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SOMMAIRE 

La simulation numérique de l'écoulement de fluide dans une turbomachine 

est extrêmement difficile à cause de la complexité des phénomènes ainsi que de 

la géométrie. Aborder ce problème dans sa totalité, comprenant le couplage 

des diverses interactions, est impossible dans le contexte des outils d'analyse 

et de calcul dont nous disposons aujourd'hui. Ce travail concerne donc un 

volet de cet ensemble, soit plus spécifiquement l'interaction du rotor avec le 

stator. Un examen de cette configuration révèle un écoulement tridimensionnel 

dont la co'mplexité de la structure découle de l'interaction entre l'écoulement 

à la sortie du stator et les parois en mouvement du rotor. Cette interaction 

est essentiellement tridimensionnelle et de nature transitoire, caractérisée par 

des phénomènes visqueux, turbulents, sur lesquels se superposent, à une autre 

échelle, des écoulements secondaires. 

A ce Jour, ce problème meme ainsi délimité a fait l'objet de très peu 

d'études et généralement celles-ci sont tellement réductricès que l'on obtient 

peu d'informations détaillées. Il est clair qu'une approche basée sur la résolu­

tion des équations complètes est inabordable avec le niveau des moyens infor­

matiques courants. Pour réaliser en pratique des simulations numériques avec 

les ressources de calcul disponibles, une stratégie utilisant un modèle simplifié 
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de l'interaction est nécessaire. On retrouve dans la littérature une hiérarchie 

de modèles classifiés en quatre familles selon la nature de l'écoulement: po­

tentiel, rotationnel non-visqueux, visqueux et turbulent. Pour chacune de ces 

familles, un autre niveau de classification est possible selon la géométrie ou la 

dimension du problème: écoulements bidimensionnels, qua.si-tridimensionnels 

et tridimensionnels. 

Les techniques de calcul basées sur des approches utilisant diverses combi­

naisons de ces niveaux d'approximatiàn ont donné lieu à des outils d'analyse et 

de design pour les turbomachines. Mais, jusqu'à ce jour, aucune ne prenait en 

compte la nature de l'interaction stator-rotor qui est essentiellement d'origine 

instationnaire. Cette dernière caractéristique est la cause des plus grandes 

difficultés. Plusieurs méthodes ont été analysées dans l'optique de pallier à ce 

problème, et, la méthode de la moyenne du passage s'est avérée une des plus 

intéressantes. Dans cette méthode, les effets produits par le mouvement des 

pales est pris en compte par une distribution de forces volumiques externes. 

L'expression pour ces forces peut être obtenue par diverses méthodes issues de 

considérations de la cinétique ou de la dynamique de l'écoulement. Des études 

antérieures ont montré que la prise en compte uniquement de la cinétique 

ne suffisait pas. Dans ce travail on propose une méthode, pour le calcul de 

ces forces, basée sur une intégration des équations du mouvement dans la di-
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rection circonférentielle, et ils incorporent alors plus fidèlement la physique 

de ces dernières. Sur le plan du modèle ces termes se reduisent à des termes 

sources dans les équations du mouvement dans un plan méridional. On obtient 

alors deux types équations: les équations tridimensionnelles et les équations 

méridionales. Cette approche, pour la clôture du système d'équations, est plus 

rigoureuse que les autres approches utilisées jusqu'à présent. 

Cette méthode a été utilisée dans plusieurs applications avec des écoule­

ments non-visqueux. Cette étude comprend une extension de cette méthode 

pour les écoulements visqueux, et son intégration dans une méthodologie de 

calcul qui couple les solutions tridimensionelles dans le stator et dans le rotor 

par le biais de la solution dans le plan méridional modifiée par les termes 

sources. 

Ces équations pour ces trois solutions ont été formulées en variables vor­

ticité-potentiel vecteur, et vorticité-fonction de courant, respectivement. Ces 

formulations présentent certains avantages sur le plan calcul et mémoire, par 

rapport aux formulations en variables primitives. 

La formulation vorticité-potentiel vecteur est l'extension en trois dimen­

sions de la formulation vorticité-fonction de courant traditionnelle en deux di­

mensions. Elle suppose une décomposition en deux parties du vecteur vitesse; 



une partie potentielle et une partie rotationnelle. Ensuite, la pression est 

éliminée du système en prenant le rotationnel du mouvement. La difficulté 

majeure dans cette approche réside dans le choix et l'imposition de condi­

tions frontières du potentiel vecteur pour obtenir un problème bien posé et 

une solution unique. On discute dans ce travail des conditions de compati­

bilité de ces relations et on propose un ensemble admissible pour les équations 

tridimensionnelles et pour les relations méridionales. 

Pour la solution de ces équations, une procédure de calcul est proposée et 

mise en oeuvre. Ceci comprend la résolution de deux écoulements tridimen­

sionnels, respectivement dans les canaux inter-aube du stator et du rotor. Le 

domaine de calcul est borné par les pales, le moyeu, le carter et des surfaces 

qui définissent l'entrée et la sortie. On note qu'en posant respectivement ces 

dernières le long du bord d'attaque et de fuite , on contourne le problème des 

conditions frontières périodiques. Ces solutions sont ensuite utilisées, par une 

procédure d'intégration, pour évaluer les forces volumiques qui s'ajoutent aux 

termes des équations du mouvement du plan méridional. La solution de ces 

équations ainsi modifiées permet de poser les conditions de sortie et d'entrée 

aux écoulements dans le stator et dans le rotor respectivement, et, ainsi réaliser 

le couplage nécessaire au calcul de l'interaction. Afin de faciliter le transfert 

d'information entre les solutions tridimensionnelles et l'équation méridionale, 
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les maillages pour ces deux domaines coincident. 

Le processus global, consiste à calculer les solutions tridimensionnelles avec 

des conditions axisymétriques obtenues de la solution méridionale à ces sta­

tions. Après le calcul des termes volumiques, l'équation méridionale modifiée 

est calculée. Outre les composantes axiale et radiale, cette équation donne 

également la composante circonférentielle. Cette dernière traduit l'effet de ro­

tation induit par les pales. Le procesus itératif est répété jusqu'à convergence, 

définie lorsque deux itérées successives ne changent pas. 

Pour la résolutions numérique de ces équations, on a mis en oeuvre une 

méthode implicite pour une prise en compte des conditions frontières. Il s'agit 

d'une méthode directe utilisant une décomposition LU de la. matrice globale. 

Quoique plus exigeante sur le plan mémoire, cette méthode, contrairement aux 

méthodes itératives de type du point fixe assure la stabilité de la solution. 

Une procédure globale qui intégre les divers éléments a été developpée et 

validée sur quelques configurations simples. Ensuite une application pratique, 

la pompe du NEL a été calculée. Il s'agit du modèle expérimental le mieux 

adapté au dévelopement numérique proposé. Celle-ci comprend un rotor à 

cinq pales et un stator à neuf pales. Les mesures expérimentales utilisées 

pour compléter la comparaison avec les calculs numériques sont les vitesses 
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mesurées, à plusieurs sections du rotor en mouvement à 1200 tours par minute 

et pour un nombre de Reynolds de l.5xl06
• 

Le domaine de calcul sur la plan méridional est divisé en cinq parties; la 

conduite en amont du rotor, le canal inter-aube du rotor, la conduite entre 

le rotor et le stator, le canal inter-aube du stator, et finalement la conduite 

d',évacuation. Le maillage est de 13x59 sur le plan méridional et de 13xl5xl5 

et 13xl3x21 pour le rotor et le stator respectivement. 

Les comparaisons entre les mesures expérimentales et les résultats numéri­

ques sont faites à plusieurs sections de la machine. Pour une section donnée 

on a comparé, sur plusieurs coupes inter-aubes (circonférentielles), les profils 

de vitesse normalisé dans la direction axiale. Dans les résultats mrmériques 

on retrouve les caractéristiques générales de l'écoulement, c'est-à-dire une 

_accélération sur l'extrados et une décélération sur l'intrados. Quantitativement 

les comparaisons sont bonnes dans le coeur de l'écoulement, avec des différence 

dans les couches limites. On donne deux raisons; d'abord la différences dans le 

nombre de Reynolds entre l'écoulement laminaire du calcul et l'écoulement en 

laboratoire qui est nécessairement turbulent. Ensuite dans le modèle numéri­

que, on suppose aucune fuite entre les pales et le carter de la pompe. Dans la 

réalité, la fuite cause une modification importante de la structure de l'écoule­

ment secondaire, ainsi que des couches limites plus importantes que celles 
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prédites. 

Les résultats de ce travail peuvent être améliorés selon plusieurs aspects. Le 

premier est du point de vue de la technologie de calcul utilisé, pour résoudre 

les systèmes matriciels, et consiste à remplacer le stockage en ligne de ciel 

par un stockage compressé en rangée pour minimiser la mémoire requise. Ce 

changement implique l'utilisation d'une technique de calcul adapté à ·cettè 

méthode de stockage. Nous proposons de tester des variantes du gradient 

conjugué comme CGS, CGSTAB, LSQR, et GMRES. Le second point consiste 

à augmenter les domaines tridimensionnels du rotor et du stator pour couvrir 

l'ensemble du domaine de calcül. Ceci permettra d'éliminer le calcul de la 

solution méridionale et ainsi améliorer le couplage entre les solutions du stator 

et du rotor. 



ABSTRACT 

In this thesis, a physical and mathematical model based on a passa.ge­

a.veraged vorticity-potentia.l formulation for the simulation of flows in a rotor­

stator stage of a turbomachine is presented. The passage-a.veraged governing 

equations have been developed by taking into account the viscous effects 

through the three-dimensional Navier-Stokes equations applied to flows within 

blade rows. 

An implicit three-dimensional algorithm has also been developed for sol­

ving, within the blade passages, the three-dirnensional Navier-Stokes equations 

in terms of vorticity, scaJar and vector potentia.ls. This algorithm is coupled 

with the passage-averaged governing equations to fonn a closed set of equations 

describing rotor-stator fiow interactions. 

Validation of the numerical algorithms is primarily performed on a num­

ber of test problems, including the developing flows in a channel, rotating 

annulus, straight and curved ducts. A more realistic test comput3:tion for an 

impeller with planar blades completes the validation. The numerical results 

are compared with available analytical solutions and experimental data. 
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Finally, the model has been used to predict flow within a mixed-flow pump. 

The results were compared with the measurements provided by the National 

Engineering Laboratory. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

The numerical simulation of the fluid dynamics in turbomachines is a 

difficult subject due to three-dimensional viscous effects, and further compli­

cated by the rotor-stator flow interaction. 

It is observed that(Sieverding 1985), within rotor blade passage, the flow 

has components of vorticity along the streamwise direction resulting partly 

from the blade curvature and the relative movement of the blade with respect 

to the shroud. This generates enough distortion of the boundary layer to 

induce significant secondary flows. 

In the region of the rotor near the shroud, tip-leakage flow and the scrap­

ing of the vortex play a major role in shaping the three-dimensional structure 

of the flow. Tip-leakage flow results from the pressure difference which exists 

between the pressure and suction sides of the blade. The scraping of the 

vortex is caused by the relative motion of the shroud arid occurs near the 

shroud and the pressure side of the blade. These flow phenomena give rise 
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to an intense mixing region. 

Within a rotor-stator configuration, the flow field is unsteady, spatially 

aperiodic and highly rotational. This makes the coupling between the stator 

and rotor flows in a multiblade row an extremely difficult problem to solve 

and for which there has been very little analysis. 

Because of the special characters and the complexity of flow behaviour in 

turbomachines, appropriate models need to be implemented. 

1.2 Literature Survey of Numerical methods for Tur­

bomachinery 

From the numerical methods and computirig systems points of view, the 

resolution of the full equations of motion for a multistage turbomachine is a 

formidable if not impossible task. To achieve a numerical simulation within 

current computational capabilities, reduction of the complexity is required 

to simplify the governing set of equations by appropriate modelling and ap­

proximations. In this section we review the different levels of approximation 

available and their implications. 
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1.2.1 Levels of Approximation 

There are, generally, two levels of approximations; one is the dynamical 

level and the another is the spatial level of approximation. Most of the 

existing fl.ow models can be characterized by a combination from these two 

levels. 

The dynamical level of approximation is performed with regard to the 

physical properties of the flow (potential, rotational, viscous, turbulent ... ) 

by investigating the order of magnitude of certain forces or terms of the 

governing equations to arrive at a simplified system of equations. 

For fl.ows with a predominant direction and with no separation or with a 

small amount of back-flow, the viscous and turbulent forces can be simplified 

by neglecting diffusion in the streamwise direction. This is the Thin Shear 

Layer approximation. If, furthermore, only the pressure field is treated as 

elliptic while all other variables are considered to have parabolic behaviours, 

the Partially Parabolic approximation is recovered. 

One other extreme case of approximation can be obtained by totally 

neglecting the viscosity and turbulent forces. This is the well know Inviscid 

approximation. 

There is another approximation which has been used in multistage tur­

. bomachines to predict rotor-stator interaction based on some average of the 
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flow properties. In this class of approximation the blade-to-blade effects are 

replaced by external forces which are coupled to the through-flow govern­

ing equations. To evaluate these external forces, a closure model must be 

developed. This approximation was initially proposed by Bosman & Marsh 

(1974) for applications in through-flow calculations and subsequently used by 

Bosman & El-Shaarawi (1977) and Jennions & Stow (1985a,1985b). Based on 

the same principle, a more elaborate model has been developed by Adamczyk 

(1984) and applied to the full three-dimensional model. This approximation 

has shown its advantages and its flexibility to simulate flows through multi­

stage machines but requires computer resources not commonly available. 

The spatial level approximation is based on the spatial representation 

of the flow. The resulting model equation system can be characterized as 

full three-dimensional, quasi three-dimensional, two-dimensional or even one­

dimensional. 

Clearly, a higher level of approximation is always the most attractive 

target. But it is not always possible to provide satisfactory numerical results 

to the most complete set of equations since they demand large computer 

resources (Chapman (1979)). So, progress in this field will depend largely 

on innovative numerical schemes based on analysis and contributions to the 

lower level of approximations. 
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1.2.2 Numerical Methods 

Despite the numerous efforts made towards the solution of the fl.ow fields 

in turbomachines, direct simulation of viscous fl.ow is still not routinely used. 

Furthermore, most of the methods which have been developed are still mostly 

limited to inviscid fl.ows. 

However, along with the inviscid fl.ow approximation, there are a great 

number of numerical methods based on the Euler equations, the stream fonc­

tion equations and the potential equations. A thorough review of the inviscid 

approximation as well as the viscous approximation can be found in McN ally 

& Sockol (1985) and Hirsch & Deconinck (1985). 

The development of the through-fl.ow calculations can be traced back to 

the work of Wu (1952), in which a steady inviscid fl.ow solution is calculated 

on the hub-to-shroud S2 surfaces and blade-to-blade S1 surfaces. Three­

dimensional calculations can be performed by iteratively computing the two 

families of intersecting streamsurfaces (Krimerman & Adler {1978) and Wang 

et al. (1985)). In the quasi-three-dimensional approximation, it is assumed 

that the S1 surfaces are surfaces of revolution and only one S2 surface is used 

(Wang et al. (1985) and Jennions & Stow (1985a, 1985b)) 

In the work of Jennions & Stow (1985a, 1985b), the effects of the shear 

stress have been considered using the consistent loss model. The resulting 
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equations are still in inviscid form, but with a dissipative force term related 

to the entropy, blade force and viscous effects which can be provided from 

a blade-to-blade calculations. However the details of the losses due to the 

shear stresses are not considered so that this model is not able to predict 

correctly the fl.ows in the region with strong shear stress gradients in the 

vicinity of the blade surfaces. 

It is possible to incorporate the effects of the end-wall boundary layers 

into the quasi-three-dimensional model system by using the viscous-inviscid 

interaction method. Details of these approaches are given in Stow (1985) 

and Hirsch & Deconinck (1985). 

Most of these methods have been used effectively to deal with the in­

viscid flow through turbomachines and can be credited with many interest­

ing results to both analysis and design problems. A more complete three­

dimensional average-passage equation system has been developed by Adam­

czyk (1984), especially derived for analyzing viscous flows in multiblade row. 

Its applications include the calculation of the inviscid flow through a coun­

terrotating propeller (Adamczyk et al. (1986) and Celestina et al. (1986)) 

and the simulation of the viscous fl.ow in a axial flow turbine (Adamczyk et 

al. (1990). 

Based on the v1scous through-flow approximation, Garon (1987) and 

Garon et al. (1989) have imposed an additional constraint equation to the 
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Navier-Stokes equations to model the blade forces. Such blade forces account 

for the pressure jump between pressure side and suction side. The resulting 

system of equations is solved by the finite element formulation with mixed 

and penalty method. 

In two-dimensions, many of the early works used the vorticity-stream 

fonction approach for incompressible flows. Three-dimensional situation, in­

compressible fl.ows may also be formulated in terms of the vorticity and a 

three-dimensional analogue of the stream fonction, referred to as the vector­

potential, which is a solenoidal vector field as indicated by Aziz & Hellums 

(1967). But most three-dimensional fl.ow analysis have been limited to the 

primitive formulation. The vorticity-potential approach has not been success­

folly implemented due to difficulties in the specification of boundary condi­

tions on the vector potential as well as the increased number of unknowns 

and equations. However, Hirasaki & Hellums (1968, 1970) have shown that 

a simple evaluation of the boundary conditions is possible if one introduces 

a scalar potential. Further discussions on this subject and its applications to 

duct flows can be found in Wong et al. (1984, 1986) and Yang & Camarero 

(1986, 1991). The work of Yang & Camarero shows that this approach is 

also accurate and efficient for analyzing interna! fl.ows in turbomachines. 
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1.2.3 Through-Flow Approaches 

The through-flow approach has played an important role in simulating 

flows in multistage turbomachines. There are in general two types of through 

flow approximations. One is the streamsurface technique and another is the 

passage-averaged technique. 

In the streamsurface technique, the conservation equations are expressed 

directly on the volume enclosed between two streamsurfaces with a given 

circumferential thickness. To do this, a streamsheet thickness· must be in­

troduced. Both the streamsurface and the thickness are :B.ow dependent and 

have to be deter:mined by blade-to-blade calculations. 

The passage-averaged representation is obtained by integrating the flow 

properties over the circumferential direction of the blade row. This means 

that the passage-averaged :B.ow properties are defined on the average merid­

ional cross-section of the turbomachine. If the flow is assumed to be periodic 

from one blade passage to another, the passage-averaged flow properties can 

be represented by integration from the pressure side to suction side of the 

blade. In the derived formulations, a tangential blockage parameter, which is 

a geometrical factor, is introduced to replace the flow dependent streamsheet 

thickness in the streamsurface formulations. Details about the through flow 

approach is reviewed in Hirsch & Deconinck (1985). 
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Numerical methods for solving the Navier-Stokes equations are generally 

classified in two groups. The first group is the primitive variable formula-

, tion in which the primitive variables, the velocities, pressure, density and 

temperature(or energy) are used as unknowns. The second group is the 

non-primitive variable formulation in which at least one of the unknowns 

is derived from primitive variables. These variables include the vorticity, 

stream fonction and potentials. 

1.3.1 Primitive Variable Methods 

The primitive variable methods are widely used for bath compressible and 

incompressible fluid flows. For the compressible Navier-Stokes equations, 

various numerical schemes have been developed as in Briley & McDonald 

(1977), Bearn & Warming (1978), Shang et al. (1980), Pulliam & Steger 

(1980), and Obayashi & Kuwahara (1986). 

For incompressible viscous flows, one of the major problems related to 

the primitive variables is the solution method of the pressure field which 

should be used to guarantee a divergence free velocity field. The use of 

a Poisson equation for pressure was proposed by Harlow & Welch (1965). 
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The widely used SIMPLE algorithm has been developed by Patankar (1980). 

An intensive discussion about the difficulties using this approach was given 

in Gresho (1987). To achieve a greater computational efficiency, a method 

using artificial compressibility to impose mass conservation was proposed by 

Chorin (1967). A similar method which is called the pseudo-compressibility 

method was developed by Steger & Kutler (1977). Related discussion and 

applications of this approach can be found in Chang & Kwak (1984) and 

Kwak et al. (1984). 

1.3.2 Non-Primitive Variable Methods 

The vorticity-stream fonction formulation is frequently used for solving 

two-dimensional, incompressible flows. This is a well-known non-primitive 

variable method and a comprehensive analysis of this formulation has been 

given by Roache ·(1982). There are some other mixed variable methods, such 

as the vorticity-velocity and vorticity-potential method. These methods are 

particularly applicable for three-dimensional problems. 

Fasel (1976) appears to be among the first to use the vorticity-velocity for­

mulations with which he investigated the stability of two-dimensional bound­

ary layer using an iterative finite difference scheme. Dennis et al. (1979) 

extended this method in a similar way for a three-dimensional calculation of 
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steady incompressible fl.ows. Finite elements approaches using the vorticity­

velocity formulation are reported by Guevremont et al. (1988, 1990). Gatsti 

et al. (1982), Farouk & Fusegi (1985), Speziale (1987) and Guj & stella 

(1988) also worked on this formulation. 

The vorticity-potential method was first employed by Aziz & Hellums 

(1967) to the numerical solutions of two- and three-dimensional equations 

of motion in transient laminar natural convection. In their studies, the ve­

locity is formulated in terms of a vector potential. This technique has been 

developed by Ozoe et al. (1976, 1985) and applied to various laminar and 

turbulent natural convection problems. 

Although the vorticity-vector potential formulation has been extensively 

analysed by Aziz & Hellums (1967) and Hirasaki & Hellums (1968), there 

have been some confusions and unnecessary complications over the bound­

ary conditions for the vector potential. Later, Hirasaki & Hellums (1970) 

realized that a simplification is possible if the velocity is decomposed in its 

irrotational and rotational parts by introducing a scalar potential as well as a 

vector potential. Since there are two potentials involved in the formulation, 

some authors call this method a dual potential method. Further discussions 

and applications can be found in the work of Richardson & Cornish (1977) 

and Wong & Reize (1986) with extensions to multiple connected domains, 

Aregbesola & Berley (1977) and Wong & Reize (1984) for internai straight 
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duct flows, Yang & Camarero (1986, 1990) for curved duct flows, Davis et 

al. (1989) for externai flow problems and Rao et al. (1989) for inviscid flow 

applications of this method. 

Although most of the non-primitive variable methods are developed for 

incompressible fluid flows, there have been some applications to compress­

ible flow problems. These include the work of El-Refaee et al. (1981), 

Morino (1985), Habashi et al. (1987), Gerard(1989) and Guevremont et 

al. (1990). Many of these work use vorticity-velocity method, while Ger­

ard 's work uses vorticity-potential method and shows the applicability of the 

vorticity-potential method to two- and three-dimensional compressible flow 

problems. 

1.4 Contribution of the Present Work 

The objectives of the present study are, taking advantage of the passage­

averaged through-fl.ow approximation and the vorticity-potential represen­

tation of the Navier-Stokes equations, to develop a numerical algorithm for 

the prediction of the flow in the configuration of a rotor-stator stage turbo­

machines and to provide a better understanding of the flow phenomena in 

turbomachinery blade passages and the rotor-stator interaction. 
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The vorticity -potential formulation of the Navier-Stokes equations are 

averaged by the passage-averaging procedure. The external forces are calcu­

lated from three-dimensional solutions within blade rows instead of approx­

imate blade-to-blade solutions or correlations. 

An algorithm has been developed to solve the passage-averaged equations. 

Also, an implicit -chree-dimensional algorithm has been developed for the 

three-dimensional predictions within blade rows. At present, this study is 

restricted to steady incompressible laminar flows. 

The main body of this thesis consists of eight chapters. Following the in­

troduction, chapter 2 states the basic three-dimensional incompressible gov­

erning equations in terms of the primitive variable, velocity and pressure, as 

well as in terms of vorticity, scalar and vector potentials. The curvilinear co­

ordinate form of these equations and boundary .conditions are also discussed 

in this chapter. In chapter 3, a passage-averaging procedure is described 

and the passage-averaged governing equations are derived directly from the 

three-dimensional equations. In chapter 4, an alternative form of the passage­

averaged equations is introduced. The curvilinear coordinate formulation and 

related conditions are also presented. In chapter 5, the coupling between 

the three-dimensional algorithm and the passage-averaged algorithm is ex­

plained. The numerical methods used in the present study are outlined and 

the procedures for the three-dimensional and the passage-averaged through-
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flow computations as well as for their coupling are described in chapter 6. 

ln chapter 7, numerical computations for validating the developed approxi­

mations are presented and compared with the available analytical solutions 

and measurements. The results for the NEL pump and comparison with the 

experimental data are presented in the chapter 8. 



Chapter 2 

Governing Equations in Three-Dimensions 

2.1 Introduction 

In this chapter, the three-dimensional Navier-Stokes equations for steady, 

laminar and incompressible fluid flow are presented. Before procee_ding to the 

description of these equations in terms of vorticity and potentials, the primi­

tive variables expression of these equations is presented. The introduction of 

the vorticity and the decomposition of the velocity field into a rotational and 

an irrotational part y ields the vorticity and scalar-vector potential formula­

tion for these equations. These are given in the second section. Finally, since 

body-fi.tted grids are used, the curvilinear coordinates formulation of these 

equations is also presented and related boundary conditions are discussed. 
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2.2 Primitive Variable Equations 

The governing equations for the viscous laminar incompressible flow of 

a Newtonian fluid are the Navier-Stokes equations which can be written in 

vector form as follows: 

Conservation of Mass: 

v. v·

Conservation of Momentum: 

av· 
+ (V* . v')V* 

at 

0 (2.1) 

(2.2) 

where the V*(x, t), p*(x, t) and F*(x, t) are the velocity vector, static pressure 

and body force fields respectively. z = (x1, x2 , x3) is a point in R3 , the

three-dimensional Euclidean space, t is time, p* and v* are the density and 

kinematic viscosity respectively. 

ln the present study, it is assumed that the fl.ow is steady and that the 

body force field is conservative (i.e. F* can be expressed as the gradient of a 

scalar fonction). Then the continuity and momentum equations (2.1),(2.2) 

can be simplified as: 

v.v• - o (2.3) 

(2.4) 
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where p• is the reduced pressure defined by: 

p" + p"q" (2.5) 

with 

F" -"vq* (2.6) 

In a non-inertial rotating coordinate system, the continuity equation 

keeps the same form with the absolute velocity vector replaced by a rel-

ative one. However, in the momentum equations, Coriolis and centrifugai 

forces are added to the left hand side of equation (2.4). These forces can be 

expressed as 

20* X U* (2.7) 

and 

(2.8) 

where u• is the relative velocity vector, n• is the angular velocity vector and 

w* its magnitude. The centrifugai acceleration (2.8) is conservative and can

be included into the pressure term by introducing another reduced pressure 

=• p as:

-• 1 * .2 .2- p - -p w r

- p* + p*(q* - �w*2r.2) (2.9) 
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Equations (2.3-2.4) can then be rewritten in a rotating coordinate system 

as follows: 

v-u· - o

(U* • V)U* + 20* x U*

(2.10) 

(2.11) 

A non-dimensional formulation of these equations is convenient. The 

characteristic length is chosen as the hydraulic diameter at the inlet cross 

section which is defined as 

4 x Area 
Perimeter (2.12) 

and the characteristic velocity is the mean normal velocity v� at the inlet

surface rin

v; = -A 
1 / n · V* ds
rea lrin

(2.13) 

Using these characteristic dimensions, the following dimensionless vari-

ables are introduced 

z• 
-

Dh*'
V 

v· 

-., Vo 

u 
U* 
-., Vo 

n 
n· 

vô/D'
( 

p 
p* - p� (2.14) 
1 * .2 -p Vo 
2 
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With these definitions, equations (2.3-2.4) can be non-dimensionalized as 

V-V

(V· V)V 

and for a rotating coordinate system, equations (2.10-2.11) as 

V•U - O

(U • V)U + 20 x U 

where 

Re -

is the Reynolds number. 

2.3 Vorticity-Potential Equations 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

There are generally two main difficulties related to the computation of 

incompressible flows. First, there is no evolution equation for the pressure 

and, second, the momentum equations must be solved subject to the con­

tinuity constraint. In two dimensions the vorticity-stream fonction method 

(Roache (1982)) is frequently used to overcome these difficulties. In such a 

formulation, the pressure is eliminated by cross differentiation over the mo­

mentum equations which yields a vorticity transport equation. Expressing 
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the velocity in terms of a stream fonction <p ensuring that it is divergence 

free, the continuity equation is satisfied automatically. The reduced govern­

ing equations involve only one vorticity transport equation and one poisson 

equation for the stream fonction. 

ln three-dimensions, the pressure is also removed by cross differentiation 

of the momentum equations, but the introduction of the stream fonction is 

not straightforward. One approach is to replace the velocity by the vorticity 

and vector potentials. The reduced equations then involve three vorticity 

transport equations and three equations governing the vector potential corn-

ponents (see Aziz & Hellums (1967)) 

Based on a carefol study by Hirasaki & Hellums (1968, 1970) and Richard­

son & Cornish (1977) on the boundary conditions, Yang & Camarero (1986, 

1990) have shown that the scalar-vector potential formulation is suitable to 

simulate internai fl.ows. The present study will incorporate most of their 

results and apply them to analyze the fl.ow of multistage turbomachines. 

Details about the mathematical derivations of the scalar-vector potential 

representation (or dual potential formulation) can be found in Hirasaki & 

Hellums (1970) and Yang (1988). Here, we just briefl.y state the basic ideas 

and the final complete set of equation. 

The basic idea of the scalar-vector potential method is a splitting of the 

velocity field into its rotational and irrotational parts which is based on the 
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Helmholtz's decomposition theorem. This theorem originally states that an 

arbitrary, bounded and continuously differentiable vector field V which is 

defined over the whole three-dimensional Euclidean space R3 and vanishes 

at infinity can be expressed as 

V -V</>+VxA (2.20) 

where </> is the scalar potential and A is the vector potential of V. Its gen­

eralization to an arbitrary subspace n C R3 and the related boundary con­

ditions with regard to three-dimensional solution of Navier-Stokes equations 

are given and discussed in Richardson & Cornish (1977) and Wong & Reize 

(1986). The analytical formulation for solving the three-dimensional steady 

incompressible Navier-Stokes equations (equations 2.14-2.15) is detailed in 

the following. 

The problem specification 

• The governing equations in primitive variables are (2.14) and (2.15).

• The flow domain is a bounded subspace n c R3 with boundary an.

• The boundary conditions on the velocity field is

where " is such that 

on an.

f n · vds - 0
lan 

(2.21) 

(2.22) 
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Formula Derivation 

In general the velocity field can be decomposed into two parts 

V=-V</>+VxA (2.23) 

where </> is a scalar potential field satisfy ing the Laplace equation 

0 m n {2.24) 

and Ais a vector potential field which is chosen to be solenoidal(or divergence 

free) 

V-A - O on n (2;25) 

and determined by the Poisson equation 

m n (2.26) 

where 

W - VxV (2.27) 

is the vorticity field. 

Clearly, equation (2.23) ensures that the continuity equation (2.14) is 

automatically satisfied, since the divergence of the curl of any vector field is 

identically zero and the Laplace operator over any scalar field is equal to the 

divergence of the gradient of this scalar field. 
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Taking the curl on both side of equation (2.15) and using the continuity 

constraint (2.14) gives the following vorticity transport equation 

(V· v')W - (W · v')V = �e v'2W. (2.28) 

Now the complete equation system in terms of the vorticity, scalar po­

tential and vector potential can be written as follows 

(V · v')W - (W · v')V 

V = -v'</J+v'xA 

(2.29) 

(2.30) 

{2.31) 

{2.32) 

For the application of the above equations within the rotor blade rows, 

it is necessary to describe them in a rotating frame of reference. Repeating 

the procedure previously applied to equations (2.17-2.18) yields 

(U · v')W 
R 

- (W 
R 

• v')U - 2(0 · v')U (2.33) 

(2.34) 

(2.35) 

(2.36) 

The relations between the variables in stationary and rotating frame of 

references are given in Appendix A. 
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2.4 Curvilinear Coordinate Formulation 

Body-fitted grids have one of the coordinate surfaces coinciding with the 

boundary of the physical domain so that irregular geometries can be trans­

formed into regular computational domains. There are, basically, three tech­

niques with which the body-fitted grid can be generated. They are the Con­

formai Mapping Technique, the Elliptic Differential Equation Technique and 

the Algebraic Technique. The last two are the most widely used techniques to 

generate body-fitted grid systems for the flow calculations in turbomachines. 

The Elliptic Equation Method requires the solution of coupled Poisson 

equations in the computational domain and generally produces a smooth 

curvilinear coordinate system. But it is the most expensive method for gen­

erating body-fitted grids, especially for three-dimensional grids in the con­

figuration of turbomachines. 

The Algebraic Technique generates body-fitted grids by using algebraic 

fonctions instead of differential equations and is much more economical. 

With a curvilinear coordinate system, the discretization of the governing 

equations and the programming of the code is an intricate task. To sim­

plify such a problem bath logically and mathematically, it is convenient to 

introduce a transformation with which the body-fitted grid in the physical 

domain is mapped into square grid in the computational domain. 
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The three-dimensional governing equations to be solved numerically total

seven equations for seven unknowns. These equations include three vorticity

transport equations, three poisson equations for the vector potential corn-

ponents and one Laplace equation for the scalar potential. Since they are

second order elliptic partial differential equations, it is convenient to write

them in one compact form as follows

where

s 8 2 s a � 'P; � i 'P; 0 

� a ia i + � 
c; a i + 

c;cp;
i=l X X i=l X 

(cpi, 'P2, 'Ps, 'P4, 'Ps, 'Pa, 'P1) - (wl w2
' ' 

8u1 

j = 1,2, ... , 7

ws AI
' ' 

8u2
A2 As 

' ' 

aus

</>) 

(2.37)

(c�, 0 C2, 0 Cs, 0 
C4, 

0 
C5, 

0 c6, c�) (Re ax1' Re ax
2' Re a x

s ' o, 0, 0, 0)

(cL i i i i i c�) -(Reui, Reui Reu', O, O, o,C
2, Cs, C4, C5, c6, ' 

(e1 , e2, es, e4, e5 , e6, e7) -(Reu1 Reu2 Reus w1 w2
' ' ' ' ' 

with

w 

A -

n -

O'lc -

(wl

'
w2, ws)

(A1,A2,As)

(n1, 02, ns)
s a1c s a1c 

I: w'�+2I:n'�
·-1 ·1-1c ax• ·-1 ax• 
,_ ,, ,_ 

k 1,2,3

0)

w3, 0)

(2.38)

(2.39)
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The velocity expression (2.32) can be rewritten as 

U
l 

8</) 8A3 8A2

8x1 
+

8x2 8x3 

u
2 8</) 8A1 8A3

(2.40) 8x2 
+ 8x3 8x1

u
3 8</) 8A2 8A1 

8x3 
+ 8x1 8x2

As stated before, equations (2.37) must be transformed to the computa­

tional domain. The transformation that maps the physical domain onto the 

computational domain can be expressed as 

i = 1, 2, 3 (2.41) 

By-using the chain rule, for any scalar fonction cp, the following relations 

are deduced 

where 

{3;' 

gmn 
-

h" -

8ç" 

8xi

3 8çm 8ç" 

� 8xi 8xi
•=1 

3 82çn

� 8xi8xi

•=1 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

Substituting (2.42-2.43) into equations (2.37) and (2.40) yields 

j = 1, 2, ... , 7 (2.47) 
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and 

(2.48) 

These are the curvilinear form of equations (2.29-2.32). 

2.5 Boundary Conditions 

The vorticity-potential formulation of the Navier-Stokes equations leads 

to a diffi.culty in determining boundary conditions for the potentials. Any 

specified velocity on_ the boundaries does not imply a unique scalar and 

vector potentials. A set of compatible restrictions on the potentials must 

be imposed. Discussions about the admissible boundary conditions for the 

potentials can be found in the work of Hirasaki & Hellums (1968, 1970), 

Richardson & Cornish (1977), Wong & Reize (1984) and Yang & Camarero 

(1986) 

It is convenient to use a local orthogonal curvilinear coordinate system 

(i;ti , Çt2
, i;n ) on the boundaries instead of the cartesian coordinate (x,y,z), 

where ti, t2 denote the two tangential directions and n the outward normal 
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direction. The expressions for gradient, divergence and cross product under 

this local system are given in Appendix B.

2.5.1 Scalar Potential Boundary Conditions 

If the velocity is given on the boundaries, Hirasaki & Hellums (1970) 

proposed the following boundary condition for the scalar· potential 

ïi · V</> = B</> = -ïi · V
an 

(2.49) 

The expression of the velocity (2.32) and equation (2.49) yield the follow­

ing compatible condition for the vector potential 

ïi · (V x A)= 0 (2.50) 

However such a condition is not suffi.dent to yield a unique vector po­

tential. Additional conditions must be supplied. Hirasaki & Hellums (1970) 

have shown that the vector potential is unique if the following conditions 

(2.51) 

and 

V-A=O (2.52) 
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are satisfied on the boundary surface. Richardson & Cornish (1977) have 

discussed its implementation to a multiple connected domain. 

However, the vorticity-potential formulation with these conditions a pp lies 

only to those problems with a known boundary velocity distribution. In such 

a case, the scalar potential equation 

v
2 </> o 

8</> 

an 
-n-V {2.53) 

can be solved independently. Otherwise, as mentioned by Wong & Reize 

{1984) and Aregbesola & Burley {1977), the scalar potential equation must be 

coupled with the vector potential and vorticity transport equations resulting 

in an increase of the computational time. For general flow problems, the 

velocity on all the boundaries cannot be always assumed to be known. An 

example is the three-dimensional duct flow with an arbitrary cross section 

where the exit velocity profile is not known a priori. 

Another problem associated with these boundary conditions, as indicated 

by Wong & Reize (1984) and Yang & Camarero (1986), is that an inaccurate 

.or even inconsistent scalar potential solutions will be encountered if</> exhibits 

high rate of local variations on the inlet or outlet planes. Indeed, such local 

variations exist when one imposes a parabolic velocity profile at the inlet or 

outlet of a rectangular duct. 
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In view of these diffi.culties, Yang & Camarero (1986) proposed an alter­

native way to impose the inlet and outlet conditions on the scalar potential. 

The right hand side of the Eq.(2.49) is replaced by the mean normal velocity 

(2.54) 

with 

(2.55) 

where S is the inlet or outlet boundary surfaces. 

IT there is no flow across the boundary, for instance a solid wall, equation 

(2.54) becomes 

(2.56) 

Obviously, this condition requires that ef, be solved only once and also 

highly decreases the local variation of <P on the boundaries. 

2.5.2 Vector Potential Boundary Conditions 

Since a Neumann boundary condition is used on the scalar potential at 

the inlet surface S equation (2.50) becomes 

Il • (V X A) = Il · V - Vn = Un (2.57) 
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This condition, as mentioned before, is not sufficient to yield a unique 

solution. However, it is shown below that if there is a vector E normal to S 

that satisfies the differential equation 

lÏ · [(V., X (V., XE)]= Un (2.58) 

then the vector defined by 

A.,
= v. XE (2.59) 

satisfies equation (2.57) and is tangential to S. V., is the surface gradient 

operator. Its expression in the local orthogonal coordinate system is given 

in Appendix B.

Indeed, if E is a solution to equation (2.58), since E = En:iï, then 

:iï • A
., 

= :iï • (V
., 

x E) = 0 (2.60) 

This means A., is tangential to S. From equation (2.60) and the expression 

of V.,, 

holds. 

:iï · (V x A.,) :iï · (V., x A.,) 

- :iï . [V Il X (Vs X E) l

Now let A., the tangential projection of A on the surface S, then 

:iï · (V x A) = :iï · (V x A.,) = 0 

(2.61) 

{2.62) 
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This shows that if one can solve equation (2.58), then one can get a 

solution to equation (2.57). 

Equation (2.58) can be written in a direct form 

This is a second order elliptic partial differential equation. To solve this 

equation, the necessary compatibility condition is 

or 

l ii · [v'., X (v'., X E))ds = l Unds

l ii · V ds - l Vnds

0 

must be satisfied, where C is the contour of the surface S. 

(2.64) 

(2.65) 

Expressed in the local coordinate system ( 111, 1JnJ on the surface S, w here 

171 is the direction tangential to C and T/n. is the outward normal direction 

to C, then we have 

(2.66) 

A natural and simple specifi.cation for the boundary condition on B =
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hn
En to equation (2.63) requires that 

(2.67) 

so that the compatibility condition Eq.(2.65) is satisfied. Then the second 

order elliptic partial differential equation (2.63) with the Neumann boundary 

condition (2.67) permits a unique solution if one imposes a Dirichlet condition 

on B at one point on the contour C. 

With a solution En to equation (2.63}, the boundary condition on the 

vector potential A is easy to implement. Its tangential projection can be 

chosen as 

(2.68) 

or more specifi.cally 

(2.69) 

The condition for the normal component of A can be deduced from 

v' ·A= O (2.10) 

or 

(2.71) 

Substituting {2.69) into Eq.(2.71), we have 

(2.72) 
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If the boundary is a solid wall, the right hand side of equation (2.63) is 

zero, En = 0 is a solution to equation (2.63) and then (2.69) becomes 

(2.73) 

These coïncides with (2.51), as given by Hirasaki & Hellums (1970). Again, 

the normal component has the same condition as (2.72). 

Like the velocity, the vector potential cannot be assumed known a priori 

at the outlet. The following condition is used in the present study 

(2.74) 

where s is the outward coordinate direction. 

2.5.3 Vorticity Boundary Conditions 

Values of vorticity at the wall are needed for the computation of the rota­

tional flow. The wall vorticity generally can be computed from its definition 

or from a Taylor series expression of the vector potential (Roache 1982). 

The Taylor series expression is used mostly for cartesian rectangular grid 

computation (see, for example, Wong & Reize 1984, Gerard 1989). In a 

curvilinear coordinate system, this approach leads to a very complicated 
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formulations of the wall vorticity expression in terms of the vector potential. 

So the definition 

W=VxV (2.75) 

is used at the inlet and on solid walls. At the outlet, the first order derivative 

in the outward coordihate direction is set to 

aw 
-=0
as 

2.5.4 Velocity Boundary Conditions 

(2.76) 

In the vorticity-potential method, velocity is not a primary variable, so 

it is used only to compute boundary conditions on derived variables, like the 

vorticity. In the present applications, the incoming velocity is given or up­

dated from the passage-averaged velocity field. On the solid wall boundaries, 

the no-slip condition is used. 

2.5.5 Summary of the Boundary Conditions 

To summarize, the boundary conditions used for equations (2.29-2.32) 

are divided into three groups. 
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Solid Wall Conditions: 

8</) 
0 (2.77) 

an 

A., o, V-A 0 (2.78) 

w - VxV (2.79) 

V - 0 (2.80) 

Inflow Conditions: 

8</) 
v

i (2.81) 
an 

n 

A., V., XE, V•A - 0 (2.82) 

w VxV (2.83) 

V extracted from the passage-averaged solution (2.84) 

Outflow Conditions: 

8</) 
v

o (2.85) 
an n 

82A 
(2.86) 

Bs2
0 

aw 
0 (2.87) 

as 

where v�, v! are the mean normal inlet and outlet velocities, E is a vector 

introduced in the previous sections and can be computed from Eq.(2.63). 

As indicated by Eq.(2.72), the conditions in (2.78) and (2.82), in the local 

orthogonal curvilinear coordinate system, become 

(2.88) 



V•A 

and 

At1 

At2

V-A

respectively. 

a(ht1 ht2
An) 

= 0 
aen 

1 a 
hh ae 

(hnEn),
t2 n t2 

1 a 

-hh Bç (hnEn),
t1 n t1 

8(ht1ht2
An) 

= 0 
aen
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(2.89) 

(2.90) 

(2.91) 

(2.92) 



Chapter 3 

Passage-Averaged Governing 

Equations(PAGE) 

3.1 Introduction 

In the first section of this chapter, the passage-averaging operator and 

its properties are discussed. The passage-averaged formulation of equations 

(2.29-2.32) is presented in the second section. 

3.2 Passage-Averaging Operator 

This operator is an averaging procedure along the circumferential direc­

tion. It is applied throughout the flow domain, including the regions within 

both rotating and stationary blade rows. The general form of the averaging 

operator is 

q 
1 ln2,r 

- qd()
21r 0 

(3.1) 
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where q can be a scalar or a vector. In the latter case, the integration is 

performed on each component of the vector-. 

The ratio of the angular distance of the region occupied by the fluid to the 

angular distance around the machine (i.e. 21r ) is a measure of the blockage 

attributed to the blade row. It will be used as a weighting fonction for the 

passage-averaging operator. Define the following fonctions 

(3.2) 

(3.3) 

as the angular position of the pressure surface (,pt) and suction surfaces (1.p!) 

within the ith blade row, (see Figure 3.1), where N is the number of blades

in the jth blade row. Then, the blockage ratio is equal to 

and the passage-averaging operator is defined as 

1 2,r 

q = -
B 

( q(r,O, z)dO
21r la 

(3.4) 

(3.5) 

It is noted that outside blade rows, (3.5) reduces to (3.1), since the block-

age ratio is equal to 1. 

Assuming a periodic flow field, the definition of the passage-average op­

erator (3.5) can be simplified to 

q (3.6) 
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By introducing the following fonctions in a blade row 

À., (r, (}, z) (} - fJ., (r,z) (3.7) 

À
p

(r, (}, z) (} - O
p
(r, z) (3.8) 

Àc (r, fJ, Z) (} - Oc (r,z) (3.9) 

the implicit equations defined by 

.X., (r, (}, z) 0 (3.10) 

À
p

(r, (}, z) 
-

0 (3.11) 

Àc (r, fJ, z) 0 (3.12) 

represent the suction surface, pressure surface and camber surface respec-

tively. From the definition of the blockage parameter B, we can get the 

following relationships 

ô 

together with 

Oc + k(l - B)/2 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 



where 

k = 
21r 

N 
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(3.18) 

One can show that the passage-averaged form of the derivative of a fonc­

tion q is given by 

(3.19) 

where x
i
, (i = 1,2,3) represents any of the radial, circumferential or axial 

coordinate. From equation (3.19), it is possible to derive the following useful 

results 

Vq 

V-V

VxV 

1 1 

B 
V(Bq) + 

6
[q.,VÀ8 -qp

V.X
p]

1 - 1 -V. (BV) + -[V . V.X -V . V.X lB 6 ., ., P P 

1 - 1

B 
V x (BV) + 

6
[V.X., x V., -V.X

P 
x V

p
)

3.3 Passage-Averaged Equations 

(3.20) 

(3.21) 

(3.22) 

To express the passage-averaged through-flow equations, equations (2.29-

2.32) are averaged across the blade passage using the passage-averaging op­

erator defined in (3.6) and the results of (3.20-3.22), leading to the following 

set of equations 

(V · V)(BW) - (BW · V)V 
1 2 -

Re 
V (BW) +Fw (3.23) 



BV = -V(Bef>) + V x (BA)+ Fv 
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(3.24) 

(3.25) 

(3.26) 

where the over bar (=) represents averaged variables and the F' s are the 

external force terms whose expressions are given by 

1 Fw = Re k {

1 - k{ V[W.,. V,\., - Wp. V,\p] 

+ [V,\., x (W x Vo)., - V,\
P 

x (W X Vo)p]}

- [V X (BW X V)+ W(V B. V)]

FA -V(A, · V,\., -Ap · v'-\p)

(3.27) 

(3.28) 

(3.29) 

1 
-k[V ,\., x (V x A) ., - v' ,\p 

x (V x A}p] (3.30) 

where subscripts (·) ., and (·)
p 

represent the values of the variables on the 

suction surface and pressure surface respectively, and (7) represents their 

perturbation component, for example, the velocity is written as 

v = v+v (3.31} 
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These perturbation terms are not necessarily small, and indeed they are not 

assumed to be small in this development. 



Chapter 4 

Modified Passage-Averaged Governing 

Equations(MPAGE) 

4.1 Introduction 

In the following section, an alternative system of equation for axisym­

metric flows will be derived from the passage-averaged governing equations 

(3.23-3.26). These equations still have the passage-averaged form, but have 

only four equations for four unknowns, while in equations (3.23-3.26), there 

a total of seven equations and seven unknowns. The transformed equations 

in curvilinear coordinate system of these equations are given in the third 

section. Finally, boundary conditions are discussed in the last section of this 

chapter. 



4.2 Alternative Equation System 

4.2.1 Swirl Equation for Axisymmetric Flow 
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Many methods can be used for two-dimensional incompressible flow com­

putations. The primitive variables method involves three equations for three 

unknowns, i.e. the continuity and two momentum equations for velocities u, 

v and pressure p. The dual potential method involves three equations for 

three unknowns. These equations and unknowns are the transport equation 

for vorticity � and two Poisson equations for potentials </> and A. The ve­

locity field is computed from the two potentials, while the vorticity-stream 

fonction method involves two equations for two unknowns. 

In axisymmetric flow problem, the circumferential velocity v9 in general 

is not zero, and the 0-momentum equation is used to resolve this velocity 

component and completes the equation system. This equation is usually 

called the swirl equation and can be easily incorporated with the dual po­

tential equations for axisymmetric flows. Simplifying the three-dimensional 

equations (2.29-2.32) to an axisymmetric configuration by setting :o = 0 

yields 

Vorticity transport equation 

ra� z a� vr 1 a 8 8 
V - + V - - -� - --(v V ) 

ar az r raz 

1 a 1 a a2 � -{-[--(r�)] + -}Re Br r Br 8z2 
(4.1) 



4>-Potential equation 

0 

A-Potential equation

Swirl equation 

with 

a 1 a a2A 
-[--(rA)] + -
ar r ar 8z2 

84> BA

ar az 
a4> 1 a 

--+--(rA). 
az r ar 

46 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

The variables in the passage-averaged equations (3.23-3.26) are axisym­

metric, i.e. depend on r and z only, and form a system of 7 equations in 7 

unknowns. However, the system (4.1) to (4.5) involves only 4 equations and 

then is more economical. The next section shows how the passage-averaged 

form of (�.23-3.26) can be cast in a form similar to that of equations (4.1-

. 4.5). 



4.2.2 Modified Passage-A veraged Equations 
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To cast the passage-averaged equations (3.23-3.26) in the form of (4.1-

4.4), the radial and axial velocities are written in terms of the scalar and 

vector potentials. This requires only the scalar potential ef> and the circum­

ferential component of the vector potential _Ali from the equation (3.26)

(4.6) 

The scalar potential ef> can be solved independently by equation (3.24) 

1a a _ a2 
:.__ 

--[r-(Bt/>)] + -(Bq,) = F4,r ar ar 8z2 (4.7) 

To solve equation (3.25) for _Ali, only the circumferential vorticity wll is

required 

a 1 a _li a2 _li li li 
-8 [--8 

(rBA )] + a 2 (BA) = -Bw +F
A r r r z (4.8) 

To solve the vorticity transport equation (3.23) for circumferential com-

ponent wll, 

a v" 1 a 
-z (B -9) (B -li) (n-ll-9)V - W - - W - -- V V 

az r raz 
1 a 1a li a

2 li -{-[--(rBw )] + -(Bw )} 
Re Br r Br 8z2 

+ Fll 
+ Sll 

w w (4.9) 
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where 

(4.10) 

ail three velocity components are required. For completeness, the circumfer­

ential velocity v8 needs to be resolved from additional relations. 

ln the previous chapter, four more unknowns, two vector potential compo­

nents Â\ .Jz and two vorticity components wr , wz , were involved. However, 

to compute v8 , these four unknowns are unnecessary. An alternative way 

to compute v8 is to use the swirl equation which can be derived from the 

three-dimensional 8-momentum equation 

(4.11) 

Applying the passage-averaging operator defined in chapter 2 to both 

sides of this equation yields the following 

a -r
vz -(Bv8) + �(Bv8) 

az r 

1 a 1 a _8 l a
2 

_8 8 s 
-R {-a [--a 

(rBv) + a 
2
(Bv)} + F

11 
+ S

11 e r r r z (4.12) 
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where Ft includes the viscous, geometrical effects of the blade surfaces and

the perturbation term, S! represents the effects of the pressure jump be­

tween the pressure and suction surfaces within blade rows. These terms can

be evaluated or integrated from the three-dimensional velocity field. Their

expressions will be given la ter.

Now, the two potential equations (4.7, 4.8), the vorticity transport equa­

tion (4.9) and the swirl equation (4.12) together with the velocity expressions

(4.6) form a complete set of equations. These equations are the passage­

averaged equations equivalent to (4.1-4.4). To distinguish them from the

previously developed equations (3.23-3.26), they will be called the Modified

Passage-Averaged Equations.

The niodified passage-averaged equations are summarized as follows

a ur-(Bt1ï8) +ar

+ 

1 a a --[r-· (Bq,)] +rar ar
i_[!i_(BA8)]8r T 8r + 

a tf-(Bv8) +ar
-

+ 

8 ur 1 8 -z (B -Il) (B -Il) (B-11-/J)V - W - - W - -- V V az r raz
1 a 1 a 

e 
a2 e -{-[--(rBw )] + -(Bw)}

Re Br r Br 8z
2 

F8 
+ se

111 111 

a2 -

az2 (Bq,) = F,;
a2 

(BAB) = -Bwe + Fe

8z
2 A

a ur 

uz-(Bt:l) + -(Bv8 ) az r
1

{ 
a 

[ 
1 a 8 a2 11 }- - --(rBv )] + -(Bv ) 

Re ar r Br 8z
2 

Fe + se

1,1 1,1 

(4.13)

(4.14)

(4.15)

(4.16)



where 

1 

Re k 

1 

k 

1 

k 
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(4.17) 

(4.18) 

(4.19) 

( 4.20) 



Fo 1 
-

Re k 

F4, 
-

Fr 
-

tl 

Fz
-

tl 

s11 

s11
-

tl 

with 

Dp 

{ [
8,\ 3 (( 8v8

) _ 

1 vll) _ 

8..\., (( 8v8
) _ 

1 vll)] 
ar ar 8 T 

8 ar ar 8 T B 

+ !ra..\8 (av9
) - 8,\p (av8

) ]
T ao ao 8 ao ao p 

+ [a.x8 (av') _ a.xp (av11

) l
az az 8 az az p 

+ rw [�( 8,\8 _ 8,\p) _ �( 8..\8 _ 8,\P)]}
8r ar 8r 8z 8z az 

{ 
2 B- -e a (B- -11) a (B-=---=i)- vrv + - vrv + - vzv 
r ar az 
_8[ 8B -r 8B -zJ} -v -v +-v 

ar 8z 

1 
--{'V· (</>8v',\8 - </>

pv'..\p
)

_!( 8,\8 </> - 8..\p </> )
k ar 

8 
8r P 

_!( 8,\8 </> - 8..\p </> )
k 8z 8 

8z P 

[ 8(Bv11) + !Bv11 
_ �(8..\8 _ a..\p)] 8v11 

8r r k 8z az az 

-[8(Bv8) + rw ( 8..\8 _ 8..\p )] 8v11 

8z k 8z 8z 8r 

+ rw (8,\3 _ 8..\P)(!vo)
k 8z 8z r 

BDp 

-

1 8 1 8v11 82v11 

Re [ 8r (; 8r ) 
+ 

8 z2 ] 
1 a 8 1 -[--(rvrv11) + -(vzv11) + -vrv11 ] 
r 8r 8z r 
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(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 
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4.3 Curvilinear Coordinate Formulation 

In the modified passage-averaged equations, (4.13-4.18), ail derivatives 

with respect to the circumferential direction are zero. The (r,z) coordinate 

system is chosen in which r represents the radial direction and z represents 

the axial direction. ln this coordinate system, the governing equations (4.13-

4.16) for the vorticity, circumferential velocity and two potentials can be 

rewritten in the following compact form 

a2 
.,. . a2 

•'· . a-1•. a-1• . _'f-'_1 + _'f-'_1 + d r. _'f-'_1 + dz. _'f-'_1 + do .• , .. 
8r2 8z2 1 ar 1 az 3 'f-'3 - 9;

where 

(d r d r d r d
4

r ) 
1, 2, 3, 

(dz dz dz dz
4
) 1, 2, 3, 

J - 1,2,3,4 (4.28) 

(4.29) 

The transformation to the computational domain can be represented as 

e €(r, z) 

TJ TJ(r, z) (4.30) 



then the curvilinear form of equations (4.28) is 

where 

with 

,\ � -
, 

). '! 
, 

). � -
, 

and 

a 

f3 

1 

J 

( :� ) 2 + ( :� ) 2'

az az ar ar 
àç8r,

+ 8ç8r, ' 
az 2 Br 2 

(
a€) + ( a€) '

az ar az ar 
8€ a11 

-
a11 aç'

A e (.Xi, .Xi, .X;, .Xi} 

J2 J( dZ. ar
- d� az

)r + 
, a11 ' ar, ' 

2 ( 
z Br dr az

) J u+J -d;
aç - i aç '

J2tf 
, 

u 

i = 1,2,3,4 

a2 € a2 € 
-+-8r2 8z2 

a2
11 a

2
11

-+-8r2 8z2 
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J = 1,2,3,4 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

(4.38) 



For equations (4.17-4.18), one have 

..!._[
ôz 8(B4>) _ az 8(B4>)

] 
J ar, ae ae ar, 

_..!._[ar 8(B.,I9) 1 - ar 8(BA11) 1 
J ar, ae ae ar, 

_..!._[8r a(Bef,) _ ar a(Bef>)
I 

J ar, ae ae ar, 

_..!._[
8z 8(BA11) 1 - az 8(BA11) l 

J ar, ae ae ar, 

4.4 Boundary Conditions 
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+ pr
tl 

1 -11 
+ -(BA ) + F: (4.39)

r 

The domain of the passage-averaged flow in a multistage turbomachin­

ery configuration is the meridional plane. The inlet is located somewhere 

upstream of the first blade row, and the exit is located downstream of the 

last blade row. In the present applications for the incoming flow velocity 

field, a uniform profile is used. To make it compatible with the no-slip wall 

conditions, the value at the wall is set to zero. The velocity condition on 

solid boundaries is the no-slip condition and the vorticity is computed from 

the velocity. 

Noting that there is no flow across the hub and shroud, the boundary 

condition on the scalar potential is 

8</> = 0 
an 

( 4.40) 
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The passage-averaging integration over the scalar potential across the 

pitch leads to the same condition on the averaged scalar potential 

84> 
- =0
an 

(4.41) 

where fi is the outward normal vector for passage-averaged flow domain. 

The inlet and outlet conditions for scalar potential are specified by the cor-

responding mean normal velocities. 

As discussed in the previous chapter, the vector potential A has zero tan-

gential projections on the hub and shroud. Since the circumferential compo­

nent of vector potential A8 is tangential to the hub and shroud, it is always 

zero on these end-walls. This implies that the passage-averaged variable .A11

is zero on these wall boundaries. At the inlet, the component A
8 is chosen 

to be zero also since a uniform velocity profile is assumed, then .A8 remains 

zero at the inlet. 

To summarize, boundary conditions for the modified passage-averaged 

governing equations (4.13-4.16) belong to the following groups. 

Solid Wall Conditions: 

84> 
an 

0 

_JII - Q 

8(Bvr) 8(Bvz) 
az ar 

no-slip condition 

(4.42) 

(4.43) 

(4.44) 

(4.45) 



Inflow Conditions: 

a<{> 
-i 

an 
v

n 

_JII 
0 

Bw11
a(Bvr) 
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( 4.46) 

(4.47) 

(4.48) 

(4.49) 

( 4.50) 

(4.51) 

(4.52) 

(4.53) 

where v� and v� are the average normal inlet and outlet velocities respec-

tively. 



Chapter 5 

Coupling Between the 3DGE and the 

MPAGE 

5.1 Introduction 

The proposed model to simulate the interaction of the flow in a rotor­

stator stage of a turbomachine consists of two sets of equations; the three­

dimensional governing equations (3DGE) and the modified passage-averaged 

governing equations (MPAGE). The 3DGE are used within each blade region 

to provide the three-dimensional flow fields, while the MPAGE are used to 

achieve the link in an average sense of these flow fields through the passage­

averaged flow field. The coupling between these two sets of equations and 

the data flow from each other will be described in this chapter. 



5.2 Data Flow from the 3DGE to the MPAGE 
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The passage-averaged equations (4.13-4.18) have the same form as the 

axisymmetric fl.ow equations (see, for example, Equations (4.1-4.4)) with 

the addition of external force terms which incorporate the three-dimensional 

effects into the MPAGE. 

Outside the blade passages, the fl.ow is taken to be axisymmetric and 

these external force terms are zero. Within the blade passages, they are 

computed from the 3DGE solutions. Most of these terms use only the values 

of the 3DGE solutions on the pressure and suction surfaces, while some 

- -

terms, like W X V require integration of the 3DGE solutions across the blade 

passage. All these terms can be computed explicitly and the calculations 

can be performed outside the 3DGE and MPAGE solvers. The input data 

are the geometry parameters and the 3DGE solutions. The output data 

are the external force terms which are needed for solving the MPAGE. The 

expressions are given by (4.19-4.27). 

5.3 Data Flow from the MPAGE to the 3DGE 

Since the Three-dimensional governing equations (2.29-2.32) are derived 

from steady, incompressible Navier-Stokes equations, this is a pure boundary 
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value problem. In duct flow problems, the inlet boundary conditions are 

problem dependent and can be imposed differently, but all other boundary 

conditions are developed by the flow physics. It is clear also that, from the 

formulation of 3DGE, to solve these equations, the only required information 

is the inlet velocity distribution. 

To specify an accurate three-dimensional inlet velocity profile is very diffi­

cult and even impossible for a general configuration. However, in the present 

study, since the flow is taken to be axisymmetric outside the blade rows, the 

inflow conditions at the entrance of each blade row are also axisymmetric. 

The passage-averaged velocity can be used as inlet velocity profile. These 

inlet velocities are updated by the MPAGE solutions. 

In summary, the iterative cycle between th 3DGE and the MPAGE can 

be described as follows. 

• The inlet conditions for the 3DGE computation at the entrances of each

blade rows are computed from the MPAGE solutions. 

• The 3-D flow fields within each blade rows are solved.

• The external force terms in (4.19-4.27) are calculated from the updated

3DGE solutions. 

• The MPAGE are solved again with updated external force terms.



Chapter 6 

Solution Procedure 

6.1 Introduction 

Two different methods have been used to solve the Poisson equations for 

the potentials. The first one is the Line Relaxation Method, and the second 

is a direct Method. The line relaxation method solver has been developed by 

Yang (1988) and modified for the present application. The implicit method 

(or direct method) is presented in sections 6.3. Sorne practical experiences in 

using these methods are given in section 6.4. In sections 6.5 through 6. 7, the 

global algorithms for the 3DGE and the MPAGE as well as the computational 

procedure to the interaction of the 3DGE and the MPAGE will be described. 

6.2 Line Relaxation Method 

One well-known overrelaxation method is the successive (point) overre­

laxation (SOR) method developed by Frankel (1950) and Young (1954). The 
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convergence rate of the SOR method can be improved by successive line 

over-relaxation (Line SOR) method. It uses the tridiagonal algorithm im­

plicitly solving the equations line-by-line. In the present three-dimensional 

applications, the relaxation sweep proceeds in the k-direction, section by sec­

tion. Within each section, the sweep proceeds in the j-direction, line-by-line. 

When the sweep is at row (j0 , k0), the previous rows at (j0 - 1) and (k0 - 1) 

have been already solved for (n+l) values. The row (j0 , k0) is then solved 

implicitly along the i-direction using Thomas tridiagonal algorithm. 

The relaxation factor is required to lie in the range, 0 < w < 2. For con­

vergence, over-relaxation is required for solving scalar and vector potential 

equations. Under-relaxation should be used for the solution of the vorticity 

transport equation. 

6.3 Fully lmplicit Method 

In the present study, it is required to solve the scalar potential Laplace 

equation only once, in an arbitrarily shaped three-dimensional duct with 

Neumman boundary conditions. As remarked by Gary (1967) and Dorr 

(1969), the convergence rate for Line SOR method can be very slow with 

Neumann boundary conditions even on a rectangular domain. The experi­

ence (this will be discussed in the following section) with Line SOR method 
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on a domain with curved boundaries also shows convergence may be dramat­

ically slowed down or may even diverge with increasing boundary curvature 

variation and the skewness of the local curvilinear coordinates. To avoid these 

drawbacks, an implicit method is proposed in the present investigations. 

To solve Poisson type equations, some efficient direct methods and solvers 

have been developed. The papers by Dorr (1970) and Lancaster (1970) re­

viewed these methods and a computer program has been published by King 

(1976). However, most of these methods are limited to rectangular domains 

and cartesian coordinate systems. Recently, Algorithm to solve a global ma­

trix equation have been developed by Page et al.(1989). These subroutines 

use the skyline technique to store the global matrix and the LU factorization 

method for the resolution of the equation system. 

These subroutines are used for solving the finite difference equations of 

the scalar and vector potentials. The vorticity transport equations are solved 

by line under-relaxation method. The scalar potential Laplace equation need 

to be solved only once, while the vector potential equations are coupled with 

the vorticity equation by the source term. They must be solved in an iterative 

way. Since the vector potential equations are linear Poisson equations, the 

global matrix remains the same within the iteration procedure. Only the 

source term is updated after each iteration. Then the most expensive part 

of the calculations in the implicit solver, the LU factorization, is performed 
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only once. The forward elimination and backward substitution are repeated 

in the iterative procedure. 

It should be pointed out that the scalar potential equation with Neumman 

boundary conditions everywhere on the boundary allows an infinite number 

of solutions. The discretized equations, together with the boundary condi­

tions will lead to a singular global matrix. In order to obtain a unique solution 

and ensure a non-singular global matrix, a Dirichlet boundary condition is 

imposed at one boundary point. 

6.4 Scalar Potential Test 

As indicated by Gary (1967) and Dorr (1969), the convergence rate for 

Line SOR iterative method of Poisson equation with Neumann boundary 

conditions is much slower than that with Dirichlet boundary conditions. 

This had been experienced only on a rectangle. Applying the Line SOR 

method to solve Poisson equation with Neumann boundary conditions on 

three-dimensional curved ducts has also shown that the convergence rate 

strongly depends on the boundary curvature and the nonorthogonality of 

the curvilinear coordinate system. 

In the test problems, the domain is chosen as a curved duct with unit 

square cross section. The length along the z-direction is four units. A uniform 
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(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

where imax, jmax and kmax are the maximum grid size on x-, y- and z-

directions respectively. a is a factor used to specify the curvature variation 

of the boundaries (j=l and j jmax) and the skewness of the coordinate 

system. Severa} sectional domains with different values of a are shown in 

Figure 6.1 to demonstrate the variation of the boundary curvature and the 

skewness. 

The results after 1000 iterations for a llxllx21 grid are presented in Table 

6.1. The history of convergence for the scalar potential test problems are 

shown in Figure 6.2. For comparison, computations with the direct method 
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Table 6.1: Scalar potential test using Line SOR method 

Il 

a· 

0.05 

0.10 

0.20 

0.30 

� 0.35 

After 1000 iterations 

Log( ) 

Residue ll
<Pn+l

-

<Pn

ll

-2.302 -4.719

-1.667 -4.138

-1.116 -3.751

-0.650 -3.465

Diverge 

Mass Cons. 

(%) 

0.336 

1.323 

4.951 

10.106 

Relax. 

w 

1.5 

1.4 

1.3 

1.3 

are also performed and the results are given in Table 6.2. 

CPU time 

(s} 

31.71 

almost the same 

almost the same 

almost the same 

Table 6.1 and Figure 6.1 show that, for a small factor o., say a: < 0.1, 

the convergence using Line SOR method is relatively fast and the accuracy 

for volumetric flows is acceptable. With the increase of the factor o:, the 

convergence becomes very slow and it is very difficult to converge with o: =

0.3. For values of a: exceeding 0.35, the method diverges. On the other hand, 

the direct method always gives a solution and the volumetric flow errors in 

Table 6.2 show that the results are acceptable for values of o: up to 0.5. 

These tests were not intended to be an exhaustive study of numerical 

methods for solving Poisson equation. The specific tests for the scalar po­

tential were only carried out to assess the Line SOR solver and the implicit 

solver. The implicit method never encountered convergence problems, and 
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Table 6.2: Scalar potential test using implicit method 

Log( ) Mass Conservation CPU time 

O'. Residue (%) (s) 

0.05 -11.587 0.118 24.14 

0.10 -11.576 0.420 almost the same 

0.20 -11.568 1.363 almost the same 

0.30 -11.542 2.440 almost the same 

0.50 -11.350 4.407 almost the same 

provides more accurate results than the Line SOR method. The computer 

time is also acceptable for a great number of mesh points (for example, with 

about 10000 mesh points, the CPU time on a 3090 IBM machine is about 4 

minutes. Of course, as the number of mesh points increases, the computer 

time and storage requirement will also increase. With a very large number 

of mesh points, the implicit method may not be economical. 

6.5 Global Algorithm for the 3DGE 

As mentioned before, the computation of the scalar potential can be sep­

arated from the coupling of vorticity and vector potential, so that the scalar 

potential equation needs only be solved once. But the vector potential and 

vorticity are coupled to each other by the source term in the vector potential 
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equations, the convective terms in the vorticity transport equations and the 

boundary conditions. · A cycling procedure is used for this coupling. The 

global algorithm is given in the following: 

1. Specification of boundary conditions.

2. Computation of scalar potential using equation (2.34).

3. Computation of vorticity using the vorticity transport equation (2.33)

4. Computation of vector potential using equation (2.35) and the updated

vorticity field. 

5. Calculation of velocity field using equation (2.36) and the updated

vector potential. 

6. Stop if the convergence criteria are satisfied. Otherwise, go back to

step 3. 

6.6 Global Algorithm for the MPAGE 

The vorticity transport equation, swirl equation and the Poisson equation 

for the potential A11 are coupled by the convective terms in the vorticity 

equation and swirl equation, the source terms in the vorticity equation and 

the potential equation. These equations are solved with the procedure which 

is described as follows: 
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1. Computation of the scalar potential to provide irrotational potential

velocity field. 

2. Computation of vorticity field using vorticity transport equation.

3. Computation of potential A8 using updated vorticity field.

4. Calculation of new velocity field using updated potential A8
• 

5. Computation of circumferential velocity using the swirl equation.

6. Stop if the convergence criteria are satisfied. Otherwise, go back to

step 2. 

6. 7 Global Compùtational Procedure

The Global algorithm proposed in this study consists of two parts: the 

3DGE solver within the blade rows and the MPAGE for the stage coupling. 

The computations for these two parts are coupled and performed in an iter­

ative way. The global computational procedure is described below: 

1. Generation of body-fitted grids for the 3DGE and the MPAGE do-

mains. 

2. Preparation of the geometry parameters and external force terms.

Generally the external forces are taken to be zero. 
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3. Computation of the MPAGE to produce a passage-averaged through

flow solution. 

4. Computation of the 3DGE to provide three-dimensional solutions

within the blade passages. 

5. Calculation of the external forces using the updated 3DGE solutions. 

6. Go back to step 3 until the residues of the MPAGE satisfy an accept­

able limit. 



Chapter 7 

Validations 

7.1 Introduction 

The proposed model for the rotor-stator interactions in a turbomachine, 

and the resulting governing equations, the 3DGE and the MPAGE, have been 

implemented in a Fortran computer program. To validate this approach, nu­

merical results for several simple fl.ow problems are presented, the numerical 

predictions are compared with the available analytical and experimental re­

sults. To validate the interaction between the 3DGE and the MPAGE, the 

more realistic problèm of an impeller with planar blades is investigated. 



7.2 Validation for the 3DGE 

7.2.1 Developing Flow in a Straight duct 
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The development of a laminar flow in a rectangular duct is a simple 

three-dimensional internai flow for which analytical solution and experimen-

tal results are available for comparison. The duct geometry, illustrated in 

Figure 7.1, with aspect ratio "Y= b/a = 1, i.e. with square cross section, was 

first computed. Constant spacing was used in the two transverse x- and y­

directions, with 15x15 points, and 23 points were stretched in the streamwise 

z-direction as follows.

with 

z(k + 1) = z(k) + dz(k) k = 1,2, ... ,n 

dz(k) 

a 

a - 1 
a1c-1 L

an - 1

1.0618 

n - 22 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

The Reynolds number, bas�d on the hydraulic diameter Dh is defined by 

4ab 

a+b 
(7.5) 
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was chosen to be Re = 100. To ensure a fully developed flow at the exit, the 

duct length L was set to 

L 0.105 Dh Re (7.6) 

based on the discussion on the entrance length by Han (1960). On the inlet 

plane, a uniform flow was specified with Vz = v
11 

= 0, and Vz = 1 (note that 

Vz is set to zero at walls to satisfy the no-slip condition). 

The predicted velocity along the central plane distributions in the devel­

oping region are shown in Figure 7.2a at several sections. Figure 7.2b shows 

the velocity profiles taken along the duct diagonal, i.e. with the coordinates 

x=y. These velocity profiles are compared with the analytical solution of 

Han (1960) and with the experimental data of Goldstein & Kreid (1967). 

The agreement between them is very good. 

The predicted fully developed streamwise velocity profiles are presented 

in Figure 7.3, and the comparison with the analytical solutions of Han (1960) 

shows that the agreement is excellent. 

The predicted centerline velocity is compared with the analytical and 

experimental results in Figure 7.4. The agreement between them is good. 

The second computed duct has an aspect ratio ï = 0.5 and the grid used 

is 15x13x25. Again, the two transverse directions are uniformly spaced and 

the streamwise direction is stretched according to Eq.(7.2) with the stretch 



73 

factor o: = 1.03. The Reynolds number is Re= 100 and a uniform velocity 

profile is used on the inlet plane. The duct length is set to 

L - 0.08 Dh Re (7.7) 

The predicted developing velocity profiles are shown in Figure 7 .5. Fig­

ure 7.5b presents velocity profiles in the vertical direction, and Figure 7.5a 

presents profiles across the horizontal direction. The fully developed veloc­

ities are shown in Figure 7.6 for both profiles across the width and height 

and the predicted centerline velocity development is displayed in Figure 7.7. 

These velocity profiles are compared with the analytical results of Han (1960) 

and the experimental data of Sparrow et al. (1967). Good agreement be­

tween them can be observed . 

7.2.2 Developing Flow in Curved duct 

The second test problem was the development of a laminar incompress­

ible viscous flow in a curved duct with square cross section. The principal 

characteristic of such a flow is the presence of longitudinal curvature which 

generates secondary flows resulting in distortion of the streamwise velocity. 

The computation of curved duct flows usually serves as a model problem for 

understanding some of the important features in turbomachinery flows. 
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The duct geometry is illustrated in Figure 7.8. The centerline curvature 

Re of the curved duct is 14 times the duct width D. The Dean number K 

defined_ by 

(7.8) 

is 55 corresponding to a Reynolds number of 206, based on the hydraulic 

diameter Dh defined by equation (7.5). The turning angle is 110°. On a 

transverse cross section, 15 points are uniformly spaced in the radial direction 

and 13 on the width and 25 points were stretched in the streamwise direction 

(angular distance</>) as indicated in Eq.(7.2) with a= 1.05. At the entrance 

of the duct, a uniform streamwise velocity profile ( u
t 

= 1) and zero transverse 

velocities ( ue = u'1 = 0) were specified. 

Figure 7.9 shows the development of the streamwise velocity profiles in 

the mid-plane parallel to the top and bottom walls. The profiles in Figure 

7.9b, along the vertical direction, remain symmetric as they should on the 

vertical raid-surface. The profiles in Figure 7.9a, along the horizontal direc­

tion, become more asymmetric as the flow develops downstream. This can 

be explained by the centrifuga! force generated by the longitudinal curvature 

which forces the peak value of the velocity profile towards the outer wall of 

the duct. 

In Figure 7.10, the predicted velocity profiles at the cross section with 

angular position 0 = 102.4° are chosen for comparison with the fully devel-
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oped flow predicted by Ghia & Sokhey (1977) and Cheng et al. (1975), and 

with the experimental data of Mori et al. (1971). The present calculations 

and the previous numerical predictions agree very well while the comparison 

between the numerical results and experimental data is not so good. 

Figure 7.11 shows the secondary flow development as the flow proceeds 

downstream. The vortices start between </> = 5.07° and </> = 16.8° and devel­

oped toward the outer wall. There is no significant change after (} = 63.9° . 

7.3 Validation of the MPAGE 

7 �3.1 Developing Flow in Channels 

The first test is the developing flow between two parallel plates, in which 

the through flow program is used to evaluate the accuracy and stability of 

the present scheme. The coordinate system is chosen as cartesian and the 

calculation is made for a channel with a length-to-width ratio L/ D = 10, a 

Reynolds number Re = 50 based on the inlet velocity and the channel width. 

The grid used for this computation is 49xl5. The inlet velocity is assumed 

uniform and the developed velocity profile is given in Figure 7 .12. The exit 

velocity is compared with the analytical solution 

(7.9) 



76 

The numerical solution agrees well with the analytical one. 

The second test is the developing axisymmetric flow between two cylinders 

with ratios of the inner radius to width ri/ D = 0.5 , and of the outer radius 

to width r2/ D = 1.5 and of the length to width L/ D = 10. The Reynolds

number, based on the width and the inlet velocity, is also Re = 50. The 

grid is 49x15. Here, the cylindrical coordinate system is used and a uniform 

velocity profile is specified at the inlet location. The computed axisymmet­

ric velocity profile at the outlet is compared with the developed analytical 

solution expressed as follows 

(7.10) 

with 

32Q 
--------------- --2-2 (7.11) 

4 2 2 (1 - (Di/ D2) ) 
1r D2 [(1 - (Di/ D2) )(1 + (Di/ D2) ) + Ln(Di/ D2) ]

where Q is the mass flux across the annular section. Figure 7.13 shows that 

the agreement between the solutions is quite good. 

7.3.2 Flow in a Rotating Annulus 

To validate the approach for a rotating configuration, the next test is 

performed in a rotating annulus. Its geometrical parameters are indicated 
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in Figure 7.14a, the ratio of the inner radius to width is ri/ D = 1.5 and the 

ratio of the outer radius to width is r2/ D = 2.5. The inlet velocity is set to 

zero and the inner and outer walls rotate with specified angular velocity w1

and w2 respectively. 

The computed axisymmetric tangential velocity is also compared with 

the analytical solution given by the following formula 

uo(r) (7.12) 

Figure 7.14b shows the tangential velocity with w1 = 0.5,w2 = 0.0, Figure 

7.14c shows the result with w1 = 1.0,w2 = 0.0 and Figure 7.14d presents the 

solution with w1 = 0.3, w2 = -0.3. Ali of these calculated velocities are in 

excellent agreement with the analytical solutions. 

7.3.3 Flow in Rectangular Duct 

Another test problem is a rectangular duct geometry representing the 

configuration of a blade row with parallel plates y = ±b as the two neighbour 

blades. This means that the plate y = -b represents the suction surface of 

one blade and the plate y = +b represents the pressure surface of the next 

blade, while the other two parallel sides x = ±a represent the inner wall 

and the outer shell of the blade passage between the two blades (see Figure 
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7.1). The coordinate system here is chosen as cartesian instead of cylindrical. 

An analytical solution given by Han (1960) in the form of an axial velocity 

profile is available for comparison. This represents the smooth transition 

from a uniform profile to a fully developed one. 

The passage-average technique is applied to this expression and the an­

alytical averaged solution including the velocity and shear force can be ob­

tained for comparison with the computed averaged solutions(see Appendix 

C). The numerical solutions are calculated with aspect ratio ï = � = 1.0,
a 

0.5 and 0.25. The Reynolds number, based on the inlet velocity and the hy-

draulic diameter defined by equation (7.5), is Re= 100 for these tests. The 

computations were carried out using three uniformly spaced grids, 15x15x31, 

15x13x31 and 15xllx31, with aspect ratios ï = 1.0, 0.5 and 0.25 respectively.

The profiles of the passage-average velocities and shear forces are presented 

at several sections. 

From the velocity profiles shown m Figure 7.15, one can observe that 

the numerical solution is concave along the central line near the inlet region, 

while the analytical solution is not. This behaviour remains even with grid 

refinement near the inlet. 

Such a discrepancy between analytical and numerical solutions is due to 

the fact that Han's solution is simply an approximation. In his development, 

some of the convection terms were neglected using a technique introduced by 
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Langhaar (1942). More precisely, it was assumed that the convection term 

is replaced by 

(7.13) 

Then the remaining term is linearized as 

(7.14) 

where the parameter {3 is assumed to be a fonction of the axial distance z

only and its values have been tabulated by Han (1960). However we know 

that the term 

(7.15) 

is not identically zero near the inlet region , especially within the boundary 

layer. Therefore this will result in some difference between Han 's result and 

the present numerical solutions near the inlet region. 

For completeness , the following heuristic analysis is presented. We divide 

the convection term as follows 

(7.16) 

with 

(7.17) 

From the boundary conditions and the symmetric property, it is clear that 

when 

or 

x = O; ±a

y= O; ±b 
(7.18) 
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While, from the boundary layer theory, we have 

elsewhere, (7.19) 

this means that the difference 

everywhere (7.20) 

and reaches its maximum at the four points where· the real velocity Uz with 

respect to I is larger than Han's analytical velocity with respect to /2 • At 

the same time they must satisfy the continuity equation and the boundary

conditions, thus Uz must be smaller than the analytical value on the central

line (i.e. x = 0, or y= 0).

The shear forces are the slopes of the velocities Uz, u� on the boundaries 

(i.e. y = ±b). Their contributions to the passage-averaged z-momentum 

equation are their differences fz , f: between two boundaries (i.e. y = -band 

y= b). The shear force distributions are presented in Figure 7.16. From the 

above discussion, it is expected that 

near the inlet region (7.21) 

see Figure 7.17 in which the 15xllx31 grid generated by distributing points 

uniformly along x- and y-direction with a ratio of the nearby dz of dzi+1/ dzi =

1.071. 

Note that such properties will also hold for the passage-averaged variables. 

The above discussion gives us some information as to why the numerical 
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velocity has such a concave profile and why the numerical shear force is 

smaller than the analytical one near the inlet ·region. It seems that the 

numerical solution is more realistic. 

Figure 7.16 shows the shear force profiles in which the comparison be­

tween the computed results and the approximate analytical solutions is rea­

sonable except for a value of the aspect ratio ï = 0.25 near the leading 

edge(E = 0.033). It is expected that with a refined grid, this would be im­

proved. However, for higher aspect ratio, ï � 0.5, the approximation is 

good. 

7 .3.4 Flow in an Impeller with Planar Blades 

A more realistic computation is a test problem with a flow passage con­

taining a rotor with planar blades. The geometry is divided into three regions 

as shown in Figure 7.18. The first one is the entrance region where a uni­

form inlet velocity develops axially toward a rotor. The second region is the 

rotor blade channel with 21 blades and the third one is the discharge region 

downstream of the rotor. 

For the through-flow computation, the grid sizes were 21x15 for the en­

trance region, 21x31 for the blade region and the 21x21 for discharge region. 
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The grid size for internai flow computation was 21x15x31. ln the blade re­

gion, the hub radius varies from 0.5 to 1.0, the height of the blade varies 

from 0.5 to 0.25 and the area of the grid sections varies from 0.112 to 0.135. 

In this test problem, the non-dimensional uniform inlet velocity was cho­

sen as Vi = 1.0. In order to gain a better understanding of the effects of 

blades, rotation and viscosity, the numerical results are presented into three 

groups. The first group shows the blade effects in which the through-flow 

solutions with and without the external forces are presented (Figure 7.19). 

In the second group, the computations were carried out with fixed Reynolds 

number Re = 100, and the angular velocities were chosen to be 0.0, 0.5 and 

1.0. Both passage-averaged solutions and averaged three-dimensional inter­

nai flow solutions are presented and distinguished by line and symbol profiles 

(Figure 7.20). While in the third group, the computations were carried out 

by changing the Reynolds number to 100, 300 and 500, but with fixed an­

gular velocity w = 0.5 (Figure 7 .21) .If one considers, for example, a machine 

with vf = 25 m/sec as its inlet velocity and with r� = 0.5m and r� = 1.0m 

as the radii of its inner wall and outer shell respectively at the inlet location, 

then the rotating speed of the rotor is approximately 746 r.p.m. with the 

non-dimensional angular velocity chosen as w = 1.0. 

The development of the secondary flow along the rotor passage, the veloc­

ity vectors of the three-dimensional solution at several hub-to-shroud planes 
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are presented in Figure 7 .22 for Re = 100 and w = 1.0. Sorne streamwise 

ribbon patterns are shown in Figure 7.23 to illustrate the recirculating nature 

of the flow. 

Without the action of the rotor, the field is simply an axisymmetric flow 

with zero tangential velocity. Otherwise, the field is perturbed by the blade 

boundary layer, the end-wall boundary layer and the pressure jump between 

the pressure side and suction side of the blades. Figure 7.19 shows the dif­

ference between them, in which the passage-averaged axial, radial and tan­

gential velocity distributions at several hub-to-shroud sections are presented. 

From them one can observe that, within the rotor, the boundary layer has 

a greater effect near the hub than near the shroud because the blades are 

closer. The tangential velocity develops gradually as the hub radius increases 

along the rotor passage and is attenuated rapidly in the discharge region. 

Figure 7 .20 shows the dramatic eff ects of rotation. With the increase 

of the rotational speed of the blade passage, the increase of the tangential 

velocity is significant and their profiles are roughly proportional. Because 

the tangential velocity is mainly generated by the hub and shroud boundary 

layers and the pressure difference between two blade surfaces, such effects are 

dominated by the rotational speed for a given Reynolds number. The profiles 

of the axial and radial velocities also change due to the secondary flow. The 

main feature of the secondary fl.ow, in this test problem, is the fixed shroud 
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within the rotor. This, of course, will be affected strongly by the rotational 

·speed of the rotor. It should be noted that the effects of the fixed shroud

also depends on the Reynolds number. In fact, as it increases, this leads to a

decrease of the effects of the fixed shroud. These can be observed in Figure

7.21.

Figures 7.20 and 7.21 also show that the passage-averaged solutions and 

the averaged three-dimensional internai flow solutions agree well except for 

the tangential velocity near the inlet of the rotor because of very sharp 

changes in that region. However, these small acceptable differences confirmed 

again that the prediction of the external forces from the internai computa­

tion is aécurate enough for simulating the most dominant properties of the 

flow in an impeller. 



Chapter 8 

Applications to a Rotor-Stator Stage 

8.1 Introduction 

Using the approach developed in the previous chapters, numerical inves­

tigations were performed to the flow of a mixed-flow pump. The numerical 

predictions are presented in this chapter and are compared with experimental 

data provided by Carey et al. (1985a, 1985b). 

8.2 Description of the NEL Pump 

The NEL model pump is a mixed-flow machine. Its cross section through 

the axis of the machine is illustrated in Figure 8.1. This pump includes a 

rotor /impeller and a stator/ diffuser. There are no inlet guide-vanes. The 

fluid enters the pump axially through the inlet, proceeds directly into the 

rotor, exits from the rotor outlet, and there its follows a unbladed passage in 
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which the flow is turned from the outward direction towards the stator and 

is diffused into a outlet duct. 

There are five rotor blades and nine stator blades. The rotor outlet 

diameter, measured from the axis to the centre of the blade trailing edge, is 

Dt = 430mm and the maximum internai shroud diameter is 536mm. The 

hub and shroud have conical geometries. The cone half-angles of the hub 

and shroud are 32.3° and 17.6° for the rotor, and -20.6° and -11.4° for the 

stator respectively. The details of the physical dimensions of the blades and 

a general description of the pump facility are given in Carey et al. (1985a). 

The measurements reported by Carey et al. (1985b) were performed in a 

air model of the machine at a shaft speed 1200 r.p.m. of the impeller. The 

experimental data for all velocities are normalized by the blade velocity at 

the midpoint of the rotor trailing edge, which is Ut = 27m/ s at 1200 r.p.m., 

corresponding to a Reynolds number of Re=l.5x106
• 

The meridional cross-section for the passage-averaged through-flow com­

putation is shown in Figure 8.2, which is divided into five regions along the 

streamwise direction. The first region from s = 0 to s = 1.0 is the flow 

entrance zone, the second region from s = 1.0 to s = 2.0 is the blade passage 

of the rotor, the third region from s = 2.0 to s = 3.0 is the unbladed passage 

between the rotor and the stator, the fourth region from s = 3.0 to s = 4.0 is 

the blade passage of the stator and the fifth and final region from s = 4.0 to 
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s = 5.0 is the discharge zone of the machine. No tip clearance was considered 

in these tests. The three-dimensional domain for the rotor and stator blade 

passages ai;e illustrated in Figs. 8.3a and 8.3b. A grid of 59x13 wa.s used 

for the MPAGE computation with 13 points in the radial direction. In the 

streamwise direction, 7 points were used in the first region, 15 points in the 

second region, 11 points in the third region, 21 points in the fourth region 

and 9 point in the final region respectively with constant spacing within each 

region (see Figure 8.4). There were 15 points spaced uniformlr in the cir­

cumferential direction for the rotor and 13 points for the stator. The grids 

used for the 3DGE computations are shown in Figure 8.5a and 8.5b. 

The inlet flow profile was specified based on the flow rate 1.01 m3 / s 

corresponding to the best efficiency TJ = 87%. 

Since the present study is for laminar flow, the Reynolds number for the 

computation was 1500 based on the characteristic length Dt and velocity Ut . 

8.3 Numerical Predictions 

8.3.1 Rotor Three-Dimensional Results 

Because of the complex geometry of the annular flow passage in the pump 

and in order to compare the velocity distribution with the experimental data 
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in Carey et al. (1985b), as they did in their report, the results are plotted in 

terms of the following velocity components as illustrated in Figure 8.6 

• V
P 

- The velocity component parallel to the streamwise grid line.

• Vn - The velocity component normal to the streamwise grid line.

• Wt - The tangential velocity component in the relative rotating frame

of reference. 

In order to show the development of the boundary layers, secondary flows 

and the effects of the relative motion of the shroud, three stations are chosen 

to present the predicted velocity field. These three stations are located near 

the inlet (s = 0.07), at the mid-chord (s = 0.5) and near the outlet (s = 0.86) 

as indicated in Figure 8.7. 

Surfaces plots of these three velocity components are plotted in Figs. 8.8, 

8.9 and 8.10 respectively at the above stations. The blade-to-blade velocity 

distributions 1 which are numbered in Figure 8.7, are shown in Figs. 8.11 

through 8.13 with comparisons against the experimental data in Carey et al. 

(1985b). 

These blade-to-blade velocity vector fields are also shown in Figure 8.14 

which are accompanied by the same vector fields based on the measurement. 

Figure 8.15 shows the cross-stream flows of the rotational part of the relative 
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velocity field, i.e. the velocity 

VxA {8.1) 

at the three passage stations. 

At fi.rst sight, Figs. 8.8 through 8.14 show the main features of the flow 

development through the rotor. There is a steady acceleration of the flow 

because of the contraction of the annular flow area. The growth of blade 

surface boundary layers are significant, while the hub boundary layer is less 

significant. This agrees with the observation by the experimenters who stated 

that "It was found that viscous effects were relatively unimportant to the 

flow in the inner annular" and "the hub boundary layer was found to be too 

thin for observation ... ". It should be mentioned that, since the absence of 

an appropriate turbulence model and a much lower Reynolds number, these 

boundary layers are much thicker and discrepancies with the measurement 

as should be expected. 

In the mainstream fl.ow region (with R < 0.7, where R is a normalized 

parameter with values within the interval [0,1] measured from hub to shroud), 

the velocity component V
p 

near the pressure surface of the blade is accelerated 

more rapidly than that near the suction surface. While the relative tangential 

component Wt near the suction surface is accelerated more rapidly than that 

near the pressure surface due to the change of geometry of the rotor. These 
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agree well with the experimental data except those at the edge of the blade 

boundary layers. There, the predicted velocities are relatively higher than 

measured the ones. Such differences may be caused by a much thicker blade 

boundary layer which squeezes the mainstream flow toward the mid-pitch. 

In the near shroud region, including R=0.833 and R=0.917, complex tur­

bomachinery flow phenomena are encountered. The blade boundary layers, 

the shroud boundary layer, the eff ects of the relative motion of the shroud 

and the associated secondary flow interacts to generate rapid changes in the 

fluid behaviour. It is evident that there is a discrepancy between the pre­

dictions and the measurements for velocity components V
P 

and Wt shown in 

Figs. 8.11 and 8.12. 

The main reason for such a discrepancy is probably the exclusion of the 

effects of the gap between blade and shroud in the present numerical mod­

eling. The tip leakage flow is a jet flow, as explained by Carey and his 

co-authors, "is directed forwards across the blade tip and becomes entrained 

in the suction flow, adding to its volume and momentum". So that a bulge 

in component V
P 

and an increment in the component Wt close to the suction 

surface can be expected as shown in Figs. 8.11 and 8.12 for the experimental 

results. When the flow proceeds downstream, the tip leakage flow will meet 

and interact with blade and shroud boundary layers, giving rise to a mixing 

region. This mixing process will further move away from the suction surface 
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due to the relative movement between the blade and shroud and the sec­

ondary flows. These flow phenomena are illustrated in Figure 8.16. Without 

the tip leakage flow, the shroud boundary layer will play an important role 

in the outer annular region. Indeed, the numerical predictions in Figs. 8.11 

and 8.12 show that, downstream of the rotor passage, the boundary layer 

decelerated the flow close to the suction surface, while near the pressure sur­

face, the flow is accelerated by the moving shroud and blade boundary layer 

scrapmg. 

The cross-stream flows are shown in Figure 8.15. These flows are mainly 

induced by secondary flows which are generally due to the relative motion of 

the shroud and the curvature changes of the blade passage. It is the curvature 

effects that causes the through flow vortex to move from the near corner of 

the shroud and pressure side to the near corner of the hub and suction side. 

If the blade passage were a straight duct, the relative motion would drive the 

vortex to the shroud-pressure side corner as in a driven cavity. It is observed 

that in the corner of the shroud and pressure blade surface, there is a small 

scraping vortex (see Figure 8.15c) which is believed to be the result of the 

relative movement between the shroud and the blade. 
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8.3.2 Stator Three-Dimensional Results 

Like the rotor, the results of the stator are plotted in terms of the same 

velocity components, except that the absolute tangential velocity component 

is used instead of the relative one, as the stationary frame of reference is used 

for the stator. 

• V
P 

- The velocity component parallel to the streamwise grid line.

• Vn - The velocity component normal to the streamwise grid line.

• Vi - The tangential velocity component in the stationary frame of ref-

erence. 

Figure 8.17 through 8.19 show the three-dimensional surface plots of these 

three velocity components at three chosen stations s = 3.1, s = 3.5 and s =

3.9. Figs. 8.20 through 8.21 present the blade-to-blade velocity distributions 

with the corresponding numbering in Figs. 8.17, 8.18 and 8.19 respectively. 

The blade-to-blade velocity vector fields are shown in Figure 8.23 and the 

cross-flows of the rotational part of the velocity expressed by (8.1) are shown 

in Figure 8.24. 

From Figs. 8.17 through 8.21, one can see that the boundary layer de­

velopment in the stator passage, for both blade surfaces and the end-walls, 

is more significant than in the rotor passage, as the passage of the stator is 

much longer than that of the rotor. Because of the conically inward shaped 
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hub and shroud and the presence of the pressure surface of the blade, the 

mainstream flow develops toward the reg ion near the pressure surf ace and 

the shroud as shown in Figure 8.17. These have been also shown in Fig­

ure 8.20, in which the velocity component V
p 

is almost symmetric near the 

inlet(s = 3.1), when the flow proceeds downstream, it is accelerated in the 

region near the pressure surface and shroud, but decelerated in the region 

near the suction surface and the hub. 

Another important feature of the flow in the stator is that, as shown 

in Figure 8.21, the tangential velocity Vi is reduced very rapidly along the 

passage. Near the hub and exit region, the tangential velocity even becomes 

positive. This behavior is as expected, since the fonction of a diffuser ( the 

stator in the present pump model) is to reduce the high velocity in order to 

convert the kinetic energy to static pressure (see, Shepherd 1956). Although a 

quantitative comparison with measurement is not available, the revealed flow 

features by the numerical prediction are reasonable and quite encouraging. 

One can also see that, from Figure 8.21, the deceleration of the tangential 

velocity is more evident in the region near hub and suction surface, as the 

mainstream flow shows a higher concentration in the region near shroud and 

pressure surface. 

From Figure 8.22, one can observe that, near the inlet, the positive ve­

locity component Vn indicates a outward flow because of the effects of the 
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upstream flow. As the flow develops downstream, Vn exhibits an outward 

·f:1.ow towards the suction side of the passage, and an inwarà flow towards

the pressure side indicating the presence of secondary flows within the stator

passage. These are shown more clearly in Figure 8.24.

8.3.3 Comparison between the MPAGE and 3DGE Results 

The MPAGE velocities, the passage-averaged velocity components V
P 

and 

Vt around the rotor and stator, are presented in Figure 8.25 and 8.26 with 

comparison to the 3DGE results within the rotor and stator. The passage­

averaged 3DGE velocities presented in these Figures are integrated from 

the 3DGE solutions across the blade pitch according to the definition of 

the passage-averaged operator in the Section 2 of Chapter 2. The 3DGE 

absolute tangential velocity Vi within the rotor is obtained by adding the 

relative rotating velocity 

(8.2) 

where, R is the radial distance measured from the axis, and w is the shaft 

speed of the machines. 

The MPAGE results are shown as straight lines and the 3DGE results 

as dotted lines. Good agreement can be observed, indicating again that 

the present passage-averaged approach is relatively accurate and can provide 
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reasonable passage-averaged solutions to a large number of turbomachines, 

and even to multistage machines. 

8.3.4 MPAGE Results without Stator 

It is interesting to conduct a test for the performance of the stator/ diffuser. 

This can be done by imposing all the external force terms to zero within the 

stator passage while keeping these terms within rotor passage as they should 

be. In other words, the presence of the diffuser(stator) is totally neglected. 

As mentioned before, the function of the stator is to convert the kinetic 

energy into static pressure. Without the stator, the exit velocity can be ex­

pected to be larger than with the stator. Indeed, this is supported by the 

present numerical prediction in Figure 8.27. It is observed that the velocity 

component V
P 

has no significant changes (since the flow must conserve the 

mass across the blade section), while the velocity component ½ is dramati­

cally decreased with the stator as the flow develops downstream. 

From Figure 8.27a, it can also be observed that the viscous blade effects 

are relatively stronger near the hub region as shown by the straight liri.e (with 

stator) against the dotted line(without stator). The explanation is that near 

the hub region, the blade surfaces are much closer because of the annular 

cross section and small blockage factor B . 

•



Chapter 9 

Conclusion and Recommendations 

The fluid mechanics of turbomachinery is one of the most complex re­

search field of engineering science. Although much progress has been achieved 

in studying various kind of turbomachines with both numerical and exper­

imental techniques, there are still many flow phenomena in tur ho machines 

that are not well understood. One of the most difficult phenomena is the 

rotor-stator interaction with one blade row rotating with respect to another. 

The problem associated with the rotor-stator interaction of turboma­

chinery flows has been studied in this research and a mathematical model for 

the flow simulation has been proposed. This model has been implemented 

by the passage-averaged through-flow computation without considering ex­

plicitly the presence of the blade rows. The effects of the blade rows are 

accounted for by averaged force terms, which are computed from the three­

dimensional solutions within each blade passage. This approach has many 

advantages with regarding to the available capability of computer resources: 
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(i) It avoids a full three-dimensional time dependent computation through a

whole machine, (ii) It does not require the use of adaptive moving grid to 

couple the flows in the rotating and stationary frame of references, (iii) The 

full three-dimensional computations within blade passages can provide more 

accurate three-dimensional information, incorporated into the external force 

terms, than blade-to-blade computations, (iv) It can capture the passage­

averaged properties and some three-dimensional behaviours of the complex 

flow in a rotor-stator stage turbomachines. 

Two solvers for the passage-averaged through-flow computation and the 

three-dimensional internai flow computation have been developed. In the 

present study, the vorticity, scalar and vector potential formulation of the 

Navier-Stokes equations has been used. These solvers are able to predict 

the flow through an axisymmetric channel, a straight duct, a curved duct 

and over a rotating blade passage. It has been shown through numerical test 

cases that the coupling of these two solvers can provide satisfactory solutions 

of the flow in a rotor-stator stage turbomachines. 

The proposed model has been applied successfully to a mixed-flow pump 

with a rotor(impeller) and a stator(diffuser) equipped in the National En­

gineering Laboratory. The predicted solutions were compared with the ex-· 

perimental data. Even considering the absence of a proper turbulent model, 

the numerical results were reasonable and correctly represent the complex 
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three-dimensional flow pattern found in the experimental studies. 

It is felt that the present model presents a good starting point for the 

numerical analyse of a rotor-stator interaction flow using passage-averaged 

approximation. The application of this approach has shown its capability to a 

multistage turbomachinery configuration. To provide a better understanding 

of turbomachinery flows, a series of numerical studies is needed. This series 

of studies should include the following: {i) appropriate turbulence mode! for 

turbomachinery flows, {ii) implementation of the effects of the tip-leakage 

flow. 

In the present study, three-dimensional computations were only per­

formed within blade passages. Outside the blade passages, the flow was 

taken to be axisymmetric and the effects of the wakes were assumed to mix 

out along the circumferential direction. Extending the three-dimensional 

blade duct in the upstream ànd downstream directions of the blade passage 

may be a good way to capture more three-dimensional effects of the flow, 

especially the wake effects. And thus improve the coupling. 
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APPENDIX A 

Relations between rotating and stationary frame of references 

The relationship for the primitive variables between rotating and station­

ary frame of references are simple. But for non-primitive variables, like the 

scalar and vector potentials, these relationships are not straightforward. 

If, for instance, we consider a duct rotating with respect to an axis with 

shaft speed 0, and assume the following relationships are holding 

V U + Vo 

W WR + Wo 

</, </,R + </,o 

A = AR + Ao {9.1) 

where, subscript R represents the relative variables in the rotating frame of 

reference, and subscript O represents the variables generated by the shaft 

speed or the difference of the absolute and relative variables. The problem 

is to determine the variables with subscripts O. 

It is easy to show that, in an axisymmetric coordinate system, the velocity 

and vorticity have the following expressions 

V0 
(0, wr, 0) 

(0, O, 2w) (9.2) 
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Since the velocity produced by the scalar potential is the irrotational part 

of the velocity field, while the velocity V O is generated by the rotation with 

vorticity W O• The following relation can be imposed 

0 

or 

<Po = <P 

Therefore, for vector potential, we have 

Note that 

and 

Vo V - U 

Wo 

v' x (A - AR) 

v' x Ao 

v' x Vo 

Wo - v'x(v'xAo) 

v'(v' · Ao) - v'2 Ao 

(9.3) 

{9.4) 

(9.5) 

(9.6) 

(9.7) 

here, we used v' • A0 = 0, since both A and AR are assumed to be solenoidal 

( or divergence free). 
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Now the linear equation for An 

V2An = -Wo (9.8} 

can be easily solved since the velocity V n and vorticity W o are known ev­

eryw here. 
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APPENDIX B 

Local orthogonal coordinate curvilinear system 

It will be convenient to use a local orthogonal coordinate curvilinear sys­

tem ( et1
, et2

, en) on general boundary surfaces instead of the Cartesian 

coordinate system (x, y, z) as illustrated in Figure B.1. 

Let 

(9.9) 

be the position vector of a point on S and let introduces the scalar factors 

hti 
-

ht2 

-

hn 

-

Il Br 11
Bet1 

[( 8x ) + ( 8y ) + ( 8x )Jl/2 
8et1 8et 1 Bet1 

11�11 Bet2 

[( ax ) + ( 8y ) + ( Bx )]1/2 
Bet2 Bet2 862 

11�11 Ben 

[( Bx ) + ( ay ) + ( Bx )]1/2 
Ben Ben Ben 

(9.10) 

One can show that the expressions for gradient, divergence and cross 

product in terms of the orthogonal curvilinear coordinates take the following 

form 

(9.11) 



v'•V -

VxV -

+ 

+ 

and 

Vs x V -

+ 

+ 

1 a 
h h h lae (ht2hnVtJ

t1 t2 n t1 a a 
+ ae (ht1 hnVt2) + ae (ht1 ht2Vn)]

t2 n 
1 a a .... 

hhlae (hnvn) - ae (ht2Vt2)]t1 
t2 n t2 n 
1 a a .... 

hhlae (ht1VtJ - ae (hnvn)]t2 
t 1 n n t1 

h 

1
h la! (ht2Vt2) - a! (hti vtJ]n

t1 t2 t 1 t2 

1 a .... 

hhlae (hnvn)]t1 
t2 n t2 
1 a .... 

hhl- ae (hnvn)]t2
t1 n t1 

h \ la! (ht2Vt2) - a! (ht1 vtJ]n
t 1 t2 t 1 t2 
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(9.12) 

(9.13) 

(9.14) 

Where, t1 , t2 and :ii are the unit vectors tangential to the directions Çt1, Çt2 

and En respectively, and Vs is the surface gradient operator. 
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APPENDIX C 

Passage-averaged analytical solution for straight duct 

From the paper of Han (1960), one can express the axial velocity to a 

rectangular duct (see Figure 7.1) as follows 

_ 1r2 

c-i f: (-l)m+n cos [(2m - l)1rx/2a] cos [(2n - l)1ry/2b]
Uz - 4 m,n=l (2m -1)(2n - 1) [(2m - 1)212 + (2n -1)2 

+ (2,Bb/7r)2] 
(9.15) 

where 

00 

C = L 1/(2m - 1)2(2n -1)2[(2m -1)212 + (2n -1)2 + (2,Bb/1r)2 ] (9.16) 
m,n=l 

The parameter ,B and its relations with axial distance can be found in 

Han (1960). 

Employing the passage-averaging procedure described in section 3.2, the 

velocity in (9.15) is averaged across the y-direction and gives 

and 

1r 
oo (-l)m+l 

Uz = -c-
1 L ---Dm cos[(2m - l)1rx/2b] (9.17) 

2 
m=l 2m -1 

00 

Dm
= L 1/(2n -1)2[(2m -1)2 ,2 + (2n - 1)2 + 2,Bb/1r)2 ] (9.18) 

n=l 

Th·e derivatives of the velocity with respect to the y-direction on the two 

parallel plates (i.e. y = ±b) have the following form 

(au 
) 

71"3 00 

a z = bc-1 L Em cos[(2m - l)7rx/2a]
y b S 

m=l 
(9.19) 
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(9.20) 

Then the z-component of the difference of the shear forces on the two plates 

is 

and 

(9.21) 

Em = L 1/[(2m - 1) 2ï2 
+ (2n - 1) 2 

+ (2,Bb/11-) 2 ] (9.22) 
n=l 



Figure 3.1: Configuration of a Blade Row 

(From Adamczyk 1984) 
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(a.) a = 0.05 (b) a= 0.1 (c) o = 0.2 

(d) o = 0.3 (e) a= 0.5

Figure 6.1: Sectional View of Domains with Skewness, a 
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Figure 7.12: Fully Developed Flow Through a Two-Dimensional Channel 
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(a) Inlet Hub-to-Shroud streamsurface (b) In let Blade-to-Blade streamsurface

Figure 7.23: Ribbon Patterns within lmpeller, Re = 100, w = 1.0 
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Figure 8.1: Cross-Section Through the Mixed-Flow Pump 

(Frorn Carey et al. 1985a) 
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Figure 8.4: Grid for the MPAGE Computation 
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Figure 8.5: Grids for the 3DGE Computations 
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(i) Present

(ii) Experiment

· Figure S.14a.: Blade-to-Bla.de Ve]ocity Vector at R == 0.167, Rotor



(i) Present

(ii) Experiment

Figure 8.14b: Blade-to-Blade Velocity Vect t R 
. 

or a = 0.333, Rotor 
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(i) Present

(ii) Experiment

.Figure 8.14c: Bla.de-lo-Illa.dc Velocity Vector at R - 0 500 R · 
- • , otor 
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(i) Present

(ii)· E xperiment

Figure 8.14d: Blad · e-to-Bla 1 \' 
• 

.<. e -elocit \T. Y ector at R _ - 0.667, Rotor 
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(i) Present

(ii) Experiment

Figure 8.14e: Blade-to-Blade Velocity y; t ec or at R = 0 833 R · , otor 
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(i) Present

(ii) Experjment

Figure 8.14f: Bla.de-to-I3la<le V l . e oc1ty Vector at R = 0 917 R · , . otor 
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Figure 8.15: Secondary Velocity Vectors, Rotor 
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Figure 8.17: Surface Plots for Component V
p
, Stator 
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Figure B.1: Local Coordinate System on the Boundary Surface 
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