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ABSTRACT 

Soil expansion during freezing is caused by soil water freezing and moisture 

migration from unfrozen to frozen soil. This process results in frost heaving, 

and it may cause damage to structures built in the permafrost or seasonally 

frozen ground. The understanding and simulating of soil freezing process has 

been a long-term goal of much research in cold regions engineering. 

ln this thesis, a conceptual model for calculating the amount of heaving and 

the resulting stresses in a freezing soil, on the basis of three coupled field: heat 

transfer, moisture migration and stress,is presented. This model takes into 

account the non-homogeneity of the frozen zone due to temperature variation, 

as well as the e:ffects of frozen soil creep on stress distribution. In this model, 

the Clapeyron equation is used to determine the liquid water pressure and to 

describe the e:ffect of stress field on the heat and tnoisture transfer within the 

freezing fringe, while the associated flow rule is used to define creep strains in 

frozen soil. 

This model was used to simulate a test on a saturated cylindrical sample of 

silt under 50 kPa in unidirectional open freezing system was first carried out. 

The predicted temperature field and the amount of heave are in a good agree

ment with the experimental results published by Penner (1986). However, in 
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addition, the simulation furnished also the complete stress field during freez

ing, which made it possible to take into account the effect of external loading 

on the amount of frost heave. 

Secondly, the proposed model was used to simulate ground-pipeline inter

action for a chilled pipeline experiment carried out at the pipeline test facility 

in Caen, France. The simulated temperature profile agrees well with the mea

surements and predicted stresses acting against the pipeline seem to be of 

a correct order of magnitude. Because of a lack of exact information on the 

axial confining conditions of the pipe, it was decided to solve first two extreme 

pipe-confinement cases, Î'.e., the case of a free floating pipe and the case of 

a rigidly fixed pipe. It was considered that real conditions would be located 

between these two limiting cases. To test this assumption, and in order to 

take into account the possible resistance due to the longitudinal confinement 

of the pipe, another possible pipe confinement condition was also considered, 

in which the pipe resistance was represented by a virtual spring. The simulated 

frost heaving under this pipe confinement condition was directly controlled by 

the assumed spring stiffness, and was found to be always located between those 

of the two limiting cases. 



RÉSUMÉ 

L'expansion du sol pendant l'engel est causée par le gel de l'eau interstitielle 

et par la migration de l'humidité du sol non gelé vers le sol gelé. Ce processus 

produit le soulèvement du sol, qui peut endommager les structures construites 

dans le pergélisol ou dans le sol soumis à un gel saisonnier. Comprendre 

et simuler mathématiquement le processus de gel du sol a été l'objectif de 

nombreuses recherches en ingénierie des régions froides. 

Cette thèse présente un modèle conceptuel capable de calculer le soulèvement 

et les contraintes dans le sol qui gèle, en se basant sur le couploge des trois 

champs: transfert de chaleur, migration de l'h4.midité et contraintes. Ce 

modèle tient compte de l'hétérogénéité de la zone gelée due à la variation 

de la température, ainsi que des effets du fluage du sol gelé sur la distribution 

des contraintes. On utilise l'équation de Clapeyron pour déterminer la pres

sion dans l'eau non gelée et pour décrire l'effet du champ de contraintes sur 

le transfert de la chaleur et d'humidité dans la frange gelée, tandis que la loi 

d'écoulement associée est utilisée pour définir les déformations de fluage du sol 

gelé. 

En utilisant ce modèle, on a d'abord simulé numériquement un essai de gel, 
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publié par Penner (1986). Dans cet essai, un échantillon cylindrique de silt 

saturé fut soumis au gel unidirectionnel sous une pression normale de 50 kPa.

Les prédictions du champ de température et la quantité de soulèvement s'accor

dent bien avec les résultats expérimentaux de Penner (1986). Cependant, en 

plus, la simulation a fourni également le champ de contraintes complet lors du 

gel, ce qui permet de tenir compte de l'effet des sollicitations externes sur la 

quantité du soulèvement. 

En second lieu, en utilisant le modèle proposé, on a également simulé 

l'interaction entre le sol et un gazoduc refroidi et on comparé les prédictions 

avec les résultats de mesures effectuées sur un gazoduc enterré, situé dans 

le Centre d'essais de Caen, France. Les résultats de simulation du profil de 

température se comparent bien avec les mesures, et les contraintes agissant sur 

le gazoduc ont des valeurs raisonnables. A cause de manque d'information sur 

les conditions de confinement du gazoduc dans le sens longitudinal, on a décidé 

de simuler d'abord deux cas extrêmes de confinement du tuyau, celui de flot

taison libre et celui d'un encastrement rigide du tuyau. On a considéré que les 

conditions réelles devaient se trouver entre ces deux cas limites. Afin de vérifier 

cette hypothèse, et pour montrer comment on pourrait prendre en compte la 

résistance due au confinement longitudinal du tuyau, on a résolu également 

un cas intermédiaire dans lequel la résistance du tuyau fut représentée par un 
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ressort virtuel , fonction de la flexibilité longitudinale du tuyau. On a constaté 

que le soulèvement simulé dans ce dernier cas est contrôlé directement par la 

rigidité du ressort, en se situant entre les deux cas limites. 
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Chapter 1 

INTRODUCTION 

1.1 Mechanics of Freezing in Soils 

1.1.1 Freezing Process 

It is well known that three conditions are necessary for frost heave and the 

formation of segregation ice. First, ground temperatures must be sufficiently 

cold and prolonged so that the soil water freezes. Second, the water table 

must be close to the frost front in the soil mass· so that water can migrate 

to a growing ice lens. Third, the soil must be susceptible to the formation of 

segregated ice. 

It is universally recognized that frost heave is caused not only by freezing of 

in-situ pore water, but also by water flow to the freezing front. This water flow 

is induced by a suction gradient that develops in the frozen soil in response to 

the temperature gradient in the soil mass. 

As described by Konrad and Morgenstern (1980), when a soil freezes, be-
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cause of the eff ect of particle surface forces and suction pressures acting below 

the ice lens, the nucleation temperature Ts required to form ice at the base 

of the lens is colder than the normal freezing point of water T1 � 0° C, the 

warmest temperature at which ice can grow. An idealization of the formation 

of segregated ice is shown in Figure 1.1. ln this figure, the cold-side tempera

ture is at the surface, the temperature at the frost front is equal to the normal 

freezing point of water T1, and the segregation temperature Ts is located at 

the base of the growing ice lens. The zone between the base of the growing 

ice lens (T = Ts ) and the freezing front (T = T1) has been termed the frozen 

fringe (Miller, 1972). ln the frozen fringe, liquid water exists in equilibrium 

with ice at a temperature below the freezing point. The amount of water that 

can flow to the base of the ice lens is a fonction of the suction gradient existing 

across the frozen fringe and in the unfrozen zone, and of the permeabilities of 

the frozen fringe and the unfrozen soil. Under steady-state conditions, water 

flows to the base of the growing ice lens through the frozen fringe from the un

derlying unfrozen soil. When the frost front advances, the temperature in the 

frozen fringe decreases, causing a reduction of its permeability and a decrease 

in the flow of water. This interrelation of heat, moisture and flow, results 

in the formation of finer ice lenses near the surface of a soil column where 

the temperature gradient is the greatest. Thicker ice lenses occur at greater 

depths where the temperature gradient is smaller. According to Konrad and 



Morgenstera (1984), "from phenomenological point of view, the mechanics of

frost heave can be regarded as a problem of impeded drainage to an ice-water

interface at the segregation front"

1. 1. 2 Capillary Theory

In the capillary theory, the only driving force for water migration to a

growing ice lens is the capillary suction which is present at a curved ice/water

interface, and is given by the Kelvin equation (Williams, 1972):

Pi-pl= 2(7.7
ra

(1. 1)

where: P,, P{ - ice, and liquid water pressures; o-, ; - the interfacial tension of

the ice/water interface; r, ; - the minimum radius of the ice/water interface.

According to this model, the accumulation of ice occurs only at the freezing

front, and the maximum value of pressure difference P; - P; depends only on

the characteristics of soil, and not on the temperature, temperature gradient

and frost penetration rate. In fact, however, it is now generally known that the

moisture migration towards the growing ice lens occurs not only in the unfrozen

but also in the frozen zone (Xu et al., 1985). Miller (1977) has referred to this

model of ice lens growth as "primary frost heaving". Miller (1972) proposed

the concept of "secondary heaving", which occurs when freezing extends below
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the nominal base of the ice lens. In his model, ice in the frozen pores can move 

by regelation relative to the particles, and moisture can move towards the 

base of ice lens through a thin, partially frozen zone, which he called "frozen 

fringe". The phenomenon of the growing ice lens behind the freezing front was 

confirmed experimentally by Loch and Kay (1978)', who found the thickness of 

frozen fringe for New Hampshire silt to be about 0.2-0.4 cm. This phenomenon 

cannot be explained on the basis of the capillary theory. 

Nevertheless, as shown by Everett and Haynes (1965), Penner (1973), 

Sutherland and Gaskin (1973), and some others, the capillary theory can be 

used with some success for predicting the suction at the frost front, frost heav

ing rate and frost heaving pressure in essentially non-colloïdal soils composed 

of inert particles, such as glass beads, pulverized fuel ash, and even kaolin, 

provided the radius riw in eq.(1.1) can be properly evaluated or indirectly 

measured (Williams, 1972; Sutherland and Gaskin, 1973). 

1.1.3 Thermodynamic Theory 

A better understanding of suction in frozen soils can be obtained by the 

generalized Clausius-Clapeyron equation (Kay and Perfect, 1988) 

Pi Pz - 1r T - To
- - --- = -L---

Pi P1 To 
(1.2) 
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where:Pi, Pz - the ice pressure and hydrostatic pore water pressure, respec-

tively; 7r - the osmotic pressure associated with leachable solutes; L - the latent 

heat of fusion, and T, T0 - freezing temperatures (° K) of water in soil and in 

the bulk state, respectively; p1, Pi - density of water and ice, respectively.

If appropriate values of parameters are substituted into eq.(1.2) (pz = 1000 

kg/m3
; Pi = 916.8 kg/m3

; L = 3.336 x 105 J/kg; T0 = 273.15° K), and 

neglecting 7r for pure water, one gets from eq.(1.2) the rates of pressure changes 

with the variation of temperature (Ladanyi, 1985): 

dPz = l.09ldPi + l.22ldT (1.3) 

with pressure in M Pa and temperature in ° K. Eq.(1.3) expresses in general 

the variation of suction in the pore water with the variation of the external 

pressure on the ice and the temperature (Konrad and Morgenstern, 1982). 

If it is assumed that at the ice/water interface dP1 = dPi = dP, one gets 

from eq.(1.3) the freezing point depression for ice 

oT 

f)P 
= -0.0745 °K/MPa (1.4) 

However, if only the pressure on the ice changes, with dPz = 0, eq.(1.3) gives 

oT 

oPi 
= -0.89 ° K/MPa (1.5) 
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While in the opposite case, when dPi = 0 

8T 
ap

1

=0.82 °I</MPa (1.6) 

Available experimental evidence (Miller et al., 1980) shows that eq.(1.5) seems 

to explain better than eq.(1.4) local pressure melting phenomenon in frozen 

soils and the freezing depression in the soil during freezing. 

Finally, in an isothermal case, dT = 0, and eq.(1.3) yields 

(1.7) 

which indicates that changes in pore water pressure will tend to follow closely 

those in the ice, as long as there is no substantial temperature change (Williams, 

1977). 

The Clapeyron equation indicates that the liquid water pressure P1 becomes 

negative if ice is at the atmospheric pressure (Pi = const) and the soil tem

perature decreases below the freezing point, and that there is a nearly linear 

relationship between the suction and the temperature when the temperature 

is close to 0°

C. Sorne experimental veri:fication of the Clapeyron equation has 

been provided by Vignes and Dijkema (1974) and Biermans et aL (1978). 

Hoekstra (1969) and Radd and Oertle (1973) measured the pressure necessary 

to prevent heave as a fonction of temperature in a freezing soil. If one assumes 
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that P1 = 0 at the lens and that heaving pressure is equal to the ice pressure, 

then the measurements of heaving pressure are in a good agreement with the 

Clapeyron equation. 

In most models of frost heaving, the ice pressure variation dPi is assumed 

to be zero in order to simplify the Clapeyron equation while defining the suc

tion. However, when the soil is constrained or un�er an external loading, the 

distribution of the stress between soil particles, ice and liquid water must be 

determined, as will be shown later. 

1.1.4 Segregation Potential Concept 

Konrad and Morgenstern (1980) have proposed a detailed model for one

dimensional frost heave . They suggested that, after an ice lens is formed, the 

frozen soil behind the ice lens does not participate in mass transport, but that 

water is transported to the ice lens from the unfrozen soil through a thin zone 

of partially frozen soil referred to as the frozen fringe. The driving force arrives 

from suction generated at the ice-fringe interface, and the fringe impedes the 

flow to the lens because of its low permeability. They made a simple linear 

analysis of the frozen fringe, by assuming that the Clausius-Clapeyron equation 

is valid at the base of the ice lens, that water flow is continuous across the 
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frozen fringe, that the fringe can be characterized by an overall permeability 

K 10, and that the temperature in the frozen fringe varies linearly between the 

segregation freezing temperature T80 , at the lens, and the freezing temperature 

of bulk water T1, at the bottom of the fringe (Figure 1.2). 

According to Konrad and Morgenstern (1981), when a soil sample freezes 

under different cold-side step temperatures but the same warm sicle tempera

ture, the water intake flux Va at the formation of the final ice lens is propor

tional to the ternperature gradient in the frozen fringe (Figure 1.3): 

V0 = SP · gradT (1.8) 

The proportionality factor S P has been termed the segregation potential. Its 

value, given by the slope of the straight line in Figure 1.3, was found to be 

a fonction of the total suction potential at the freezing front P1, the suction 

potential at the frozen-unfrozen interface Pu, the segregation freezing tem

perature T8 and the overall hydraulic conductivity in the fringe K1 (Konrad, 

1987). 

The segregation potential, once evaluated at near steady-state conditions, 

and under a negligible overburden pressure, may be considered as an index 

property of a soil that uniquely characterizes its frost heave susceptibility. 

Although the value of S P is usually determined at a constant suction at the 
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frost front, the relationship between SP and Pu can be easily established, 

because the value of P
u 

can be determined by applying the Darcy's equation 

to the unfrozen zone, once the permeability (I<
u
) is known and the velocity of 

moisture migration v is measured in a freezing test (Konrad and Morgenstern, 

1981; Morgenstern, 1981; Konrad, 1988) 

(1.9) 

where lu is the length of flow in the unfrozen soil. When the suction at the 

frost front increases, the segregation potential decreases with a concomitant 

decrease in the slope of the relationship ¼ versus gradT. In close to thermal 

steady-state conditions, any freezing soil at the formation of the final ice lens 

is possibly characterized by a set of straight lines V0 vs gradT passing through 

the origin (Figure 1.4 ) . Figure 1.5 shows a correlation between S P and P
u 

obtained for Devon silt (Morgenstern, 1981). 

It is noted that Garand and Ladanyi (1982) have used the maximum suction 

at the frost front (eq.(1.9)) rather than the segregation potential for comparing 

the frost susceptibility of a glacial till under different compaction efforts. 

A detailed procedure for experimental determination of the segregation 

potential has been described by Konrad (1987). He recommended to use the 

freezing apparatus developed by Penner (1986), and to perform a freezing 
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test under fixed temperature boundary conditions. The value of SP is then 

determined at the end of transient freezing. 

It is interesting to note that such a freezing test with fixed temperature 

boundary conditions, leads generally to a heaving behaviour which is consid

ered to be composed of 3 phases (Konrad and Morgenstern, 1980) (Figure 1.6). 

ln phase 1, the water intake velocity is almost constant, in phase 2 it decreases 

continuously with time, and finally when the frost front becomes stationary, 

steady state is reached and phase 3 begins. This coïncides with the growth of 

the last ice lens, under constant boundary conditions. During that final phase, 

experimental data show that the rate of heave decreases monotonically with 

time, tending apparently to an asymptotic value (Konrad and Morgenstern, 

1980; Garand and Ladanyi, 1982). One should be aware, however, that this 

laboratory result, which may be due to the formation of a single final ice lens 

across the cell, preventing nearly all further water migration into the frozen 

zone, is probably not applicable to the field conditions where water migra

tion is not one-dimensional but three-dimensional, so that water can migrate 

around the existing ice lenses. 

Konrad and Morgenstern (1984) have established that the segregation

potential of a given freezing soil decreases with increasing applied pressure, 
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and they expressed the influence of surcharge by the empirical power law: 

SP = SPo · exp(-a · Pe) (1.10) 

where SP0 is the value of SP obtained for zero· applied pressure, Pe is the 

applied pressure (Pa) and a is a constant (Pa-1 ). The segregation potential 

concept has up to now been used successfully for predicting frost heaving 

e:ffect related with chilled pipelines and artificial ground freezing (Konrad and 

Morgenstern, 1984). 

1.1.5 Problem of Stress Partition 

One of the important aspects of ice segregation is the role of the overburden 

pressure and its e:ffect on ice segregation. ln general, the pressure in any 

phase will differ from the overburden pressure. When the soil is confined or 

an overburden imposed, the distribution of the stress between soil particles, 

ice and liquid water has to be determined. Following unfrozen soil mechanics 

principles (Bishop and Blight, 1963), Miller (1978) suggested the use of a stress 

partition factor to weight the relative participations of the pore pressure, based 

upon the Terzaghi's concept of effective stress: 

(1.11) 

(1.12) 
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where: cr^, o-e - neutral stress and effective stress; ̂  - stress partition function;

P - overburden. Although the theoretical basis of eq. (1. 11) is controversial,

especially when transferred from unsaturated unfrozen soil mechanics to the

mechanics of soil freezing, it has nevertheless proven to be a useful empirical

formula when the value of ̂  was expressed on the basis of experimental results.

Hopke (1980) assumed the partition factor ̂  , as a first approximatiou, to

be given by

Q.
x= 1-^., (1. 13)

where 0, and 0, are the volume fractions of ice and soil particles, respectively.

The numerical results based upon this approximation show, that the heave

rate may be oscillatory, because there is a discontinuity in ice pressure at each

new lens location.

On other hand, a different approach to stress partition was used by Groen-

evelt and Kay (1977). These authors defined the envelope pressure potentials

of the liquid water and ice in a frozen soil and, expressed the liquid water

pressure by the equation

^=P*+aP+^/,. ln
'̂.0

(1. 14)

where: P* - reference pressure (Pa); P - external loading pressure; a, /3 - load-

ing factor and frost factor, respectively. However, it is difficult to determine



13 

the coefficients in this equation. 

Sorne remarks on stress partition were made by Ladanyi (1985). In fact, if 

only mechanical effects are considered, the variation of pore matrix pressure 

!).u caused by an increase !).p in the overall total external pressure, can be 

calculated by a formula developed by Bishop (1973) 

where n is the soil porosity, and Cm , Cs, C are the compressibilities of the pore 

matrix, the soil grains and the soil skeleton. When this formula is applied to 

an ice-saturated sand, it is found that nearly all (99.8%) of !).pis transferred ta 

the pore ice. However, in a 3-phase material, such as a frozen soil containing a 

considerable fraction of unfrozen water, the compressibility C of ice-cemented 

soil skeleton is greatly reduced, leading to the result that under a sudden 

increase of external pressure, the ice may take a much larger share of the 

pressure than unfrozen water. 

As for the partition of stresses in a frozen soil under a deviatoric stress 

increment, it was found (Ladanyi, 1981) that the classical Terzaghi's law of 

effective stress should be extended to include the effect of shear stresses in the 

pore 1ce. 
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1.1.6 Frost Heaving Criteria 

One important problem in which there is still some disagreement, is how 

to define the criterion for the start of frost heaving. Several criteria have been 

used up to now in published models for simulating frost heaving. Most of 

these criteria are simple and may be expressed by the following statement: 

"whenever the ice content exceeds a critical value, heaving will occur and the 

soil matrix will expand to make room for the excess ice". Sheppard et al. 

(1978) used a critical ice content equal to the porosity of the soil minus the 

unfrozen water. Taylor and Luthin (1978) used a critical ice content equal 

to 85% porosity, regardless of unfrozen water content. O'Neill and Miller 

(1985) used a simple criterion of neutral stress, in which heave occurs when the 

neutral stress exceeds the overburden pressure. However, all of these criteria 

for frost heaving have yet to be verified by experiments and observations. 

Fortunately numerically, one finds that the various criteria on the critical ice 

content for frost heave do not make much difference in the results of frost heave 

calcula tions. 

1.1.7 External Load and Shut-off Pressure 

Reductions in heaving following increases in the surcharge, have been widely 

reported in the literature. This phenomenon has been suggested as one of 
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possible ways for controlling frost action in frost, susceptible soils. Sorne re

searchers (McRoberts and Nixon, 1975; Hill and Morgenstern, 1977) suggested 

that there is a shut-o:ff pressure for each soil at which the effective stress at 

the frost front will cause no flow of water to the freezing front. When the 

shut-o:ff pressure is exceeded, water is then expelled in advance of the freezing 

front. The shut-off pressure depends on the soil type, stress distribution and 

the freezing conditions. 

However, Penner and Ueda (1977) expressed the opinion that no shut-off 

pressure should exist for soils provided that freezing is continued for a su:ffi

ciently long period. Although water may be expeUed from the sample initially, 

the water flow must reverse from expulsion to intake, provided the experi

ment is not terminated too early. According to their experimental results, the 

cold-side temperature imposed on the sample has a signi:ficant influence on the 

constant heave rate observed at low pressure. At high loading, the heave rates 

are low and the confining pressure has an overriding influence on heave rate. 

Loch and Kay (1978) reported that the expulsion of the pore water appears 

at an early stage in the experiment. In their experiments, the greatest expul

sion occurred from the samples in which the freezing front was advancing most 

rapidly. This stage of expulsion which takes variou
0

s lengths of time, depending 

on the overburden load, preceded the stage of water intake for segregation to 
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ice lenses. In all experiments, when the overburden pressure is increased, the 

heave rate is found to decrease. 

Konrad and Morgenstern (1982) have attempted to estimate the true upper

bound shut-off pressure by putting P1 = 0 in the Clapeyron equation, which 

gives in the P vs T plot (Fig.1.7) a straight-line through the origin with the 

slope given by eq.(1.5), and by looking for the intersection of that line with an 

experimental line relating the values of the segregation temperature T80 with 

the applied pressure. As at this specific point there is zero suction at the bot

tom of the final ice lens, the lens will stop growing because no water flow will 

occur . The shut-off pressure found in this manner for Devon silt was in the 

range of 1.0 to l.2MPa, which is still one order of magnitude lower than the 

ice melting pressure which for -1° C would, according to eq .(1.4), be equal to 

about 13.5 M Pa. In other words, one can stop heaving process by applying a 

pressure of about 1 M Pa, but to reverse it mechanically, about 10 times higher 

pressures are necessary. 

1.1.8 Effect of Freeze-Thaw Cycling 

Freezing and thawing cause significant structural changes in consolidated 

clay slurries which cause large increases in vertical permeability. Chamberlain 
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and Blouin (1978) have found that when fine grained materials with high liquid 

limits were subjected to freeze-thaw cycling, their volume was reduced up to 

20% and their vertical permeability increased up to two orders of magnitude. 

The increase was greatest for the soil with the largest plasticity index and, 

in general, the increase was smaller at highest applied stress levels. For soils 

where clay particles predominate, the increased permeability occurs as a result 

of the formation of vertical shrinkage cracks. For coarser-grained soils where 

more angular silts or sand particles control the compressibility, the increased 

permeability is probably caused by a reduction in the volume of solids in the 

pore spaces. This potentially beneficial effect is being explored in connection 

with the stabilization of uranium tailings. 

1.2 Literature Review of Mathematical Mod

els of Freezing Process in Soils 

1.2.1 Models for Frost Evolution in soils 

At the present time, most numerical solutions of the heat transfer problem 

for frozen soil are based on some form of the equations by Harlan (1973). The 

heat transfer equation for an isotropie soil in two dimensions is governed by 
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the following partial differential equation: 

where: À - thermal conductivity, W/m° C; T - soil temperature, 0 0; x, y

- position coordinate, m; T - time, s; pz, Pi - densities of liquid water and

ice,respectively, kg/m3
; C - volumetric heat capacity of the soil, J/m3°C; C1

- volumetric heat capacity of water, J/m3°C; vx , v
y 

- fluid fl.ow velocity in the

x and y direction, respectively, m/ sec; L - latent heat of water, J / kg; 0i -

volumetric ice fraction, m3 /m3
. 

Works of Nixon (1975), and Taylor and Luthin (1978) have shown that the 

convective terms of eq.(1.16) (the third and forth terms on the right-hand sicle) 

are negligible, since most of the time the conductive term is 2 to 3 orders of 

magnitude greater. As a consequence, eq.(1.16) can be rewritten as 

(1.17) 

Based on the different physical assumptions, different approaches have 

been used for treating the latent heat during phase changing. Transforming 

eq.(1.17), we get 

(1.18) 
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with 

- { c+

C= 
c-+Lp//;f 

(1.19) 

here C is an apparent heat capacity, which is highly variable. Bonacina et al. 

(1973) have suggested that the latent heat effect can be assumed to occur over 

a temperature range of T2 - T1 (T1 < T1 < T2 ), in which case the apparent 

heat capacity can be written as 

(1.20) 

These relationships of apparent heat capacity have the advantage of being 

defined in terms of the temperature, rather than the position of the phase 

boundary. Thus, a problem of freezing and thawing in soils involving moving 

boundaries may be described by a non-linear parabolic equation. 

This kind of approach, termed apparent heat capacity method and simu

lated to enthalpy method, often suffers from the. fact that the phase change 

occurs over a very narrow temperature range T2 -T1 , which also moves about 

as time proceeds. Researchers of both methods usually try to ease the steep

ness of the apparent heat capacity C curve by using an artificially extended 

temperature range for the phase change interval (Comini et al., 1974). Nu

merical results may be sensitive to the selection and implementation of the 
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T2 - T1 interval. Oscillatory problems have been �eported, and remedial mea

sures proposed (Morgan et al., 1978). 

Nixon (1983) and Shen (1988) have calculated the latent heat in freezing 

and thawing soils by using experimental fonctions which relate unfrozen water 

content 0i to soil temperature T, in order to match as closely as possible the 

characteristics of the soil. These fonctions result in latent heat being liberated 

over a range of subfreeze temperature, rather than only at the freezing point. 

In Nixon's method (1983), the latent heat of phase change, as prescribed by 

the nonlinear unfrozen water content fonction, was handled numerically by 

the Newton-Raphson iteration method, similar to that described by Ho et al. 

(1970). Shen (1988) has evaluated the apparent heat capacity and thermal 

conductivity in the finite element model without iteration from the tempera

ture in the last time step. Obviously, some errors are introduced as compared 

with a solution produced by a folly iterative procedure, but these errors are 

of the same nature as truncation errors in any finite difference procedure and 

hence can be reduced to an acceptable level through the use of small time steps 

in the quickly varying temperature stages. The advantage of this method is 

that the amount of calculations in a long-term computation can be reduced 

to a level reasonable for persona! computer processing. Shen (1988) and Shen 

and Ladanyi (1989) simulated successfolly the thawing highway embankment 
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in permafrost, located in Qinghai-Xizang (Tibet) Plateau, China, using the 

finite difference method and curvilinear coordinate system which is generated 

numerically by the coupled Poisson's equations. 

For a pure substance such as water and for coarse grained, water saturated 

soil media, phase change occurs almost as a step at the freezing temperature 

T1. Thus, artificial extension of the phase change interval may introduce physi

cally realistic depiction of behavior of the medium. Numerous approaches have 

been developed using a step change characterization of freeze/thaw by treating 

this as a moving boundary problem. Therefore, another form of eq. ( 1.18) ( con-

stant C) is solved over each phase zone, featuring continuous coefficients and 

temperature, with appropriate jump conditions attached to a moving bound-

ary 

T < T1 (1.21) 

on movzng boundary 

here Vs is the velocity of the interface in normal direction. When one does this 

on a fixed numerical mesh, the phase boundary moves across it, requiring some 

kind of special treatment in its vicinity (Goodrich, 1978). Unfortunately, this 

kind of method is difficult to use in multi-dimensional problems. Lynch and 
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O'Neill (1981) have developed a finite element method using a moving finite 

element mesh, in which the mesh motion effect appears as a velocity term 

in the governing equation. This technique has proved to be highly accurate, 

but rather complicated. O'Neill (1983) has developed an algorithm for two

dimensional freezing and thawing problem using a fixed mesh finite element 

scheme. This method is considered to be capable of solving phase change in 

a substance with discrete phase change temperatures, such as pure water or 

coarse grained water saturated media. 

1.2.2 Models for Frost Heaving in Soils 

Soil expansion during freezing is caused by soil water freezing and moisture 

migration from unfrozen to frozen soil. This process results in frost heaving, 

and it may cause damage to structures built in the permafrost or seasonally 

frozen ground. T_he understanding and simulating of soil freezing process has 

been a long-term goal of much research in cold regions engineering. 

Since the 1970's, several theories based on different points of view have 

been proposed for describing the mechanism of frost heave and ice segregation 

in freezing soils. Many mathematical models have been set up on the basis 

of various theories and assumptions for the mechanism of soil freezing and 
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thawing processes. With the advent and widespread use of computers, the 

mathematical models have become quite complicated in some respects, and 

have required a very considerable amount of calculation. However, because of 

lack of a common understanding of the basic physical phenomena, the process 

of ice segregation in these models or theories was not always clear. On the 

whole, any further development of mathematical models had to be based on 

an increasing understanding of the physics of observed phenomena and their 

possible quantification. 

Mathematical modelling of frost heaving in freezing soil has been the sub

ject of many studies since the 1970's. The first efforts at modelling coupled heat 

and moisture transport in freezing soil were by Harlan (1973) and Guymon and 

Luthin (1974). Most of the mathematical models have included simultaneous 

heat and moisture transfer in a one-dimensional column. 

Harlan (1973) and Guymon and Luthin (1974) have developed models of 

one-dimensional heat and moisture transfer in a partially frozen soil. Harlan 

calculated the liquid water pressure from the equation based on the Gibbs free 

energy. Sheppard et al. (1978) used the Clapeyron equation to determine the 

water pressure, with the assumption that the soil is under zero loading and ice 
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at atmospheric pressure: 

(1.22) 

where:P1 - liquid water pressure (Pa); pz - density of liquid water (kg/m3); L

- latent heat of fusion ( J /kg); Tk - the absolu te temperature of soil (0 I<); T0 

- freezing point of pure water at atmospheric pressure (° K).

Taylor and Luthin (1978), and Jarne and Noruin (1980) solved the coupled 

heat and moisture equations and avoided calculating the liquid water pressure 

by using experimental unfrozen water content data. In their models, the mois

ture transfer is driven by a gradient in frozen water content under unsaturated 

conditions. This is expressed in the same way in both frozen and unfrozen 

soils. Ice pressure and Clapeyron equation were not used in their model. Be-

cause of a lack of knowledge of the relationship between soil water diffusivity 

in frozen and unfrozen soil, respectively, an impedance factor, assumed to be a 

fonction of total water content, was introduced to reduce the diffusivity value 

for the soil in the frozen state. 

Guymon et al. (1980) proposed a one-dimensional frost heave model for 

unidirectional freezing in a moist silt with water table. They assumed that a 

portion of water in freezing soil would not freeze, and all water in addition to 

this amount that freezes in excess of the soil porosity would result in heaving. 
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In 1984, they developed a two-dimensional model of coupled heat and moisture 

flow in frost susceptible soil based on published equations of simultaneous heat 

and moisture transfer. Several numerical examples such as highway embank

ment freezing and frost heaving have been carried out by the Galerkin finite 

element methods. Up to now, most of the available mathematical models are 

valid only for one-dimensional problems. 

Guymon et al. (1981) pointed out that there is considerable measurement 

error in many of the physical parameters that are incorporated in mathemat

ical models of frost heaving and concluded that it would probably never be 

possible to calculate precisely the amount of fros,t heaving from a predictive 

point of view. They suggested that probabilistic concepts should be coupled 

with deterministic approaches. Chamberlain (1980) studied in the field the 

frost heaving for a small section of a roadway in Hanover, NH, with sandy silts 

as the base material. The measured variations of frost heaving at 455 discrete 

points were fitted to a ,8-probability distribution, suggesting that frost heave 

can be evaluated as a probabilistic process. 

Hopke (1980) developed a model of frost heaving that included applied 

load, based on the Clapeyron equation and capillary concepts. ln his model, 

the ice pressure is assumed to be zero at freezing front, and to be equal to the 

local mean pressure at the coldest sicle of the freezing fringe. The simulated 
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results using estimated soil parameters were compared with experimental data

published by Penner and Ueda (1977), but the model predicted too much heave

at low overburden pressure and high temperature gradients. The simulated

heaving rate is oscillatory, because there is a discontinuity in ice pressure at

each new lens location. Hopke speculated that other mechanisms not included

in the model have to limit frost heave under these circumstances.

Gilpin (1980) and O'Neill and Miller (1985) proposed respectively two mod-

els of frost heaving being able to predict ice lensing. The pressure relationships

used in the Gilpin's model are equivalent to a special case of the Clapeyron

equation. Assumed are also quasi-steady temperature profiles and constant

thermal properties for each zone. Gilpin provided an expression for "separa-

tion pressure" by virtue of which the soil particles are forced apart when heave

occurs. This model predicts ice lensing and heaving rates as a function of soil

properties (e.g. thermal conductivities and particle size) and externally applied

boundary conditions (temperature boundary conditions and applied loading).

The simulated results are qualitatively in agreement with experimentally ob-

served phenomenon, e. g. initiation of lenses and overburden effect, as well as

with early time water expulsion and its reversal. O'Neill and Miller (1985)
proposed a numerical model for simulating frost heave in saturated, granular,

solute-free soil. The Clapeyron and capillary equations were used to relate
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temperature, pressures and phase composition. In this model, a stress parti

tion factor was used to apportion participation of pore pressure. Whenever the 

neutral stress builds up to overcome the overburden, a new lens is initiated. 

This model predicts the rhythmic formation of lenses in a recognized pattern 

which are more closely spaced during later slower freezing. 

The models proposed by Gilpin (1980) and O'Neill and Miller (1985) are 

diflicult to apply to multidimensional problems. Up to now, the majority 

of models of frost heaving do not consider the discrete ice lensing, because 

of a lack of understanding of the mechanism of ice lens initiation. Booth 

(1981) demonstrated experimentally that the occurrence of visible ice lenses 

in a frozen soil represents a change only in the scale of segregation, and as 

such does not affect the rates of heaving or water intake of soil as it freezes. 

Therefore, in applications of mathematical models of frost heaving to practical 

problems an exact prediction of ice lensing is in fact not required. 

1.3 Scope and Organization,of This Thesis 

Up to now, most of the investigations on modelling and numerical simu

lation of frost heaving in soil have been only based on the coupled heat and 

moisture transport in freezing soils. However, these models do not consider 
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the effects of external loading. Although many mathematical models of frost 

heaving have included the effect of external loading, the external loading is 

only considered as a factor influencing frost heaving. However, these models 

are difficult to be extended to 2-D cases. To our knowledge, Blanchard and 

Frémond (1985) were the first ones to propose a model for coupled heat, mois

ture and stress fields. Their model considers the existence of liquid water in the 

frozen zone and the deformability of the soil which is assumed to be elastic for 

unfrozen soil and Norton-Hoff viscoplastic for frozen soil. They have simulated 

the frost heaving and thaw settlement around a chilled and heated pipeline, 

using this model. Unfortunately up to now, only the isotherms, heaving and 

hydraulic head after 48 hours have been published, without any information 

on the associated stress field. 

The objective of this thesis is to propose a model for coupled heat, moisture 

and stress field in freezing soil. The goal of this research was to develop a model 

which can predict the stresses and deformations due to the heat and moisture 

transfer in a freezing soil, applicable to engineering design, and to keep calcula

tion costs at a minimum. The model has a wide field of potential applications 

to all problems involving frost heaving and frost pressures against structures. 

However, at present, the main interest in such models is in the area of nat

ural gas transport through partially chilled pipelines traversing discontinuous 
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permafrost regions. For this reason, the validity of the proposed model was 

tested against the measurements made on a large scale buried chilled pipeline 

test that have been going on since 1982 in Caen, France. 

The thesis is organized as follows: 

• Chapter 2 describes the basic assumptions and equations of the proposed

model used for coupling heat, moisture and stress fields.

• Chapter 3 presents a numerical simulation by the proposed model of a

uni-directional freezing test published by Penner (1986). The results of

the simulation for temperature and heave are shown to agree well with

the experimental measurements, giving an experimental validation of the

proposed model.

• In Chapter 4, the first freezing cycle of the Canada-France Chilled Pipeline

Ground Freezing Test is simulated by using this model. Because of the

lack of exact information on the confining conditions of the pipe in the

longitudinal sense, three possible pipe confinement conditions are consid

ered in this simulation. In addition, the sensitivity of prediction results

has been tested by varying the soil hydraulic conductivity and the tem

perature boundary conditions.

• In the final Chapter 5, conclusions are summarized and implications, as
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well as recommendations for further researc.h are discussed. 

1.4 Summary 

The propose of this chapter was to provide a brief review of the most 

important developments that occurred during the last two decades in research 

on the mechanics and modelling of frost heaving in soils. Up to now, most 

models of frost heaving have been based on the coupled heat and moisture 

transport in freezing soils. Only a few models considered external loading as a 

factor influencing frost heave, while the stress field in the soil due to loading, 

volumetric expansion and creep was neither considered nor calculated in these 

models. 



Chapter 2 

PROPOSED MATHEMATICAL MODEL 

From the practical viewpoint, the prediction of stress and deformation fields 

during frost heaving is considered to be of a great importance for the prediction 

of stability of structures in cold regions. A complete analysis of this problem 

must be able to deal with the coupling of heat, moisture and stress fields. 

Although many mathematical models of frost heaving have included the effect 

of external loading, the applied load was considered only as a factor influencing 

the frost heave, while the stress field in the soil due to loading, volumetric 

expansion and creep was not taken into account and calculated in these models. 

Blanchard and Frémond (1985) were the first ones to propose a model for 

coupling the heat, moisture and stress fields on the basis of the principle of 

conservation of energy, mass and momentum. They have up to now applied 

this model for simulating heat and moisture transfer around a chilled pipeline, 

but no information on the stress field has yet been published. This thesis 

presents another different model for coupling together the heat, moisture and 

stress effects. The main différence between the two models is that in the thesis: 
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(1) the Clapeyron equation is used to determine the liquid water pressure and

to describe the effect of stress field on the heat and moisture transfer; (2) creep

strains in the frozen portion are considered and the associated flow rule is used

to determine them; (3) the incremental initial strains approach is used to define

the stress distribution produced by the volumetric strains of freezing soil caused

by the phase change of water and moisture transfer. The results of simulation

of both temperature field and amount of heave, published by Shen and Ladanyi

(1987, 1988), were found to be in a good agreement with experimental results

published by Penner (1986). In addition, the simulation furnished also the

complete stress field during freezing, and made it possible to take into account

the effect of external loading. This study was the first one able to simulate the

stress variation in a freezing soil. On the other hand, experimental information

on this stress variation is lacking. This is due to the fact that, because of a lack

of appropriate instruments and methods, it has been found difficult up to now

to accurately measure stress field in frozen soil. To our knowledge, Williams

and Wood (1984, 1985) were the first ones to measure the internal pressure

variation in a freezing soil, using small pressure transducers. The transducers

press against small copper tubes which extend 1. 1 cm into the soil over which

small oblong rubber membranes are fitted. The membranes are filled with

silicon oil the freezing temperature of which is -50°C'. Smith and Onysko

(1990) used a similar method to observe the internal pressure around a chilled
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pipeline in the Caen experiment. In that case, pressure transducers of the same 

design were installed in a vertical profile beneath the pipe, at 80, 100, 120 and 

140 cm depth below the surface. Their measurements are interesting and are 

interpreted in a thermodynamic-rheological context. However, these measured 

pressures are average pressures in the soil, or rather, average pressures acting 

on small deformable tubes buried in the freezing soil. In particular, when 

the elastic modulus of the sensor is different from that of enclosing medium, 

the sensor will change the local stress field. Thus, the measurements cannot 

be directly compared with our simulated stress variation in the freezing soil. 

Therefore, the ability to calculate stress and deformation fields in freezing soil 

on the basis of the temperature, moisture and external loading appears to 

be an important step towards a more accurate prediction of the stability of 

structures in frozen soils. 

This thesis presents an extended version of this model and its application 

to the solution of some practical problems of ground-structure interaction. 

2.1 Basic Assumptions 

During freezing, the transfer of heat, moisture and the variation of stresses 

in the soil are all interrelated, so the analysis must,deal with the coupling of all 
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these effects. The mathematical model requires three systems of equations for 

expressing the interrelationship among the laws of heat and moisture transfer 

and a varying stress field. 

The basic assumptions made in the model are as follows: 

• Moisture transport in frozen and unfrozen zones occurs only by the liquid

water form. The air phase and vapor transfer have negligible effects in

net water transfer.

• Effect of salt exclusion is negligible.

• The soil is consolidated under external pressure before freezing, and the

effect of consolidation in the unfrozen zone is negligible during the freez

ing process.

• The volume of soil particles remains constant in the freezing process.

• Both unfrozen and frozen soil are isotropie bodies.

• The freezing point depression of water in the soil under loading is negli

gible.

• The sign rule in this thesis is that all tensile stresses and strains are

positive.
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2.2 Basic Equations for Heat and Moisture 

Transfer 

On the basis of the above assumptions, the generalized moisture transport 

equation for steady or unsteady flow in a saturated or partially saturated soil 

during freezing can be written as (Sheppard et al., 1978) 

(2.1) 

and 

(2.2) 

where: Pl, Pi - density of liquid water and ice (kg/m3 ), respectively; 01 , 0i -

volumetric fraction of liquid water and ice (m3 /m3), respectively; k - hydraulic 

conductivity (m/s); x, y - coordinates (m); T - time (sec); <I> - soil water 

potential (Pa); P1 -pressure of liquid water (Pa); g - gravitational acceleration 

( m/ sec2); G - gravitational potential (Pa). The volumetric fraction of ice or 

liquid water is related to the gravimetric ice or liquid water content by 

0 = 

Pd w 

Pl 

where w is ice or liquid water content by mass (kg/kg). 

(2.3) 

In most cases, the effect of the gravitational component on water flow in 
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the frozen zone is negligible, so that eq.(2.1) can be rewritten as 

(2.4) 

T he heat transport equation may be written as 

(2.5) 

where: C - volumetric heat capacity of soil (Jm-3 °C- 1); À - thermal conduc

tivity of soil (wm-10
c-1 ); T - temperature (°C); L - latent heat of fusion

(3.336 x 105 J/kg). 

In eq.(2.5), the component for thermal vapor transport is neglected, be

cause the heat flow from this source is much smaller than that from thermal 

conduction (Nixon, 1975; Taylor and Luthin, 1978). 

ln order to be able to predict the effect of the stress in soil on the ice 

pressure, the Clapeyron equation including the ice pressure term (Kay and 

Groenevelt, 1974) is adopted 

(2.6) 

here: Tk - the absolute temperature (° K); T0 - the freezing point of pure water 

at atmospheric pressure (273.15° K); Pi - the pressure of ice (Pa). Because 

the role of ice pressure is poorly understood, it is difficult to use directly the 
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Clapeyron equation for predicting liquid water pressure. To be able to use 

the Clapeyron equation, some simplified assumptions about ice pressure are 

proposed ( shown in Fig. 2.1). We assumed that the ice pressure Pi at the 

freezing front is zero, and that at the coldest end of the freezing fringe it 

is equal to the local mean pressure. This assumption is the same as in the 

Hopke's model (1980), and it is close to the profiles of liquid water and ice 

pressure in saturated soil suggested by Miller (1972). The frost heaving is 

assumed to start when the ice content exceeds its, critical value equal to 85% 

of soil porosity, regardless of the unfrozen water content (Taylor and Luthin, 

1978). 

Once the ice pressure is defined according to the above assumption, the 

liquid water pressure P1 can be determined from the Clapeyron equation (2.6) 

Substituting eq.(2.7) and eq.(2.4) into eq.(2.5), and rearranging gives: 

with 

(2.7) 

(2.9) 

(2.10) 
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In fact, the e:ffect of stress in soils on the heat transfer is very small and 

may be neglected. The third term on the right sicle of eq.(2.8) is neglected in 

this analysis, and it can be rewritten as 

(2.11) 

The basic equations about heat and moisture transfer in the proposed 

model are eq.(2.11), eq.(2.4) and eq.(2.7). In these equations, the relation-

ship between the liquid water content in freezing soil and the temperature, 

01 = f(T), must be determined experimentally. 

2.3 Basic Equations for Calculating Stresses 

and Deformations 

In a freezing process, the volume change of freezing soil is caused by the fact 

that water in soil is partly changed into ice and the moisture content varies 

by moisture transport. If the volume of soil particles is assumed to remain 

constant in the freezing and thawing process, the volumetric expansion strain 

e,v can be given as 

(2.12) 
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where: 00 - initial water content (m3 /m3 ); !J..0 - increment of water content

by moisture migration (m3 /m3). 

Because both frozen and unfrozen soil are assumed to be isotropie, the 

normal expansion strains are equal in each direction, while the shear strains 

due to thè expansion are zero. They are given by 

V V V 

0 lxy = lyz = lzx = 

(2.13) 

(2.14) 

h v v v 1 t . t d t ·1 . · v v w ere: Ex, Ey, Ez - norma s ram componen s ue o soi expans10n, lxy, "Yyz,

"Y�x - shear strain components due to soil expansion.

In numerical analysis, the creep deformations are usually determined by a 

step-by-step procedure in the time domain. The creep strain increment d{ ë} 

in each time step is computed as 

(2.15) 

in which !J..T is the size of the time step and { te} is the creep strain rate vector 

in the time step. 

ln the uniaxial stress state, the creep strain in frozen soil can be described 

by a power form equation as (Ladanyi, 1975) 

(2.16) 
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and the reference stress crct is given by 

(2.17)

where: cr, ë - stress and creep strain in uniaxial stress state; crco, n, b, w -

experimental coefficients; i.e, Tc - reference values of strain rate and tempera-

ture. 

For a homogeneous isotropie viscoplastic material, the relationship between 

creep strain rates and stresses can be expressed by the associated flow rule 

(Zienkiewicz and Cormeau, 1974; Soo et al., 1985) 

(2.18)

where: F, F0 - current yield fonction and reference yield fonction; 1 - fluidity

coefficient depending on material properties and time. 

If the von Mises yield fonction is used, because this yield fonction can be 

expressed by the equivalent stress, the eq.(2.18) can be written as 

{ ·c} [ <f ]m Ô?f 
é =,· =-

·--

cro ô{ cr} 
(2.19) 

where 7J is the equivalent stress and 7J0 is the equivalent stress for the reference 

yield fonction. 
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In the stress state, a reduces to a as in eq.(2.16), and the last term at 

the right hand side of eq.(2.19) reduces to 1. Taking the time derivative of 

equation (2.16), gives 

•c _ b [ 
a 

]n [éc]b b-1é - • - • - ·T 
act b 

which compared with eq.(2.19) gives 

<fo

m n 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

In eq.(2.20), the creep parameters in the uniaxial stress state may be gen

eralized for corresponding parameters in multiaxial states. Using eq.(2.15), 

eq.(2.16) and eqs.(2.22) to (2.23), the vector of creep strain increment in each 

time step can be written as 

{ c} [ cf ]n [f.c]b b 1 O(f 
d é = b · =- . - . T - . -- . �T 

ao b â{a} 
(2.24) 

The total strain increment d{ t:} in frozen soil consists of the increments of 

elastic strain d{ t:e}, creep strain d{ t:c} and volumetric expansion strain d{ t:v} 

(2.25) 

The stress-strain relationship for frozen soil in multiaxial stress state can 

be expressed by 

(2.26) 
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where { t:e} is the elastic strain vector, and [D] is the elasticity matrix. Be
cause the Young's modulus and Poisson's ratio of frozen soil are related to the 
temperature of the soil, taking the differential of eq.(2.26) gives 

(2.27) 

Substituting eq.(2.27) into eq.(2.25), and rearranging gives 

From the fini te element method, the strain increment vector d{ E} can be 
related to the nodal displacement vector d{ 8} as 

d{t:} = [B] · d{8} (2.29) 

where [B] is the transformation matrix between strains and nodal displace
ments. Applying the theorem of minimum potential energy, a system of equa
tions for the elements can be formed as 

with 

[J{] · d{8} = d{P} + d{R} (2.30) 

[]{] = 1 [BJ-1 
· [D] · [B] · dv (2.31) 

d{R} = l[BJ-1 
• [D] · (d{t:v} + d{t:c} + 

d[�f-:
1 

· {O'} · �T) · dv (2.32)
where: []{] - the stiffness matrix; d{ P} - nodal loading increment vector; d{ R}

- "pseudoforce" increment vector due to the creep, the volumetric expansion
and the temperature variation.
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On the basis of the above system of equations, the stress and deformation 

increments at each time step can be calculated by the finite element method. 

2.4 Summary 

In this chapter, a conceptual model for calculating heaving and stresses 

m a freezing soil, on the basis of coupled heat, moisture and stress field, is 

presented. This model takes into account the non-homogeneity of the frozen 

zone due to temperature variation, as well as the effects of frozen soil creep on 

stress distribution. In this model, the Clapeyron equation is used to determine 

the liquid water pressure and to describe the effect of stress field on the heat 

and moisture transfer within the freezing fringe, while the associated flow rule 

is used to define creep strains in frozen soil. 



Chapter 3 

SIMULATION OF A UNIDIRECTIONAL 

SOIL FREEZING TEST 

3.1 Description of Test 

U sing the proposed model, a numerical simulation for the frost heaving 

experiment published by Penner (1986) was carried out. Penner measured the 

frost heaving, ice lens growth and frost penetration during open system freezing 

of a saturated soil under 50 kPa overburden pressure. His experimental data 

provide a good opportunity for checking the validity of the proposed model. 

In Penner's test, the test samples were cylinders 10 cm long and 10 cm

in diameter. The frost cell is shown in Fig.3.1. Soil samples for the frost cell 

were prepared from sieved, air-dry soils by adding suffi.cient water to bring the 

moisture content to just above the predetermined liquid limit. The wet soil 

was then stored in a container for several days to equilibrate. It was placed in 

layers in the cell and consolidated in steps, to a final pressure of 500kPa. The 

pressure was then reduced to 50kPa and the sample was allowed to expand 
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to its equilibrium volume before the freezing run was initiated. The moisture 

content of samples after consolidation was about 20% by weight. 

Experiments with the frost cell were carried out inside a constant temper

ature chamber which was held close to the mean temperature of the samples. 

Freezing of the sample was from the bottom upwards, and resistance to move

ment of the unfrozen portion was reduce by the use of a lubricated teflon film 

inside the cell. The external water supply was held level with the porous plate 

at the top of the cell. The temperature baths that supply liquid coolant to 

heat exchangers at the ends of the sample were located outside the constant

temperature chamber. A dedicated multi-tasking HP minicomputer was used 

to control the temperature of the liquid coolant, and to measure sample tem

peratures, water intake and heave. The used method of control was capable 

of maintaining the sample end temperatures to within ±0.004°C, and also 

changing the end temperature of sample according to a pre-selected rate in 

the ramped temperature mode. The temperature boundary conditions are 

shown in Fig.3.2. 

Because the freezing and the external water supply were both unidirec

tional, and the test samples were cylinders, the heat and moisture transfer 
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(3.1) 

(3.2) 

(3.3) 

where r and z are the coordinates in the cylindrical coordinate system. There

fore, the heat and moisture transfer are one-dimensional problems, but the 

mechanical equations are axially symmetrical. 

3.2 Soil Properties 

The soil heat capacity and thermal conductivity are calculated according 

to the following relationships (Kay et al., 1977) 

C 

À 

(3.4) 

(3.5) 

where Cs, C1, Ci, Ca are heat capacities of soil grains, water, ice and air, 

respectively; while Às, Àz, À; and Àa are their conductivities. 0s , 01, 0; and 0a

are volumetric fractions of each phase in the soil, respectively. 
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Table 3.1: Thermal constants used in calculation 

soil grains water 1ce 

C (MJ/m3°C) 2.2 4.18 1.93 

À (W/m3°C) 1.95 0.602 2.22 

As the soil is saturated, the volumetric air fraction in the soil is zero. The 

constants used in this simulation and given in Table 3.1, have been selected 

according to Harlan and Nixon (1978). 

The unfrozen water content is calculated from the temperature in the frozen 

soil by the one-point method (Xu Xiaozu et al., 1985): 

(3.6) 

with 

(3.7) 

where: B
u 

- the unfrozen water content; 00 - the initial water content; 0u
lT=-ioc

- the unfrozen water content at -1 °C; T1 - the freezing temperature of soil (0);

Tr - the reference temperature ( -1 °C). The error of predicting the unfrozen

water content by this method is 1-3% on average. 

Because no information about the e:ffect of stress on the hydraulic con

ductivity is presently availablè, the hydraulic conductivity of frozen soil in this 

simulation is considered to be only a fonction of temperature. The relationship 
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Table 3.2: Coefficients in creep equation 

state b n w O"ct(MPa) Tr le

Compression 0.45 2.50 0.97 0.18 -1.0 10-s

tension 0.44 2.33 1.0 1.83 -1.0 10-s

between the hydraulic conductivity and temperature was deduced from the ex

perimental data published by Horiguchi and Miller (1983), using a regression 

analysis: 

1 3.072 x 10-11e13 ·438T -0.3°C < T < T1

k = (m/s) 

5.453 X 10-13 T < -0.3° C 

(3.8) 

The creep equation of frozen soil is defined from compression and tension 

tests under uniaxial state of stress. The corresponding experimental param-

eters in the creep eq.(2.16) and eq.(2.17) shown in Table 3.2 originate from 

Vyalov (1962) and Eckardt (1982). 

The Young's modulus of unfrozen soil is considered to be constant and 

equal to 11.2M Pa (Lambe and Whitman, 1969). The stress-strain curve and 

the relationship between the initial tangent modulus of frozen soil E0 and 

the temperature is defined by using the results published by Zhu Yuanlin and 

Carbee (1984), and the E0 is represented as follows 

(3.9) 
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where Tr - the reference temperature (-1°C). The Poisson's ratio of both 

unfrozen and frozen soils used in the calculation is assumed to be 0.3. 

3.3 Numerical Analysis Scheme 

For reducing the amount of calculation, the heat and moisture transport 

eq.(3.2) and eq.(3.2) were solved by the finite difference method, but the me� 

chanical equations were still calculated by the finite element method. Because 

of a difference in dimensions of both systems of equations, the grid systems 

for calculating heat, moisture transfer and stress field are different. The two 

grid system with the vertical coordinate of each grid point made to coïncide 

(shown in Fig.3.3 ), were set up for calculating by both the finite difference 

method and the finite element method. The three nodes linear elements were 

used in the calculation of stress and deformation by the finite element method. 

For an interior difference node (j, n), where j i's the spatial node (vertical) 

and n is the time increment, the heat transfer equation (3.2) can be approxi

mated by the predictor-corrector implicit scheme: 

Predictor: 

(3.10) 
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Corrector: 

(3.11) 

with 

f::1 T 
(3.12) a 

l::1zj(l::1zj + l::1Zj+1) 

b 
f::17 

(3.13) 
l::1zj+1 ( l::1zj + l::1zj+1) 

where tiz - the positional node spacing; f::17 - the time step interval. 

As for the moisture transfer equation (3.2), it may be expressed m an 

explicit difference scheme: 

here a and b are also defined by eqs.(3.13) and (3.13) , respectively. 

In each time step, first the temperature in each node is calculated, then the 

moisture content is defined according to the temperature and ice pressure at 

each node. Once the heat and moisture field are ,determined, the volumetric 

strain can de calculated from the variation of moisture field within the time 

step, using eq.(2.12), and the creep strain increment is determined on the 
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basis of stress level and soil temperature in the time step by eq.(2.24). The 

displacement increment field in the time step can be calculated according to 

the incremental initial strain method in FEM analysis: 

(3.15) 

where [I<] is the global stiffness matrix, related to the soil temperature in the 

time step; Li{ ôn } is the nodal displacement increment vector in the time step 

n; Li{ Rn } is the equivalent nodal force increment vector. 

Once a nodal displacement increment is defined, the nodal stresses can 

be calculated by the constitutive law. Then the nodal average stress can be 

determined for calculating heat and moisture transport in the next time step. 

3.4 Results and Discussion 

In this chapter, the simulation of Penner's experiments of frost heaving 

(Penner, 1986, Soil 1, Run 1) was carried out. In addition, the prediction of 

frost heaving and stress fields for another loading was also undertaken. 

Figure (3.4) compares the simulated frost penetration under 50kPa ap

plied loading, with the experimental curve published Penner (1986). In the 
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early stage of test, the calculated penetration is seen to be slightly smaller 

than experimental data, but after 2000 min, the calculated results are in good 

agreement with the measurements. 

The comparison between experimental and simulated total frost heaving 

under 50kPa is shown in Fig.3.5 . The model predicts a smaller heave in the 

initial stage. The precision of simulation becomes better after early stage of 

test. 

The calculated moisture distribution in the sample under the 50kPa and 

300kPa applied loading are shown in Figs.3.6 and 3.7. Because the dry density 

of tested soils was not given in the Penner's paper (1986), the dry density 

was assumed to be 1750 kg/m3 according to other experiments under similar 

conditions published by Penner and Ueda (1977). According to our simulation, 

the moisture increase near the cold sicle is not very large, because the frost 

penetration progresses very quickly in the initial freezing stage. Later, the total 

moisture content smoothly increases to a maximum value behind the advancing 

front, when the applied loading is small. For the case of applied large loading, 

the total moisture content slightly decreases behind the advancing front, and 

the total migrated moisture content is much smaller than under the small 

applied loading. This simulated results are in agreement with those obtained 
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experimentally or observed in the field. Discrete ice lenses cannot be predicted 

by the proposed model. 

The stress fields in the soil under the 50kPa and 300kPa loading during 

freezing are shown in figures (3.8), (3.9) and (3.10). Before the soil is frozen, 

the initial stress field defined by the finite element method according to the 

elastic theory, is found to be uniform. When soil is partially frozen, the soil 

water changes into ice and the moisture migrates. This causes a volumetric 

variation in frozen soil, and results in a change in stresses. This phenomenon is 

very similar to thermal stresses in structures. In the frozen portion, the vertical 

stress O'z remains uniform. However, the radial stress O'r and the tangential 

stress 0'6 vary with the amount of expansion, because of lateral confinement 

of the frost chamber. A comparison of the stress field and moisture fields, 

shows that maximum values of O'r and the tangential stress 0'6 appear at the 

same level as the maximum moisture contents. The effect of the stress field 

on the distribution of ice and the liquid water pressure can be determined by 

the Clapeyron equation with simplified assumptions, as shown in figure (2.1). 

In two previous papers (Shen and Ladanyi, 1987, 1988), the calculated stress 

field was too high, because the expansion strains have not been subtracted 

from the total strairi in calculating the elastic strains. These results have been 

corrected in this thesis. 
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Figures (3.11) and (3.12) show the calculated relationships between the 

frost heaving, the frost heaving rate and the external loading. The predicted 

results are seen to simulate very well the often observed effect of applied loading 

on frost heaving, shown that, when the applied loading increases, the frost 

heaving and heaving rate decrease rapidly. 

3.5 Summary 

In this chapter, a model that makes it possible to calculate the deformation 

and stress fields in the soil during freezing under an applied loading is proposed. 

This model, based on coupling of heat moisture and stress fields is then used 

for simulating the results of a unidirectional freezing test in a saturated soil 

under a overburden of 50kPa, published by Penner (1986). The simulated 

temperature field and frost heaving are found to be in a good agreement with 

the experimental results. The variation of stress fields during freezing is also 

predicted by this model. 



Chapter 4 

SIMULATION OF A CHILLED PIPELINE 

GROUND FREEZING TEST 

4.1 Description of Test 

4.1.1 Background 

The freezing of soil around a buried chilled pipeline leads to heaving of 

soil. The amount of frost heaving depends on the type of soil and the ground 

water conditions. When a chilled pipeline crosses a transition zone between 

two initially unfrozen soils with different frost heaving susceptibilities, differ

ential heaving in the soils occurs. This leads to deformation of the buried 

pipeline and to associated stresses in the pipeline, which may lead to pipe 

failure. Williams (1986a) has discussed the history and the state-of-the-art of 

constructing oil and gas pipelines in cold regions. In practice, determination 

of the complex interaction between the frost heaving soils and pipeline has 

presented some design difficulties. It is important· not only to understand the 

heaving characteristics of the soil but also the reaction of the annulus of frozen 
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soil around the pipe, deformation of the pipeline and the state of stress in the 

pipe. An understanding of heaving characteristics is required to predict the 

behaviour of freezing soils beneath the chilled pipeline. A knowledge of the 

pipeline displacements and related strains in the pipe can be used to determine 

the state of stress in the pipeline. 

The Canada-France co-operative experiment of chilled pipeline ground freez

ing which started in 1982, is located at the "Station de Gel" at the Centre de 

Géomorphologie du Centre National de la Recherche Scientifique, Caen, Nor

mandy, France. The purpose of this project is to study the behaviour of buried 

pipelines under freezing and thawing conditions. The investigation of heaving 

and stresses developed in the pipeline, as well as the complex physical interac

tion that occurs when a chilled pipeline traverses two soils with di:fferent frost 

susceptibilities, represents an integral part of this test. Various instruments 

monitor the soil and pipeline at the test facility ,and provide the data for a 

comprehensive analysis. 

This project is a response to the need for fondamental knowledge of freeze

thaw phenomena related to chilled gas pipelines in arctic and subarctic envi

ronments. The main feature of this full scale experiment is the precise control 

of the physical, thermal and hydrologie variables. Such control is not possi

ble in field experiments where the changeable nature of soil, ground water and 
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weather conditions prevent the study of relevant variables independently. This 

project does not attempt to model any particular field situation. It attempts 

only to produce the type of conditions necessary for a study of relations of 

frost heaving of chilled pipelines to various factors, including the relation of 

pipe reaction to the frost heaving phenomena. This experiment gives an op

portunity for validating the proposed mathematical model of frost heaving in 

soils. 

4.1.2 Test Facility 

The controlled environment test facility of the CNRS in Caen was built in 

the 1960's to investigate the effects of freezing on highway test sections. For 

the pipeline experiment, the refrigeration system was improved and several 

other modifications were made to the test hall. The facility in Caen provides 

a temperature-controlled hall 18m long by 8m wide with adjacent rooms to 

accommodate instrumentation and mechanical equipments, which can be fi.lied 

with soil to a depth of 2m. The base of the room has been specially prepared in 

order to isolate the thermal and hydraulic regime of the soils and ensure careful 

control of the experimental conditions. A 18m long, 273mm diameter steel 

pipeline with an independent refrigeration system was buried in the soils at an 

invert elevation of 30cm below the surface. The pipe ends are free, to simulate 
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infinite length conditions. Figures ( 4.1) and ( 4.2) show the longitudinal and 

transversal section of the facility, respectively. As shown in these figures, 

two different soil types, a slightly frost susceptible sand and a highly frost 

susceptible silt have been :filled on each half of the trough. 

4.1.3 Operation Conditions 

The experimental conditions were selected to simulate the autumn start

up of a chilled gas pipeline in a discontinuous permafrost or seasonally frozen 

ground. The first period began on September 21, 1982. In order to minimize 

the temperature gradients and heat fluxes once freezing starts, the initial con

ditions for the experiment called for soil temperai;ure approaching 0°

0 at the 

surface. Freezing from the surface was initiated on September 21, 1982. The 

air temperature in the room was lowered to -5°C for 6 hours, then raised to 

-0.75 °C. Freezing around the pipe was initiated on September 23, 1982 by

lowering air temperature in the pipe to -5°C, after which the temperature was 

raised to -2°0. These temperatures of -0.75°C (room air) and -2°0 (pipe 

air) were maintained for the duration of the freezing cycle, except for several 

very short interruptions. The water table was regulated at an approximate 

depth of 90cm below the original ground surface (initially the table had been 

maintained at 60cm depth but due to excessive heave of the pipe and only 



59 

limited frost penetration, after 3 months it was lowered to 90cm depth). On 

the lateral sicles, the heat flux and water flux were isolated. 

4.1.4 Instrumentation 

In the first freezing cycle, the temperature pr9files beneath the centreline 

of the pipe were measured automatically by thermocouples with a data acqui-

sition unit. Also, regular measurements were taken, manually: of temperature 

using thermistors; of stand pipe water levels; of frost depth tubes;of moisture 

potentials using tensiometers; of pressure cell; and of pipe deflections and pipe 

curvature using strain gauges and devices. Volumetric unfrozen water content 

profiles beneath the centreline of the pipe have been determined from the Time 

Domain Reflectometry (T.D.R.) probes, installed in the two soils. The defor

mation of the pipe and elevation of the soil surface were periodically measured 

by the rods fixed to the pipe and placed on the soil surface. The water table 

level was monitored by 12 piezometers and 6 observation wells. The soil heave 

was observed on two sets of telescoping aluminium heave tubes, placed on the 

pipe axis in each soil. Each set consisted of 10 tubes, spaced every 10 cm 

below the pipe, to measure differential heave. Heave on the soil surface was 

measured by levelling a grid of surveying nails. 



Table 4.1: Physical properties of Caen silt 

Granulometry 

Density of particles 

Mineralogy (X-ray) 

Salt content 

30.4% sand; 56.5% silt; 13.1 % clay 

2665 ± 7 (=i=0.3%) kg/m3 

quartz with a small amount of chlorite and calcite 

specimen No.l: equivalent to 0.73-0.95 g NaCl/L 

saturated 

specimen No.2: equivalent to 0.37-0.50 g NaCl/L 

saturated 

4.1.5 Properties of Caen Silt 

60 

The samples of Caen silt were sent to Carleton University for laboratory 

analysis. The test results are shown in Table ( 4.1 ). 

The unfrozen water content was measured by the TDR method on speci

mens of dry density between 1.504 and 1.514 g/cm3 and a saturation percent

age between 82 and 94. (For this density the volumetric water content for the 

saturated soil is from 37.8% to 40.3%). The measured unfrozen water at -1 °C 

is about 18% by volume. 

The thermal properties were measured by utilizing a special heated needle 

technique which was developed by the Geotechnical Science Laboratories of 

Carleton University. The measured thermal conductivity and heat capacity of 

Caen silt at 5°G are 1.97 W/m° C and 2.72 M J/m3 °C on average, respectively. 
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Experiments for determining the hydraulic conductivity of the Caen silt 

were also carried out at Carleton University. The soil specimens were prepared 

as a normally consolidated, saturated sediment. The experimental results are 

shown in figure (4.3). The relationship between hydraulic conductiv ity and 

soil temperature was obtained from the experimental data using a regression 

analysis: 

! 1.075 X 10-9e13.438T

k= 

8.0499 X 10-13

-0.3°0 < T < T1

(m/s) (4.1) 

T < -0.3°0

The strain-rate-controlled uniaxial compression tests with the Caen silt 

were carried out in the Laboratories of the Northern Engineering Centre of 

Ecole Polytechnique de Montreal (OINEP). All these tests were made at three 

different temperatures: -1°0, -2°0 and -5°0, respectively. The samples

were about 37 .5 mm in diameter, and 77 .5 mm in length. The average degree 

of saturation was 91 %. The relationship between the Young's modulus and 

temperature may be defined from these experimental data by using a regression 

analysis: 

E = 13. 75( '!.__ )1.18

Tr 
MPa (4.2) 

where Tr - the reference temperature (-1°0). The Young's modulus of un

frozen soil is considered to be constant and equal to 11.2 MP a (Lambe and 
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Whitman, 1966). When the Young's modulus E of frozen soil predicted by 

the eq.( 4.2) is smaller than 11.2 M Pa, the value of E is assumed to be equal 

to 11.2 M Pa. The Poisson's ratio of both unfrozen and frozen soil is assumed 

to be 0.3. 

4.2 Numerical Analysis Scheme 

Although the proposed model is capable of solving a three-dimensional 

problem, this project is simulated as a two-dimensional case for minimizing 

costs. The heat and moisture transport equation were solved by the finite dif

ference method using a boundary-conforming curvilinear coordinate system, 

because the finite difference method requires normally much smaller memory 

and amount of calculation than the finite element method. In practical com

putations, a high numerical effi.ciency is very important when using a persona! 

computer or a small computer system to simulate such problem. The me

chanical equations will still be calculated by the :finite element method. The 

two numerical methods use two grid meshes with same grid points for the 

convenience of interchanging the data. 
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4. 2. 1 Mesh Generation

In the past decade, the numerical generation of curvilinear coordinate sys-

terns has provided the powerful tool for the development of finite difference

solutions of partial differential equations in regions with arbitrarily shaped

boundaries. Although this method has been developed from computational

fluid dynamics and aerodynamics, the techniques are equally applicable to

heat and mass transfer problems in cold regions, and to other areas.

Normally, the procedures for generation of curvilinear coordinate systems

may be separated into two types: (1) numerical solution of partial differential

equations, e.g. elliptic or hyperbolic generation systems; (2) construction by

algebraic interpolation. In this simulation, the mesh system was generated by

the coupled Poisson's equations (Thompson et al., 1985)

^+^yy=P(^rj) (4. 3)

^x+riyy=Q^, r)) (4. 4)

The source terms P and Q can control the spacing and orientation of the

coordinate lines. However, the forms of the source terms require artful selection

and depend on the problem. Thomas and MiddlecofF (1980) suggested for the

source terms to have the forms:

P^)=^n) (C. +Cy) (4. 5)



in which the fonctions </>, 'ljJ on the boundaries are defined as 

<P = 
- Xç Xçç + YçYçç

xi+ Y€ 

'lp = 
- x,,,x,,,,,, + y,,,y,,,,,, 

x
2 
+ y2

7/ 7/ 

on boundaries 'T/ = const 

on boundaries f. = const 

64 

(4.6) 

(4.7) 

(4.8) 

The values of these fonctions on the boundaries can be computed by using 

central-difference operators replacing differential operators: 

( x1:,)i,j ~ 

(x,,,)i,j 

( Xçç )i,j 

( x,,,,,, )i,j ~ 

1 

2 . 6Ç 
( Xi+l,j - Xi-1,j)

1 
2. 6'T/ 

(xi,j+l - Xi,j-1)

6f.2 (xi+l,j - 2xi,j + xi-1,i)

1
6'T/2 ( Xi,j+l - 2Xi,j + Xi,j-l) (4.9) 

Once the fonction </> is defined at each point of the horizontal boundaries 

'T/ = const in the considered domain, its value at interior mesh points can be 

calculated by linear interpolation along vertical mesh lines ç = const. Simi

larly, 'T/ is computed by interpolation along the hor�zontal mesh lines 'T/ = const

between the boundaries. 

Substituting equations ( 4.5), ( 4.6) into equations ( 4.3) and ( 4.4), and trans

forming it to ç, 'T/ coordinates by interchanging the roles of dependent and 

independent variables, yields a quasilinear elliptic systems of equations: 

(4.10) 



with 

912 

922 
x2 + y2 

7j 7j 
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( 4.11) 

( 4.12) 

The equations ( 4.10) and ( 4.11) are solved by SOR (successive over-relaxation) 

iteration in the rectangular computational domain to generate the grid in the 

physical domain. This method of evaluating the parameters </> and '1/J inslires 

that the grid distribution throughout the interior' of the domain will be gov

erned by grid point distribution assigned on the boundaries, and that the grid 

lines will be locally orthogonal to the boundaries. Therefore, the distribution 

of grid points generated by this method is easily controlled, and has very good 

character. 

Figure ( 4.4) shows the stretching 34 X 37 mesh used for solv ing heat and 

moisture transport equations by the finite difference method, which is gener

ated by the above generation system. This grid mesh has smooth and regular 

character, and guarantees the preservation throughout the domain of the grid 

point distribution specified on the boundaries. The grid mesh was generated 

using a PC-286 personal computer with a mathematical co-processor 1 which 
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consumed less than 2 minutes. 

Figure ( 4.5) shows the triangular finite element mesh which is used for 

calculating mechanical equations. The three nodes constant strain elements 

were used in the simulation. This triangular mesh was generated by simply 

cutting quadrilaterals from the finite difference mesh, shown in figure ( 4.4). 

This mesh has 2376 triangular elements totalling 1258 nodes. These two mesh 

systems have exactly the same number and coordinates as the grid nodes. 

4.2.2 Transformed Heat and Moisture Equations 

When a general boundary-conforming curvilinear coordinate system is used 

m the solution of partial difference equations, the equations must first be 

transformed to the curvilinear coordinate system. The transformed equations 

are of the same type as the original ones, but are more complicated in that they 

contain more terms and variable coefficients. On the other hand, the domain is 

greatly simplified since it is transformed to a fixed rectangular region regardless 

of its shape in physical space. 

The heat transfer equation (2.11) transformed to the curvilinear coordinate 

system (f.,77), can be written as: 

- ôT 
9·C·

or 

a - ar o - or
922. -(,\. -) - 2912. -(,\ . -) +

of. of. of. or, 



with

-^.^-^-^
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(4. 13)

= (y^-Dx-x^-Dy)/^g

= (^ -Dy-y^- Dx)/^g

= 5f22 . X^ - 2g^ . x^ + g^ . x, (4. 14)

Al

A2

Dx

Dy = 522 . y^ - 2^12. y^ + g^ . y^

V9 = x^-yr, -xr, -y^

where: ^ is the Jacobian; and gu, gu, g^ are covariant metric components,

defined by the equation (4. 12).

In the transformed ^ - T) plane, the outward normal derivative of an arbi-

trary function T at the boundary of the region has the following forms:

9T
9n

J-^/^. ^-j^.^
'922 . -^7 - -== . -s-)

V^22 9ri'
for constant ^ (4. 15)

or

Q-T=±-(^. QT--^-. Q^
^ = ^(^n '^ ~ ^T' ̂ ) /07' constant rj (4. 16)

If the ̂  - 77 coordinate lines are locally orthogonal around the boundaries

of interest, equations (4. 15) and (4. 16) reduce simply to

QT
9n

^22 QT
v^ ^ for constant ^ (4. 17)



or 

fJT 
_

y9ÏÏ . fJT 
on -Jg Ô'TJ 

for constant 'T/ 
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(4.18) 

The moisture transfer equation (2.4) transformed to the curvilinear system 

( ç, 'f/), may be written as: 

Pi â0i 
g·-- = 

pzfJT 

where the definitions of coefficients A1, A2 and covariant metric components 

911,912,922 are the same as above. 

4.2.3 Finite Difference Scheme 

A numerical solution of the transformed problem can be obtained using 

standard technique once the problem is discretized. Since the transformed 

domain is stationary and rectangular, the computation can always be clone on 

a fixed uniform square grid. 

In the calculation, the non-homogeneous distributed grid mesh (shown in 

Fig.4.4) was used. As for the heat transfer equation ( 4.13), it can be ap

proximated by the alternating direction implicit ( ADJ) method (Warming and 

Bearn, 1979): 

( 6,.7 ) *1- - ·Le · AT 
2 

2912 a - a n 

6.r ·(Le+ L - - • - · ..\ • -) · T
ri gë fJç 8ry 



with 

AT* 

- a a - a -
(A1 ·À· - + 922 · - · .\ · -)/(9 · C)Bf. of. ôf. 

- a a - a -
(A2 ·À· - + 911 · - · À · -)/(9 · C) 

Ôry Ôry ôry 
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(4.20) 

( 4.21) 

( 4.22) 

Replacing differential operators by central-difference operators, the ADI 

scheme may be obtained from equation (4.21). This ADI scheme is uncondi

tionally stable. When the f. - ry coordinate lines are orthogonal, the mixed 

derivative term of equation ( 4.19) is zero, and the ADI scheme has a second 

order accuracy in time. If the mixed derivative is included, the scheme is first 

order accurate. 

As for the moisture transfer equation ( 4.19), it may be approximated by 

an explicit differenœ scheme: 



A kn+l + 2 · i,j [(P)n+l _ (P.)".l+l ]}
2 1 i,J+l I i,J-1 

where b.r is the interval of time step. 

4.3 Numerical Simulation 

4.3.1 Initial Condition and Boundary Conditions 

70 

(4.23) 

Because of symmetry, only half of the structure was considered. The meshes 

used in this simulation are shown in figures ( 4.4) and ( 4.5). In the freezing 

period, the temperature of the pipe was held constant at -2°C, and the tem

perature of ground surface was at -0.75°C. The external loading was zero 

on the ground surface. On the lower boundary and on the sicles, zero heat 

flux conditions (Neumann conditions) were used, because of insulations and 

symmetry. The initial temperature of ground was considered to be uniform 

at 4 °C. The initial moisture content was 40% and the initial dry density was 

1510 kg/m3
• The soil was considered to be saturated. No external loading 

acted on the ground surface, and the gravity was neglected. On the bottom 

and on the sicles, the simply-supported conditions were used, because the fric

tion between the soil and the wall was neglected. 

When a chilled pipeline crosses initially unfrozen nonhomegeneous soils, 

differential heaving of soils occurs. Therefore, the confining condition of the 
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pipe in the longitudinal direction is quite a complex three-dimensional prob

lem. Because of a lack of exact information on the confining conditions of 

the pipe, two extreme pipe-confinement cases were initially considered, i.e., in 

which the pipe is either rigidly fixed or is free floating, as shown in figure ( 4.6). 

It was thought that the true pipe-confinement condition determined by its lon

gitudinal rigidity and fixity will be located between these two limiting cases. 

Obviously, the free floating pipe-confinement conditions result in larger frost 

heaving but smaller stresses acting in the pipe, while the fixed condition gives 

less frost heaving but larger stress. ln order to take into account the possible 

pipe resistance due to its longitudinal confinement, a third possible confine

ment condition was considered, shown in figure ( 4. 7), in which the resistance 

of pipe was represented by a independent linear spring. The Young's modu

lus of the virtual spring was determined by the fixed beam formula (Ladanyi 

and Lemaire, 1984). If an external loading P acts on the centre point of the 

pipeline with the length L, which is considered as a fixed beam, the maximum 

deflection of pipeline .6.max is governed by the following formula: 

.6. = L
3 

p max 192EJ 
( 4.24) 

Therefore, the equivalent Young's modulus of the virtual spring will be deter

mined approximately by 

p 
Espring = �

max 

192EJ 
L3 

= 2.085 MPa ( 4.25) 
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where: E - Young's modulus of the pipeline steel (E = 210 GPa); I - moment 

of inertia of the pipeline section (J = 3.688 X 10-5); L - length of the fixed

pipeline (L = 9 m). 

For the fixed pipe confinement condition, all nodes on the pipe boundary 

were fixed in calculating the stress and displacement fields by the finite element 

method, and no element was inside the pipe. For other two pipe confinement 

conditions, the pipe was considered to be an undeformable body with a very 

high Young's modulus. The pipe was divided into nine triangular elements in 

these two cases. 

Then, the simulation of this complex three-dimensional problem may be 

simplified by simulating these three two-dimensional cases, which minimizes 

computing costs and difliculties. 

4.3.2 Results and Discussion 

U sing the proposed model, a numerical simulation for the first period of 

Canada-France pipeline ground freezing experimerit has been carried out. The 

heat and moisture transport equations were solved by the finite difference 

method and the curvilinear coordinate system, which are described above. 

The mechanical equations were solved by the finite element method. The used 
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finite element mesh was composed by the three nodes triangular elements, 

shown in figure ( 4.5). 

Figures ( 4.8) and ( 4.9) show the simulated isothermal and moisture iso

lines after 400 hours. From figure (4.9), it was found that most of moisture 

accumulation appears below the pipeline. This phenomenon leads to serions 

heaving under the chilled pipeline which is buried in frost heaving susceptible 

soil. Figure ( 4.10) compares the simulated frost penetration under the cen

treline of pipeline with the measurements. The calculated values are seen to 

be larger than experimental data made in the first year of the test. Although 

there were some differences in initial and boundary conditions, the main dis

crepancy is found to be due to some measuring errors which occurred in the 

first year of the experiment, giving an abnormal frost penetration curve. 

The calculated temperature and moisture profiles under the pipeline and 

far from the pipeline (3.5 m from the centreline of the pipeline) are shown in 

figure ( 4.11). According to our simulation, the moisture accumulation near the 

ground surface and the pipeline is not very large, because the frost penetration 

progresses very quickly in the initial freezing stage. Most of moisture in the 

soil was frozen in-situ in this stage. Later, as the rate of the frost penetration 

in soil slows clown, a lot of moisture migrates from unfrozen soil to frozen soil. 

Therefore, the total moisture content smoothly increases to a maximum value 
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behind the advancing freezing front. Discrete ice lenses cannot be predicted 

by this model. 

Figure ( 4.12) shows the calculated frost heaving of the surface above the 

pipe for different pipe confinement conditions. In this figure, the curves 1 and 

4 indicate the surface frost heaving for the two limiting cases. The true frost 

heaving should be located between these two curves. The curve 3 shows the 

frost heaving of the ground surface at points far from the pipeline. Far from 

the pipe, the freezing is unidirectional from top to bottom. Therefore, in the 

initial freezing stage, the frost heaving is very small, even smaller than that 

above the fixed pipe. The curve 2 shows the frost heaving above the pipe with a 

virtual spring confinement. Because the resistance from the spring increases in 

direct proportion to the heaving of the pipe, the difference of heaving between 

this case and the free floating pipe case increases with the total frost heaving. 

This difference clearly varies with the stiffness of the virtual spring. 

Figure (4.13) shows the measured elevation of soil surface on January 5, 

1983, after about 2700 hours. Comparison of this measured contour and the 

simulated heaving of the soil surface shown in figure ( 4.12), shows that the 

calculated surface heavings far from the pipe (curve 3 in figure (4.12)) and 

above the pipe are in good agreement with the experimental measurements. 
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Because the ends of the pipe were free in this experiment, the true pipe con

finement condition in longitudinal direction was close to an extreme condition 

in which the pipe is free floating. Therefore, the simulated frost heaving under 

this pipe confinement condition ( curve 1 in figure ( 4.12)) is qui te close to the 

measured one. However, calculated surface heaving under other two pipe con

finement conditions is too small, because the assumed resistance is too strong 

for simulating these experimental conditions. 

Figures ( 4.14) and ( 4.15) show deformed meshes after 400 and 1600 hours, 

in the rigidly fixed pipe confinement case. Figures ( 4.16) and ( 4.17) show the 

same kind of meshes in the free floating pipe case. The deformed meshes under 

the virtual spring pipe confinement condition after 400 and 1600 hours were 

shown in figures (4.18) and (4.19). In order to clearly present the distribution 

of heaving in the soil, the displacements at each grid point were amplified in the 

figures (4.14) to (4.19). The amplification factor was 10 for nodal displacement. 

These figures show clearly the effect of the pipe confinement condition and 

the distribution of frost heaving. From a comparison of heaving distributions 

with moisture distributions, it was found that serious heaving occurs below 

the pipe and behind the advancing freezing front, where the moisture was 

accumulated. This simulated distribution of frost 
0
heaving agree well with the 

measured results published by Smith and Williams (1990), shown in figure 
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( 4.20). When the pipe was rigidly fixed, the heaving in the soil under the pipe 

was confined by the pipe. It caused the heaving soil to expand downward and 

compress the unfrozen soil below. 

Before being frozen, the soil is free of stress because there is no external 

loading, because the gravity stress is neglected. The principal stress field af

ter 400 hours of freezing is shown in figure ( 4.21 ). According to this figure, 

the maximum expansion stresses appear under the pipeline. Figure ( 4.22) 

shows the simulated stress profiles under the centreline of the pipeline and far 

from the pipeline (3.5 m from the centreline). From comparison of profiles of 

stress (Fig.4.8) and moisture (Fig.4.11), it is clearly seen that the maximum 

expansion stresses appear at the same depth as the maximum moisture ac

cumulations. Figure ( 4.23) shows the stresses acting on the pipeline for the 

rigidly fixed case. The stress concentration under the pipeline is caused by the 

longitudinal confinement of the pipeline. In the section far from the pipeline, 

the vertical stress and the shear stress remain zero, and the lateral stress varies 

with the amount of moisture accumulation, because of lateral confinement of 

the test room. Figure (4.24) shows the normal and shear stresses acting on 

the free floating pipe. Obviously, the free floating pipe confinement condition 

results in smaller stresses acting on the pipe. In fact, the resistance of frozen 

soil above the pipe is acting against pipe uplift. The resistance depends on the 
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type and temperature of the frozen soil and on the depth of the buried pipe. 

It is well known that the diagram of soil reactions can be obtained by di:ffer

entiating twice the moment diagram, or rather the second differential of the 

deflection line. Figure ( 4.25) shows the result of such a calculation, published 

by Ladanyi and Lemaire (1984), made on the basis of the results of observa

tions of pipeline deflections by deformation gauges during the first year of the 

Caen experiment. By integrating the simulated normal stresses acting on the 

pipe (shown in figures 4.23 and 4.24), the average uplift pressure acting on the 

pipe from the soil beneath the pipe were found to be 138 kPa in the fixed pipe 

case, and 81 kPa in the free floating case. The total uplift force is equal to 

multiply average uplift pressure by the diameter of the pipe. The maximum 

uplift pressure acting on the pipe, published by Ladanyi and Lemaire (1984), 

was 73 kPa. Their results were obtained by differentiating twice the moment 

diagram, on the basis of the results of observations of pipeline deflections by 

deformation gauges, as shown in figure ( 4.25). Because only a two-dimensional 

section was considered in our simulation, there are some differences between 

the simulated uplift pressure and the maximum uplift pressure published by 

Ladanyi and Lemaire (1984). On the other hand, the precision of calculated 

stresses in the soil, especially that of stresses on boundaries, was lower, when 

the three nodes constant strain elements were used in calculating stress and 

displacement fields. Unfortunately, no appropriate method existed at that time 
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for accurately measuring the stress field in frozen soil, so that the calculated 

stress field could not have been compared with the measurements. In order 

to study the ultimate resistance of frozen soil against the pipe uplift, a test is 

being planned to be carried out in the Caen pipe test facility. 

In order to predict the sensitivity of the results to the pipe temperature, a 

numerical simulation for the pipe temperature at -5
°

C was also carried out, 

with all other initial and boundary conditions unchanged. These conditions 

correspond to the second and the third freezing cycle. Figures ( 4.26) and ( 4.27) 

show the predicted isotherms in the silt section after di:fferent times. Compar

ison of the predicted isotherms (Fig.4.27) with the measured ones (Fig.4.28), 

shows that the predicted ones agree well with the measurements. Figure (4.29) 

shows the predicted frost heaving of the surface. In the figure, curves 1, 2 and 

4 indicate the frost heaving of the surface above the pipe for di:fferent pipe con

finement conditions, and curve 3 shows the frost heaving of the ground surface 

far from the pipeline. Figure ( 4.30) shows the measured surface contour in 

the silt section after di:fferent times. The predicted surface heaves above the 

pipe for the free floating case is seen to be in very good agreement with the 

measurements. Far from the pipe, the predicted heave is slightly larger than 

the measured one. This comparison of the simulated frost heave for the two 

di:fferent pipe temperatures shows that the variation of the pipe temperature 
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strongly affects the initial progress of frost penetration and frost heaving, but, 

the effects decrease with time. 

For checking the sensitivity of results to the assumed hydraulic conductiv

ity of freezing soil, another relationship between hydraulic conductivity and 

temperature, suggested by Dr. J.F.Nixon (private communication, 1991), was 

used for comparison 

k = 5.l X 10-13( i )1 .14 (4.26) 

Where Tr - the reference temperature (-1 °C). As this relationship gives lower 

hydraulic conductivities than equation (4.1), the resulting frost heaving is also 

smaller. Using this fonction, the simulated frost heaves of surface for the pipe 

temperatures of-2°C and -5°C, are shown in figures (4.31) and (4.32). The 

simulated frost heaving was much smaller than those found for the previously 

relationship ( eq .4.1) between the hydraulic conductivity and temperature. The 

simulated results indicate that, frost heaving of the pipeline is very sensitive 

to the hydraulic conductivity of the freezing soil. 

4.4 Summary 

The freezing of soil water around a buried chilled pipeline leads to soil 

heaving, which is affected by the presence of the pipe. This process may 
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eventually cause pipeline failure. Using the proposed model for coupled heat, 

moisture and stress fields, a numerical simulation of ground-pipeline interac

tion for a chilled pipeline was carried out and compared with measurements. 

The predictions of the temperature profile agree well with the measurements, 

and stresses acting against the pipeline are seen to be of a correct order of 

magnitude. Because of a lack of exact information on the confining conditions 

of the pipe in the longitudinal sense, it was decided to salve first two extreme 

pipe-confinement cases, i.e., the case of a free floating pipe and the case of a 

rigidly fixed pipe. It was considered that the true conditions would be located 

between these two limiting cases. To test this assumption, and in order to 

take into account the possible resistance from the longitudinal confinement of 

the pipe, another possible pipe confinement condition was also considered, in 

which the resistance of pipe was represented by a virtual spring. The simulated 

frost heaving under this pipe confinement condition was directly controlled by 

the assumed spring sti:ffness, and was found to be always located between those 

of the two limiting cases. In addition, the sensitivity of prediction results has 

been tested by varying the soil hydraulic conductivity and the temperature 

boundary conditions. The simulated results indicate that, the frost heaving of 

the pipeline is highly sensitive to the assumed hydraulic conductivity of the 

freezing soil. 



Chapter 5 

CONCLUSION 

During the past two decades, many mathematical models for simulating 

the heat and moisture transport during frost heaving process have been devel

oped. However, all of these models were based only on the coupling of heat 

and moisture transfer, and did not consider the effect of the external load

ing and the generation of internai stresses. Since 1980's, some mathematical 

models of frost heaving which included applied loading have, in fact, also been 

proposed (Hopke, 1980; Gilpin, 1980; O'Neill and Miller, 1985), but in ail 

of them the applied external loading was only considered as a factor affecting 

frost heaving, while the resulting deformation and stress fields were not consid

ered. However, for the prediction of stability of structures in cold regions, the 

prediction of stress and deformation fields during frost heaving is considered 

to be of a great importance. In fact, the stress and deformation fields in soil 

during freezing depend not only on the heat and moisture transfer conditions, 

but also strongly on the deformation boundary conditions and the external 

loading. This analysis of these simultaneous effects requires the coupling of 
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heat, moisture and stress fields. ln this thesis, a conceptual model for calcu

lating stresses and strains associated with soil freezing, on the basis of coupled 

heat, moisture and stress fields, is proposed. This model takes into account 

the non-homogeneity of the frozen zone due to the temperature distribution, 

as well as the effects of frozen soil creep on stress distribution. ln this model, 

the Clapeyron equation is used to determine the liquid water pressure and to 

describe the effect of stress field on the heat and moisture transfer within the 

freezing fringe, while the associated flow rule is used to define creep strains in 

frozen soil. The contribution of this proposed model is that it gives a practical 

approach for calculating the interaction between the stresses, deformations as 

well as the heat and moisture transfer during soil freezing. 

U sing this model, a numerical simulation of a test on a saturated cylindrical 

sample under 50 kPa in unidirectional freezing was first carried out. The 

experimental data for that test published by Penner (1986) provided a good 

opportunity for checking the feasibility of the proposed model. The simulated 

results of both frost penetration and amount of heave were found to be in a 

good agreement with the experimental ones. In addition, the frost heaving and 

stress field in the sample under several different lqadings were also simulated. 

The simulated relationships between the frost heaving, the heaving rate and 

the applied loading, show that, when the applied loading increases, the frost 
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heaving and heaving rate decrease rapidly. The predicted results are seen to 

simulate very well the often observed effect of applied loading on frost heaving. 

This simulation model is able to predict the amount of water (ice) accumulation 

behind the advancing freezing front, but not the position of discrete ice lenses. 

The variation of stress field during freezing is also predicted by this model. The 

simulated stress field shows that, the maximum value of lateral stress appears 

at the same place as the maximum moisture contents. This phenomenon is very 

similar to the thermal expansion stresses in structures. Because no appropriate 

method existed at that time for accurately measuring stress field in frozen soil, 

the simulated stress field could not have been compared with measurements. 

Since 1970's, construction of several gas pipelines have been considered in 

the North for natural gas from the Arctic to the southern consumers. For 

security reasons, and for protecting the northern environment, these pipelines 

were usually buried. One of the suggested methods consists in transporting 

the gas at below freezing temperature. This would avoid the thawing od 

ice-rich soils and their loss of stability. But, on the other hand, it would 

result in a freezing of unfrozen soils in the discontinuous permafrost area. The 

freezing of soil water around a buried chilled pipeline leads to heaving of soil, 

which is affected by the presence of the pipe. This leads to deformation of the 

pipeline and may result in its failure. In this thesis, a numerical simulation 
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of the initial phases of the co-operative Canada-France chilled pipeline ground 

freezing experiment, was carried out by using the proposed model. 

Because of a lack of exact information on the confining conditions of the 

pipe in the longitudinal sense, it was decided to solve first two extreme pipe

confinement cases, i.e., the case of a free floating pipe and the case of a rigidly 

fixed pipe. It was considered that the true conditions would be located between 

these two limiting cases. In order to check the assumption and to take into 

account the possible resistance from the longitudinal confinement of the pipe, 

another possible pipe confinement condition was also considered, in which the 

resistance of pipe was represented by a virtual spring. The simulated frost 

heaving under this pipe confinement condition was directly controlled by the 

assumed spring stiffness, and was found to be always located between those 

for the two limiting cases. Because the ends of the pipeline were free in the 

experiment, the comparison of the simulated surface heaving and the measured 

one shows that the true pipe confinement condition is close to the free floating 

pipe conditions and the simulated one agrees quite well with the measurements. 

The calculated progress of frost penetration is also in good agreement with the 

measurements, and the stresses acting against the pipeline are seen to be of 

a correct order magnitude. Up to now, it was not possible to compare with 

measurements, because of a lack of appropriate instruments and methods. 
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In addition, the sensitivity of prediction results was tested by varying the 

soil hydraulic conductivity and the temperature boundary conditions. The 

simulated results indicate that, the frost heaving of the pipeline is highly sensi

tive to the hydraulic conductivity of the freezing soil. The variation of temper

ature of the pipe strongly affects the progress of frost penetration and heaving 

in the initial freezing stage. Afterwards, the effects of the pipe temperature 

are much smaller than those of the hydraulic conductivity of the soil. 

The proposed model in this thesis has contributed to solving the problem 

of coupling the heat, moisture transfer and stress field. Up to now, it has been 

found difficult to accurately measure stresses in frozen soil. Therefore, the 

ability to calculate stress and deformation fields during soil freezing appears 

to be an important step towards a more accurate prediction of stability of 

structures in frozen soils. On the other hand, as usual, the development of 

theories is much faster than experimentation, so that some real weakness still 

exist in the area of proper knowledge of some basic material parameters and 

in a correct selection of assumptions included in the simulation model. A 

tentative list of such problems that still require further investigation is given 

in the following: 

• More accurate measurement of the hydraulic conductivity of freezing

soil, as a fonction, not only of temperature, but also of solutes, internai
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stresses and ice lensing. ln fact, the hydraulic conductivity of soil is the 

most important parameter aff ecting the frost heaving in soil. 

• Better knowledge on stress sharing between 1ce and water m the soil

pores during soil freezing.

• A proper selection of the criterion for the start of frost heaving, in terms

of soil porosity, unfrozen water content, degree of saturation, and interna!

stress.

• Measurement of interna! stresses during freezing in both frozen and ad

jacent unfrozen soil.

• Extension of the existing one-dimensional frost heaving models to the

three-dimensional case, which are able to simulate ice lensing in the

frozen zone.

• Inclusion of frozen soil strength and creep properties into frost heaving

models.

• Taking into account the effect of freeze thaw cycling on both freezing

and thawing response of soils.

Although some assumptions and answers to above questions have already 

been given, some controversy and deficiencies still exists in many points, so 
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that more study will be needed before solutions to freezing problems could be

approached with confidence.
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Figure 1.1: Schematic rhytmic ice lens formation (after Konrad and Morgen
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Figure 1.3: Relation between water intake velocity and temperature gradient 

across the active system, at the formation of the final ice lens ( after Konrad 

and Morgenstern, 1981) 
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Figure 1.6: Result of a typical laboratory frost heave test with fixed thermal 

boundary conditions (after Konrad and Morgenstern, 1981) 
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Figure 3.4: Comparison of calculated frost penetration with that measured by 
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Figure 3.5: Comparison of calculated frost heave with experimental data by 

Penner (1986) 
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Figure 4.6: Two limiting pipe-confinement case: (a) rigidly fixed; (b) free 

floating 
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Figure 4.7: Possible pipe-confinement condition: resistance of the pipe to be 

represented by a virtual spring 
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C 

C 

C 

C 

C 

C 

**************************************************************** 

* 

* 

* 

* 

* 

PROGRAM OF CALCULATING TEMPERATURE,FROST-HEAVING AND 

STRESSES AROUND CHILLED PIPELINE 

(CO-OPERATIVE FRANCE-CANADA RESEARCH PROJECT) 

* 

* 

* 

* 

* 

C * BY SHEN MU * 

C * CINEP, ECOLE POLYTECHNIQUE DE MONTREAL, H3C 3A7, CANADA * 

C * CREATED: 28/04/1989 LAST CORRECTION: 24/07/1990 * 

C * -------------------------------------------------------- * 

C * MAIN ARGUMENTS: * 

C * (1) MX,MY -- MAX. NUMBER OF GRID POINTS IN X AND Y * 

C * DIRECTIONS. ( MX*MY MESH ) * 

C * (2) G11(MX,MY),G12(MX,MY),G22(MX,MY) * 

C * -- COVARIANT METRIC TENSOR COMPONENTS * 

C * DIVIDED BY SQUARE OF JACOBIAN * 

C * (3) PP(MX,MY) ,QQ(MX,MY) * 

C * -- LAPLACIANS OF XI & ETA * 

C * (4) TIM,DTIM -- TIME AND TIME STEP (HOUR) * 

C * (5) ICTLF -- CONTROL VARIATION FOR CONFINEMENT * 

C 

C 

* 

* 

= 0 FREE FLOATING PIPELINE 

= 1 FIXED PIPELINE 

* 

* 

C * * 

C * NOTES: * 

C * (1) ALL REALS IN DUMMY ARGUMENTS ARE SINGLE PRECISION * 

C * (2) THE INCREMENTS OF XI & ETA EQUAL 1.0 * 

C * ( MX*MY MESH IN XI-ETA PLANE ) * 

C * (3) L(F) = G22*FXIXI - 2*G12*FXIETA + G11*FETAETA + * 

C * PP*FXI + QQ*FETA ( L -- LAPLACIAN ) * 

C 

C 

C 

C 

C 

C 

C 

& 

& 

& 

& 

* * 

**************************************************************** 

PROGRAM TEMPER 

PARAMETER (MX= 34, 

PARAMETER (ME=2400, 

MY = 37, MSUB=50) 

MJ2=2600) 

INTEGER I, J. LPTTW, LPTM, LSTW, LSM, ISTPM, 

NJ, NE, NJ2, LPTCTL, ISTCTL, ICTLF 

INTEGER*4 UNIT1, UNIT2 

REAL*4 TN(MX,MY), DTN(MX,MY), RKC(MX,MY), 

A(MSUB), B(MSUB), C(MSUB), 

WL(MX,MY), WI(MX,MY), DV(MX,MY), 

SEQ(ME), U(MJ2), STRAIN(ME,3), 

ISM, IS, 

F(MSUB), 

ATM(MX,MY), 

STRESS(ME,3) 
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C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

&; 

&; 

REAL*4 

COMMON 

COMMON 

COMMON 

COMMON 

TIM, DTIM, TMAX, TO, S51, S52, S53, TAIR, TPIPE, 

GAML, GAMI, WO, TF, UW1, UWN, UWA, RGLI, RLK 

/SOIL/ TIM, DTIM, WO, TF, UWN, UWA, RGLI, RLK 

/CURV/ G11(MX,MY), G12(MX,MY), G22(MX,MY), PP(MX,MY), 

QQ(MX,MY) 

/REAT/ TN, DTN, WL, WI, DV, ATM 

/FORCE/ STRESS, U, SEQ, STRAIN 

INPUT AND DEFINE THE DATA USED IN CALCULATION 

(1) UNIT1 -- THE NUMBER OF OUTPUT UNIT (CRT OR PRINTER)

(2) UNIT2 -- THE NUMBER OF I/0 UNIT (DISK)

UNIT1 = 6 

UNIT2 = 5 

TMAX = 4000.0 

DTIM = 4.0 

LPTTW = 2000 

LPTMS = 96 

LPTMD = 2000 

ISTPM = 2 

WRITE(*,*) 'PLEASE ENTER ICTLF = ?' 

READ(*,*) ICTLF 

NJ = MX•MY 

NE = (MX - 1)*(MY - 1)*2 

IF (ICTLF .EQ. 0) THEN 

NJ = NJ + 1 

NE = NE+ 9 

END IF 

NJ2 = 2•NJ 

READ(UNIT2,*) ((G11(I,J),J=1,MY),I=1,MX) 

READ(UNIT2,*) ((G12(I,J),J=1,MY),I=1,MX) 

READ(UNIT2,*) ((G22(I,J),J=1,MY),I=1,MX) 

READ(UNIT2,*) (( PP(I,J),J=1,MY),I=1,MX) 

READ(UNIT2,*) (( QQ(I,J),J=1,MY),I=1,MX) 

TAIR = -0.75 

TPIPE = -2.0 

TO = 3.0 

wo = 0.4 
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C 

C 

UW1 :::: 0.17 

TF :::: -0.1 

GAML :::: 1000.0 

GAMI :::: 916.8 

WN :::: ALOG(UW1/WO)/ALOG(ABS(TF)) 

UWA :::: WO*ABS(TF)**UWN 

RGLI = GAML/GAMI 

RLK = 3600.0/9.8E+03 

TIM = 0.0 

LSTW = 0 

LSMS = 0 

LSMD = 0 

ISM = 0 

DO 2000 I = 1 , MX 

DO 2000 J = 1 , MY 

TN(I,J) = TO 

WL(I,J) = WO 

tJI(I,J) = 0.0 

DV(I,J) = 0.0 

2000 CONTINUE 

C 

C 

C 

C 

C 

C 

C 

CALL SD(ICTLF, TIM, DTIM, TF, WO) 

==--============================================================ 

CALCULATING THE TEMPERATURE FIELD BY ADI METHOD 

USING CURVILINEAR COORDINATE SYSTEMS 

LPTCTL = 0 

ISTCTL = 0 

C 

2100 CONTINUE 

TIM = TIM + DTIM 

C 

C 

IF ((TIM .GT. 400.0) .AND. (ISTCTL .EQ. 0)) THEN 

ISTCTL = 1 

ISTPM = 2*ISTPM 

END IF 

IF ((TIM .GT. 1000.0) .AND. (LPTCTL .EQ. 0)) THEN 

LPTCTL = 1 

LPTTW = 2*LPTTW 

LPTMS = 2*LPTMS 

153 



LPTMD = 2*LPTMD 

END IF 

C 

C ----------------------------------------------------------------

C DEFINING BOUNDARY CONDITIONS AND THERMAL PARAMETERS RKC (=K/C) 

C (1) RKC(MX,MY) -- RATIO BETWEEN K AND C

C ----------------------------------------------------------------

C 

CALL PARAM1(RKC) 

C 

DO 3000 J = 20 , 29 

IF (ABS(TIM-DTIM) .LT. 1.0E-05) TREN 

DTN(1,J) = TPIPE - TO

ELSE 

DTN(1,J) = 0.0 

END IF 

3000 CONTINUE 

C 

C ----------------------------------------------------------------

C XI-DIRECTION

C ----------------------------------------------------------------

C 

C 

C 

DO 3100 J = 2 , MY-1

DO 3110 I = 2 , MX-1

SS1 = DTIM*RKC(I,J)*0.5 

SS2 = G22(I,J)*SS1 

SS3 = PP(I,J) *SS1*0.5 

A(I) = -S52 + S53

B(I) = S$2 + SS2 + 1.0 

C(I) = -SS2 - SS3

SS1 = TN(I+1,J) - 2.*TN(I,J) + TN(I-1,J)

SS2 = TN(I,J+1) - 2.*TN(I,J) + TN(I,J-1)

F(I) = SS1*G22(I,J) + SS2*G11(I,J) 

F(I) = F(I) + PP(I,J)*(TN(I+1,J) - TN(I-1,J))*0.5

F(I) = F(I) + QQ(I,J)*(TN(I,J+1) - TN(I,J-1))*0.5

SS1 = TN(I+1,J+1) - TN(I+1,J-1) - TN(I-1,J+1) + TN(I-1,J-1)

F(I) = F(I) - SS1*G12(I,J)*0.5

F(I) = F(I)*DTIM*RKC(I,J) 

3110 CONTINUE 

C 

SS1 = G12(MX-1,J)/G22(MX-1,J)

B(MX-1) = B(MX-1) + C(MX-1)/(1.0 - SS1)

F(MX-1) = F(MX-1) + C(MX-1)*SS1*DTN(MX,J-1)/(1.0 - SS1)

154 



C 

C 

IF ((J .LT. 20) .OR. (J .GT. 29)) THEN 

SSl = G12(2,J)/G22(2,J) 

B(2) = B(2) + A(2)/(1.0 - SS1) 

F(2) = F(2) + A(2)*SS1*DTN(1,J-1)/(1.0 - SS1)

ELSE 

F(2) = F(2) - A(2)*DTN(1,J) 

END IF 

IS = MX - 1 

CALL TRID2(MSUB,2,IS,A,B,C,F) 

C 

DO 3130 I = 2 , MX-1 

DTN(I,J) = F(I) 

3130 CONTINUE 

C 

3100 CONTINUE 

C 

C ----------------------------------------------------------------

C ETA-DIRECTION

C ----------------------------------------------------------------

C 

IF (TIM .LE. 50.0*24.0) THEN 

SS1 = -2.0*DTIM/(50.*24.) 

ELSEIF (TIM .LE. 100.*24.) THEN 

SS1 = -O.S*DTIM/(50.*24.) 

ELSEIF (TIM .LE. 280.0*24.0) THEN 

SS1 = 0.0 

ELSEIF (TIM .LE. 372.0*24.0) THEN 

SS1 = 2.S*DTIM/(92.*24.) 

END IF 

DO 3010 I = 1 , MX 

IF (ABS(TIM-DTIM) .LT. 1.0E-05) THEN 

DTN(I,1) = 2.0 

DTN(I,MY) = TAIR - TO 

ELSE 

DTN(I,1) = SS1 

DTN(I,MY) = 0.0 

END IF 

3010 CONTINUE 

C 

DO 3200 I = 2 ,  MX-1 

DO 3210 J = 2 ,  MY-1 

SS1 = DTIM*RKC(I,J)*0.5 

SS2 = G11(I,J)*SS1 
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C 

SS3 = QQ(I,J) *SS1*0.5 

A(J) = -SS2 + SS3 

B(J) = SS2 + SS2 + 1.0 

C(J) = -SS2 - SS3 

F(J) = DTN(I,J) 

3210 CONTINUE 

C 

F(2) = F(2) - A(2)*DTN(I,1) 

F(MY-1) = F(MY-1) - C(MY-1)*DTN(I,MY) 

C 

IS = MY - 1 

CALL TRID2(MSUB,2,IS,A,B,C,F) 

C 

DO 3230 J = 2 , MY-1 

DTN(I,J) = F(J) 

3230 CONTINUE 

C 

3200 CONTINUE 

C 

DO 3240 J = 2 , MY-1 

IF ((J .LT. 20) .DR. (J .GT. 29)) THEN 

SS1 = G12(2,J)/G22(2,J) 

DTN(1,J) = (DTN(2,J) - DTN(1,J-1)*SS1)/(1.0 - SS1) 

END IF 

SS1 = G12(MX-1,J)/G22(MX-1,J) 

DTN(MX,J) = (DTN(MX-1,J) - DTN(MX,J-1)*SS1)/(1.0 - SS1) 

3240 CONTINUE 

C 

DO 3300 I = 1 , MX 

DO 3300 J = 1 , MY 

TN(I,J) = TN(I,J) + DTN(I,J) 

3300 CONTINUE 

C 

CALL MOIST 

C 

ISM = ISM + 1 

IF (ISM .GE. ISTPM) THEN 

ISM = 0 

CALL SD(ICTLF, TIM, DTIM, TF, WO) 

C 

DO 3310 I = 1 , MX 

DO 3310 J = 1 , MY 

DV(I,J) = 0.0 

3310 CONTINUE 
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END IF 

C 

C ----------------------------------------------------------------

C 

LSTW = LSTW + 1 

IF (LSTW .EQ. LPTTW) THEN 

LSTW = 0 

WRITE(UNIT1,'(1X//1X,''TIME='',F7.1,1X,''HOUR'',1X/)') TIM 

WRITE(UNIT1,'(1X,''TEMPERTURE FIELD'' ,1X/)') 

WRITE(UNIT1,4000) ((TN(I,J), J=1,MY), I=1,MX) 

4000 FORMAT(1X,10(F6.3,1X)) 

C 

DO 4010 I = 1 , MX 

DO 4010 J = 1 , MY 

SS1 = WL(I,J) + WI(I,J) - WO 

IF (SS1 .LT. 0.0) THEN 

ATM(I,J) = WL(I,J) + WI(I,J)/RGLI 

ELSE 

ATM(I,J) = (WL(I,J) + WI(I,J)/RGLI)/(1.0 + SS1) 

END IF 

4010 CONTINUE 

WRITE(UNIT1,'(1X/1X,''TOTAL MOISTURE CONTENT FIELD'' ,1X/)') 

WRITE(UNIT1,4020) ((ATM(I,J), J=1,MY), I=1,MX) 

4020 FORMAT(1X,10(F6.3,1X)) 

C 

END IF 

LSMS = LSMS + 1 

LSMD = LSMD + 1 

IF (LSMS .EQ. LPTMS) THEN 

LSMS = 0 

IF (LPTMS .LT. LPTTW) THEN 

WRITE(UNIT1,'(1X//1X,''TIME='',F7.1,1X,''HR'')') TIM 

END IF 

WRITE(UNIT1,'(1X,''STRESS FIELD'' ,1X/)') 

WRITE(UNIT1,4030) ((STRESS(IE,J), J=1,3), IE=1,NE) 

4030 FORMAT(1X,6E12.4) 

C 

END IF 

IF (LSMD .EQ. LPTMD) THEN 

LSMD = 0 

IF ((LPTMD .LT. LPTTW) .AID. (LPTMD .. LT. LPTMS)) THEN 

WRITE(UNIT1,'(1X//1X,''TIME='',F7.1,1X,''HR'')') TIM 

END IF 

WRITE(UNIT1,'(1X,''DISPLACEMENT'',1X/)') 

WRITE(UNIT1,'(8(E10.3,1X))') (U(I), I=1,NJ2) 
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END IF 

C 

C 

C 

IF (ABS(TIM-TMAX) .GT. 1.0E-05) THEN 

GOT□ 2100 

END IF 

STOP 

END 
C 

C **************************************************************** 

C SUBROUTINE OF CALCULATING MOISTURE FIELD 

C 

C (1) WL, WI -- VOLUMETRIC FRACTIONS OF LIQUID WATER AND ICE

C (2) GAML,GAMI -- DENSITIES OF LIQUID WATER AND ICE, kg/rn*rn*rn

C (3) L -- LATENT HEAT OF FUSION, 3.336E+05 J/kg

C (4) H(T) -- HYDRAULIC CONDUCTIVITY OF FREEZING SOIL

C (-0.3 < T < TF), rn/sec 

C (5) HT -- HYDRAULIC CONDUCTIVITY OF THAW SOIL, rn/sec

C (6) HDT -- HYDRAULIC CONDUCTIVITY OF FROZEN SOIL (T<-.3)

C ****************************************************************

C 

SUBROUTINE MOIST 

C 

C 

& 

& 

& 

C 

& 

C 

& 

C 

C 

PARAMETER (MX= 34, MY= 37) 

REAL*4 TN(MX,MY), WL(MX,MY), WI(MX,MY), DV(MX,MY), 

ATM(MX,MY), DTN(MX,MY) 

REAL*4 L, GAML, GAMI, RGLI, RLK, ALF, ssw, SS1, S52, 

TXP, TXM, TYP, TYM, HIJ, HXP, HXM, HYP, HYM, 

PIJ, PIPJP, PIPJM, PIMJP, PIMJM,PIPJ, PIMJ, PIJP,PIJM 

COMMON /SOIL/ TIM, DTIM, WO, TF, UWN, UWA, RGLI, RLK 

COMMON /CURV/ G11(MX,MY), G12(MX,MY), G22(MX,MY), PP(MX,MY), 

QQ(MX,MY) 

COMMON /HEAT/ TN, DTN, WL, WI, DV, ATM 

DATA L/0.3336E+06/, GAML/1000.0/, GAMI/916.8/, 

HT/O.OOOOE-00/, HFD/8.0499E-13/ 

H(T) = 1.0750E-09*EXP(23.99*T) 

P(T,TF) = 0.3336E+09*ALOG((T+273.16)/(TF+273.16)) 

DO 3000 I = 2 , MX-1 

DO 3000 J = 2 MY-1 
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C 

C -------------------------------------------------------------

C DETERMINlNG THE HYDRAULIC CONDUCTIVITIES 

C (1) HIJ -- HYDRAULIC CONDUCTIVITY AT (I,J)

C (2) HXP,HXM -- HYDRAULIC CONDUCTIVITIES AT (I+.5, J)

C AND (I-.5, J) 

C (3) HYP,HYM -- HYDRAULIC CONDUCTIVITIES AT (I, J+.5)

C AND (I, J-.5) 

C 

C ( * -- THE UNIT OF HYDRAULIC CONDUC. IS 'm*m/Hour/Pa' )

C -------------------------------------------------------------

C 

C 

C 

C 

C 

C 

C 

TIJ = TN(I,J) 

TXP = (TN(I+1,J) 

TXM = (TN(I-1,J) 

TYP = (TN(I,J+1) 

TYM = (TN(I,J-1) 

HIJ = HT 

HXP = HT 

HXM = HT 

HYP = HT 

HYM = HT 

+ TN(I,J))

+ TN(I,J))

+ TN(I,J))

+ TN(I,J))

IF (TN(I,J) .LE. TF) THEN 

HIJ = HFD 

* 0.5

* 0.5

* 0.5

* 0.5

IF (TN(I,J) .GE. -0.3) HIJ = H(TN(I,J)) 

END IF 

IF (TXP .LE. TF) THEN 

HXP = HFD 

IF (TXP .GE. -0.3) HXP = H(TXP) 

END IF 

IF (TXM .LE. TF) THEN 

HXM = HFD 

IF (TXM .GE. -0.3) HXM = H(TXM) 

END IF 

IF (TYP .LE. TF) THEN 

HYP = HFD 

IF (TYP .GE. -0.3) HYP = H(TYP) 

END IF 

IF (TYM .LE. TF) THEN 
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C 

C 

HYM = HFD 

IF (TYM .GE. -0.3) HYM = H(TYM)

END IF 

HIJ = HIJ*RLK 

HXP = HXP*RLK 

HXM = HXM*RLK 

HYP = HYP*RLK 

HYM = HYH*RLK 

C -------------------------------------------------------------

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

DETERMINING THE LIUQID WATER PRESSURE 

(1) PIJ -- LIQUID WATER PRESSURE AT (I,J), Pa

(2) PIPJP,PIPJM -- LIQUID WATER PRESSURE AT (I+1, J+1)

AND (I+1, J-1)

(3) PIMJP,PIMJM -- LIQUID WATER PRESSURE AT (I-1, J+1)

AND (I-1, J-1)

(4) PIJP, PIJM -- LIQUID WATER PRESSURE AT (I, J+1)

AND (I, J-1)

(5) PIPJ, PIMJ -- LIQUID WATER PRESSURE AT (I+1, J)

AND (I-1, J)

C -------------------------------------------------------------

C 

C 

C 

C 

C 

SSW = WL(I,J) 

PIJ = 0.0 

IF (TN(I,J) .LE. TF) THEN 

WL(I,J) = UWA/ABS(TN(I,J))**UWN 

PIJ = P(TN(I,J), TF) 

END IF 

PIPJP = 0.0 

IF (TN(I+1,J+1) .LE. TF) THEN 

PIPJP = P(TN(I+1,J+1), TF) 

END IF 

PIPJM = 0.0 

IF (TN(I+1,J-1) .LE. TF) THEN

PIPJM = P(TN(I+1,J-1), TF)

END IF 

PIMJP = 0.0 

IF (TN(I-1,J+1) .LE. TF) THEN 

PIMJP = P(TN(I-1,J+1), TF)

END IF 
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C 

C 

C 

C 

PIMJM = 0.0 

IF (TN(I-1,J-1) .LE. TF) THEN

PIMJM = P(TN(I-1,J-1), TF)

END IF 

PIPJ = 0.0 

IF (TN(I+1,J) .LE. TF) THEN 

PIPJ = P(TN(I+1,J), TF) 

END IF 

PIMJ = 0.0 

IF (TH(I-1,J) .LE. TF) THEH 

PIMJ = P(TN(I-1,J), TF)

END IF 

PIJP = 0.0 

IF (TN(I,J+1) .LE. TF) THEN 

PIJP = P(TN(I,J+1), TF) 

END IF 

PIJM = 0.0 

IF (TH(I,J-1) .LE. TF) THEN

PIJM = P(TN(I,J-1), TF) 

END IF 

C 

C -------------------------------------------------------------

C DETERMINING THE ICE CONTENT 

C -------------------------------------------------------------

C 

C 

C 

C 

S51 = G22(I,J)*(HXP*(PIPJ - PIJ) - HXM*(PIJ - PIMJ))

S51 = S51 + G11(I,J)*(HYP*(PIJP - PIJ) - HYM*(PIJ - PIJM))

S51 = S51 - G12(I,J)*HIJ*(PIPJP - PIMJP - PIPJM + PIMJM)*0.5

S51 = SS1 + PP(I,J)*HIJ*(PIPJ - PIMJ)*0.5

SS1 = SS1 + QQ(I,J)*HIJ*(PIJP - PIJM)*0.5

S52 = WL(I,J) - SSW 

SSW = WI(I,J) 

WI(I,J) = WI(I,J) + RGLI*(DTIM*SS1 - SS2)

IF (WI(I,J) .LT. 0.0) WI(I,J) = 0.0 

DV(I,J) = DV(I,J) + WI(I,J) - SSW + SS2

IF (DV(I,J) .LT. 0.0) DV(I,J) = 0.0 

3000 CONTINUE 

C 
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C ---------------------------------------------------------------

C CALCULATING THE CONTENTS OF LIQUID WATER AND ICE ON BOUNDARIES 

C ---------------------------------------------------------------

C 

DO 3010 I = 1 , MX 

WL(I,1) = WO 

WI(I,1) = 0.0 

DV(I,1) = 0.0 

WL(I,MY) = UWA/ABS(TN(I,MY))**UWN 

WI(I,MY) = RGLI*(WO - WL(I,MY)) 

DV(I,MY) = 0.0 

3010 CONTINUE 

C 

C 

DO 3020 J = 2 ,  MY-1

IF ((J .LT. 20) .OR. (J .GT. 29)) THEN 

SS1 = G12(2,J)/G22(2,J) 

WL(1,J) = (WL(2,J) - WL(1,J-1)*SS1)/(1.0 - SS1)

WI(1,J) = (WI(2,J) - WI(1,J-1)*SS1)/(1.0 - SS1)

DV(1,J) = (DV(2,J) - DV(1,J-1)*SS1)/(1.0 - SS1)

ELSE 

WL(1,J) = UWA/ABS(TN(1,J))**UWN 

WI(1,J) = RGLI*(WO - WL(1,J))

IF (TIM .LT. 1.0E-05) THEN 

DV(1,J) = WL(1,J) + WI(1,J) - WO

ELSE 

DV(1,J) = 0.0 

END IF 

END IF 

IF (DV(1,J) .LT. 0.0) DV(1,J) = 0.0 

SS1 = G12(MX-1,J)/G22(MX-1,J) 

WL(MX,J) = (WL(MX-1,J) - WL(MX,J-1)*SS1)/(1.0 - S51)

WI(MX,J) = (WI(MX-1,J) - WI(MX,J-1)*SS1)/(1.0 - 5S1) 

DV(MX,J) = (DV(MX-1,J) - DV(MX,J-1)*SS1)/(1.0 - SS1)

IF (DV(MX,J) .LT. 0.0) DV(MX,J) = 0.0 

3020 CONTINUE 

C 

DV(1,MY) = DV(2,MY) 

DV(MX,MY) = DV(MX-1,MY)

C 

C 

RETURN 

END 

C **************************************************************** 

C * SUBROUTINE OF SOLUTION OF TRIDIAGONAL SYSTEMS OF EQUATIONS *
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C 

C 

* 

* CREATED: 

BY SHEN MU 

9/11/1988 LAST CORRECTION: 11/11/1988 

*

* 

C **************************************************************** 

C 

SUBROUTINE TRID2(MSUB,NO,NM,A,B,C,F) 

C 

C 

C 

C 

REAL*4 

Q 

F(NO) 

A(MSUB), B(MSUB), C(MSUB), F(MSUB), Q 

DECOMPOSITION AND FORWARD SUBSTITUTION 

= B(NO) 

= F(NO)/B(NO) 

DO 6000 K = NO , NM�1 

B(K) = C(K)/Q 

Q = B(K+1) - A(K+1)•B(K) 

F(K+1) = (F(K+1) - A(K+1)•F(K))/Q 

6000 CONTINUE 

C 

C 

C 

===== BACKSUBSTITUTION 

DO 6010 K = NM-1 , NO , -1 

F(K) = F(K) - B(K)•F(K+1) 

6010 CONTINUE 

C 

C ====== 

C 

RETURN 

END 

C **************************************************************** 

C SUBROUTINE OF CALCULATING THERMAL PARAMETERS RKC 

C 

C 

C 

C 

C 

C 

(1) 

(2) 

(3) 

(4) 

(5) 

K 

KS, KL, KI 

C 

APPARENT THERMAL CONDUCTIVITY, J/m/C/hour 

THERMAL CONDUCTIVITY OF SOIL, WATER, ICE 

APPARENT HEAT CAPACITY, J/(m*m*m)/C 

CS, CL, CI HEAT CAPACITY OF SOIL, WATER, ICE 

L -- LATENT HEAT OF FUSION, 3.336E+05 J/kg 

C **************************************************************** 

C 

SUBROUTINE PARAM1(RKC) 

C 

PARAMETER (MX= 34, MY = 37)

C 

REAL*4 TN(MX,MY), RKC(MX,MY), WL(MX,MY), WI(MX,MY), 

& DTN(MX,MY), DV(MX,MY), ATM(MX,MY) 

REAL*4 GAML, K, C, L, KS, KL, KI, CS, CL, CI, 
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C 

C 

C 

C 

XS, XL, XI, SS1 

COMMON /SOIL/ TIM, DTIM, WO, TF, UWN, UWA, RGLI, RLK 

COMMON /BEAT/ TN, DTN, WL, WI, DV, ATM 

DATA L/0.3336E+06/, CS/2.2E+06/, CL/4.18E+06/, CI/1.93E+06/, 

& KS/4.34/, KL/0.602/, KI/2.22/, GAML/1000./ 

DO 4000 I = 1 , MX 

DO 4000 J = 1 , MY 

SS1 = WL(I,J) + WI(I,J) - WO 

IF (SS1 .LE. 0.0) THEN 

xs = 1.0 - wo 

XL= WL(I,J) 

XI= WI(I,J) 

ELSE 

XS = (1.0 - W0)/(1.0 + SS1) 

XL= WL(I,J)/(1.0 + ssi) 

XI= WI(I,J)/(1.0 + SS1) 

END IF 

C = 0.0 

IF (TN(I,J) .LE. TF) THEN 

IF (TN(I,J) .GT. -2.00) C = 0.02274 

IF (TN(I ,J) .GT. -1. 50) C = 0.0368 

IF (TN(I,J) .GT. -1.00) C = 0.0592 

IF (TN(I,J) .GT. -0.75) C = 0.0952 

IF (TN(I,J) .GT. -0.50) C = 0.2780 

IF (TN(I ,J) .GT. -0.35) C = 0.5045 

IF (TN(I,J) .GT. -0.20) C = 1.55 

C = C*GAML*L 

END IF 

C = C + CS*XS + CL*XL + CI*XI 

K = KS••XS * KL**XL * KI••XI 

RKC(I,J) = K•3600.0/C 

4000 CONTINUE 

C 

RETURN 

END 
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C **************************************************************** 

C 

C 

C 

C 

C 

* 

* 

* 

* 

* 

SUBROUTINES OF CALCULATING THE STRESS AND DEFORMATION 

FIELDS AROUND CHILLED PIPEL�NE BY FEM 

(CO-OPERATIVE FRANCE-CANADA RESEARCH PROJECT) 

* 

* 

* 

* 

* 

C * BY SHEN MU * 

C * CINEP, ECOLE POLYTECHNIQUE DE MONTREAL, H3C 3A7, CANADA * 

C * CREATED: 12/09/1989 LAST CORRECTION: 5/09/1989 * 

C * -------------------------------------------------------- * 

C * MAIN ARGUMENTS : * 

C * (1) MX,MY -- MAX. NUMBER OF GRID POINTS IN X AND Y * 

C * DIRECTIONS. ( MX*MY MESH ) * 

C * (2) TIM,DTIM -- TIME AND TIME STEP (HOUR) * 

C * NOTES: * 

C * (1) ALL REALS IN DUMMY ARGUMENTS ARE SINGLE PRECISION * 

C * (2) THE SYSTEM OF UNIT IN THIS PART: M, HOUR, MPA * 

C * * 

C **************************************************************** 

C 

SUBROUTINE SD(ICTLF,TIM, DTIM, TF,WO) 

C 

C 

C 

C 

C 

PARAMETER 

PARAMETER 

INTEGER*4 

INTEGER*2 

INTEGER*4 

REAL*4 

REAL*4 

COMMON 

COMMON 

COMMON 

COMMON 

(MX=34, MY=37) 

(ME=2400, MJ=1300, MJ2=2600, MAXSK=173000) 

UNIT1, UNIT2 

JM(ME,3), IZC(160), IB(MJ), ND(3) 

IA(MJ2), ICN(6), IHH, IDD, IP, IQ, IMX, IA4, 

NE, NJ, NGPE, NJ2, NZ, NPJ, Mi, M2, M3, M4, 

IE, ISS, I, J, K, L, ICTLF 

WI(MX,MY), 

SK(MAXSK), 

STRESS(ME,3), 

TN(MX,MY), 

DTN(MX,MY), 

P(MJ2), 

EIE(ME), 

HIE(ME), 

RDT(3,3), 

DV(MX,MY), 

ATM(MX,MY), 

U(MJ2), 

DK(6,6), 

PJ(25,2), 

B(3,6), 

WL(MX,MY), 

AJZ(MJ,2), 

SEQ(ME), 

S(3,6), 

TND(3), 

C(3), 

AY(6), YL(3), 

DVD(3), DTD(3), 

STRAIN(ME,3) 

TIM, DTIM, TF, AMU, SS1, SS2, SS3, SS4, TE, DVE, 

OTE, EC, SM, AE 

/HEAT/ TN, 

/STIFF/ NJ2, 

/ELEMENT/ AJZ, 

/FORCE/ STRESS, 

DTN, WL, WI, DV, 

IDD, IA, SK, P 

JM, NE, NJ 

U, SEQ, STRAIN 

ATM 
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C ================================================================ 

C INPUT INITIAL MESH DATA 

C 

C 

C 

C 

(1) NE , NJ -- TOTAL NUMBER OF ELEMENTS� NODES

(2) NGPE -- NUMBER OF NODES IN EACH ELEMENT

(3) JM(NE,4) -- NODAL NUMBER OF ELEMENT

(4) AJZ(NJ,2) -- NODAL COORDINATES

C =-----=========================�===---------------------------

C 

C 

C 

C 

4100 

C 

UNIT1 = 6 

UNIT2 = 5 

NJ = MX•MY 

NE = (MX - 1)•(MY - 1)*2 

NGPE = 3 

NPJ 

NZ 

NJ2 

AMU 

IF 

END 

= 0 

= 150 

= 2*NJ 

= 0.3 

((TIM .GT. 

NJ = NJ + 

NE =NE+ 

NZ = NZ -

NJ2 = 2*NJ 

IF 

1.0E-04) .AND. (ICTLF .EQ. 0)) THEN 

1 

9 

17 

IF (TIM .LT. 1.0E-04) THEN 

IF ((NJ .GT. MJ) .OR. (NE .GT. ME) .OR. (NJ2 .GT. MJ2)) THEN 

WRITE(UNIT1,*) '*** PLEASE CORRECT MJ OR ME ***' 

WRITE(UNIT1,*) '****** STOP IN SD.FOR ******' 

END IF 

DO 4100 I = 1 , MJ 

AJZ(I,1) = 0.0 

AJZ(I,2) = 0.0 

P(I) = 0.0 

U(I) = 0.0 

CONTINUE 

DO 4110 IE = 1 , ME 

JM(IE,1) = 0 

JM(IE,2) = 0 

JM(IE,3) = 0 

STRAIN(IE,1) = 0.0 

STRAIN(IE,2) = 0.0 

STRAIN(IE,3) = 0.0 
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STRESS(IE, 1) 

STRESS(IE,2) 

STRESS(IE,3) 

SEQ(IE) 

= 0.0 

= 0.0 

= 0.0 

= 0.0 

4110 CONTINUE 

C 

C 

C 

C 

4200 

C 

C 

C 

C 

C 

C 

5100 

C 

READ(UNIT2,*) (( JM(I,J), J=1,NGPE), I=1,NE ) 

READ(UNIT2,*) ((AJZ(I,J), J=1,2 ), I=1,NJ ) 

READ(UNIT2,*) ( IZC(I), I=1,NZ ) 

READ(UNIT2,*) (( PJ(I,J), J=1,2 ), I=1,NPJ) 

IF (ICTLF .EQ. 0) THEN 

NJ = NJ + 1 

NE =NE+ 9 

NZ = NZ - 17 

NJ2 = 2*NJ 

AJZ (NJ , 1) = 0 . 0 

AJZ(NJ,2) = 1.286 

IZC(NZ) = 2*NJ - 1 

ISS = (MX - 1)*(MY - 1)*2 

DO 4200 I = 1 , 9 

K = ISS + I 

JM(K, 1) = NJ 

JM(K,2) = 647 + (I-1)*MX 

JM(K,3) = JM(K,2) + HX 

CONTINUE 

END IF 

END IF 

IF 

DEFINING THE VOLUME OF GLOBAL STIFFNESS HATRIX 

(1) IA(MJ2) -- THE NUMBER OF THE DIAGONAL ELEMENT OF THE

GLOBAL STIFFNESS MATRIX 

(2) IHH -- VOLUME OF GLOBAL STIFFNESS MATRIX

(TIM .LT. 1.0E-04) THEN 

IMX = 0 

DO 5100 I = 1 J 
NJ 

IB(I) = 0 

IA(2*I-1) = 0 

IA(2*I) = 0 

CONTINUE 

DO 5110 IE = 1 , NE 
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5120 

5110 

C 

NGPE 

NGPE 

DO 5120 IP = 1 , 

DO 5120 IQ = 1 , 

ISS = JM(IE,IQ) 

M1 = JM(IE,IQ) 

- JM(IE,IP)

IF (ISS .GT. !MX) 

IF (!SS .GT. IB(M1)) 

CONTINUE 

CONTINUE 

IDD = 2*IMX + 2 

IA(1) = 1 

DO 5130 I = 1 , NJ 

IMX = 

IB(M1) = 

!SS

!SS

IF (I .GT. 1) IA(2•I-1) = IA(2•I-2) + 2•IB(I) + 1 

IA(2*I) = IA(2•I-1) + 2*IB(I) + 2 

5130 CONTINUE 

C 

C 

C 

C 

IHH = IA(NJ2) 

WRITE(UNIT1,'(1X,''IDD='',I4,9X,''IHH='' ,!6//)') IDD, IHH 

IF (IHH .GT. MAXSK) THEi 

WRITE(UNIT1,*) '* THE DIMENSION OF SK(I) IS TOO SMALL *' 

WRITE(UNIT1,*) '********** STOP IN SO.FOR **********' 

STOP 

END IF 

END IF 

DEFINING THE GLOBAL STIFFNESS MATRIX 

(1) SK(MAXSK) -- GLOBAL STIFFNESS MATRIX

DO 5200 I = 1 , MAXSK 

SK(I) = 0.0 

5200 CONTINUE 

C 

CALL ELS(O, TF, EIE, HIE) 

IF (ICTLF .EQ. 0) THEN 

!SS= (MX - 1)*(MY - 1)*2

DO 5205 K = 1 , 9

IE = ISS + K 

EIE(IE) = 1.0E+09 

HIE(IE) = -10.0 

5205 CONTINUE 

C 

END IF 

DO 5210 IE = 1 , NE 

CALL DYGD(3, IE, EIE, HIE, OK, S, B, AE) 

DO 5220 IQ = 1 , NGPE 

ICN(2*IQ-1) = 2*JM(IE,IQ) - 1 
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ICN(2*IQ) = 2*JM(IE,IQ) 

6220 CONTINUE 

6230 

5210 

C 

C 

C 

ISS = 2*NGPE 

DO 6230 IP = 1 , ISS 

DO 5230 IQ = 1 , ISS 

IF (ICN(IP) .GE. ICN(IQ)) TREN 

M1 = ICN(IP) 

M2 = IA(M1) - ICN(IP) + ICN(IQ) 

SK(M2) = SK(M2) + DK(IP,IQ) 

END IF 

CONTINUE 

CONTINUE 

==============--=====---====----==----=-------------------------

DEFINING INITIAL FORCES VECTOR 

IF (TIM .LT. 1.0E-04) THEN 

DO 5300 I = 1 ,NPJ 

J = IFIX(PJ(I,2) + 1.0E-06) 

P(J) = PJ(I,1) 

5300 CONTINUE 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

END IF 

CALCULATING THE CREEP t VOLUMETRIC EXPANSION IN THE TIME STEP 

(1) TE -- AVERAGE TEMPERATURE IN THE ELEMENT

(2) DTE -- TEMPERATURE INCREMENT IN THE ELEMENT

(3) DVE -- VOLUMETRIC EXPANSION OF ELEMENT

(4) SEQ(IE) -- EQUIVALENT STRESS

(5) SM -- MEAN STRESS

(6) EC -- CREEP STRAIN INCREMENT

(7) YL(3) -- STRESS DEVIATION

(8) C(3) -- EQUIVALENT INITIAL STRAIN

IF (TIM .GT. 1.0E-04) TREN 

DO 5760 I = 1 , NJ2 

P(I) = 0.0 

5750 CONTINUE 

C 

C 

END IF 

DO 5760 IE = 1 , NE 

C(1) = 0.0 

C(2) = 0.0 

C(3) = 0.0 

ISS = (MX - 1)*(MY - 1)*2 

IF (IE .LE. ISS) TREN 
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DO 5770 K = 1 , NGPE 

ND(K) = JM(IE,K) 

SS1 = FLOAT(ND(K) -1)/FLOAT(MX) 

J = IFIX(SS1 + 1.0E-06) + 1 

I = ND(K) - (J-1)*MX 

C 

TND(K) = TN(I,J) 

DVD(K) = DV(I,J) 

DTD(K) = DTN(I,J) 

6770 CONTINUE 

TE = (TND(1) + TND(2) + TND(3))/3.0 

DTE = (DTD(1) + DTD(2) + DTD(3))/3.0 

DVE = (DVD(1) + DVD(2) + DVD(3))/3.0 

ELSE 

TE = 1.0 

DTE = 0.0 

DVE = 0.0 

END IF 

C 

C ----- THE UNIT OF STRESS IN CREEP EQUATION IS MPA -----

C 

C 

C 

C 

SS1 = SEQ(IE)*i.OE-06 

IF ((TE .LE. TF) .AND. (SEQ(IE) .GT. 0.0)) THEN 

SM = (1.0 + AMU)*(STRESS(IE,1) + STRESS(IE,2))/3.0 

IF (SM .GT. 0.0) THEN 

SS2 = (TIM + 0.1)**0.66*(1.0 - TE)**2.326 

EC = 2.12E-08*SS1**2.326/SS2 

ELSE 

SS2 = (TIM + 0.1)**0.80*(1. - TE)**1.429 

EC = 2.80E-06*SS1**1.429/SS2 

END IF 

YL(1) = STRESS(IE,1) - SM 

YL(2) = STRESS(IE,2) - SM 

YL(3) = STRESS(IE,3) 

SS2 = 1.6*EC*DTIM/SEQ(IE) 

C(1) = YL(1)*SS2 

C(2) = YL(2)*SS2 

C(3) = YL(3)*SS2*2.0 

END IF 

SS1 = DVE/3.0 

C(1) = C(1) + SS1 

C(2) = C(2) + SS1 
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C 

C 

C 

C 

C 

C 

C 

CALCULATING THE CORRECTION OF TEMPERATURE EFFECT ON ELASTIC 

CONSTANT MATRIX 

IF 

(1) RDT(3,3) -- DERIVATIVE OF ELASTIC CONSTANT MATRIX

WITH RESPECT TO TEMPERATURE 

(TE .LT. TF) THEN 

RDT(1,1) = 1.0 - AMU 

RDT(1,2) = -AMU

RDT(1,3) = 0.0 

RDT(2,1) = -AMU

RDT(2,2) = 

RDT(2,3) =

RDT(3,1) =

RDT(3,2) =

RDT(3,3) = 

IF (TE .GT. 

SS2 = 0.0 

ELSE 

1.0 -

0.0 

0.0 

0.0 

2.0 

TF) 

AMU 

THEN 

IF (SM .LE. 0.0) THEN 

SS1 = 0.636/(EIE(IE)*(ABS(TE)**1.364)) 

ELSE 

SS1 = 0.381/(EIE(IE)*(ABS(TE)**i.619)) 

END IF 

SS2 = -DTE*(1.0 + AMU)•SS1 

END IF 

DO 5800 I = 1 , 3 

DO 5800 J = 1 , 3 

RDT(I,J) = RDT(I,J)•SS2 

5800 CONTINUE 

C 

DO 5810 I = 1 3 

YL(I) = 0.0 

DO 5820 K = 1 , 3 

YL(I) = YL(I) + RDT(I,K)•STRESS(IE,K) 

5820 CONTINUE 

5810 CONTINUE 

C 

C 

C 

C(1) = C(1) + YL(1) 

C(2) = C(2) + YL(2) 

C(3) = C(3) + YL(3) 

END IF 

CALCULATING THE EQUIVLENT NODAL FORCES FROM CREEP & EXPANSION 
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C 

C 

(1) AY(3) -- EQUIVALENT NODAL FORCES INCREMENT

CALL DYGD(2, IE, EIE, HIE, DK, S, B, AE) 

DO 5900 I = 1 6 

AY(I) = 0.0 

DO 5910 K = 1 , 3 

AY(I) = AY(I) + S(K,I)*C(K)*AE 

5910 CONTINUE 

5900 CONTINUE 

C 

5930 

5920 

C 

5760 

C 

C 

C 

C 

5410 

DO 5920 I = 1 , NGPE 

DO 5930 J = 1 , 2 

IP = 2*(I-1) + J 

IQ = 2*(JM(IE,I) - 1) + J 

P(IQ) = P(IQ) + AY(IP) 

CONTINUE 

CONTINUE 

CONTINUE 

MODIFIED GLOBAL STIFFNESS MATRIX AND FORCES VECTOR ACCORDING 

TO DISPLACEMENT BOUNDARY CONDITIONS 

DO 5400 I = 1 , NZ 

ISS = IZC(I) 

M1 = IA(ISS-1) + 1 

M2 = IA(ISS) - 1 

DO 5410 J = M1 ' M2 

SK(J) = 0.0 

CONTINUE 

M3 = ISS + 1 

DO 5420 IP = M3 , NJ2 

IA4 = IP - ISS 

IF (IA4 .LE. (IA(IP) - IA(IP-1) -1)) THEN 

M4 = IA(IP) - IA4 

SK(M4) = 0.0 

END IF 

5420 CONTINUE 

SK(M2+1) = 1.0 

P(ISS) = 0.0 

5400 CONTINUE 

C -------------------=----===-----=--=--=-�======-=====-======-=== 

C CALCULATING THE NODEL DISPLACEMENT 

C -=======-======================================================= 

C 

172 



C 

5500 

C 

CALL CHOL 

DO 5500 I = 1 , NJ2 

U(I) = U(I) + P(I) 

CONTINUE 

C CALCULATING THE STRESSES IN EACH ELEMENT 

C (1) YL(3) -- ELEMENT STRESS INCREMENT IN THE TIME STEP

C (2) AL(6) -- NODAL DISPLACEMENT INCREMENT IN THE TIME STEP

C 

DO 5550 IE = 1 , NE 

CALL DYGD(2, IE, EIE, HIE, DK, S, B, AE) 

DO 5560 I = 1 , NGPE 

DO 5560 

IP 

IQ 

AY(IP) 

J = 1 , 2 

= 2*(I-1) + J 

= 2*(JM(IE,I) - 1) + J 

= P(IQ) 

5560 CONTINUE 

C 

DO 5570 I = 1 , NGPE 

YL(I) = 0.0 

C(I) = 0.0 

ISS = 2*NGPE 

DO 5580 J = 1 , ISS 

YL(I) = YL(I) + S(I,J)*AY(J) 

C(I) = C(I) + B(I,J)•AY(J) 

5580 CONTINUE 

STRESS(IE,I) = STRESS(IE,I) + YL(I) 

STRAIH(IE,I) = STRAIN(IE,I) + C(I) 

5570 CONTINUE 

C 

SM = (1.0 + AMU)*(STRESS(IE,1) + STRESS(IE,2))/3.0 

SS1 = STRESS(IE,1) - SM 

SS2 = STRESS(IE,2) - SM 

SS3 = AMU*(STRESS(IE,1) + STRESS(IE,2)) - SM 

SS4 = STRESS(IE,3) 

SEQ(IE) = SQRT(1.5*(SS1*SS1 + SS2*SS2 + SS3*SS3 + 2.*SS4*SS4)) 

5550 CONTINUE 

C =-==--===----=================================================== 

C CALCULATING THE STRESSES AT NODE 

C ----=--==----=====-============================================= 

IF (ICTLF .EQ. 1) THEN 

DO 5700 K = 1 , NJ 

SS1 = FLOAT(K - 1)/FLOAT(MX) 

J = IFIX(S51 + 1.0E-06) + 1 
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C 

5720 

5710 

C 

I = K - (J-1)*MX 

ATM(I,J) = 0.0 

ISS = 0 

Mi = (J - 3)*(MX + MX - 2) 

M2 = (J + 1)*(MX + MX - 2) 

IF (Mi .LT. i ) M1 = 1 

IF (M2 .GT. NE) M2 = NE 

DO 6710 IE = M1 , M2 

DO 6720 L = i , NGPE 

IF (JM(IE,L) .EQ. K) THEN 

ISS = ISS + i 

SS1 = (1.0 + AMU)*(STRESS(IE,1) + STRESS(IE,2)) 

ATM(I,J) = ATM(I,J) + SS1/3.0 

END IF 

CONTINUE 

CONTINUE 

IF (ISS .GT. 0) ATM(I,J) = ATM(I,J)/FLOAT(ISS) 

5700 CONTINUE 

END IF 

C 

C ====== 

C 

RETURN 

END 

C **************************************************************** 

C 

C 

C 

C 

* 

* 

* 

* 

SUBROUTINE OF SOLVING THE SYSTEM OF BAND EQUATIONS 

BY THE CHOLESKY-CROUT METHOD (FOR FEM) 

CREATED: 1985 LAST CORRECTION: 14/08/89 

*

* 

* 

* 

C **************************************************************** 

C 

C 

C 

C 

C 

C 

C 

&: 

SUBROUTINE CHOL 

PARAMETER (MJ2=2600, MAXSK=173000) 

REAL*4 SK(MAXSK), P(MJ2) 

INTEGER*4 IA(MJ2), IDD, NJ2, I, J, L, Mi, M2, M3, M4, 

IH, IP, IQ 

COMMON /STIFF/ NJ2, IDD, IA, SK, P 

DECOMPOSITION AND FORWARD SUBSTITUTION 

174 



DO 6100 J = 2 , NJ2 

L = IA(J-1) + J + 1 - IA(J) 

DO 6110 I = L ,  J 

IQ = IA(J) - J + I 

IH = IA(I-1) - IA(I) + I 

Mi= I - 1 

DO 6110 IP = L , Mi 

IF (IP .GT. IH) THEN 

M2 

M3 

M4 

SK(IQ) 

END IF 

= IA(I) - I + IP 

= IA(IP) 

= IA(J) - J + IP 

= SK(IQ) - SK(M2)•SK(M4)/SK(M3) 

6110 CONTINUE 

6100 CONTINUE 

C 

DO 6120 I = 2 , NJ2 

Mi= IA(I-1) + I + 1 - IA(I) 

M2 = I - 1 

DO 6120 IP = M1 , M2 

M3 = IA(I) - I + IP 

M4 = IA(IP) 

P(I) = P(I) - SK(M3)•P(IP)/SK(M4) 

6120 CONTINUE 

C 

C 

C 

6140 

6130 

C 

C 

BACKSUBSTITUTION 

DO 6130 I = NJ2 , 1 , -1 

IF ((I+IDD) .LT. NJ2) THEN 

L = I + IDD 

ELSE 

L = NJ2 

END IF 

Mi= I + 1 

DO 6140 IP = M1 , L 

M2 = IA(IP) - IP + I 

IF ((IA(IP)-IP+I) .GT. IA(IP-1)) THEN 

P(I) = P{I) - SK(M2)•P(IP) 

END IF 

CONTINUE 

M3 = IA(I) 

P(I) = P(I)/SK(M3) 

CONTINUE 
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RETURN 

END 
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C **************************************************************** 

C * SUBROUTINE OF DETERMINING THE YOUNG'S MODULES OF ELEMENT * 

C * (TRIANGULAR ELEMENT) * 

C 

C 

C 

C 

C 

C 

C 

C 

* 

* 

* 

* 

* 

* 

* 

* 

(1) EIE(ME)

(2) HIE(ME)

YOUNG'S MODULES OF THE ELEMENT 

HARDENING SLOP DURING YIELDING 

(3) 

(4) 

( IF THE ELEMENT IS IN ELASTIC STATUS, 

THE HIE(IE) IS LESS THAN ZERO ) 

ICTLO -- CONTROL PARAMETER (= 0 OR 1) 

= 0 CALAULATING EIE & HIE 

= 1 CALAULATING HIE ONLY 

TND(3) -- TEMPERATURE AT NODE 

* 

* 

* 

* 

* 

* 

* 

* 

C * -------------------------------------------------------- * 

C * THE UNIT OF THE YOUNG'S MODULES IS 'PA' * 

C **************************************************************** 

C 

C 

C 

C 

C 

C 

C 

C 

SUBROUTINE ELS(ICTLO, TF, EIE, HIE) 

PARAMETER 

PARAMETER 

INTEGER*4 

INTEGER*2 

INTEGER*4 

REAL*4 

REAL*4 

COMMON 

COMMON 

COMMON 

UNIT1 = 6 

(ME=2400, 

(MX=34, 

UNIT1 

JM(ME,3) 

MJ=1300, MJ2= 2600) 

MY=37) 

NE, NJ, IE, I, J, K, ISS, ICTLO, ICTL1, IK 

TN(MX,MY), 

DTN(MX,MY), 

WND(3), 

SEQ(ME), 

WL(MX,MY), 

ATM(MX,MY), 

AJZ(MJ,2), 

STRAIN(ME,3), 

WI(MX,MY), DV(MX,MY), 

EIE(ME), TND(3), 

U(MJ2), HIE(ME), 

STRESS(ME,3) 

TF, TL1, TL2, SS1, SS2, SS3, S54, SCALE1, SCALE2, 

TE, EUF, EF, TAE, SY 

/HEAT/ TN, DTN, WL, WI, DV, ATM 

/ELEMENT/ AJZ, JM, NE, NJ 

/FORCE/ STRESS, U, SEQ, STRAIN 

EUF = 1. 12E+07 

IK = (MX - 1)*(MY - 1)*2 

DO 7000 IE = 1 , IK 

DO 7010 K = 1, 3 

ISS = JM(IE,K) 

SS1 = FLOAT(ISS - 1)/FLOAT(MX) + 1.0E-06 

J = IFIX(SS1) + 1 
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I = ISS - (J-1)*MX 

TND(K) = TN(I,J) 

7010 CONTINUE 

C 

C 

TL!= (TND(1) -TF)*(TND(2) - TF) 

TL2 = (TND(1) -TF)*(TND(3) - TF) 

IF ((TL! .GE. 0.0) .AND. (TL2 .GE. 0.0)) THEN 

ICTL1 = 0 

SCALE1 = 0.0 

SCALE2 = 0.0 

IF ((TND(2) .GT. TF) .OR. (TND(3) .GT. TF)) THEN 

TE= 1.0 

ELSE 

TE= (TND(1) + TND(2) + TND(3))/3.0 

END IF 

ELSE 

ICTL1 = 1 

IF ((TL1 .LT. 0.0) .AND. (TL2 .GE. 0.0)) THEN 

S51 = TND(1) 

S52 = TND(2) 

S53 = TND(3) 

TND(1) = S52 

TND(2) = S53 

TND(3) = S51 

ELSEIF ((TL1 .GE. 0.0) .AND. (TL2 .LT. 0.0)) THEN 

S51 = TND(1) 

SS2 = TND(2) 

S53 = TND(3) 

TND(1) = S53 

TND(2) = SS1 

TND(3) = SS2 

END IF 

SCALE1 = (TND(1) -TF)/(TND(1) - TND(2)) 

SCALE2 = (TND(1) -TF)/(TND(1) - TND(3)) 

IF (TND(1) .LE. TF) THEN 

TE= (TND(1) +TF+ TF)/3.0 

ELSE 

TE= (TND(2) + TND(3) +TF+ TF)*0.25 

END IF 

END IF 

C ================================================================ 

C DEFINING THE YOUNG'S MODULES 

C 

C 

(1) EUF -- YOUNG'S MODULES OF UNFROZEN SOIL

(2) EF -- YOUNG'S MODULES OF FROZEN SOIL
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C =======================-=====-====-===---=------=---------------

C 

C 

C 

7020 

C 

C 

C 

C 

C 

IF (ICTLO .LT. 1) THEN 

IF (TE .GT. TF) THEN 

EIE(IE) = EUF 

ELSE 

SS1 = STRESS(IE,1) + STRESS(IE,2) 

SS2 = ABS(TE - TF)+ 0.005 

IF (SS1 .GT. 0.0) THEN 

EF = 5.31E+07*(SS2**0.381) 

ELSE 

EF = 4.00E+07*(SS2**0.636) 

END IF 

IF (ICTL1. EQ. 0) THEi 

EIE(IE) = EF 

ELSE 

SS1 = SCALE1*SCALE2 

IF (TND(1) .GT. TF) THEN 

EIE(IE) = SS1*EUF + (1.0 - SS1)*EF 

ELSE 

EIE(IE) = (1.0 - SS1)*EUF + SS1*EF 

END IF 

END IF 

END IF 

SS1 = STRESS(IE,1) + STRESS(IE,2) 

SS2 = ABS(STRAIN(IE,1) + STRAIN(IE,2)) 

IF (SS1 .GT. 0.0) THEN 

IF (SS2 .GE. 0.01) EIE(IE) = 2.0E+06 

ELSE 

IF (SS2 .GE. 0.04) EIE(IE) = 2.0E+06 

END IF 

IF (EIE(IE) .LE. 0.0) THEN 

WRITE(UNIT1,7020) IE 

FORMAT(1X,34HTHE YOUNG'S MODULES,< 0 IN ELEMENT,I4) 

STOP 

END IF 

END IF 

DEFINING THE HARDEN SLOP DURING YIELDING 

(1) SY -- YIELD STRESS

(2) SEQ -- EQUIVALENT STRESS

IF (ICTLO .LT. 2) THEN 
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C 

TAE = (TND(1) + TND(2) + TND(3))/3.0 

HIE(IE) = -10.0 

IF (TAE .LE. TF) THEN 

IF (SM .LE. 0.0) THEN 

SY = 0.255E+06*(ABS(TAE) + 0.005)**0.710 

ELSE 

SY = 0.531E+06*(ABS(TAE) + 0.005)**0.404 

END IF 

ELSE 

SY = 0.25E+05 

END IF 

IF (SEQ(IE) .GE. SY) THEN 

HIE(IE) = EIE(IE)*0.2 

END IF 

END IF 

7000 CONTINUE 

C 

C ====== 

C 

RETURN 

END 

C **************************************************************** 

C 

C 

C 

C 

C 

C 

C 

C 

* 

* 

* 

* 

* 

* 

* 

* 

SUBROUTINE OF DETERMINING THE ELEMENT STIFFNESS MATRIX 

(TRIANGULAR ELEMENT) 

CREATED: 1985 LAST CORRECTION: 23/11/89 

(1) ICTLO -- CONTROL PARAMETER

= 1 DEFINING ELEMENT AREA ONLY 

* 

* 

* 

* 

* 

* 

= 2 DEFINING MATRIZES B,D & S * 

= 3 DEFINING STIFFNESS MATRIX DK * 

C **************************************************************** 

C 

SUBROUTINE DYGD(ICTLO, IE, EIE, HIE, DK, S, B, AE) 

C 

PARAMETER 

C 

(ME=2400, MJ=1300, MJ2= 2600) 

UNIT1 

JM(ME,3) 

INTEGER*4 

INTEGER*2 

INTEGER*4 NE, NJ, IE, I, J, ND1, ND2, ND3, ICTLO 

C 

REAL*4 AJZ(MJ,2), 

DP(6,6), 

SSM1(3,3), 

STRAIN(ME,3), 

B(3,6), D(3,3), 

EIE(ME), HIE(ME), 

SSM2(3), SSM3(3), 

STRESS(ME,3) 

5(3,6), 

DST(3), 

SEQ(ME), 

DK(6,6), 

U(MJ2), 
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C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

7500 

& 

REAL*4 AE, XE, YE, BI, BJ, BM, CI, CJ, CM, 

SS1, SM 

COMMON /ELEMENT/ AJZ, JM, NE, NJ 

COMMON /FORCE/ STRESS, u, SEQ, STRAIN 

UNIT1 = 6 

CALCULATING THE AREA OF THE ELEMENT 

(1) XE X COORDINATE OF THE POINT OF GRAVITY 

(2) YE -- Y COORDINATE OF THE POINT OF GRAVITY

(3) AE -- AREA OF THE ELEMENT

ND1 = JM(IE,1) 

ND2 = JM(IE,2) 

ND3 = JM(IE,3) 

BI = AJZ(ND2,2) - AJZ(ND3,2) 

cr = AJZ(ND3,1) - AJZ(ND2,1) 

BJ = AJZ(ND3,2) - AJZ(ND1,2) 

CJ = AJZ(ND1,1) AJZ(ND3,1) 

BM = AJZ(ND1, 2) - AJZ(ND2,2) 

CM = AJZ(ND2,1) AJZ(ND1,1) 

AE = (BJ*CM - BM*CJ)*0.5 

XE = (AJZ(ND1,1) + AJZ(ND2,1) 

YE = (AJZ(ND1,2) + AJZ(ND2,2) 

IF (AE .LE. 0.0) TREN 

WRITE(UNITl,7500) IE 

+ AJZ(ND3,1))/3.0 

+ AJZ(ND3,2))/3.0 

FORMAT(SX, 'INCORRECT NODAL NUMBER IN ELEMENT #', I4) 

WRITE(UNIT1,*) 'AE=',AE 

STOP 

END IF 

AMU, 

C -=========-===================================================== 

C CALCULATING THE STRAIN-DISPLACEMENT MATRIX B 

C (1) AMU -- POISSON'S RATIO

C -===-===--====================================================== 

C 

7510 

C 

IF (ICTLO .GT. 1) TREN 

AMU = 0.3 

DO 7510 r = 1 •
3

DO 7510 J = 1 • 6 

B(I,J) = 0.0 

CONTINUE 
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C 

B(1,1) = BI 

B(1,3) = BJ 

B(1,5) = BM 

B(2,2) = CI 

B(2,4) = CJ 

B(2,6) = CM 

B(3,1) = CI 

B(3,2) = BI 

B(3,3) = CJ 

B(3,4) = BJ 

B(3,5) = CM 

B(3,6) = BM 

SS!= 0.5/AE 

DO 7520 I = 1 , 3 

DO 7520 J = 1 , 6 

B(I,J) = B(I,J)*SS1 

7520 CONTINUE 

C ================================================================ 

C 

C 

C 

C 

C 

C 

D(1,1) 

D(1, 2) 

D(1,3) 

D(2, 1) 

D(2,2) 

D(2,3) 

D(3, 1) 

D(3,2) 

D(3,3) 

CALCULATING THE MATRIZES D AND DP 

(1) D(3,3) -- ELASTICITY MATRIX 

(2) DP(3,3) -- ELASTICITY-PLASTICITY MATRIX

= 1. 0 - AMU 

= AMU 

= 0.0 

= AMU 

= 1.0 - AMU 

= 0.0 

= 0.0 

= 0.0 

= 0.5 - AMU 

SS1 = EIE(IE)/((1.0 + AMU)*(1.0 - 2.0*AMU)) 

DO 7550 I = 1 , 3 

DO 7550 J = 1 , 3 

D(I,J) = D(I,J)*SS1 

7550 CONTINUE 

C 

DO 7560 I = 1 , 3 

DO 7560 J = 1 , 3 

SSM1(I,J) = 0.0 

7560 CONTINUE 

IF (HIE(IE) .GE. 0.0) THEN 
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C 

7570 

7580 

C 

7590 

C 

7600 

C 

7610 

C 

7620 

C 

C 

C 

SM 

SS1 

DST(1) 

DST(2) 

DST(3) 

= (1.0 + AMU)*(STRESS(IE,1) 

= 1.5/SEQ(IE) 

= (STRESS(IE,1) - SM)*SS1 

= (STRESS(IE,2) - SM)*SS1 

= 2.0*STRESS(IE,3)*SS1 

DO 7570 I = 1 , 3 

SSM2(I) = 0.0 

DO 7570 K = 1 , 3 

+ STRESS(IE,2))/3.0

SSM2(I) = SSM2(I) + D(I,K)*DST(K) 

COllTINUE 

DO 7580 J = 1 , 3 

SSM3(J) = 0.0 

DO 7580 K = 1 , 3 

SSM3(J) = SSM3(J) + DST(K)*D(K,J) 

CONTINUE 

DO 7590 I = 1 , 3 

DO 7590 J = 1 , 3 

SSM1(I,J) = SSM2(I)*SSM3(J) 

CONTINUE 

SS1 = 0.0 

DO 7600 K = 1 , 3 

SS1 = SS1 + DST(K)*SSM2(K) 

CONTINUE 

SS1 = SS1 + HIE(IE) 

DO 7610 I = 1 , 3 

DO 7610 J = 1 , 3 

SSM1(I,J) = SSM1(I,J)/SS1 

CONTINUE 

END IF 

DO 7620 I = 1 , 3 

DO 7620 J = 1 , 3 

DP(I,J) = D(I,J) - SSM1(I,J) 

CONTINUE 

CALCULATING THE STRESS-DISPLACEMENT S 

DO 7650 I = 1 , 3 

DO 7650 J = 1 , 6 

S(I,J) = 0.0 

DO 7660 K = 1 , 3 
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S(I,J) = S(I,J) + DP(I,K)*B(K,J) 

7660 CONTINUE 

7650 CONTINUE 

C 

C 

C 

C 

END IF 

CALCULATING THE ELEMENT STIFFNESS MATRIX 

(1) DK(6,6) -- ELEMENT STIFFNESS MATRIX

IF (ICTLO .GT. 2) THEN 

DO 7700 I = 1 , 6 

DO 7700 J = 1 , 6 

DK(I,J) = 0.0 

DO 7710 K = 1 3 

DK(I,J) = DK(I,J) + S(K,I)*B(K,J)*AE 

7710 CONTINUE 

7700 CONTINUE 

END IF 

C 

C ====== 

RETURN 

END 
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