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SOMMAIRE

On considere Ie processus de fusion d'un materiau a changement de phase porte

a la temperature de fusion a 1'interieur d'une enceinte cylindrique verticale. Le

Chapitre 1 passe en revue la biblographie des etudes analytiques, numeriques

et experimentales sur les phenomenes de changement de phase pertinentes a ce

probleme et permet de situer celui-ci dans un contexte d'ingenierie global.

On suppose que la phase liquide constitue un fluide de proprietes thermody-

namiques constantes qui satisfait aux conditions de 1'approximation de Boussineq.

Le probleme est traite pour difFerentes conditions limites en adoptant une formu-

lation vorticite-fonction de courant, etant donne la symetrie axiale du probleme.

Les equations gouvernant 1'ecoulement thermoconvectif dans la cavite formee par

la phase .liquide sont donnees au Chapitre 2 en coordonnees curvilignes generales.

La methode de solution fait appel a une technique de transformation des coor-

donnees decrite au Chapitre 3 qui permet d'immobiliser 1'interface liquide-sollde

dans Ie plan transforme ou Ie systeme d'equations pour la vorticite, la fonction

de courant et la temperature sont alors resolues par differences finies. On genere

ainsi un maillage adapte a la geometric de la cavite a chaque pas de calcul dans

Ie temps. La transformation s'efFectue egalement via la solution par differences

fines d'une paire d'equations de type elliptique. Cette technique permet un bon

controle du maillage genere dans Ie plan physique tout en gardant un maillage

uniforme dans Ie plan transforme.

Notre etude comporte ensuite quatre volets couvrant chacun un ou plusieurs as-

pects nouveaux du probleme de la fusion dans un cylindre vertical, qui n a ete que

tres peu etudie d'une fa^on ou d'une autre jusqu'ici. On considere plus precisement



les efFets d'un chauffage par Ie bas, d'un flux de chaleur impose a la paroi verti-

cale et de 1'inversion de densite dans Ie cas de la glace en traitant a chaque fois Ie

probleme pour des nombi-es de Rayleigh moderes.

Le Chapitre 4 est consacre a 1'etude du cas ou 1'on impose une temperature con-

stante a la paroi verticale en supposant les parois horizontales adiabatiques. Les

resultats obtenus pour Ra = 104-106, Pr = 7, Ste = 0. 15 et A = 2 revelent que Ie

nombre de Nusselt moyen presente des oscillations lorsque Ra devient important.

On se penche egalement sur Ie cas de la fusion autour d'une enceinte verticale ayant

fait 1'objet d'une etude precedente. L'effet de certaines approximations courantes

est examine et des predictions numeriques sont obtenues pour des nombres de

Rayleigh allant jusqu a fia= 7x 105 pour une temperature constante imposee a

la paroi verticale et Ra =7 x 108 pour un flux de chaleur constant. Les r^sultats

presentes pour Ste = 0. 15 et pour Pr =7 sont pratiquement independants de ces

parametres lorsque Ste < 0. 15 et Pr > 7. Pour un flux de chaleur constant, Nu

moyen en regime permanent est proportionnel a Aa1/4 et la fusion s'efFectue plus

lentement que pour une temperature constante.

On etudie Ie chauffage par Ie bds a temperature constante au Chapitre 5 pour

Ste =0. 1, Pr = 7 et Ra = 106 en supposant une paroi verticale adiabatique. Le

nombre de Rayleigh critique pour 1'apparition des cellules de Benard est de 2197

en se basant sur 1'epaisseur de la couche liquide. On passe progressivement d'un

regime multicellulaire a un regime unicellulaire, durant lequel se forme une couche

limite thermique au bas du cylindre qui tend a s'opposer au transfert de chaleur

a travers la cavite. Le nombre de Nusselt local subit une evolution marquee et

fortement tributaire de la configuration cellulaire avant de se stabiliser a un niveau

d'autant plus eleve qu'on se rapproche de 1 axe de symetrie.
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Le Chapitre 6 resume Ie cas de la fusion dans une enceinte entierement isotherme

pour Ra == 105, 106. Le transfer! de chaleur dans la partie superieure de la cavite,

qui constitue alors une zone de stratification stable, est essentillement conductif

et Nu decroit de fagon nionotone. La fonte au bas de la cavite presente un

seuil critique tout coiiune dans Ie Cds precedent, mais plus bas (environ 830) car

la convection dans la zone laterale favorise 1'apparition des cellules de Benard

beaucoup plus tot.

Le Chapitre 7 tralte de la fusion de la glace pour une paroi verticale a T^ = 4,

6, 8 et 10°C', pour Ra = 7 x 105 et A = 2. Le transfert de chaleur est maximum

pour une paroi a 4°C'. On observe un ecoulement unicellulaire dans la cavite dont

Ie sens est inverse par rapport au cas d'un fluide normal: 1'ecoulement descend Ie

long de la paroi au lieu de monter. Pour Tu, = 6 et 8° C, on observe deux cellules

de sens de rotation oppose, separees par 1'isotherme de 4°C'. L'intensite des deux

cellules est comparable lorsque cet isotherine est situe au milieu de cavite et Nu

est alors minimun, ce qui se produit pour Tu, = 8°C'. Lorsque T^ = 10°C', on se

rapproche du cas d'un fluide normal, sans inversion de densite.

Le Chapitre 8 presente les grandes conclusions de cette etude et formule quelques

recommandations en vue de travaux subsequents.



ABSTRACT

M^elting of a solid matrix at fusion temperature in a vertical cylindrical enclosure

is being studied. The problem is treated for several boundary conditions, assum-

ing a fluid phase of constant thermal properties. The vorticity-stream function

formulation is adopted and the Boussineq approximation is made. Governing

equations for heat and fluid flow are given in general curvilinear coordinates in

Chapter 2, after a comprehensive literature review in Chapter 1.

Solution is carried out based on a numerical coordinate transformation technique

described in Chapter 3. The set of governing equations is then solved by stan-

dard finite-difFerence techniques in the transformed plane, where the solid-liquid

interface is at rest. Transformation is achieved through an elliptic boundary value

problem, thereby generating a new set of body-fitted coordinates at each time

step.

Chapter 4 describes results obtained in the case of adiabatic top and bottom

walls, for an isothermal vertical wall, for Ra = 104 - 106, Pr = 7, Ste = 0. 15, and

A = 2. Melting around a cylinder is also considered. The effect of some simplifying

assumptions is examined and numeral prediction are obtained for Ra < 7 xl05

for a constant temperature and -Ra < 7x 108for a constant heat flux. Results

obtained for Ste = 0. 15 and Pr == 7 are virtually independent of these parameters

when Ste < 0. 15 and Pr > 7. For a constant heat flux, Nu is proportional to

-Ra1/4 and melting occurs more slowly than for a constant temperature.

Heating from the bottom is studied in Chapter 5, for Ste = 0. 1, Pr = 7 and

Ra = 106. The critical Rayleigh number for Benard convection is 2197 based on

the melt thickness. The flow configuration evolves from a multicellular regime
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to a single cell regime during which a thermal boundary layer is formed at the

bottom wall.

Chapter 6 investigates melting within a completely isothermal enclosure for Ra =

105 and 106. The top part of the cavity is then a stable layer with no convection,

while the bottom part shows a critical Ra around 830 as the lateral cells trigger

the onset of convection much earlier than in the previous case. Chapter 7 treats

the melting of ice for T^ = 4, 6, 8 and 1Q°C, for Ra = 7 x 105 and A = 2. A^u

is maximum when Tu, = 4°C'. There is only one cell in the cavity, with downward

flow along the cylinder wall, the flow direction is opposite from that of normal

fluid with no density inversion. For Tw=6 and 80 C, two counter-rotating cells are

found, separated by the Tv, = 4°C' isotherm. The intensity of both cells is similar,

and Nu minimum when Tu, = S"C and the 4°(7 isotherm, lies midway between

the wall and the interface. Chapter 8 concludes and offers recommendations for

future work.
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Chapter 1

INTRODUCTION

The study of phase-change problems is of great interest in a wide range of nat-

ural and industrial processes. As a matter of fact, phase-change phenomena are

significant and must be dealt with in a broad range of fields, such as aeroscience,

energy storage, surgery, cryobiology as well as in the chemical, food, and met-

allurgical industries. In recent years latent heat-recovery systems have attracted

considerable attention in many applications requiring large a mount of heat to be

stored and recovered during the phase-change process.

This process is of theoretical significance as well. In the past decades, most of

the studies dealing with phase-change problems have considered heat conduction

as the sole heat transfer mechanism. Because of their simplicity, one-dimensional,

analytical methods, either exact or approximate, have been widely developed.

However, these analyses are valid only when the temperature of the melt is uni-

form and equal to the fusion temperature. These situations are not very realistic

since even small temperature differences in the melt can induce buoyancy forces,

and give rise to appreciable convective flows. Experimental studies have shown

clearly that the heat transport mechanism is mainly due to conduction only in the

very early stage of the phase-change process; as the melting progresses, natural

convection becomes dominant.

When natural convection is taken into account, exact closed-form solutions
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can not be obtained as in the simple one-dimensional models, as irregular geome-

try becomes an inherent feature of the phase-change problem. A solution method

must be found then to handle the complex and moving boundaries. In this re-

spect, the body fitted coordinates have been widely adopted. At the present time,

the problem of moving boundaries can be efficiently analyzed by this method. Al-

though for extremely complex geometries and large time scales, numerical methods

are currently limited by the storage capability and speed of the computer, it seems

that such a restriction can be overcome in a near future.

LITERATURE REVIEW

The study of the phase-change process can be traced back to a century ago. In

1831, Lame and Clapeyon [1] published the first analytical work on the phase-

change problem. Since then substantial efforts have been devoted by many inves-

tigators. Among them, Stefan developed a general approach to the phase-change

problem [2], which has been named Stefan problem in his honor.

Phase-change or Stefan problems have been extended to such a wide range

that an exhaustive review is beyond the scope of this thesis. Therefore, our

intention is focused on two main categories: the conduction dominated phase-

change problem, and the convection dominated phase-change problem in some

typical geometries, namely plane and cylindrical.

Section 1 of this review is concerned with analytical approaches usually

adopted in the study of one-dimensional conduction models, while section 2 is

devoted to the analyses of phase-change problems in the presence of natural con-

vection in different geometries.
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Finally, the scope of the present investigation is outlined in light of the prior

studies.

1. 1 THE CONDUCTION DOMINATED PHASE-CHANGE PROBLEM

The conduction-dominated Stefan problem may be regarded as a classical subject

to which tremendous efforts have been devoted. Meanwhile, a large number of

techniques has been developed as no single method appears general enough to

handle all cases. The purpose of this review is to present methods that are mostly

used in the investigations of phase-change problems.

1. 1. 1 Similarity Transformation

Similarity transformation, also known as Boltzman transformation [3] is a method

which reduces the heat difi'usion equation to an ordinary differential equation by

introducing a variable of the form

^ = i/(a^)1/2 (1. 1)

In the case of one-dimensional problems with isothermal boundary condi-

tions, an exact closed form solution can be obtained for the melting of a semi-

infinite domain as shown in Fig. 1. 1.

The governing equations can he stated as

^ , " " , ^9i^l-^. yTL
^i+(l-^/^)^-^:-="i-Qt '9t 9x 8x2

(1. 2)
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Melt
.w

Figure 1. 1: One-dimensional Stefan problem

9T,
9t

= cr,
Q2T,
Qx2 (1. 3)

. Q6
psh^=

9Ti ,^ 9T,
Kl^X~K3^X x=S

(1. 4)

Equation (1. 4) is also known as the Stefan condition.

Introducing a scale factor, 6-^/ai = 2^ , where /^ is a constant to be de-

termined and the similarity transform T]I = x/8 + ps l Pl - 1 and ris = xl8, the

governing equations (1. 2)-(1. 4) reduce to a coupled system of ordinary differential

equations

^+2<=0 (1. 5)



Chapter 1. INTRODUCTION

d20,
d^

+ 2fz2r,^ = 0
7»

(1. 6)

^=_s, 4^-f^1
_dr]i " ~dr]^

(1. 7)

where

9i=^~T^ ^=^-^ Pf=Pslpi ks =^/k
'. w- -If J-} - -1-i

Ste=c'^-T') A=J/-^ X=a, /a. c= ,. -1
'. w - -if

Eq. (1. 5), (1. 6) and (1. 7) may be solved independently to obtain [4]

Ql= erf (fip*) - erf(^rji)
erf (fip") - erf (^e)

(1. 8)

e,= er/c(^A1/2^)
er/c(^AV2)

(1. 9)

Ste{ e-^2"2 k^\^e-^
^ = ^ 1 erf ̂ p') - erf (^e) ~ erfc^X1/2} (1. 10)

For given values of Ste, A, A, p* and ^*, p, can be determined, and the

temperature distribution then becomes known. The interface position is given by

6{t) == 2^(a^)1/2 (1. 11)



Chapter 1. INTRODUCTION 6

The above result indicates that the melt thickness 8{t) grows like Al/2, which is

a characteristic of one-dimensional conduction-dominated phase-change problems

driven by isothermal boundary conditions.

An analytical solution for the one-dimensional freezing/melting of a satu-

rated liquid in a semi-infinite geometry subjected to a constant heat flux was

found by El-Gernk and Cronenberg[5]. The temperature distribution can be ex-

pressed as

T, (x, t)=Tf+2^^Tt
's

ierfc - ierfc
x

2^a^
(1. 12)

while the thickness of the melt can be obtained from the formula

d8 9c _^( 6
~dt='^LerJC[27^t, (1. 13)

A general description of exact solutions for conduction dominated phase-

change problem is presented in Table I.

Very few additional Stefan problems are known to have exact closed form

solutions. The only known exact solutions obtained by similarity transformation

are those for an unbounded domain, such as a semi-infinite slab [6] and some

symmetric geometries, e. g. cylindrical and spherical systems [2], [3], [8] with

constant thermal physical properties.

1. 1. 2 Power Series Expansions

For some boundary conditions, the similarity transformation is not useful. Power

series expansions provide an alternative approach. Evans et al. [9] was probably
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Table 1. 1: Exact solutions for the conduction-dominated phase-change problem

<}
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the first to use power series expansions to deal with phase-change problems. They

assumed a power series in time for the position of the phase-change front, 6{t),

and double power series in time and space for the temperature distribution in the

melt layer, that is

00
v^

0 = ^J a^xlt3
«,J=0

S = i;c.f
i=0

(1. 14)

(1. 15)

These series can be substituted into Eq. (1. 2)-(1. 4) and the unknown coeffi-

cientscan be determined. Evans et al [9] presented a series solution for melting

with a variable flux. Tao [10], [ll], [12], [13] obtained solutions for one-dimensional

Stefan problems with an arbitrary initial condition and a convection boundary

condition, by using three different types of polynomials of complementary error

functions.

For a semi-infinite domain with constant heat flux or convection, the solutions

for the position of the solid-liquid interface can be written as [4]

S(t)/{att/l) = Ste + 0(Ste2t/{l2 ai)) (1. 16)

From the previous results, one can see that the fundamental difference be-

tween one-dimension Stefan problems with isothermal boundary conditions and

those with heat flux or convection boundary conditions lies in the growth rate of

the melt thickness. For the isothermal boundary condition, the melt thickness

increases as <1/2, while for heat flux or convection boundary condition, it increases

linearly with time.
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Power series expansions can be of great use in the determination of short

time solutions to the Stefan problem and can give very accurate solutions near the

singularity. But for a large time scale, more terms are required, which entail very

tedious mathematical manipulations, and the power series method then looses its

attractiveness.

1. 1. 3 IntegrodlfFerential Equations

The integrodifFerential method reduces the Stefan problem to a system of inte-

grodifFerential equations. Mathematically, this method can also be regarded as

a superposition method, in which the phase-change process may be divided into

two distinct problems:

(a) The pure heat conduction without phase change;

(b) The moving source of heat at the interface, which replaces the latent heat

generated by the phase change.

The superposition method is stated mathematically as

T(x, y, t)=P{x, y, t)+Q(x, y, t) (1. 17)

where P{x, y^t) is the solution to the conduction problem without phase-

change and Q(x, y, t) is the solution to the "moving source problem".

By choosing an appropriate Green's function, which must satisfy the con-

duction equation with the Neumann boundary condition, P(x, y, t) and Q(x, y, t)

are governed by coupled integrodifFerential equations.
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The Stefan problem can also be solved by Fourier and Laplace transforma-

tions. Over infinite intervals, Fourier transformation may reduce the Stefan prob-

lem to an initial-value problem. For finite intervals, the Laplace transformation

leads to a boundary-value problem.

These transformations all lead to integrodifFerential equations. The resulting

integrals have to be evaluated by a numerical method.

1. 1.4 Perturbation Method

Before presenting the perturbation method, two concepts, "quasi-steady and

"quasi-stationary" approximations, are worth discussing, as they are widely used

in the analysis of phase-change problems.

In the quasi-steady approximation, the unsteady term in the conduction

equation is neglected [1]. The unsteady behavior appears only in the Stefan

condition. The gradient at the interface is determined by solving the steady state

diffusion equation with the stationary interface. The solutions by Bankoff [3]

and Rosner [14] were obtained using this approximation. In general, quasi-steady

solutions are not capable of satisfying initial conditions.

In the quasi-stationary approximation, the unsteady term is retained in the

conduction equation, which is solved by assuming the interface is stationary [15].

The quasi-stationary solution is capable of satisfying an initial temperature distri-

bution. However, the solution is not valid for all times if the temperature ahead

of the advancing interface is not uniform and is changing due to the interface

motion.

In order to discuss these approaches, consider a general heat flow within the
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solid phase governed by the unsteady, one-dimensional heat conduction equation.

For constant thermal properties, the governing equations are [16]

yL-^9-(^QT^
9t ~ Rn9R V 9R.

(1. 18)

with n = 0, 1, 2 for plane, cylindrical and spherical geometries, respectively. An

energy balance equation at the solid-liquid interface yields

dR
dt

k 9T
pLQR R=RI

(1. 19)

To simplify the description, let the boundary condition be isothermal, and

introduce the dimensionless physical parameter e = Ste^ and the dimenslonless

variables r, r, r/, 0 for the appropriately scaled space, time, interface position, and

temperature, respectively. Then, the governing equations can be expressed in the

following dimensionless form

99 1 Q (_^
9r rn Qr \ 9r

0(r, r = rf) = 1

^, r=l)=0

90\
(7 =

QJ

(1. 20)

(1. 21)

(1. 22)

(1. 23)

where a is the speed of the melting front, i. e.

(7 =
drj
dr (1. 24)
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Using regular perturbation methods, the asymptotic expansion of 6 about

e-^0, yields the following perturbation series

^(r, r/;6) = S6'/20;(r, r/)
t'=0

<r(r;6) = E£t72(T. (r/)
«=0

(1. 25)

(1. 26)

Substituting Eqs. (1. 25)-(1. 26) into Eqs. (1. 20)-(1. 23) and equating coeffi-

cients of equal powers of 6 yields

LI (^Q6i
rnQr\' 9r

0 for i=0

s., -,^ /- ,^
(1. 27)

0, (r/, r=ry) =

^. (r/, r=l) = 0

1 for i = 0

0 for i ̂  1

(7. =
QO,
QT =r/

(1. 28)

(1. 29)

(1. 30)

The linear system ofequations(1. 27)-(1. 30) has been solved by Jiji and Wein-

baum [17] for the zero-order, the first-order and the second-order terms.

The asymptotic expansions (1. 25)-(1. 26) are the outer expansions. The pro-

cedure above is equivalent to a quasi-steady approximation, which, however, is

only valid for the long-time scale. The outer expansion is singular as r -» 0.
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Inner expansions based upon the short-time scale are

^^/;£) = Eet72^, r/)
i=0

00

a(r;e) = E£t72<7.<r/)

(1. 31)

(1. 32)
t'=0

A similar procedure can be performed to find the inner solutions, which is

equivalent to the quasi-stationary approximation and valid only in the short-time

scale.

It is possible to construct a series solution in the perturbation parame-

ter e which is uniformly valid for all times by using the matched asymptotic

expansion method [17 . Most perturbation solutions published in the litera-

ture [15], [16] [18], [19] are up to the second order. For higher order terms, the

perturbation method becomes increasingly difficult, if not intractable.

1. 1. 5 Coordinate Transformation

One of the main difficulties in dealing with phase-change problems is that both

the liquid and solid regions vary with time and their interface is not know a pn-

ori. Coordinate transformations allow the moving-boundary problem to be trans-

formed into a fixed-boundary problem. There are a number of ways of performing

this transformation. For the one-dimensional conduction-dominated phase-change

problem, the transformation consists simply of a coordinate stretching

A general form of stretching of the spatial coordinate may be written as
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x-R
r) = S(t) -'R + A (1. 33)

where S(t) is the interface position, R a reference boundary, and A the dis-

tance over which the coordinate origin is to be translated. Either -R or A can be

a constant or function of time.

By using 77 instead of x in the governing equations, the moving-boundary

problem becomes a "fixed" boundary problem. While the coordinate transforma-

tion does not solve the phase-change problem, by itself, it does make the moving

boundary problem more tractable. After the transformation, the boundaries be-

come "fixed" and many procedures, exact or approximate, may be used to obtain

the solutions.

In fact, the transformation (1. 33) is not exclusive. Many alternatives exist.

With A = 0, the transformation is the well-known the Landau transformation [20].

In recent years, the coordinate transformation method became very popular not

only in conduction dominate phase-change problems but also in convection dom-

inated phase-change problems [21], [22], [23], [24]. This transformation method

can be extended from one-dimension to two-dimension, and will be discussed in

Chapter 3.

1. 1.6 Other Methods

There are a number of additional methods for phase-change problems. The en-

thalpy method is often used in solving both conduction dominated and convection

dominated problems [25], [26] and [27]. The complex variable method can also

"transfer" a moving boundary problem into a "fixed" problem by conformal map-
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ping [28], [29]. For certain classes of problems, the isotherm migration method [30],

as well as the boundary element or boundary integral methods [31], [32], etc., can

, be of interest.

1. 2 CONVECTION-DOMINATED PHASE-CHANGE PROBLEMS

Oddly enough, the importance of natural convection in the phase-change process

has been recognized only in recent years. The first theoretical results concerned

with natural convection were presented by Tien and Yen [33]. They studied a

melting problem with heating from below. The numerical solutions showed that

convection significantly enhanced the melting rate. They also found that the

critical Rayleigh number for the onset of natural convection in the melt layer is

1720. Boger and Westwater [34] investigated the same the problem experimentally.

The agreement between the experimental and numerical results [33] was fairly

good. By studying large Rayleigh number flows, they also found that natural

convection can significantly enhance melting or retard freezing.

Another early work on natural convection effects was done by Hale and

Viskanta [35]. Both experimental and analytical results were presented for melting

with heating from below and for freezing with cooling from above. By assuming

one-dimensional heat transfer and considering natural convection effects by plac-

ing a convection term into the Stefan condition, they found that natural convection

is of great importance. The melting rate was found to increase almost linearly

with time.

All the above investigations have shown that the results obtained for con-

duction dominated phase-change problems are not valid in the presence of natural
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convection.

Literature on natural convection effects in phase-change problem is gener-

ally focused on three geometries: the rectangular cavity, horizontal and vertical

cylinders.

1.2. 1 Phase-Change in Rectangular Geometries

An experimental investigation of melting within a rectangular enclosure was per-

formed by Hale and Viskanta [36]. They presented the photographs of the melting

front and heat transfer rate, showing that conduction plays an important role only

at early times, and natural convection dominates thereafter. As a consequence,

the melting progresses near the top of the heated wall faster than near the bottom.

They found that the temperature at a small distance from the heated wall rises

rapidly from an initial temperature close to the melting point and then reaches

a maximum, followed by a slow decrease and then approaches a steady value in

contrast with the pure conduction model, which predicts a monotonic increase

of temperature with time. The results show that the heat transfer coefficient in-

creases along the heated plate. The highest is at the top of the test cell where the

natural convection is the strongest. The variation of the heat transfer coefficient

with time shows that a minimum exists due to the natural convection in the melt

region.

Okada [37] studied experimentally and numerically a melting in a vertical

cavity with adiabatic upper and lower surfaces. He used the coordinate transfor-

mation technique to immobilize the solid-liquid interface and made a quasi-steady

assumption in the simulation. The numerical solution shows a good agreement

with the experimental data. He found that after the early stage natural convec-
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tion dominates in the melt region. As the melting progresses, the average Nusselt

number on the vertical wall varies linearly with the dimensionless time. He there-

fore concluded that the thermal energy stored as latent heat varies about linearly

with dimensionless time. A simple relationship between thermal energy storage

and Rayleigh number was proposed. He studied the eiFect of Prandtl number in

the melting process and found that the melting rate is unaffected by Pr as long

as Pr > 7.

Gadgil and Gobin [38] analysed melting in a rectangular enclosure by a nu-

merical method. They decoupled the calculation of the melting front motion and

the calculation of the natural convective flow in the melt region by dividing the

process in a number quasi-static steps. To start the computation, they assumed

a quasi-static step melt representing 5% in volume of the phase-change material.

The predicted melting front were compared with the experimental data [35]. The

predicted speed of propagation of the melting front is 37% larger than that ob-

served experimentally. The agreement is quite good when based on the fraction

of the melt rather than on the time elapsed. Two kinds of boundary conditions

from full slip to no-slip on the top of the rectangle were simulated. No significant

difference of the melting propagation was found, though the horizontal velocity

profile near the top does change as expected. The variation of heat transfer rate

with the time elapsed shows that at the beginning the Nusselt number rapidly

decreases. As convection becomes fully developed, the Nusselt number increases

slightly. The molten fraction varies linearly with time.

Webb and Viskanta [40] studied the melting process of gallium. They em-

ployed algebraic stretching functions to map the irregular domain into a non-

orthogonal curvilinear grid. The numerical solutions were compared with their

experimental data. The theoretical solutions overpredicted the experimental re-
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suits. They explained the discrepancy by noting that for highly conductive ma-

terials, heat conduction in the solid cannot be neglected; and by pointing out

that the experiment had not clearly controlled the steady-state temperature. The

molten fraction was again almost linear with time after the conduction dominated

regime.

Solidification within a rectangular enclosure with convection and radiation

boundary conditions at the surface of the mold and at the top of the enclosure

was analyzed by Ramachandran et al [41]. Equations governing the temperature

and velocity fields in the melt and the temperature fields in the solid and in the

mold were established. The Landau transformation was employed. The effect of

radiation and convection at the surface was examined by determining the interface

movement for different radiation constants and Biot numbers. They found that

the heat transferred at the interface and the interface shape differ markedly from

the solution obtained by neglecting natural convection. They also studied the

effects on solidification of Rayleigh number, Prandtl number, Stefan number and

superheat [42]. Their results show that the low Rayleigh numbers {Ra = 5 x 102)

can significantly influence the solidification. The Prandtl number influences the

interface movement only up to Pr = 10. After this point, an asymptotic solution

is reached.

Benard et al [43] investigated melting in a rectangular enclosure, driven by

the coupling of heat conduction in the solid phase and natural convection in the

melt. Both numerical and experimental studies were performed. The test cell was

heated from one side and cooled from the other. The results showed that heat

conduction in the solid phase significantly modified the kinetics of the melting

process compared with the case of phase change with an isothermal solid phase,

since the heat extraction from the cold wall greatly influences the evolution of the
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interface shape and position. As the melt thickness becomes larger, temperature

gradients in the melt decrease while temperature gradients in the solid phase

increase with time, as the thickness of the solid decreases. Finally, a balance

of temperature gradients in the solid and in the melt is established. Therefore,

the interface reaches a stationary position and the heat transfer rate becomes

constant.

1. 2. 2 Summary

Studies in melting of rectangular geometries taking into account the natural con-

vection have shown that:

1. Convection significantly increases the melting velocity and heat transfer rate.

2. The heat transfer rate evolves with time as follow: at the beginning of the

melting, the heat transfer rate decreases sharply in conduction-dominated

regime. As the melt region becomes thicker, natural convection begins to in-

crease the heat transfer rate. When the melt region becomes large enough to

allow boundary layers to develop, the heat transfer rate decreases gradually.

3. The molten fraction varies linearly with time except at the very beginning

of the melting, that is when conduction dominates.

4. For materials with a high thermal conductivity, the heat conduction in the

solid phase may not be neglected. In other words, the saturated temperature

assumption may not be valid for the high thermal conductivity materials in

the phase-change problem.
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5. There exists a limit on the Prandtl number beyond which it does not have

any influence on the melting process.

1. 2. 3 Phase-Change around/in Horizontal Cylinders

Bathelt et al [44] investigated melting around an electrically heated horizontal

cylinder embedded in paraffin. The photographs showed that at early times, heat

transfer in the melt region is dominated by conduction, the molten region is sym-

metrical about the axis of the cylinder. At the same time a plume start to develop

at the top of the cylinder where the local heat transfer rate reaches a maximum.

Below the cylinder, the local heat transfer rate is minimum. The average Nusselt

number decreases with time when heat transfer is done by conduction; at large

times the Nusselt number reaches a constant value even though the liquid-solid

interface continues to move as melting progresses. This behavior is characteristic

of natural convection heat transfer.

By using a coordinate transformation to immobilize the moving boundary,

Prusa and Yao studied melting around a horizontal cylinder with an isothermal

boundary [45] and a constant heat flux boundary condition [46]. Using both

numerical and perturbation methods, they determined that the melting process

could be divided into three stages:

1. Conduction stage: at early time of the melting, heat transfer is dominated

by conduction. The melt region appears annular, and all characteristics of

the melting process are dominated by Stefan number.

2. Transition stage: as time advances, natural convection becomes more im-

portant, and the effects of conduction and convection are comparable.
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3. Convection stage: natural convection is the dominant mode of heat trans-

fer. Although natural convection dominates conduction, the average heat

transfer does not increase as natural convection develops.

A numerical solution for melting around a horizontal heated cylinder was

also obtained by Rieger et al [47]. They employed a stream function-vorticity

formulation to model the fluid flow in the melt. The resulting governing equations

were transformed onto a rectangular domain by using the method of body-fitted

coordinates. Thus, the computations of the moving boundary problem could be

performed on a fixed domain. They found that the natural coordinates tend

to cluster in certain areas. To overcome this difficulty, they employed implicit

rezoning procedure to generate more uniform coordinates at each time step. The

numerical solutions show that the melting front has a pear-like profile. Besides

the three stages mentioned by Prusa and Yao [45], they pointed out the existence

of a flow regime in which heat transfer is governed mainly by boundary layers.

The melting process inside a horizontal cylinder was studied by Rieger et

al [48]. Both experimental and numerical melting profiles were presented. The

melt contours reveal that heat transfer is greatly enhanced due to natural con-

vection in the upper part of the annulus where the propagation of the melt is

accelerated. The inverse effect occurs in the lower part of the melt region. The

cold fluid flowing down along the solid-liquid interface inhibits heat transport.

These counteracting transport mechanisms lead to an almost total stop of the

melting process at the bottom. The variations of Nusselt number are qualita-

lively the same as for the melt process around a cylinder except for high Rayleigh

numbers. For a Rayleigh number Ra = 106, the Nusselt number first decreases,

to reach a minimum as before, and then increases. After reaching a maximum,
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it decreases again. They found that for Rayleigh numbers Ra ̂  106, secondary

vortices occur at the bottom, where three dimensional unsteady rolls induced by

thermal instability developed. In this region, Benard convection was observed.

Ho and Viskanta [49] also studied melting inside a horizontal cylinder using ex-

perimental and numerical methods. They also observed the secondary vortices in

the bottom of the melt region for high Rayleigh numbers.

Ho and Chen [50] studied outward melting of ice around a isothermal hor-

izontal cylinder, taking into account the effect of the density inversion of water.

The governing equations were modeled by the stream function-vorticity formu-

lation. The numerical solutions were obtained by finite difference method with

grid transformation. Due to the density anomaly of water, the melting process

is more complex than that of a normal phase change material. When the heated

boundary temperature Ty, = 4°Cf, the water near the cylinder is of higher density

than that near the ice interface, thus the water near the surface of the cylinder

moves downward while the water near the ice interface moves upward, in contrast

to the behavior of a normal fluid. As consequence, the melting profiles has an

upright pear-like shape i. e. in opposition to the case of a normal fluid. For the

surface temperature Tu, = 8°C>, the densities of water at the cylinder surface and

at the ice interface are approximately the same. The maximum density line of

water is located somewhere in the melt, resulting in two counter-rotating flows

in the melt region. As a result, the melting process is retarded. For the surface

temperature T^ = 10°C1, the melting profile has a pear-like shape as in the case

of a normal fluid and exhibits the counter-circulation in the melt region. The

average heat transfer coefficient reaches a maximum value when the surface tem-

perature T^ = 4°C>, and a minimum value around Tu, = 9°C1, instead of Ty, = 8°C>

as postulated by Herrmann et al [51].
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1.2.4 Summary

Studies of the phase-change process around/in a horizontal cylinder show that

natural convection can play an important role in the following aspects:

1. There exists a counteracting heat transfer mechanism which leads to an

almost total stop of the melting process at the bottom for the normal fluid.

As a consequence, the melting profiles appear pear-like shaped.

2. Density inversion could significantly influence the melting profiles. Depend-

ing on the boundary temperature, the melting profiles may appear in pear-

like shape or upside down pear-like shape.

3. There exists a minimum heat transfer rate for density inversion phase-change

materials.

4. For very high Rayleigh numbers, three-dimensional convection may occur

at the bottom of horizontal cylinders.

1. 2. 5 Phase-Change around/in Vertical Cylinders

Sparrow et al [52] studied numerically the melting around a vertical cylinder em-

bedded in the phase-change material. To deal with the irregularity of the melting

domain, they employed the Landau transformation. Based on the assumption

that the interface radius varies slowly with height, they dropped all the terms in-

volving the first order and the second order derivatives of the radius with respect

to the height. As a matter of fact, this assumption is invalid for high Rayleigh

number as the slope of the melting profiles at the top of the melt region is not

negligible. The discrepancy has been discussed in [53].
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Sparrow et al considered moderate Rayleigh numbers from 7 x 104 to 7 x 106.

The characteristics of heat transfer are similar to those in rectangular geometries.

Again, it was found that the Prandtl number does not influence the melting rate

when Pr > 7.

The experimental studies on the melting process in a vertical cylindrical

enclosure have been carried out by Bareiss and Beer [54], [55]. Several kinds of

phase-change materials were used in the experiments. They proposed a correlation

for heat transfer rate as Nu^ = f{Ra^, Fo, Ste, z/H).

Kemink and Sparrow 56] studied melting about a vertical cylinder with or

without subcooling and for open or closed cavities. The results showed that the

heat transfer coefficients are not affected by whether the upper surface of the

cylinder is closed by a cover which imposes a no-slip velocity boundary condition

or is bounded by an insulated air space which imposes a full slip velocity boundary

condition. This result was found applicable to both melting of a subcooled or a

non-subcooled phase-change materials. In the case of subcooling, they found

that subcooling tends to delay the onset of the convection-dominated regime and

the heat transfer coefficients in the presence of subcooling are 10% - 15% lower

than those for the non-subcooled case. For sufficiently large times, after the

onset of convection, the heat transfer coefficients were found to become time-

independent. The correlation between the Nusselt number and Rayleigh number

was established. They also found that the functional dependence of the steady-

state Nusselt numbers in the absence of subcooling agrees well with the literature

for natural convection in vertical parallel-walled enclosures without melting.

The experimental studies mentioned above were obtained at very large Rayleigh

numbers, typically in the range of 108 - 101 . In many applications, however,
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moderate Rayleigh numbers are quite important. Unfortunately, less attention

has been paid to these studies.

As the literature review reveals, the problems of phase-change in rectangu-

lar and horizontal cylinder geometries have received considerable attention. For

melting in vertical cylinder however, only a few studies have been performed, in

which the many features that make the problem interesting have been neglected,

for example, melting by heating from the bottom of the cylinder, the effect of

density inversion in the melting process, and melting of subcooled materials. Also

the intermediate range of Rayleigh numbers still needs further investigation.

1.3 SCOPE OF THESIS

This thesis is devoted to the numerical simulation of the melting process in a

vertical cylindrical enclosure. One of the motivations for this research lies in

the belief that a fundamental comprehensive study of phase-change process will

eventually lead to better engineering design and industrial production.

In order to facilitate the reading of the rest of this thesis, we present here a

brief description of the contents of the following chapters.

In Chapter 2, the general mathematical modelling of the phase-change prob-

lem is formulated. Chapter 3 describes the coordinate transformation used for

the subsequent numerical solutions. Chapter 4 treats the problem of melting of a

laterally heated cylinder, with adiabatic conditions at the top and bottom. Both

outward and inward melting are studied. Melting by heating from the bottom of

a vertical cylinder is the subject of Chapter 5. In Chapter 6 we study the melting

within a cylinder subject to a constant temperature at all boundaries. Chapter 7



Chapter 1. INTRODUCTION 26

is devoted to the problem of melting in the presence of a density inversion. The

conclusion and recommendation for the further research are presented in Chapter

8.



Chapter 2

MATHEMATICAL MODELLING OF PHASE

CHANGE PROBLEMS

This chapter is devoted to the mathematical modelling of the phase-change prob-

lem, including fluid flow and heat transfer in the liquid region and conduction in

the solid to be melted. Several formulations will be presented for phase-change

problems in Cartesian coordinates, in curvilinear coordinates and in cylindrical

coordinates.

Basically, the mathematical description consists of a set of partial differential

equations, i. e. the equation of conservation of mass, momentum and energy, and

the interface energy equation. The most common formulation of these equations

is written in the Cartesian coordinates.

In phase-change problems, we have to deal with moving boundaries as well as

with irregular domains for both liquid and solid domains. The Cartesian formula-

tlon is therefore unsuitable and more general formulations are required. These for-

mutations can be derived from their Cartesian counterpart. To solve the equations

by the finite difference method, a curvilinear grid system has to be established,

which is the subject of the next chapter.

In curvilinear coordinates, the most common system is the cylindrical coordi-

nates. As we are concerned with the phase-change problem in a vertical cylindrical
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enclosure, a general formulation describing the phase-change process in the cylin-

drical coordinates will be presented and thereafter, the governing equations for

our study will be cast.

2. 1 GENERAL FORMULATION FOR PHASE-CHANGE PROBLEMS

The meltlng/freezing processes are usiially considered in two separate regions: (a)

The melt liquid region, where the fluid flow and heat transfer are coupled, (b)

The solid region to be melted, where the mechanism of heat transfer is just heat

conduction. The interaction between the two regions is described by an interface

equation.

For compactness of the following development, we define primitive variables

as a vector

q= [u, u, w, p, r. ]J (2. 1)

Where u, v and w are velocities components in x, y and z directions respec-

tively; p is the pressure, and T, is the temperature. The subscript i denotes the

temperature in the liquid or solid, depending on whether i= I or s. With these

notations, a general mathematical model in both the liquid and solid regions can

be expressed in the Cartesian coordinates as

3U(q) ̂  3A(q) ̂  3B(q) ̂  9C(q) _ 3D(q) ̂  3E(q) ̂  3F(q) ̂  ^ ^ ^
~W~ 'r ~^x~ ~r ~^y~ ~r ~9T ~ 9x ^ 9y " 9z ' ^ v"^

where U(q), A(q), B(q), C(q), D(q), E(q), F(q) and G are five-component



Chapter 2. MATH MODELLING OF PHASE CHANGE PROBLEMS 29

vectors:

u=

p

pu

pv

pw

pc, T,

A=

pu

p+pu2

puv

puw

pCpuTi

B=

pv

puv

P+ pv2

pvw

pCpvT,

c=

pw

puw

pvw

p+ pw2

pCpwTi

D=

2/x
8u
9x

^9x + ^)

^^'
. QT,

ki:^~

E=

0

"'^li'
2^

9v

9y
9w 9v

/z(^+^)
ki

9T,

Qy

F=

0

^^>
^^'

Qw .
2^^~

fz

9T,
ki:^~

lz

G=

0

P9x

P9y

P9z

0

where the first component is the continuity equation; the second, third and fourth

components are the momentum equations in x, y and z direction respectively; the

last one is the energy equation in the liquid or solid region, depending on the

subscript i= I OT s.

The interface equation can be developed by considering the local interface

energy balance

,. ^71_^. ^7±^.
phv=~{kl^~k3 ^}'n (2. 3)

where v is the local velocity of the moving interface pointing in the solid phase,

n is a normal vector to the interface, and h is the latent heat.
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Equations (2. 2), (2. 3) and the appropriate boundary conditions constitute

the complete mathematical description of the problem under consideration.

;

2.2 GENERAL FORMULATION IN CURVILINEAR COORDINATES

In the analysis of phase-change problem, the main difficulty is due to the moving

boundary and irregular domain. Since once the melting/freezing begins, the ge-

ometry of the domain becomes unknown. In the past, conduction was considered

as the sole mechanism in the melting/freezing process, the melting/freezing front

could be uniform along the boundary. In presence of natural convection, however,

the interface motion is nonuniform, depending on the strength of the convection;

the stronger the natural convection, the faster the interface moves. Therefore, the

solid-liquid interface could become curved and the corresponding domains become

irregular. As a consequence, the mathematical formulation will be best written

in a curvilinear system.

2. 2. 1 Theory of the Transformation

The general transformation from the physical plane [x^y. z] to the transformed

plane [^, ?7, C] is given by the vector-valued function

(, ^(x, y, z)

T] = r](x, y, z)

C C(^, y, ^)

The inverse function or transformation of (2. 4) is

(2. 4)
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x x(^, ri, ()

y = y(^7?. C)

^, ^,0

(2. 5)

To find the transformation relations, the following equations will be used

and

dx x^ Xr, X,; d^

dy = 

y^ yr, yc drl

dz z^ z^ Z( dC,

(2. 6)

^ ^ ^ ^ dx

drf = T)^ j]y T]^ dy

d( Cr Cy ^ ^

From the above equations one can obtain

(2. 7)

^ ^y ^

rix rjy T]z

Cx C. C.

1

J

yr, yc

zr, ZC

y$ y<

^ ^c

2/S Vn

^ z')

x^ x^

zn z<

^ x^

z^ z^

x^ x^

^ Zr,

Xr, X^

2/7, y<;

x^ x^

y$ yc

X^ Xr,

2/S Vn

(2. 8)

where J is the Jacobian determinant
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J =

X(^ XT, X(^

2/$ Vn V<i

^ Zr, ZG

x^r, z<: + Xr,y^ + x^y^ - x^z^ - Xr,y^ - x^z^

(2. 9)

With the above relations, all the partial derivatives in the Cartesian coordi-

nates can be transformed into any curvilinear system [^, T?, C]- For example

<9(/, y, z)/5(3-, y^)
Jx ~ ^, r?, C)/^^, C)

f, fr, k
1

7 v^ v^i v^

^ Zr, 2C

Vr, t/C

^ ^
h J +A

= ^+^A+C. /c

ys y<

2$ z(
J

+/C

2/S Vn

^ Zr,
J

Other derivatives can be transformed in a similar way to obtain

fx ^ T1x (x /$

y '»</ rly ^y fri

fz ^ r]z ^ /C

The time derivative can be transformed as

(2. 10)

(2. 11)

'9f
9t

x,V,z

9{x, y, z, f) , 9(x, y, z, t)
9^, r]^, t)' 9(^rj^, t)

(2. 12)
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X^ Xr, X^ Xf

1 y$ Vn yc y*

^ Z^ Z^ Zt
^ /. f< ft

1
X^ Xr, X(

ftj y^ Vn yc

^ zr, z^

X^ X^ Xt X^ Xt; Xf X^ X^ Xf

-^7 ^ yc y< -1-A7 y$ yc !/< -^7 ^ ^ y<.J 'J J

Z(. Zf ^ Z^ Zt ^ ^ ^t

'9f
.

9t.
$,»), 

Vr, V<

-Mxt

+fr, {Xt

zn 2C
J

^ yc

2S z<
J

y< y^i

-Vt

-Vt

X^ Xf^

zn 2(
J

^ Xf

2S ^C
J

x^ x^

+zt

+Zt

^ ^n z^ zr,
J 

~yt 
J 

+zt
J

Xr, X^

yr, yc

J

X^ X(^

ys yc
J

X^ Xr,

2/S Vr,
J

(^}
^t]> +^+^+CJ<:

s, i,c

where
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^

»?t

Ct

^ ^y ^ 2;t

^ rly r1z Vt

Co: Cy Cz ^t

(2. 13)

with Xf, yt and Zf being the grid point velocities.

In view of the above transformations, one can find that the time dependent

variables in the Cartesian coordinates can not be just transformed in the time

coordinate (if we use 4-D space). The grid point velocities are associated with

the transformation. For a static grid system, Xf= yi = Zf= 0. Therefore,

^=77(= Ct = 0> the transformation then reduces to

'9f
jt x, y,z

/9f
9t s, ^,c

(2. 14)

To summarize all the relations above, we can write a transformation matrix

as

/( 1 6 rjt Ct fr

/. o ^ ^ c. fi

fy 0 ^ 7?y Cy fn

/, 0 ^ 77, G /c

(2. 15)

2.2. 2 General Formulation in Curvilinear Coordinates

With the transformations developed in the previous section, the general formula

for the phase-change problem in curvilinear coordinates can be recast as
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^^^^^^^, S(f,,, C)
9t 9^ ' Qri' 8(:~ 9^ ' 9ri' 9(:

(2. 16)

where

u/=

p

pu

pv

pw

pc,T,

pU

puU + ̂ p

A/= pvU+^p B/=

pwU + ^p

pc^UT,

pV

puV -\- rj^p

PVV + T]yP C

pwV + T]zp

pc, VT,

pW

puW + ^p

PVW + (yP

pwW + ^p

pc^WT,

D/=

0

9u . n3u . i-, 3u
, (,u^+,u^+,^)

9v . n9v , ^9v
^f(+9'^+9"^

9w . ,, 3w . i^3w
^"i+'I2^+^^'
^n^+512^+^3QT,

^
. +913^

9ri ' " 9C,'

E/=

9u 9u , 5u,
^(521^+^22^+523^)

^ 9r] 9C/
9v . ^9v , ^9v

^"f(+^+s1^
^(9 21, 9w

^
9T,

.
22 9'w

+9"'-^-+9"'-^
^

23^
5C

22 "-1' i _23^'J-<
.
21 "-L* i _22"-t' , _23"-^«^21^+, 22^+. 23^)
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F/=

0

Qu . w9u , m9u.
^f(+^+^

9v . wQv , ^9v
^3'^+^+s^

9w . i, 5w . .i.i5w
, (,a^+,32^+,33^)

Mt^3^-33t)
where U, V and V are contravariant velocities defined by

U = p^+U^+V^y+W^)

V = p(rjt + UT]^ + vrjy + WT]^)

w = ^(Ct+^+<, +<J

(2. 16)

(2. 17)

(2. 18)

The contravariant scale factors are

.
11

.
22

= ^+Cy+^.

9" =

.
33

912 =

913 =
923 =

  
+ ri2y + ^

c.2+c,2+cl

ff21 = ^x + ^7?y + ^r],

g3'=U^Uy+U.

^32 = ^C-r + ^Cy + ̂ G

(2. 19)

(2. 20)

(2. 21)

(2. 22)

(2. 23)

(2. 24)

The interface equation in the curvilinear coordinates becomes
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Qx
9t

9y
9t
9z
^

e e ^

=^ ^ ^ c,y 'ly '>y

^ ril C

9T,
~9{
OT,
Qr,
9T,
5C

>x 11x L>x

-*. ('. rf. (; ^ (2-25)

^ ^ CI

9Ti
^
9Ti
QT]
9Ti
9C

where the superscripts s and / denote the scale factors in the solid and liquid

domains respectively

2. 3 GENERAL FORMULATION IN CYLINDRICAL COORDINATES

The most commonly used curvilinear coordinate system is the cylindrical system

with

^=r, 77=^, (=z

and

x = r cos 0, y = r sin ̂ , z = z

We redefine the vector q = [ur, ue, u,, p, T, ]r, the governing equation (2. 15)

then becomes

9V 9A 9B . 9C
~^+^ + ~Q0 ^ ~9^

9D^l9Dl^L9E^9F^^ ^'
-97+7'^+^+i+G (2-26)

where
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u=

pr

prur

prug

pru^

pCprTi

A=

prur

r(p + pu2,)

prUrUs

pruru^

pCpVUrTi

B=

ftUff

prUrUg

p+puj

prusu^

pCprueTi

c=

pru^

prUrUz

prugu^

r(p+pu2,)

pCpru^Ti

D=

0

-1 a,
^rfr (rur}

.

1 9
^tr {ru9}

0

D/=

p.r

0

0

0

9u,
9r

_9T,
b'r^-

1r

0

^(-^--2^)

^8W+^
^

9u,
90

k9-^
Ki~90

^

F= ^

^

0

9u,
Qz

9ue
~Qz
9u,
Qz

9T,
k'^

u^
P(9r + ^)

UrUff,
p{ge - -1)

P9z

0

where Ur, ug and u^ denote the velocity components in the radial, angular and

axial directions respectively.

We write these forms of equations only for compactness rather than following

strictly the conservative law as in [57].
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2. 4 GOVERNING EQUATIONS IN AXISYMMETRIC CYLINDRICAL

COORDINATES

For phase-change in a vertical cylindrical enclosure, we assume the system is

axisymmetric. Consequently, u@ = 0 and all derivatives with respect to 0 are zero.

The governing equations (2. 26) then reduce to

9V 9A 9C
~9T+Jir+^

9D lc>D/ . 9F
^-+^-^-+^-+G

r Or
(2. 27)

where

u=

pr

prur

pru^

pc, rT,

A=

prur

r(p + pu2.}

pru^Uz

pc?rUrTi

c=

pru^

pruru^

r(P + Puz)

pCpru^Ti

D=

0

.

15_,
^rtr (ruT)

0

0

D'-
fJ,r

0

0

Qu^

^r.
^r~^~

F=

^

^'

0

QUr

9z
9u,
9z

9T,
kt^

G=

0

0

P9z

0

where we assume that there is no centrifugal force in the cylinder.
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2. 5 BOUNDARY CONDITIONS

The above governing equations must be completed by the appropriate bound-

ary conditions. In other words, a phase-change problem is not defined until the

boundary conditions have been properly specified. We shall consider boundary

conditions which occur in most problems of practical interest.

2. 5. 1 Hydrodynamic Boundary Conditions

There are two kinds of boundary conditions for fluid flows, namely a solid wall

and a free surface. For a solid wall, the no-slip boundary condition is appropriate

as a fluid particle does not move at a solid boundary. Mathematically we can set

all the velocity components at the solid wall equal to zero.

For a free surface, fluid may flow along with the surface. In this case, a full-

slip boundary condition can be imposed where velocities normal to the boundary

and the gradients of velocity components tangent to the boundary can be set

to zero. Instead of the Dirichlet condition for the no-slip boundary, the full-slip

boundary condition implies both the Dirichlet and the Neumann type conditions.

2. 5. 2 Thermal Boundary Conditions

The most common thermal boundary condition at the heated wall is that of con-

stant temperature. Physical meaning is that a phase-change process begins when

a temperature, which is higher than the fusion temperature for melting, or lower

than the freezing point for freezing, is imposed on the solid wall and remains

constant throughout the process.
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Another common thermal boundary condition is that of constant heat flux.

In this instance, we do not know, or it is not necessary to know, the temperature

of the boundary. Instead we know the imposed heat flux. A complete discussion

on boundary conditions can be found in the book by Shah and London [58].



Chapter 3

COORDINATE TRANSFORMATION

The accuracy of the numerical solutions depends essentially on the grid system.

The most convenient grid network is conaposed of rectangles. The application

of this method is however limited to rectangular domains. To treat an irregular

domain, interpolations have to be devised to overcome the difficulties encountered

at the boundaries. In most partial differential systems, the boundary conditions

have a dominant influence on the accuracy of the solution. When the interpo-

lations between grid points do not fall on the boundaries, the inaccuracy of the

interpolation may significantly affect the behavior of the solution, especially for a

system with large gradients in the vicinity of the boundaries.

The best finite difference representation should be chosen such that the finite

difference expression at, and close to the boundary only involves grid points on

the intersections of coordinate lines i. e. without the need of any interpolation

between grid points. In view of this, the transformation of an arbitrarily shaped

domain to a new space where the boundaries coincide with a coordinate line has

been brought out. Among all possible choices for the new space, a rectangular

domain is the most convenient for the application of the classic finite difference

technique. The solution procedure for a partial differential system is to transform

all the spatial derivatives from the Cartesian or cylindrical coordinates to the new

curvilinear coordinates. The transformed equations will be of the same type as the
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original ones 59] except for the appearance of additional terms called scale factors.

The boundary conditions are transformed in a similar way. Once transformed,

the partial derivatives with the new independent variables are discretized as in a

Cartesian space, since the grid system in the new space is rectangular. Therefore,

all the conventional techniques of solving partial differential equations can be

employed on the transformed plan.

3. 1 PRELIMINARY THEORY OF COORDINATE TRANSFORMATION

This section describes a general theory of transformation from a curvilinear co-

ordinate system onto a canonical region R. The region R is usually chosen as

a rectangular region, as mentioned, for convenience of using the finite difference

techniques. As a matter of fact, this choice is quite arbitrary. One can, for ex-

ample, choose a cylindrical region [61, or any two or three-dimensional region for

which a natural coordinate system can be easily defined.

Suppose the curvilinear coordinates are related to the Cartesian coordinates

by the transformation [62]

f =^(a;i, a-2,. , 3-n) (3. 1)

where ̂  is at least twice difFerentiable.

The inverse of this transformation is then given by

Xi=X^, ^, .., F) (3. 2)
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The Laplacian of any set of curvilinear coordinates is given by

v2 ^' = -gjhr,Jk (3. 3)

where the ChristofFel symbol T',, is defined as

^ - l^i(99^k ^ Qgjk _ 9gij.
'ij= 2g {'Qx^^~9xr~^k- (3. 4)

The Cartesian coordinates are required to satisfy the following partial difFer-

ential system in the above Laplacians

^ 92^i 
^ 

_^iv2 ^r
^/^ - ~ ()fr v s9^9^k ~ ^

This equation may also be written as

(3. 5)

Vx, =-^' (3. 6)

with the operator V defined as

^ = .(."^ + »"^ + ^ + 2,"^ + 2,"^ + 2,"^) (3. 7)
where the coefficients gi] are the contravariant components of the metric tensor

which are related to the covariant components by the equation

9^k = ^ (3. 8)
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The covariant components of the metric tensor are given by

gjk =ww

The other contravariant components are

(3. 9)

.
11

9" =

^ =
933 =
912 =

913 =
523 =

9 =

(922933 - gls)/9

(gn933 - gis}lg

{9\\9z-i-g[t)lg

{913923 - 912933)/9

{912923- 913922)/9

{9\29\3 - 9lig'23)/9

911922933 + 25rl25fl3ff23 - 5123^1l - 9l3922 - 5fl25f33

(3. 10)

(3. 11)

(3. 12)

(3. 13)

(3. 14)

(3. 15)

(3. 16)

where g is the determinant of gij.

For a two-dimensional system, the coefficients ^13 = g^ = 0, ^33 = 1 and all

the derivatives with respect to C are zero. Then

9n =

^ =
912 =

9^19

9iil9

-912/9

g = gi\g22 - g\2

(3. 17)

(3. 18)

(3. 19)

(3. 20)
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3. 2 GRID GENERATION

There are several approaches to generating boundary fitted coordinates. The

common ones are the algebraic transformation, the conformal mapping, and the

numerical solution of a set partial differential equation proposed by Thompson et

al [59]. The algebraic procedure is the simplest method and is commonly used

in finite element methods. The drawback is that a lot of manual effort may be

required to generate a smooth grid network, and the grid generated by this method

is difficult to control. The conformal mapping technique is another method for

constructing curvilinear coordinates in a two-dimensional region. Because of this

limitation and its inherently ill-conditioned numerical problem, and the lack of

control of the grid, the conformal mapping is not as attractive as the numerical

solution of a general partial differential system.

So far, the most popular and flexible curvilinear coordinate generation method

is based on an automated numerical generation by the solution of a set of elliptic

quasilinear partial differential equations without the restriction of orthogonality

or conformality.

The simplest elliptic partial differential equation is the Laplace equation

V'^' = 0 (3. 21)

subject to Dirichlet boundary conditions. With this generating system, Eq. (3. 5)

becomes

^=0 (3. 22)
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and Eq. (3. 6) becomes

Vxi=0 (3. 23)

The generating system (3. 21) has a non-vanishing Jacobian for any simply

or doubly connected region transformed to a rectangular plane [63]. In order to

control the spacing of the grid lines, Thompson et al [59] put a source term P'(^)

in the Laplace equation (3. 21) as

V2^' = P'(f) (3. 24)

Therefore, the system (3. 5) becomes

Furthermore,

_" Slx, ^^.
Q^Q^k ~ ' Q^T

(3. 25)

-prl
In the two-dimensional system, the latter system can be written as

(3. 26)

922X^ - Ig^X^r, + 5ll3;W + 9{Px^ + Qa'», ) = 0

5222/^ - 2512^ +gny^ + g{Py^ + Qyr,) = 0

(3. 27)

(3. 28)
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3. 2. 1 Grid Control Functions

From a computational standpoint, we often require the physical grid points to be

distributed as desired along the boundaries. This kind of grid system is especially

important to obtain accurate solution in high gradient regions where the boundary

layers require a locally refined grid.

To control the grid points in the interior region of the computational domain,

Thompson [59] proposed a couple of grid control functions

P^ri) = -T. a.sgn^-^exp(-c^-^) (3. 29)
t=l
m

- E b^s9^ - ^}exp(-d, ^ - ^, )2 + (r/ - T/, )2)
J=l
n

.

<3(^7?) = -^a;55'n(7/-77. )ea;p(-c. |7?-7y. |) (3. 30)
«'=1
m

^ b^sgn(r] - rjj)exp(-dj (^ - ^-)2 + (r/ - 7?j)2)
J=l

where the positive amplitudes and decay functions are not necessarily the same

in the two equations. The first term has the effect of attracting the ̂  = constant

line to the if = if, line in equation (3. 30) and attracting rj = constant lines to the

r] == r/i lines in equation(3. 31). The second term causes ^ = constant line to be

attracted to the points (^, rj) in (3. 30), with similar eflfect on 77 == constant line in

(3. 31).

As a matter of fact, the source terms P and Q are not exclusive. Although

the forms of P and Q in Eqs. (3. 30) and (3. 31) have been used successfully in many

applications [59], the values of the adjustable parameter in this ad hoc approach

require an artful selection and are problem dependent.
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In many cases, it is difficult to control the spacing between grid points and

generate a smooth grid network within the computational domain. Thomas ajid

MiddlecofF [64] found that the influence of the boundary value which we set as a

Dirichlet condition does not penetrate very deeply into the interior of the region.

The interior grid is affected primarily by the generating systems, rather than by

the boundary values. They provided a couple of control functions

^, ^)=^^)(^+a

^^)=^^)(^+^2)

(3. 31)

(3. 32)

where

y?(^7?) = -(^a;a +^^)/^i

^(^^) = -(^a-w + Vr, ynr, )/922

With these control functions, the generating system (3. 5) becomes

(3. 33)

(3. 34)

922{x^ + ya-e) - 2gi2.c^ + ?ii(a-^ + .0a'T, ) = 0

9ti{y^ + yy$) - 2^12^ + 5fii(yw + ^) = °

(3. 35)

(3. 36)

This generating system has shown that the interior grid point distribution

is controlled entirely by a priori selection of the grid point distribution along the

boundaries of the physical domain. This method can also control the local angle

of intersection between a transverse grid line and the boundary. Particularly, the
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grid lines may be constrained to be locally orthogonal to the boundaries which is

especially important for fluid flow and heat transfer problems.

:

3. 2. 2 Transfonnation Relations

In order to perfomn all the computations on the transformed plane (^, 77), the phys-

ical variables have to be transformed into functions of the independent variables

^ and rj. Here we are only concerned with a two-dimensional transformation. The

extension to three dimensions is straightforward.

The general transformation relations were given in Section 2 of Chapter 2,

where we have not discussed any grid transformation. Here we will take the re-

suiting transformation relations for the two-dimension systems, and more trans-

formation relations and scale factors will be provided.

3. 2. 2. 1 Transformed Spatial and Transient Derivatives

From the last chapter, we have spatial derivative transformations as

fx = ^xf^ + Tlxfr,

fy = ^yf^+r1yfr,

(ft)x,y 
= (/()^ + ̂ /$ + %fr,

(3. 37)

(3. 38)

(3. 39)

Using the chain rule one can obtain
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XX

'yy

/..

^/^ + 2^^/^ + ^/,, + ^/^ + ^.A (3. 40)

(Ifw + ̂ yriyhn + ^/.. + ̂ vvh + ̂ A (3. 41)

'^yf^ + (rix^y + r)y^)f^ + r]^r]yfr, r, + ^s, /$ + ̂ yfr, (3.42)

The transformed Laplacian operator from the Cartesian coordinates then

becomes

V2/ = gllf,, + 2gl2f^ + g22f,, 4- V2^/, + V2^/, (3. 43)

where

^ = y. /^

^ = -.c^/^

^ = -y^lJ

Tjy = X^/J

911 = e. +ix . ->y

^22 = ^+^2

gl£ = ^xjr^v

J~l = ^r]y-^yr)x

(3. 44)

(3. 45)

(3. 46)

(3. 47)

(3. 48)

(3. 49)

(3. 50)

(3. 51)
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V2^ = P^rj)

V2»? = Q^r))

^ = -(^t+^yt)

r]t = -(^a-t 4- ̂ y()

(3. 52)

(3. 53)

(3. 54)

(3. 55)

Unlike many other authors[59], [60], [65], [66], [68] [69], all the transformation

relations we used in this thesis are in the form of contravariant metric components.

The reason for this is that using contravariant components to express the trans-

formation relations is simpler than using the covariant metric components, easy

to obtain from the chain rule, and less computational effort is needed in the pro-

gram. Although the contravaraint components can not be obtained directly, after

the grid system is generated, the contravariant components can be computed

from the covariant components once and for all. A subroutine to compute the

contravariant metric components is given in Appendix D.

Eq. (3. 39) is the transformation relation of the transient term. The time

derivative on the left side is at a fixed position in the physical plane and the time

derivative on the right side is at a fixed position in the transformed plane. XT and

VT are the grid point speeds. With that relation, the movement of the grid points

in the physical plane is reflected only through the rate of change of x and y at the

fixed grid points in the transformed plane. Thereby, only time derivatives at fixed

points in the transformed plane will appear in the transformed equations, and all

the computations may be thus performed on the fixed grid in the transformed

field without any interpolation of the field variables.
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3. 2. 2. 2 Transformation of Vectors and Gradients

Since all the variables have been transformed onto the computational domain, the

boundary conditions specified on the physical domain have to be transformed into

the computational domain. The Dirichlet boundary conditions may be treated in

the same way as on the physical plane. But the Neumann boundary conditions

have to be transformed as follows.

For an arbitrary scalar function / in the contravariant scale factors, (for

covariant scale factors, see Appendix A) we have

V/ = (/^. + /,^)i + (f^y + /^, )J (3. 56)

The unit vector normal to the ̂  ^= constant curve can be expressed in the

contravariant form

nw - v^
iivtiT=^Tf(^+^) (3. 57)

and for rj = constant curve, the unit vector is

.
(. ) = ^1.

nv" =
IIVr/ll ^(^ i + T?J) (3. 58)

Therefore, any gradient at the boundaries of the transformed domain can be

obtained by V/ . n, i. e.

9f\
9n\ $ = const =^(, "A+,"/,) (3. 59)
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and

9f_
Qn'n =-^(912f, +922f,)

?) = const. V5r'
(3. 60)

3. 2. 2. 3 Transformation of An Arc Element

To compute the heat transport coefficients, we have to deal with integrations along

some coordinate line on the transformed plane. To find an arc length element,

we begin with a general arc length increment in the curvilinear coordinates which

can be expressed as

ds2=g^d^ (3. 61)

To perform an integration along which ^* varies, the increment of an arc

length is

ds' = ^^'

In particular, an increment of an arc length along ̂  line becomes

(3. 62)

d^) = VgT^ = J^/g22d^ (3. 63)

while along T] line, we have

d^) = Vg^drj = J^drj (3. 64)
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3. 3 NUMERICAL METHOD OF GRID GENERATION

3.3. 1 Discrete Representation of Derivatives

Before solving the partial differential equations in the transformed domain, a

grid network has to be constructed. Although the transformed domain can be

arbitrary, a rectangular transformed plane is chosen as shown below

T)=M ---

TJj+l
^

^-1

rj=l --

A^
-1 I-

_L
AT?

; ^. -1 ^ ^»'+1 I

$=1 ^=N

Figure 3. 1: Computational grid system in the transformed plane

With this uniform grid, the conventional finite difference form can be easily

constructed. The first, second and mixed partial derivatives with respect to the

curvilinear coordinates f, and rf are ordinarily represented at an interior point (;, j)

by central difference as

(f^ij = ^(/>+1, J - /t'-lj)
(/';)<j = ^(/«, j+i 

- Aj'-i)

(3. 65)

(3. 66)
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(^).. = /, +i,j - 2/.,, +/.-i,, (3. 67)

(^)., = /. j+i - 2/,., +/,, -i (3. 68)

(f^ri)i, j = 7(/i+l, J+l - /l+lj-1 - /. l.J+l + /i-lj-l) (3. 69)

For the derivatives at the boundaries, the second order forward and backward

finite difference representations are respectively

(/ )s=i = j(-3/u+4/2., -/3j)

(/e)$=N = ^(3/Nj - 4/7V-1J + /N-2j)

(3. 70)

(3. 71)

and

(/, )^ = J(-3/, i + 4/.. 2 - As)
(fr, )r,=M = ^(3/,, M-4/,,M-1+/.,M-2)

(3. 72)

(3. 73)

3. 3. 2 Method of Solution of the Generating System

To develop the finite difference representation of the grid generating system, we

rewrite the generating equations as

9ti{x^ + ya-^) - 2^12.1;^ + 9\\{xr, r, + ^a;^) = 0

922^ + ws) - 2^12^ + gn(y^ + ^yr, ) = 0

For the sake of simplicity we only present the finite difference expression of
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the first equation. The second one can be treated in the same way as the first, by

replacing a; by y.

Using the classical finite difference technique, the finite difference represen-

tation of the first equation is

xi+l,j ~ ^xi, j + xi-l,j , .. xi+~i,j ~ xi-l,j
g22)ij 3\ 

""" 

A^'2 
' 

-"+^J ""2A^

-2(^12) ',J
3't+lj+l - xi+l, j-'l ~t- 3;, _ij_i - .C, _ij+i

4A^Ar?
(3. 74)

+(."),., ('."+- - ^+ x--1 + ^/."+2^'"~I) = »
for 1 ^^A^and 1 ^T? ^M

Because of the arbitrary choice of the transformed plane, we can choose

A<f = A^ = 1 for simplicity.

This equation can be cast in a form suitable for an iterative method of

solution as

Aa;, _ij + Bxi^j + C'a;t+ij = D (3. 75)

where

A = -(^22)<J + ^;J
B = 2((firii),,, +(^2).,,)

(3. 76)

(3. 77)
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c

D

-(^22). j - ^ (3. 78)
(^n),, (^,, ^ + ^,, _i + ^-, a;'J+l ̂  a;"J-1) (3. 79)
-(^12)i, jj(3'. +l,J+l - xi+l, j-1 + a;<-l,J-l - xi-l, j+l)

Similarly we can obtain the finite difference equation along the vertical lines

A'x^-i + B'x. j + C'x^+i = D' (3. 80)

where

A/ = -(5ii);j + jkj
B' = 2((^n),,, +(^).,,)

C' = -(gii), j - ^i,j
D' = (522)., j(. c.+ij+a;, -i,.,'+y;j

xt+l,j - xt-l,J )

(3. 81)

(3. 82)

(3. 83)

(3. 84)

and

-(^l2). j^(a;. +l.j+l - xi+l, J-T. + Xi--i, j--l - ^. -l, j+l)

(^ii). j = a;J+yj

= -^(3;<+1J - a:;-l,j)2 + ^(y.+u - y.-i., )2
(ff22)., j 

= X2, +y2,

= ^(a'«,J+l - 3".,J-l) + ^(t/«, j+i - y., j-i)
{9l2)i, j = X^X^+y^r,

(3. 85)

(3. 86)

(3. 87)
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l(a;,+ij - a:;_ij)(.c. j+i - a;.,j_i) + ^(y.+ij - 2/. -ij)(^j+i - 2/ij-i)
(3. 88)

When the physical domain is defined, the parameters </; and ip can be eval-

uated from equations (3. 3^) and (3. 34) at the boundaries by the finite difference

representations. To begin the iteration, the initial interior values of y and i/>

can be obtained by interpolation between the boundaries. With equations (3. 75),

(3. 80), and the two equations from the generating equation of y, one can use

the ADI (Alternative Directional Implicit) technique proposed by Roache [71] to

construct a smooth grid network as soon as a physical plane is defined. In order

to accelerate the convergence, the successive over-relaxation (SOR) technique has

been adopted. A subroutine to generate any two-dimensional grid system is given

in Appendix D.



Chapter 4

NUMERICAL STUDY OF MELTING

AROUND A VERTICAL CYLINDER WITH

SIDE HEATING

Melting in a vertical cylindrical enclosure has been studied by a few investigators

[24], [52] and [54]. Both analytical and experimental results show that natural

convection plays an important role during the melting process. Among these stud-

ies, Sparrow et al [52] have adopted a numerical method to simulate the melting

process. In their studies, the moving interface was mathematically immobilized

by the Landau transformation. By using this transformation, an Irregular melt

domain can be mapped onto a rectangular one in the computational plane. Using

this kind of transformation, many authors neglected the terms involving drfdz

and dr2 Idz2 to make the transformed equations more tractable, under the as-

sumption that the interface width varies slowly with height [38], [39], [52]. This

assumption, however, is not valid near the top of the melt region, especially in

convection-dominated cases. In our studies-, a complete transformation, the so-

called body-fitted transformation described in the previous chapters, has been

used to deal with the irregular domain. The problem solved by Sparrow et al

[52] has been recomputed by this method. The results indicate that the so-called

"quasi-static" and "smooth interface" approximations used in most phase change

analyses can significantly affect the solutions as the natural convection becomes



Chapter 4. MELTING WITH SIDE HEA TING 61

relatively important compared to the conduction.

To extend the studies, we have considered the inward melting for a fixed

temperature boundary as weU as the outward melting for constant heat flux con-

dition. In the following sections, we shall first consider the problem of outward

melting from an isothermal vertical cylinder. We consider next the case of melting

around a cylinder subject to a constant heat flux. Finally, the problem of inward

melting is considered for a cylinder maintained at a fixed temperature.

4. 1 OUTWARD MELTING AROUND A VERTICAL CYLINDER

4. 1. 1 Physical description and Mathematical Model

The physical problem is schematically pictured in Fig. 4:1.

A vertical cylinder of height H and radius ro is surrounded by a solid material

at its fusion temperature Tf. At time < = 0, the temperature at the surface of the

cylinder is raised, and maintained at a fixed value T^ > Tf. As a consequence,

the solid material will melt around the cylinder. In order to describe the melting

process, it is necessary to determine the evolution of the convective flow and heat

transfer in the melt region. In fact, it should be noted that while the heat transfer

is initially due to conduction, it is ultimately dominated by convection as the melt

region becomes larger such that the melting front, almost vertical at early times,

becomes more and more distorted under the effects of an upward convective flow

along the heated cylinder and a downward flow along the melting front. The

mathematical formulation of this problem is based on the following assumptions:

. The thermal properties of the materials are independent of temperature,
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liquid
n

Tw
W

L

~T

H

J_

Figure 4. 1: Schematic diagram of the physical problem

except for density in the buoyancy term, i. e. the Boussinesq approximation

is valid.

. The process is two-dimensional because of axial symmetry.

. The volume changes during melting, and viscous dissipation are neglected.

. The flow in the liquid region is laminar.

. The melt is a Newtonian and incompressible fluid.

The general form of the governing equations for the phase-change problems

in cylindrical coordinates were given in Chapter 2. For the convenience of the
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discussion, we rewrite them explicitly in the following form

Continuity equation:

9{ru) 9(rv) _ Q
Qr 9z

(4. 1)

Momentum equations:

9u, 9u , 9u l9p , , Q2u , l9u , 9'2u
^7 + u'aT + u'^: = -7'n:: + z/^'aZ? + Z'aZ + ^i9t '"8r ' 9z o9r' '9r2 ' r()r ' Qz'

^)
r2/ (4. 2)

9v . 9v . 9v
~9t+u9r+v9;

19p^, ^92v. ^^91^yv. ^.
-^-+ "(^T + r^T +-aT2") + ̂ ^^'-

p c)z ' Or'i r Or
(4. 3)

Energy equation:

QT 9T 9T , 92T . 1QT . 92T,
+ u^- +v^-= oi(^T + r:E- + ^-)9t Qr ' u Qz Qr r Qr ' Qz2

(4. 4)

To simplify the physical model, it is assumed that the solid is kept at Its

fusion temperature i.e. there is no heat conduction in the solid, all the heat

transferred to the interface is utilized for melting. With this assumption, the

interface energy balance equation may be written as

9T , 9n
^= ̂ ^ (4. 5)



Chapter 4. MELTING WITH SIDE HEA TING ^

4. 1. 2 Dimensionless Equations

Introducing a length scale ro i a time scale r^/a and temperature scale (T^ - T/),

with the reference temperature Ty, the dimensionless variables may be expressed

as

R=r-

v=wo
a

Pr=v-
a

z^z-
ro

p =

Ra=

arop

9^Tr^
av

u=u^°

9=^TT.
'-w - -1-f

r = Ste-Fo=
C^T at

To eliminate the pressure terms in the momentum equations, we introduce

the stream function and vorticity defined by

u = ^^

tL> =

1 9ip
R9Z

v = --;
1 Q^
R9R

QV QU
QR QZ

(4. 6)

(4. 7)

(4. 8)

With the foregoing definition, we can eliminate the pressure derivatives from

the momentum equations by subtracting Eq. (4. 3) after deriving with respect to

r from Eq. (4. 2) after deriving with respect to z. The resulting equation called

the vorticity transport equation, can be written as

S^^l. ^1.^-^.^ «.)
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By substituting Eqs. (4. 6), (4. 7) into (4. 8), we obtain the following equation

for the stream function

^4!i-
The energy equation in dimensionless form reads

^^^-^
while the interface energy equation becomes

(4. 10)

(4. 11)

QO Qn
9n QT

The appropriate dimensionless boundary conditions are

(4. 12)

0=1 ^=0 at r= 1

0=0 ^ == 0 along 5,

at 2 = 0, A^=0 , =0
where A is aspect ratio (height to radius) of the cylinder. The boundary condition

for the vorticity is determined by Eq. (4. 8). For a solid wall, the no-slip boundary

is imposed. At the top and bottom of the cylinder, we assume adiabatic boundary

conditions for temperature.
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4. 1. 3 Transfornied Governing Equations

Since all the computations will be performed in the transformed plane, the gov-

erning equations need to be transforined according to the relations provided in

Chapter 3. After the transformation, the governing equations (4. 2)-(4. 4) become

St^+U^+V9^=Pr^+S^
) V2^=5^ v,

s^^^^^^^s.

the equations for the moving interface become

Qx

9r

9y
QT

99 . Q0>

~^+7?^
90, Qe>

^+r]y9:rj^

where U and V are contravariant velocities expressed as1

(4. 13)

(4. 14)

(4. 15)

(4. 16)

(4. 17)

U=^U+ ̂ yV

V=^U+^V

(4. 18)

(4. 19)

lThe alternative expressions can be found as U = -^-^-^- and V = --4;
J R Or] J R
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and

u =

v =

s^ =

s^ =

5', =

V2 =

1^, ^+,, ^)
~x^y~^^r]y~^)

_1^^+,A
~^x~^+r{I~^)

_S^^^-P^^Pr^^
2,, a^ , _ ^,
;&at+"-st)-m

Qe , "Q^
-ste^+^

^w+29"^+ss ^+^+^+1&^+"^)
x

The last equation is the transformed Laplacian operator in cylindrical coor-

dinates. It is worth noting that the last term is an extra term compared with the

transformed Laplacian in Cartesian coordinates.

The transformed boundary conditions are

^-^ (4. 20)

u=o; y=o;

V>=o; 0=1;

^ = ^^c - ^^
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^=^

(7=0; y=o;

^ = 0; 0=0;

^=^Y£-^^

(4. 21)

11 = 11min

'U = 11max

u=o;

^=0;

U = ??T^ - T?,/^;

^22^+^2^=0

(4. 22)

y=o;

4. 1.4 Numerical Schemes

The governing equations (4. 13)-(4. 17) with the boundary conditions (4. 20)-(4. 22)

have been solved numerically. A first order forward difference approximation is

used for time derivatives. The diffusion terms are treated by the second-order

central difference approximation. In the convection dominated flow, special at-

tention has to be paid to the convection terms. It is well known that using the

second-order central difference approximation to discretize the convective terms in

the transport equations can produce wiggly solutions for high Peclet, or Rayleigh
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numbers. Although the first-order upwind scheme can eliminate these wiggles,

it may introduce significant truncation errors and produce large artificial difFu-

sion. There exist higher order upwind schemes such as the second-order upwind

scheme, the third-order upwind, and the QUICK scheme (Quadratic Upstream

Interpolation for Convective Kinematics) [67].

Using the higher order upwind schemes, the discretized equations are no

longer represented by a tri-diagonal matrix. Instead, the algebraic equations be-

come a penta-diagonal matrix.

A general finite difference expression for an arbitrary scalar function in up-

wind schemes can be written as follows:

u
9f

'Qx
= Au/, -2 + 5u/._i + C'"/. + £>"/,+! + ^u/. +2 (4. 23)

Where A", 5", C'", Z?" and Eu are functions of u whose expressions for dif-

ferent upwind schemes are listed in Table 4. 1: (details in Appendix B)

Table 4. 1: The coefficients of the different schemes

Scheme Au Bu Cu Du Eu

Central

difference

First - order

upwind

Second - order

upwind

Third - order

upwind

QUICK

0

0

\u\ + u
4Aa;

|u| + u
12Aa;

|u| + u
16Aa;

u

2Aa-

]u| + u

2A.E

|u| + u

Aa;

|u|+2u

3Aa;

0

M
Aa;

3|u|
2A.r

|u|

u

2A.Z-

\u\ - u
2Aa:

|u| - u |u| - u

2Aa-

2[u|+5u 3|u|
8Aa; 8Aa;

A-c 4A.C

|u| - 2u \u\ - u
3Aa; 12Aa:

2|u| - 5u |u| - u
SAa; 16Aa;
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Similar formulas for v-\

ing u, x and u, y accordingly.

,u
M
UQy

and v
9f
9y

can be obtained by interchang-

As shown in Table 4. 1, the coefficients Au and Eu of the central difference

and the first-order upwind schemes are equal to zero. The remaining coefficients

BU, CU and Du of /,-i, /, and /,+i (for central difference the /, terms come from

the Laplacian terms), form a tri-diagonal matrix. Higher-order schemes always

introduce a penta-diagonal matrix which can be solved by a procedure similar

to the TDMA (Tri-Diagonal Matrix Algorithm), called PDMA (Penta-Diagonal

Matrix Algorithm), the details of which are given in Appendix C. Subroutines for

TDMA and PDMA methods are provided in Appendix D.

The different schemes have been tested in a cavity with one moving wall at

the top to evaluate their accuracy. It was found that the second-order upwind

scheme gives the most accurate results. A comprehensive discussion can be found

in [66].

Throughout our studies, convection terms in the transport equation have

been treated by the second-order upwind scheme. The resulting algebraic finite

difference equations were solved by the PDMA. For the stream function equation,

the central difference technique can be readily employed as no convection term

is present. The resulting algebraic finite difference equation was solved by the

TDMA. The global sweeping is performed according to the alternating direction

implicit (ADI) procedure proposed by Roache [71].
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4. 1. 5 Discretized Equations

4. 1. 5. 1 Discretized Governing Equations

For numerical computations, the governing differential equations (4. 13)-(4. 17)

have to be cast in a discretized form. All the convection terms in the equa-

tions are discretized by the secondary upwind scheme, and the diffusive terms are

discretized by the central differential scheme. For the time derivatives, the first

order backward finite difference scheme is adopted. The discretization procedure

is developed as follows.

For the vorticity equation^ the discretized representation is

steuji'3 ^ ^ 
+ Au^.% +Buu^ + cuus1 + Duu& + ^u^.%(4. 24)

+Av^l2 + Bvu^\ + Cvu^ + Dv^, + Evuk^
,
fc+l _ 0,., fc+l _L,., *+I ,., A;+1 _0,., fe+lj_,., fc+l

.
lla;.+l,J ~ ZUJi,3 ~ + a;-l,J ,. ̂ 2C<;.,.>+1 - zu.,.» - + UJi,3-l

[gi:] ' AT?2 ' ^gi'j ~ A^2

^^^-^, _, +a;%_, -c.%^
l/'-J 4A^A^

+(p+^\ a;^--%'+((3+^,.<
.J

^ ^, -c.^'
^,, 2A^

for2 ^z ^7V- 1 and 2^j ^M-l

2A7?
+ (^).,

To use the iteration technique, it is better to cast the discretized equation in

the form

^^2 + B^SI, + cr^1 + Dr^, + E^^ = pr (4. 25)
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where

12

A.r

Bw

Cf

D^

Av

Ste

Bv - Prg^

2P^+^)+^
Dv - Pr9^

E^ = Ev

u, . k+l i D"< . <;+1 i n", .. . i pu, . k+l
\- = /l-a;.. -_2^. -t-£»-a;;_fj-t-^-a', +ij-h£/-a>;-^j

+ ^S(-&+-%)
1

2J+ ^Pr^^^ - -^-i + -%-i - -%+i)

+ lprp+^), ("?&-"%)

+ l2pr{Q+'k\., <u^' - u^' ) + w- + ^

At the grid points adjacent to the boundaries, no j - 2 and j +2 points can

be reached. Therefore, we set A^ and E^ equal to zero locally according to the

first order upwind scheme. Similarly, for the j direction

A^K, + B^^, 4- ̂ <+1 + ^<Y,, + ^<+,1, = F; (4. 26)

A," = Au
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where

B7

ia>

^

D1

11
= BU -Prg^

= 2^,',;. +.??J)+^
= DU -Prg^

E^ = Eu

^ = AV^_, +BV^\+DV ^^+Evu^

+ Prg^^+^S^
1

2
+ ^Prg^^, ^ - -%-i + -%-i - -K^i)

+ |^(^+^) «Z-^,)
+ ^Pr (Q + ^)^. (-&\ - ^i) + (^).. + ^

(^),., = -5<c ((M. u'+-^;-1" +(,. ),,, "i"+^;"J-)
+ ^-?)^+prRa^-ew^+^- ^tj+1 - ^t'J-l

2A^

Again, at the grid points adjacent to the boundary, A^ and E^ are equal to

zero. The equations (4. 25) and (4. 26) can be solved by the PDMA technique as

discussed in Appendix C. With these two equations, the ADI technique can be

used to sweep alternatively in the i and j directions.

For the stream function equation, the conventional central difference scheme

has been used.
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.

11 ̂ .+iJ - 2^. j + ̂ i-l, j , ^.22 ̂ .J+1 - 2^-J + ̂ '.. J-1
9i:J ' ^2 ^9i, j ^2

+2^
12^+lJ+l - ^.. +1,J-1 + ^>-1, J-1 - '0. -1J+1

4A^A7/

(4. 27)

+ (p+9,/i+I^'+ (^+^./..'+2Afc-1 = ^>-

A^,,, _i + A^. j + ^^,. +1 - Df (4. 28)

At = -,?J
Bf = 2(^+^)

ct = -^

Df = ^(^+i,. +^,-ij)

+ ^^(^. +lj+l - ^, +1,, -1 + ̂ ,-lj-l - ^, -lj+l)

+ I (p + ^),, (^i+l-J - t/'t-lj) +1 (^ + ^),,, (kJ +l 
- ^J-l) + wt -3

Similarly for the j direction

A^, -i,, + 5^,,, + ^^,,, = ^ (4. 29)

^ = ~9iJ
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Bf = 2(^+^)

cf = -^

^ = ^(V'. j+1+k.-i)

+ j^J(^+ij+i - ^.+ij-i + ^, -ij-i - ^-ij+i)

+ i (p +1),, (^1+1J ~ 1/'t-l-J) + i (Q + ^).,, (^'+1 ~ ^'J-l) + (^)1-J
where

(S^)ij = ^_ ((^).,j ^;+1J - ^i-l, j , ^ ^ ^. J+i - ^.,i-i
2A^ ^ ^x'^ 2A»7 - xijuij

Eqs. (4. 28) and (4. 29) can be rewritten in the form below for the iteration

procedure, and solved by the TDMA method.

The energy equation can be discretized as rj
.

^ ^ ^
. ^y

^

.

stev t'1 

AT 
"tj 

+ AU ^-+21J + BU 0^'-i+ cuey+ JDU 0.% + £u0&21j (4. 30)

+AU^+_12 + BV 0^, + cv ey + DV0^ + EV0^
)/s+1 _ 9flfc+1 -Lflfc+1

,
11 t/<+lj - £'vi. J -r vi-l, j j_ ^22 (7<-,J+l - ^i, J ~f c'i, 3-l

= ^ ' ^7/2 ' ^ ^ ' A^2

+2^
-1. -i- flfc+1. _

/<+1J+1 ~ vi+l.j--i 'r t/<-lj-l - ui-l,jlj+l

4A^A??

+{p+^
--1. - flk+l. / r, \ fik+1. - Ok+

^, ^^!+^+^\^^s^
yielding
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where

A^e^ + B^I, + c^ey + D^, + Ef^ = Ff (4. 31)

A^ = A"

Ste .V
CUAC" ^\

Bf = 5--^

cf = 2(^+,g)-.^
Df = Dv-g^

£f = Ev

Ff = AU 0^+BU0^+Due^+Eue^^^

+ ^(0%+^)

+ ^(^+1-^-1+^-1-^4. 1)
(^ - ^)

+ i (<5 + ^)^. (^i - ^-\) + (^).,, + ^^,

Similarly, for the j direction, one gets

\9. f)l!:+l. -I- Reffk+l. -i- r9 ok+1 -i. neok+l. -4- p. efik+1. - F9
ljl/. -2J -T l-'jui-l,j ~T ̂ jvi, j ~I~ ^jui+l,j ~r ^jui+'i,j - l'j >, '*...

- i(-4'
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with

where

A\ = Au

5J == 5"-^

C9, = 2(^+^)+

^ = -D"-^

Ste
AT

E9, = Eu

^ = AU0.% + Bt'^_\ + £>u^i + E^S,

^ 9S{9& + ^0

+ i^(^. i - ^. -i + ^%-i - ^%+i)

+ j(P+y  ,, -ey
+ KQ +^.., (^-^'+(S''-+^

(5, )., = -^e((^). /'+l-^;'-l-J+(^).,8i+l, j - ffi-l,j
2A^

^tj+1 - ^«j-l
2A77

The same iteration technique can be used to solve for solving the energy

equation.
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4. 1. 5. 2 Discretized Boundary Conditions

Since the no-slip boundary condition is imposed on the discretized solid wall, the

velocity components and stream function are set to zero. The boundary conditions

for the vorticity are therefore

^ = ^((^)i. (-3Vi. 4-4y,, -y3.)

-(^)i,. (-3^+4^,,. -^))

(4. 33)

^N, j = ^((^)N,, (3VNj-4yj v-i,, -^-2,,)

-((y)N, j^UNJ - 4^-i,, - UN-2. j))

2<:j ^M-l

(4. 34)

^.. i = ^((^)., i(-3^+4V;, 2-^, 3) (4. 35)
-(^)., i(-3^, i+4[/., 2-(7;, 3))

^., M = ^((^)., M(3Vi, M+4V;,M-l-^, M-2) (4. 36)
-(»?3/)., M(3(/,, M + W,,M-l - U^M-l)}

2<i<N-l

The boundary conditions for the energy equation are the following: at the

heated wall and interface, the dimensionless temperature are equal to 1 and 0,

respectively. The adiabatic boundary conditions at the top and bottom of the

cylinder can be expressed as
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^-"j=o
The discretized forms are

Oi, i = j(^i/5?, i(^+i, i-^-i, i)-^, 3+4^)) (4. 37)

0.,M = ^(5UM/^, M(<?. +l,M-^-l,M)-^,M-2+4^,M-l)) (4. 38)
2 <i <N-1

where the forward and backward difference formulae are used.

4. 1. 5. 3 Discretized Interface Equations

There are two possibilities to describe the interface moving on the computation

domain, either nioving from ̂  = const. line or moving form rf = const. line. If the

interface is chosen on the ̂  = a line, the discretized interface moving equations

are

-Ot,] = (.co)a, j - {^x-^+rj.
90'

9~^TJX ~9ri). AT

80 , Q0>
yc,, j == (yo)^-^^-+^^J Ar

(4. 39)

(4. 40)

where a:o and yo are the coordinates on the physical domain before the motion

begins and AT is the time step. In our study, a = N for the outward melting and

a = 1 for the inward melting.
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If the interface is chosen to be on the r] = ^ line, the discretized interface

moving equations become

90 , 96>
^ = (3;o)^-Ar^^+^^

9e , 90'
y^ = (yo)^-Ar^^+^^

(4.41)

(4. 42)

The temperature gradients 90/9^ and 90/9r) should be discretized according

to the forward or backward difference formula depending on whether o; or 7 is the

lowest bound or the highest bound.

4. 1. 6 Numerical Procedure

The general solution procedure, as described by the flow chart in Fig 4. 2, consists

of the following steps.

1. Set initial values of all the variables Uij, Vij, ujij and ̂ , j equal to zero. The

initial temperature field is set such that it is equal to zero everywhere except

at the heated boundary where the nodal temperatures are all equal to 1.

2. Set the initial boundary grid points of the physical domain to be trans-

formed.

3. Call the grid generator to generate grid points on the physical domain.

4. Calculate all the transformation factors which will be used in the solution

of the transformed equations.
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Set initial conditions
U,V,^, -0 =0 and

initial temperature

Initial boundary grid points

Grid generation

Calculate transformation
scale factors

Compute vorticities a;
using U, V, and ib

Compute ^
using uj

Compute U and V
using -0

Compute new temperature
0 using U and V

Rezoning
procedure

Calculate new
interface

XQ
VQ
CJQ
QQ

x

y
a;

0

No \\fk+l - fk\\ <e .
Yes

Next tirae step ?

No

Stop

Yes

Figure 4.2: Flow chart of computation procedure
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5. Compute vorticities by using <7. j, K,j, V'«j and (9. j. The computation is

performed by alternatively sweeping in the i and j directions.

6. Compute the stream functions by using the updated vorticities u, j.

7. Compute £7, j, l^^ by using the updated ^, j and velocity boundary condi-

tions.

8. Compute the new temperatures 0, j by using Uij^Vij.

9. Check convergence. In the iteration, we only check the vorticity and energy

equations since the other equations converge much faster than these two.

There are two checkers. One checks the residue of the continuity equation

on the all grid points

N M

^^ Residue < 10~4
' }

(4. 43)

The other checker is

ll^l-^ll<10-4

where / denotes vorticities and temperature.

(4. 44)

10. If the convergence criteria are satisfied, go to step 11. Otherwise go back to

step 4, for further iteration.

11. Check whether the maximum time step has been reached. If so, go to step

16. If not, go to step 12.

12. Update xo, yo, wo and 0o for the next time step.

13. Calculate the new interface position from the moving interface equations.
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14. After obtaining the new interface, call a rezoning procedure (to be discussed

below)

15. Go to step 3 to begin the next time step computation.

16. Stop the program.

4. 1. 7 Rezoning Procedure

According to the energy balance equation, the local velocity of the interface should

be locally orthogonal to the interface. Generally, the melting is nonuniform along

the interface because of the natural convection. Therefore, the interface can be-

come curved as the boundary is inoving. If the interface becomes locally convex,

all the moving interface grid points have tendencies to move towards their reflex

center. As the melting proceeds, sooner or later, the generated grids could be

distorted or even overlapped under some circumstances.

To overcome these difficulties, an implicit rezoning procedure is employed.

Once the interface is determined at time level r + AT, a spline interpolation is

used to redistribute the boundary grid points at equal arc length interval along the

interface. Thereby, a proper grid network system can be created by the generator.

4. 1. 8 Results and Discussion

The computation is started by assuming the existence of a very thin melt layer

around the cylinder. The molten volume is assumed to be sufficiently small for

the results to be unaffected. The melting process begins from the cylinder wall

into the environment where the solid is assumed to be at its fusion temperature.
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Advance in time is made with a step of 0(10-3). The number of grid points is

chosen to be 11 x 31. The typical case of melting of the sodium nitrate-sodium

hydroxide eutectic is presented here to compare with the previous results [52

obtained by a different approach.

Fig. 4.3 and 4.4 show the isotherms and streamlines in the melt region

at various times. The values of the governing parameters are Ra = 7 x, Pr =

7. 0, 5^=0.15 and A =4.

Fig. 4. 3(a) shows the isotherms and flow pattern at time r = 0. 03: one

can note from this figure that the melting profile is almost a vertical line, and

isotherms are almost parallel, reflecting the fact that conduction is the dominant

mechanism of heat transfer at this very early time.

Fig. 4. 3(b) shows the isotherms and flow pattern at time r = 0. 09: as the

melt layer becomes thicker, the convective motion becomes stronger and its effects

on the heat transfer are revealed by the distorted isotherms and melting profiles

near the top region. All these effects are enhanced as the melting progresses, as

can be seen from. figures 4. 4(c) and 4. 4(d), corresponding to r = 0. 20 and r = 0. 28

at which the thickness of the melt in the upper part is almost twice that in the

lower part.

An overview of the progression of the melting process is given in Fig. 4.5

which shows the positions of the solid-liquid interface at successive times r = 0. 03,

0.09, 0.20, 0.28. Also shown in this figure are the positions of the interface obtained

by Sparrow et al [52] in a previous study. One can readily notice that our results

and those of Sparrow et al [52] only agree during the early times (r < 0. 05) when

the convective flow is still relatively weak. As convection becomes important,

the discrepancies become larger in the two aspects. The melt profiles are quite
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different between the two groups of results. In our predictions, the melt profiles

near the top boundary appear as curved and normal up to the boundary where an

adiabatic condition is encountered, instead of straight lines inclining to the upper

boundary under the same boundary conditions. The latter results may be caused

by the approximations used in the study of Sparrow et al [52], namely:

. The quasi-static approximation which neglected the "pseudo-convection"

terms that appeared in the set of transformed equations.

. The "smooth interface" approximations which neglected all terms involving

the first and second order derivatives of the radial interface position with

respect to the vertical coordinate.

The curvatures of melting profiles can be seen in the experimental investiga-

tion by Hale and Viskanta[35] shown in Fig. 4. 6.

The heat transfer rates are presented in Fig. 4. 7. The average Nusselt

number along the cylinder wall is defined as

1 ^ 90\
^u = T /_ -i-1 - ^

A Jo 9r\r=i
(4. 45)

The results are compared with [52]. For the early stage of melting, the

Nusselt numbers agree very well (r < 0. 08). But for later times, our. results are

larger than those predicted in [52]. These discrepancies may be explained by the

same reasons mentioned above.
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4. 2 MELTING AROUND A CYLINDER SUBJECT To A CON-

STANT HEAT FLUX

In many industry practices, the temperature of the heated wall may not be known

or not readily be controlled. Instead one may know the heat flux imputed into the

system. For a constant heat flux boundary condition, we can change the boundary

condition 0 = 1 at the heated wall by

Q0
- = const. (4. 46)

The computations have also been carried out with the boundary condition

of constant heat flux corresponding to three different Rayleigh numbers, Ra =

7xl06, 7xl07, 7xl08. The isotherms and flow pattern for the case of 7?a = 7xl08

are presented in Fig. 4.8. The Nusselt numbers for a constant heat flux is defined

as

Nu
1 rAi

AJo e
dz

r= 1
(4. 47)

The Nusselt numbers for the three cases are plotted in Fig. 4.9. As shown,

the heat transfer rates are dramatically decreased at the very beginning of the

melting process. After reaching a minimum, the heat transfer rates increase as

natural convection grows stronger. The larger the Rayleigh number, the stronger

the heat transport. As the Rayleigh number increases, the time at which con-

vection becomes dominant decreases. For Ra = 7 x 104, the convection becomes

dominant for r = 0.05, and for Ra = 7 x 108, r = 0.03. For the larger time

scale, when the boundary layer regime is established, the Nusselt number reaches
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a constant value. The correlation between the average Nusselt number and the

Raleigh number is

Nu = Q. l75Ral/4

The variations of molten volume fractions are plotted in Fig. 4. 10

4. 3 INWARD MELTING OF A VERTICAL CYLINDER

(4.48)

Using the same governing equations as in the previous section, we have considered

the problem of inward melting of a vertical cylinder heated at a fixed temperature.

The boundary conditions appear for this case are

For R>0

, min (4. 49)

For R=0

[/ = 0; V = 0;

^=0; 0=0;

^=^-^^

, m«n

- 9i^
^=0. ^
u=0

(4. 50)



Chapter 4. MELTING WITH SIDE HEATING 88

The other boundaries at the top and bottom of the cylinder are assigned

the same conditions as before. The control parameters considered are Pr = 7. 0,

Ste = 0. 15, A = 2. 0, Ra=7x 104, Ra = 7 x 105 and Ra = 7 x 106. The isotherms

and flow patterns are presented in Fig. (4. 11)-(4. 16). From these figures, one can

see that at the very beginning of the melting, heat conduction is predominant,

which is reflected in the vertical melting profiles'in Fig. 4. 11(a) and 4. 11(b).

After a while, the convective heat transfer becomes stronger and the melting

profiles become distorted. When the melting profiles reach the symmetry axis, an

adiabatic-like boundary is encountered. Therefore, the isotherms are normal to

the symmetry axis.

The melting profiles are plotted in Fig. 4. 17, which shows that at the early

stage, the three cases have almost the same vertical profiles except for the top

region. After convection becomes important, the larger the Rayleigh number,

the faster the melting velocities are. This can also be seen from the molten

volume fraction plotted in Fig. 4. 18. The Nusselt numbers for the three cases are

plotted in Fig. 4. 19(a, b,c). For the case of Ra =7 x 104, the Nusselt number

decreases monotonically; for the other cases, the Nusselt numbers decrease at first;

and after reaching their ininimum values, they increase and then decrease again.

The variations of the Nusselt number with time can be explained as follows: at

the very beginning of the melting, conduction is dominant and the heat transfer

rate decreases with time. After the natural convection begins, the heat transfer

rate increases. As the melt region thickens, the boundary layer are formed, as

illustrated by the isotherms, the heat transfer rate is delayed, and the Nusselt

number decreases thereafter. During this period, heat is transported by both.

conduction and convection.

From Fig. 4. 19(c), one can find oscillations of the Nusselt number that may
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be caused by the strong natural convection.

4.4 SUMMARY

The melting of a solid material surrounding a heated vertical cylinder has been

numerically investigated. The technique of boundary-iitted coordinates has been

effectively applied to treat an irregular domain. The nonlinear Navier-Stockes and

energy equations were solved numerically. The convective terms in the transport

equations were treated by the second-order unwind scheme. Results have been

obtained for the convective flow and temperature fields at various times during the

melting process. A comparison with the results obtained previously by Sparrow et

al [52] shows that the "quasi-static" and "smooth interface" approximations can

significantly affect the form and the velocity of the melting profile, especially at

later times when natural convection becomes important conapared to conduction.

The melting process with a constant heat flux was also studied, for Rayleigh

numbers from 7x 106 to 7x10. The variations of Nusselt number with time clearly

describe the strong influence of Rayleigh number during the melting process.

Inward melting in a cylindrical enclosure was also investigated. The flow pat-

tern and isotherins as well as the Nusselt numbers were presented. For Rayleigh

number varying between 7 x 10 and 7 x 10 , the Nusselt number shows an oscil-

lating behavior.
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T= 0. 03

c?

T= 0. 09

Figure 4.3: Isotherms and flow pattern for outward melting of a cylinder at Pr

7, Ra == 7 x 104 and Ste = 0. 15 and r = 0.03 ~ 0.09.
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T= 0. 20

T= 0. 28

Figure 4. 4: Isotherms and flow pattern for outward melting of a cylinder at Pr

1, Ra = 7 x 104 and Ste = 0. 15 and r = 0.20 ~ 0.28.
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j !

Figure 4. 6: Photographs illustrating the melting front by Hale and Viskanta [34].
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T = 0. 20 T = 0.30

T = 0.45 T = 0. 45

Figure 4. 8: Predicted isotherms and flow patterns for Ra = 7 x 10 at various

times with a constant flux boundary condition.
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(a) (b)

(c) (d)

Ra=7x104 Pr=7. 0 Ste=0. 15

(a), (b)- T=0. 01 (c), (d)- ^0. 05

Figure 4. 11: Isotherms and flow pattern for inward melting of a cylinder at Ra =

7 x 104, Ste = 0. 15 and r = 0.01 ~ r = 0.05.



Chapter 4. MELTING WITH SIDE HEA TING 99

(e) (0

(g) (h)

Ra=7x10'T Pr=7.0 Ste=0.15

(e), (f) T=0. 08 (g), (h) T=0. 10

Figure 4. 12: Isotherms and flow pattern for inward melting of a cylinder at Ra

7 x 104, Ste = 0. 15 and r = 0.08 ~ r = 0. 10.
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L!

(a) (b)

(c) (d)

Ra=7x10" Pr=7.0 Ste=0.15

(a), (b)--- T=0. 01 (c), (d) --- r=0. 03

Figure 4. 13: Isotherms and flow pattern for inward melting of a cylinder at Ra =

7 x 105, Ste = 0. 15 and r = 0.01 ~ r = 0. 03.
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(e) (0

(g) (h)

Ra=7x10" Pr=7.0 Ste=0.15

(e), (f)- r=o. 04 (g), (h)-" r=0. 05

Figure 4. 14: Isotherms and flow pattern for inward melting of a cylinder at Ra

7 x 105, Ste = 0. 15 and r = 0.04 ~ r = 0. 05.
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(a) (b)

(c) (d)

.6
Ra=7x10" Pr=7.0 Ste=0.15

(a), (b)--- T=0. 01 (c), (d)--- r=0. 02

Figure 4. 15: Isotherms and flow pattern for inward melting of a cylinder at Ra

7 x 106, Ste = 0. 15 and r = 0.01 ~ r = 0.02.
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(e) w

(g) (h)

Ra=7x106 Pr=7. 0 Ste=0. 15

(e). (f)-- r= o. 025 (g). (h)-- r= 0. 030

Figure 4. 16: Isotherms and flow pattern for inward melting of a cylinder at Ra

7 x 106, Ste = 0. 15 and r = 0.025 ~ r == 0. 03.
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Chapter 5

MELTING OF A VERTICAL CYLINDER

HEATED FROM BELOW

Melting in and around a vertical cylinder with side heating is always accompanied

by natural convection becauseof the fact that the hot fluid, adjacent to the heating

wall has a tendency to move upwards and the cold fluid near the interface has a

tendency to move downwards. Natural convection can therefore arise as soon as a

difference of temperatures between the heated wall and the solid-liquid interface

exists. Mathematically, the driving force in the vorticity equation, PrRa-^-, is
QO

'Qx

always effective as long as -^- does not vanish, and the fluid motion occurs as

soon as the heating starts.

The melting from below, however, represents a different phenomenon. As

the melting proceeds, the melt layer thickness increases with time, with the hot,

light melt adjacent to the heating surface of the bottom, and the cold, heavier

melt near the solid-liquid interface at the top of the layer, which is a potentially

unstable equilibrium. The only mode of the heat transfer in this case is conduction,

because the uniform heating from the bottom does not generate any horizontal

temperature gradient and the buoyancy force is therefore zero.

The state of rest of the melt described above is potentially unstable however.

As the melting proceeds, some random disturbance, or noise may destroy the
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balance and then the fluid motion is triggered. This instability is usually called

the Benard convection.

5. 1 PREVIOUS WORKS

The Benard problem has received considerable attention in studies of natural

convection between two horizontal plates [77]-[82]. The critical Rayleigh number

for the onset of natural convection is 1720. Tien and Yen [33] studied the melting

of a semi infinite solid heated from below. Using a one-dimensional approximation

they found a critical Rayleigh number for the onset of instability of 1720, which

implies that the critical Rayleigh number is not affected by the phase-change.

A comprehensive study of the effect of buoyancy on the phase-change, melting

and freezing, between two horizontal plates was made by Boger and Westwater

[34]. Their experimental results agreed very well with those of Tien and Yen [33].

They found that natural convection occurs for Rayleigh numbers above 1700, and

the melting exhibited oscillations after the Rayleigh number exceeded 10 . Ice-

water melting was studied by Yen [83]. His picture shows that before the critical

Rayleigh number is reached, the interface is flat and the melting front varies with

time only. After the setting in of convection, the interface has a wavy form. In

addition, Yen found that for the ice-water system the critical Rayleigh number

depends on the heating temperature, and is not a universal value as in the case

of a normal fluid. The same conclusion was made by Seki et al [84], who studied

the same systenn with melting from the top.

Using linear stability theory, Sparrow et al [85] studied convective instability

in a melt layer heated from below. Two boundary conditions were considered,

either a convective heat transfer from an adjacent fluid medium or a step wise
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change in the wall temperature. They found that the critical Rayleigh number is

significantly affected by the convective boundary condition, i. e. by the value of

the Biot number. At large Biot numbers, the results for the convective heating

case approach those for the step wise wall temperature.

5. 2 PHYSICAL DESCRIPTION AND CONTROL PARAMETERS

The physical description of the problem considered is shown in the following figure.

:;:::;:::;:::::::::^:^:.^

^^.^^^9^

II IKiN^I^I^I^ B
:ws!:i:w:i^^^

n fo o

ro

Figure 5. 1: Physical diagram of melting by heating from below

Originally the solid cylinder is at its fusion temperature. The melting begins

at time t = 0 at the lower boundary surface as the wall temperature is raised to

a value T^. The cylindrical wall is kept adiabatic throughout the process.

The governing equations have been provided in previous chapters. The only
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differences are the boundary conditions, which now become

^ = ^mm : ^ = 0;

^=».
fr9

^ = ^mar : t/ = 0;

V»=o;

^=^^-^s

?7 = ^mm : (7=0;

i/>=0;

^ = T)xVr, - r]yUr,

77 = tlmax '. U =0;

^=0;

^ = ^V,, - ?7y^

w=0:
^=ui
t^=0;

v=o;

j=o

v=o;

^=1,

v=o;

0=0

To describe the hydrodynamic instability in the melting process, two Rayleigh

numbers are defined. One of these is the internal Rayleigh number, based on the

instantaneous thickness and a constant temperature difference across the melt

layer, which is
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Rai =
g^8\T^ - Tf)

av
(5. 1)

where 8 is the nnelt thickness. It should be noted that the internal Rayleigh

number is not an a priori prescribable quantity because of the unknown melt

thickness 8.

Another Rayleigh number, called the external Rayleigh number, is defined

as

Ra^= 5/3ro3(T, - T/)
av

(5. 2)

This Rayleigh number in fact is the same one we have already used in the

previous chapters. Contrarily to the internal one, the external Rayleigh number is

a priori prescribable. The relationship between the two Rayleigh number is given

by

Ra, = | ^
.
ro,

Ra, (5. 3)

5. 3 RESULTS AND DISCUSSION

The computations were carried out for the set of parameters Ste .= 0. 1, Pr = 7.0

and Rae = 106. The variations of the melting front, temperature distribution and

flow pattern with time are plotted on figures (5. 2)-(5. 8)

The melting begins when a temperature higher than the fusion temperature

is imposed on the bottom. In the early stage of the melting, heat is transferred
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uniformly from the bottom wall. As shown in Fig. 5. 2(a), the isotherms are

straight lines and the inferface is flat. No flow motion exists at this stage. Al-

though one can see the stream lines in the flow pattern, they are quite weak, about

0(10~ ). In a numerical sense, they are zero.

As the melting proceeds, the interface moves upwards uniformly with time.

In the meantime, the internal Rayleigh number increases as the naelt layer becomes

thicker. When the melt layer is thick enough for the internal Rayleigh number to

reach a critical value, the fluid motion in the melt layer is activated. As shown

in Fig. 5. 2(b), the isotherms become curved after the critical Rayleigh number

is exceeded, and the Benard cells are observable. We mark the internal Rayleigh

number at this time as the critical Rayleigh number. Converting the internal

Rayleigh number from the external one by Eq. (5. 3), we find Ra^ = Ra, =2197.

Notice that the interface at this time is still flat, because we are just at the onset

of natural convection. As the melting continues, the interface becomes curved

due to the stronger natural convection. As seen in Fig. 5.3(c), the isotherms are

distorted by upward and downward fluid motion between the two Benard cells.

In Fig. 5.3(d), some interesting phenomenon can be noticed: at r = 0.01, there

are 7 cells in the melt layer; at time r = 0. 015, only 6 remain, i. e. one cell has

disappeared. Comparing the two figures 5. 3(c) and 5. 3(d), we find that it is the

first vortex adjacent to the symmetry axis which has disappeared.

From the flow patterns in the following figures (5. 4) to (5. 8), one can check

that the cells at left side are weaker than those at the right side Thus, the cell

adjacent to the symmetry axis is always pushed out by its neighbour . At time

r = 0.02, the number of cells decreases to four; at time r == 0.025, there are

three; and at time r = 0. 03, there remain only two cells. Finally, only one cell

can survive.
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During the evolution of the convection flow, the shape of the ice-water inter-

face changes continuously according to the number of developing vortices.

The variation of the local Nusselt number vs. time and radius are plotted

in Fig. 5.9. In the early stage of the melting, the local Nusselt number decreases

sharply. After the critical Rayleigh number is exceeded, the local Nusselt number

exhibits oscillations. For a more precise appreciation, the variation of the local

Nusselt number at the bottom wall with dimensionless time is shown in Fig.

5. 10, for various positions along the radius. After the critical Rayleigh number

is reached, at about r = 0.007, the local Nusselt number begins to oscillate. At

^? == 1, the local Nusselt number decreases almost monotonically, as the flow

pattern does not change much at that position. The closer to the symmetry axis,

the stronger the oscillation. This is because the flow pattern changes dramatically

when a cell disappears near the symmetry axis For large times, the local Nusselt

numbers remain almost constant since the flow pattern becomes stable.

The variation of the Nusselt number with radius is plotted in Fig. 5. 11. At

T = 0.07, just about the onset of natural convection, the local Nusselt number

shows a damped oscillation. As times increases, the amplitude of the oscillations

increase due to the stronger natural convection while the peaks of the oscillations

move leftwards.

Fig. 5. 12 shows the evolution of the average Nusselt number with time. At

the beginning of the melting, the heat transfer is due to the conduction so that the

Nusselt number decreases dramatically. After the onset of natural convection, the

heat transfer rate increases as the Benard cells are developed. As the melt layer

becomes larger, the boundary layer is formed and the heat transfer rate begins

to decrease. The heat transfer rate tends to a constant as the Benard convection
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reaches a unicellular flow regime.

5.4 SUMMARY

The melting of a vertical cylinder with bottom heating has been simulated. The

resulting isotherms and flow patterns exhibit the Benard phenomenon. The crit-

ical Rayleigh number for the onset of natural convection was found to be 2197.

Unlike a liquid between two parallel fixed plates, the Benard cells decease

in number as the melt layer increases. In a cylindrical geometry, the cell nearest

to the symmetry axis is found to disappear. Only one cell remains at the end.

Because of this transition phenomenon, the local Nusselt number oscillates both

in time and space. The average Nusselt number tends to a constant value after

the flow in the liquid region becomes unicellular.
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Figure 5. 2: Isotherms and flow pattern of melting at different times from r

0.005 ~ 0.007.
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Figure 5. 3: Isotherms and flow pattern of melting at different times from r

0. 010 ~ 0. 015.



Chapter 5. MELTING OF A CYLINDER HEATED FROM BELOW 117

Interface

/

Interface

/

(e) T=0. 020

Interface

/

Interface

0
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Figure 5.4: Isotherms and flow pattern of melting at different times from r

0. 020 ~ 0. 025.
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Figure 5.5: Isotherms and flow pattern of melting at different times r = 0.030

0. 035.
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(i) T=0. 040

Figure 5. 6: Isotherms and flow pattern of melting at different times T = 0. 04.
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Figure 5. 7: Isotherms and flow pattern of melting at different times r == 0. 05.
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(k) T=0.060

Figure 5.8: Isotherms and flow pattern of melting at different times r = 0.06.
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Figure 5.9: Variations of the local Nusselt number with time and radius.
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Chapter 6

MELTING WITHIN AN ISOTHERMAL

VERTICAL CYLINDER

In the previous chapters, we have studied melting in a vertical cylinder with

two kinds of boundary conditions; heating from the peripheral wall with a top

and bottom adiabatic conditions and heating from the bottom with peripheral

adiabatic condition. Both of them can find their application in practice. In this

chapter, we will incorporate the two cases into a melting of vertical cylinder heated

by an isothermal enclosure, which may be found in the chemical, metallurgical

and also in the food industry

6. 1 PHYSICAL DESCRIPTION

The physical schematic diagram for melting heated by an isothermal enclosure is

shown in Fig 6.1

A vertical cylindrical enclosure of height H and radius r-o contains a phase

change material. The solid material is assumed to be initially at its fusion tem-

perature Tj. At time t = 0, the temperature at the surface of the whole enclosure

is raised to a value Tu,, which is higher than the fusion temperature. As a conse-

quence, the solid material begins melting inwards from the surface of the cylinder.
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Figure 6. 1: Physical diagram of a melting within an isothermal cylinder

At the top of the solid cylinder, the melting happens downwards, where the

heat is transported from the top of the melt layer. The temperature increases

from the bottom of the melt layer to the top surface of the enclosure. Therefore,

the most-dense melt is located at the bottom of the melt layer and the least-dense

melt is located at the top of the melt. The fluid flow in this region is stable,

which is quite similar to what is found for convection between two plates with top

heating.

At the side of the cylinder, the melting proceeds as in the cases studied in
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Chapter 4, where convection always exist due to the difference of temperature

across the melt layer.

At the bottom of the cylinder, the melting occurs upwards. Heating is im-

posed on the bottom surface of the enclosure. The most-dense melt is located at

the top of the melt layer and the least-dense melt is at the bottom of the melt

layer, which forms a potentially unstable layer. As the melt layer becomes thicker,

a critical Rayleigh number will be reached and then convection begins, which is

similar to the case we have discussed in the previous chapter.

6. 2 GRID SYSTEM

In view of the transformation, any two dimensional geometry, either a simply

connected region or multi-connected region, can be transformed onto a rectan-

gular [59]. In the previous study, we transformed the irregular domain onto a

rectangular one, where the domain to be transformed is quite simple; three sides

of the domain, one heated and two adiabatic walls, remain the same between the

physical and computational plane. In addition, the domain to be transformed is

rectangular-based. The four sides of the plane are very easy to choose.

For the case of a melting within an isothermal cylindrical enclosure, the

melt region is around the whole cylinder. Taking advantage of the symmetry,

we chose the four sides as follows, the first side is the half outer enclosure from

the symmetric axis, the second side is the connection form the top surface of the

enclosure to top of the interface at the axis, the third side is the half solid-liquid

interface and the fourth one is the connection form the bottom surface of the

enclosure to the bottom of the interface at the axis. With this arrangement, the
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grid transformation is schematically shown in Fig. 6.2

>

'L^

L

Figure 6.2: Grid system for a melting within an isothermal cylinder

Considering the transformed plane, one can easily define the boundary con-

ditions, the two vertical sides are adiabatic, the bottom is isothermal and the top

is the moving interface.

6. 3 MATHEMATICAL MODEL AND BOUNDARY CONDITIONS

The governing equations for the melting of a vertical cylinder within the isother-

mal enclosure are the same as those we have discussed in the previous chapters.

We need not repeat them here. The only differences are again the boundary

conditions.

According to the grid system shown in Fig. 6. 2, the transformed boundary
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conditions in the transformed plane are

^ = tm in and ^ = ^

. =0, ^
9^- ^
u=0

11 = Tfmir,

U=Q;

^=0;

^=^%-»?y^;

r) == r]max

v=o;

0=1

(7=0; V=0;

^ = 0; 0=0

^ = rj^ - r]yU^\

where the no-slip boundary condition is imposed on the surface of the enclosure

and the interface. A full slip boundary condition is imposed on the symmetry

axis.
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6.4 RESULTS AND DISCUSSION

The computation is started assuming that there exits a very thin melt layer around

the cylinder inside of the enclosure. After r ^ 0, the melting front begins moving

inwards from the surface of the enclosure. Fig. 6. 3(a) shows that at the early

time, r = 0.01, the melting is in the conduction mode. The melting front moves

uniformly inward from the surface of the enclosure. The isotherms at the top

and bottom of the cavity are horizontally parallel to the heated surface of the

enclosure, no flow convection exists. In the melt layer near the vertical wall

of the cylinder, there exists a flow motion because of the nonuniformity of the

temperature distribution between the heated wall and the solid-liquid interface.

The isotherms in the region are still parallel to the heated surface due to the

conduction dominated situation.

As the melt layer becomes thicker as in Fig. 6. 3(b), the Benard convection

appears. Because the flow motion in the side region always exists, the onset of the

convection at the bottom region is activated quite early by the convection in the

side region. As a consequence, the Rayleigh number for the onset of convection is

much smaller than for the melting with bottom heating alone. Here, we found that

the internal critical Rayleigh number, defined in the previous chapter, is about

830.

At the later time r = 0. 03, the convection becomes stronger and two Benard

cells are formed in the bottom region as shown in Fig. 6. 4(c). As the melt

continues, the Benard cell at the right grows faster and stronger than the left one.

Therefore, the left cell is pushed leftwards and shrinks until it disappears. The

whole procedure can be seen from Fig. 6.4(c) ~ Fig. 6. 5(f). This phenomenon

has been observed in the melting of a vertical cylinder heated from the bottom.
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In order to observe the heat transfer rate from each side, we plot the average

Nusselt numbers in Fig. 6.6, where Nui, denotes the Nusselt number at the bottom

of the cylinder, Nus, at the side wall and NUT, at the top. From Fig. 6. 6, we

can find that the average Nusselt numbers on all the surface decrease at the

beginning when the conduction is dominant. After some time, the variations of

the Nusselt numbers become different. The Nusselt number at the top of the

cylinder decreases monotonically to zero. This is because the convection flow

moves upwards from the bottom, along the side wall where the fluid is heated and

the temperature gradient decreases. As the melt liquid region becomes larger, the

melt region at the top of the cylinder becomes an isothermal zone as shown by

the isotherms in Fig. 6. 5(f). The fluid is cooled when it flows downwards along

the interface. Therefore, the Nusselt number tends to zero as the temperature

gradients vanish. The Nusselt number at the bottom surface increases after the

onset of the convection in the bottom region. The variation of the Nusselt number

at the side wall is between those at the top and the bottom wall.

The computation is also performed at the higher Rayleigh number Ra == 10 .

From Fig. 6. 7(a), we find that the Benard cell already appears. The corresponding

internal Rayleigh number is about 1000. Because of the stronger convection in

the side region, the convection mechanism is activated and begins the convection

motion much earlier than in the previous case. Fig. 6. 7(a) ~ 6. 9(f) describe the

whole process of melting. One can clearly observe how the Benard cells grow,

shrink and disappear. The average Nusselt numbers are plotted on Fig. 6. 10.

The Nusselt number at the top surface decreases to zero much faster than for

the case Ra = 10 , due to the stronger convection. The Nusselt numbers at the

bottom surface show the influence of the strong convection. For the beginning,

the usual decrease is observed. After the onset of the convection, the Nusselt
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numbers increase until they reach their maximum values and then decrease again.

The oscillation of the Nusselt number at about T = 0.025 may be caused by the

reorganization of the cell configuration a sudden change of the Benard cell, as

shown from Fig. 6.8(c) to Fig. 6. 8(d). Typically, the variation of the molten

volume fraction with time has been plotted in Fig. 6. 11.

6. 5 SUMMARY

The melting within an isothermal cylindrical enclosure incorporates the phenom-

ena of the top heating, the side heating and the bottom heating problem. The

heat transport from the top surface is essentially due to conduction. The Nus-

selt number at the top surface decreases monotonically to zero as the melt region

increases, which means no vertical heat exchange at the top region after the con-

vection is fully developed. The highest heat transfer rate is formed at the bottom.

The melting at the bottom region developed almost the same way as that of a

vertical cylinder heated from the bottom.

The onset of the convection in the bottom occurs much earlier than that in

the standard case due to the induction by the convection of the side region.
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(a) T=0.01

I

i I
1 i

(b) T=0. 02

Figure 6. 3: Isotherms and flow pattern of melting with -Ra= 1 x 105 atr= 0. 01

and 0. 02.
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\( Oj 0
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(c) T=0. 03

6

(d) T=0. 04

Figure 6. 4: Isotherms and flow pattern of melting with Aa=l x 10 atr= 0. 03

and 0. 04
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(e) T=0. 05

0

(f) T=0. 06

Figure 6. 5: Isotherms and flow pattern of melting with Ra= Ix 105 &tr = 0. 05

and 0. 06.
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(a) T=o.oo4

I

I I
1 i

(b) T=0. 01

Figure 6. 7: Isotherms and flow pattern of melting with -Ra = 1 x 106 at T = 0. 004

and 0. 01.
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10 0

(C) T=0.02

I

6

(d) T=0.03

Figure 6. 8: Isotherms and flow pattern of melting with ^a= 1 x 106 atr= 0. 02

and 0. 03
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(e) T=o. 04
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(f) T=0.05

Figure 6. 9: Isotherms and flow pattern of melting with Ra == 1 x 106 at r = 0. 04

and 0.05.
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Chapter 7

A NUMERICAL STUDY OF THE MELTING

OF ICE IN A VERTICAL CYLINDER

In recent years the problem of ice melting has been treated by many investigators

because of its occurrence in nature as well as its direct applications in industries.

Due to the anomalous thermal expansion of water at about 4 G, flow re-

versal may occur in the melt region, resulting in a minimum heat transfer rate.

The peculiar nature of the maximum density phenomenon was first investigated

by Tkachev[72]. By using photographic techniques he found a minimum Nusselt

number for an ice cylinder melting at 5. 5°C'. A horizontal ice cylinder immersed in

water was studied both theoretically and experimentally by Saitoh[23]. He found

that when the temperature was about 6°C', the Nusselt number attained its mini-

mum value. For the same case, three-dimensional thermal instability was studied

by Saitoh and Hirose[73]. They found thermal instability in the temperature range

between 5.5°C' and 6. 5°C>.

By using a theoretical method, Merk[74] predicted a minimum Nusselt num-

ber for a melting sphere at 5. 31°C'. Experimental works by Dumore et a1[75]

generally supported Merk's analysis. The same study was carried out by Vanier

et al. [76], who found a minimum Nusselt number at 5. 35°Cf.

Herrmann et a1[51] studied experimentally the influence of density inversion
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on the melting of ice around a heated horizontal cylinder. They pointed out a

critical condition for the melting process at T^ = 8 C': for Tu, > 8 C natural

convection occurs mainly in the upper region of the melt while for Tu, < 8 C',

melting occurs in the lower part. Ho and 0hen[50] studied the same case numeri-

cally. They found that the minimum heat transfer rate does not always occur for

Tv, == 8°Cf, which is contrary to the results obtained by Herrmann.

Heat transfer during melting of ice confined within a heated horizontal cylin-

der was studied experimentally and theoretically by Rieger et al. [47]. Two inner

diameters of the cylinder were considered. For both radii, heat transfer reached

their minimum in the proximity of Ty, = 8°C>.

To our knowledge, no literature has been published so far on the melting

of a vertical ice cylinder. The present work was focused on the influence of the

inversion of density on the melting profiles, isotherms and flow patterns, and heat

transfer and melting rates for wall temperature varying between 0° and 10°C'.

7. 1 GOVERNING EQUATIONS

The physical problem is schematically pictured in Fig. 7.1

An ice cylinder of height H and radius ro is initially at its fusion temperature.

At time t = 0, the temperature at the surface of the cylinder is raised, and

maintained at a fixed value Tv, > Tj. As a consequence, the ice cylinder will

melt inward. The mathematical formulation of this problem is based on the same

assumptions as in the previous chapter, except for that the variation of fluid

density with temperature is nonlinear.
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adiabatic ice cylinder

melt

...

I ."". ..,
..: ;S:;l:B:SSS:;:B®:;:i^

m .

; 1111111111^^. III

heat

adiabatic stream lines

Figure 7. 1: Schematic diagram of the physical problem

With those assumptions, the system of governing equations are

Continuity equation:

9(ru) , 9{rv)
9r 9z (7. 1)

Momentum equation:
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9u , 9u, 9u l9p , , 92u . l9u , Q2u u
~Qt ~9T+VJz=~~p9r+v{Jr:2Jr~rjr+^~^' (7. 2)

9v , 9v , ^ l9p , , 92v , l9v , 92v, , _^^ ^ ^ ,"
ft +ufr +vf. =-^+''c9^+lrfr +'^)+S^MT-T'r (7'3)

Energy equation:

QT 9T QT , 92T 19T Q2T^
:^T + u^+v^ = Q(^7 + ^:F + ^)9t ' W9r ' u Qz <9r2 r 9r 9z2 (7. 4)

Because of the nonlinear variation of the density of water with temperature,

the buoyancy force is expressed by a polynomial series, which means that the

source term becomes nonlinear.

Energy equation at the ice-water interface:

9T , 9n
kJn = phTt (7. 5)

After introducing the dimensionless variables and stream function, the sys-

tern (7. 1)-(7. 4) can be written as

QUJ , 9(U^) , ^(Va;) ^_^2 ^ ^ , r,._^
ste^ +~-W+~^T= pr'v2u - ^'+ prS a"^~

90n
'. 9R (7. 6)

v^^- (7. 7)

-4^^-^ (7. 8)
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and the interface energy equation becomes

- 1" = ^ (7. 9)
~Qn~^r u-s

The appropriate boundary conditions are

0 =. 1 ^ = 0 a^ r = 1

Q=Q ^ = 0 along S,

^-=0 ^=0 at z=0, A

The source term in the vortidty transport equation is nonlinear due to the

nature of water density, a^ and (3n are coefficients of the nonlinear expansion,

which can be determined as will be shown in the following section.

7. 2 INVERSION PARAMETER

To describe the nonlinear variation of water density with temperature, an approx-

imate relation in the range of 0° to 10° C> can be used in the following form:

p=p^[\-^T-T^} :7. 10)

Introducing some reference variable with subscript r, the relation becomes

p=pA\-2^{T-T^-^(T-T^} (7. 11)
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where

pr = ^[i-/?(r, -r^)2]

A = MTr-Tm)

02 = ^/[i-/3(r. -^)]

For the present case of water, we need to define two parameters

Rai =

Rdf ==

g^rl^-T,}
av

~3(T _rp\2g^{T^ - T^
av

(7. 12)

(7. 13)

The source term in the vorticity transport equation (7. 6) then becomes

-^^r- (7. 14)

Introducing an inversion parameter

7=
Rai
2?02

m - -tr _
T7Z

u» -t r

(7. 15)

Eq. (7. 6) can be written as

2Pr, R^Pr^=2PrR^-, +^ (7. 16)

Hereafter, instead of Ra^ and Ra-^, we shall use 7 and Ray, and the subscript

2 will be omitted for the sake of clarity.
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It is worth nothing that if 7 is positive, the source term will act qualitatively

as in a normal fluid. If 7 is negative, it can greatly reduce and even "reverse" the

buoyancy force. If we choose the reference temperature Tr = Tf = 0, the range

of 7 is confined to-oo <7 < 0. Since 6 is defined asO <^ ^ 1, the source

term becomes negative for 7 < -1, introducing a buoyancy force in an opposite

direction to that of a "normal fluid". For -1 <7 < 0, the source term can be

either positive or negative depending on the dimensionless temperature 0 within

the melt region. Thus, two counter-rotating vortices can appear within the melt

region at the same time, corresponding to the phenomenon of flow reversal.

7. 3 TRANSFORMED EQUATIONS

In order to perform all the computations in a fixed domain (if, rj), (if, 77), the phys-

ical variables have to be transformed into functions with independent variables ^

and 77. Using x and y instead of R and Z as independent variables in the physical

plane, the transformed equations become

Ste^+0^+V^=Pr^+S. (717)

v2^ = ^ (7. 18)

S^^, y9^^, s.
' QT ' ~ 9(, ' ' Q-q

and the equations for the moving interface are

(7. 19)
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9x

Qr

9y
Qr

-Mt.
'^'

-wf.,
~^y

(7. 20)

(7. 21)

where U and V are contravariant velocities expressed as

u=^u+^v

V=r{,U+ rjyV

(7. 22)

(7. 23)

and

u =

v =

s. =

></> =

Se =

V2 =

1^^^.^
yyt^r]yvt,}

_1^^+,^)
~^I'^^T1X^)

S^^ ̂ ^^^- ̂  + 2P^(, + ^a4 + ,^)
Q^ ' 'IT9r]' . ^x ^

i&f+"^)-a:u

stt^^

7^ ' 'IX971/

)2
,11^4-2<712^-+<722-

9e^^"9^^g"9^
>l^o9-^1-^9-
'9(+v9r]+x{^22^i+^+^+i(^+^)

Q

'9ri}

The transformed boundary conditions are
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^ = ^.n : ^ = 0;

v=o;

0=0;

^=0;

^=^ma. : U= 0;

y=o;

0=1;

^=0;

^=^- ^ ^=^v, -^u^

TI == r]min and r) = rjr,

<7 = 0; V = 0;

^=0;

^ = r]xV^ - riyUr,;

g^0^g^=Q

7. 4 RESULTS AND DISCUSSION

The simulations were carried out with an isothermal boundary condition. For all

cases, the Rayleigh number is chosen as 7 x 105, with an aspect ratio A = 2. 0.

The other parameters are given in Table 7.1
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Table 7. 1: Control Parameters

Parameters 4°(7 60G 8°C> 10°C'

7 -1. 0 -0. 667 -0. 5 -0.4

Pr 11.5 10.55 10.0 9.4

Ste 0.05 0. 75 0. 10 0. 125

Fig. 7.2 displays the velocity profiles, streamlines and isotherms for the case

Tv, = 4°C. The figure shows a unicellular flow pattern, with a larger melt region

in the lower part of the cylinder. This is due to the fact that the water near the

cylinder wall has a higher density than that near the interface; thus water near the

cylinder wall moves downwards while relatively lighter water near the interface

moves upwards. This circulation behavior is opposite to that of normal fluid.

For the case of T^ = 6 C in the Fig. 7. 3, a dual cell flow occurs. As

the water with maximum density is located somewhere in the melt region, two

counter-rotating circulations are formed. Since the maximum density at 4°C is

closer to the cylinder wall than the interface, the inner circulation is stronger than

the outer one. Thus, the melting near the bottom is faster than near the top of

the cylinder.

For the case of Ty, = 8°C in Fig. 7. 5, the maximum density line is located

approximately in the middle of the melt region. Thus, the inner and outer circu-

lations have almost a same intensity. In the early stage of the melting, the melt

front is almost vertical as shown in Fig. 7.4. As the melting proceeds, the melting

of both the top and bottom regions becomes faster than that in the middle region.
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For the case of T^ = 100(7 in Fig. 7. 6, the maximum density moves towards

the interface and the outer circulation is much stronger than the inner. The

melting profiles are similar to those of a normal fluid except for the presence of a

counter-rotating circulation in the lower part of the cylinder.

The heat transfer rates are plotted in Fig. 7. 7, which shows a maximum

Nusselt number at T^ = 4 Cf and a minimum at Ty, = 8 C'. This means that

a unicellular circulation in the melt is more efficient in carrying heat from the

heated wall to the interface while a flow reversal significantly reduces the heat

transport. The variation of the molten volume fraction in Fig. 7.8 shows that

the melting velocity has a maximum value when T^ = 4°Cf and a minimum value

when T^ = 8°C>.

7. 5 SUMMARY

The melting process of a vertical ice cylinder has been studied numerically. The

results show that flow and heat transfer can be strongly affected by the inversion

of density. In the temperature range considered, the maximum Nusselt number is

obtained at 4°C', and the minimum at 8°C'
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Chapter 8

CONCLUSIONS AND

RECOMMENDATIONS

A numerical method capable of handling a phase-change process has been devised

to model melting in a vertical cylinder with different boundary conditions. The

governing equations for the phase-change problem have been developed in curvi-

linear coordinates. The body-fitted coordinate system was employed to deal with

complex geometries and a moving boundary. The transformed equations were dis-

cretized by the conventional finite difference approach on the transformed plane.

The convective terms were treated by the second-order upwind scheme.

The computations have been carried out for several cases: melting outward

from a vertical cylinder .imbedded in the phase-change material, inward melting

within a vertical cylinder, melting in a vertical cylinder with density inversion,

melting in a vertical cylinder by heating from the bottom and melting within an

isothermal cylindrical enclosure. From this comprehensive analytical study it is

concluded that:

. The coordinate transformation has shown its flexibility and effectiveness in

handling an irregular domain for a moving boundary problem.

. The "quasi-static" and "smooth interface" approximations can significantly
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affect the shape and the velocity of melting profile in the computations,

especially at the later times when natural convection becomes dominant.

. Based on several kinds cases of melting in/around a vertical cylinder, natu-

ral convection was shown to play a very important role during the melting

process. Therefore, the predictions for the melting process based on the con-

duction mode can significantly differ form those taking into account natural

convection.

. Study on the melting of ice in a vertical cylinder has shown that the den-

sity inversion can significantly influence the melting process. The single cell

circulation affects the effectiveness of heat transfer. The counter-rotating

circulation reduce the heat transfer rate. In the temperature range consid-

ered in this study, there exists a maximum and a minimum heat transfer

rate. They occur at 4°C and 8 respectively.

. Melting with the bottom heating shows the Benard convection. It has been

found that the cells near the symmetry axis are always engulfed by the one

next to t. The shape of the melting front and the local Nusselt number

profile oscillate with time. The critical Rayleigh number for the onset of

convection is 2197.

. In the case of a melting within an isothermal enclosure, the previous three

types of melting are interacting. The highest heat transfer rate is found at

the bottom wall. The heat transfer rate at the top of the cylinder becomes

vanishingly small as the melting progresses.

Because of the time limit, the present research are mainly focused on the

melting process without considering heat conduction in the solid. As a matter
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of fact, melting with a subcool in the solid occurs quite often in practice. A

comprehensive study for melting taking into account heat conduction in the solid

will be the subject of a future research.

In the present research, we have taken advantage of the symmetry of a cylin-

der, where we ensure that the flow in the melt layer is two-dimensional. In the

case of a very high Rayleigh number, a three-dimensional flow or Benard ceUs

may occur as the melt layer become larger. In the study of this case, a complete

three-dimensional formulation should be adopted.
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Appendbc A

TRANSFORM RELATIONS IN

COVARIANT SCALE FACTORS

The general transformation from a physical plane (a;, ?/) to a rectangular

plane (^rj) is given by

^ ^x, y)

T) r](x, y)

The Jacobian matrix for this transformation is as follows

(A. l)

^1=
^ ^

r{x T]y

The inverse function or transformation of (1) is given by

(A. 2)

x x(^, r{)

y y(^ri)

The Jacobian matrix of (3) is

(A. 3)
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J2=
x^ x^

V^ Vn

The Jacobian determinant is

(A. 4)

J = ^e<[J2]

x^ - x^

The Jacobian matrices (2) and (3) are related by

(A. 5)

^ = W-1

i. e.

^ ^ i yr; -a;»;

J

^ ^ -y$ 3-e

which implies the relations below:

(A. 6)

(A. 7)

^ =

^ =

r)x =

^y =

y. lJ

-Xr, IJ

-yUJ

X^J

(A. 8)

(A. 9)

(A. 10)

(A. ll)
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Using the chain rule, the transformation relations are

where

fx = (.Vr, h - y^fn)IJ (A. 12)

fy == (-Xr, f^+X^)/J (A. 13)

fxx 
= (yr, f^-2y^yr, f^+yy^)/J2

+ [(^y« - ^y^r, + yjyw)(^/$ - 2-s/r,)

+(y^ - 2y^x^ + y^)(y^ - y, f^} /J3 (A. 14)

/.. = [x^-2x^f^^xy^ij

+ [(X2,y^ - 2^^y$r, + ^y^)(xr, f^ - x^)

+(x^ - 2x^x^ + x^)(y^ - y^)] /J3 (A. 15)

V2/ = g^f^-2g^f^+gnf,rin

+ [(522-C^ - 2^12^ + gnx^){y^f^ - y^f^)

+{922V^ - 2^12^ + ffll^)(^/$ - X^fr,)} /J3 (A. 16)

ffii = .cJ 4- 2/J

922 =x2, +y2,

(A. 17)

(A. 18)
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9i2 = x^x^ + y^ (A. 19)

The relations between ga and gjj are

^u=w^2

^22=w^2

912 = -9.. /J2

(A. 20)

(A. 21)

(A. 22)

The time derivative can be transformed as below:

5/
QT

x,y

5(a-, y, /)^(2;, y, r)
9{^rj, r)'9(^r], r)

Xr{f^-fr, y^) , y^hX r, 
- fr, X^)

frk,r, ~ ""^ --+"- ^ (A. 23)

The unit vector normal to a line of constant ^ is given in covariant scale

factors as

I If 1 -

nv"=^iw-'z:7'J (A. 24)

and for a line of 77 = constant as

n^=
V9^

(-^i + x^) (A. 25)

Gradient of a scalar / is
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V/ = [{y. h- y^)\ + (^/, - ^/s)J]/^ (A. 26)

Directional derivatives become

9f
Qn

5/
Qn

\^=const. J\/922

=n. V/=^
n=const.

(ff22/f-5rl2/^)

(9llfr, - 912 f^)

(A. 27)

(A. 28)
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UPWIND SCHEMES

Upwind schemes for approximating the convection terms.

(a) First-order upwind:

u
Q<j>

'9x
= u

^i - <t>i-\
A.T

== u
. (/>,+! - <f>i

Aa-

2A.r

(b) Second-order upwind.

^^^w, -\4^^
2A.Z;

A<

for u > Q

for u <Q

(B. l)

u
^

'Qx
= u.

3^-4^_i+^-2
2Aa: for u> Q

= u
-(l>i+2 +4<f>i+l - ^i

2Ax for u < 0

|u|+u^ lul+u^ , 2[u|
!>>-2 - -T-<{'i-l +4Aa; A.C 3A.r"; Ax

\u\-u^ , \u\-u
i>'+l + ' , 'A " ^'+24Aa; (B. 2)

(c) Third-order upwind:
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u
Q<j>

'9x
= u

^^.+i + 3<^. - 6^-i + ^. _2
6Aa;

for u> 0

= u
-<t>i+2 + 6<l>i+l - 3<?i>. - 2<^._i

6Aa;
for u < 0

|u| + u

12Ax
|u| + 2u , , ]u| , \u\-2u, , |u[-u

'-2 - 1~3A;''A-1 + 2S;^ - "3A.:~A+I + ^ST-Ai+2 <B-3>

(d) QUICK:

u
Q(^>
9x

= u
3^i+i + 3<i;i>, - 7(l>i_i 4- <^,_2

8Az for u > 0

= u
-<t>i+2 + 7^i+l - 3<f>i - 3^,-i

SAa- for u < 0

\u\+u^ 2|u|+5u^ , 3|u| , 2|u|-5u, , \u\ - u^-' - ""8A7°*- + 1SA - WLW^+ ̂ ^ 'B-4)16A.C SAa;

To summarize the schemes described above, a general form can be written

as follows

u
Q(J)
Qx = Au^.. _2 + Bu<^. _i + Cu^ + £>u^i + ^"^-+2 (B. 5)
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TDMA AND PDMA METHODS

C. l ALGORITHM FOR A TRIDIAGONAL SYSTEM

The equations to be solved must be of the form

A,.c;_i + BiXi + C', a;,+i = Di (C. 6)

The matrix for these equations are

.min <^m«n

Lm«n+l -"mm+l '~^m»'n+l

<^min

. ^min+l

min

'mi'n+l

max -t-'ma.r X, D.

The algorithm for solving this tri-diagonal matrix is listed below

Pi =
B. =
A =

A,/5. _i
Bi - C, -,P
A-A-iP

maxl J-'m.a.x

i = min + 1, min + 2, - . -, max

x, = (D, -x,^d)/Bi

i = max - 1, max -2, - . ., min

A subroutine for solving a tridiagonal matrix is listed in Appendix D.
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C. 2 ALGORITHM OF A PANTA-DIAGONAL SYSTEM

The equations to be solved must be of the form

A. a;, _2 + B,-a;,_i + C'. a;, + A-a-. +i + ^. a;, +2 = F, (C. 7)

The matrix for these equations are

.

mm -^min -t-'min

'min+1 l-/min+l -L7mm+l -c'm«n+l

Lmin+2 ^min+2 ^'min+2 -Dmin+2 -^'min+2

2'min

^-mi'n+l

xmin+'2

man

min+1

F,min+2

Lmaz-l ljmax-l ^max-1 l^max-l

Cr,

The algorithm for solving this matrix is listed below

p

Q

c,
Di
Fi
-s.+l
C'i+1

^. +1
max

max

.^ma-r

.^max-l

Xi

^max-1

^max

F,max-1

= B, IC^
== A.+i/C'. -i
= d-D. ^P

Di - E.^P
Fi - F. -iP

= 5,+i-A-iQ
= Q+i - £'1-1 <3
= F^-F^Q

'max ^'max-l^-'max/'^max-1

max ~~ .lmax-lljmax/^'max-l

maxl '-/max

max-1 -xmax^max-l)/^'max-1

z = min + 1, mm +2, - . ., max - 1

= (F, - D, * x,+, - E, * a;..+2)/C'.

i = max - 2, max - 3, - . ., min

^
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PROGRAM LIST

D. l SUBROUTINE OF TDMA

c

c

c

c

c

10

20

SUBROUTINE TDMA(A, B, C, D, MIN,MAX,N)

I THIS SUBROUTINE IS TO SOLVE A TRIADIAGNAL MATRIX |
I A(I)*X(I-1)+B(I)*X(I)+C(I)*X(I+1)=D(I) |
I D ARRAY CONTAINS THE RESULTS OF X I
==============s==========a==========a=sa=s;===========

IMPLICIT REAL*8 (A-H, 0-Z)
DIMENSION A(N), B(N), C(N), D(N)
MINP1=MIN+1
DO 10 I=HINP1, MAX
P=A(I)/B(I-1)
B(r)=B(I)-C(I-l)*P
D(I)=D(I)-D(I-1)*P
D(MAX)=D(MAX)/B(MAX)
DO 20 II=MINP1, MAX
I=MAX+MIN-II
D(I)=(D(I)-D(I+1)*C(I))/B(I)
RETURN
END
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D.2 SUBROUTINE OF PDMA

c

c

c

c

c

c

10

20

SUBROUTINE PDMA(A, B, C, D,.E, F, MIN, MAX, N)

I THIS SUBROUTINE IS TO SOLVE A PENTADIAGONAL METRIX |
I A(I)*X(I-2)*B(I)*X(I-1)+C(I)*X(I)+D(I)*X(I+1) J
I +E(I)*X(I+2)=F(I) j
I A ARRAY CONTAINS THE RESULTS OF X

IMPLICIT REAL*8 (A-H, 0-Z)
DIMENSION A(N), B(N), C(N), D(N), E(N) , F(N)
MAXM1=MAX-1
MINP1=MIN+1
DO 10 I=MINP1,MAXM1
P=B(I)/C(I-1)
Q=A(I+1)/C(I-1)
C(I)=C(I)-D(I-1)*P
D(I)=D(I)-E(I-1)*P
F(I)=F(I)-F(I-1)*P
B(I+l)=B(I+l)-D(I-l)*q
c(i+i)=c(i+i)-E(i-i)*q
F(I+l)=F(I+l)-F(I-l)*q
CONTINUE
P=B(MAX)/C(MAXM1)
C(MAX)=C(MAX)-D(MAXM1)*P
F(MAX)=F(MAX)-F (MAXM1)*P
A(MAX)=F(MAX)/C(MAX)
A(MAXM1)=(F(MAXM1)-A(MAX)*D(MAXM1))/C(MAXM1)
MAXMIN=MAX-MIN
DO 20 I=2,MAXMIN
K=MAX-I
A(K)=(F(K)-D(K)*A(K+1)-E(K)*A(K+2))/C(K)
CONTINUE
RETURN
END
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D.3 SUBROUTINE FOR GRID GENERATION

c

c

c

c

c

570

580

c

500

650

SUBROUTINE GRIGEN(N, M, X, Y, P, Q)

I THIS SUBROUTINE IS TO SOLVER AN ELLIPTIC I
I GENERATING SYSTEM FOR NONORTHOGONAL GRIDS I
I P AND q ARE THE GRID CONTROL FUNCTIONS |

IMPLICIT REAL*8 (A-H, 0-Z)
DIMENSION X(N, M), Y(N, M), P(N, M), Q(N, M)
KMAX=300
RELAX=1.2
RELG=1.0-RELAX
DO 500 J=1,M, M-1
DO 500 1=1,N
IF (I. EQ. l. OR. I. EQ. N) GOTO 570
XXI=0. 5*(X(I+1, J)-X(I-1, J))
YXI=0. 5*(Y(I+1, J)-Y(I-1, J))
XXI2=X(I+1, J)-2. *X(I, J)+X(I-1, J)
YXI2=Y(I+1, J)-2. *Y(I, J)+Y(I-1, J)
GOTO 580
IF (I. EQ. l) THEN
XXI=0. 5*-(-3. *X(1, J)+4. *X(2, J)-X(3, J))
YXI=0. 5*(-3. *Y(1, J)+4. *Y(2, J)-Y(3, J))
XXI2=0. 5*(-7. *X(1, J)+8. *X(2, J)-X(3, J))-3. *XXI
YXI2=0. 5*(-7. *Y(1, J)+8. *Y(2, J)-Y(3, J))-3. *YXI
ELSE

XXI= 0. 5*(3. *X(N, J)-4. *X(N-1, J)+X(N-2, J))
YXI= 0. 5*(3. *Y(N, J)-4. *Y(N-1, J)+Y(N-2, J))
XXI2=0. 5*(-7. *X(N, J)+8. *X(N-1, J)-X(N-2, J))-3. *XXI
YXI2=0. 5*(-7. *Y(N, J)+8. *Y(N-1, J)-Y(N-2, J))-3. *YXI
ENDIF
G11=XXI*XXI+YXI*YXI
P(I, J)=-(XXI*XXI2+YXI*YXI2)/G11
P(I, J)=-XXI2/XXI

CONTINUE
DO 600 1=1, N, N-1
DO 600 J=1,M
IF (J. EQ. l. OR. J. EQ. M) GOTO 650
XETA=0. 5*(X(I, J+1)-X(I, J-1))
YETA=0. 5*(Y(I, J+1)-Y(I,J-1))
XETA2=X(I, J+1)-2. *X(I, J)+X(I, J-1)
YETA2=Y(I, J+1)-2. *Y(I, J)+Y(I, J-1)
GOTO 670
IF (J. EQ. l) THEN
XETA= 0. 5*(-3. *X(I, 1)+4. *X(I, 2)-X(I, 3))
YETA= 0. 5*(-3. *Y(I, 1)+4. *Y(I, 2)-Y(I, 3))
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XETA2=0. 5*(-7. *X(I, 1)+8. *X(I, 2)-X(I, 3))-3. *XETA
YETA2=0. 5*(-7. *X(I, 1)+8. *X(I, 2)-X(I, 3))-3. *XETA
ELSE
XETA= 0. 5*(3. *X(I, M)-4. *X(I, M-1)+X(I, M-2))
YETA= 0. 5*(3. *y(I, M)-4. *Y(I, M-l)+Y(I, M-2))
XETA2=0. 5*(-7. *X(I, M)+8. *X(I, M-1)-X(I, M-2))-3. *XETA
YETA2=0. 5*(-7. *X(I, M)+8. *X(I, M-1)-X(I, M-2))-3. *XETA
ENDIF

670 G22=XETA*XETA+YETA*YETA
Q(I, J)=-(XETA*XETA2+YETA*YETA2)/G22

C Q(I, J)=-YETA2/YETA
600 CONTINUE

DO 900 1=1,N
DO 900 J=1,M
RJ1=FLOAT(M-J)/FLOAT(M-1)
RJ2=FLOAT(J-1)/FLOAT(M-1)
RI 1=FLOAT(N-I)/FLOAT(N- 1)
RI2=FLOAT(I-1)/FLOAT(N-1)
P(I, J)=RJ1*P(I, 1)+RJ2*P(I, M)
q(I, J)=RIl*Q(l, J)+RI2*Q(N, J)

900 CONTINUE
DO 1000 K=1, KMAX
ERRX=0.0
ERRY=0.0
DO 100 1=2, N-l
DO 100 J=2,M-1
XXI=0. 5*(X(I+1, J)-X(I-1, J))
YXI=0. 5*(Y(I+1, J)-Y(I-1, J))
XETA=0.5*(X(I, J+1)-X(I,J-1))
YETA=0. 5*(Y(I, J+1)-Y(I, J-1))
XXI2=X(I+1,J)+X(I-1,J)
YXI2=Y(I+1, J)+Y(I-1, J)
XETA2=X(I,J+1)+X(I,J-1)
YETA2=Y(I, J+1)+Y(I,J-1)
XXIETA=0. 25*(X(I+1, J+1)-X(I+1, J-1)-X(I-1, J+1)+X(I-1, J-1))
YXIETA=0. 25*(Y(I+l, J+l)-Y(I+l, J-l)-Y(I-l, J+l)+Y(I-l, J-l))
G11=XXI*XXI+YXI*YXI
G22=XETA*XETA+YETA*YETA.
G12=XXI*XETA+YXI*YETA
XTEMP=0. 5*(G22*(XXI2+P(I, J)*XXI)+Gll*(XETA2+q(I, J)*XETA)

/ -2. *G12*XXIETA)/(G11+G22)
YTEMP=0. 5*(G22*(YXI2+P(I , J)*YXI)+G1I*(YETA2+Q(I, J)+YETA)

/ -2. *G12*YXIETA)/(G11+G22)
XTEMP=RELAX*XTEMP+RELG*X(I,J)
YTEMP=RELAX*YTEMP+RELG*Y(I,J)
ERRD=AMAX1(ERRX, ABS(XTEMP-X(I, J)), ERRY, ABS(YTEMP-YCI,
X(I, J)=XTEMP ' ' ' -"-"-'----- -'.
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ERRD=DMAX1(ERRX, DABS(XTEMP-X(I, J)), ERRY, DABS(YTEMP-Y(I, J)))
X(I, J)=XTEMP ' ' --''---'--- --'.
Y(I, J)=YTEMP

100 CONTINUE
IF (ERRD. LT. 1E-5) GOTO 1050

1000 CONTINUE
WRITE(6, 22)

22 FORMAT(//, 5X, '*** NOT CONVERGNE GRIDS ***')
WRITE(6, 9) K, ERRD

9 FORMAT(/, 5X, 'ITERATION=', I3, 5X, 'ERR=', Ell. 4)
1050 RETURN

END
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D. 4 SUBROUTINE FOR CALCULATING THE SCALE FACTORS

c

c

c

c

20

30

40

50

SUBROUTINE METRIC(X, Y, N, M,XIX, ETAX, XIY, ETAY, G, G11, G22. G12, P, Q)

I THIS PROGRAM IS TO COMPUTE ALL THE METRICS I
I FOR THE TRANSFORMATION |

IMPLICIT REAL*8 (A-H, 0-Z)
DIMENSION X(N, M), Y(N, M), P(N, M), q(N, M)
DIMENSION XIX(N, M), ETAX(N, M), G11(N, M), G(N, M)
DIMENSION XIY(N, M), ETAY(N, M), G22(N, M), G12(N, M)
DATA EPS/1E-6/

DO 10 1=1,N
DO 10 J=1,M
IF (I. EQ. l. OR. I. EQ. N) GOTO 20
XXI=0. 5*(X(I+1, J)-X(I-1, J))
YXI=0. 5*(Y(I+1, J)-Y(I-1, J))
GOTO 30
IF (I. EQ. l) THEN
XXI=0. 5*(-3. 0*X(1, J)+4. 0*X(2, J)-X(3, J))
YXI=0. 5*(-3. 0*Y(1, J)+4. 0*Y(2, J)-Y(3, J))
ELSE
XXI=0. 5*(3. 0*X(N, J)-4. 0*X(N-1, J)+X(N-2, J))
YXI=0. 5*(3. 0*Y(N, J)-4. 0*Y(N-1, J)+Y(N-2, J))
ENDIF
IF (J. EQ. l. OR. J. EQ. M) GOTO 40
XETA=0.5*(X(I, J+1)-X(I,J-1))
YETA=0. 5*(Y(I, J+1)-Y(I, J-1))
GOTO 50
IF (J. EQ. l) THEN
XETA=0. 5*(-3. 0*X(I, 1)+4. 0*X(I, 2)-X(I, 3))
YETA=0. 5*(-3. 0*Y(I, 1)+4. 0*Y(I, 2)-Y(I, 3))
ELSE
XETA=0. 5*(3. 0*X(I, M)-4. 0*X(I, M-1)+X(I, M-2))
YETA=0. 5*(3. 0*Y(I, M)-4. 0*Y(I, M-1)+Y(I, M-2))
ENDIF
IF (XXI. LT. EPS) THEN
XXI=0.0
ENDIF
IF (YXI.LT. EPS) THEN
YXI=0.0
ENDIF
IF (XETA. LT. EPS) THEN
XETA=0.0
ENDIF
IF (YETA. LT. EPS) THEN
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YETA=0.0
ENDIF
G(I, J)=XXI*YETA-XETA*YXI
XIX(I, J)= YETA/G(I, J)
XIY(I, J)=-XETA/G(I, J)
ETAX(I, J)=-YXI/G(I,J)
ETAY(I, J)= XXI/G(I, J)
G1KI,J)= XIX(I,J)* XIX(I,J)+ XIY(I,J)* XIY(I, J)
G22(I, J)=ETAX(I,J)*ETAX(I, J)+ETAY(I,J)*ETAY(I, J)
G12(I, J)= XIX(I, J)*ETAX(I, J)+ XIY(I, J)*ETAY(I, J)
P(I, J)=P(I, J)*G11(I,J)
Q(I, J)=q(I, J)*G22(I, J)
CONTINUE
RETURN
END
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