define a mapping [-]x from a 3-dimensional vector to a 3 by 3 matrix by: 
0 

0 (A.4) 

0 

Let q = (q0, q1, q2, q3) T be a unit eigenvector of B associated with the smallest 



eigenvalue. The solution of the rotation matrix R in ( A.1) is 

R = 2(q2q1 + qoqa) q� - qf + q� - q; 2(q2q3 - qoq1) 

2(qaq1 - qoq2) 2(qaq2 + qoq1) q� - qf - q� + ql 

For proofs see [34], [18] or [50]. 
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(A.5) 



Appendix B 

The closed-form two-view 

algorithm 

The dosed-form two-view algorithm outlined here is used to compute the initial mo

tion and structure solutions in the case of monocular image sequences. We cite here 

the main computation steps for obtaining the initial solution. Further details about 

the algorithm can be found in (50]. 

Let the coordinate system be fixed on the camera with the origin coinciding with 

the optical axis and pointing forwards. Without loss of generality, we assume that 

the focal length is unity. Thus the image plane is located at z = 1. Visible objects 

are always located in front of the image plane, i.e., z > 1. 

We define a mapping [·]x from a 3-D vector to a 3 by 3 matrix by: 

0 

-X2 X1 Û 

(B.1) 

Using this mapping, we can express cross operation of two vectors by the matrix 

multiplication of a 3 by 3 matrix and a comumn matrix: 

X x Y= [X] x Y. (B.2) 

Consider a point P on the object which is visible at two time instants, with the 



following notations: 

x = (x, y, z) T spatial vector of Pat time t1

x' = ( x', y', z') T spatial vector of P at time t2

X= (u, v, lf = (x/z,y/z, l)T image vector of Pat time t1

X'= ( u', v', 1) T = (x' / z', y'/ z', 1) T image vector of Pat time t2 
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where ( u, v) and ( u', v') are the image coordinates of the point. Let R and T be the 

rotation matrix and the translational vector, respectively. The spatial points at the 

two time instants are related by 

x'=Rx+T, 

or for image vectors: 

z'X' = zRX + T. 

If IITII =/- O, from the above equation we get 

where 

The algorithm is as follows: 

A T 

T= IITII" 

(i) Solve for the intermediate unknown vector h:

(B.3) 

(B.4) 

(B.5) 

(B.6) 



vectors of n (n � 8) points. Let 

I 
U1U1

I 
U1V1 U1 

I 
V1U1

I 
V1V1

I 
U2U2

I 
U2V2 U2 

I 
V2U2

I 
V2V2

A= 

We solve for unit vector h such that 

IIAhll = min. 

V1 u' 1 v' 1 1 

V2 u' 
2

v' 
2 

1 

Vn U
1 

V
1 1 

n n 
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(B.7) 

(B.8) 

(B.9) 

The solution of h is the unit eigenvector of AT A associated with the smallest eigen

value. We then define matrix E as : 

h1 h4 h1 

E = [Ei, E2 , Ea] = v'2 h2 hs hs 

(ii) Determine a unit vector Ts with 'Î' = ±Ts

(B.10) 

Using standard least-squares method we solve for the unit vector T8 such that 

(B.11) 

If 

I)Ts x xa · (EXï) < 0, (B.12) 

then T8 is replaced by -T8 • The summation in (B.12) is over several values of i's to 

reduce the instability due to noise (usually three or four values of i will suffi.ce). 



(iii) Determine rotation matrix R

Without noise we have 

E = [T.,)xR 

or 

ln the presence of noise, we find the rotation matrix R such that 

IIRT [-T.,)x - ET II = min, subject to: Ris a rotation matrix. 

Alternatively, we can find R directly. Let 
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(B.13) 

(B.14) 

(B.15) 

(B.16) 

without noise we have R = W. ln the presence of noise, we find rotation matrices R

such that 

IIR- WII = min, subject to: Ris a rotation matrix. 

We can use either (B.16) or (B.17) to find R. They both have the form 

IIRC - DII = min, subject to: Ris a rotation matrix

"least-squares fitting of a rotation matrix" to compute the rotation matrix R.

(iv) Check T = O. //T f= 0, determine 'Î' = Ta or 'Î' = -Ts

(B.17) 

(B.18) 

Let a be a small threshold. If //i�,,�:11 � a for all 1 � i � n, then report T � O.

Otherwise determine the sign for 'Î': if 

2::)Ta X x:). (X� X RXi) > o, (B.19) 

then 'Î' = Ta. Otherwise 'Î' = -T8 • Similar to (B.12), summation (B.19) is over 

several value of i. 



(v) IJT does not vanish, estimate the relative depths

For i, 1 :5 i :5 n, find the relative depth 

such that 

using standard least-squares method for linear equations. 
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(B.20) 

(B.21) 



Appendix C 

Matrix-weighted 

centroid-coincidence Theorem 

MWCC Theorem {71]. If R* and T* minimize (4.16) with the weighting matrix 

ri1 not depending on either R or T, then the matrix-weighted centroids of { xa and 

{R*xi + T*} must coïncide: 

n n 

I:ri1 {Rxi + T*} = I:ri1x�. (C.l) 
i=l i=l 

Proof. Let 

i = 1, 2, • • ·, n. (C.2) 

Minimizing ( 4.16) is equivalent to the following: Given {xi} and {xa, i = 1, 2, . · ·, n, 

determine { xn to minimize 

subject to the rigidity constraints 

1 ::; i ::; n, 1 ::; j ::; n. 

(C.3) 

(C.4) 

As a necessary condition of this minimization problem with equality constraints, the 

partial derivatives of the corresponding Lagrangian 

n n n 

L = L {x�' - xa Tr;
1 {x�' - xa + L L Àij{ llx�' - xJ11

2 

- llxi - x:J
2

} (C.5) 
i=l i=l j=l 
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where Àï; = >..;i, must vanish. Differentiating L with respect to x%1, l � k � n and 

1 < l � 3, yields, 

0 âL 2r-1 {A" A'} 2�, 2{A" A"} = âA" = kl xk-xk + LJAkj xk1 -X;1 ,
Xkl j=l 

(C.6) 

where r;;,1 denotes the 1-th row of the matrix r;;1 . Since r;;1 in (4.20) does not depend 

on either R or T, it does not depend on x%. Summing up (C.6) for k = l ton gives 

(C.7) 

since Ek=l EJ=
1 

>..k;{x%
1 -x'J

1
} = 0 for any integer l with 1 � l � 3. According to the 

definition of x%, (C.1) directly follows from (C.7). This completes the proof. 



Appendix D 

The invariance of the best linear 

unbiased estimator under changes 

of scale 

Theorem. rÎlBLU is invariant under changes of scale [70]. 

Proof. Assume that observera 01.and 02 are observing a process; but, observer 01 

reads the measurements in one set of units and 02 in another. Let S be a symmetric 

matrix of scale factors relating 01 to 02, and Yo1(k) and Yo2(k) denote the total 

measurement vectors of 01 and 02, respectively. Then 

which means that 

and 

(D.2) 

(D.3) 

(D.4) 

Let rÎlot,BLu( k) and mo2,BLU( k) denote the best linear unbiased estimators associated 

with observers 01 and 02, respectively; then, 

(D.5) 
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- [A61(k)S(Sf y01 S)-1SA01(k)r
1 

A61(k)S(Sf y01 S)-1Syo1(k)

- [AJ1(k)fy�
1
A;';1(k)r

1 

A;';1(k)fy�
1
Yo1(k)

- IÎlot,BLU(k).



Appendix E 

The covariance recursive form of 

the structure estimator 

Matrix Inversion Lemma ([55], [69], [70]), 

where :E is a n x n matrix, R is a p x p matrix, and H is a n x p matrix. All matrix 

inverses are assumed to exist. 

By using the Matrix Inversion Lemma, we can derive the covariance recursive 

form of the structure estimator in (3.30) from (3.28). Since 

and 

(r:-1 +AT .r:-1 A -)-1
xk ,i k,t uk ,i k,t 

we can thus rewrite (3.28) as the following: 

xti - (A Tr-1 A)-1 A Tr-1B

- [I- rxk ,iAI,;(Ak,irxk,iAL + rûkJ-1 Ak,i]b1

+rxk ,i AL(Ak,Sxk ,i AL + rûk ,it1h2.

(E.2) 

(E.3) 

(E.4) 
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Substituting b1 into the above equation, we have the desired covariance recursive 

form of the structure estimator for (3.28): 

where the gain matrix is 



Appendix F 

The proof of positive definiteness 

of the structure covariance matrix 

r � .. in (3.46) can be expressed in the following form: 

where c1 = a;., c2 = z72 and 
. 

We prove now that 

u2 
0 0 

u 

D= 0 

0 

> 0,

0 

0 

0 

for all nonzero vectors x = ( X1 x2 xa) T. 

(F.l) 

(F.2) 

(F.3) 

Note that ut =fa 0, since its third component is a constant 1. The second term in 

(F.3) can be simplified as 

(F.4) 
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For any nonzero vector x = ( x1 x2 x3) T, if x3 = 0, then c2x TDx =/= O; if x1 = 0 and

x2 = 0, then c1 (u; • x)2 =/= O. So we conclude that rx•. is always positive definite. 
o,, 



Appendix G 

The interframe motion estimated 

from the monocular experiment 

All the interframe motion estimates obtained from the monocular experiment are 

shown in the following figure and tables. 



lnterframe rotation from the monocular experiment 
2.62 �---..----.----.---------.------.---....-----,.------.-----, 

2.60 

2.58 

2.56 

2.54 

� 2.52 
O> 

{g 2.50 
.;..: 
§ 2.48

2.46

2.44

2.42

2.40

Estimated rotation angles 

2·38 o..__.__...2_...._ .... 4.___.__._s _.___.s.___.__1_._o_.___.12..__.__1 .... 4_.__.1s.__ ...... _1 .... s_..____.20 
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Figure G .1: A graphie display of the estimated values of the interframe rotation angles 

of the monocular experiment. The ground truth of the interframe rotation angle is 

2.25
°
. 
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Table G.1: Motion estimations resulting from the linear algorithm and the nonlinear 

optimization. 

motion parameters linear algorithm nonlinear optimization 
motion M1,o 
translation tx -0.004081 -0.000615

(scaled) ty 
-0.140111 -0.192057

tz -0.116833 -0.044210

length 0.182476 0.197081 

rotation axis Nx 0.927024 0.896551 

Ny 
0.127492 0.049395 

Nz -0.352664 -0.440179

rotation angle 0(0) 2.955706 2.514551 

motion M2,1 
translation tx -0.012594 -0.005608

(scaled) ty 
-0.040259 -0.190828

tz -0.116480 -0.042419

length 0.123883 0.195567 

rotation a.xis Nx 0.987225 0.894357 

Ny 
0.088764 0.057969 

Nz -0.132316 -0.443582

rotation angle 0(0) 3.777868 2.510903 

motion Ma,2 
translation tx -0.010199 -0.008147

(scaled) ty 
-0.031638 -0.197683

tz -0.126912 -0.045876

length 0.131193 0.203100

rotation axis Nx 0.987154 0.885395 

Ny 
0.064054 0.068052 

Nz -0.146370 -0.459830

rotation angle 0(0) 3.870644 2.430236 

motion M4,a 
translation tx -0.010558 -0.011871

(scaled) ty 
-0.060952 -0.194237

tz -0.123074 -0.030931

length 0.137746 0.197042 

rotation axis Nx 0.976017 0.894446 

Ny 
0.099821 0.105399 

Nz -0.193462 -0.434578

rotation angle 0(0) 3.507770 2.577579
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Table G.2: Motion estimations resulting from the linear algorithm and the nonlinear 

optimization. 

motion parameters linear algorithm nonlinear optimization 
motion Ms4 

' 

translation tx -0.004424 -0.000455

(scaled) ty 
-0.090996 -0.196497

tz -0.179526 -0.036368

length 0.201319 0.199835 

rotation axis Nx 0.953410 0.888732 

N11 
0.122819 0.047206 

Nz -0.275545 -0.455990

rotation angle 0(0) 3.214753 2.509122

motion M6,s 
translation tx -0.002598 -0.013570

(scaled) ty 
0.034913 -0.192642

tz -0.125652 -0.043876

length 0.130438 0.198041 

rotation axis Nx 0.985159 0.905226 

Ny 
0.002010 0.094617 

Nz -0.171632 -0.414262

rotation angle 0(0) 4.341894 2.447395 

motion M1,6 
translation tx -0.000212 -0.005927

(scaled) ty 
-0.128437 -0.197732

tz -0.258612 -0.038415

length 0.288749 0.201516 

rotation axis Nx 0.936065 0.892702 

Ny 
0.115364 0.068716 

Nz -0.332375 -0.445378

rotation angle 0(0) 3.161157 2.502223

motion Ms1 
' 

translation tx 0.006445 0.000301 

(scaled) ty 
-0.124258 -0.197155

tz -0.205979 -0.039485

length 0.240642 0.201070 

rotation axis Nx 0.924629 0.888798 

Ny 
0.095265 0.046924 

Nz -0.368763 -0.455891

rotation angle 0(0) 2.936972 2.457414 
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Table G.3: Motion estimations resulting from the linear algorithm and the nonlinear 

optimization. 

motion parameters linear algorithm nonlinear optimization 
motion M9,s 
translation tx 0.005957 -0.006870

(scaled) ty 
-0.072216 -0.191468

tz -0.214220 -0.045614

length 0.226143 0.196946 

rotation axis Nx 0.958225 0.900382 

Ny 
0.083626 0.066008 

Nz -0.273516 -0.430064

rotation angle 0(0) 3.238676 2.484936

motion M10,9 
translation tx 0.009495 -0.007293

(scaled) ty -0.017878 -0.195638

tz -0.149888 -0.033243

length 0.151249 0.198576 

rotation axis Nx 0.959894 0.902316 

Ny 
0.057237 0.061092 

Nz -0.274460 -0.426725

rotation angle 0(0) 3.590450 2.477988

motion Mn,10 
translation tx 0.010524 -0.002607

(scaled) ty -0.006316 -0.189613

tz -0.128659 -0.039179

length 0.129243 0.193636 

rotation axis Nx 0.965102 0.892462 

Ny 
0.065311 0.069414 

Nz -0.253598 -0.445750

rotation angle 0(0) 3.647439 2.544469 

motion M12,11 
translation tx 0.019834 -0.008744

(scaled) ty 
-0.018138 -0.194748

tz -0.135338 -0.035821

length 0.137981 0.198208 

rotation axis Nx 0.967331 0.902118 

Ny 0.045610 0.061712 

Nz -0.249379 -0.427054

rotation angle 0(0) 3.514187 2.406422 
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Table G.4: Motion estimations resulting from the linear algorithm and the nonlinear 

optimization. 

motion parameters linear algorithm nonlinear optimization 
motion M13,12 
translation ix 0.022363 -0.001111
(scaled) iy -0.087605 -0.192015

tz -0.164568 -0.042067
length 0.187769 0.196572 

rotation axis Nx 0.949348 0.888060 

Ny 0.046863 0.046597 

Nz -0.310714 -0.457359
rotation angle 0(0) 3.244757 2.574573 
motion M14,13 
translation ix 0.022448 -0.009339
(scaled) ty 0.014461 -0.190505

tz -0.146642 -0.047326
length 0.149053 0.196517 

rotation axis Nx 0.973143 0.905118 
Ny 0.022836 0.093418 

Nz -0.229065 -0.414769
rotation angle 0(0) 3.793730 2.605713
motion M1s,14 
translation ix 0.011349 -0.007113
(scaled) ty -0.045599 -0.196871

iz -0.103114 -0.045662
length 0.113316 0.202223 

rotation axis Nx 0.965373 0.888405 

Ny 0.027323 0.057948 

Nz -0.259438 -0.455389
rotation angle 0(0) 3.279208 2.394105
motion M16,1s 
translation ix 0.012836 -0.005137
(scaled) iy -0.175316 -0.208194

tz -0.131395 -0.035274
length 0.219466 0.211224 

rotation axis Nx 0.891003 0.886930 

Ny 0.064878 0.062890 

Nz -0.449338 -0.457603
rotation angle 0(0) 2.859024 2.469579
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Table G.5: Motion estimations resulting from the linear algorithm and the nonlinear 

optimization. 

motion parameters linear algorithm nonlinear optimization 
motion M11,16 
translation tx 0.022908 -0.010166

(scaled) ty 
-0.152211 -0.203621

tz -0.149965 -0.041988

length 0.214901 0.208154

rotation axis Nx 0.934230 0.882817 

Ny 
0.075973 0.096769 

Nz -0.348486 -0.459640

rotation angle 0(0) 2.902700 2.566996 

motion M1s,11 
translation tx 0.019225 -0.010592

(scaled) ty 
-0.073187 -0.200072

tz -0.136523 -0.042506

length 0.156091 0.204812 

rotation axis Nx 0.959765 0.890507 

Ny 
0.069962 0.060714 

Nz -0.271949 -0.450900

rotation angle 0(0) 3.484531 2.400253

motion M19,1s 
translation tx -0.070523 0.000453 

(scaled) ty 
-0.202018 -0.206084

tz 0.438972 -0.041304

length 0.488345 0.210183 

rotation axis Nx 0.950502 0.890109 

Ny 
-0.062418 0.058372 

Nz -0.304383 -0.451993

rotation angle 0(0) 3.422166 2.438417 






