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SOMMAIRE 

Cette thèse est consacrée à l'étude du phénomène de convection 

naturelle durant le processus de fusion de la glace dans une couche 

poreuse horizontale. Les trois aspects fondamentaux de ce problème 

ont été traités successivement, soit la convection pénétrante, la con

vection avec double diffusion, et la convection en présence du change

ment de phase. L'accent a été mis sur la détermination des conditions 

critiques de l'apparition du mouvement convectif, la prédiction de la 

longeur d'onde, et l'évolution des cellules convectives. L'étude consiste 

à établir d'abord un modèle mathématique comprenant les équations 

de Darcy-Boussinesq et l'équation de fermeture de Pomeau-Manneville. 

Cette dernière représente la condition nécessaire pour obtenir une solu

tion unique qui représente l'écoulement physiquement observable. 

Pour traiter le problème de convection pénétrante, on a considéré 

une couche d'eau froide entre la surface de la glace et une autre couche 

plus chaude qui est le siège de la convection naturelle. La couche d'eau 

froide joue alors un rôle déstabilisant. Pour le problème de convection 

avec double diffusion, on a considéré le cas d'une concentration de sel 

avec un gradient négatif qui sert d'agent stabilisateur. Dans les deux cas 

on a observé le phénomène d'instabilité souscritique dont l'existence n'a 

pas été prévue par la théorie de stabilité linéaire. Dans le processus de 

la fonte de la glace, l'écoulement et le transfert de chaleur au sein du 

fluide sont caractérisés par des périodes de transition très courtes. Ces 
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dernières conduisent à des cellules de convections plus larges et des taux 

de transfert de chaleur plus élevés. 

Les effets de pénétration du fluide chaud dans une couche froide 

ont été déterminés en fonction des paramètres caractéristiques tels que le 

nombre de Rayleigh et le paramètre d'inversion. Les effets de la double 

diffusion, c'est à dire du couplage entre les transferts de chaleur et de 

masse, ont été déterminés en fonction du nombre de Rayleigh et du 

nombre de Schmidt. 

Pour le problème de convection avec changement de phase, l'effet 

de la frontière mobile qu'est l'interface liquide-solide a été étudié en 

déterminant l'évolution du champ d'écoulement, la position et la vitesse 

du front de fusion, la distribution de température et le taux de transfert 

de chaleur en fonction du nombre de Rayleigh ,  du nombre de Stéfan 

ainsi que des conditions de sous-refroidissement de la glace. Les résultats 

obtenus sont présentés sous forme d'isothermes et de lignes de courant, 

ainsi que de courbes donnant les longeurs d'onde et les taux de transfert 

thermique et massique en fonction des paramètres gouvernant. 

Les résultats ont été obtenus par la simulation numérique basée sur 

la résolution du modèle mathématique par les techniques des différences 

finies et spectrales. 



ABSTRACT 

This thesis reports on the results of a numerical investigation into 

three important aspects of the melting of ice in a horizontal porous 

layer. In particular, the penetrative convection, the double diffusive 

convection and convection with a change of phase have been studied and 

the results reported. Attention has been focused on the critical point 

defining the onset of convection, the selection of the preferred wavenum

ber and the evolution of the flow pattern in an axisymmetric system. 

ln an unbounded horizontal porous layer, it was shown that a unique 

flow pattern, with a preferred wavenumber may be predicted by the 

closure equation proposed by Pomeau and Manneville. ln penetrative 

convection, the layer of cold water adjacent to the melting front has a 

destabilizing effect. ln double diffusive convection, the negative solute 

gradient has a stabilizing role. ln both cases, subcritical instabilities 

have been observed with wavenumbers lying outside the neutral linear 

stability curve. ln convection with a phase change, the flow pattern 

and heat transfer rate have been observed to evolve continuously, with 

some abrupt transient periods interrupting the melting process. This is 

followed by larger convection cells and higher heat transfer rates. Ef

fects of penetration into the stable layer, solute concentration and phase 

change processes on the convective flow and heat transfer, have been in

vestigated in terms of the appropriate governing parameters, namely the 

thermal and solute Rayleigh numbers, the Schmidt number, the Stefan 

number, and the inversion parameter. 

The results have been obtained by numerical methods based on 

finite difference and spectral-finite difference techniques. 
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CHAPTER I INTRODUCTION 

1.1 Review of Literature 

Natural convection heat transfer can significantly affect the energy 

transport processes in nature as well as in engineering systems. For 

example, convection dominates in stars wherever radiation is not suf

ficiently strong. It warms the earth atmosphere by upward transfer of 

heat absorbed at ground. Convective motions are responsible for much of 

the mixing of water masses in the oceans, and it is believed that thermal 

convection is the cause of most tectonic processes in the earth's crust, in

cluding the phenomenon of continental drift. In industrial applications, 

natural convection enters in various forms and creates a continuing de

mand for a better understanding of its properties in nuclear reactors, in 

crystallization processes, in solar heating devices, etc .. 

While a great amount of fondamental knowledge, data and cor

relations has been accumulated during the last few decades, convec

tive flow and heat transfer cannot still be predicted with enough ac

curacy for many systems of interest. This is due to a number of dif

ficulties, including unbounded domains, complex interactions involving 

multi-component heat and mass transfer, moving boundaries, etc .. Of 

course, beyond all these difficulties lies many a hazardous route leading 

to the ultimately fascinating domain of turbulence. One of these routes 
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has been proposed by Landau (1944) some forty years a.go, who conjec

tured that the transition to turbwence consists of the development of 

successive instabilities with an increasing number of characteristic fre

quencies (like the bifurcation of branches and leaves in a tree) until the 

flow becomes chaotic which is of course the fondamental characteristic 

of turbulence. 

A phenomenon which encompasses all the above mentioned prob

lems is the natural convection in a horizontal layer of fluid heated from 

below. This so-called Bénard problem (narned after the French physician 

who first studied it experimentally) is without any doubt one of the most 

attractive test grounds for studies in convective flow and heat transfer. 

The history of natural convection in a horizontal layer may be traced 

back to the beginning of this century when Bénard (1900) heated a thin 

layer of spermaceti oil from below, and observed the famous hexagonal 

flow pattern. Thereafter, it was demonstrated that if the buoyancy force 

is stronger than a certain value, convection in the form of a cellular pat

tern will set in or else the fluid remains motionless. The critical values 

when convection sets in, the size of the cell and the transport properties 

of the convective flow have been the subjects of numerous studies. In 

1940, Pellew and Southwell (1940) published a paper entitled "On main

tained convective motion in a fluid heated from below", which solved 

the critical stability problem. They found that the critical Rayleigh 

number (i.e. the ratio of buoyancy forces to the viscous forces) was 
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about 1708 while the value of the corresponding wavenumber was 3.117 

(nearly square cell) for the case of two rigid horizontal boundaries. A 

classical review of the critical stability problem is presented in the book 

by Chandrasekhar (1961). Since then, all efforts have been devoted to 

both theoretical and experimental studies of the convection form after 

the onset of motion, with as yet, no unifi.ed results. The difficulties 

lie in the fact that the evolution of the convection form is completely 

dependent on the initial state of the system. However, while linear sta

bility theory predicts that a finite band of wavenumbers is possible for 

a given Rayleigh number above the critical value (as shown in Fig. 1.1), 

Koschmeider and Pallas (1969), Pocheau and Croquette (1984), Willis 

et al. (1972) and Chen and \Vhitehead (1968), demonstrated that a 

unique wavenumber would exist under certain conditions. McDonough 

and Catton (1982) numerically showed that the heat transfer rates cal

culated using the observed wavenumbers are in good agreement with the 

measured values. Schluter, Lortz and Busse (1965) proved theoretically 

that only two-dimensional convection rolls are realizable in the range of 

lower Rayleigh number. It is based on the notion that the real physical 

world is full of noises and an observable phenomenon should be the one 

that can stand these noises, otherwise it will be replaced quickly. This 

stability criterion greatly reduces the range of possible steady solutions 

which, however, still form an infinite set contained 'vvithin the so-called 

stability balloon (Busse, 1967) as shown in Fig. 1.2. The question of 

wavenumber selection is therefore still open. 
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In the classic Bénard problem discussed above, only one unstable 

layer of fluid is involved. In nature, there often exists multi-layer systems 

where convection that arises from an unstable layer can penetrate into 

an adjacent stable layer and drive it into motion. Examples can be found 

in the areas of geophysical fluid dynamics, meteorology, oceanography 

and astronomy (Veronis, 1963): 

In the atmosphere bounded below by the ground ( or the ocean), 

the air layer is heated by solar radiation and becomes gravitationally 

unstable. vVhen convection occurs, the warm air is carried aloft into 

regions that are stably stratified. 

In the ocean, evaporation is the primary physical process which gives 

rise to instabilities near its surface. As the cool surface water convects 

downwards, it also penetrates into regions that are stably stratified. 

In stars, the surface layer is stable. At some distance from their 

surface, the increase in temperature due to adiabatic compression causes 

negative hydrogen to form. The latter is opaque to photons. The tem

perature gradient therefore rises to a value greater than the adiabatic 

gradient, making the region unstable. Depending on the type of star, 

this superadiabatic gradient can extend far into the interior to a point 

where the very high temperature causes the gas to become cornpletely 

ionized and the gradient is no longer superadiabatic. An unstable layer 

is formed, with stable fluid both above and below. 
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The onset and evolution of the flow pattern and heat transfer in 

such systems can be quite different from the case of a single fl.uid layer 

and should be regarded with special attention. Most studies on this 

subject focused on the onset of convection, and on the development of 

flow pattern in enclosures, i.e. with fixed wavenumber. The question of 

wavenumber selection still remains untouched. 

In the past three decades, considerable attention has been direded 

to the problem of double diffusive convection. A saltwater layer con

fined between two infinite planes is a typical example. In this kind of 

flow, more than one solute component is involved and can make opposite 

contributions to the vertical density gradient. The competition between 

their contributions to the density gradient, and the large difference be

tween their diffusivities (for example, about 1/80 in the thermohaline 

system) lead to some 'new phenomena which are not observed in pure 

Bénard convection. For instance, it is found that convection can appear 

in the form of narrow "fingers" even when the net density decreases up

wards, as in the case of a saltwater layer heated from above, if a positive 

salinity gradient is present. For the case of heating from below with a 

negative salinity gradient, oscillations can arise since heat diffuses much 

faster than salt. The oscillation could be explained by simply noting that 

if a parcel of saltwater is displaced upward, it will loose more heat than 

salt since its thermal diffusivity is about eighty times higher than the 

diffusivity of salt, and it will be heavier than its surroundings because of 

the negative salinity gradient. The buoyancy force will therefore drive 
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it back towards its initial position with a speed faster than it leaves, be

cause of the lag in temperature between the parcel and its surroundings, 

thus producing an oscillation. 

Much of the theoretical work in this field has developed directly 

from the linear stability analysis for a fluid layer heated from below. 

ln order to explain experimental observations, many works have been 

made of stability and flow regimes in the nonlinear region by Veronis 

(1965, 1968), Hupper and Moore (1976), Toomre et al. (1982), etc. ln 

all these studies, the wavenumbers were not selected according to any 

closure equation, but were supposed known a priori. 

So far, the foregoing review considers only convective flows between 

fixed boundaries. There exists another class of problems where the flow 

is driven within a moving boundary. The simplest physical description of 

the phenomenon is a solid mass that, under the influence of external heat 

sources, undergoes a phase change and forms a layer of liquid melt that 

coexists with the remaining solid phase. The subsequent evolution of the 

two phases will essentially depend on the behavior of the net heat transfer 

to the system. Earlier studies on this problem considered conduction as 

the only heat transfer mechanism during the phase change process. More 

recently, an increasing number of studies have been devoted to the studies 

of convective flow and heat transfer in the liquid phase as it has been 

found that conduction is dominant only at the very early stage of the 

melting process. The major difficulties in solving this type of problems 
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are due to the fact that one has to deal with an essentially transient 

flow in a continuously changing domain. The interplay between the 

convective flow and the liquid-solid interface movement is one of the most 

complicated and fascinating subjects in heat transfer. This domain is still 

wide open, and much work needs to be clone to arrive at a comprehensive 

and unified description of the flow patterns and heat transfer rates during 

the w'hole phase change process. Recent literature reviews on this subject 

may be found in the articles of Viskanta (Viskanta, 1983, 1985). 

In the context of this thesis, all the topics discussed above, namely 

the wavenumber selection, the penetrative convection, the double diffu

sive convection and convection with a phase change, have been studied 

for the case of a porous layer heated from below and will be presented 

in the following chapters. 
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Let us consider a horizontal porous layer saturated with an incom

pressible fluid. The fluid can be multi-component, such that two ( or 

more) stratifying agents can affect its density. A specific example is that 

of a layer of soil saturated with saltwater. 

Suppose that the fluid within the porous layer has been completely 

frozen to a temperature below its freezing point T,. At time t = 0, 

let the lower boundary of the layer be heated to a temperature n > 

Tt while the upper boundary is kept at a constant temperature Tu < 

Tt . As a consequence of this heating, a liquid layer is formed whose 

thickness increases as the melting progresses in time, until a steady state 

is attained in which the heat input through the lower boundary is equal 

to the heat loss through the upper boundary ( which is maintained at a 

temperature below the fusion temperature ). As the thickness of the melt 

layer increases, convection can set in and greatly influence the melting 

process, as heat transfer is then controlled not only by conduction but 

more and more by convection. If some solute is present in the fluid, the 

convective flow and heat transfer may also be significantly affected. 

For the specific case of melting of ice within a porous medium, 

another phenomenon which can influence the convective heat transfer 

is the inversion of density of cold water in the melt region, giving rise to 

penetrative convection. 
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To solve the problem of the melting of a layer of frozen soil, we have 

studied the following four aspects: 

(1) The Preferred Convection Pattern: This question arises when the

layer is unbounded in the horizontal direction (the aspect ratio

length /height >> 1). ln fact, it is well-known that convection rolls

will arise in such layer, but their horizontal size is not known a

priori, and must be found according to some closure equation.

(2) The Penetrative Convection: This type of convective flow arises due

to the fact that cold water in the 0°G to l0°
C temperature range

presents a peculiar behavior: its density increases between 0° G to

4°C and then steadily decreases. The maximum density at 4° C has

the consequence ofcreating a stable layer of cold water (between 0°G

, to 4° C) overlying the unstable hotter layer ( ab ove 4°C) in which the

convective motion is induced, which then penetrates into the upper

stable layer. This problem is not only typical of cold water, but also

occurs in other systems as discussed earlier.

(3) The Double Diffusive Convection: ln the presence of a solute gra

dient such as salt, the problem of mass transfer is coupled to the

heat transfer through the density-induced flow. Influence of such

coupling on the preferred flow pattern and heat transfer is still an

unsolved aspect of the problem which needs to be investigated.

(4) Convection with a Moving Boundary: During the melting process,
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the convection regime is limited to the liquid phase, i.e. cold water. 

The main difficulty that characterizes this problem lies in the fact 

that the flow domain is bounded by a moving surface, namely the 

solid-liquid interface, whose form and melting speed are not speci

fied, but have to be solved as one of the unknowns of the problem. 

Attention has to be focused on the onset of convection and the evo

lution of the flow pattern and heat transfer rates as the melting 

proceeds. 

These four aspects of natural convection within a porous layer 

heated from below are not only closely related to the physical situation 

of a layer of frozen soil, but each one clearly represents in its own right 

an important research topic in the domain of convective heat transfer. 

Each topic has therefore been studied separately, and presented inde

pendently in the following sections so that the results ohtained may be 

applied to other systems where only one effect, or some combination of 

them is relevant. 

1.3 General Mathematical Formulation 

1.3.1 The Forchheimer-Darcy Boussinesq Equations 

Most studies of convective fl.ow and heat transfer in porous media 

are based on the framework of Darcy's law which substitutes for the mo

mentum equation in fluid dynamics and was formulated after numerous 

experimental observations (Darcy, 1856). 
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Darcy's law, however, does not correctly describe the flow field when 

the local Reynolds number based on the mean pore diameter is of order 

1 or greater, as inertial forces then become comparable to the viscous 

forces, and can significantly reduce hoth the velocity and thermal bound

ary layer thicknesses, broaden the temperature distribution and decrease 

the heat transfer rate. Modelling the inertial forces in a porous medium 

is a delicate task with an uncertain result. The simplest and perhaps 

most popular model is due to Forchheimer with a quadratic term of the 

form IVIV which makes the momentum equation a nonlinear one. This 

Forchheimer-Darcy equation will be presented here, and will be applied 

in a later section to solve the classical Bénard problem in order to eval

uate the effects of inertial forces and thereby to assess the validity of 

the Darcy model that will be used (within its validity domain) ·in the 

subsequent studies presented in Chapter II and Chapter III. 

vVithin the Forchheimer-Darcy and Boussinesq approximation, the 

following assumptions will be adopted: 

- The saturated fluid and the porous matrix are incompressible.

The porous medium is homogeneous, isotropie and in thermal equi

librium with the saturated fluid. 

All physical properties of the medium, except the fluid density that 

gives rise to the buoyancy force, are taken to be constant and inde

pendent of the temperature. 
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The diffusion of vorticity from a boundary is negligible. 

All boundaries are impermeable. 

Viscous dissipation is negligible. 

The system of equations ( usually referred to as the Forchheimer

Darcy- Boussinesq Equations) governing the fl.uid fl.ow and the heat and· 

mass transfer then consists of 

1- The continuity equation

2- The momentum equation

(1.2) 

3- The energy equation

8T 
o-at +V· (VT - cxrVT) = 0 (1.3) 

4- The mass diffusion equation

as 
<p

8t 
+ \7 · (VS- CX8\7S) = 0 (1.4) 

5- The state equation

(1.5) 
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where V, P, p, T and S represent the velocity, pressure, density, 

temperature and solute concentration, respectively. Other parame

ters g, µ, À
n are the gravitational acceleration, viscosity and ther

mal expansion coefficients of the fluid, J{ is the permeability of the 

porous medium, a and ar are the heat capacity ratio and thermal 

diffusivity of the fluid-saturated medium. C the empirical parame

ter in the inertial term has a value of approximately 0.55 according 

to Chen (1979), <p and a
8 

are the porosity and molecular diffusivity 

of the solute. 

It should be noted from Eq.(1.2) that the term µ/ I<V is the Darcy 

force, pg is the buoyancy force while cK-1/2plVIV is the Forchheimer

one that accounts for inertial effects. At first sight, the Forchheimer force 

(which is absent in the original Darcy's equation), seems negligible com

pared to the Darcy force when the Reynolds number based on 1{ 112 does 

not exceed 0(1 ). ln fact, a more sophisticated criterion will be developed 

in the next section. It should also be noted that the foregoing equations 

are written for the primitive variables V, P, T and S. In subsequent 

studies concerning specifically two-dimensional flows, a vorticity-stream 

fonction formulation will be used which has the advantage of eliminating 

both the pressure term and the continuity equation. 

1.3.2 The Closure Equation 

ln an unbounded horizontal fluid layer heated from below, spatially 
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periodic convection rolls can be observed when the Rayleigh number ex

ceeds a certain critical value. Linear stability theory, however, predicts 

that a whole band (i.e. an infini te set) of wavenumbers at a given super

critical Rayleigh number is possible ( as in Fig. 1. 1 ). In other words, for 

an infinite layer, ( or for a large aspect ratio (length/height) cavity ), the 

foregoing system of equations admits an infinite number of possible so

lutions. However, experimental observation indicates that only a single 

wavenumber out of this spectrum is selectively amplified and dominates 

the convection. How and why this preferred wavenumber is selected still 

remains an open question. 

In order to obtain a unique solution, one needs to find a closure 

equation based on some physical ground. To this end, Malkus (1954) 

proposed a maximum heat transfer principle, which stated that the re

alizable convection form should be the one giving the maximum heat 

transfer rate. This quite plausible principle, unfortunately, does not 

agree well with experimental data. 

Glansdorff and Prigogine (1971) proposed a global non-equilibrium 

thermodynamic stability condition from a generalization of the minimum 

entropy principle, the application of which required some experimental 

data. Georgiadis and Catton (1986) applied this principle to the Bénard 

convection in a porous layer and obtained not a unique, but two convec

tion patterns for a given Rayleigh number. 

Another approach was proposed by Pomeau and Manneville (1981) 
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who succeeded in determining a unique wavenumber for Bénard convec

tion in both a fluid and a porous layer. Their approach may be considered 

as a geometric one: By considering an axisymmetric horizontal layer, 

they argued that the preferred convection rolls must be able to survive 

the constraint of small curvature imposed by an axisymmetric system 

which is considered as a geometric perturbation of the straight convec

tion rolls. Mathematically, this idea leads to a condition of solvability 

which serves as a closure equation for the prediction of the preferred flow 

pattern. The formulation of this constraint can be explained as follows: 

Let us suppose that the flow is axisymmetric with an axisymmetric 

constraint imposed on the system as shown in Fig.1.3. The curvature 

effect (e = 1/r) is assumed to be very small at a position far from the 

point of symmetry. The number of solutions P(O) = (cp0 , T0) with

out the curvature constraint are infinite as stated before. The idea of 

Pomeau and Manneville (1981) is that the solutions P( e) = ( <p, T) with 

the constraint should be slightly different from those of the infinite set 

( cp0
, T0) as the constraint, i.e. €, is small. Mathematically, P( e) is at 

least a continuous fonction at € = 0, and 

(1.6) 

In order to simplify the description that follows, the homogeneous 

equations of the governing system Eq.(1.1) to Eq.(1.4) are rewritten in 

compact form using the polar coordinates as 
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A(E)P = 0 (1.7) 

where A(E) is the differential operator, P the vector with components '-P 

and T, and E = 1/r the small curvature. 

The unknown variable P and the differential operator A are subse

quently expanded in a series of E as follows: 

P =Po+ EP1 + 0(E2) (1.8) 

A(E)P = AoPo + E(A1P1 + NPo) + 0(E2) (1.9) 

where the operator A1 includes all linear terms related to P1, while 

nonlinear terms are included in NP0 . Eq. 1.7 can thus be ordered as : 

AoPo = 0 

A1P1 = -NPo 

(1.10) 

(1.11) 

The zero-th order equation (1. 10) describes the convection in an infinite 

horizontal porous layer and possesses a multitude of solutions at super

critical Rayleigh numbers. The first order equation (1.11), however, will 

admit a solution only if its solvability condition is satisfied, since it is 

a linear non-homogeneous equation with a nonzero kernel. It can be 

stated that Eq.(1.11) is solvable if the non-homogeneous part NP0 is 

perpendicular to any solutions of the adjoint equation of Eq. (1.11), i.e. 

f(a) =< Pi,NPo >= 0 (1.12) 
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where < *, * > denotes the inner product in L2 space, A! the adjoint 

operator of A1 , and Pi the solutions of the adjoint equation 

(1.13) 

Any given wavenumber a that satisfies the solvability condition f(a) = 0 

is called the preferred wavenumber, and the solution associated with this 

wavenumber is called the selected solution, which is realizable under the 

curvature constraint. Thus Eq.(1.12) serves as a closure to Eq.(1.10). 

1.4 Methods of Solutions 

From the above discussion, it follows that the zero-th order equation 

(1.10) should be solved first with a given wavenumber. To judge if the 

obtained solution is the "real" one, equation (1.12) should be evaluated, 

after having solved the adjoint equation (1.13). In the following, two 

methods, the spectral-finite difference method and the finite-difference 

method will be used to solve the zero-th order and the adjoint equations 

and an iterative procedure will be given to coordinate the whole system. 

1.4.1 Linear Stability Analysis 

vVithin the context of linear stability theory, P is expanded in the 

following Fourier series 

N1 

c.p = L 'Pk sin(brz) sin(mrr)
k=l 

(1.14) 
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N1 

T = LTk sin(brz) cos(œrrr) (1.15) 
k=I 

These expressions are substituted into the linear part of Eq.(1.10) that 

finally results in the algebraic system of the form 

(1.16) 

where L is a matrix, belongs to RNJ xN, and is a fonction of Rayleigh 

number Ra as well as the wavenumber a. The neutral stability curves 

may, therefore, be determined by 

JL(Ra, a)= Determinant of (Li,j) = 0 (1.17) 

1.4.2 Spectral-Finite Difference Method 

Since we are looking for a periodic solution in the radial direction 

with wavenumber a, the spectral approximation by Fourier expansion 

is used in this direction. By observing the parity of the momentum 

equation and the energy equation in Eq.(1.10), solutions of the zero-th 

order equations can be chosen, for the homogenized boundary conditions, 

as: 

N1 

c.p = L'Pk(z)sin(a1r(k - l)r) 
k=I 

N1 

T = LTk(z)cos(a1r(k- l)r) 
k=l 

(1.18) 

(1.19) 
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Substituting these expressions into Eq.(1.10) and applying the general 

Galerkin procedure to these equations results in a two-point boundary 

value ordinary differential system. A central difference operator coupled 

with a relaxation technique is then used to solve these equations in the 

vertical direction. For a given wavenumber, the tp's are solved from the 

momentum equation, the T's are subsequently obtained from the energy 

equation by using the new '-P, then '-P is recalculated with the new T's 

.... This procedure is repeated until the maximum absolute difference 

between the solutions obtained in two consecutive steps was less than 

some tolerance (10-4 in this study). The numbers of Fourier terms 

Ni and grid points N
9 

required to satisfy the accuracy criterion were 

obtained by numerical tests. It was found that Nt = 13 and N
9 

= 51 

were sufficient to provide accurate results in the range of parameters 

considered in this study. 

The solutions to the adjoint equations are obtained m a similar 

fashion by expanding Pi = (F, G) as 

N1 
F = I:Fk(z)cos(a1r(k- l)r) 

k=l 

N1 
G = L Gk(z) sin(mr(k - l)r) 

k=l 

1.4.3 Finite-Difference Method 

(1.20) 

(1.21) 

The spectral-fini te difference method transforms the partial differen

tial equations into a group of ordinary differential equations. This task 
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can be tedious when nonlinear terms are involved: the Forschheimer 

term in the momentum equation is such an example that will be dis

cussed later. The finite-difference method has its advantages for such 

situations. 

In the finite difference method, the governing equations are written 

in conservative form, and the power law scheme (Patankar, 1980) is ap

plied to obtain the discretized equations. The discretized equations are 

solved using a line under-relaxation iteration technique. At each iter

ation step, c.p is first improved by solving the momentum equation and 

the current T is corrected from the energy equation using the improved 

c.p values. The iteration is continued until the maximum absolute differ

ence between the solutions obtained in two consecutive iteration steps is 

smaller than a given tolerance. It was found that a grid of 51 * 51 points 

was sufficient to provide accurate results, say, for a given tolerance of or

der 10-4
• The solutions P1 to the adjoint equation (1.13) were obtained 

in a similar manner. 

1.4.4 Iteration Procedure for the Wavenumber Selection 

For a group of given physical parameters in the system, the zero-th 

order equation (1.10) and the adjoint equation (1.13) are solved using 

either of the above methods with an initial guess for the wavenumber 

a, f(a) is evaluated from the solvability condition (1.12). The secant 

method is used for pr�iding an updated estimate of the wavenumber 
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as follows: let the superscript n denote the iteration counter and fn 
=

f(an ), then 

(1.22) 

This iteration is repeated until the residue between two consecutive it

eration steps is smaller than a given tolerance which is of order 10-4
•

Convergence is usually achieved, within 4 to 6 iteration steps. 

1.5 The Bénard Problem Revisited 

Let us consider the problem of natural convection in a fluid satu

rated layer heated from below. Most of the literatures on this subject 

has been devoted to convective heat transfer in enclosed spaces subjected 

to various types of boundary conditions. For example, Poulikakos and 

Bejan (1985) and Prasad and Tuntomo (1987) have studied the case of 

a rectangular cavity with adiabatic horizontal walls and differentially 

heated isothermal sicle walls. Poulikakos (1985) considered the same 

problem with sicle walls subjected to a uniform heat flux. A more re

cent reference, on the subject of Prandtl number influence on natural 

convection in a porous layer heated from sicle, can be found in the arti

cle of Wang and Bejan (1987). AU these studies lead to the conclusion 

that inertia forces can significantly influence the heat transfer as well as 

flow velocity if the Prandtl number is "small" and the Darcy number is 

"large". 
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For a layer of infinite extent, the scale of the convection pattern 

( wavenumber) is still unknown. ln this section, we will investigate the de

pendence of the preferred wavenumber on parameters such as the Darcy 

and Prandtl numbers that are related to the inertia effects. To the au

thor's knowledge, this.question has been considered only by Georgiadis 

and Catton (1986) who have investigated the Prandtl number effect on 

Bénard convection in a porous layer by including both the Brinkman and 

Forchheimer terms in the Darcy-Boussinesq formulation. To determine 

the preferred wavenumber, they proposed a clos ure based on the theory 

of non-equilibrium thermodynamics of Glansdorff and Prigogine (1971). 

Their results showed that inertia effects can become important when the 

Prandtl number is small and the Darcy number is large, in agreement 

with the results obtained by previous authors in the case of sicle heating. 

However, it was found that 

1) The Glansdorff-Prigogine principle, when applied to the

Brinkman-Forchheimer-Darcy-Boussinesq formulation, leads to two pos

sible wave-numbers instead of a unique one as found by Somerton et al. 

(1983) using the same principle for the case of a porous layer governed 

by the Brinkman-Darcy-Boussinesq formulation (i.e., in the absence of 

inertia forces). 

2) The predicted wavenumber increases with increasing Prandtl

number contrary to the tendency observed in a pure fluid layer by Buell 

and Catton (1986) where the geometric principle of Pomeau and Man

neville (1981) was used. 
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3) The predicted wavenumber was only qualitatively rather than

quantitatively in agreement with the data of Jonsson (1984). 

From these results, it seems that the inclusion of inertial effects 

does lead to some "confusion". A more definitive study is necessary to 

determine if indeed the inclusion of the Forchheimer term is the cause 

of the ambiguity or if it is the result of the closure principle employed. 

The present section was focused therefore on the formation of Bénard 

cells under the effects of inertia forces by using the Forchheimer-Darcy

Boussinesq formulation with the principle of Pomeau and Manneville 

(1981) to determine the preferred wavenumber. A comparison with the 

theoretical results of Georgiadis and Catton (1986), and with the avail

able experimental data of Jonsson (1984) was made to assess the validity 

of the various formulations. 

Consider the Bénard convection and heat transfer in a porous 

medium including the inertia effect, as shown in Fig.1.4. The conven

tional state equation (1.5) for this problem takes a linear form 

p = Po [ 1 - >.r(T- To)] (1.23) 

The two-dimensional axisymmetric dimensionless equation may be ex

pressed as 

(1.25) 
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using the stream fonction c.p and the following scales 

V= V* /(ar/D) 

T = (T* -Tu)/�T 
(1.26) 

r = r* /D 

z = z*/D 

one obtains two dimensionless parameters in the dimensionless governing 

system, Ram and Tm which are defined as 

Ram = Ra*Da (1.27) 

and 
CDa112

(1.28) Tm= 

Pr 

where the Rayleigh number Ra, the Prandtl number Pr and the Darcy 

number Da are defined as 

Ra* = 
>-.rg�TD3

var 

Pr= 
ar

KDa = 
n2

Tm is a parameter characterizing the inertial force. 

(1.29) 

(1.30) 

(1.31) 

The details of the ordered equations and the solvability condition 

are given in Appendix 1. 1. A fini te difference method was used to solve 

the zero-th order and adjoint equations, since the nonlinearity of the 
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added Forschheimer term made the manipulation long and tedious if the 

spectral-finite difference method was used. 

The empirical parameter C was taken to be 0.55 as suggested by 

Cheng (1979). Five typical values of Tm, namely, O., 0.00111, 0.0035, 

0.0065 and 0.028, were chosen in this study. It is worth noting that the 

solutions with Tm = 0 are iden:tical to those without the inertia effect. 

The preferred wavenumbers are presented in Fig.1.5. One can see 

that they decrease monotonically as Rayleigh numbers Ram increase. 

The wavenumbers selected with the inertia effect involved are greater 

than those without it and, finally, approach them as Tm is small. The 

difference between them is negligible when Tm becomes smaller than 

about 0.0011 in the range of Rayleigh number less than 160. The case 

of Tm = 0.0065 is equivalent to that investigated by Georgiadis and Cat

ton(1986) and Jonsson(1984) in steel-water. For comparison, the present 

results and those obtained by previous authors are shown in Fig.1.6. The 

Nusselt numbers versus Rayleigh numbers Ram are drawn in Fig.1.7 

which indicates that the heat transfer monotonically increases as Tm de

creases and, when Tm is very small, say about 0.00111, approaches the 

limiting case of no inertia effect. The streamlines and isotherms with and 

without inertia terms are also presented in Fig. 1.8. As can be expected, 

the flow and heat transfer rates are reduced by inertia effects, i.e. when 

Tm is increased. 

From the results presented above, the following conclusions may be 
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drawn: 

1) By using the concept of slightly curved rolls in an axisymmet

ric configuration, it was possible to uniquely determine the preferred 

wavenumbers as a fonction of Rayleigh number. It was found that the 

preferred wavenumber decreases (i.e. the convective cells become larger) 

as the Rayleigh number is increased, in agreement with the tendency 

observed in the experiments of Jonsson(1984). It should be remem

bered at this point that Georgiadis and Catton(1986) have investigated 

the same problem (including the Brinkman term) using the Glansdorff

Prigogine theory of non-equilibrium thermodynamics to determine the 

preferred wavenumber, but have found two possible wavenumbers for a 

given Rayleigh number instead of a unique one as expected. By choos

ing only the values that are doser to those observed in Jonsson's ex

periments, they also predicted the tendency of decreasing wavenumber 

with increasing Rayleigh number. Quantitatively, the values obtained 

from the present computations lie midway between the results of Jons

son(1984) and those of Georgiadis and Catton(1986) (Fig.1.6). 

2) The effects of inertia forces have been investigated by using the

Forchheimer-Darcy-Boussinesq formulation so that the problem depends, 

besicles the Rayleigh number, on one additional parameter, namely r m = 

CDa1 12 / Pr. It was found that inertia effects may be neglected when 

Tm < 0.001, i.e., Pr > 550Da112
• As Tm is increased, inertia effects 

can become important. For example, for Ram = 200 the preferred 
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wavenumber increased from 2.3 to 2.6 when r m was increased from 0 

to 0.028 (Fig.1.5). The corresponding Nusselt number, on the contrary, 

decreased from 3.5 to 2.9 (Fig.1.7). These results may be interpreted in 

terms of the Prandtl numbers: For a given Rayleigh number, the pre

ferred wavenumber increased as the Prandtl number decreased. This 

tendency is contrary to that predicted by Georgiadis and Catton(1986) 

using a closure based on the Glansdorff-Prigogine theory, but in agree

ment with their results obtained for a pure fluid layer (Buell and Catton, 

1986) using the principle of Pomeau and Manneville (1981). 

3) As far as inertia effects on the preferred wavenumbers are con

cerned, the present study shows that the results predicted by the geomet

ric principle of Pomeau and Manneville are both qualitatively and quan

titatively different from those obtained using the Glansdorff-Prigogine 

theory. 

1.6 Summary 

In this chapter, the mathematical background has been laid for the 

study of natural convection in a horizontal porous layer. The system 

of governing equations and the proposed methods of solution have been 

assessed by solving the classical Bénard problem for a Non-Darcy fluid. 

It has been found that the small curvature constraint can be chosen as 

a criterion to uniquely determine the convection pattern, and inertial 

forces influences on the flow pattern and heat transfer are negligible if 
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rm < 10-3
, i.e. if the Prandtl number is sufficiently large to satisfy the 

condition Pr > 550Da112
• 



CHAPTER II CONVECTION IN AN UNBOUNDED 

HORIZONTAL POROUS LAYER 

2.1 Penetrative Convection 

2.1.1 General Description 

In natural convection phenomena, the process of thermal convec

tion often involves penetration into a stably stratified fluid. Examples 

can be found in the areas of geophysical fluid dynamics, meteorology, 

oceanography and astronomy (Veronis, 1963). 

In order to study the phenomenon of penetrative convection which 

is free of other diffi.culties and complexities encountered in the natural 

phenomena mentioned above, Furumoto and Rooth (Veronis, 1963) car

ried out an experiment in a layer of water with an upper boundary at a 

temperature below 4°C and a lower boundary at a temperature above 

4°C. In the static state the temperature gradient is constant, and the 

layer of maximum density is at the 4°C level. The fluid below 4°C is 

potentially unstable while the fluid above the 4°C level is stable. They 

observed that when convection occurs in the lower region, it is in a cel

lular form and penetrates into the stable fluid. The onset of convection, 

the wavenumber and the transport properties of the convective flow are, 

therefore, quantities being determined. The following study is devoted 
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to these subjects for the case of axisymmetric convection of cold water 

in an unbounded horizontal porous layer. 

2.1.2 Governing Equations 

It is well known that water has a maximum density at about 4°C. 

According to Coren (1966), and Moore and vVeiss (1973), the density of 

water may be approximated by the state equation 

(2.1) 

which is valid in the range 0-8°C, where À is a constant with a value of 

7.94 X 10-6 [0c1-2' and the subscript m refers to quantities at 3.98°C. 

For a layer of water-saturated porous medium confined between two 

horizontal infinite planes at a distance apart of D, and kept at constant 

temperatures Tu and Tb , respectively, as shown in Fig. 2.1, let us define 

the following dimensionless quantities 

r = r* /D 

z = z* /D 

T =(Tb + !:::i.T - z* !:::i.T / D - T*)/ !:::i.T - l (2.2) 

<p=<p*/a 

!:::i.T =n-Tu 

where all quantities are defi.ned in the Nomenclature (with reference to 

this chapter). Note in particular that <p is the stream fonction. 
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The axisymmetric conservations of momentum and energy equations 

may be expressed as 

<prr + <pzz + <pr/r - cp/r2 
+ Ra(T + 1 - Z - (3)Tr = 0 (2.3) 

with boundary conditions 

<p = T = 0, at z = 0, l (2.5) 

There are two dimensionless parameters in the system, Ra and (3, 

defined as: 

(2.6) 

and 

(2.7)_ 

respectively. 

Here (3 represents the thickness of the stable layer to the whole layer, 

for example, (3 = 0.5 means that the thickness of the stable layer is half 

of the water layer. Ra is the Rayleigh number based on the thickness 

of the whole layer and the temperature difference across the layer. The 

effective Rayleigh number, 

(2.8) 
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which is based on the thickness and the temperature difference across 

the potentially unstable layer will be used l?'ter. 

The spectral-finite difference method is used. The details of the 

ordered equations, the adjoint equation, the solvability condition and 

the related ordinary differential equations are listed in Appendix 2.1. 

2.1.3 Linear Stability Analysis 

Figure 2.2 exhibits the results from a linear -stability analysis and 

Fig.2.3 is an alternative presentation, with the wavenumber being nor

malized vs the effective Rayleigh number Rae . Note that 81r2 is the 

critical Rayleigh number for /3 = O.. It can be seen that although 

the critical Rayleigh number Ra is increased (Fig.2.2), the effective 

Rayleigh number Rae ( which is based on the thickness and the tem

perature difference of the unstable layer) decreases (Fig. 2.3) and the 

rate of change of Rae versus /3 is decreased as /3 is increased from O to 

0.5. It appears that /3 has no influence on the onset of convection as 

/3 further increases (Fig.2.3). For example, Ra� is 81r2 for /3 = 0, and 

Ra� are about 6.l81r2
, 4.771r2

, 3.921r2
, 3.761r2 and 3.767r2 for /3 values 

of 0.1, 0.2, 0.3, 0.4 and 0.5 respectively. This results from the density 

inversion effect, which <livides the water into two layers, a stable and 

potentially unstable layer near the upper and lower boundaries, respec

tively. Convection can only develop in the lower unstable layer from 

its time of inception, and the "soft" boundary reduces the rigid upper 
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boundary constraint. lncreasing the thickness of the stable layer contin

uously reduces the critical Rayleigh number, which however does not go 

to zero as the thickness of the stable layer tends to infinity, but rather 

tends to an asymptotic value. lt could be concluded, therefore, that the 

stable layer on the top of the layer has a destabilizing effect ( compared 

to the rigid boundary ). 

2.1.4 The Preferred Convection Forms 

The selected wavenumbers versus Rayleigh number Ra are presented 

in Fig.2.4 to Fig.2.9, for fJ values of O., 0.1, 0.2, 0.3, 0.4 and 0.5 respec

tively, where the dashed lines are the neutral stability curves, the dotted 

lines correspond to the points where a maximum heat transfer rate is 

achieved, and the solid lines represent the preferred wavenumbers. They 

indicate that there exists a unique convection form which can stand the 

small curvature constraint and which becomes larger (a smaller) as the 

convection becomes stronger for fixed fJ values. This tendency is the 

same as that observed by Buell and Catton (1986) for a fluid layer of in

finite Prandtl number. It should be noted that the preferred convection 

form is different from the one proposed by Malkus (1954) on the basis of 

a maximum heat transfer rate, except in the vicinity of the critical point 

where convection begins. They diverge further as convection becomes 

stronger. 

A rather interesting phenomenon can be seen by comparing Figs.2.4 
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to 2.9 that the curves of the preferred wavenumber versus Rayleigh num

bers move doser and doser to the left boundary of the neutral stability 

curve as /3 increases from /3 = 0, and finally leave the linear unstable 

region when /3 = 0.5. Also note that the curve passes through the crit

ical point only for cases when /3 is small. This may be explained from 

the finite amplitude analysis by expanding the solutions and Rayleigh 

number in a small amplitude e, for example: 

(2.9) 

where Rac is the critical Rayleigh number obtained from the linear sta

bility analysis. One can observe supercritical or subcritical instabil

ity, if R1 = 0 with R2 > 0 or R2 < 0, respectively. The subcritical 

case means that convection can set in even at some subcritical point 

Ra= Rac + e2 R2 :::; Rac where an initial disturbance with infinitesimal 

amplitude would die out according to the linear stability analysis. The 

present penetrative convection system is subcritical. It was pointed out 

(Veronis, 1963) that R2 becomes larger as /3 is increased. It may be rea

sonable therefore, to expect that the point of the preferred wavenumber 

can lie outside the unstable region predicted from the linear stability 

analysis. 

It may be speculated that there exists a nonlinear unstable region 

which indudes the linear unstable region and the subcritical unstable 

region. It may be possible that the curve of preferred wavenumber would 
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pass by the nonlinear minimum critical point, but not the linear one, as 

for cases with small /3 (Fig.2.4 and Fig.2.5 for /3 = O., 0.1, ... ). 

Figure 2.10 illustrates the average velocity profiles (average in the 

horizontal direction) for different /3 with the selected convection form. 

Here the Rayleigh number is chosen to be close to the critical Rayleigh 

number for each case (Ra � Ra
c)- It can be seen that the center of the 

convection is in a lower position and the velocity increases as /3 increases 

while a counter circulation is produced in the upper stable layer when 

/3 = 0.5. 

Fig.2.11 and Fig.2.12 show the Nusselt number versus wavenumber 

for /3 = 0.3 and 0, respectively with some different values of Rayleigh 

number, where the marks square and diamond correspond to the selected 

wavenumber and the wavenumber with a maximum heat transfer. 

Sorne typical streamline and isotherm patterns are shown in Fig.2.13 

and Fig.2.14. In Fig.2.14, there are two circulations in the vertical di

rection with the upper one much weaker than the lower one. The pen

etrative phenomenon can be seen by comparing the vertical sizes of the 

two cells, for /3 = 0.5 there. In Fig.2.13, there is only one circulation in 

the vertical direction since /3 = 0 (no stable layer on the top being in

volved). From these figures, it can also be seen that the convection cells 

are not symmetric about their center even in the absence of a stable 

layer on the top, in contrast to the results of the linear density approx

imation. It is simply due to the nonlinear relationship between density 
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and temperature of cold water. 

2.1.5 Concluding Remarks 

From the above discussion it may be concluded that a stable layer 

on the top of an unstable layer has a destabilizing influence and can lead 

to subcritical instability. The criterion of small curvature constraint 

has been successful in uniquely determining the convection form. The 

preferred wavenumber, which is not the one that yields a maximum heat 

transfer rate, decreases as Rais increased, i:e., axisymmetric convection 

cells become wider (in horizontal size) as buoyancy force is increased. 
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2.2.1 General Description 
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ln the previous section, only one fluid component was involved, and 

the instability had its origin only in the temperature gradient. ln na

ture, convective flows often involve more than one fluid component. T he 

thermohaline system is such an exarnple. ln this section, attention will 

be paid to this kind of phenomenon without involving the penetration 

(Iinear density approximation for the buoyancy term). 

Examples and applications can be found in the areas of geophysical 

fluid dynamics, o·ceanography, chemistry, astronomy etc. (Turner, 1974, 

Chen and Johnson, 1983 and Turner, 1985). For example, layers of 

5 meters thick of colder fresher water over lying warm salty water were 

found underneath a drifting ice island in the Arctic ocean (Neal, Neslyba 

and Denner 1969, 1971). ln oceans, when heated by the sun, water 

evaporates, causing a layer of salty water forms on the sea surface. 

Stern (1960) was the first to consider the case of linear opposing gra

dients ( of two properties) between horizontal boundaries at fixed concen

trations, and since then many others, including Gershuni and Zhukhovit

skii (1963), Veronis (1965,1968), and Nield (1967) have developed the 

ideas. Experiments such as the heating from below of a layer of water 

with a salinity gradient make it clear that a series of diffusive layers 
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and interface can only be properly explained theoretically using nonlin

ear theories, as the oscillatory instabilities predicted by linear theory are 

rapidly swamped by monotonie motion and convective mixing within the 

layers. Veronis (1965, 1968) has extended the stability calculations into 

the nonlinear region. Huppert and Moore (1976) tackled the "diffusive" 

system numerically and found two different solution branches, one oscil

latory and one steady. Toomre et al. (1982) have extended Hupper and 

Moore's (1976) calculation to high Rayleigh nurnbers and lower diffusiv

ity ratios. All these nonlinear analyses were based on wavenumbers that 

were not chosen according to any closure equation. 

The present section will concentrate on the wavenumber selection 

for double di:ffusive convection in a porous layer with an unstable thermal 

and stable solute stratification for an axisymmetric system. 

2.2.2 Governing Equations 

Consider a fl.uid-saturated porous medium contained between two 

infinite horizontal planes separated by a distance D. The lower plane 

is kept at constant temperature and constant concentration Tu + /j.T, 

Su + /j.S, (fj.T and /j.S are both positive), and the upper plane is kept 

at Tu , Su, respectively. According to the Darcy-Boussinesq model, the 

steady state temperature, solute concentration and velocity fields may 

be described by 
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The continuity equation 

V•V=O (2.10) 

The momentum equation 

(2.11) 

The energy equation 

V· (VT- cxrVT) =0 (2.12) 

The solute concentration equation 

V · (VS - as VS) = 0 (2.13) 

For two-dimensional axisymmetric flow, Eq.2.10 to Eq.2.13 may be rewrit

ten in the dimensionless form 

a a
2

Ôr 
('Pr+ cp/r) +

âz2
cp + RaTr - RsSr = 0

Trr + Tzz + Tr/r - 'PzTr +['Pr+ cp/r]Tz = 0

(2.14) 

(2.15) 

(2.16) 

where stream fonction cp and the following dimensionless scales were used 

V= V* /(ar/D) 

T = (T* -Tu )/ b.T 

S = (S* - Su)/ b.S 

r = r* /D 

z = z* /D 

(2.17) 
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There are three dimensionless .parameters governing the system, 

namely the thermal Rayleigh number Ra, the solute Rayleigh number 

Rs and the Schmidt number Sc, defi.ned as 

and 

respectively. 

Ra =
>..rgt::,.T J{ D 

var 

Rs = 

Àsgt::,.SKD 

var 

S - as
c-

ar 

(2.18) 

(2.19) 

(2.20) 

Ra and Rs provide the destabilizfog and stabilizing contribution to 

the system since the temperature gradient and the solute gradient are 

negative and positive upward, respectively, Sc is a parameter represent

ing the ratio of the solute and thermal diffusivities. 

In order to study the effect of the stabilizing influence of the solute 

concentration and the effect of the diffusivity ratio on the formation of 

the convection cells, results have been obtained for various values of Rs , 

and Sc : Rs = O., 10, 40, 80 and Sc = 0, 10-1/2, 2-1/2, 1. The special

case of Rs = 0 and Sc = l, is identical to Bénard convection. 

The details of the ordered equations and solvability condition and 
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the related ordinary differential equations are listed in Appendix 2.2. 

The spectral-finite difference method is used. 

2.2.3 Results and Discussion 

The selected wavenumbers versus the thermal Rayleigh number Ra

are presented in Fig.2.15 and Fig.2.16. The solute Rayleigh number 

influence is demonstrated in Fig.2.15 with a fixed Schmidt number of 

10-1/2• Comparing the curves (a), (b) and (c) in Fig. 2.15, with R
8 

= 

80, 40 and 10 respectively, it can be seen that the stabilizing parameter 

Rs makes the preferred convection cell much narrower (as Rs increases), 

especially in regions where the thermal Rayleigh number Ra is not much 

higher than the solute Rayleigh number R8 • 

The Schmidt number influence on the preferred wavenumber is il

lustrated in Fig.2.16 with a solute Rayleigh number of 40. It can be seen 

that as the Schmidt number is increased, i.e. for higher solute diffusiv

ity, the curve of preferred wavenumbers is shifted to the left, resulting 

in a more elongated flow pattern. This shifting is considerable at ther

mal Rayleigh numbers Ra a few times larger than the solute Rayleigh 

number Rs , but becomes negligible when Ra/ Rs > 5. 

These two figures also show that the preferred wavenumber de

creases as the thermal Rayleigh number increases, as has been observed 

in Bénard convection (Buell and Catton, 1986). The tendency of these 

curves indicates that the influence of the solute Rayleigh number and 
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the Schmidt number is important only at low thermal Rayleigh num

bers as should be expected. Note that in these figures, the curve of 

preferred wavenumbers for Bénard convection (i.e., in absence of solute 

concentration) is also drawn for reference. 

F ig.2.17 and Fig.2.18 are the thermal Nusselt number NuT and 

"solute Nusselt number" Nus versus the thermal Raylèigh number Ra

for the preferred convection rolls. They indicate the influences of Rs

and Sc on the heat and mass transfer, where the two Nusselt numbers 

are defined as 

and 

NuT 
= - - dr 

111/a 8T
I 

a O 8z z=O,or z=l 

Nu s = - - dr 
111/a asl 

a O 8z z=O,or z=l 

(2.21) 

(2.22) 

respectively. The Nusselt number values at z = 0 and z = l should be 

equal at the steady state. This is therefore chosen as a criterion to judge 

the convergence of the solutions. 

These figures clearly show that both the heat and mass transfer rates 

are reduced when the solute Rayleigh number or the Schmidt number 

1ncreases. 

From a linear stability analysis (Nield, 1968), it has been shown 

that the critical thermal Rayleigh number and corresponding wavenum-
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ber are Rac = 41r2 
+ Rs/ Sc and 7r respectively. Subcritical instabilities 

are possible since steady convection has been obtained at Ra = 112, 

which is much smaller than Ra
c 
= 166 for Rs = 40 and Sc = 10-1/2• In

Bénard convection subcritical instability does not exist and the curve of 

Rayleigh number versus the preferred wavenumber starts from the criti

cal point of Rayleigh number and wavenumber (Pomeau and Manneville, 

1981; Buell and Catton, 1986). In the present study, the cu-rve does not 

traverse the critical point predicted by the linear stability analysis but 

seems to originate from a wavenumber significantly greater than the lin

ear critical value 1r (Fig.2.15 and Fig.2.16); this is most probably due to 

the subcritical instabilities. 

Sorne typical streamlines, isotherms and iso-concentration lines are 

presented in Fig.2.19 for Ra = 120, R8 = 40, and Sc = 2-1/2
, 10-1/2

,

respectively. It can be observed that the boundary layers of the 'solute 

concentration become thinner, and the thermal boundary layer is thicker 

than that of the solute concentration as the Schmidt number becomes 

smaller. This can be seen from a scale analysis which indicates that 

the thermal boundary layer thickness Sr and the solute boundary layer 

thickness S 8 are related by 

(2.23) 

It is worth noting that the curves of N usselt number Nu T in Fig. 2.17 

all start at values of Nu T greater that 1.5. Lower values at lower 

-
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Rayleigh numbers could not have been obtained as we had difficulty 

in getting converged solutions. 

2.3 Summary 

In this chapter, the phenomena of penetrative and double diffusive 

convection in an infinite horizontal layer of saturated porous medium 

have been investigated. It was found that the small curvature constraint 

can be chosen as an effective criterion to uniquely determine the con

vection pattern. The stability effect (solute concentration with negative 

vertical gradient) makes the convection cell narrower, while the desta

bilizing effect ( overlying stable layer) makes the convection cell larger . 

. Both the destabilizing force produced by an overlying stable layer and 

the stabilizing force resulting from the negative solute gradient are re

sponsible for the subcritical and oscillatory phenomena. These latter 

subjects definitely deserve further investigation. 



CHAPTER III NATURAL CONVECTION WITH PHASE 

CHANGE IN A BOUNDED POROUS LAYER: 

THE MELTING OF ICE 

3.1 Introduction 

Heat transfer with a solid-liquid phase change is a topic of current 

interest in both fondamental and applied researches as well as in practical 

applications. Sorne naturally occurring examples are in the freezing and 

subsequent breakup of ice in lakes and rivers as well as in the melting 

of the upper permafrost in the Artic due to a buried pipeline. To this 

may be added several other problems relevant to the areas of soil and 

groundwater physics. Numerous technical applications, for example, in 

thermal energy storage, the design of buried heat exchangers for heat 

pump applications as well as in the food processing industry also exist. 

In this chapter, a study is made of a two phase ice water problem 

in a bounded layer saturated with a porous medium. In early work, 

convection in the melt was neglected, and some analytical solutions were 

obtained such as the classic Stefan solution. However, it has been found 

that the conduction in the liquid is the dominant mode of heat trans

fer only at the early stage of melting. Subsequently, the liquid motion 

becomes stronger and stronger and can significantly influence the heat 

transfer and the position of the interface (Boger and Westwater, 1967; 
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Gau, and Viskanta, 1985). The presence of the convective activity com

plicates analytical studies due to the fact that the moving interface is 

an unknown transient factor. Most of the available literature concen

trates mainly on cylinders and cavities with sicle heating (Beckman, and 

Viskanta, 1988; Ho and Chen, 1986; Ho and Viskanta, 1984; W'ebb and 

Viskanta, 1986; Bejan, 1989: Jany and Bejan, 1988). Recent literature 

reviews may be found in the articles of Viskanta (Viskanta, 1983, 1985). 

3.2 Governing Equations 

The physical system considered here is the melting of ice in a rect

angular cavity containing a porous medium as shown in Fig.3.1, the two 

vertical boundaries being insulated and the other two being kept at con

stant temperatures Tu and Tt respectively at times less than zero. As 

t 2: 0, their temperatures are changed to Tu and n, ,..,·ith Tu and n 

respectively smaller and larger than the fusion temperature Tt . 

Using the two dimensional Darcy-Boussinesq approximation, ne

glecting the volume change during the phase change process, the gov

erning equations can be written as 

the continuity equation 

the momentum equation 

J( 
V = - ( -v' p + pg) 

µ 

(3.1) 

(3.2) 
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the energy equation in the water region 

(3.3) 

the energy equation in the ice region 

(3.4) 

and the energy balance equation at the interface 

at x2 
= S (3.5) 

where Vn is the melting velocity of interface in the direction n normal 

to the interface. 

The nonlinear variation of density in the water layer is given as 

(Gebhart and Mollendorf, 1977) 

(3.6) 

The dimensionless governing equations can be written as 

ô 
(3.7) V2<p + Ra-lT - ,Blq = 0

Ôx1 

ôT
I 

+ V · (VT1 - VT1) = 0ôt 0:::; x2:::; S (3.8) 

ÔT
s 

- RV2
Ts = 0 ôt 

S:::; x2:::; 1 (3.9) 

and 

�! E2 · n = (-Ste1VT
1 

+ Ste8 VT
8

) • n x2 
= S (3.10) 



where the stream function-vorticity formulation 

and the dimensional scales 

are used. 

S = S*/H 

Tl 
= (Tl* - Tt)/ t::,.Tl

Ts 
= (TJ - TS*)/ 6.Ts

<p = <p* / al 

t = t* /(a 1a)H2

6.T1 =Tb-Ti
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(3.11) 

(3.12) 

The dimensionless parameters are the Rayleigh number (Ra), den
sity inversion parameter /3, the diffusivity ratio R, the Stefan numbers 
in the water (Ste1) and ice (Ste8 ) region, defined as 

Ra= Àg(6.T1rKH
va 

(3.13) 

(3.14) 

(3.15) 
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(3.16) 

As melting proceeds, a movmg interface denoted here by S(x1
, t) is 

formed. Due to the existence of this moving interface, the solid and liq

uid domains are irregular and time dependent. To avoid this difficulty, 

a curvilinear system of coordinates is used to transform the physical 

domain into a rectangular region for the computations. The transforma

tions 

and 

X
I - èl
-.,, '

x
2 

= se, 

x2 
= (1 - S)l + S, t=r 

transform the two irregular regions into two rectangles, 

0 � ç1 
< XL, 

and 

0 � T/1 � XL,

(3.17) 

(3.18) 

(3.19) 

(3.20) 

respectively. The dimensionless momentum, energy and interface energy 

balance equations may be written in the curvilinear coordinate system 

as follows: 

In the water region: 

(3.21) 



where 

a (aij B<p) R a (Jlti IT1 aiq)
8çi 8çi + a 8çi c,,x i 

- JJ 
= 

0 

gii 
= ;z9ii(-l)i+i

8x k 8x k 

9ij = ôçi ôf,i

Ûj = Uk9kj + 9jkÇ:

1 
1 

u = <pç2 JI 

2 
1 

u = -<pei JI 

In the ice region: 

where 

[/i 
= ;

8
9ij(-l) i+i

~ Ôx k Ôx k 

9ij = Ô
TJ

i Ô
TJ

j
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(3.22) 

(3.23) 

(3.25) 
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A consideration of the energy balance at the interface provides the 

following equation: 

The details of the derivation of these equations are given in Ap

pendix 3.1. 

The boundary conditions for the dimensionless stream function <p 

and dimensionless temperatures T 1 and T 8 are: 

T1 = l, <p = 0, at e2 =0 

T1 = cp = 0, at 
ç2 =l (3.27) 

TJ1 = <p = 0, at ç1 = 0, XL

and 

Ts = 0, at r,2 = 0 

Ts = -1, at r,2 = 1 (3.28) 

T;1 = o, at TJ
1 = 0, XL

Other parameters are defined in the nomenclature. For a fixed 

choice of fluid properties, the parameters j3 and Ste
1 are interrelated. ln 
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fact, they both remain fonctions of the temperature at the lower surface 

Tb . /3 although expressed as the ratio of two temperature differences, is in 

fact the thickness of the upper stable layer divided by the total thickness 

of the melt, this being the consequence of the linear conduction profile 

established prior to the onset of convection. Thus a value of /3 = 0.5 

will fix the value of Ste1 at 0.1674 and implies that the thickness of the 

upper stable layer occupies 50% of the melt region. Ste8 represents the 

influence of the steadily maintained temperature at the upper surface. 

For example, an imposed temperature of -4°C at the upper surface will 

give a Ste1 
= 0.3068 while a temperature of -8°C will yield a value twice 

as large or Ste8 
= 0.6136. The definition of the Rayleigh number Ra is 

based on the height of the cavity and the temperature difference across 

the melt. A modified Rayleigh number Rae based on the thickness of 

the lower uns table layer and the temperature difference Tb - Tm across 

it will be defined and used later. 

3.3 Solution Method 

As the numerical simulation of the phase change phenomenon is 

relatively complicated, a detailed description of the method of solution 

is given in this section, in addition to those given in Chapter I. 

In order to initiate the numerical simulation, a very thin layer of 

melt with a constant thickness S0 was assumed to be present for simu

lating the ice melting from below. This initial condition is obtained from 
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the Stefan solution in the melt and a linear temperature distribution in 

theice region. Tests revealed that the influence of S0 could be neglected 

as So was sufficiently small (typically, S0 = 0.05 was used in this study). 

3.3.1 Discretization 

A finite-difference method based on a control volume formulation 

was used to obtain the numerical solutions. The discretized equations 

were derived by using a power law interpolation scheme for the spatial 

discretization and a standard forward difference approximation for the 

time step. The use of a non-orthogonal coordinate transformation re

sults in the appearance of cross derivative terms which were treated in 

a special manner so as to deal with instabilities. Denoting the relevant 

contravariant component of the flux as 

( no summation here) (3.29) 

where <I> can be either T or <.p, r equals 1 as <I> represents T1 and <.p, and 

r equals R as <I> represents T8
• The diffusion-convection equation may 

then be written as 

(3.30) 

Integrating on the control volume as shown in Fig.3.2 yields 
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I le 6-t
6.x6.y p + [Jll(iJ;>) + J12(q,)] 6-y w 

+ [J21(iJ;,) + 122(iJ;,)] 6-x[ = 0 
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(3.31) 

where P represents the current point under discussion, E, vV, N, S the 

neighbors of P at the east, west, north and the south, respectively, and 

e , w, n, s are the mid points of the control volume interface. 

The value of Jii are approximated using the power law scheme. For 

example, the value of the non-cross term J11 at point e is approximated 

using the power law scheme directly as 

(3.32) 

where 

(3.33) 

Similarly, the term J12 ( iJ;,) at point e may also be represented as

(3.34) 

where 

(3.35) 



<I>i+l/2, j-1/2 and <I>i+i/2, ;+i/2 are interpolated as 

and 

if G12 < 0

if c12 > o

if c12 < o

if c12 > o
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(3.36) 

(3.37) 

These interpolations were obtained from geometric arguments. Since 

(3.38) 

G17 < 0 means that the angle between the directions e1 and e2 is smaller

than 7r /2 and therefore, the position at "( i + 1/2, j - 1/2)" is doser to 

the points P and (i + 1, j -1) than to the points Sand E. The inverse 

conclusion may also be made for the positive value of G12• One may

show that, the interpolations in Eqs.(3.36) and (3.37) further ensures 

that the coefficients of the discretized equations 

(3.39) 

usually satisfy the discretizing rules (Patankar, 1980), in order to avoid 

the instability caused by the cross terms uncler the non-orthogonal curvi

linear coordinate. 
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3.3.2 Energy Balance Equation at the Interface 

The energy balance equation at the interface can be written in a 

simple form as other variable being treated as known 

under the present curvilinear coordinate, where 

&TI i
A= -Ste l 

ôt2 
1,, .;2=1 

(3.40) 

(3.41) 

(3.42) 

The forward and central difference methods are used to discretize 

S for the time and space derivatives, respectively. As the temperature 

is assumed known, the Newton-Raphson iteration is used to solve the 

discretized equations to obtain the interface position. 

3.3.3 Iteration Algorithm 

At each time step or iteration, the interface position S was de

termined from the energy balance equation (Eq.3.40) at the interface. 

The stream fonction c.p, temperature T1 and T8 were solved using an 

ADI technique. The position of the interface S was then recalculated 

using the new c.p and T's ... , this procedure being repeated until conver

gent solutions were obtained. Usually, 3 to 10 iterations were needed at 
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each time step except at some critical points where the convection pat

tern changed rapidly and more iterations were necessary. In the present 

study, a 51 by 31 computational grid for each domain was used with a 

dimensionless time step of about 10-2
• The incorporation of the conduc

tive heat transfer in the ice region results in the establishment of a final 

steady state solution, in contract to the classic Stefan problem where 

the phase change process continues until the solid is completely melted. 

The criterion for acceptance of steady solutions being attained is when 

the difference between the two N usselt numbers, defined at the top of 

the ice layer and the bottom of the cavity, differ by less than some pre

determined tolerance, typically 1 %. However, as will be discussed later, 

this criterion should be applied with care. 

3.4 Results and Discussion 

In studies of the phenomenon of melting from below, it has been 

observed experimentally (Gau and Viskanta, 1985) and predicted ana

lytically (Sparrow and Shamsundar, 1976) that the melt remains mo

tionless at the early stage of melting until an effective Rayleigh Number 

exceeds some critical value. The initial appearance of convective activity 

has been generally observed to be of cellular form. The primary char

acteristics of this problem are the onset of convection, the convective 

pattern in the melt, the position of the interface and the heat transfer 

rates at the upper and lower boundaries. This study therefore concen

trates on these subjects. The influence of the Rayleigh number Ra, the 
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temperature ratio (3, the Stefan number of the liquid phase Ste1 (which 

is dependent on the temperature of the lower boundary Tb), the Stefan 

number Ste8 (dependent on the l,lpper boundary temperature Tu ) and 

the geometry ratio XL on the system will be discussed and illustrated. 

In the following, it is implied that when the influence of a parameter is 

being examined, the other parameters are being kept constant. 

The numerical experiments performed within the scope of this sec

tion are summarized in Table 3.1. 

3.4.1 Onset of Convection 

The primary parameter influencing the natural convection in a fluid 

layer heated from below is the Rayleigh number which is usually based 

on the thickness and the temperature difference within the potentially 

unstable layer. Rae is such a parameter in this section, while the sym

bol Ra has been reserved ( as mentioned earlier) to denote the overall 

Rayleigh number. 

Table 3.2 summarizes, for each experiment, the critical values of the 

relevant parameters at the onset of convection. 

It is instructive to compare the results tabulated in Table 3.2 for 

experiments 1, 2, 3 and 4. Referring to Table 3.1, the overall Rayleigh 

number Ra for this series of experiments were respectively 478, 300, 200, 

and 120 with a constant value for (3 of 0.2. As expected, increasing the 
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Rayleigh nurnber results in convection being initiated at an earlier time 

(lower !c) with a thinner (dimensionless) mèlt layer (Sc) at the critical 

point. It must be noted however, that in this discussion, an increase in 

the Rayleigh nurnber ( due to the manner in which it is defined) implies a 

larger cavity size, other parameters remaining fixed. A simple calculation 

indicates that the actual dimensional critical thickness .of the melt layer 

does increase with increasing Rayleigh nurnber, the rate of increase being 

rnarked at the lower Rayleigh nurnbers and tapering off at the higher 

Ra. One would expect therefore that, at very high Rayleigh numbers, 

the thickness of the rnelt at the onset of convection would be virtually 

independent of the Rayleigh nurnber. This sarne behavior is exhibited in 

the series of experiments 7, 8 and 11 which have a (3 value of 0.5 (Note 

that in experirnent 11, the combination of (3 and Ra was such that only 

the pure conduction mode was realized). It is also reasonable to speculate 

that, as the cavity size increases, the influence of the sicle walls on the 

critical point is being reduced due to their physical distance from the 

bulk of the fluid. If now, the critical Rayleigh number Ra� is computed 

for the unstable portion of the rnelt, it appears that this value increases 

as Ra is increased. This interesting behavior is probably due to the 

fact that keeping (3, Ste1 and Stes fixed while increasing Ra arnounts to 

increasing the height H of the cavity as rnentioned earlier. Consequently, 

the loss through the ice layer would be irnpeded with a resultant increase 

in the rnelting rate. Any srnall disturbance ( although supposedly initially 

arnplified exponentially according to linear stability theory) would take a 
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finite time to manifest itself as an observable phenomenon during which 

time the interface has continued to move due to melting. The critical 

Rayleigh number Ra� would thus appear to have increased due to this 

transient effect. 

\Ve now direct our attention to the influence of /3 on the onset of 

convection. To this end, it is useful to examine the results of experiments 

1, 6, and 11 tabulated in Table 3.2, which have /3 values of 0.2, 0.4 and 

0.5 respectively. These results indicate that as /3 increases, te and Sc 

also increase; all other quantities being constant. (It should be noted 

here that changing /3 while keeping other parameters fixed corresponds 

to changing bath Tb and H). For /3 = 0.5, convection is suppressed so 

that the final steady state is in the pure conduction regime. The bottom 

temperature is then 8°C with an overall Rayleigh number of 478 and an 

effective Rayleigh number Rae for the unstable layer of 22.8. This value is 

not sufficiently large to initiate convection and therefore the only mode of 

heat transfer is by conduction. Experiments 1 and 6 although performed 

at the same overall Rayleigh nurnber Ra have descending values of the 

critical effective Rayleigh number Ra� based on the unstable layer. The 

upper stable layer or "inversion" has a "softening" effect compared to 

the "rigid" upper boundary condition as demonstrated by Oguro and 

Kondo (1970) on the basis of a linear stability analysis. 

The results of experiments 1 and 5 indicate that a higher Stes (lower 

Tu) reduces the melting rate as well as the value of the effective critical 
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Rayleigh number Ra�. Comparing the two values of Sc , it appears that 

the influence of Ste8 on the onset of convection is not very strong. One 

explanation may be the fact that in these experiments the melt is rel

atively very thin compared to the ice region. It may be expected that 

the influence of the parameter Ste8 on the onset of convection would be 

more pronounced for the cases where convection sets in with a larger 

value of Sc . 

The influence of the lateral boundary on the onset of convection 

may be seen in the results of experiments 8, 9 and 10 where XL= 1, 1.1 

and 0.8 respectively. From the results shown in Table 3.2 and Fig.3.8 

to Fig.3.10, it appears that convection is developing into a symmetric, 

nearly square form, but narrower cells arise at higher critical effective 

Rayleigh number, in agreement with the fact that the lateral boundary 

has a stabilizing effect, as mentioned by Beck (1972). 

ln obtaining the results presented here, it was verified that any small 

disturbance imposed on the system would be attenuated and die away 

without the inception of convection, provided that the effective Rayleigh 

number ,vas subcritical. However, if the initial thickness of the melt S0

was not small enough, convection would be initiated with a cell pattern 

that was strictly dependent on the form of the initial disturbance. 

3.4.2 Evolution of the Flow and Isotherm Pattern 

The streamlines and isotherms from some simulations are illustrated 
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in Fig.3.3 to Fig.3.10. It can be seen that in some of them, the same 

cell or wave number is preserved from the inception of convection to the 

final steady state, while in some other cases, evolution of wavenumber 

with time is evident. For convenience, this effect will be referred to as 

"convection form transition". 

The time evolution of the streamlines and isotherms for experiments 

1, 2 and 3, where Ra= 478, 300 and 200, respectively are presented in 

Fig.3.3 to Fig.3.5 which indicate the Ra influence on the convection 

form. For Ra = 478 (Fig.3.3), convection is initiated with six cells, the 

cells becoming narrower as the melting proceeds. Subsequently, some of 

them shrink while others grow. Finally, the six cells break down into an 

irregular pattern of four cells, which do not persist for very long, but 

are quickly bypassed to arrive at a two cell configuration. The two-cell 

form then persists for the rest of the melting process with a steady state 

being attained at S = 0.8907. For Ra = 300 (Fig.3.4), convection is 

initiated with a pattern of four cells which persist for a long time and 

appear to approach a sort of "quasi" steady state. However, convection 

form transition occurs albeit slowly with a slight freezing in the areas of 

descending water flow during which a two-cell pattern gradually replaces 

the four cell form. The two cell form remains for the rest of the melting 

process with a steady state being obtained with S = 0.8739. Finally, at 

the lowest Rayleigh number Ra = 200 (Fig.3.5), convection is initiated 

with two cells, and there is no convection form transition during the 

whole melting process, its steady state being approached with an S =
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0.8284. 

ln Fig.3.7, where f3 = 0.4, a four cell form was initiated and per

sisted for a long time in a quasi-steady state, subsequently followed by 

the same freezing phenomenon in areas of descending liquid. A two 

cell convection form was finally established. Comparison with Fig.3.3 

indicates that a higher /3 slows clown the melting rate and retards the 

convection transition effect. Another interesting feature which may be 

noted in these two figures is that the convection penetrates into the up

per statically stable water layer even at inception, when the thickness 

of the static stable layer is 1/5 and 2/5 of the total melt thickness in 

Fig.3.3 and Fig.3. 7 respectively. 

The influence of Ste8 on the cell pattern can be seen in Fig.3.3 and 

in Fig.3.6. Fig.3.6 presents the convective history of experiment 5 in 

which all relevant parameters are the same as in experiment 1 except 

for Ste8
• The two convection forms are very similar, the only difference 

being a slight time lag at the early stage of convection. At this time, 

the melt is much thinner than the ice region so that the influence of the 

upper temperature on the water region would be small. The convec

tion patterns evolve in different ways as further melting proceeds with 

a demonstrated dependence on the Ste8 parameter. For Ste8 
= 0.3068, 

the convection form transition occurs earlier, quickly passing through 

an irregular four cell pattern and terminating with a two cell pattern. 

For Ste8 
= 0.61036, the initial form persists during a long quasi-steady 
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period. The convection form transition happens much la ter wi th the 

attendant refreezing phenomenon mentioned earlier. The six cell form is 

transformed into a four cell pattern and no further transition observed 

afterwards. Clearly, the Ste8 parameter has an increasing effect on the 

convection pattern as further melting develops. 

It is reasonable to expect that more than one convection form transi

tion may exist if the convective activity in the water layer was enhanced, 

for example, by increasing Ra, or decreasing f3 or Ste8
, which would re

sult in more convection cells being initiated at the onset with smaller 

values for Sc , 

The cause and the "preferred" new convection pattern after the con

vection form transition, are interesting questions. It was predicted by 

Clever and Busse (1974) and also by Strauss (1974) that a secon,dary sta

bility problem exists after the onset of convection in the Bénard problem. 

They pointed out that the two dimensional convection solutions are un

stable when the (Rae , a) point remains outside their stability envelope. 

The convection form transition observed in this study may be the re

sult of unstable convection forms being encountered during the melting 

process. As melting proceeds, the convection cells become narrower and 

some disturbances sensible to this convection form are encountered. It 

was checked that the point (Rae , a) where convection form transition 

began to appear is out of Strauss's stability balloon. 

As mentioned earlier, the initial convection form appeared to be 
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strictly dependent on the initial melt thickness So and the initial dis

turbance if S0 is not very small. ln order to verify if the final steady 

solutions were still dependent on these initial conditions, some further 

tests were performed for experiment 8. One such test was to start the 

simulation with an initial melt of S0 = 0.35 and a disturbance which 

could initiate a three cell convection pattern. It was observed that con

vection was initiated with a three cell pattern which was later replaced by 

a two cell form, and the steady solution was obtained as before. Another 

test was the simulation of freezing from above. A thin layer of ice and 

pure conduction in the water layer were used as the initial conditions. 

A two cell pattern was initiated, which was subsequently replaced by a 

four cell pattern as the frozen continued, the steady solution obtained 

being identical to the previous case. It was concluded therefore, that the 

final steady solutions ( t�e interface position, the convection form and 

the heat transfer rate) were indeed independent of the initial conditions. 

3.4.3 Heat Transfer Rate and Interface Position 

The bottom and upper Nusselt numbers are defined as: 

and 

b l l 1 

lXL 

Nu = 

XL O 
Te/ Sle=o dç (3.43) 

(3.44) 
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respectively. 

Fig.3.11 to Fig.3.18 indicate the variation of the average interface 

position and Nusselt numbers versus time for several experiments. Sorne 

sharp jumps may be observed during the melting process, the earliest 

one corresponding to the point of initiation of convection, while others 

(if they exist) to the convection form transition. It can be seen that 

during the time when heat is by conduction only, the interface movement 

and heat transfer rates proceed smoothly and slowly compared with the 

transition period, which correspond to the onset of convection and to a 

convection form transition. These periods are accompanied by a sharp 

increase in both the interface movement and in the heat transfer rates .  It 

appears that the convection form transition to a new cell pattern occurs 

in order to augment the heat transfer rate, i .e .  to transfer heat more 

effi.ciently. 

The influence of /3, Ste8
, XL on the heat transfer rate and interface 

position can be seen in Fig.3.13 to Fig.3.18, respectively. Higher /3, SteS , 

and lower XL have stabilizing effects, they reduce the heat transfer rates, 

slow clown the interface movement, and postpone or even eliminate the 

convection form transition. 

Figure 3.11 and Fig.3.13 indicate two types of convection form tran

sition . One occurs at a time when the two Nusselt numbers are very 

different, the other one at a time long after an apparent steady state 

is approached. It was observed that slight refreezing in certain regions 
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of the water layer exists before and during a convection form transition 

of the second type but is absent during the evolution of the first type. 

(Fig.3.4, Fig.3.6, Fig.3.7, Fig.3.12, especially Fig.3.7 and Fig.3.12). 

The convergence of the two Nusselt numbers can not, therefore, be 

used as a unique criterion to determine the approach to the final steady 

solution. Other aspects such as whether the cells have the same size 

and shape or the position of the (Rae , a) point with respect to Strauss's 

stability envelope will have to be considered simultaneously with the 

convergence of the two Nusselt numbers in order to ascertain if a true 

steady state has been reached. 

Finally, results at the steady state using only the pure conduction 

mode, and with convection are presented in Table 3.3 to show the overall 

effects of convection on the interface position and the heat transfer rates. 

3.5 Concluding Remarks 

The melting of ice in a rectangular cavity filled with a porous 

medium and heated from below has been investigated numerically. By 

increasing the bottom temperature,or reducing the upper temperature, 

convection is initiated earlier. The initial convection pattern may pass 

through many intermediate stages in its transition to a final steady state. 

A special "quasi" steady state in which refreezing occurs in parts of the 

water layer were noted, this quasi steady state being eventually destroyed 
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to be replaced by a new convection pattern. The convection form transi

tion results in an abrupt increase of interface movement and heat transfer 

rates. This transition effect may arise from an instability in the narrow 

convection cells and results in a new convection pattern which exhibits a 

local maximum in the heat transfer rate at the lower (heated) boundary. 



Table 3.1 Definition of lnvestigated Problems 

experiment f3 Ste1 Ste8 XL 

1 0.2 0.4184 0.306825 1. 

2 0.2 0.4184 0.306825 1. 

3 0.2 0.4184 0.306825 1. 

4 0.2 0.4184 0.30-6825 1. 

5 0.2 0.4184 0.61370 1. 

6 0.4 0.2092 0.306825 1. 

7 0.5 0.1674 0.306825 1. 

8 0.5 0.1674 0.306825 1. 

.9 0.5 0.1674 0.306825 1.1 

10 0.5 0.1674 0.306825 0.8 

'11 0.5 0.1674 0.306825 1. 
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Ra 

478. 

300. 

200. 

120. 

478. 

478. 

900. 

700. 

700. 

700. 

478.
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Table 3.2 Critical Values at the Onset of Convection 

experiment Sc te Rae 

C 
cell number a 

1 0.2000 0.0628 50.10 6 0.8334 

2 0.3000 0.1563 47.17 4 0.8333 

3 0.4426 0.4188 46.40 2 1.1297 

4 0.5648 2.8000 35.56 2 0.8853 

5 0.1930 0.0700 48.36 6 0.8635 

6 0.3659 0.7500 39.84 4 0.6832 

7 0.3127 0.7800 42.32 6 0.5330 

8 0.3502 2.1250 32.96 4 0.7139 

9 0.3486 1.8125 32.81 4 0.7172 

10 0.3534 2.8125 33.26 4 0.7074 

11 ' +inf 0 



Table 3.3 Steady State Solution Obtained with 

and without Convection 

experiment Scond. Sconv. Nucond. Nuconv. Smin 

1 0.5769 0.8449 1.7333 5.5100 0.6886 

2 0.5769 0.8184 1.7333 4.4370 0.7273 

3 0.5769 0.7673 1.7333 3.4830 0.6887 

5 0.4054 0.7220 2.4667 5.3740 0.6794 

6 0.4054 0.5897 2.4667 3.680 0.5225 

8 0.3530 0.4650 2.8329 3.4170 0.4603 

9 0.3530 0.4739 2.8329 3.486 0.4647 

10 0.3530 0.4177 2.8329 3.184 0.4164 

11 0.3530 0.3530 2.8329 2.8329 0.3530 
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Smax 

0.8907 

0.8739 

0.8284 

0.7465 

0.6471 

0.4678 

0.4778 

0.4191 

0.3530 



CHAPTERIV CONCLUSION 

This thesis is comprised of three interrelated studies, each of which 

have been described in the previous chapters that include the principal 

results obtained together with a summary of the work accomplished. 

The present éhapter is devoted to a general overview of the research 

proposed, and to the description of some topics warranting further in

vestigation. 

The basic thrust of this research was to investigate the possibility 

of obtaining solutions to a certain class of thermoconvective problems 

using a set of auxiliary constraint equations to form a closed system. 

Specifically, the Darcy-Boussinesq equations together with the Pomeau

Manneville closure equation were chosen to investigate three important 

aspects of natural convection in porous media, namely, convection in a 

double layer, double component convection and mixed phase convection, 

respecti vely. 

Whether all these three problems will arise simultaneously will de

pend on the situation under consideration. As an example, during the 

freezing/melting process of a layer of soil saturated with saltwater, one 

has to deal with all of them while in the cooling of a plate of (pure) 

steamed rice, none of these phenomena are present. From the study 

of penetrative convection and double diffusive convection, it was found 
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that the preferred convection pattern can be the one that would be ex

cluded (i.e. considered as impossible) by a linear stability analysis as its 

wavenumber actually lies outside the neutral stability curve. This some

what unexpected result is due to the fact that penetrative and double 

diffusive convection can be both subcritically unstable. 

In a double layer, the critical Rayleigh number predicted by linear 

stability theory is based on the static thickness of the potentially unstable 

layer. As a finite amplitude perturbation is imposed on the system, the 

effective thickness of the unstable layer becomes actually greater as a 

result of penetration of hot fluid into the stable layer, resulting in an 

effective Rayleigh number that is higher than the nominal ( originally 

defined) one, thus leading to the subcritical instability phenomenon. A 

similar interpretation can be given to double diffusive systems where a 

finite amplitude perturbation can reduce the solute inhomogeneity by 

the effect of convective mixing. 

Besicles subcritical instabilities, a double layer is more unstable than 

a single layer (having the same unstable thickness), and the curve of 

Rayleigh number versus preferred wavenumber is shifted towards the 

left as the thickness of the stable layer is increased. In other words, the 

preferred convection cell is more elongated in a double layer than in a 

single one. Of course, there is a limit corresponding to the case of a 

semi-infinite stable layer overlying an unstable layer. 

In the case of double component systems, two additional parameters 
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enter into play: the solute Rayleigh number and the Schmidt number. 

The present study has considered the case of a negative solute gradient 

that has a stabilizing effect on the thermal buoyancy-driven flow. By 

increasing the concentration gradient, the preferred wavenumber is in

creased and the convection cells become narrower. The inverse effect was 

obtained by increasing the solute diffusivity. 

In the melting process, convection starts to play an important role as 

the melt thickness attained a certain value corresponding to the critical 

Rayleigh number for the onset of convection. The newly formed convec

tion cells appear to have a nearly square form. As melting continues, 

these cells become more slender, and suddenly break up sequentially. 

The transition period (i.e. duration of the breaking process) is qui te 

short, but is followed by a very long (i.e. quasi-steady) period. The final 

steady state (which in fact exists when the upper boundary is main

tained at a temperature below the melting point) is sometimes difficult 

to attain as it can be preceded by very long quasi-steady states. This 

phenomenon is reflected in the evolution of the heat transfer rate: The 

curve of Nusselt number versus time exhibits a jump each time a convec

tion cell disappears. It is therefore reasonable to conclude that the new 

convection pattern is formed to augment the heat transfer, in agreement 

with the principle of maximum heat transfer proposed by Malkus. This 

change in the convection pattern may be interpreted with reference to 

the stability theory of Busse: As melting continues, the convection cells 

become narrower and narrower until a point is reached where they be-
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corne unstable with respect to a certain kind of perturbation and cannot 

survive. This is in fact the point at which increasing wavenumber crosses 

threshold to fall outside Busse's stability balloon. Moreover, during the 

transition from one flow pattern to another, the inverse phenomenon of 

refreezing was sometimes observed together with a decrease in the heat 

transfer rate. 

A final remark should be made concerning the specific melting of 

1ce: Here the melt is comprised of a stable layer of cold water (below 

4°C) lying between the ice surface and an unstable layer of warmer 

water (above 4° C). As a consequence, if the lower surface is maintained 

at a temperature below 4° C, no convection would occur. The presence 

of a stable layer adjacent to the ice surface also greatly reduces the 

heat transfer, and thereby the melting rate, when the heated surface is 

maintained at temperatures below 10
°
G. Furthermore, the cold stable 

water at the ice surface also attenuates the effect of the impinging flow 

rising from the unstable layer. Thus the water-ice interface, when heated 

from below, is less wavy than when heated from above. 

It appears appropriate now to consider the perspective of some fu

ture studies. 

F irstly, i t appears from Chapter I that the concept of small curva

ture can lead to a closure equation capable of predicting a unique con

vection pattern. The interesting question is then to relate the preferred 

wavenumber-Rayleigh number curve to Busse's stability balloon. 
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Secondly, as subcritical instabilities have been observed in both pen

etrative and double diffusive convection, there remains the question of 

how to determine the lower bounds for subcritical Rayleigh numbers, 

and to obtain a kind of nonlinear neutral stability curve. This task may 

best be clone by numerical analyses using spectral methods on a fast 

computer. 

Besicles steady state solutions, oscillatory regimes also arise in both 

penetrative and double diffusive convection, for small as well as large 

values of some governing parameter. This type of flow should be inves

tigated with a high accuracy numerical rnethod. 

ln Chapter III, the melting process has been considered in a bounded 

layer to focus attention on the rnoving solid-liquid interface. There re

mains the case of melting in an unbounded layer. The prediction of 

the flow pattern is a challenging task requiring a great effort in both 

rnathernatical and numerical rnodelling. 

The rnelting in the presence of double diffusion is also an interesting 

but as yet untouched problem. 

Finally, even in the sirnplest case without penetration or double dif

fusion, the practical task of constructing a unified correlation for the 

heat transfer rate still requires a consîderable arnount of work. Analyti

cal, nurnerical and dirnensional analyses should be coordinated in solving 

this type of problem. 
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In retrospect, it might be concluded that this research project has 

opened more questions than it has solved. But, after all, is not that the 

best motivation for a venture of this kind? 
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Appendix 1.1 Detailed Equations for Nondarcy Fluid 

The zeroth order equations: 

The first order equations 

[1,.,0 T1 _ Tl ) + [-rt'lOTl _ Tl ] + 1,.,1 To _ ct'llTO 
= 

rt'lo To + To-rz r r -rr z z -rz r -rr z T z r

The adjoint equation 

:
r 

((1 + Tm f1)Fr + Tm fJ Fz - GT� + G) +

:z ((1 + Tmh)Fz + Tm h Fr + GTn = 0 

:r (-r.p�G - Gr+ Ram F) + :z (r.p�G - Gz) = 0 

Solvability condition 

f(a) = 1
l

/a 1
1 

-

F [r.p� + Tm(!Jr.p0) z + Tm(hr.p0) r ]

+G[T� + r.p0T�] dzdr
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where fi, h and fa are defined as follows:

fi = 1vo 1(1 + v2 ;1vo 12) 

h = 1vo 1(1 + u2 /IVO l2) 

fa= -uv/lV0
1 
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Appendix 2.1 Detailed Equations for Penetrative Convection 

Zero-th Order Equation 

'P�r + 'P�z + Ra(T0 
+ 1 - z - /3)T� = 0

First Order Equations: 

Adjoint Equations 

Solvability Condition 

11/a 
1

1 

f(a) = [Fcp� + G(T� + cp0Ti - cp0 ) dzdr
-1/a 0
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The Related Ordinary Differential Equations 

The Zero-th Orcier 

<t?i
2

) - ai_1 <pk - Ra(l - z - /3)ak-iTk-

� [Fl(N1,Ng,a,k,i,T1 T)-F3(N1,Ng,a,k,i,T,T)] = 0

!
[
-Fl(N1, N g; a, k, i, D<p, T) + F2(N1, N g, a, k, i, D<p, T) 

l = 

0 
2 +Fl(N1, N g, a, k, i, DT,<p) + F2(N1, Ng, a, k, i, DT, <p) 

The Adjoint Equations 

!
[
-Fl(N1,Ng,a, k, i,DG, T) + F2(N1,Ng,a, k, i,DG, T) 

l = 

0 
2 +Fl(N1, N g, a, k, i, DT, G) + F2(N1, N g, a, k, i, DT, G) 

-RaFl(N1, N g, a, k, i, T, F) + RaF3(N1, N g, a, k, i, T, F)

2 
-Fl(N1, N g, a, k, i, D<p, G) - F3(N1, N g, a, k, i, Dr.p, G) =0 

+Fl(N1, Ng,a, k, i, DG,<p) + F3(N1, Ng, a, k, i, DG, ip)



Solvability Condition 

J(a) = fo1 u(z) dz = 0 

where 

Functions Fl, F2 and F3 

Fl(Nl, N2, a, k, i, P, G) = L·am-1Pk-m+1,iGm,i 
m=l 

F2(Nl, N2, a, k, i, P, G) 

Nl-k+l 
L am-1Pk+m-1,iGm,i + ak+m-2Pm,iGk+m-1,i 
m=l 

F3(Nl, N2, a, k, i, P, G) 

Nl-k+l 
L am-1Pk+m-1,iGm,i - ak+m-2Pm,iGk+m-l,i 
m=l 
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where Nl, N2, k, i are integers, k � Nl, 1, � N2 and P and G are 

matrices of order Nl * N2, and 

dcpDu,= -

.r dz 

i = 1, 2 
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Appendix 2.2 The Detailed Equations for Double Diffusion Convection 

The zero-th order equations: 

Sc(S�r + S�z) - ip�S� + cp�(S� - 1) = 0

The first order equations 

1 1 
R T

1 
R 

si o'Prr + 'Pzz + a r -
s r = -cpr

(cp�T1 - T; )r + (-cp�T1 - T; )z + cp;T� 
- cp�(Ti - 1)

= ip0(Ti 
- 1) + T�

(cp�S1

- ScS�)r + (-cp�S1
- ScS;)z + ip;S� - ip;(S� -1)

= cp0(S� -1) + ScS� 

Adjoint equation 

(-cp�G - Gr)r + (cp�G - Gz)z - RaFr = 0

(-cp�H - ScHr )r + (cp�H - ScHz)z + RsFr = 0

Solvability condition 
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The Related Ordinary Differential Equations 

The Zero-th Ortler 

! [-Fl(N1, N g, a, k, i, Dcp, T) + F2(N1, N g, a, k, i, Dcp, T) l 
= 

0 
2 +Fl(N1, N g, a, k, i, DT, cp) + F2(N1, N g, a, k, i, DT, cp)

!_ [-Fl(N1, Ng, a, k, i, Dcp, S)+ F2(N1, Ng, a, k, i, Dcp, S) l =Ü 
2 +Fl(N1, N g, a, k, i, DS, cp) + F2(N1, N g, a, k, i, DS, cp)

The Adjoint Equations 

2 

-Fl(N1, N g, a, k, i, DG, T) + F2(N1, N g, a, k, i, DG, T)
+Fl(N1, N g, a, k, i, DT, G) + F2(N1, N g, a, k, i, DT, G)

-Fl(N1, N g, a, k, i, DH, S) + F2(N1, N g, a, k, i, DH, S)

+Fl(N1, N g, a, k, i, DS, H) + F2(N1, N g, a, k, i, DS, H)

=Ü 
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1 
[
-Fl(Ni, N g, a, k, i, Dcp, G) ..:_ F3(N1, N g, a, k, i, Dcp, G)

l = 0 2 +Fl(N1, N g, a, k, i, DG, cp) + F3(N1, N g, a, k, i, DG, cp)

1 
[
-Fl(NJ, N g, a, k, i, Dcp, H) - F3(N1, N g, a, k, i, Dcp, H)

l = 0 2 +Fl(N1, N g, a, k, i, DH, cp) + F3(N1, N g, a, k, i, DH, cp)

Sovlability Condition 

f(a) = fo1 

u(z) dz = 0

where 

where Fl, F2 and F3 are defined as in Appendix 2.1.
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Appendix 3.1 Details of the Energy Balance Equation at the 

Interface in Curvilinear Coordinates 

The interface position in the Cartician coordinate is expressed as 

The normal vector n of the interface can be expressed as 

at x
2 

= S 

The interface moving velocity in the direction n is 

The flux terms under the curvilinear coordinate can be written as 
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and 

- ~22 âTS âf,2 Il 2
1-9 ---- e 

âr,
2 âry

2 

where ê1 = e1 at the interface and e1 · e2 
= 0 are used, and because 

âf,2 âx2 

_ 

âx2 

âr,
2 âf.,2 

- âr,
2 

the energy balance equation at the interface under the present curvilinear 

coordinate is expressed as 
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Fig .2.13 Isotherms and Streamlines (/3 = 0.0) 

Fig .2.14 Isotherms and Streamlines (/3 = 0.5) 
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Fig.3.3 Time Evolution of Streamlines and Isotherms (Exp.1) 
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Fig.3.4 Time Evolution of Streamlines and Isotherms (Exp.2) 
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Fig.3.5 Time Evolution of Streamlines and Isotherms (Exp.3) 
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Fig .3.6 Time Evolution of Streamlines and Isotherms (Exp.5) 
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Fig.3. 7 Time Evolution of Strearolines and Isotherms (Exp.6) 
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Fig.3. 7 ( continued) 
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Fig.3.8 Time Evolution of Streamlines and Isotherms (Exp.8) 
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Fig.3.9 Time Evolution of Streamlines and Isotherms (Exp.9) 
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Fig.3.10 Time Evolution of Streamlines and Isotherms (Exp.10) 
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