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SOMMAIRE 

Dans cette thèse, deux nouvelles structures de laser à semi-conducteurs sont 

proposées et étudiées: le laser à rétroaction distribuée par réseau circulaire (circular-grating 

distributed-feedback (CG-DFB) laser) et le laser à réflexion distribuée de B ragg par réseau 

circulaire (circular-grating distributed-Bragg-reflector (CG-DBR) laser). 

Une nouvelle théorie du couplage d'ondes est fonnulée spécialement dans le cas des 

ondes cylindriques. Cette théorie est une fonnulation vectorielle basée sur les équations de 

Maxwell pour les champs électro-magnétiques. La théorie est appliquée à une analyse des 

caractéristiques des modes des lasers CG-DFB et CG-DBR . Pour la premiere fois, une 

analyse du courant de seuil est présentée pour des lasers CG-DFB et CG-DBR à 

l'hétérostructure GainAsP/InP. 

Le premier laser CG-DFB à émission de surface est fabriqué en GalnAsP/InP. 

L'action laser est démontrée par pompage optique. Le longueur d'onde d'émission est 

1.283µm. Une puissance maximum de 25mW a été mesurée. 

Le premier laser CG-DBR utilisant l'injection de courant est aussi réalisé. Le courant 

de seuil est de 140mA et la puissance émise de la surface est supérieure à 10m W. 



ABSTRACT 

In this thesis, two novel laser structures are proposed: the circular-grating distributed­

feedback (CG-DFB) laser and the circular-grating distributed-Bragg-reflector (CG-DBR) 

laser. They are studied both theoretically and experimentally. 

A new coupled-wave theory for cylindrical waves is formulated as the basis for the 

theoretical analysis of CG-DFB and CG-DBR lasers. The coupled-wave theory established 

here is a self-consistent, vector-wave formulation based on Maxwell's equations for the 

electromagnetic fields. A large radius approximation to the new coupled-wave equations is 

also derived. Discrepancies between the new, vector-wave formulation presented in this 

thesis and the scalar-wave derivations by other researchers are clarified. 

The threshold gain and the mode properties of CG-DFI,3 and CG-DBR lasers are 

studied by this new coupled-wave theory. An analytical eigenvalue equation is obtained for 

the threshold condition. For the first time, a threshold current analysis is made for these 

novel laser structures. It is found that for both types of lasers, by a proper choice of the 

inner radius (i.e, the phase-shift ), one can select the laser oscillation to be either in the even 

cylindrical-wave modes or in the odd cylindrical-wave modes. This possibility of mode 

selection is important in the design of CG-DFB and CG-DBR lasers. It is also found thàt 

CG-DFB lasers have a higher threshold gain and a higher threshold current than CG-DBR 

lasers. 

The concept of CG-DFB and CG-DBR lasers is verified experimentally. The first 

optically-pumped surface-emitting CG-DFB laser is fabricated using the GaAslnP/InP 

heterostructure. Lasing action is demonstrated at 1.283 µm. The maximum surface-emitted 

optical power is measured as high as 25 m W. 

The first electrically-pumped surface-emitting CG-,DBR laser is also successfully 

demonstrated on the GalnAsP/lnP material. The lowest threshold current is 140mA and the 

maximum measured surface-emitted optical power exceeds lOmW. 
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RESUME 

Le concept des lasers à rétroaction distribuée (Distributed FeedBack (DFB) laser ) fut 

introduit par Kogelnik et Shank au début des années 1970 [1-2]. Depuis leurs travaux 

originaux, les lasers DFB ont attiré beaucoup d'attention [3-55]. 

Les lasers à semi-conducteurs qui utilisent la rétroaction distribuée peuvent être 

classifiés en deux catégories: les lasers DFB et les lasers DBR ( Distributed-Bragg­

Reflector ). Dans les lasers DFB, la rétroaction nécessaire pour maintenir l'oscillation du 

laser n'est pas localisée aux facettes de la cavité, mais est plutôt distribuée sur toute la 

longueur de celle-ci. Cet effet est obtenu grâce à un réseau gravé dans une couche épitaxiale 

qui fait partie de l'hétérostructure. La variation périodique de l'épaisseur de la couche 

gravée crée une perturbation périodique de l'indice de réfraction. La rétrodiffusion de :S.rngg 

produite par le réseau couple les champs se propageant vers l'avant et vers l'arrière. La 

condition de Bragg détermine la selectivité en fréquence du laser DFB. Pour les lasers 

DBR, les réseaux sont fabriqués aux deux bouts de la cavité et il n'y a pas de rétroaction 

dans la région active située au centre. Les deux régions ondulées fonctionnent effectivement 

comme des miroirs dont la réflectivité est une fonction de la longueur d'onde. 

En comparaison avec les lasers à semi-conducteurs conventionnels de type Fabry­

Pérot (FP), les lasers DFB et DBR ont une longueur d'onde démission plus stable et une 

largeur de raie réduite. Ces deux aspects sont importants pour les systèmes de 

communication par fibre optique. Afin de bien utiliser les fenêtres d'atténuation minimale de 

la fibre de silice, à environ 1.3µm et l.55µm, et de réaliser des systèmes à fibre optique à 
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large bande et à haut débit, on a développé les lasers DSM ( dynamic single-mode ) utilisant 

le mécanisme de rétroaction distribuée (56]. 

En plus d'une sélectivité en fréquence accrue, on peut aussi obtenir une émission de 

surface grâce à un réseau du deuxième ordre. Ceci fournit en même temps la rétroaction au 

laser par la réflexion de Bragg du deuxième ordre et le couplage au champ radiatif par 

interaction du premier ordre [57]. Des lasers DFB et DBR à émission de surface par 

injection ont déjà été réalisés [58-60]. L'émission de surface est une propriété souhaitable 

pour l'intégration monolithique. À cause de la géométrie rectiligne des réseaux du second 

ordre utilisés dans les travaux antérieurs, l'émission de surface prend la forme d'un 

faisceau rectangulaire dont les angles de divergence sont différents selon les directions 

parallèle et perpendiculaire aux lignes du réseau. 

Ce problème peut être corrigé en utilisant un réseau circulaire du deuxième ordre pour 

obtenir une émission normale à la surface. La structure d'un laser DFB et celle d'un laser 

DBR à réseau circulaire ( circular-grating DFB (CG-DFB) laser ou circular-grating DBR 

(CG-DBR) laser ) sont les versions à deux dimensions des structures de rétroaction 

distribuée considérées par Kogelnik et Shank [1-2]. Les lasers CG-DFB furent proposés 

par Shimpe [61] en 1988. Deux ans après cette proposition, en 1990; Toda [62] a fait une 

analyse du caractère monomode d'un laser CG-DFB non-périodique. Dans la même année, 

Erdogan et Hall (63] présentaient leur analyse du gain de seuil d'un laser CG-DFB dans le 

cadre d'une théorie scalaire du couplage modal. En 1991, Gong et al (64] ont fait une 

analyse d'onde scalaire des lasers CG-DBR. On a aussi étudié des résonateurs passives aux 

réseaux circulaires [65-66]. 

Dans les lasers à réseau circulaire, le mécanisme de rétroaction est essentiellement le 

même que dans le cas des lasers DFB rectilignes. La différence majeure est que maintenant 

on traite des ondes cylindriques qui se propagent radialement vers le centre et vers 
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l'extérieur, au lieu d'ondes planes qui vont vers l'avant et vers l'arrière. A cause de leur 

symétrie circulaire, les lasers CG-DFB et CG-DBR offrent des avantages pour les 

applications pratiques. Par exemple, il est possible d'obtenir un faisceau circulaire dont la 

divergence est très petite parce que la surface d'émission est circulaire et plus large que dans 

le cas des lasers à émission latérale. Il est aussi possible de réaliser un faisceau focalisé avec 

un réseau circulaire façonné comme une lentille de Fresnel. Un autre avantage est la 

formation d'émetteurs-réseau. De plus, les tests sont plus faciles à réaliser parce qu'il n'y a 

pas de facettes clivées. 

Le but de cette thèse est d'étudier théoriquement et expérimentalement les 

caractéristiques des lasers CG-DFB et CG-DBR. Nous avons établi une formulation 

vectorielle de la théorie du couplage entre les ondes. La théorie est spécialement développée 

pour analyser des dispositifs utilisant des réseaux circulaires. Nous avons aussi analysé les 

caractéristiques des modes et calculé le courant de seuil des lasers CG-DFB et CG-DBR. 

Récemment, nous avons réussi à fabriquer et caractériser le premier laser CG-DFB pompé 

optiquement et le premier laser CG-DBR utilisant l'injection de courant. Parce que le 

matériau GalnAsP produit des sources les plus courantes pour les systèmes à fibre optique, 

tous les exemples théoriques et expérimentaux sont basés sur cet alliage. Cependant, la 

théorie développée dans cette thèse est applicable à d'autres matériaux comme l'AlGaAs et 

l'InGaAs. 

La thèse est composée de cinq chapitres. Les deux premiers décrivent la théorie du 

couplage entre ondes cylindriques. Le troisième analyse les modes et le courant de seuil des 

lasers CG-DFB et CG-DBR. Les deux derniers chapitres présentent des résultats 

expérimentaux. Le contenu de chaque chapitre est décrit brièvement ci�dessous. 

Les ondes se propageant dans des dispositifs à réseau circulaire sont les ondes 

cylindriques qui sont représentées par les fonctions de Hankel [61-66]. La théorie 
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conventionnelle du couplage entre modes pour les structures à une dimension n'étant pas 

applicable, il est désirable d'établir des équations de couplage entre les ondes spécialement 

pour les ondes cylindriques. Ceci est présenté au chapitre 1. La formulation est basée sur 

les équations de Maxwell. C'est une formulation générale, consistante et vectorielle de la 

théorie du couplage entre les ondes pour les ondes cylindriques dans un guide plan à réseau 

circulaire. Nous commençons par définir les ondes cylindriques de polarisation TE et TM. 

Après avoir prouvé la relation d'orthonormalité entre les ondes cylindriques, les équations 

de couplage entre les ondes sont dérivées selon la ligne de pensée de Kogelnik [67]. Dans 

la théorie conventionelle du couplage entre modes, les modes TE ne sont pas couplés avec 

les modes TM, mais dans la nôtre il existe un couplage entre les ondes cylindriques de 

polarisation TE et celles de polarisation TM. La théorie développée ici est plus générale que 

celle de Zheng et Lacroix [65-66] dans laquelle seulement les ondes cylindriques de premier 

ordre furent considérées. Notre théorie est également différente de la formulation scalaire de 

Erdogan et Hall [63]. La théorie dérivée dans le chapitre 1 forme la base théorique des 

lasers CG-DFB et CG-DBR étudiés dans les chapitres suivants. 

Dans le chapitre 2, les équations de couplage entre les ondes cylindriques sont 

simplifiées. Nous démontrons que le couplage entre les ondes cylindriques TE et TM est 

négligeable quand le rayon r est suffisamment grand ( r >> 1/� ), ce qui est vérifié en 

pratique. Cette approximation rend séparables en deux groupes les équations de couplage 

entre les ondes: un groupe pour les ondes cylindriques TE et l'autre pour les ondes 

cylindriques TM. Dans ce chapitre, nous allons aussi discuter des différences entre notre 

théorie et celle d'Erdogan et Hall [63]. 

Grâce à la théorie développée dans les chapitres 1 et 2, une analyse détaillée du seuil 

d'oscillation est faite au chapitre 3 pour des lasers à semi-conducteurs CG-DFB et CG­

DBR. Les équations de couplage entre les ondes sont résolues et une équation aux valeurs 
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propres est obtenue analytiquement pour le gain de seuil des lasers CG-DFB et CG-DBR; 

des résultats numériques sont présentés. Par ajustement de la phase n, c'est-à-dire le rayon 

de la région centrale, on peut forcer l'oscillation laser sur des ondes cylindriques d'ordre 

soit pair ou impair. Ce résultat est important pour les réalisation pratiques des lasers CG­

DFB et CG-DBR. Nous avons aussi fait une estimation du courant de seuil. On a trouvé 

que la densité de courant de seuil et le courant de seuil pour les lasers CG-DFB sont plus 

élevés que pour les lasers CG-DBR. 

Le chapitre 4 se concentre sur les caractéristiques du premier laser CG-DFB à 

émission de surface, basé sur une hétérostructure GalnAsP/InP. Le réseau circulaire est 

fabriqué par lithographie de faisceau d'électrons (E-beam) et la technique de gravure par ion 

réactif (RIE: reactive-ion-etching). La structure de notre laser CG-DFB est d'abord décrite, 

suivie par une explication de la procédure de fabrication. Les résultats expérimentaux du 

premier laser CG-DFB à émission de surface par pompage optique sont présentés. 

Au chapitre 5, on discute du premier laser CG-DBR utilisant l'injection de courant, 

fabriqué en GalnAsP/InP. Nous avons modifié l'équation aux valeurs propres afin de tenir 

compte de la perte d'énergie à l'interface entre la région de gain et la région du réseau. Les 

caractéristiques optiques du premier Jaser CG-DBR à émission de surface sont présentées. 

Le succès de la démonstration des lasers CG-DFB et CG-DBR est une contribution 

importante de cette thèse. Le concept proposé par Shimpe [61] est maintenant devenu une 

réalité. Cependant, il y a encore beaucoup de travail à faire pour améliorer l'efficacité des 

lasers CG-DFB et CG-DBR. Par exemple, à cause de l'imperfection du couplage entre la 

région centrale de gain et celle de réseau, le courant de seuil expérimental de nos lasers CG­

DBR est plus élevé que celui prédit notre théorie et l'opération à courant continu ( CW: 

continuous wave operation ) n'a pas été obtenue. Aussi, nos lasers oscillent dans les ondes 

cylindriques impaires et non pas les ondes paires. L'optimisation des lasers à réseau 
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circulaire est nécessaire pour réduire le courant de seuil, la densité de courant de seuil, et 

pour augmenter la puissance émise de la surface. Il faudra étudier l'efficacité et la 

distribution spatiale du rayonnement, ainsi que les caractéristiques dynamiques et 

spectrales. Jusqu'à présent, le réseau circulaire a été écrit par lithographie E-beam et FIB 

(Focussed-Ion -Bearn). Les deux techniques sont très onéreuses, et en plus, elles 

demandent beaucoup de temps. Il est désirable d'avoir un autre moyen, comme une 

méthode holographique, pour fabriquer des réseaux èirculaires. 

Même si l'utilisation courante des lasers CG-DFB et CG-DBR est encore lointaine, 

nous croyons que par une étude théorique et des travaux expérimentaux, il est possible de 

les optimiser. On peut réduire le courant de seuil et augmenter la puissance émise de la 

surface. Ce sont des sources prometteuses pour les systèmes de communication par fibre 

optique, l'interconnexion optique et les applications en espace libre. 
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INTRODUCTION 

The concept of the distributed feedback (DFB) laser was first introduced and 

demonstrated by Kogelnik and Shank in the early 1970's [l-2]. Since their pioneering 

work, DFB semiconductor lasers have attracted considerable attention both experimentally 

and theoretically [3-55]. 

From the viewpoint of device operation, semiconductor lasers employing distributed 

feedback can be classified into two broad categories: the DFB lasers and the distributed 

Bragg reflector (DBR) lasers. They are shown schematically in Fig.1. 

In DFB lasers, the feedback necessary for the lasing action is not localized at the 

cavity facets but is distributed throughout the cavity length. This is achieved by etching a 

grating along the cavity length into one of the epitaxial layers that forms part of the 

heterostructure. The periodic variation in the thickness of the etched layer creates a periodic 

perturbation of the effective index of refraction. The backward Bragg scattering generated 

by the grating provides the feedback by coupling the forward- and backward propagating 

waves. Mode selectivity of the DFB mechanism results from the Bragg condition. 

In DBR lasers, the grating is etched near the cavity ends and distributed feedback 

does not take place in the central active region. The unpumped corrugated end regions act as 

effective mirrors whose reflectivity is wavelength-dependent. 

(a) DFB laser (b) DBR laser

Fig.1 Schematic view of conventional DFB and DBR lasers 



In comparison with the conventional Fabry-Perot-type (FP) semiconductor lasers, 

DFB and DBR lasers provide an improved wavelength stability and a reduced linewidth. 

Both are important for today's optical fiber systems. In order to take advantage of the low­

loss window occurring around the wavelengths of 1.3µm and 1.55 µm in silica fibers, and 

to realize wide-band high speed optical fiber transmission systems, the distributed feedback 

mechanism has been employed to develop dynamic-single-mode (DSM) lasers [56]. 

In addition to the advantage of frequency selectivity, surface emission which is 

desirable for monolithic integration purposes can also be obtained by using a second-order 

grating [57]. In this case, feedback is produced by the second-order Bragg reflection 

process and radiation is achieved through the first-order interaction. Electrically pumped 

surface-emitting DFB and DBR lasers have been reported [58-60]. For conventional 

surface-emitting DFB and DBR lasers, the surface-emitted beam has unequal divergence 

angles along directions parallel and perpendicular to the grating lines, due to the 

longitudinal shape of the emission surface. This results in high coupling losses when the 

surface-emitted power must be coupled to an optical fiber. 

The above problem however can be overcome by using a second-order circular 

grating to couple light out normal to the surface. Fig.2 illustrates the structures of CG-DFB 

and CG-DBR lasers. In CG-DFB lasers, the feedback mechanism is essentially the same as 

in conventional DFB lasers. The main difference is that we are dealing with cylindrical 

waves going into and out from the center, rather than plane waves travelling forward and 

backward. 

CG-DFB lasers were first proposed by Shimpe [61] in 1988. Toda was the first one 

to analyze the single-mode behavior of a disk-shaped DFB laser with a non-periodic 

circular grating [62]. In the same year, Erdogan and Hall [63] gave a scalar-wave coupled­

mode analysis on the threshold gain of circular grating DFB lasers. In 1991, Gong et al 

[64], presented their scalar-wave analysis of CG-DBR lasers. There were also analyses of 

passive circular grating resonators [65-66]. 

Owing to their circular symmetry, CG-DFB and CG-DBR lasers are of fondamental 

interest. These novel laser structures offer several potential advantages for practical 

applications. For example, they give a low-divergence circular beam because of their 

circular emission surface and a much larger aperture compare to conventional edge-emitting 

stripe lasers. They offer the possibility of a focussed beam. This can be realized by 

designing the circular grating like a Fresnel lens. Another advantage is the possibility of 
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making integrated arrays. Furthermore, because no cleaved facets are needed, on-wafer 

testing is easy to perlorm. 

(a) CG-DFB laser (b) CG-DBR laser

Fig. 2 Schematic view of CG-DFB laser and CG-DBR lasers 

The purpose of this thesis is to study, both theoretically and experimentally, CG-DFB 

and CG-DBR lasers. As GalnAsP lasers are the most widely used light sources for optical 

fiber communication systems, our theoretical examples and experiments are concentrated on 

this material. It should be stressed, however, that the theoretical aspects of CG-DFB and 

CG-DBR lasers discussed in this thesis apply to other materials, such as AlGaAs, InGaAs 

as well. 

This thesis contains five chapters. The first three chapters present the theoretical 

background and the last two report the experimental results. A brief outline of each chapter 

is now given: 

Because the propagating waves in circular grating devices are outward and inward 

cylindrical waves represented by Hankel fonctions [61-66], the coupled-mode theories for 

one dimensional periodic structures are no longer applicable here. It is therefore desirable to 

establish a special set of coupled-wave equations for cylindrical waves in circular periodic 

structures. Chapter 1 gives a general, self-consistent, vector-wave formulation of the 

coupled-wave theory for cylindrical waves in circular grating planar waveguides. Starting 

from Maxwell's equations, the definition of TE- and TM-cylindrical waves is introduced 

and the orthonormality relation between cylindrical waves is proved. The coupled-wave 

equations are then derived along Kogelnik's line of thought [67]. Unlike the conventional 
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coupled-mode theory in which the TE modes do not couple with the TM modes, our 

coupled:-wave equations consist of a system of four first-order differential equations which 

include the intèr-polarization coupling between TE- and TM-cylindrical waves. A 

discussion of the coupling between different cylindrical waves follows. The coupled-wave 

theory developed in this chapter is more general than the one given by Zheng and Lacroix 

[65-66] where only zeroth order cylindrical waves were considered, and is different from 

the scalar formulation of Erdogan and Hall [63] which is for TE-cylindrical waves. This 

new coupled-wave theory forms the theoretical basis for the analysis of CG-DFB and CG­

DBR lasers in later chapters. 

In Chapter 2, a simplified form of the coupled-wave equations is derived for 

cylindrical waves in circular grating planar waveguides. It is shown that under the large 

radius approximation ( �r >> 1), the coupling between TE and TM cylindrical waves can 

be neglected. This renders the coupled-wave equations separable into two sets, one for TE 

cylindrical waves and the other for TM cylindrical waves. The large radius approximation 

is valid for most practical cases. The difference between the theory in this thesis and the 

scalar theory of Erdogan and Hall [63] is clarified. 

In Chapter 3, a detailed threshold analysis for TE-cylindrical waves in CG-DFB and 

CG-DBR lasers is given. The analysis is based on the coupled-wave theory developed in 

Chapters 1 and 2. The coupled equation is solved analytically to obtain an eigenvalue 

equation for the threshold gain of the lasing modes. Numerical results on the threshold gain 

and the mode properties are presented. It is shown that, by a proper choice of the total 

phase-shift n ( in other words, the inner radius R1 ), the laser can be tuned to oscillate in 

either the even or the odd cylindrical waves. This is an important result for practical 

designs. By ùsing a linear model, an estimate of the threshold current density and the 

threshold current of circular grating lasers is also given. CG-DFB lasers are found to have a 

higher threshold current density and a higher threshold current than CG-DBR lasers. 

Chapter 4 concentrates on the lasing characteristics of the first surface-emitting CG­

DFB laser fabricated on a GalnAsP/InP double heterostmcture by electron�beam (E-beam) 

lithography and reative-ion-etching (RIE). The structure of the CG-DFB laser is first 

described. An explanation of the fabrication procedures follows. The experimental results 

of the first optically-pumped surface-emitting CG-DFB laser are given in the last section. 

The experiments are carried out at room temperature. 

Chapter 5 discusses the design and fabrication of the first electrically-pumped CG­

DER lasers on a GalnAsP/InP heterostructure . First, the threshold eigenvalue equation is 
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modified to take into account the coupling loss at the interface between the gain region and 

the grating. Design curves in terms of the coupling coefficient and the power coupling 

efficiency between the gain region and the grating region are given. Fabrication procedures 

for CG-DBR lasers 'are then described. The optical characteristics of the first electrically 

pumped surface-emitting CG-DBR lasers are presented. 
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CHAPTER 1 

SELF-CONSISTENT COUPLED-WAVE THEORY 

FOR CYLINDRICAL W AVES 

1.1. Introduction 

Circular grating devices have received much attention in the past years [61-66,.68-70]. 

Tien [68] initially suggested curved-line gratings as reflectors and resonators. Shimpe [61] 

proposed cylindrical diffraction grating couplers and distributed feedback resonators. Toda 

[62] made an analysis of the single-mode behavior of a disk-shaped DFB laser. Erdogan

and Hall were the first to analyze the threshold gain of_ circular symmetric distributed

feedback semiconductor lasers [63]. Gong et al [64], presented their scalar-wave analysis 

of CG-DBR lasers. Zheng, et al showed the applicability of circular gratings as resonators 

[65] and analyzed the mode-coupling in passive circular grating devices [66] . Hori, et

al.(69], and Shiono, et.al.(70], respectively designed and fabricated focusing grating 

mirror by electron beam lithography. Circular gratings could be used in leaky-wave antenna 

[71], which, when combined with active materials, would be a new type of surface­

emitting lasers. Circular gratings could also serve as a multi-port directional coupler [66, 

72], which would be especially useful in multi-channel operation. In addition to circular 

gratings, elliptic Bragg reflectors have also been proposed by Sudb(.1 [73] for applications 

in integrated optics. 

Though both use gratings to obtain distributed feedback, there is a main difference 

between circular grating devices and the conventional grating devices. In the former, the 

propagating waves are the cylindrical waves going into or out from the center. The field 

distribution spreads over the entire guide-plane, thus is two-dimensional in nature. 

Mathematically, cylindrical waves are described by Hankel fonctions. In the latter, the 

propagation of modes is along the axial direction and is described by the exponential 



7 

fonctions ( exp(±jpz) for z-direction propagation ). Because of this fondamental difference, 

the coupled-mode theory for conventional waveguides [67, 74-79] is not applicable to 

circular grating optical devices such as circular-grating distributed-feedback (CG-DFB) 

lasers and circular-grating distributed-Bragg-reflector (CG-DBR) lasers. 

There have been several attempts to derive coupled-wave equations for cylindrical 

waves [63-66]. The coupled-wave theory of Erdogan and Hall [63] was a scalar-wave 

formulation in which only TE- cylindrical waves in a single-mode slab waveguide were 

considered. The same can be said about the formulation of Gong, et al [64]. Zheng's 

coupled-wave theory for circular grating resonators [65-66] is valid only for zeroth-order 

cylindrical waves. 

In order to have a better understanding of the characteristics of circular grating devices 

and to give a simple but powerful tool for their analysis, a complete vector-wave coupled­

wave theory that is applicable to higher order cylindrical waves and takes into account of 

both TE and TM cylindrical waves is needed. The purpose of this chapter is to give a full­

detailled, vector-wave formulation of the coupled-wave theory for cylindrical waves. This 

new theory can be applied to analyze both passive and active grating devices formed on 

planar dielectric waveguides. 

This chapter is organized as follows: in section 1.2, starting from Maxwell's equations, 

TE and TM cylindrical waves in an ideal planar waveguide are first defined. Then, the 

orthonormality relations between cylindrical waves are proved. The coupled-wave theory 

for cylindrical waves is established in section 1.3. A general discussion on coupling 

between different cylindrical waves is presented in section 1.4. A summary of the theory is 

given in section 1.5. Details of the derivations are given in Appendices 1-III. Comparison 

between the vector-wave formulation of this Chapter and the scalar coupled-wave theory of 

Erdogan and Hall [63] is left to Chapter 2 where the coupled-wave equations are simplified. 

1.2 Cylindrical Waves in A Planar Dielectric Waveguide 

1.2.1 Definition of CylindricaJ Waves 

Consider a planar dielectric waveguide. The structure and the coordinates are indicated 

in Fig.3. The relative permittivity of the waveguide is denoted by E, with e = Ec for the 

cover layer , ê = êf for the guiding layer and E = Es ,for the substrate layer. ln our analysis, 
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cylindrical coordinates are used, with the r-and 0-directions in and the z-direction normal to 

the plane of the waveguide. 

In each uniform layer, the z-components of the electric field and the magnetic field 

satisfy the wave equation [74] 

where ro is the frequency of the light wave in the waveguide, µo is the permeability and Eo 

the permittivity of free space, respectively. E denotes the relative permittivity. We have 

implicitly assumed a time dependence in the form of expGcot). 

z 

Fig.3 Ideal planar dielectric waveguide without perturbation: ôe(r,0,z)=O. 

The Laplacian operator v in cylindrical coordinates is given by 

2 2 

2 1a a 1a aV =--( r-)+--+-
r :1 :1 2 2 2 

ur or r ae àz 
(l.2) 
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In order to solve Eq.(1.1), we use the method of separation of variables. That is, 

assuming solutions of the form [80] 

'V(r,8,z) ={E
z 
or HJ= R(r) Z(z) <l>(S) (1.3) 

where R(r), <l>(S) and Z(z) describe the field distr.ibution in the r-, the 8- and the z­

directions, respectively. 

Substituting Eq.(1.3) into Eq.(1.1) and performing separation of variables, we obtain 

d 
2
<I> 2 

-- + n <l>= O 
2 

d8 

where n and � are constants of separation. 

(1.4a) 

(1.4b) 

(1.4c) 

Comparing Eq.(l.4a) with the one dimensional scalar wave equations for TE and/or 

TM modes [67), we see that Eq.(1.4a) defines the slab modes of a planar dielectric 

waveguide and � is the propagation constant of the corresponding slab mode. The 

solutions for Eq.(l.4a) as well as the dispersion equations for calculating � can be found in

standard textbooks, such as [67, 74-76]. 

Since the permittivity of each layer is uniform, periodic condition must be satisfied such 

that <l>(8+2n)=<l>(8). Thus, the constant n in Eq.(l.4b) has to be an integer, and the 

solution of Eq.(l.4b) can be written as 

(1.5) 

with n=O, ±1, ±2, ±3, ... etc. We call n the order of the cylindrical wave. 
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Eq.(1.4c) is Bessel's equation of integer order n [81-82], which describes the radial
propagation of cylindrical waves. As we are considering the propagation of outward or
inward waves, the solutions of Eq.(1.4c) are chosen to be Hankel fonctions [80], i.e

(1.6a)

for outward-propagating wave, and

(1.6b)

for inward-propagating wave. These two solutions are independent of each other.
In Eqs.(1.6), H�1\13r) and H�2)(13r) denotes the Hankel fonctions of the first and

second kind, respectively. Jn(l3r) is the n-th order Bessel fonction of the first kind, and
N nCl3r) is the n-th order Neuman fonction.The outward or inward propagation
characteristics represented by Hankel fonctions are best understood by looking at their large
argument approximations [81-82]:

(1.7a)

(1.7b)

for �r >> 1. Thus, H�1)(�r) describes inward-propagating waves, and H�2)(�r) outward­
propagating waves. Eqs.(l.7a)-(1.7b) resemble very much the propagation of slab modes
which is represented by the exponential fonction exp(-jl3z) for z-propagating modes except
that the cylindrical waves are decaying waves.

Substituting R, <I> and Z into Eq.(l.�), the solution of the scalar wave equation (1.1)
can therefore be written in the following form

(1.8)



1 1 

(p)o

where a nonnalization constant A µn is introduced. The subscript " µ " denotes the slab 
mode number and the subscript" n" the order of the cylindrical wave; the superscript" p" 
represents outward-propagating waves when p = + and inward propagating waves when p 
= - ; the superscript" cr" denotes the polarization of the wave, cr= TE or TM. 

Similarly to the case of circular optical fibers, the radial and the azimuthal components 
of the electromagnetic field are obtained from Ez and Hz [74]: 

[ 2 ] 
1 . ë)Ez 1 a Hz He = - -JWEoE-+---
f3 2 ar r aeaz (1.9) 

From our knowledge on planar waveguides[67, 74-76], we know that only two kinds 
of waves can be supported in a planar waveguide, the one with Ez = 0 and Hz -::f:- 0, and the 
other with Ez i:-0 and Hz = O. We call the former the TE-waves, and the latter TM-waves. 
Using this definition in Eq.(1.9), the TE-waves satisfy: 

-.:. _ jroµo 1 ê)Hz 
ic.r------f32 r 

ae
•



2

Hr= __1__ o Hz
�2 

araz 

and likewise, for TM-waves, we have 

2 
Er

= _l a Ez 

�2 
azar 
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(1.11) 

Substituting Eq.(1.8) into Eq.(1.10) and Eq.(1.11), we obtain the field distribution of 
TE cylindrical waves 

E
(p)TE

= 0 µn z 

H (p)TE = A(p)TE R(p)(R 1E) ZlE( ) jn0
µn z µn n /J µr µ z e 



Similarly, the field distributions of the TM cylindrical waves are 

E(p)™= A(p)™.R(p)(A ™ )Z™( ) jn8
µn z µn n 1-' µ r µ z e 

dRn
(p)(Aµ r) cIZ

™

( ) E(p)™= A(p)™ 

[ l ] ___ P__ µ Z jn8 
µnr µn ™2 dr dz e 

(�µ ) 

Rn
(p)(A ™

µ r) cIZ
™

( ) E(p)™= A (p)™ 

[ jn ] --'"'-- µ z jn8 
µna µn ™ 2 r dz e 

(�µ) 

1 3 

(1.12) 

(1.13) 
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The superscripts " TE " and " TM " in Eqs.(1.12)-(1.13) are deliberately added to
distinguish the TE and the TM waves.

1.2.2 Genera) Characteristics of CylindricaJ Waves 

Note that Z(z) is independent of <1>(0) and R(r). This implies that for each slab mode,
i.e., for each solution of Z, there are infinitely many cylindrical waves. This also means
that the field distribution in the z-direction is the same for all the cylindrical waves
associated with the same slab mode

From Eq.(1.12), one can show that

1E 

Rt\�
µ
r)

= 

R�) 'cf3:r) (1.14)

where the prime " ' "means differentiation with respect to the argument (f3r). Eq.(1.14)
(p)'Œ indicates that the components Eµn r in the direction of propagation are nonzero except for

n=O. We recall that, by definition, the component of a TE slab mode in the direction of
propagation is always zero [67]. Therefore, we can say that only the zeroth order TE
cylindrical wave resembles the TE slab mode. Nonetherless, the ratio in Eq.(1.14)
approaches zero when r -> 00 due to the asymptotic behavior of R and R' ( see Eq.
(1.10)). Hence, higher order TE cylindrical waves behave more and more like TE- slab
modes as they propagate away from the center. This is to be expected, because at large
radius, the cylindrical waves essentially only see the planar waveguide. Similar comments
can be made about TM cylindrical waves. In this case, we have

(p)TM
Hµnr 

(p)TMHµne
= 

1M 

R�)C�
µ 

r)
R�\f3:r)

(1.15) 
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(p)TM (p)TM
Hµn r = 0 for n=O and Hµn r goes to zero for higher order waves as the wave gets far 

away from the center. 

1.2.3 Orthonormality Relations Between Cylindrical Waves 

It can be proved that cylindrical waves in an ideal planar waveguides are orthonormal to 

each other ( see Appendix II for details ). The orthonormality relations between cylindrical 

waves can be summarized as 

(1.16) 

where 8 is the Kronecker delta, p, q = ±; µ,v = slab mode number; n, m = order of 

cylindrical waves; cr;t = TE or TM. 

These relations indicate that cylindrical waves in a uniform planar waveguide are 

independent of each other. Thus, all the cylindrical waves form a complete basis which can 

be used to express an arbitary field. This is extremely important in the formulation of the 

coupled-wave theory in next section. 

1.3 Coupled-Wave Theory For Cylindrical Waves 

As discussed above, each cylindrical wave in a uniform planar waveguide propagates 

independent of other cylindrical waves. When a circular grating is introduced in the 

cladding layer of the guiding structure, the waveguide is no longer the same as the uniform 

waveguide. The propagation of cylindrical waves is disturbed. Cylindrical waves becomes 

related to each other. The coupled-wave theory describes how a circular grating affects the 

propagation of cylindrical waves. This section presents the vector-wave formulation of the 

coupled-wave equations to be used in the analysis of CG-DFB and CG-DBR lasers in later 

chapters. 
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1.3.1 Excitation of Cylindrical Waves 

Consider a distribution of sources exciting various cylindrical waves in a waveguide, 

and represent these sources by the complex amplitude P(r,0,z) of the corresponding 

induced polarization vector. In the presence of these sources, the complex Maxwell's 

equations have the form 

VxE = -jwµJI 
(1.17a) 

VxH = jcœ
0
e E + jcoP 

(1.17b) 

For two different induced polarizations P1 and P2, there are two different fields. To 

facilitate our derivation, the field corresponding to P1 is called field 1 and denoted by (E1 , 

H 1); the field caused by P2 is field 2 and represented by (E2, Hz). From Maxwell's 

equations (1.17), it is easy to verify that 

(1.18) 

Setting P2=0 in Eq.(1.18), we obtain 

(1.19) 

Integrate Eq.(1.19) on both sides over a cylindrical surface that extends to infinity in the z­

direction 

(1.20) 

Note that ( see the derivation of Eq.(A2.5) in Appendix Il) 
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(1.21) 

where the subscript " t " means the transverse components, i.e the 0 and the z components 

and the subscript "r" indicates the r-component. The contour integral vanishes if at least one 

of the two waves is a guided wave with fields exponentially decaying toward infinity along 

the z-direction. The contour integral also goes to zero when both waves are radiation 

waves, due to the oscillatory nature of the radiation fields [75]. 

Since 

* * * * " 

( E 1xH 2+E2xH 1)r
= ( E 1 t><H 2 t+E 2t><H 1 J. r (1.22) 

we obtain, from Eqs.(1.2O-1.22) 

1.3.2 Field Distribution in Terms of Cylindrical Waves 

Let field 1 be an arbitrary field. Its transverse (0, z) components can be expanded in 

terms of the cylindrical waves in an ideal planar waveguide as 

q;t,v,m 

q,'t,V,m 
(1.24) 
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where q = ± represents outward waves or inward waves, respectively; t=TE, TM, denotes
the polarization of the wave; v is the slab mode number (v=0,1,2, . . .  ) and m denotes the
order of the cylindrical wave (m=O, ±1, ±2, ... ). The expansion in Eq.(1.24) includes also
the integration over radiation cylindrical waves ( with v being continuous). The radiation
cylindrical waves are related to radiation modes of the slab waveguide. To simplify our
notation, the continuum is not written out explicitly.

Let field 2 be one of the cylindrical waves, i.e

(1.25)

Substituting Eq.(1.24) and Eq.(1.25) into Eq.(1.23), and making use of the orthononnality
relations Eq.(1.16), we obtain

=f � f � d0dz�[r L 
o _.,. ar 

da (p)O'

µn =p-­dr 

q,t,V,m

(1.26)



Hence, 

(p)cr da 
f 2"f � 

� . �� p � = -JCO r d0dz [P 1. Eµn (r,0,z)] 
0 -� 
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(1.27) 

If P1 = 0, i.e, when no sources ( in other words, no perturbations ) are present, there is no 
change in the amplitude of the cylindrical waves. It should be emphasized that the above 
relations are exact; no assumptions about the magnitude of the perturbations have been 
made. 

1.3.3 Waveguide Deformations 

We have seen in Eq.(1.27) that the variation of the amplitude of a cylindrical wave is 
related to the polarization vector P1 which can be brought about by a variety of physical 
effects. Consider the polarization induced by the difference L1E(r,0,z) of the actual dielectric 
constant ( waveguide with circular gratings) from the ideal distribution ( unifonn 
waveguide without gratings ), then 

(1.28) 

which is proportional to the field E1 in the actual waveguide. 
It is easily shown ( see Appendix I ) that the radial component E 1r of the field can be 

expressed with the help of transverse components (i.e. the 0- and the z-components) as 

= L 
q;t,V,m 

(q)'t 

(qrc( ) Hvm a"]avm r z r 



=----

=---

(E+j,E) 
� (q)'t (q}t L.J avm (r) Evm r 

q,'t,V,m 

which, together with Eq.(1.24), yields 

q;t,V,m 

q,'t,V,m 

(q}t (q)'t 
E 

E (q}t ] avm(r) [ Evm t + --- vm r­
(E+j,E) 

1.3.4 Coupled-Wave Equations 
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(1.29) 

(1.30) 

These equations can be easily derived from Eq.(1.27) and Eq.(1.3O). Putting P1 of 

Eq.(1.30) into Eq.(1.27), we get 

da (p)cr 2n -

p ;n = -jro f f r d0dz { E0 j,E L
0 --

q,'t,V,m 

(q}t() [ E(q}t 
E 

E(q}t]}. E(p)o+avm r vm t + vmr µn 
(e+j,e) 



"'"" (q)

. 
f 2n f-

(q). (p
)o

* 
e (q)'t (p)cr* 

=-j k-1 avm(r)roe0 rd0dz ôe[Evmt· Eµnt+ ---Evmr· Eµnr]
o -- (e+ôe) 

q,t,V,m 

=-j L K
(p)cr,(q)'t (q)'t( )
µn,vm avm r 
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q,t,Y,m 
(1.31) 

where the coupling coefficients are defined by 

K
(p

)cr,(q)'
t f 2n f- d0d A [ E

(q)'t E
(p)cr* e E

(q)'t . E
(p

)cr*] µn,vm = 0) Eo 
O 

_
_ 

r Z Lle vm t • µnt + 

(E+ôe)
vm r µn r 

From Eq.(1.32), we deduce that 

i.e.

K
(p)cr,(q)'

t 
= (K

(q)'t,(p)o:)*µn,vm vm,µn 

K
(+)o,(+rc = (K

(+)'t
,
(+)o:)*µn,vm vm,µn 

K
(+)o,(-)'t = 

(K
(·)'t,(+)o:)*µn,vm vm,µn 

K
(-)cr,(+)'t = 

(K
(+)'t,(-)o:)* µn,vm vm,µn 

K
(-)cr,(

-)'
t 
= (K

(·)'t,
(-)o:)*µn,vm vm,µn 

for lossless medium. 

(1.32) 

(1.33) 

(1.34) 

Writing down explicitly the equations for the outward-propagating waves (p=+) and the 

inward-propagating waves (p= -), we have 



da (
+

)
O'

µn • L --=-J 
dr 

t,v,m 

(-)0' da
µn • """ [ K(-)a,(+)-c (+)-c K(-)a,(-)1: (-)-c]

� = J LJ µn,vm avm + µn,vm avm 
t,V,m 
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(1.35a) 

(1.35b) 

The coupled-wave theory that we have just formulated is in fact self-consistent, that is 

to say, that the total power carried by all the waves is conserved. The proof of self­

consistency is presented in Appendix III. 

Eqs.(1.35) and Eq.(1.32) actually are very similar to the coupled-mode equations for 

conventional waveguides [67, 76] except that here the summation includes the TE and TM 

polarizations, while in conventional theories the TE and TM modes are normally not 

coupled. One should notice though that the coupling coefficients for cylindrical waves are 

different from those for plane waves, as to be seen in the next section. 

1.4. Coupling Coefficients for Circular Gratings 

A lot of physical insight can be obtained by just examining the coupling coefficients 

since they are the key parameters in the coupling process between different waves. From 

section 1.3, we know that the couplings between cylindrical waves are govemed by 

Eqs.(1.35) and the coupling coefficients are defined by Eq.(1.32). For simplicity, we 

assume that the grating is circularly symmetric as shown in Fig.4 and the permittivity 

variation is expressed by L\e(r,8,z) = L\e(r,z). 
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Fig.4 Circularly symmetric grating fabricated on planar dielectric waveguide with 

perturbation : D.e(r,0,z) =D.E(r,z):;t:O. 

1.4.1 TE-TE CoupJing Coefficients 

For this case, cr=t=TE, substituting the field distributions (see Eq.(1.12)) of TE 

cylindrical waves into Eq.(1.32), we have 

. (q)TE TE 

K 
(p)TE,(q)TE 

= f 2n f � d0d A { A
(q)TE JCDµo dRm <Pv r) 

Z
TE

( )
jm9 

µn Vm 
0) 

E
o 

r z Llê vm dr V z e ' TE 2 0 -� 
<Pv) 

. (p)TE* TE 
(p)TE* (- Jroµo) dRn CPµ r) TE* -jn9

. Aµn --- dr Zµ (z) e 
TE 2 

(�µ)

(p)TE* nroµQ 1 (p)* TE TE* -jn9 . Aµn -- Rn CPµ r) Zµ (z) e }
TE 2 f 

CP
µ )



TE 
( )TE* TE 

TE * TE dR (q)TE(P r) dR: (Pµ r) E (n)(m)R(q)TE(A. r)R (p)rn (A. r)}{ m v ---;---- -+-- - - m fJv n fJµ 
dr dr E+�E r r 
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(p,q)TETE 
= 0nm Kµn,vn (1.36) 

where we have defined 

(p,q)TETE 

Kµn,vn 

TE 
( )TE* TE 

TE TE dR(q)TE
CP r) dRy{ (�µ r) E (�)L (q)TE(f.l r)R(p)TE*

(f.l r)}n v ---;--:---+-- Kn 1-'v n fJµ . { dr dr E+�E r
(1.37) 
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1.4.2 TM-TM Coupling Coefficients 

For coupling between TM waves, we have Cï-='t=TM. Substituting the field distribution 
of TM waves from Eq.(1.13) into Eq.(1.32), the coupling coefficients are found to be 

where, as in the case of TE waves, we have defined 

(p,q)TMrM (q)TM (p)TM* f-
K µn,Vn = 2m Avn Aµn cœ0 __ dz L\e(r,z) 

.[ 

dRn(q)(A. 'IMV r) (p)* 1M TM TM* 

E 1 1-' dRn CPµ r) dZv dZµ + -- ----
dr dr ----az- dz ] E+L\E 1M 1M 

2 
(Pv Pµ) 

1.4.3 TE-TM Coupling Coefficients 

(1.38) 

(1.39) 

Note that in this case we have cr=TE and t=TM. Substituting the field distributions of 
TE cylindrical waves and TM cylindrical waves from Eq.(1.12) and Eq.(1.13), 
respectively, into Eq.(1.32), the coupling coefficients are obtained as 

K(p)TE,(q)TM = ô K
(p,q)TETM

µn,vm nm µn,vn (1.40) 



where 

(p,q)Tll1M (q)TM (p)TE* (ffi EoJlo) f.. dZ 
TM 

TE* 
Kµn vn = 21tn Avn Aµn ---- dz �E(r,z) _

v_z 
' TM TE 2 

dz µ

C�v �µ) _,. 

From Eq.(1.33), we get 

(p)TM,(q)TE (q)TE,(p)TM *
Kµn, vm = 

(Kvm, µn ) 

(p,q)TMTE (q,p)TETM * 
K µn, vn = (Kvn,µn ) 

1.4.4. Discussion 
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(1.41) 

(1.42) 

Substituting the coupling coefficients from Eqs.(1.36), (1.38) , (1.40) and (1.42) into 

the coupled-wave equations in (1.35), we obtain 

(+)TE 
daµ.n 

dr 

(-)TE 
daµn 

dr 

. � (+,+)TETll (+)TE (+,-)mm (-)lE (+,+)'ŒI'M (+)TM (+,-)TETM (-)1M 
-J ,LJ [ Kµn,vn avn + Kµn,vn avn +Kµn,vn avn + Kµn,vn avn ]

• � (-,+)'ffiTE (+)TE (-,-)TETE (-)lE (-,+)Tll1M (+)TM (-,-)1ETM (-)1M
J ,LJ [ Kµn,vn avn + Kµn,vn avn +Kµn,vn avn + Kµn,vn avn ]

• � (+,+)TMlE (+)TE (+,-)TMIB (-)lE (+,+)TMIM (+)TM (+,-)lMIM (-)lM
-J ,LJ [ Kµn,vn avn + Kµn,vn avn +Kµn,vn avn + Kµn,vn avn ]



(-)™ daµn , � (-,+)TMIB (+)TE (-,-)1MTE (-)TE (-,+)TMIM (+)TM (-,-)TMIM (-)TM 

dr = J L,. [ Kµn,vn avn + Kµn,vn avn +Kµn,vn avn + Kµn,vn avn ]
V 
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(1.43) 

These equations show that circular gratings couple only cylindrical waves of the same 
order. Generally speaking, TE and TM cylindrical waves are coupled together. 

Avery interesting case is when n=m=O. We find from Eqs.(1.41) and (1.42) that the 
coupling between TE and 1M wave vanishes. For this case, the coupled-wave equations 
can be separated into two independent sets, one for zeroth-order TE-waves 

(+)TE 
daµo = _. � 

[ K
(+,+)ITIB (+)rn 

K
(+,-)TEIB <-)m

] 
dr J L..- µO,vo avo + µO,vO avo 

(-)TE 
daµo 

dr 

V 

, � (-,+)TE'IE (+)TB (-,-)IBIE (-)TE 
J L..J [ Kµo,vo avo + Kµo,vo avo J 

V 

and the other for zeroth-order TM-waves 

(+)TM 
daµo 

dr 
. � (+,+)lMTM (+)TM (+,-)TMTM (-)TM -J L..J [ Kµo,vo avo + Kµo,vo avo l

V 

(1.44) 

(1.45) 

Eqs.(1.44)-(1.45) show that for zeroth-order cylindrical waves, we have pure TE-TE or 
TM-TM coupling. 

For single-mode waveguides, we have µ=v=O. Eqs.(1.43)-(1.45) become 

(+)TE 
daon 

dr 



d 
(-)TE 

aOn - . [ _..{-,+)TETE (+)TE _..{-,-)TETE (-)TE .,.,.(-,+)TETM (+)™ _.l-,-)TETM (-)TM
] -- - J K.: a + K.: a + 1\.:0 On a + K a 

dr On,On On On,On On n, On On,On On 

(+)TM 
daon. . (+,+)lMIB (+)TE (+,-)1MŒ (-)1E (+,+)™™ (+)™ (+,-)TMIM (-)™ 

dr = -J [ Kon,On aon + Kon,On aon +Kon,On aon + Kon,On aon ]

. (-,+)'rMIE (+)TE (-,-)TMIB (-)1E (-,+)TMTM (+)TM (-,-)TMTM (-)lM 
J [ Kon,On aon + Kon,On aon +Kon,On aon + Kon,On aon ] 

for higher order waves with n > O. And 

(+)TE 
daoo . [ 

K
(+,+)1IDE (+)TE 

K
(+,-)lETE (-)m

] dr = -J 00,00 aoo + 00,00 aoo 

(-)TE 
. daÜÜ . (-,+)1IDE (+)TE (-,-)mm (-)1E 

dr = J [ Koo,oo aoo + Koo,oo aoo ] 

(+)TM 
daoo . (+,+)™™ (+)TM (+,-)™™ (-)™ 

dr = 
-J [ Koo,oo aoo + Koo,oo aoo ]

(-)TM 
daoo . (-,+)TMIM (+)TM (-,-)TMTM (-)™ 

dr = J [ Koo,oo aoo + Koo,oo aoo 1

for zeroth-order waves. 
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(1.46) 

(1.47) 

We notice that the coupling between zeroth-order cylindrical waves (pure TE-TE or 
TM-TM coupling) looks very similar to that of two-mode coupling in one-dimensional 
waveguide [67]. But for n > 0, due to the cross-coupling between TE and TM waves, the 
situation is much more complicated. 
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1.5. Summary 

A vector coupled-wave theory has been formulated for cylindrical waves in a planar 

dielectric waveguide. The theory is general and self-consistent. It is shown that only 

cylindrical waves of the same order ( which can belong to different slab modes in the 

waveguide) are coupled. For zeroth-order waves pure TE-TE or TM-TM coupling occurs. 

For higher order waves, TE-and TM-cylindrical waves are cross-coupled. The coupled­

wave equations for zeroth-order cylindrical waves are similar to those of two-mode 

coupling in one dimensional waveguides with linear gratings. The coupled-wave equations 

established in this chapter are valid for both passive and active circular grating devices in 

integrated optics. In the following chapters, this coupled-wave theory will be applied to 

study circular grating DFB and DBR lasers. 



CHAPTER 2 

SIMPLIFIED COUPLED-WAVE EQUATIONS 

FOR CYLINDRICAL W AVES 

2.1 Introduction 

A general self-consistent coupled-wave theory has been derived in Chapter 1. The 

coupled-wave theory is valid for all cylindrical waves (both TE and TM) in multi-mode or 

single-mode planar waveguides. Because of the inter-polarization coupling between TE and 

TM cylindrical waves, the coupled-wave equations form a system of four first-order 

differential equations. This renders the analysis complicated and tedious. 

In this chapter, a simplified form of the coupled-wave equations for cylindrical waves is 

presented. It is shown that under the large radius approximation ( �r >> 1 ), which covers 

most practical cases, the inter-polarization coupling between TE and TM cylindrical waves 

approaches zero. This approximation allows one to break up the system of coupled-wave 

equations into two independent families, one for TE-cylindrical waves and the other for 

TM-cylindrical waves. The coupled-wave equations then become similar to those of one 

dimensional periodic structures. This greatly facilitates the analysis of circular grating 

devices. 

In section 2.2, the coupled-wave equations established in Chapter 1 are briefly 

reviewed. It is shown that the coupling coefficients can be expressed as the product of a 

cylindrical factor which is defined by the Hankel fonctions describing the propagation of 

the cylindrical waves and a slab-mode coupling coefficient which depends only on the 

permittivity perturbation created by the grating and the field distributions of the slab modes 

related to the cylindrical waves. The large radius approximation of the coupled-wave 

equations is obtained by applying the asymptotic formulae ( for �r >> 1 ) of Hankel 

fonctions to the cylindrical-wave factors. In section 2.3, the special case of circular gratings 
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on a single-mode planar waveguide is considered. The validity of the large radius 
approximation is discussed in section 2.4. A comparison between the coupled-wave theory 
derived in this thesis and those by other authors [63, 65, 66] is also presented in section 
2.4 . 

2.2. Large Radius Approximation of Coupled-Wave Equations 

2.2.1 Purpose 

To see why simplified coupled-wave equations are needed, we rewrite the coupled­
wave equations derived in Chapter 1 as follows, 

d (p)cr aµn . � K(p)cr,(q)t (q)'t( )P � = -J L..J µn,vm avm r 
q;t,v ,m (2_1) 

in which the a's are the amplitudes of the cylindrical waves and the K's are the coupling 
coefficients defined by 

(p)cr,(q)-c f 2n f � e A (q)t E(p)cr* E 
E(q)t E(p)cr*

]Kµn,vm = W 80 
r d  dz Llê [ Evm t • µnt + 

( A vm r · µn r 
0 -- E+LlE) (2.2) 

When the grating has circular symmetry, the coupling coefficients can be written as (see 
Section 1.4 ): 

K(p)cr,(q)-c = ô �p,q)cr-c
µn,vm nm µn,vn (2.3) 

where 8 is the Kronecker delta, and the K's on the right-hand side are the coupling 
coefficients between cylindrical waves of the same order defined by Eqs.(1.37), (1.39) and 
(1.41) in Chapter 1. 

Substituting Eq.(2.3) into Eq.(2.1) and writing down the results explicitly, we have 



(+)TE 
daµn 

dr 
• � (+,+)TETI! (+)TE (+,-)TETE (-)11! (+,+)TETM (+)TM (+,-)TETM (-)lM 

-J � [ Kµn,vn avn + Kµn,vn avn +Kµn,vn avn + Kµn,vn avn J
V 

(-)TE 
daµn . � (-,+)Tlml (+)TE (-,-)TETil (-}œ . (-,+)ThïM (+)TM (-,-)TIITM (-)lM 
--ar-= J � [ Kµn,vn avn + Kµn,vn avn +Kµn,vn avn + Kµn,vn avn ]

V 

(+)™ daµn . � (+,+)1Mlll (+)TE (+,-)TMTE (-)1E (+,+)TMlM (+)TM (+,-)TMlM (-)lM 

dr = -J � [ Kµn,vn avn + Kµn,vn avn +Kµn,vn avn + Kµn,vn avn J
V 

(-)TM 
daµn . � (-,+)TMTE (+)TE (-,-)TMTE (-)1E (-,+)TMlM (+)TM (-,-)TMlM (-)TM 

dr = J � [ Kµn,vn avn + Kµn,vn avn +Kµn,vn avn + Kµn,vn avn J
V 
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(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

The inter-polarization coupling between TE and TM cylindrical waves makes the 
coupled-wave equations take the form of a 4th-order linear differential system. To solve 
Eqs.(2.4) analytically will be very difficult or even impossible if no approximation is made. 
The complexity in the expressions of the coupling coefficients ( see section 1.4 ) renders 
the problem more unwieldy. Thus, in order to facilitate the analysis of circular grating 
devices, simplification of the coupled-wave equations is necessary. It is especially helpful 
if the TE and TM cylindrical waves can be decoupled. 

2.2.2 Coupling Coefficients and Cylindrical Wave Factors 

As the coupling coefficients are the key to the coupled-wave equations, it is natural to 
start with them. By using the properties of the Hankel fonctions, one can show ( see 
Appendix IV) that for small perturbations with ôE/(E+ôE) <<1, the coupling coefficients in 
Eqs.(2.4) can be expressed by 

( for cr = 't = TE or a:;&t ) (2.5a) 
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~(p,q)O''t ~ O"t (p,q)<:r't O"t = F µn,vn (r) K µ,v(r) + F µn,vn (r) K µ)r) (cr='t=TM) (2.5b) 

The F's in Eq.(2.5) are called the cylindrical-wave factors which are equivalent to the 
plane-wave phase factor exp[±j(f3µ±f3v)z] in conventional coupled-mode theory [67] ( see 
also section 2.2.3 ). The cylindrical-wave factors are defined by 

F:���
't(r) = �r ,,,/ f3�f3� [ R�)t (f3�r) ��1 (f3�r) ± R�J; (f3�r) ��1 (f3�r) ]

( + sign for cr=t ; - sign for O':t:'t ) (2.6a) 

(O'='t=TM) (2.6b) 

where the f3's are the propagation constants of planar waveguide modes and the R's 
describe the radial dependence of the cylindrical waves with 

(2.7a) 

(2.7b) 

The �1)(f3r) and H�2)(f3r) in Eqs.(2.7) are the Hankel fonctions of the first and second

kind, the J nCf3r) and N nCf3r) denote the Bessel functions of the first and second kind, 
respectively. 

The K's and K's in Eqs.(2.5) depends only on the overlap integrals of the slab guide 
modes with the grating. They are defined by 

(2.8a) 



f � ™* 1M / ™ ™ 
_ 

�E(r,z) Zµ Zv dz~'IM'IM ,Y �µ �V -Kµv (r) = 2 ---;::==========

,j { eiz;:j2 

dz f elZ:( dz

™* ™ 

f �
dZ dZ 

_ 
�E(r,z) ( a: ) ( dz 

v ) dz 

'IM'IM 1 -Kµv (r) = --;=====:::::::::----;::::::========== 

'IE'IM 
Kµv (r) = 

1M
1E Kµv (r) = 

2,./ P; P� j { elz;12 

dz f ejz::f dz

ko 

2✓�:�: 

ko 

2✓ �; �� 

r ... ctz:;" 
_ 

�E(r,z) Zµ (dz ) dz

j f jz;j2 

dz f ejz::'j2 

dz

r dZ: � -
�E(r,z) (-az- ) Zv dz

j f ejz;j2 

dz f jZ:j2 

dz
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(2.8b) 

(2.8c) 

(2.8d) 

(2.8e) 

where ko = ro � µo Eo is the wave number of light in vacuum and the Z's describe the 
corresponding modal field distributions in the z-direction. 

By comparing with the conventional coupled-mode theory [67], we realize that 
KµJ8 (r) is actually the coupling coefficient between TE slab modes, while K�(r) and 
K�(r) are the transverse and the longitudinal coupling coefficients of TM modes in a 
perturbed planar waveguide [83], respectively. 

As expressed by Eq.(2.5a), the coupling coefficients for TE-cylindrical waves are the 

product of two terms, the cylindrical-wave factor F���:
ETE (r) and the coupling coefficient 

between TE slab modes Kµ'J6(r). Similar remarks apply to the TM cylindrical waves, 
except that the coupling coefficients between TM cylindrical waves have one more term 
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than their TE counter-parts because the electric fields of the TM cylindrical waves have a z­
component while the TE cylindrical waves do not (see Eqs.(1.12)-(1.13)). 

It is interesting to look at the inter-polarization coupling coefficients between TE and TM 
cylindrical waves. As shown by Eq.(2.Sa), the inter-polarization coupling coefficients 
(with cr=TE, 't=TM or vice versa ) are also the product of a cylindrical-wave factor and an 
overlap integral. 

Note that H�î)(Br) = - H?\�r) and H�i)(Br) = - Hil )(�r) Then, for n=O, from 
Eq.(2.6a)-Eq.(2.7), we have 

{p,q)TE1M {p,q)TM16
F µ0,v0 (r) = F µ0,v0 (r) =Û

Putting Eq.(2.9) into Eq.(2.Sa), we obtain 

K (p,q)TE

'IM - K (p,q)TM1E( ) - 0µ0,v0 - µ0,v0 r -

(2.9) 

(2.10) 

Hence, for zeroth order (n=O) cylindrical waves, the inter-polarization coupling 
vanishes. This is because the zeroth order waves have circular symmetry and propagate 
along the radial direction. This is similar to the case of conventional grating structures, 
where TE modes do not couple with the TM modes ifthe direction of propagation is normal 
to the grating [67]. 

For higher order waves ( n :2'.l ), because they no longer travel radially, -the coupling 
between TE-cylindrical waves and TM-cylindrical waves is generally nonzero. In fact, 
when the incident wave is not normal to the grating plane, the TE-polarization couples with 
the TM polarization and vice versa even for the case of linear gratings [84]. 

2.2.3 Large Radius Approximation for Cylindrical-Wave Factors 

As we have seen in Eqs.(2.5)-(2.6), the complexity of the coupling coefficients cornes 
from the cylindrical-wave factors. The coupled-wave equations could be simplified if a 
simpler expression for the cylindrical-wave factors can be found. 

From the large argument approximation of the Hankel functions [81-82], we have 
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(2. lla) 

(2.llb) 

From Eq.(2.6a) and Eq.(2.11), the large radius approximation of the cylindrical -wave 

factors of the same polarization is obtained as 

and 

" " 

F
(±,±)cm_ ±j( �

µ
- �v )r 

µn,vn - e 
(<î=TE or TM) 

" " ~(±,±)a 0_ ±j( P µ + P v )r Fµn,vn - e 

" (! ~<+,-)aa . n j( � + P v )r F =-J(-1) e "' µn,vn 

(<î= TM) 

(cr= TM) 

(cr= TM) 

(2.12a) 

(2.12b) 

(2.12c) 

(2.13a) 

(2.13b) 

(2.13c) 

For the case of TE-TM (TM-TE) coupling, assuming Br>> 1, it is not difficult to obtain 

from Eq.(2.6.), Eq.(2.7) and Eq.(2.11) the following results: 



p(±,±)TETM(r) = P. +,-)TETM(r) = P,-,+)TETM(r) = o 
µn,vn µn,vn µn,vn 

2.2.4 Large Radius Approximation for Coupling Coefficients 
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(2.14a) 

(2.14b) 

Let cr=TE in Eqs.(12) and substitute the cylindrical-wave factors thus obtained into 
Eq.(2.5a), we obtain 

K(±,±)TETE = e ±j (P� - 13-,
TE ) r KTETE(r)

µn,vn µv 

K(+,-)TETE = ]. (-l)n ei (P� + p�) r KTETE(r)
µn,vn µv 

for TE-cylindrical waves. 

(2.15a) 

(2.15b) 

(2.15c) 

Similarly, set cr=TM in Eqs.(2.12)-(2.13) and put the results into Eq.(2.5b), we get 

1M 1M 

K(±

.
±)™

™

c ) = 
±j<P11 -Pv )r [K~ 

™™

( ) + K™™c )]
µn,vn 

r e µ,v r µ,v r 

for TM-cylindrical waves. 

(2.16a) 

(2.16b) 

(2.16c) 

For the case of TE-TM (TM-TE) coupling, substitution of Eqs.(2.14) into Eqs.(2.5)­
(2.6) yields 



K(±,±)IBTM
( ) 

_ y.(+,-)TETM
( ) _ y.(-,+)TETM

( ) 
_ Ü

µn,vn r - Kµn,vn r - Kµn,vn r -

(±,±)TMTE y.(+,-)TMTE y.(-,+)TMIB K
µn ,vn (r) = Kµn,vn (r) = Kµn,vn (r) = 0
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(2.17a)

(2.17b)

Eqs.(2.17) are important result. It means that the inter-polarization coupling between higher
order waves can be neglected for large radius (�r >> 1). This fact allows us to separate the
TE-cylindrical waves from the TM-cylindrical waves. The validity of this approximation
will be discussed in section 2.4

2.2.5 Large Radius Approximation of Coupled-Wave Equations 

Since we can neglect the inter-polarization coupling under the large radius
approximation ( �r >> 1), by substituting the coupling coefficients from Eqs.(2.15), (2.16)
and (2.17) into Eq.(2.4), we obtain

for 1E cylindrical waves and

d (-)™ lM lM a
;n = {Li {j(-l)n e -j(Pµ +Pv )r [K:.:cr)- K:.:(r)] a��lM(r)

lM lM 

+ e -j(�µ -Pv )r [K '!MlM(r) + K ™™cr)] a (-)lM(r)}µ,v µ ,v vn 

(2.18a)

(2.18b)

(2.19a)

(2.19b)
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for TM cylindrical waves. 
Except for the factor of ±j(-l)n in front of the cross-coupling terms, Eqs.(2.18)-(2.19) 

are essentially the same as the coupled-mode equations for conventional waveguides [67, 
76, 83]. 

2.3 Single-Mode Planar Waveguides 

Since single-mode planar waveguides are frequently used in practical devices, it is of 
interest to consider this special case. The subscripts " µ " and " v " will be omitted in the 
following discussion because µ=v=O. 

2.3.1 Coupling Coefficients 

From Eqs.(2.5), the coupling coefficients are expressed by 

( for a = 't = TE or a:;t-t ) 

(fora='t=TM) 

with the K's being defined by 

2 lEm ko f -
1 ml

2 
f -1 ml

2
K (r) = 

2 
p 1E [ __ �E(r,z) Z dz] / [ __ z dz] 

™ 
™™ p J - 1 ™1

2 

' ( - 1 ™1
2 

K (r) = 2 _ �E(r,z) Z dz /J _ E Z dz

1M 2 

™™ 
1 

f -
dZ f - 1 ™1

2 

K (r) = � �E(r,z) ciz dz / E Z dz
2p -

-

(2.20a) 

(2.20b) 

(2.21a) 

(2.21b) 

(2.21c) 



TE* dZ 

J-
TM 

-- ôeZ 
(-

dz
) dz 

'IE'IM ko -
K (r) = ---;:=:;;;;=;:;::;- ------;=========-z V�"�'" ,J r1z�(dz r �z"l

2

<1z 

'IM'IE 

K (r)=

-oo -00 

The cylindrical-wave factors are obtained from Eq.(2.6) as

FtJ)cr't(r) = n; m [ R�rcP 
0r) R��1(P 'tr) ± R�;;cp crr) R�� 1(P \)]

( + sign for a=t ; - sign for Q":;i=t )

(a=t=TM)

2.3.2 Large Radius Approximation For Coupling Coefficients 
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(2.21d)

(2.21f)

(2.22a)

(2.22b)

For single-mode waveguide (µ=v=O), we have Pµ=Pv=P. Under the large radius
approximation, from Eqs.(2.15)-(2.16), we get

K (+,+)'rara = K (-.-)= = K lEIE(r)
n,n n,n 

K(-,+)TETE = -J· (-l)n e -jzp r K 1ë!E(r) 
n,n 

(2.23a)

(2.23b)

(2.23c)



for the case of TE cylindrical waves and
(±,±)'IM'IM . ~ 'IM'IM 1M1M Kn,n (r) = [K (r) + K (r)]

for the case of TM cylindrical waves.
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(2.24a)

(2.24b)

(2.24c)

As already shown in the previous section, the inter-polarization coupling approaches
zero at large radius. It is not necessary to write down the coupling coefficients for this
case.

The coupled-wave equations then become
+ 

�n = -j K(r) [ a;(r) + j (-l)n e j2�r a�(r) ]

for TE cylindrical waves and
d;t = -j { [K(r)+K(r)]ai(r) - j (-l)n ej2� r [K(r)-K(r)]a�(r) }

dan = j {j (-l)n e -j2� r[K(r)-K(r)] a�(r) + [K(r)+K(r)]a;(r)}dr 

for TM cylindrical waves.

(2.25a)

(2.25b)

(2.26a)

(2.26b)

For simplicity, we have omitted the superscripts" TE" and" TM" in Eqs.(2.25)­
(2.26).
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2.3.3 Numerical Values of Cylindrical-Wave Factors 

Making use of Eq.(2.7), the cylindrical-wave factors can be expressed explicitly as 

F�::)oo(r) = F�:;;""'(r) = 1tB 
0

' [ IH�1\(B "l + 1H�?1<B "l l 
4 

( cr=TE or TM) 
cr 

F�+�)crcr(r) = F�-,:)crn*(r) = 
nP 

r { [ H��i(� 
crr) ]

2 

+ [ H��iCP 
crr) ] 

2

}' ' 4 
( cr=TE or TM) 

~<+,+ )crcr _ ~<-,-)crcr* _ n� crr 1 (2) cr 1
2 

Fn ,n (r)- Fn ,n (r)- -2- Hn (P r) 

(cr=TM) 

~<+,-)ocr ~<-,+ )ocr* n� r (1) cr 2

Fn ,n (r) = Fn,n (r) = -2- [ Hn (� r)] 

(cr=TM) 

(2.27a) 

(2.27b) 

(2.27c) 

(2.27d) 

F�
+

:)O't(r) = F�-
,
�
o

-c•(r) = 1t
r m [ H��tc� 

cr
r) H��i(� 'tr) - H��;cp 

cr
r) R��1(P 'tr)] ' ' 4 

(cr:;è'C; cr and t =TE, TM) (2.27e) 

F�+�)O'\r) = p�·:)cr-c•(r) = 1t
r m [ H��(<P 

cr
r) H��i(� 'tr)- H��t<P 

0

r) H��1CP 'tr) ]' ' 
4 

(cr:;è'C; cr and t =TE, TM) (2.27f) 

Note that Eq.(2.27a) and Eq.(2.27c) are real. The amplitude of the cylindrical-wave factor 
in Eq.(2.27a) is different from that of Eq.(2.27b). Similar remarks can be said about 
Eq.(2.27e) and Eq.(2.27f). But Eq.(2.27c) and Eq.(2.27d) yield the same amplitude. 

In Fig.5(a)-(e), we have p lotted the amplitudes of the cylindrical-wave factors in 
Eqs.(2.27a)-(2.27b) for n=O, 1, 2, 10 and 15 against the normalized radius �r. The 
amplitudes of the cylindrical-wave factors asymptotically go to 1 as Pr becomes large. 
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Similar results are shown in Fig.6(a)-(b) for Eqs.(2.27c)-(2.27d). 

In Fig.7(a)-(d), the amplitudes of the cylindrical-wave factors for TE-TM (TM-TE) 

couplings are presented for the case of (n TE -n ™)/ n TE =10-3, where n TE and n ™ are the

effective index of the TE- and the TM slab modes, respectively. We see that the cylindrical­

wave factor for TE-TM (TM-TE) coupling approaches zero as �r becomes very large. This 

tendency agrees with the large radius approximation presented above. Fig.7(a)-(d) show 

that the coupling between contra-directional TE and TM cylindrical waves (Eq.(2.27f)) is 

stronger than the case for co-directional propagation (Eq.(2.27f)). 

It is observed that, in general, the amplitudes of the cylindrical-wave factors increase 

very rapidly as �r goes to O. This is true even for TE-TM (TM-TE) coupling. This behavior 

is due to the singularity of Hankel fonctions at the origin [81-82]. We can properly choose 

the boundary condition such that the total field remains finite at r=O. This can be realized by 

• (+)cr (-)cr 
settmg an (0) = an (0) . 

2.4. Discussions 

2.4.1. Validity of Large Radius Approximation 

As seen in the previous section, the large· radius approximation yields simplified 

coupled-wave equations for cylindrical waves. But when can one safely apply this 

approximation ? As we have already seen in Fig.5-7, the range of validity of the large 

radius approximation depends on the order of the cylindrical waves. The higher the order, 

the larger the radius should be. The large radius condition for TE-TE and TM-TM 

couplings can be obtained as ( see Appendix V) 

(2.28a) 

and for TE-TM couplings as 

(2.28b) 
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where n is the order of the cylindrical wave and rois the lower bound of the radius above 

which the large radius approximation is reasonably good as shown in Tables 2.1-2.3. 

Tables 2.1-2.4 list the exact values of the amplitudes of the cylindrical wave factors 
calculated from Eqs.(2.27) for different wave order n at the normalized radius �r0 given by 

Eq.(2.28). As can be seen from the tables, Eq.(2.28a) is a good criteria for TE-TE and 

TM-TM couplings while Eq.(2.28b) gives a reasonable guideline for TE-TM couplings. 

However, Eq.(28.a) is not suitable for TE-TM couplings as shown in Table 2.4. 
-1 

For InGaAsP/lnP material, we have �""16 µm at Â=l.3µm. In Tables 2.2-2.4, the 

value of rois also calculated for various n. For example, the ro obtained from Eq.(2.28a) is 

ro = 0.14 µm for n=0; ro=0.28 µm for n=l and ro=0.50 µm for n=2. The smallest radius 
achievable by E-beam or focused ion beam (FIB) is 0.5 µm. These numerical values 

indicate that in practical devices, the large radius approximation generally applies, 

especially for lower order cylindrical waves. 

2.4.2. Comparison with Other Results 

It is not difficult to verify that for n=0, the cylindrical-wave factors defined in Eq.(2.6) 

and Eq.(2.27) are the same as the special case treated by Zheng and Lacroix [65-66]. 

On the other hand, the scalar-wave formulation for TE-cylindrical waves of Erdogan 

and Hall [63] gives different cylindrical�wave factors, thus different coupling coefficients. 

In their coupled-wave equations ( see Eq.(26) in [63] ), Hankel fonctions of order n 
appear, while as shown here in Eq.(2.6) and Eq.(2.27), the Hankel fonctions are of the 

order of n±l. The difference in the cylindrical-wave factors affect also the results of large 

radius approximation as we can see from Eq.(28) in [63] and Eq.(2.25) in this work. The 

signs of the factors j(-lt are different in these two equations. 

The difference between our results and those of Erdogan and Hall arises from the 

different approaches used to derive the coupled-wave equations. In [63], Erdogan and Hall 

first used the Green's fonction method to obtain a formai solution to the scalar-wave 

equation, and then by expressing the Green's fonction in Fourier series, they got their 

coupled-wave equations by differentiation. In contrast, we started with Maxwell's vector­

wave equations in Chapter 1. We first defined the TE- and TM-cylindrical waves in an ideal 

uniform planar waveguide and proved the orthogonality of these waves. Then, we 

expanded the actual field in a circular grating planar waveguide in terms of the cylindrical 
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waves of the ideal uniform waveguide. 
The coupling coefficients in [63] are defined by the overlap integrals of the scalar field 

(i.e., the non-zero component of the magnetic field) of the cylindrical waves with the 
grating. The scalar field of a cylindrical wave in a uniform planar waveguide is proportional 
to the Hankel fonctions of order n. This explains why the cylindrical-wave factors and the 

coupling coefficients in [63] are expressed by m1) and H�2) 

As given by Eq.(2.2) in this paper and Eq.(1.32) in Chapter 1, our coupling coefficients 
are calculated from the overlap integral of the electric field of the cylindrical waves with the 
grating. This is analogous to the well-established coupled-mode formulations for 
conventional waveguides by Kogelnik [67], Marcuse [76] and others [83]. The electric 

field of TE-cylindrical waves has one r-component which is proportional to (n/r)H�1
) ( or 

(n/r)H�2) ) and one 8-component which is proportional to dH�l )/dr ( or dH�2}dr ) . 

Because (n/r)H�) and dH�1 )/dr are related to the Hankel fonctions of order (n±l) ( see 
Eq.(A4.7) in Appendix IV and recurrence formulae in [81-82] ), our cylindrical-wave 
factors and coupling coefficients are described by the Hankel fonctions of order (n±l). 

Even though Hall [85] applied the Green's fonction method to one-dimensional 
waveguide and derived successfolly the same coupled-mode equations for two-mode 
coupling as given by others [67, 76, 80, 83], the applicability of the same approach to the 
problem of circular grating is dubious. In the case of one-dimensional waveguides, the 
propagation of a mode is described by the exponential fonction exp(±j�z). The exponential 
fonction bas a very special property in that its derivatives are proportional to itself. This 
makes the electric field proportional to the màgnetic field [67, 76]. Then, it does not matter 
whether the electric field or the magnetic field is used to calculate the overlap integral. 

In the case of circular gratings, the propagation of cylindrical waves are described by the 
Hankel fonctions. Because the derivative of a Hankel fonction of order n is not 
proportional to itself, the electric field of a cylindrical wave then no longer relates linearly to 
its magnetic field. Thus, the overlap integral calculated by the electric field is not the same 
as that obtained by the magnetic field ( or say the scalar field ). 

Since the approach used in Chapter 1 is a vector-wave formulation and in principle 
similar to the conventional coupled-mode theories [67, 76, 83]. it is believed that the 
coupled-wave equations derived in Chapter 1 and discussed here are more appropriate to 
the problem of circular grating devices. 
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2.5. Summary 

A simplified form of the coupled-wave equations was derived for cylindrical waves in 

circular grating distributed feedback planar waveguides. Under the large radius 
approximation ( �r >> 1), the coupling between TE and TM cylindrical waves can be 

neglected. This renders the coupled-wave equations separable into two sets, one for TE 

cylindrical waves and the other for TM cylindrical waves. The large radius approximation 

is valid for most practical cases. The difference between our theory and the scalar theory of 

Erdogan and Hall �63] is clarified. In the next Chapter, the simplified coupled-wave 

equations will be used to analyze circular grating DFB/DBR lasers. 
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Fig.5 Amplitudes of cylindrical wave factors in Eq.(2.27a)-(2.27b) versus �r for: (a) n=O; 

(b) n=l ; (c) n=2; (d) n=lO and (e) n=l5.
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Fig.6 Amplitudes of cylindrical wave factors in Eq.(2.27c)-(2.27d) versus Pr for: (a) n=O, 

1 and 2; (b) n=lO and 15. 
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Fig.7 Amplitudes of cylindrical wave factors in Eqs.(2.27e)-(2.27f) versus Pr for : (a) 

n=l; (b) n=2; (c) n=lO and (d) n=15. 



49 

Table 2.1 Amplitude of Cylindrical-Wave Factors in Eq.(2.27a)-(2.27b) 

order /3ro Eq.(2.27a) Eq.(2.27b) 

Large Relativ Large Relativ 
Exact Radius Error Exact Radius Error 

Approx. (%) Approx. (%) 

0 2.236 1.06618 1.0 6.6 1.06618 1.0 6.6 
1 4.472 1.04682 1.0 4.7 0.94648 1.0 -5.4
2 8.062 1.03921 1.0 3.9 0.91313 1.0 -8.7

10 38.794 1.03529 1.0 3.5 0.89780 1.0 -10.2
15 58.138 1.03518 1.0 3.5 0.89740 1.0 -10.3
40 154.935 1.03511 1.0 3.5 0.89713 1.0 -10.3
100 387.304 1.03510 1.0 3.5 0.89709 1.0 -10.3

Table 2.2 Amplitude of Cylindrical-Wave Factors in Eq.(2.27c)-(2.27d) 

l3r0 = V 5(3n2+1) 

ro for 13 == 16 Large Radius Relative 
order n /3ro (µm) Exact Approx. Error 

(%) 

0 2.236 0.140 0.97990 1.0 -2.0
1 4.472 0.280 1.01801 1.0 1.8
2 8.062 0.504 1.02942 1.0 2.9
10 38.794 2.425 1.03484 1.0 3.5
15 58.138 3.634 1.03498 1.0 3.5
40 154.935 9.683 1.03508 1.0 3.5
100 387.304 24.207 1.03510 1.0 3.5
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Table 2.3 Amplitude of Cylindrical-Wave Factors in Eq.(2.27e)-(2.27f) 

order n Pro ro for P = 16 Eq.(2.27e) Eq.(2.27f) Large Radius 

(µm) exact exact Approx. 

0 0.0 0.0 0.0 0.0 0.0 

1 20 1.25 0.00251 0.10008 0.0 

2 40 2.50 0.00126 0.10006 0.0 

10 200 12.50 0.00026 0.10005 0.0 

15 300 18.75 0.00017 0.10005 0.0 

40 800 50 0.00008 0.10005 0.0 

100 2000 125 0.00006 0.10005 0.0 

Table 2.4 Amplitude of Cylindrical-Wave Factors in Eq.(2.27e)-(2.27f) 

ordern Pro ro for P = 16 Eq.(2.27e) Eq.(2.27f) Large Radius 

(µm) exact exact Approx. 

0 0.0 0.0 0.0 0.0 0.0 

1 4.472 0.280 0.05270 0.45054 0.0 

2 8.062 0.504 0.03356 0.49754 0.0 

10 38.794 2.425 0.00736 0.51560 0.0 

15 58.138 3.634 0.00492 0.51604 0.0 

40 154.935 9.683 0.00185 0.51635 0.0 

100 387.304 24.207 0.00074 0.51639 0.0 



CHAPTER 3 

ANALYSIS OF CIRCULAR GRATING LASERS 

3.1 Introduction 

Circular grating distributed feedback (CG-DFB) and distributed Bragg reflector (CG­

DBR) lasers offer the possibility of emitting a circularly-symmetric, low-divergence output 

beam from the surface. A two-dimensional array of these devices may also be conceived for 

high power applications. 

In this chapter, the threshold behavior of CG-DFB and CG-DBR lasers is analyzed 

by using the coupled-wave equations developed in the previous chapters. A threshold 

current analysis of these lasers is also provided. For simplicity, the circular grating is 

assumed to be a first-order grating and hence the coupling to radiation field necessary for 

surface emission is neglected. Although the circular grating usually couples TE-and TM­

cylindrical waves, the inter-polarization coupling becomes very small under the large radius 

approximation as pointed out in Chapter 2. Therefore, the discussion in this Chapter is 

limited to TE-cylindrical waves. The effect of coupling between TE- and TM-cylindrical 

waves is left for future investigation. 

· The outline of this Chapter is as follows: first, the structures of CG-DFB and CG­

DBR lasers are described in Section 3.2. Then, in Section 3.3, the coupled-wave equations 

for TE-cylindrical waves is briefly reviewed. In Section 3.4, the analytical solution is 

obtained for the coupled-wave equations under the large radius approximation. The 

threshold gain analysis of CG-DFB and CG-DBR lasers is presented in Section 3.5. The 

mode properties of CG-DFB/DBR lasers are discussed. It is found that by a proper choice 

of the total phase-shift, the even order waves can have a lower threshold gain and a lower 

threshold current than the odd order waves. This mode selectivity between the even and the 

odd cylindrical waves is important in practical design of CG-DFB and CG-DBR lasers. 
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3.2. Structure of Circular Grating Lasers 

The structure of a CG-DFB and a CG-DBR laser is shown schematically in Fig.8(a) 

and Fig.8(b), respectively. Fig.9(a) shows the cross-section of a CG-DFB laser and 

Fig.9(b) that of a CG-DBR laser. In both figures, the shaded region represents the active 
material. For CG-DFB lasers, the active medium extends into the grating region. For CG­
DBR lasers, the active layer is limited within a circle of radius R1 . 

In order to obtain the eigenvalue equation valid for both the CG-DFB and the CG-DBR 

lasers, we consider the laser structure shown in Fig.10. Without loss of generality, the 

circular grating is assumed to be an etched grating and have a rectangular profile. The 
grating period is denoted by A. The spacing between the grating lines is represented by W 1
and the width of the grating line is denoted by W 2.

For O < r < R1, the permittivity of the structure is described by: 

Ë(z,r)=Es , z<d1=0 

= E' + jE" ,

and for R
1 < r < oo by 

E(z,r) = Es , z < d1 = 0 

(3.la) 

(3.lb) 
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(a) (b) 

Fig.8 Diagram of circular grating (CG) lasers: (a) CG-DFB laser; (b) CG-DBR laser. 

r 0 r r 0 r 

(a) (b) 

Fig.9 Cross-section of circular grating (CG) lasers: (a) CG-DFB laser; (a) CG-DBR laser. 
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Fig.10 Cross-section and permittivity of 

circular grating lasers. 
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In.Eqs.(3.3.la)-(3. lb), Es is the permittivity of the substrate region, Ec the permittivity 

of the cover region ( normally air Ec=l ), eb the permittivity of the cladding for O < r < R1,

Ecl the permittivity of the cladding for R1 < r < 00• The permittivity of the active layer in the 

center region ( 0 < r < R 1 ) is denoted by e ( with the real part e' and the imaginary part 

e"). EfÎS the permittivity in the grating region for d1 < z < d2 and R1 < r < oo. For CG-DFB 

lasers, we have Ef = e = e'+je" and eb =Ect; for CG-DBR lasers, Ef = Ef' and e(=O. Eg is

the permittivity of the grating layer described by 

Eg(z,r) = L, {Ec [u(r- R1 - mA)- u(r- R1 - w1- mA)]

u(r) = 1, 
=0,

m=O 

( m = 0, 1, 2, 3, ... ) 

r>O

r<O

(3.lc) 

(3.ld) 



As E
g
{z,r) is periodic for r > R1 , we can expand it in terms of its Fourier series: 

m=-oo

with 

For rn = 0, we have 

For rn '# 0, 

(Ec1 - te) -J'!LmW1 . ( W1 ) =----e " sm nm 
nm A 
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(3.2a) 

(3.2b) 

(3.3a) 

(3.3b) 
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3.3 Coupled-Wave Equations For TE-Cylindrical Waves 

To analyze CG-DFB and DBR lasers, we resort to the coupled-wave equations for 
cylindrical waves developed in Chapter 1. Even though TE-cylindrical waves are coupled 
with TM-cylindrical waves ( except for the zeroth order cylindrical waves ), the' inter­
polarization coupling is negligible when the radius becomes large ( see Chapter 2 ). In the 
following analysis, we will consider only TE-cylindrical waves and neglect the coupling 
between TE- and TM-cylindrical waves. 

Assuming that the circular grating is fabricated on a single-mode planar waveguide, 
the coupled-wave equations for TE-cylindrical waves are ( see Chapter 2 ): 

(3.4a) 

(3.4b) 

where the a's are the amplitudes of the TE-cylindrical waves ( with the superscript "+" 
denoting the outward-propagating waves and the superscript "-" the inward-propagating 
waves, respectively. ). The subscript " n " is an integer and denotes the order of the 
cylindrical wave. The F's are the cylindrical-wave factors defined by 

(3.5a) 

(3.5b) 

with B being the propagation constant of the fondamental TE slab-mode in the unperturbed 

plànar waveguide and the H's denoting the Hankel fonctions. 
K(r) in Eq.(3.4) is the coupling coefficient given by 
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(3.6) 

in which k0 is the wave number of light in the vacuum, �ê(r,z) is the permittivity 
perturbation due to the circular grating ( see Eq.(3.12) below. ). Z is the field distribution 
in the z direction of the fondamental TE slab-mode which satisfies the following scalar 
wave equation: 

d2z + [ � Ë - �2 ] Z = 0 
dz2 (3.7) 

with E as the permittivity of the unperturbed planar waveguide ( see Fig.11 and Section 
3.4 ). 

As shown in Chapter 2, when �r satisfies the large radius condition 

(3.8) 

we have 

(3.9a) 

(3.9b) 

Tuen, the coupled-wave equations become 

(3.lüa) 

(3. lüb) 
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3.4 Solution of Coupled-Wave Equations 

3.3.1 Coupling Coefficient 

To analyze CG-DFB and DBR lasers we have to find the coupling coefficient K(r). 
As shown in Eq.(3.6), K(r) is determined by the perturbation �E(r,z) and the field 

distribution of the fondamental slab-mode in the unperturbed waveguide. 

Following Handa, et. al, [86], we choose the unperturbed waveguide as a lossless 

planar waveguide whose permittivity is: 

E(z) = Es , z < d1 = 0 

- ,,, - C, f , 

= Ecl , 

=Ec, z><4 

This is illustrated in Fig.11. The perturbation is then calculated from 

�E(z,r); E(z,r)-E(z) 

(3.11) 

(3.12) 

From Eq.(3.1), Eq.(3.2) Eq.(3.6) and Eq.(3.12), the coupling coefficient K(r) can 

be obtained as : 

( for O < r < R
1 

) (3.13a) 

and 
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K(r) =j a2- l' 
m=-oo ( for R1 < r < oo ) (3.13b) 

The prime " ' " in the summation symbol means m -::/:- O. 

In Eqs.(3.13a)-(13b), we have 

(3.14a) 

(3.14b) 

(3.14c) 

(3.14d) 

7t 

ûm = -m(W1 +2R 1 )=-Q_m 
A (3.14e) 

¾ is the coupling coefficient of the mth-order circular grating. D. is in fact the difference of 

the propagation constant in the gain region and that in the grating region. nm is the phase­

shift due to the center region. a1 and a2 denote the field gain (or loss ). For CG-DFB 

lasers, a1 = a2; for CG-DBR lasers, a2 = O. 

The r's in Eq.(3.14) are the overlap integrals defined by 

(3.15a) 

(3.15b) 
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(3.15c) 

r 2 is actually the confinement factor of the active layer and r 4 the overlap integral of the 

grating layer. 

3.3.2 Solution for O < r < R1

By substitution of Eq.(3.13a) into Eq.(3.10), the coupled-wave equations becomes: 

for O < r < R1. Neglecting the fast oscillating terms in Eq.(3.16), we get 

The solution of Eq.(3.17) is 

+() = +(0) -j(Mja.1)ra
n 

r a
n 

e 

-( ) = -(O) j(Mja. l) r a
n 

r a
n 

e 

In matrix form, we have 

(3.16a) 

(3.16b) 

(3.17a) 

(3.17b) 

(3.18a) 

(3.18b) 



3.3.3 Solution for R1 < r < 00 

For R1 < r < 00, from Eq.(3.10) and Eq.(3.13.b), we have 

da
+ 00 

'Q .27t ·2�

dr
n =-j[ja2- L' Kme- J me J-;\mr ][a�(r)+j(-l) n e J r a�(r)] 

m=-00 

l' 
m==-oo 

Let o denote the deviation from the Bragg frequency of the grating with 

7t 
o=J3--m 

Then, if 181 << 1, we can keep only the resonant terms in Eq.(3.20) and obtain 

The solution of Eq.(3.22) can be obtained in the form of 

6 1 

(3.19) 

(3.20a) 

(3.20b) 

(3.21) 

(3.22a) 

(3.22b) 
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( r > Rl) (3.23) 

where 

(3.24a) 

(3.24b) 

(3.24c) 

(3.24d) 

(3.24e) 

3.3.4 Threshold Eigenvalue Equation 

At r = R 2 where R2 is the outer radius of the grating region (R2 > R1), Eq.(3.23) gives 

(3.25) 

From Eq.(3.19), we have 

(3.26) 
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Substitution of Eq.(3.26) into Eq.(3.25), we obtain 

(3.27) 

Thus, the ratio of the amplitude of the inward-wave to that of the outward-wave is 

(3.28) 

where Pois the reflection coefficient ar r=O defined as 

(3.29) 

Similar to one-dimensional DFB lasers [2], in order to create self-sustained oscillations, the 

ratio of the amplitude of the incoming wave to that of the outgoing wave at the boundary 

r=R2 must be zero with 

a�(Ri) 
--=0 

+ 

a
n
(Ri) 

This condition gives the eigenvalue equation for circular grating lasers 

or in another form 

(3.30) 

(3.31) 

(3.32) 
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From Eq.(3.25) and Eq.(3.30), we also have 

(3.33) 

Defining the reflection coefficient of the grating seen from r = R1 outward by 

(3.34) 

Tuen, the eigenvalue equation in Eq.(3.32) can also be expressed as 

(3.35) 

Eq.(3.35) is similar to the eigenvalue equation for conventional DBR lasers [87-88]. 

However, because the field must be finite at r=O, we must require 

(3.36) 

i.e, Po =1. This is equivalent to having a mirror with 100% reflectivity at the center.

Substitution of T21 and T22 from Eq.(3.24) into Eq.(3.34), we obtain explicitly 

(-l )
nKme-jnme-j2ôR1 sinh[y(R2-R1 )]

PR1 =------- -- ---------

ycosh[y ( R2 - R1 )] -(U2 - jo) sinh[y ( R2 - R1 )] (3.37) 

Note that the reflection coefficient PR 1 of the circular grating depends on the order of the 

cylindrical waves. This dependence is represented by the factor (-l)n in Eq.(3.37). For 

n=even, we have (-l)n =1 >0; and for n=odd, (-l)n =-1 < O. We see that the magnitude of 

PR 1 is the same for all the cylindrical waves, but the sign for even order waves is positive 

and that for odd order waves is negative. This sign difference give different threshold gains 

for the even and odd order waves as will be seen below. However, all the even order 

waves have the the same threshold and so do all the odd order waves. The degeneracy 
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among the even (odd) order cylindrical waves is a direct result of the large radius 

approximation. 

3.5 Threshold Gain of CG-DFB and CG-DBR Lasers 

For simplicity, we consider only first-order gratings in our calculation. The results 

presented here could be used as a guideline for second-order gratings, because the effect of 

radiation can be considered as a loss factor [21]. We introduce the following parameters to 

facilitate the calculation: 

(3.38) 

where n is actually the total phase-shift experienced by the cylindrical wave in the center 

region. 

3.5.1 Mode Spectrum and Threshold Gain of CG-DFB Lasers 

In the case of DFB lasers, because the active material extends over the whole grating 

region, we have a1 =a2=a. 

In Figs.12(a)-(d), the normalized threshold gain UmR2 is plotted against the normalized 

frequency deviation 8R2 for Ü=rc/2, rc, 3rc/2 and 2rc. The open and the solid circles 

represent the even-order and the odd-order cylindrical waves, respectively. The calculation 

is done for KR2=1.0 and S=O.O. It is seen that for fJ.=rc/2, the even cylindrical waves and 

the odd cylindrical waves have the same threshold gain, but the even cylindrical waves 

oscillate at a lower frequency ( 8R2< 0 ) than the odd ones ( 8R2 > 0 ). The even cylindrical 

waves and the odd cylindrical waves are located symmetrically with respect to the Bragg 

frequency ( 8R2=0 ). The same can be said for fJ.=3rc/2 except that the. lasing frequency of 
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the even waves and that of the odd waves are now interchanged. For Û=1t, as shown in 

Fig.12(c), the odd waves have a much lower threshold gain than the even waves. The 

reverse is true for û=21t. This clearly shows that by properly choosing the phase n, we 

can select either the even or the odd order cylindrical waves. This selectivity may be very 

important in designing CG-DFB lasers. 

As shown by Eq.(3.38), the total phase-shift n is a fonction of the inner radius R
1

.

However, once the phase n is fixed, the influence of R1 on threshold gain is negligible 

because R1 is usually very small in comparison to the outer radius R2 in CG-DFB lasers.

This fact is shown in Figs.13(a)-(d) where we compare the case of S=0.0 and S=0.01 for 

even-order cylindrical waves. For L=RrR1 =140 µm, S=0.01 means an inner radius of 

R1=1.4 µm. The threshold gain for S=0.01 is only slightly lower than for the case where 

S=0. Therefore, for a given phase-shift n, our calculation for S=0.0 offers a good 

estimation of the threshold gain of CG-DFB lasers. 

In Fig.14(a), the normalized threshold gain of the lowest mode is shown as a fonction 

of n ( 0 < n < 21t ). The corresponding lasing frequency is presented in Fig.14(b). We 

conclude from these two figures that the lowest threshold gain occurs at the Bragg 

frequency ( 8R2=0 ). This can be achieved by choosing û=21t for n=even, and Û=1t for 

n=odd. Fig.14(a) also shows that for 0 < n < (1/2)7t or (3/2)7t < n < 21t, the even waves 

have a lower threshold gain than the odd waves; the reverse is true for (1/2)1t < n < (3/2)7t 

It is seen from Fig.14(b) that for 0 < n < n, the even and odd waves oscillate below and 

above the Bragg frequency, respectively; for 7t < n < 21t, the roles of the even and odd 

waves are interchanged. This characteristics can be used to distinguish the even waves from 

the odd waves. 
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The normalized threshold gain is shown as a fonction of the grating radius R2 in 

Fig.lS(a) for n=even and in Fig.15(b) for n=odd, respectively. For both cases the 

normalized threshold gain <XfuR2 decreases as the grating radius R2 increases. 

3.5.2 Mode Spectrum and Threshold Gain of CG-DBR Lasers 

For CG-DBR lasers, the gain region is limited within a circle of radius R1 and the 

grating region has a length of L=R2-R1 (see Fig.9(b)). In the following calculation, we 

ignore the losses in the grating region, i.e., with a2=0. Then, from Eq.(3.14), we have 

a=a1. Note that the inner radius R1 of CG-DBR lasers is large compared to that of CG­

DFB lasers. 

Figs.16(a)-(d) show the mode spectrum of CG-DBR lasers for S=0.2 and KL=l.0. 

The phase Q is used as a parameter. For a grating length L=RrR1 =140µm, S=0.2 is

equivalent to an inner radius of R1=28µm. Similarly to the case of CG-DFB lasers (see 

Figs.12(a)-(d)), for Ü=21t, the even wave has the lowest threshold and oscillates right at 

the Bragg frequency; for Ü=1t, it is the odd wave that has the lowest threshold gain and 

lases at the Bragg frequency. For Ü=1t/2, the even and the odd waves have the same 

threshold gain, but the even wave oscillates below, and the odd wave above the Bragg 

frequency; for Q=31t/2, the role of the even waves and that of the odd waves are reversed. 

In Figs.17(a)-(b), the normalized threshold gain is plotted against the phase Q for 

n=even and n=odd, respectively. The lasing frequency of the modes is shown in 

Figs.17(c)-(d). As in the case of CG-DFB laser, for O < n < (1/2)1t or (3/2)1t < n < 21t, 

the even waves have a lower threshold gain than the odd waves; and it is just the opposite 

for (1/2)1t < Q < (3/2)1t. The even order waves have the lowest threshold gain and oscillate 

at the Bragg frequency when Ü=21t; The same can be said about the odd order waves when 

ü=1t. According to Figs.17 ( c ), even wave oscillation occurs below the Bragg frequency 

when O < Q < 1t, and above when 1t < Q < 21t. The results are just the opposite for odd 

wave oscillations ( see Fig.l 7(d)). 

In Figs.18(a)-(b), the normalized threshold gain is shown as a fonction of the gain 

region radius R1 for n=even and n=odd, respectively. The phase Q is set to 21t and the

coupling coefficient K is used as a parameter. Fig.18(a) is plotted in the log scale because 

the normalized threshold gain is too small for K=250cm-1. Note that for n=even and Ü=21t,

the lasing frequency is right at the Bragg frequency. In this case, the normalized threshold 

gain cx
thR1 is a fonction of the coupling coefficient K only ( see Eq.(3.35) with 6=0 ). For
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n=odd, because the lasing frequency is not located at the Bragg frequency and is dependent 

of the ratio S=Rif(RrR1), the normalized threshold gain decreases monotonously as R1
increases. This difference between the even waves and the odd waves makes the 

corresponding threshold current behave diff erently as to be seen in the next section. 

3.6 Threshold Current of CG-DFB and CG-DBR Lasers 

In the previous section, we have just calculated the mode field gain for CG-DFB and 

CG-DBR lasers. We have learned that by a proper choice of the phase shift, we can select 

either the even cylindrical waves or the odd cylindrical waves. We have found that the 

lowest threshold gain for the even cylindrical waves and for odd cylindrical waves is at 

fl=21t and fl=1t, respectively. The lasing frequency is then right at the Bragg frequency. 

This is true for both the CG-DFB and the CG-DBR lasers. In this section, we give an 

estimation of the threshold current density and the threshold current of CG-DFB and CG­

D BR lasers. The analysis is based on a linear model for the relation between the material 

gain and the carrier density. The information obtained here is important in designing a good 

circular grating laser. 

3.6.1 Model 

In order to analyze the threshold current and threshold current density, it is more 

appropriate to use the material gain g. As in [88], the relationship between the material gain 

and the field gain can be obtained as 

(3.39) 

where r2 is the optical confinement factor of the active layer defined by Eq.(3.15a), gth is 

the material threshold gain, ath is the threshold field gain calculated from Eq.(3.35) and 

Clint is the total internai power loss. 

Assuming that the gain satisfies the following linear relation [88]: 

g(N) = A0 ( N - No) (3.40) 
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where g is the peak gain, A0 is the gain coefficient, N is the carrier density and N0 is the 

carrier density to achieve transparency (corresponding to the onset of population inversion), 
the threshold carrier density Nth is obtained from Eqs.(3.39)-(3.40) as 

(3.41) 

and the threshold current density Jth can be calculated from [89] : 

(3.42) 

In Eq.(3.42), e is the charge of an electron, da is the thickness of the active layer, ru is the 

intemal quantum efficiency, Beff is the effective recombination constant. 

As before, we use 1.3 µm InGaAsP/lnP CG-DFB and CG-DBR lasers as examples. 

The following parameters are used in the calculati9n: Ao=2.5xl0-16 cm2, No =1.5xl018

cm-3, Beff = 1.0xl0-10 cm3s·1 [89], r = 0.5, da= 0.2 µm, 11i = 1 and Clint= 50 cm·1.

3.6.2 Threshold Current of CG-DFB Lasers 

For CG-DFB lasers, the whole grating region of radius R2 is pumped. Then, the 

threshold current 1th is obtained from: 

2 

1th = 1t (Rv J th (3.43) 

where R2 is the outermost radius of the circular grating. 

Fig.19(a) shows the threshold current density as a fonction of the grating radius R2 for 

even cylindrical waves and different values of the coupling coefficient K. The 

corresponding threshold current is shown in Fig.19(b ). The threshold current density first 

decreases as the grating radius increases. With forther increase of the grating radius, the 

threshold current density approaches a lower limit. This is expected because the threshold 
gain Clth is a decreasing fonction of R2 as shown in Fig.15(a). The lower limit exists 

because a certain amount of current is needed to achieve transparency and compensate the 

total internai loss. For each value of K, there is an optimum grating radius that gives the 
lowest threshold current. This can be explained as follows: for small R2, because a1h
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decreases much faster than l/R2 ( see Fig.lS(a) ), Jth decreases much faster than (l/R2)2,

and thus overcomes the increase of 1th due to (R2)2 (see Eq.(3.43)). For larger R2, the

factor (R2)2 in Eq.(3.43) becomes dominant, therefore, 1th goes up as R2 increases.

Depending on the coupling coefficient K, the optimum grating radius for CG-DFB is 

between 40-80 µm. 

A comparison between the even wave and the odd wave is shown in Figs.20(a)-(b) for 

O=21t and K=300 cm-1. For CG-DFB lasers, the threshold current of the odd waves

follows the same trend as the even waves but has a higher value. At the optimum radius, 

the threshold current of the odd waves is about twice that of the even waves. 

3.6.3 Threshold Current of CG-DBR Laser 

For CG-DBR lasers, the gain region is confined within a circle of radius R1. The 

threshold current is then calculated from : 

(3.44) 

The threshold current density for CG-DBR lasers is presented in Figs.2l(a)-(b). The 

threshold current is shown in Figs.22(a)-(b). The comparison between even wave and odd 

wave is given in Figs.23(a)-(b). 

The threshold currem of even waves increases monotonously as a fonction of Ri, while 

that of odd waves has a minimum at a certain radius. The reason for the even waves to 

behave differently from the odd waves is that for even waves, the threshold gain CXth 

decreases as 1/R1 (see Fig.18(a)). When substituted into Eq.(3.44), 1th becomes 

proportional to (R1)2, thus gives the monotonously increasing behavior. The explanation

for odd waves is similar to the case of CG-DFB lasers. Because cxth decreases much faster 

than l/R1 ( see Fig.18(b) ), J1h decreases much faster than (l/Ri)2, thus overcomes the

increase of 1th due to (Ri)2 (see Eq.(3.44)). For larger R1, the factor (R1)2 in Eq.(3.44)

becomes dominant, therefore, 1th goes up as R1 increases. Another interesting feature is 

that for a reasonable gain region radius, both the threshold current density and the threshold 

current of even waves are much less than those of odd waves. 
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3.6.4 Discussions 

Comparing the results for CG-DFB lasers with those for CG-DBR lasers, we observe 

that the latter has a much lower threshold current density and a much lower threshold 

current than the former. For example , for K=lOOcm-1, the threshold current density is

9.82kNcm2 ( Fig.19(a)) and the threshold current is 494 mA ( Fig.19(b)) for a CG-DFB 

laser ( n=even, ü=21t, R2=40µm ), while the corresponding values of a CG-DBR laser ( 

n=even ,Q=21t, R1=40µm ) is only 1.47kNcm2 ( Fig.21.(a)) and 74 mA ( Fig.22(a) ), 

respectively. The values for CG-DBR lasers are about seven times less than those for CG­

DFB lasers. 

3.7 Summary 

In this Chapter , a detailed threshold analysis for TE-cylindrical waves in CG-DFB and 

CG-DBR lasers is presented. The analysis is based on the large radius approximation of the 

coupled-wave theory developed in Chapter 1-2. Our numerical results show that by proper 

choice of the phase Q ( in other words, the inner radius R1), we can select either the even 

wave or the odd wave. This is an important result for the design of practical CG-DFB and 

CG-DBR lasers. We have also shown that CG-DFB lasers normally have a liigher a higher 

threshold current density and a higher threshold current than CG-DBR lasers. 
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Fig.18 Normalized threshold gain of CG-DBR laser as a fonction of gain region radius R1 :

(a) n=even; (b) n=odd.
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Fig.20 Comparison of even waves with odd waves in a CG-DFB laser : (a) threshold 

current density versus grating radius R2; (b) threshold current versus grati.ng radius R2. 
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CHAPTER 4 

CIRCULAR GRATING DFB LASERS: 

FABRICATION AND MEASUREMENTS 

4.1 Introduction 

In previous chapters, we have formulated the coupled-wave theory for cylindrical 

waves and applied the theory to analyze CGDFB and CG-DBR lasers. The threshold gain 

and the threshold current analysis of Chapter 3 gives the design guide lines for practical 

circular grating lasers. 

In this Chapter, we discuss the fabrication of semiconductor CG-DFB lasers and 

present the measured lasing characteristics of the first optically pumped GalnAsP/lnP CG­

DFB lasers. 

The structure of our CG-DFB laser is first described in Section 4.2. The fabrication 

procedures are explained in Section 4.3. Experimental results of the first optically-pumped 

CG-DFB lasers are given in Section 4.4. 

4.2 Design of CG-DFB Lasers 

Since we are interested in long-wavelength lasers, we choose the InGaAsP/InP double 

hetero-structure as the semiconductor material to fabricate our CG-DFB lasers. The lasing 

wavelength is chosen to be at 1.3 µm. Fig.24(a) shows schematically a surface-emitting 

CG-DFB laser. The cross-section of the CG-DFB laser is illustrated in Fig.24(b). 

A surface-emitting CG-DFB laser can be realized by etching second-order circular 

gratings into the cladding layer. The second-order Bragg reflection provides the necessary 

feedback to sustain the lasing action while the first-order Bragg effect serves to diffract light 
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out normally from the surface [57]. This would give us a surface-emitted, circularly 

symmetric beam. 

The planar waveguide formed by the double hetero-structure is designed to support 
only the fondamental slab mode. The thickness of the active layer (GalnAsP, Àg = 1.3 µm) 

is d=0.17 µm. The thickness of the top cladding layer ( GalnAsP, Âg = 1.0 µm ) is t = 0.2 

µm. The bottom cladding layer ( InP) has a thickness of 1.0 µm. 

For the planar waveguide depicted in Fig.24, the propagation constant of the 
fondamental TE-mode is �=15.8215 /µm. This means that the grating period of second-

order grating is 0.397µm. 

Fig.25 shows the coupling coefficient K of a second-order grating against the grating 
aspect ratio W 1/ A. The etching depth �h is used as a parameter. This figure indicates that 

the optimum aspect ratio for second-order grating is around Wi /A = 1 /4. 

Fig.26 shows the coupling coefficient K as a fonction of the etching depth �h with the 

grating aspect ratio as a parameter. For reference , the case of first-order grating is also 

included in the plot. 

(a) 

.2µm 

---����mmj 
e, GalnAsP (Âg- • .17 µm 

InP cladding 1.0µm 

1-------------1� 
InP substrate 

(b) 

Fig.24 Structure of GalnAsP/lnP semiconductor CG-DFB laser: (a) schematic view; (b) 

cross-section. 
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Fig.26 Coupling coefficient K as a function 
of etching depth .1h. 

4.3 Fabrication of CG-DFB Lasers 

The fabrication procedures are summarized in Fig.27. First, a double heteto-structure 

GalnAsP/InP is grown by the metal-organic-chemical-vapor-deposition (MOCVD) 

technique. Tuen, a thin layer of SiO2 ( 500 Â ) is deposited on the top cladding layer. The 

SiO2 layer is used for pattern transfer to the semiconductor because of its infinite etching 

selectivity. After that, a layer of PMMA resist ( 2000 Â) is spun on top of the SiO2 layer. 

Circular gratings are patterned on the PMMA resist by the electron beam (E-beam) 

lithography [90]. The exposed PMMA is then developed to reveal the circular grating 

pattern. A two-step reactive-ion-etching (RIE) is used to transfer the desired circular grating 

from the PMMA to the SiO2 layer, then into the top cladding layer. The grating is etched to 

a depth of 0.15µm. The inner and outer diameters of the grating were l .29µm and 280µm 

respectively. Fig.28 shows the SEM photograph of a second-order grating CG-DFB laser. 



(a) Growth of double hetero-structure by

MOCVD

(b) Deposition of SiO2 ( 500 Â )

(c) Spin-on of PMMA ( 2000 Â)

(d) Circular grating patterning by E-beam

and development of PMMA

(e) Transfer of circular grating pattern to

SiO2 layer by first RIE

(f) Transfer of circular grating pattern to

semiconductor by second RIE
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lnP substrate 

active, GalnA,P (Â.g=l,3µm), 
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lnP ,ub,trale 
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Fig.27 Fabrication procedures of optically-pumped CG-DFB lasers 
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4.4 Optical Pumping Measurement 

The fabricated circular grating DFB lasers are tested by optical pumping at room 

temperature. The pumping source is a Q-switched and mode-locked YAG laser operating at 

a wavelength of 1.06µm. The pulse length from the Y AG laser is 100 ps, the peak 

pumping power is up to 22kW. 

The experiment setup is shown in Fig.29. The pumping beam is focussed onto the 

circtilar grating to a diameter of approximately 1 mm. The light emitted normally from the 

surface of the semiconductor laser is projected onto an optical power meter or coupled to a 

spectrum analyzer through an optical fiber for spectral analysis. In measuring the output 

power from the laser, an optical filter is inserted in front of the photo-detector to remove the 

pumping radiation of the Y AG laser at l .06µm. 

Lasing action is observed at 1.283µm. which is very close to the designed wavelength 

of 1.3µm. The spectrum is shown in Fig.30. The observed linewidth is 2-3 nm, depending 

on the pumping power. This large value of the linewidth is due to simultaneous oscillation 

of the cylindrical wave modes which possess similar lasing thresholds ( see Chapter 3 and 

[63]) and the coupling of the spontaneous emission to the stimulated emission [40]. The 

output power was measured as a fonction of the absorbed pumping power and is shown in 

Fig.31. The absorbed threshold power is estimated to be 1 0W (pulsed, peak), 

corresponding to a power density of 16.2kW/cm2
• The maximum pulsed output power is 

measured to be more than 25m W. This low output efficiency is due, in part, to the large 

absorption in the unpumped active layer, and in part, to the unoptimized design of the 

second-order grating used for surface-emission. 

4.5 Summary 

ln this Chapter, the lasing action of optically pumped surface-emitting CG-DFB laser 

was demonstrated for the first time. The CG-DFB laser was fabricated on the double 

hetero-structure GainAsP/lnP semiconductor by the E-beam lithography and the reative­

ion-etching (RIE) technique. The observed lasing wavelength was 1.283µm. The threshold 

pumping power density was estimated to be 16.2kW/cm2
. The pulsed output power was 

more than 25m W. 
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Fig.28 SEM micrograph of circular grating fabricated by E-beam lithography and RIE. 

1.3 µm Emitted Light 

1.06·µm YAG Laser 
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Fig.29 Schematic view of the experimental set-up for optical pumping measurement. 
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CHAPTER 5 

CIRCULAR GRATING DBR LASERS: 

FABRICATION AND MEASUREMENTS 

5.1 Introduction 

In the previous Chapter, we have demonstrated the first circular grating DFB laser by 

optical pumping. However, in practical applications, it is more desirable to have 

electrically-pumped lasers. 

Since CG-DBR lasers have lower threshold current than CG-DFB lasers, and since it is 

easier to design the electrode for CG-DBR lasers than for CG-DFB lasers, we choose to 

study electrically-pumped CG-DBR lasers. In fact, we have fabricated and demonstrated 

the world's first CG-DBR laser. 

This chapter is organized in the following way: we first give the design considerations 

for CG-DBR lasers in Section 5.2. Then, in Section 5.3, we describe the fabrication 

procedures of these lasers. The lasing characteristics of the first electrically-pumped CG­

DBR lasers are presented in Section 5.4. 

5.2. Design of CG-DBR Lasers 

The structure of a circular grating distributed Bragg reflector (CG-DBR) laser is shown 

schematically in Fig.32, where the active medium is limited within a circle of radius R1. 

The electrical pumping is realized by injection current from the contact in the center. The 

pumping region in the center is surrounded by circular grating lines. Without loss of 

generality, we assume that the circular grating has a rectangular profile. The period of the 

grating is denoted by A, the width of the grating valley is W 1, and the width of the grating 

ridge is W2, with A= W1 + Wz. The depth of the grating is denoted by �h. The outer 
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radius of the grating is denoted by R2. The length of the grating region is then equal to L =

R2 - R1. 

(a) schematic view

2 R1 
◄ ►

p-contact 

lnP 

n
+ 

lnP Subslrate 

n.contact 

(b) cross-section

Fig.32 Diagram of electrically-pumped circular grating (CG) DBR laser. 

5.2.1. Threshold Condition of CG-DBR Lasers 

Based on the large radius approximation of the coupled-wave theory in Chapter 2, we 

have obtained the following eigenvalue equation for the lasing modes in a circular grating 

DBR laser ( see Eq.(3.35) in Chapter 3 ) 

(5.1) 

where Po and PR, are the field reflection coefficients of the center ( r=O) and that of the 

grating seen from r = R1 outward, respectively. !). is the difference between the propagation 

constant of the pumping region and that of the grating region. cx.1 is the mode loss (or gain ) 

of a laser mode. 
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The finiteness of the optical field at r=O implies p0 =l. This is equivalent to saying that 
the center is a mirror of 100% reflectivity. As shown in Chapter 3, for a circular grating of 
rectangular profile, we have 

y= ✓ K� + ( a. 2- jo) 2 

7t O=�--m 

(5.2a) 

(5.2b) 

(5.2c) 

(5.2d) 

In Eqs.(5 .. 2), n is an integer denoting the order of a cylindrical wave, m is the order of the 
grating, 8 denotes the frequency deviation from the Bragg frequency of the grating, � is the 
propagation constant of the fondamental slab mode in the planar waveguide and Km is the 
coupling coefficient between the inward-propagating wave and the outward-propagating 
wave due to the circular grating. Note that under the large radius approximation, as 

indicated by the expression for PR 1 in Eq.(5.2a), all the even order cylindrical waves (or all 
the odd order waves) have the same threshold. 

Because the distributed Bragg reflector and the active region form two separate 
waveguides, transfer of the optical mode between them leads to coupling losses that reduce 
the effective reflectivity of the DBR. Therefore, the coupling losses between these two 
regions should be included in the design consideration of CG-DBR lasers. 

Let Co·denote the interface power coupling efficiency at r= R1 defined by: 

(5.3) 
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where Za and Zg are the normalized electric field distributions along the z-direction in the 

gain region and the grating region, respectively. The coupling losses occur twice during 

each reflection, the effective reflection coefficient of the circular grating is thus given by 

(5.4) 

The eigenvalue equation should be modified as 

(5.5) 

Comparing Eq.(5.5) with the eigenvalue equation for conventional DBR lasers [88], we see 

that in the case of CG-DBR lasers, the power coupling efficiency Co appears only once, 

while in conventional DBR lasers it is the square of Co that has to be used because there are 

two DBR sections. In practical terms, this means that in circular grating DBR lasers the 

coupling efficiency between the gain region and the grating region is less critical than in 

conventional ones. 

5.2.2. Coupling Efficiency Co and Coupling Coefficient Km 

The power coupling efficiency Co and the coupling coefficient Km are two very 

important parameters in the design of CG-DBR lasers. The imperfect coupling between the 

gain region and the grating region is equivalent to an additional loss exo given by 

(5.6) 

Fig.33 shows the interface loss ao as a fonction of Co for different values of the inner 

radius R1. It is seen that to obtain exo < 50 cm-1, we require that Co> 0.9. 

In Fig.34, the coupling efficiency Co is plotted as a fonction of the offset S between the 

active layer and the guiding layer in the grating region. The thickness of the active layer is 

d=0.17 µm. The thickness of the guiding layer is set to be T = 0.6 µm. Also given in the 

inset of the figure are the coupling coefficients of second-order grating with W1/A = 1/4 

for different grating depth L\h. 
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In Fig.35, the power coupling efficiency is plotted· against the etching depth of the 

grating, for S=0.0µm, T = 0.6 µm and d = 0.17 µm. 

The coupling coefficient depends strongly on the etching depth of the grating. This is 

shown in Fig.36. 
The grating aspect ratio Wi/A also plays an important role in determining the power 

coupling efficiency and the coupling coefficient, thus affecting the threshold current of CG­
DBR lasers. Fig.37 shows the power coupling efficiency Co as a fonction of W1/A. Fig.38 

shows the coupling coefficient against W if A. It is seen that for second-order grating, the 

coupling coefficient reaches its maximum around WtfA =0.25. 
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5.2.3. Threshold Current of CG-DBR Lasers 

Once the power coupling efficiency and the coupling coefficient are determined, one 

can calculate the threshold modal gain from Eq.(5.5). The threshold current density of a 

CG-DBR laser is then estimated by ( see Chapter 3 and [89]) 

(5.7) 

where Ao is the gain coefficient, No is the carrier density to achieve transparency 

(corresponding to the onset of population inversion), e is the electron charge, da is the 

thickness of the active layer, Tli is the interna! quantum efficiency, Beff is the effective 

recombination constant, r is the optical confinement factor of the active layer. a.th is the 

mode gain calculated from Eq.(5.5) and CX.int is the total interna! loss. 

The threshold current Ith is then calculated from 

(5.8) 

In our calculation, the following parameters are used in estimating the threshold current 

of a CG-DBR laser fabricated on InGaAsP/lnP heterostructure: Ao=2.5xl0-16 cm2, No 
=1.5x1018 cm-3 , Beff= 1.0x10-10 cm3s-1 [89], da

= 0.17 µm, TH= 1 and <lint = 50 cm-1.

Fig.39 shows the threshold current density as a fonction of the pumping region radius 

R1. The length of the grating region is L=R2-R1 =140µm. The phase-shift Q is chosen to be 

Ü=27t The coupling coefficient is assumed to be K=lOO/cm. The threshold current of the 

same DBR laser is shown in Fig.40. The power coupling efficiency is assumed to Co =0.8, 

0.9, 0.95 and 1.0. 
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5.3. Fabrication of CG-DBR Lasers 

CG-DBR lasers are fabricated by focused-ion beam (FIB) lithography and reactive-ion 

etch (RIE) techniques. The fabrication procedures are outlined in Fig.41. 

First, a conventional double heterostructure GalnAsP/InP laser is grown by the metal­
organic-chemical-vapor-deposition (MOCVD) method. The active layer ( GainAsP, Àg 

=1.3µm ) bas a thickness of 0.17 µm. Then, circular mesas are etched by RIE to a depth 

just past the active layer. A 0.6 µm thick epilayer of semi-insulating Fe-doped GalnAsP ( 
Âg =1.1 µm ) is then selectively regrown around the circular mesas by MOCVD [91]. 

Fabrication of the bottom n-contact and circular top p-contact follows the epitaxial 

regrowth. Finally, circular gratings are patterned by FIB lithography and transferred down 

to the guiding layer by RIE. The second-order grating is designed to have a period of 
0.401µm , an aspect ratio of W1 /A = 0.25. Fig.42 shows a photograph of a fabricated 

second-order DBR laser. Fig.43 is a SEM photomicrograph of the circular grating. Fig.44 

is the same CG-DBR laser at a higher magnification. The cross-section of the circular 

grating region is shown in Fig.45. The etching depth of the grating was around 0.15 µm. 

5.4 Optical Characteristics of CG-DBR Lasers 

The fabricated CG-DBR lasers have been tested at room temperature under pulsed 

condition ( pulse width 't =100ns and pulse period T = 10 µs ). Figs.46(a)-(d) show the 

surface-emitted power against the injected current (L-I curve) for CG-DBR lasers with R1

=25, 30, 35 and 40 µm, respectively. The maximum output power reaches lOmW for the 

device with R1 =35µ.m whose threshold current is 170 mA. Examples of the lasing spectra 

are presented in Figs.47(a)-(b). The lasing wavelength ( Â ~ 1.306µm) is slightly loi:iger 

than the designed Bragg wavelength (Àb=l.3µm), i.e., the lasing frequency is lower than 

the Bragg frequency determined by the grating. Fig.48 shows the near field patterns of the 

surface-emitting CG-DBR lasers just above the threshold. The triangular-shaped dark 

sector is the probe needle used for current injection. The near field for the device with 

R1=30µm is not shown because it was damaged during the measurement. Fig.49 gives the 

near field pattern of the same CG-DBR lasers at about twice the threshold current. It is 

observed that at low injection level, the devices with R1=35µm and R1 =40µm give a dumb-
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bell shaped near field, which implies that the laser oscillation is in the odd ( n=l) rather than 

the even (n=0) cylindrical waves. For the case of R1=25µm, the near field has four bright 

spots, as shown in Fig.48(a). It seems to indicate that this laser operates in the even ( n=2 ) 

cylindrical wave. At high injection level, the emitted beam becomes circular, especially for 

for the laser with R1= 35µm, as seen in Fig.49(b). This behavior is probably due to the 

multi-mode operation, particularly when the threshold of the even waves is just slightly 

higher than the odd waves. 

The measured threshold currents of the first CG-DBR lasers are appreciably higher 

than predicted by theory. For an etching depth of �h=0.15µm and an aspect ratio of 

W i/A=0.25, the calculated coupling coefficient is K=289/cm (see Fig.38) and the 

calculated power coupling efficiency is Co=0.95. For even-wave (n=0, Q=27t) or odd­

wave ( n=l, Q=7t ) operation, this would give a threshold current of I th= 34 mA for 

R1=30µm, as compared to the measured threshold current of 140 mA. 

It should be noted that the cavity and the radiation losses have not been included in the 

theoretical calculations. The discrepancy between the theoretical values and the measured 

results may also be due to nonuniformity of the crystal regrowth, eccentricity of the circular 

gratings with respect to the center of the circular mesa ( about 2µm for the devices 

presented here ) and irregularities which cause additional scattering losses. Eccentricity 

does play an important role in determining the lasing characteristics of CG-DBR lasers. In 

fact, when the circular gratings were about 20µm off the center, no lasing was observed. 

5.5. Summary 

We have discussed the design and fabrication of electrically-pumped circular 

grating(CG) DBR lasers. Moreover, we have successfully fabricated electrically-pumped 

surface-emitting CG-DBR lasers which lase at room temperature under pulsed condition. 

To our best knowledge, this is the first demonstration of surface-emitting CG-DBR laser. 
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Fig.42 Photograph of a fabricated second-order surface-emitting CG-DBR laser. 

Fig.43 SEM photograph of second-order CG-DBR laser ( grating region, X 15,000). 
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Fig.44 SEM photograph of second-order CG-DBR laser ( grating region, X 20,000) 

Fig.45 Cross-section of CG-DBR laser ( grating region) 
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CONCLUSIONS 

In this thesis, both theoretical and experimental studies have been made on the 

circular grating distributed feedback (CG-DFB) laser and the circular distributed Bragg 

reflector (CG-DBR) laser. The operation of the first surface-emitting CG-DFB and CG­

DBR lasers have been successfully demonstrated by optical pumping and by current 

injection, respecti.vely. 

In Chapter 1, a new coupled-wave theory for cylindrical waves in circular grating 

planar waveguide is established. The theory is a general, self-consistent, vector-wave 

formulation based on Maxwell's equations. The coupled-wave equations are valid for both 

passive and active circular grating devices in integrated optics. It is shown that only 

cylindrical waves of the same order are coupled. These cylindrical waves can belong to 

different slab modes in the waveguide. For zeroth-order waves, pure TE-TE (TM-TM) 

couplings occur. For higher order waves, the TE- and the TM-cylindrical waves are cross­

coupled. The coupled-wave equations for zeroth-order cylindrical waves are similar to 

those of two-mode coupling in one dimensional waveguides with straight gratings. 

In Chapter 2, a simplified form of the coupled-wave equations is derived for 

cylindrical waves in circular grating planar waveguides. Under the large radius 

approximation ( �r >> 1), the coupling between TE and TM cylindrical waves can be 

neglected. This renders the coupled-wave equations separable into two sets, one for TE 

cylindrical waves and the other for TM cylindrical waves. The large radius approximation 

is valid for most practical cases. The difference between our theory and the scalar theory of 

other researchers is clarified. 

In Chapter 3, a detailed threshold analysis for TE-cylindrical waves in CG-DFB and 

CG-DBR lasers is presented. The analysis is based on the coupled-wave theory developed 

in Chapter 1 and 2. Numerical results show that by proper choice of the total phase-shift Q 

( in other words, the inner radius R1 ), the laser can be tuned to oscillate in either the even 

waves or the odd waves. This is an important result for the design of practical CG-DFB 

and CG-DBR lasers. It is also shown that CG-DFB lasers normally have a higher threshold 

current density and a higher threshold current than CG-DBR lasers. 

In Chapter 4, experimental results of the first CG-DFB laser on a GainAsP/InP 

double heterostructure were presented. The circular grating was fabricated by electron-beam 

(E-beam) lithography and reative-ion-etching (RIE). Second-order circular grating was 
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used to achieve surface-emission. Lasing action in the first surface-emitting CG-DFB laser 

was demonstrated at room temperature by optical pumping with a mode-locked, Q­

switched, Y AG laser. The observed lasing wavelength was l.283µm. The peak threshold 

pumping power density was estimated to be 16.2kW/cm2
. The pulsed peak output power 

was more than 25m W. 

In Chapter 5, the first electrically-pumped CG-DBR lasers were designed and 

fabricated on a GalnAsP/InP heterostructure. The CG-DBR lasers operated at room 

temperature under pulsed condition. The lowest threshold current was 140mA and the 

maximum optical power emitted from the surface exceeded 10m W. The lasing action was 

observed to be in the odd cylindrical-wave modes ( with dumb-bell shaped radiation pattern 

). The trend of the measured threshold current as a fonction of the gain region radius agreed 

in general with the theoretical prediction. However, due to imperfections in crystal 

regrowth and the coupling loss encountered at the gain/grating interface, the threshold 

current of the CG-DBR lasers were higher than theoretical values. 

There is still much work to do before circular grating lasers can be made truly 

practical. For example, these lasers have to be optimized in terms of the threshold current 

density, the threshold current to achieve continuous-wave (CW) operation at room 

temperature. Two important aspects --- the radiation efficiency (surface-emitted power) and 

the radiation pattern --- have not been studied yet. It would be of interest to see if operation 

in even cylindrical waves could give a circularly symmetric output beam. The dynamic 

characteristics and the spectral properties must also be investigated. 

The theoretical and experimental studies in this thesis were conducted on bulk 

GalnAsP quaternary materials. Another area to be studied is circular grating lasers using 

quantum-well structures. Single-quantum-well (SQW) and multiple-quantum-well (MQW) 

DFB and DBR lasers are reported to have lower threshold and higher output power than 

their bulle counter-parts [59-60, 92-95]. 

There could also be improvement in fabrication techniques. Presently, the circular 

gratings are patterned by E-beam or FIB lithography, both are time-consuming and 

expensive techniques. It would be a great help toward production if other methods such as 

holographie patterning were made available. 

The successful demonstration of both CG-DFB and CG-DBR lasers makes the 

concept proposed by Shimpe [61] a reality. These lasers are promising light sources for 

future optical communication systems, optical interconnections, and other free space 

applications. 
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Appendix I 

Field Components In Cylindrical Coordinates 

The Maxwell's equations are 

VxE = -jroµoff 

In cylindrical coordinates, we can write 

where 
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Substituting Eq.(Al.4) and Eq.(Al.5) into Eq.(Al.2), we get 
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Substituting Eqs.(Al.7)-(Al.10) into Eq.(Al.2), and comparing the two sides, yields 

(Al.11) 



Appendix II 

Orthonormal Relations Between Cylindrical Waves 

A. Coupled-Power Theorem

We start with the complex Maxwell's equations for a lossless, scalar medium. Consider 

two different solutions labeled 1 and 2 that satisfy the vector wave equations 

VxH l,2 = j ro Erfi E1,2 

From Eq.(A2.1), we can prove that 

Integrating on both sides over a cylindrical surface of radius r gives 

U sing the following notation 

* * 

A= E 1xH 2+E 2xH 1 

where the subscript " t " means the transverse (0, z) components, we have 
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Note that the line integral in Eq.(A2.5) is 

(A2.5) 

(A2.6) 

which vanishes if at least one of the two waves is a guided wave with fields exponentially 
decaying toward infinity along the z-direction. The line integral also goes to zero when both 
waves are radiation waves, due to the oscillatory nature of the radiation fields [75]. Hence, 
from Eq.(A2.3) and Eq.(A2.5), we get 

thus, 

(A2.7) 

where C is a constant. 
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Let field 1 be the m-th order cylindrical wave that belongs to the v-th slab mode of 
polarization t, and field 2 be the n-th order cylindrical wave that is associated with the µ-th 
slab mode of polarization o. The direction of propagation for field 1 is denoted by q and 

that for field 2 by p. Then, from Eq.(A2.7), we have 

r 
2TC f 00 (q}t (p)Cî * (p)Cî * (q}t A 

J n
r d0 dz [(Evm t X H µnt + Eµn t X Hvm t) .  r ]= C 

0 - 00 (A2.8) 

Eq.(A2.8) is called the coupled-power theorem in [72]. As we shall see in the following, 
for two different waves, the integration on the left-hand side of Eq.(A2.8) is zero, which 
implies the waves travel independently; if the two waves are the same, the left-hand side is 
nonzero and equals to the power that flows across a cylindrical surface, then Eq.(A2.8) 
simply states the conservation of power. 

B. Orthonormal Relations

Orthonormal relations between cylindrical waves can be derived from the coupled­
power theorem stated by Eq.(A2.8). The orthornormal relations between cylindrical waves 
can be shown to be 

(A2.9) 

where CJ, t = TE, or TM, denotes the polarization of the waves; p, q= ± 1, represents 
outward or inward propagating waves; µ and v denotes the mode number of the slab TE or 
TM modes; n and m denotes the order of the cylindrical waves. 

In the following, Eq.(A2.9) is proved for each of the three cases: TE-TM(TM-TE), TE­
TE and TM-TM orthonormalities. 

B.1 TE-TM(TM-TE) Orthonormality

Substituting the fields for TE-waves (Eq.(1.12)) and those for TM-waves(Eq.(1.13)) 
into the left hand-side of Eq.(A2.8), we obtain 



r 21C f oo A (q)lM (p)lE * (p)IB * (q)lM 

Jn 

rd0dz r.[Evm t X Hµn t + Eµn t X Hvm t ]
0 -00 

= f 211 f � ( E(q)TM H 
(p)rn * - E(q)™ 

H 
(p)rn*) r d 0dzvm e µn z vm z µn e 

0 -

= . A (p)IB * A (q)
™ 

R (q)(R ™ )R (p)*(R 1E ) f 211 j (m-n)8d0 J µn vm m fJv r n fJ µr e 
0 

=C 

XXIX 

(A2.10) 

where 8nm denotes the Kronecker's delta. The constant C is zero because for (�r) 
approaching infinity 

Therefore, we can write 
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This is the orthonormal relation between TE and TM cylindrical waves. 
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B.2 TE-TE Orthonormality

Consider the n-th order TE cylindrical wave associated with the µ-th slab TE-mode and
the m-th order TE cylindrical waves of the v-th slab TE-mode. Putting Eq.(1.12) into 
Eq.(A2.8), we obtain 
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m-n)S d 0dz

0 --

(A2.13) 

Unless µ=v, n=m and p=q, the constant C is zero. This can be easily proved. If n '# 
m, 6nm = 0, evidently C=O. If n=m, but µ -:t- v, the orthogonality relations between slab TE 
modes [67] yields 

(A2.14) 



xxxi 

thus C=O forµ -:t: v.If µ=v, n=m, but p -:t: q, for example, p=+, q= -. Then, 

=0 (A2.15a) 

Similarly, for p= -, q= +, we obtain 

=0 
(A2.15b) 

Again, C = O. 



For µ=v, n=m and p=q, because 

we have 

= ± _!_ 4(- j) 
p 7t p r 

where we have utilized the Wronskian for Hankel fonctions [82] 

Substituting (A2.16) into Eq.(A2.13), we get 

xxxn 

(A2.16) 

(A2.17) 

(A2.18) 
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for µ=v, n=m and p=q. 
Let C in Eq.(A2.18) be equal to 1 for the upper sign, and to -1 for the lower sign. Tuen 

the field can be normalized by 

(A2.19) 

Combining all the cases above, we can thus write the orthonormal relation between TE 
cylindrical waves as 

(A2.2O) 

where p= + 1 for outward-propagating waves, and p= -1 for inward-propagating wave. 

B.3 TM-TM Orthonormality

The derivation of the orthonormal relation for TM cylindrical waves is similar to that of 
TE waves. We again start from the coupled power theorem. Using the field distribution for 
TM-waves in Eq.(1.13), we can derive 

r 21t Il 00 ,... (q)™ (p)™* (p)TM* (q)1M

J n J
rd0dz r.[Evm t X H

µn t + E
µn t X Hvm t ] 

0 -00 

• (p)TM* (q)1M r 21t f oo j(m-n)0 ™* 1M = J Olcf-o Aµn Avm . J" rd0dz E e Zµ Zv 
0 - 00 
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=C (A2.21) 

If n:;ém, Bnm= O, then C= O. If µ;t:v, from the orthogonality relations between TM slab 
modes[67], the Z-functions satisfy 

f
00

rd0dz e z;z: *= 0 
- 00 (A2.22) 

which gives C= O. If n=m, µ=v, but p;t:q, terms in the square braèket cancel each other (see 
Eq.(A2.15a)-(A2.15b)) , thus we also have C=O. 

For the case of µ=v, m=n, p=q, we have 

+ dH(2)*(r.tr) dH (2)(Ar) = - -=-r H(2)(Pr) __ n_P_ - Hn
(2)*(pr) ndr!J ]

2 n · dr 
<P ) 

+ dH(l)(Ar) dH(2)(Ar)= - -=-r H�2\pr) n P - H�l )(Pr) n 1-' ] 
P d(Pr) d(�r ) 



±1 4(-j) 
=---

� 7t�r 

Thus, putting Eq.(A2.23) into Eq.(A2.21), we obtain 

8 (J)Eo 1 
(p)™j2J 00 

Th\_ TM* 

C=± 
2 

A
µ
n dz eZ

µ
L

µ

/3µ 
-oo 

Let C=l, for p=+, and C=-1 for p=-. Normalizing the field by 

1M 2 

1 A!lThf = ___ <f3_µ_) ---

8 roe0f 
00 

dz e z;z;* 
- 00 

We, then, can write the orthonormal relation for TM cylindrical waves as 

where p=+ 1 for outward waves and p=-1 for inward waves. 

XXXV 

(A2.23) 

(A2.24) 

(A2.25) 

(A2.26) 

Summarizing Eqs.(A2.12), (A2.20) and (A2.26), we conclude that the orthonormal 
relations between cylindrical waves are simply expressed by Eq.(A2.9). 



Appendix III 

Proof of Self-Consistency 

For a general field distribution ( E 1, H 1) given by Eq.(1.24), the time averaged 
Poynting vector in the r-direction is 

The total power transported in the radial direction is calculated from 

p total = f 2lt f œ r d0dz Sr
0 -� 

q;t,v,m 

p,cr,µ,n 

p,cr,µ,n 

(q)'t* (q)'t* avm Hvmt) 
q;t,v,m 

(p)<> 
H 

(p)o:) ]aµn µnt 

(A3. I) 

= L 
� (p)O' (q)'t*

f 
2lt 

J 
� ,., (p)O' (q)'t* (q)'t* (p)O' L.. aµn avm r d0dzr. [ Eµnt x Hvmt +Evmt x Hµnt]

0 -œ 

p,cr,µ,n q;t,v,m 

p,cr,µ,n q;t,v,m 

p,a,µ,n 
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cr,µ,n 
(A3.2) 

Now if we substitute Eq.(1.35) into Eq.(A3.2) and make use of Eq.(1.33), we have 

cr,µ,n 

� � 
[ 

K(+)cr,(+)-r (+)'t K(+)cr,(-)-r (-)-r
] 

(+)cr*
= L.,; { -j L.,; µn,vm avm + µn,vm avm aµn 

cr,µ,n 't,V,m 

+ (+)cr
[

. � 
( 

K(+)cr,(+)'t
)

*
( 

(+K * + 
(

K(+)cr,(-)'t,. *
( 

(-)'t
)

*]aµn J L.,; µn,vm avm ) µn,vm J avm 

't,V,m 

. 
� 

[ 
K (-)cr,(+ 

)'
t (+ )

-r K (-)cr,(-)'t (-)'t
] 

(-)cr*
- J L.,; µn,vm avm + µn,vm avm aµn 

't,V,m 

+
(
-
)cr

[. 
� 

( 
K(-)cr

,
(+)

, *c 
(+)

't)
* 

(
K(

-
)cr,(

-
)
, *c 

(
-)'

t
)

*] }aµn J L.,; µn,vm J avm + µn,vm J avm 

't,V,m 

=. 
[ 

� 
( 

� K(+)-r,(+)cr (+)a
) ( 

(+)'t_ * - � 
( 

� K(+)cr,(+)'t (+)-r
) ( 

(+)o:
)

*
]J L.,; L.,; vm, µn aµn avm) L.,; L.,; µn,vm avm aµn 

't,V,m cr,µ,n cr,µ,n 't,V,m 

+J
· 
[ 

� 
( 

� K(+)-r,(-)cr (-)cr
) ( 

(+)'t
)

* - � 
( 

� K(+)cr,(-)-r (-)'t
) ( 

(+)o:
)

*
]L.,; L.,; vm, µn aµn avm L.,; L.,; µn,vm avm aµn 

't,V,m cr,µ,n cr,µ,n 't,v,m 
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• [ 
� ( � K(-}t,(+)cr (+)cr

) ( 
(-)'t.,. * _ � ( � K(-)cr,(+)--c (+}t

) ( 
(-)o:

)
*

] + J � � vm, µn aµn avmJ � � µn,vm avm aµn 
't,V,m cr,µ,n cr,µ,n 't,V,m 

. [
� 

( � K(-}t,(-)cr (-)cr
) ( 

(-}t
)
* _ � 

( � K(-)cr,(-)--c (-}t
) ( 

(-)cr
)
*

] + J � � vm, µn aµn avm � � µn,vm avm aµn 

't,V,m cr,µ,n cr,µ,n 't,V,m 

=0 (A3.3) 

The terms in each square bracket cancel out. Therefore, we conclude that the coupled-wave 

theory presented here conserves the total power and is consequently self-consistent. 



Appendix IV 

Expressions for Coupling Coefficients 

A. Coupling Coefficients Between TE Cylindrical Waves

According to Eq.(1.37) in Chapter 1, the coupling coefficients for TE-cylindrical waves
are defined by 

2

1-
Trlp,q)TETE = 2..,. A(q)TEA(p)rn* (ro2Eoµo) d AE( ) 7'fl!7TE*
K.µ:n Vn ,or Vn µn z L1 r,z LiV Lµ • TE TE (�v �µ )(roEo) --

The R's describe the radial dependence of the cylindrical waves with 

(A4.1) 

(A4.2) 

where �1)(�r) and H�2)(�r) are the Hankel fonctions of the first kind and the second 
kind, respectively. The A's are normalization constants defined by 

1E 2

1 (p)IBl2- <�µ) Aµ -------
n f-1 1El2 8roµ0 __ z� dz

(A4.3) 



xl 

'JE(+) 'JE(-) 'JE(+) 'JE(-) 

To simplify the expression, we set Avn = Avn and Aµn = Aµn and substitute 

Eq.(A4.3) into Eq.(A4.1) to obtain 

� r Ae(r,z) V,,'ZJl'" dz 

""' 7tf -----;::::::========-

4 J L rzmec1z L l�dz

(A4.4) 

where we have used the approximation that �ê/(E+�E) <<1. 

Define 

(A4.5a) 



(q) TE 
( )* TE 

xli 

( )m'IE ,J TE TE dR (� r) dR P (� r) TE * rn F p,q (r)=7tr � � { n v n µ +(___E_)(___E_)R(q)(� r)R(p) (� r)}µn,Vn 2 v µ TE TE TE TE n v n µ 

d(�vr) d(�µr) �vr �µr 

Then, Eq.(A4.4) becomes 

and 

(p,q)TE'IE (p,q)TE'IE 'JETE 

Kµn,vn = F µn,vn (r) Kµv (r)

From the recurrence formulae of Hankel fonctions [90], we have 

n R (p)( 
0

) = l ( R (p)(x) + R (p) (x)]
X n X 2 n-1 n+l 

R (p)'(x) = !_ [ R (p)(x) - R (rc) ( ) ]n 2 n-1 n+l X 

Substitution of Eq.(A4.8) into the right-hand side of Eq.(5.b) yields 

(A4.5b) 

(A4.6) 

(A4.7) 

(A4.8) 

(A4.9) 
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B. Coupling Coefficients For TM-Cylindrical Waves

The coupling coefficients for TM-TM coupling are given by Eq.(1.39) in Chapter 1, 
i.e.

where the A's are normalization constants defined by 

'!M(+) '!M(-) 

As in the case for TE cylindrical waves, we set Avn = Avn 

(A4.10) 

(A4.ll) 

1M(+) TM(•) 

and Aµn = Aµn . 
1M 1M 

Substituting Eq.(A4.11) into Eq.(A4.10) and using the notation x=�vr y=�µ r, we
obtain 

,., 



TM TM 
K(p,q)TMTM - 1tf �V �µ 

µn,vn 

- 4 JL dz e 1z.if dz e fzm'

f -

(q) (p)* n.t.,TM* 
. 

__ 
dz �E(r,z) {Rn (x) Rn (y) Zv Lµ 

In the last step, we have used Eq.(A4.8). 

xliii 

(A4.12) 



Defining 

( x = �v r and 

Eq.(A4.12) can be simplified as 

• 

' (p,q)lMIM ~Cp,q) ~ 

F(p,
q) ( ) K (r)K (r) = Fµn vn(r) K

µ
v(r) + µn,vn r µv 

µn,vn , 

xliv 

(A4.13a) 

(A4.13b) 

(A4.13c) 

(A4.13d) 

(A4.14) 



C. Coupling Coefficients For TE-TM Coupling

and 

The coupling coefficients for this case are ( see Eq.(1.41) in Chapter 1 ) 

1M 1E 

xlv 

(A4.15) 

(A4.16) 

Let x=Pv r y=Pµ r and substitute the normalization constants from Eq.(A4.3) and 

Eq.(A4.11) into Eq.(A4.15), we obtain 

(A4.17) 



for 8.e/(E+8.E) <<l. 
Using the following notation,

weget

1M IB 

( x=�v r and y=�µ r )

f - ctz

™ 
TE* 

8.E (-V-) Zµ dz
1E1M 1 k0 

-- dz 
K (r) = - _ __;__ ---==========-

µ,

v 

2 � ,J 1-�z�f dz r1z:12dz 
-00 .. oo 

(p,q)TETM (p,q)lETM 1E1M 
Kµn,vn = F µn,vn (r) Kµ)r)

Eq.(A4.7) allows us to obtain

dR (p)*( ) dR (q\x) 
F

(p,q)'ŒIM(r) = (
7t) Yxv[(�) R(q)(x) n y + n (�) R(p)*( ) ]µn,vn 2 y 

X 
n dy dx Y n Y 

Similarly, Eq.(A4.16) can be expressed as

with

(p,q
)TMIE 

(p,q)ThITB 1MIE 
Kµn,vn = F µn ,vn 

(r) Kµ,v(r)

xlvi

(A4.18a)

(A4.18b)

(A4.19)

(A4.20)

(A4.21)



and 

(p,q)TM'IE 7t ,r=-: (p )• (q) (p )• (q) F µn,vn 
(r) = 4 Y xy [ Rn-1 (x) Rn-l(Y) - Rn+l (x) Rn+1(Y)] 

1M 1E 

( x=�µr , y=�v r )

xlvii 

(A4.22a) 

(A4.22b) 

Eq.(A4.6), Eq.(A4.14), Eq.(A4.19) and Eq.(A4.21) can be expressed in a unified form 
as: 

K(p,q)cr-c = F(p,q)cr-c(r) Km (r) µn,vn µn,vn µ,v ( cr=t=TE or O':;f:'t, with cr and 't=TE, TM) (A4.23a) 

~(p,q)ITT ~ m (p,q)cr-c m 
= Fµn,vn (r) Kµ,v(r) + Fµn,vn (r) Kµ,vCr) (cr = 't =TM ) (A4.23b) 



Appendix V 

Derivation of Large Radius Conditions 

Here, we derive the condition for the large radius approximation to be valid. Using the 
notations of [82], we have 

(A5.la) 

(A5.lb) 

where Cn(Jjr) is the amplitude and ôn(Pr) is the phase angle of the Hankel fonctions. 
Substitute Eqs.(A5.l) into Eqs.(2.27), we obtain 

cr 
p�+:)crcr(r) = F�-,�crcr*(r) = 

nP r { [ Cn-1CP 
cr

r) ]
2 

+ [Cn+1CP
cr

r) ]2
}' ' 

4 

(a=TE or TM) 

(a=TE or TM) 

cr 
~<+,+)crcr ~<-,-)crcr* nP r cr 2 
Fnn (r)=Fnn (r)=--[CnCP r)] ' ' 

2 

cr 
a ~<+,-)crcr ~<�.+ )crcr* np r cr 2 j28 (� r) Fnn (r)=Fnn (r)=---[Cn(P r)] e n ' ' 

2 

( a=TM ) 

( a=TM ) 

(A5.2a) 

(A5.2b) 

(A5.2c) 

(A5.2d) 



0 T 

- Cn+1CP c;r) Cn+
l(� 'tr) ej2[ Ôn+1(� r)-Ôn+1(�r)]

}

xlix 

( crt't) (A5.2e) 

0 T 

- Cn+iC� c;r) Cn+l(� 'tr) ej2[ Ôn+1<� r)+Ôn+1(�r)]
}

( cr=1;t ) (A5.2f) 

For �r > n;?: 1 and qn = ✓ (�r/n)2-1 >> 0.6/Yn, we have [90] 

Putting Eqs.(AS.3) into Eqs.(AS.2) and after some calculations, we can obtain 

I
F

(+ ,+)crnl = 1 ph-)crcr*I ,., 1 + .!_ (n 2 + 1)n,n n,n 2 2 
(�r) 

IF(+,-)crcrj = lp<-,+)crcr*I "" 1 -.!_ (3n2-l)n,n n,n 2 2 
(�r) 

l~(+.+)c;c;l-1~<-.-)crcr*I- 1 n 2Fnn -Fnn -1+-2(-) , . �r 

( cr=TE or TM ) 

( cr=TE or TM ) 

(cr=TM) 

(A5.3a) 

(A5.3b) 

(A5.4a) 

(A5.4b) 

(A5.4c) 



l~(+,-)crcrl-1~(-,+)crcr*I- 1 n 2 
F n ,n - F n,n - 1 + 2 ( �r ) (cr=TM) 

I
F

(+,+)cr'tl = I
F

<-,-)cr-rl
"" 

_n_
n ,n n ,n 2 

(�r) 

IF
(+.-)cr-rl = lp<-.+)cr'tj

"" 2n
n,n n ,n 

�r 

( cr=TE, 't=TM and vice versa) 

( cr=TE, 't=TM and vice versa) 

1 

(AS.4d) 

(AS.4e) 

In deriving Eqs.(AS.4e)-(AS.4f), we have assumed that the birefringence between TE and 
1E 1M 

TM modes are small with � ::::: � =� •. For simplicity, we have omitted the superscripts" 

cr " and " 't " for the propagation constants. No confusion should ensue. Note that 

Eq.(AS.4f) approaches zero as ( 1/�r) for large �r, which is much slower than Eq.(AS.4e). 

As a reasonable approximation, we set that the residual terms on the right-hand side of 

Eqs.(AS.4a)-(AS.4f) be less than 10%. Take Eq.(AS.4a) as an example, we require that 

2 
.!_(n+l)�0.1
2 (�r/

Correspondingly, we obtain 

�r � 20 n 

or (AS.Sa) 

for Eq.(AS.4b) (AS.Sb) 

for Eqs.(AS.4d)-(AS.4d) (AS.Sc) 

for Eq.(AS.4e) (AS.Sd) 

for Eq.(AS.4f) (A5.5e) 

For the coupling between cylindrical waves of the same polarization ( TE-TE coupling 

or TM-TM coupling ), Eqs.(A5.5a)-(A5.5b) can be combined together to give the 

following criterion for the large radius approximation: 



li 

(A5.6) 

which is valid for n ;;:: O. When r is larger than ro, the large radius approximation is very 

good as shown in Tables 2.1-2.2. 

For the coupling between cylindrical waves of different polarizations ( TE-TM coupling 

), the following condition should be used in judging the validity of the large radius 

approximation 

20n 
r;;::r0

=--

p (A5.7) 

This condition is detailed in Table 2.3. For comparison, we also used Eq.(A5.6) to estimate 

the amplitudes of the cylindrical-wave factors for TE-TM couplings at Pro. The results are 

listed in Table 2.4. 
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Bell-N orthern tests new chip w/b/t<z

Device holds promise for ph�ne fibre optics in the home 
BY LAWRENCE SURTEES 
Telecom.mu'nications Reporter 

Scientists at Bell-No:rthem Re­
search Laboratories Ltd. say they 
have successfulfy tested a new light­
emitting laser microchip that will 
make it affordable to bring fibre 
optics to telephone subscribers' 
homes. 

Fibre optics to the home would al­
low phone companies to compete 
with cable-television companies and 
deliver a greater number of video sig­
nais on demand via a phone line. 

The new laser chip has the poten­
tial to slash the costs of current fibre­
optic electronic systems, Peter Sco­
vell, vice-president of advanced sys­
tems and technology at BNR, said in 
an interview. 

The Ottawa-based research and 
development ann of Northern Tele­
com Ltct. released details. of the new 
chip yesterday during a visit to the 
labs by Russian President Boris Yelt-
sin. · , :' 
· Northem Telecom, which is based 

in Mississauga, is a unit ofBCE Iric., 
a Montreal-based conglomerate. 

The new laser chip, called a cir­
cular grating surface emitting laser, 
is smaller than a grain of salt. . ; . 

Unlike conventional laser-emit­
ting chips, which emit a beam··of.
light from the side, the rlar grat-

ing etched on to the surface of the 
microchip emits a more powerful 
beam from the top of the chip. 

"We believe the new technique
will make it easier, and cheaper, to
make the electronic couplers re­
quirèd to connect fibre-optic cables 
to the electronic devices that power
them," Mr. Scovell said. · 

Fibre optics are hair-thin strands
of glass that use laser-generated 
pulses of light to transmit informa-
tion. 

However, more' than 70 per cent of
the current cost of fibre-optic tele­
phone systems is for the packaging
systems· that precisely join a fibre­
optic cable to the modules con­
taining laser-emitting chips. 

. - Those modules are needed to con­
vert electrical signais into light pulses
so that information can be trans•
mitted along the fibre. 

"Conventional laser-emitting
chips generate a divergent beam of
light." 

"lt is not.only essenti�, but very
difficult, to precisely align the two
surfaces," Mr. Scovell said. 

The new BNR technique using the
gratings, however, makes it much
· easier to align the fibre and the laser
chip. 

:Tot circular grating, which is a
fra.ction of a millimetre in diatneter,
rdembles the tracks of· a compact

dise with hundreds of concentric
grooves. 

It reflects a two-dimensional beam 
of light upwards into a three-dimen­
sional beam, with a surface aréa
more than 10,000 rimes greater than 
conventional lasers, Mr. Scovell 
said. 

"We have quite a lot of work to do 
to move to production-scale vol� 
urnes, but we believe the new chip 
will greatly reduce the cost of fibre­
optic systems for phone companies," 
he said. 

Although fibre-optic systems are
now used by phone companies and
large businesses for high-volume �d 
high-speed networks, the high cost 
has prevented phone comparues
from bringing fibre optics the last few
dozen mettes to each subscnber's
phone. 

Using conventional electronics, it
costs a phone company about $1,500
for the fibre-optic cable and elec­
tronic modules for each phone, com­
pared with about $150 for compara­
ble systems based on copper wire. 

Mr. Scovell said it is too early to
say how much the new chip may
trim from those costs. 

"Obviously, we have to achieve
more than a 10-fold reduction in
those costs, and we think this new
chip will take us a good part of the
way toward that goal." 






