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ABSTRACT

An analytical and numerical study has been performed on

natural convection heat transfer through fluids and saturated

porous media with uniform heating and cooling through oppo-

site walls. An approximate solution is obtained by assuming a

parallel flow in the core region of the cavity. A numerical

solution of the complete governing equations is also con-

ducted. This technique is applicable to a large variety of

problems and a few examples described below will be illus-

trated in this thesis.

The case of an inclined porous layer is first examined.

The model used to describe the flow in the cavity accounts

for Brinkman friction. It is shown that the boundary effect,

though not important in low-porosity media, becomes signifi-

cant in high-porosity media. The flow and heat transfer

variables are obtained in terms of the Darcy-Rayleigh number

R and the Darcy number Da. The critical Darcy-Rayleigh number

for the onset of convection in a bottom-heated cavity is

predicted. The results for a viscous fluid (Da-^°°) and the

Darcy porous medium (Da-»0) emerge from the present analysis

as limiting cases.



vi

The influence of multiple diathermal partitions on the

laminar natural convection heat transfer in inclined porous

layers is studied next. On the basis of the Darcy-Oberbeck-

Boussinesq equations, the governing equations are solved

analytically in the limit of a thin layer. The relationship

between Nusselt number Nu and the number of partitions, their

relative positions and the angle of inclination of the system

is determined. The critical Darcy-Rayleigh number for the

onset of convection in a bottom-heated horizontal system is

predicted. The influence of a thermal barrier which is sand-

wiched between two porous layers is also discussed.

The stability and natural convection in a system consist-

ing of a horizontal fluid layer over a saturated porous

medium , with heating from below, have also been considered.

The upper surface is either rigid or dynamically free with

surface-tension effects allowed for. The critical Rayleigh

number and Nusselt number are found to depend on the depth

ratio, the Darcy number, the viscosity ratio, the thermal

conductivity ratio, and the Marangoni number. Results are

given for a range of values of each of the governing parame-

ters. The results are compared with limiting cases of the

problem for standard terrestrial conditions or microgravity,

and are found to be in agreement.
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Finally, the mechanism of natural and Marangoni convec-

tion in systems with two stratified fluid layers without mass

transfer at the interface is investigated. It is demonstrated

that four different patterns of convection can be observed in

the present system. The zone of occurrence of these flow

patterns are specified in terms of non-dimensional parame-

ters. Velocity and temperature distributions, stream function

and Nusselt number are presented over a wide range of the

governing parameters. The results obtained are explained in

terms of the basic physical mechanisms that govern these

flows showing many interesting aspects of the complex inter-

action between the buoyant and surface tension mechanisms.



SOMMAIRE

Une etude analytique et numerique du transfert de chaleur

par convection naturelle au sein de milieux fluides ou poreux

chauffes par des flux de chaleur constants, a et6 effectuee.

La solution analytique est obtenue en supposant 1'existence

d/un ecoulement parallele dans Ie coeur de la cavite alors

que dans la methode numerique on resoud Ie systeme complet

d/equations de base gouvernant Ie probleme. Cette technique

est applicable a de nombreuses situations et les quelques

examples decrits ci dessous servent d/illustration.

Le cas d/une couche poreufie inclinee est d/abord examine.

Le modele de Brinkman est utilise pour decrire Ie mouvement

du fluide dans la cavite. II est montre que les effets dus a

la frontiere, bien que negligeables pour des milieux poreux

ayant une faible porosite, deviennent importants pour des

milieux ayant une porosite importante. L/ecoulement et Ie

transfert de chaleur sont obtenus en termes du nombre de

Darcy-Rayleigh R et du nombre de Darcy Da. Le nombre de

Darcy-Rayleigh critique pour un systeme chauffe par Ie bas

est predit par la presente theorie. Les resultats pour un

milieu fluide (Da-»°°) et pour un milieu de Darcy pur (Da-+0)

sont egalement predits par la presents theorie.
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Dans une deuxieme phase on etudie Ie transfert de chaleur

au sein de couches poreuses inclinees. Le systeme est resolu,

sur la base des equations de Darcy-Oberbeck, dans Ie cas

limite d/une couche mince. La relation entre Ie nombre de

Nusselt Nu et Ie nombre de partitions, leurs positions rela-

tives et 1^angle d'inclinaison du systeme est determinee. Le

nombre de Rayleigh critique pour un systeme chauffe par Ie

bas est predit. L/influence d/une barriere thermique comprise

entre deux couches poreuses est egalement 6tudiee.

La stabilite et la convection naturelle dans un systeme

constitue d/une couche fluide horizontale au dessus d'une

couche poreuse ont egalement ete considerees. La surface

superieure est soit rigide soit dynamiquement libre avec des

effets de tension de surface. Le nombre de Rayleigh critique

et Ie nombre de Nusselt dependent du rapport des profondeurs,

du nombre de Darcy, du rapport des viscosites, du rapport des

conductivites thermiques et du nombre de Marangoni. Les

resultats sont presentes de fa?on a refleter 1'influence des

parametres de base.

Finalement, Ie mecanisme de la convection naturelle et de

Marangoni dans un systeme constitue de deux couches de fluide

horizontales est etudie. II est montre que quatre regimes
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d/ecoulements differents peuvent etre observes dans Ie

present systeme. La zone d/apparition de ces differents

regimes d/ ecouleinents est determinee en terme des parametres

de base du probleme. Les champs de vitesse et de

temperature et Ie nombre de Nusselt sont presentes pour

diverses valeurs des parametres de base. Les resultats obte-

nus sont expliques en termes des mecanismes de base physiques

gui gouvernent ces ecoulements.
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CHAPTER 1

INTRODUCTION

Natural convection heat transfer is becoming an increas-

ingly important subject for experimental and theoretical

studies. Some form of natural convection occurs in most

processes where fluids are heated or cooled in a gravita-

tional force field. Often this is combined with forced con-

vection. In situations where forced cooling is not practical

or possible, natural convection alone is an important mecha-

nism for heat transfer.

Early work on natural convection considered heat transfer

from a body immersed in an isothermal stagnant fluid of

infinite extent. Geometries studied include a vertical flat

plate, horizontal and vertical cylinders and spheres. Bound-

ary layer solutions were obtained for each of these valid for

laminar flow at large values of the Rayleigh number. More

recently considerable research efforts have been devoted to

the study of heat transfer in cavities filled with a fluid-

saturated, porous medium. To a large extent, this interest is

stimulated by the fact that thermally driven flows in porous

media are of considerable engineering interest. These prob-

lems arise in the design of pebble bed nuclear reactors,

catalytic reactors, compact heat exchangersy solar power



collectors, geothermal energy conversiony use of fibrous

materials in the thermal insulation of buildings and geophys-

ical flows. Another important area of application is heat

transfer from the storage of agricultural products which

generate heat as a result of metabolism. An excellent review

of existing experimental and numerical results have been

presented by Combarnous and Bories (1975) and Catton (1978).

The purpose of the present thesis is to examine the

effects of natural convection in inclined^ rectangular,

porous layers when a constant heat flux is applied on two

opposing walls, while the other two walls are maintained

adiabatic. The layer is referred to as being horizontal,

vertical or tilted, depending on the orientation of its

thermally active walls with respect to the gravity acceler-

ation vector. A review of the literature shows that most

previous theoretical publications deal with vertical (Burns

et al. (1976), Weber, (1979) and Shiralkar et al. (1983)) or

horizontal (Elder, (1974) and Rudraiah et al. (1982)) cases.

For situations involving inclined layers, available studies

are relatively limited. The problem of a sloped porous layer,

heated isothermally from below, has been considered theoreti-

cally and experimentally by Bories and Combarnous (1973).

Depending on the values of the slope of the layer and the

Rayleigh number R, different shapes of free convection move-



ments have been observed. Hence, a two-dimensional stable

unicellular flow takes place in the layer if R<4w2/cos^,

where <p is the angle between the heated wall and the horizon-

tal plane. On the other hand, when the Rayleigh number is

higher than a critical value a transition from unicellular

flow to stable three-dimensional flow is observed. The

resulting convective movement take then the form of polyhe-

dral cells for y lower than about 15° while for higher values

of <p it consists of adjacent longitudinal coils climbing up

along the direction of the slope. Finally for very high

Rayleigh numbers it was found that, depending on the slope of

the layer, a fluctuating regime or a wavy coil regime could

be observed. Convection in a tilted, porous box -with two

parallel isothermal planes and the other limits insulated

-has been studied numerically by Vlasuk (1972) for the range

A=l, -90°<p<90° and R<350. It was found that the tilt angle,

for maximum heat transfer, is approximately 50°.

Hoist and Aziz (1972), considering temperature-dependent

physical properties, investigated the heat transfer of a

tilted square of porous material. Steady natural convection

in a slightly inclined, rectangular, porous box has been

studied by Walch and Dulieu (1979) using the Galerkin method.

A correlation for the Nusselt number as a function of Rayl-

eigh number, aspect ratio and tilt angle has been obtained by



these authors. More recently, the existence of multiple

solutions, in a slightly inclined, porous cavity heated from

the bottom, has been studied numerically by Walch and Dulieu

(1979), Moya et al. (1987) and analytically by Caltagirone

and Bories (1985) who determined their stability. It was

demonstrated that, for small angles of inclination, three

different real solutions may exist for a given Rayleigh

number and aspect ratio.

All the above studies have considered cavities with

isothermal walls despite the fact that in many engineering

applications the temperature of a wall is not uniform but,

rather, is a result of the imposition of a constant heat

flux. Results available for the situation where a constant

heat flux is applied on one (Prasad, et al., (1984)) or two

(Bejan, (1983)) walls have been reported only for the case of

a vertical cavity.

The objective of the present work is to analyze the

behavior of natural convection flows in rectangular, tilted,

porous systems heated and cooled by constant heat fluxes. The

organization of this thesis is the following. In Chapter 2

the parallel flow approximation is developed for the simple

case of a horizontal Darcy layer. The control volume approach

introduced in the past by Be jan (1983) is described. The



problem of an inclined Brinkman-extended Darcy porous layer

is studied in Chapter 3 . The critical Darcy-Rayleigh number

for the onset of convection in a bottom-heated horizontal

cavity is also discussed in this chapter. The influence of

multiple diathermal partitions in inclined porous layers is

studied in Chapter 4. The stability and natural convection in

a system consisting of a horizontal fluid layer over a layer

of porous medium saturated with the same fluid, with heating

from below, are considered in Chapter 5. The mechanism of

natural and Marangoni convection in a system with two strati-

fied fluid layers is investigated in Chapter 6. The thesis

concludes with Chapter 7.



CHAPTER 2

THE PARALLEL FL APPROXI TI ON

FOR SHALL CAVITIES

2. 1 LITERATURE REVIEW

Though the published results for the convection heat

transfer in a rectangular cavity cover wide ranges of Rayl-

eigh number and aspect ratio, most of them have been limited

to large aspect ratios A (A=height/width>1). For low aspect

ratios, A<1, the relative scarcity of published work has been

noted by Ostrach (1980). In a series of papers, Cormack et

al. (1974a, b) and Imberger (1974) investigated the case of

the gravity induced flow in slender horizontal fluid enclo-

sures with differentially heated end walls. The problem was

solved by means of an asymptotic theory for very small aspect

ratios A«l and arbitrary but fixed values of the Grashof and

Prandtl numbers. It was shown by these authors 7

that the flow inside the cavity consists of two distinct

regimes: a parallel flow in the core region and a second,

non-parallel flow near the ends of the cavity. A solution

valid at all orders in the aspect ratio A was found for the

core regiony while the first several terms of the asymptotic

expansion were obtained for the end regions. The same problem

was also considered by Bejan and Tien (1978a) who have devel



oped an approximate solution, valid for small but finite

aspect ratiosy to cover the three regimes of Ra-»0, intermedi-

ate Ra and large Ra.

The Nusselt number prediction, based on the three-regimes

theory, was found to agree very well with available numerical

and experimental heat transfer data. The case of a porous

layer confined in a horizontal space with the two ends main-

tained at different temperatures and the long horizontal

walls being adiabatic was also considered by Be jan and Tien

(1978b). The results demonstrated the dependence of the

Nusselt number for axial heat transfer on the Rayleigh number

and the aspect ratio of the horizontal porous medium. A

numerical solution for the above problem was obtained by

Hickox and Gartling (1981) and regions of validity for the

analytical results were delineated. A more formal treatment

of the limit case considered by Be jan and Tien (1978b) , with

Ra fixed and A-^0, has been given by Walker and Homsy (1978),

where there is also a discussion of the limit Ra-»0 and A

fixed, i. e. the conduction dominated regime. Solutions for

the flow field and the Nusselt number were obtained up to

0(Ra4). A classification of the limiting behaviours of the

thermal convection in a cavity filled with a porous medium,

when the applied temperature gradient is perpendicular to the

gravity vector, was presented recently by Blythe et al.
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(1983). In particular the case of the shallow cavity, was

considered. A discussion of the relationship between the

different possible flow regimes was given in terms of a new

scaling law. Existing theories for the Nusselt number were

reviewed and shown to be consistent with their scaling law.

All these works have considered exclusively cavities having

isothermal vertical walls. However, in many applications, the

temperature of the heated wall is not maintained uniform but

is rather the consequence of the heat flux imposed on the

wall. For instance, the temperature of the great majority of

walls encountered in architectural and solar applications

results directly from the imposition of a constant heat flux

through these walls. Thus the study of the natural convection

in a shallow cavity, induced by a constant heat flux, is

certainly of practical importance.

2. 2 NATURAL CONVECTION IN A POROUS ENCLOSURE

In order to illustrate the type of approximation that

will be utilized in the present thesis we will now consider

the simple case of natural convection in a horizontal rectan-

gular cavity containing a Darcy medium. The porous material

is isotropic and homogeneous and the fluid is incompressible.

All properties of the fluid and porous medium are considered

constant, except the density of the fluid which gives rise to



the buoyancy force. This so-called Boussinesq approximation

is practically valid for small temperature and pressure

variations within the flow region. As shown in Fig. 2. 1, the

cavity is taken to be of height H/ and length L/ with a

coordinate system (x/, y/) fixed at the geometric center of

the slot. The two horizontal surfaces are taken to be per-

fectly insulated and a uniform heat flux is imposed along

both side walls. The momentum boundary conditions are no mass

flux through the boundaries. Invoking Darcy/s law along with

the Boussinesq approximation and neglecting thermal disper-

sion^ the dimensionless form of the governing equations using

the streamfunction formulation are:

3T
V2v[f = -R -

ax
(2. 1)

3T ST
V2T=U - +v -

3x 8y

9$
u = - ;

ay
v = -

3-9

9-x.

with the conditions:

9T
^ = 0 - = 1

ax

9T
^ = 0 - = 0

ay

on x = ±1/2

on y = +A*/2

(2. 2)

(2. 3)

(2. 4)
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In the above equations the variables have been reduced to

dimensionless form by introducing the following scales:

x, y = (x/, y/)/L/

^ = ^!' /a

AT/ = q/L//k

A* = H//L/

u, v = (u/, v/)L//a

T = (T'-T/n)/AT'

R = g/?KL/2q^/ai/k

(2. 5)

where primes denote dimensional variables, u7 and v/ are

the velocity components in the x/ and y/ directions, T/ the

temperature, T'Q the temperature in the geometric center of

the slot, R the Darcy-Rayleigh number, q/ the heat flux

applied to both side walls, and A* the aspect ratio of the

cavity. The symbols a, ft, g, K, k and v denote the effective

thermal diffusivity, the coefficient of thermal expansion,

the gravitational acceleration, the permeability, the thermal

conductivity and the kinematic viscosity respectively.

2. 3 ANALYTICAL SOLUTION FOR SMALL ASPECT RATIOS

In this section an approximate analytical solution to the

full governing Eqs. (2. 1) to (2. 4) is sought for the case

with R fixed and A*«l. The problem of natural convection in

a porous cavity of small aspect ratio with differentially



11

heated isothermal end walls has been considered in the past

by Walker and Homsy (1978) . It was shown by the use of

matched asymptotic expansions, that the flow inside the

cavity may be decomposed into three parts; a core region of

extent 0(A*'1) in the center of the cavity, and two end

regions within an 0(1) distance from the end walls. The

solutions in the three regions are coupled by the matching

requirements in the regions of overlap. As the aspect ratio

approaches zero, the disparity in the length scales increases

and it is expected that the resistance forces in the core

region eventually dominate the flow structure over most of

the cavity. Physically, the basic flow consists of a buoyancy

driven parallel flow which is moderated by viscous effects

over a length L/. The flow then turns through 180° in the end

regions.

In order to find out the asymptotic solution, it is first

appropriate to rescale the governing equations in a way which

reflects the existence of two different regions with differ-

ent characteristic horizontal length scales, 0(L/)) in the

core and 0(H7) at the ends. Thus the solution in the core

region is obtained by scaling y/ with H', x/ with L' and v[r/

with crA* 2 R* . It is furthermore advantageous to introduce a

new Rayleigh number based on the height R =(g;3KH/2 q//ki/o')=R

A*2. With these scalings, the core field equations become:
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a2 ^ a2^
A*2 - +

ax*2 ay.*2

3T*

9X*
(2. 6)

v*2
32T* 92T*

+

ax'*2 ay*2 = A*R*[
3^* 3T* 3^* 3T*

ay* ax* ax* ay*
(2. 7)

where T*=(T-T'o )/AT^, u*=5^*/3y*, v*=-3^*/9x* and * refers

to the variables in the core region. The boundary conditions

are:

^* = 0 8TV /3xv = 1 on x* = ±1/2

^* = 0 3T*/9y* = 0 on ±fl/2

(2. 8a)

'.f^^ (2. 8b)

Expanding the stream function and temperature as a regu-

lar series in the small parameter A* :

^* = ^* o + A* ̂ * ̂  + A* 2^* 2 + . . .

T* = T* o + A* T* i + A*2 T*2 + . . . (2. 9)

substituting in Eqs. (2. 6) to (2. 8) and solving the resulting

equations the solution is:

^* =-- (y*2 _ 1/4)
2

(2. 10)

c2
T* = Cx* - - R*A* (y*3/3 - y*/4)

2
(2. 11)



u* = -Cy*
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(2. 12)

where the constant C, the axial temperature gradient, has

to be determined from the thermal boundary conditions imposed

on the vertical walls (Eq. 2. 8a)

The constant C may be obtained by matching the core

solution with solutions valid in the end regions. In the case

of a porous cavity with isothermal end walls, such a solution

has been developed formally by Walker and Homsy (1978) and a

first order description of the entire flow fieldy including

the corner interaction regions was obtained. However it was

shown by Be jan and Tien (1978a) that, in order to determine

the constant C, which defines the core flow, a detailed

analysis of the end regions is not absolutely necessary. In

fact the constant C may be evaluated simply by matching the

core region with an integral solution for the flow and tem-

perature field in the end region. In the case of a cavity

with isothermal vertical walls this was done by selecting

reasonable profiles for the velocity and temperature distri-

butions inside the end regions. In the present problem, due

to the fact that a constant heat flux is imposed on the

vertical walls, a guess of the velocity and temperature

profiles inside the end regions is not even required to solve

the core region.
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As discussed by Bejan (1983) the value of the constant C

may be obtained simply by considering the arbitrary control

volume of Fig. 2. 1. Integration of the energy Eq. (2. 7) over

this control volume yields:

V*2T* dV = A*R* v* . V*T* dV

such that

V*T* . dS = A*R* v* T* . dS

where

a2 a2
V*2 = A*2 - +

*2 ^,,*2ax'<: ay

and

V* = A*- +

(2. 13)

(2. 14)

9x* By*

By making use of the fact that both horizontal boundaries

are adiabatic (3T*/3y*=0), a constant heat flux is applied on

the vertical walls (3T*/i9x*=l) and the solid boundaries are

impermeable (V. dS=0) it may be shown that Eq. (2. 14) yields

r1/2_^
ST*

ax
: 1 /2

R*
dy* - -

r1/2

T*u*

:1/2

dy* = 1 (2. 15)

at any value of x* .
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The above equation expresses the fact that the constant

heat flux entering through the left wall flows undiminished

through the right one owing to the adiabatic conditions

imposed on both horizontal walls. The constant horizontal

heat flux inside the cavity is the sum of the horizontal heat

conduction through the vertical section of the layer and the

enthalpy convected by the horizontal counterflow.

Substituting Eqs. (2. 11) and (2. 12) into Eq. (2. 15) and

integrating yields:

C3R*2 + 120C - 120 = 0 (2. 16)

The value of the axial temperature gradient C may thus be

obtained, for a given Rayleigh number R , from Eq. (2. 16).

Solutions (2. 10), (2. 11) and (2. 16) indicate that the

core flow is essentially parallel to the horizontal bound-

aries for all orders of magnitude in A, while, for the first

order in A, the temperature is linear in x* and independent

of y*. It follows from this result that

and

^ (x*, y*) =. ^*(y*)

T* (x*, y*) ^ Cx* +9 (y*)

(2. 17)

(2. 18)
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In the past, the above technique has been applied to

various problems. For instance, Vasseur et al. (1986) have

considered natural convection in an inclined, porous layer

when a constant heat flux is applied on two opposing walls,

while the other two walls are maintained adiabatic. Solutions

for the flow fields, temperature distributions and Nusselt

numbers were obtained explicitly in terms of the Rayleigh

number and the angle of inclination of the cavity. For the

same problem^ Sen et al. (1987) have demonstrated analytil?

cally, on the basis of the parallel flow approximation,

that for small angles of inclination, three different real

solutions may exist for a given Rayleigh number. A similar

phenomenon has also been reported by Vasseur et al. (1987)

for the case of an inclined fluid layer. Also, multiple

steady states have been reported by Sen et al. (1988) for the

case of parallel flow convection in a tilted two dimensional

porous layer heated from all sides.

In the following chapters the parallel flow approximation

will be used to solve various problems of natural convection

in shallow enclosures. Although the parallel flow approxima-

tion is independent per se of the thermal boundary conditions

applied on the system, it happens that, when a constant heat

flux is considered, the solutions become particularly

straightforward. Also, the resulting solution is found to be
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valid for any Rayleigh number. Moreover, in the case of

bottom heated systems, it is possible to deduce in a direct

way the resulting critical Rayleigh number for the onset of

convective motion. In this way, it has been possible to

determine the limit stability of relatively complex systems.

In fact many of the critical Rayleigh numbers predicted in

the past by the linear stability analysis have been recovered

in the present thesis as limit cases of the problems consid-

ered.

In the following chapters we will illustrate the use of

the above method by considering a large variety of situations

such as inclined fluid or porous cavities and combined layers

of different nature (fluid-fluid or fluid-saturated porous

media). It will also be shown that it is possible to include

various hydrodynamic boundary conditions such as free sur-

faces with or without surface tension effects.



CHAPTER 3

AN INCLINED SHALL POROUS CAVITY I TH UN I FOR FLUX

THE BRI DEL

3. 1 LITERATURE REVIEW

The phenomenon of convective heat transfer in a fluid-

saturated porous cavity has received considerable attention

in the past because of numerous applications in geophysics

and energy related engineering problems. Applications

include geothermal reservoirs, porous insulation, packed-bed

catalytic reactors heat storage bed, nuclear waste disposal

systems, sensible heat storage beds, and enhanced recovery of

petroleum resources (Cheng, (1978); CombarnouSy (1975);

Denloye, (1977); Bejan, (1981); Beavers, (1967); Saffman,

(1971); Brinkman, (1948); Tarn, (1969); and Lundgren, (1972)).

The many possible configurations in which the flow and heat

transfer processes in such systems have been examined include

a rectangular enclosure with differentially heated vertical

side walls, an annular cavity with radial heating and an

infinitely long horizontal porous layers heated from below.

Most analytical studies for natural convection in porous

media are based on Darcy flow model which is empirically
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given by

/IV

K
( Vp + pgk ) (3. 1)

where /x, v, p, K, p, g, and k represent the viscosity of the

liquid, the velocity vector, pressure, the permeability of

the porous medium, the density of the liquid, the acceler-

ation due to gravity and a unit vector pointed vertically

upward, respectively.

One of the main advantages of Darcy/s law is that it

linearizes the momentum equation, thus removing a consider-

able amount of difficulty in solving the governing equations.

Darcy's law is found to give satisfactory results for flow

velocities and heat transfer rate when the porous medium is

closely packed i. e. it has a low permeability. On the other

hand, since Darcy's law is of order one less than the Navier-

Stokes equations it cannot account for the no-slip boundary

condition on rigid boundaries. In order to take into consid-

eration the boundary effect, which may become important in

porous media with high porosities such as foam metals and

fibrous materials, other laws should be used.

An alternate and more appropriate approach was proposed

by Brinkman (1948) who extended the Darcy model by adding a
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viscous-like term in Eq. (3. 1) thereby making it a second-

order equation. This extended-Darcy equation can be written

in the form

//V

K

= -( Vp+pgk ) + /^ov2v (3. 2)

where fi is the effective viscosity.

The Brinkman equation removes the deficiencies of Darcy/s

law in the sense that it is applicable to media with high

permeability and can account for all boundary conditions at a

solid surface or a fluid interface .

Although the effective viscosity /^p appearing in Eq.

(3. 2) was recently shown (Koplik, (1983)) to be less than p,,

the pore fluid value, it has been a coinmon practice to take

these two viscosities to be equal. (Howells, (1974); Hinch,

(1977)). So in the present Chapter we will take p. p=^.

The first theoretical investigation of natural convection

in a porous enclosure using the Brinkman modely was made by

Chan et al. (1970) who studied the flow and heat transfer

rate in a rectangular box with solid (impermeable) walls. The

box was differentially heated in the horizontal direction.

Chan et al. considered enclosures with aspect ratios
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(depth/width) greater than or equal to one. Their numerical

computation indicate that when the Darcy number based on the

width of the enclosure is less than 10"3, Darcy's law and the

Brinkman equation give virtually the same result for the heat

transfer rate. Within the past few years there has been a

renewed interest in the use of the Brinkman equation for

analyzing flows through porous media. Rudraiah et al. (1980)

used this model to investigate convective instabilities of a

fluid-saturated porous layer heated from below. In a differ-

ent context, the Brinkman equation was used by Nandakumar and

Masliyah (1982) to determine the flow of a newtonian fluid

past a permeable sphere and 'by Haber and Mauri (1983) in

their study of flow around a porous sphere with a solid core.

More recently, Tong and Subramanian (1985) examined the

boundary layer region for natural convection in a Brinkman

medium inside an enclosure with an aspect ratio of 0(1). The

same problem was considered recently by Vasseur and Robillard

(1987) for the case of a vertical cavity heated by constant

heat fluxes.

Several investigators (see for instance Bejan^ (1978))

analyzed in the past the shallow cavity problem using Darcy's

law. Among them, Hickox and Gartling (1981) applied the

Galerkin form of the finite element method and numerically

computed the heat transfer rate through the cavity in terms
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of a Nusselt number. Approximate analytical expressions for

the Nusselt number have been derived by Walker and Homsy

(1978) and Be jan and Tien (1978) A comparison of heat trans-

fer results obtained from the present study and from those

using Darcy/s law will be made here.

In the original form, neither Darcy's law, Eq. (3. 1) nor

Brinkman Eq. (3. 2), incorporate inertial effects. Muskat

(1946) accounted for fluid inertia by introducing a velocity-

squared term in the equation Among others, Whitaker (1969)

and Slattery (1968) and more recently Vafai and Tien (1981)

developed equations for fluid motion through a porous medium^

including inertial effects. However, in this analysis, the

effects of inertia will actually be ignored.

The present study proceeds as follows. First, we examine

buoyancy-driven convection in a shallow inclined porous

cavity with all rigid boundaries. Our mathematical treatment

parallels that of Cormack et al. (who consider natural convec-

tion in a shallow cavity filled with a newtonian liquid,

(1974a, b)) and is based on the asymptotic limit that the

aspect ratio of the cavity goes to infinity (A»l) . This is

followed by an analysis of natural convection in a shallow

porous cavity with rigid and free horizontal surfaces. The

primary objective is to determine the heat transfer rate
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though the cavity in terms of a Nusselt number.

3. 2 PROBLEM STATEMENT AND SOLUTION PROCEDURE

Consider a two-dimensional cavity filled with an iso-

tropic, homogeneous, fluid-saturated porous medium confined

on all sides by an impermeable rectanguar box. The enclosure,

shown in Fig. 3. 1, is of height H/, width Ii' and tilted at an

angle p with respect to the horizontal plane. An adiabatic

condition is imposed on the two end walls while a uniform

heat flux qf =-'k.9T'/9x' is applied along both side walls.

Here, k is the thermal conductivity of the porous medium, T/

the temperature and primes denote dimensional variables. It

is assumed that the flow is laminar and steady and that the

Boussinesq approximation applies. The usual Darcy assumptions

are adopted in the porous mediumy except that the viscous

Brinkman term is retained.

Under these conditionsy the governing equation for the

porous medium are:

auf av'
+ - = 0

3x/
(3. 3)

9y'

K

u/ = -
9p/ 32u/ 52u/

- /^ ( -_+ -- )| - pq0COSy(T'-Tof)
i23X 3x/2 By'

(3. 4)
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/ - _V =

K

At

9pf 92V' 92V/

- ^ ( -. + - )
9y' 3x/2 9y iZ

- pg^siny?(T7-To ")

u'

3T'

ax'

3T
+ V'

9y

/ r 92T/ 32T/
a| -- +

" L axf2 ayf2

(3. 5)

(3. 6)

where u/, v', pf, TQ', g, K, p. and a stand for the velocity

components in x/ and y/ direction, pressure, temperature at

the geometric center of the cavity, gravitational acceler-

ation, medium permeability, viscosity and thermal diffusivity

respectively.

The solution is obtained in terms of the stream function

and vorticity defined, as usual, by

uy =

9^'

Qy'

3v/ 3u'

. I = -
3-9'

9-x.'

9-x. ' By'

(3. 7a)

(3. 7b)

With the use of appropriate scales for length, velocity

temperature and stream function, the following dimensionless

variables are used:
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(x7, y/) (u/, v^)
(x, y) = , (u, v) = , T =

L/ "f/L/

T/ -To /

AT ^

q7 Lf

AT7 = -,
\s,>

^ =
0!<

The nondimensional governing equations for the porous

medium are,

V2^ = -w (3. 8)

9T 81
V2 u = Da'1 |u - R( - siny? + - cos<p )

9x 9y
(3. 9)

9^f ST 3>Sf 9T
V2T= - - - - -

9y 3x 9x By
(3. 10)

where Da=K/L/2 is the Darcy number and R=g/3KL/2 q//kai/ the

Darcy-Rayleigh number based on the constant heat flux q/ and

the permeability K of the medium.

The boundary conditions on ^ and T are

3T
^ = 0, - = 1

5x
at x = ± (3. 11a)

3T A
^ = 0, - = 0, aty=±

3y 2

where A=H//L' is the aspect ratio of the cavity.

(3. lib)
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In the present problem, a representative Nusselt number

reflecting the convective heat transfer is defined as

Nu =
q/L(

kAT'

1

AT
(3. 12)

where AT=T(1/2, 0)-T(-l/2, 0) is the wall-to-wall dimensionless

temperature difference^ taken arbitrarily at the position

(x=0, y=0).

3. 3 ANALYTICAL SOLUTION

In this section we proceed to search for an analytical

solution for large aspect ratio of the cavity (A»l) . As

discussed in Chapter 2, the main features of the solution

are: (1) a core region in the centre of the cavity in which

the flow is essentially parallel (u=0y v=v(x)) and the

temperature distribution linear in the y-direction, and (2)

two regions near each end wall where the flow turns around

and recirculates. This behavior, in the context of the

present problem, suggests the following transformation for

the temperature field in the core region (see Eqs. 2. 17 and

2. 18),

T(x, y) = 6 (x) + Cy

^(x, y) = ^(x)
(3. 13)
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where C is the unknown constant temperature gradient measured

in the core region along the y-direction. The value of C is

obtained from Eqs. (2. 14), (3. 11) and (3. 13) as

C = 2

^1/2

vT| dx (3. 14)

Substituting Eq. (3. 13) into the governing Eqs. (3. 8) to

(3. 10) and using the fact that, in the core region,

^r(x»y)=<r(x) ^ we 9et

d2v?

dx2
Da

d4^

dx4

de
- R| - si

dx
siny? + C cosip

and

d2e

dx2
0

d^

dx

Substitution of (3. 16) into (3. 15) readily gives

d5^ 1 d3 ̂  RC d^
+ - sincp - = 0

dx5 Da dx3 Da dx

(3. 15)

(3. 16)

(3. 17)

The solution of Eg. (3. 17) may be written as a sum of

exponentials

^ = S a^ exp(-X^x)
n= 1

(3. 18)
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where X are the roots of the quartic equation

1 RC
X2 ( X2 - - ) + - siny = 0 (3. 19)

Da Da

as follows from substitution of (3. 18) into (3. 17).

The behavior of the roots X in (3. 19) depends on the sign

of C siny>, so the three cases C siny> positivey negative and

zero will be considered in turn.

3. 3. 1 C siny> > 0

This corresponds to a stable temperature gradient in the

core region, and C in temperature distribution (3. 13) would

be positive (negative) for sin<p positive (negative). This

situation corresponds to "natural" or "preferred" (Ehrhard

and Mueller (1990)) flow. This is the motion that would start

from rest and from a conductive temperature field (i. e.

counterclockwise (clockwise) motion for sinp positive (nega-

tive)).

Solutions to Eqs. (3. 16) and (3. 17) satisfying boundary

condition (3. 11a) are

B

\s, = -
i2+b2

o;^ cosh (ax) cos (bx) + ccg sinh(ax)sin(bx) - D

and (3. 20)



|"osi:= By3Q |c(g sinh(ax)cos(bx) + cosh(ax) sin(bx)

v

+ - Cx cot<p
2'Rsinip

where v is the velocity component, given by

v = B|sinh(ax)cos(bx) - apcosh(ax)sin(bx)

and

-y+1 7-1
a = -, b = -, 7 = 4RC Da sinp

4Da

-7 (l+CCOt(p)
B =

2C D Da

4Da

^-1

2R sinip

D = cri cosh(a/2)cos(b/2) + a^ sinh(a/2) sin(b/2)

29

(3. 21)

(3. 22)

(3. 23)

O-Q = cot(b/2)tanh(a/2), a, == a + bag, o'^ = b - aap

The Nusselt number Nu is obtained, by substituting (3. 20)

into (3 . 12) , as

Nu =
2E B (l3n - C coty>

(3. 24)

where E = O:Q sinh(a/2) cos(b/2) + cosh(a/2)sin(b/2)

The next task is to determine C. Substituting (3. 20) and

(3. 21) into (3. 14) yields
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B cot<p Fo- 4ab

a2+b2 a a2+b2

B2
El -

8RC
{G(l + F) + M}

H

+ (ao2-F) (M+2-G) + -{F(l-ao2)-2ao2}| +1=0 (3.
Cd

25)

where

F = an 4RC Da - 1

sina sinb
M = - - - - 1

G = (b cosha sinb + a sinha cosb)/(a2+b2)

H = (a cosha sinb - b sinha cosb)/(a2+b2)

Equation (3. 25) can readily be solved numerically to

obtain C as a function of R and Da. The temperature and

velocity distributions and Nusselt number are then given by

Eqs. (3. 20) to (3. 24) respectively.

At this stage it_ should be noted that the present analy-

sis, based solely on the assumption of parallel flow, is

valid even at relatively low Rayleigh numbers. These results

must be valid for the boundary layer regime. This regime, in a

vertical cavity with uniform heat flux from the side, has

been studied in the past by Be jan (1983) for a Darcy medium
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and by Kimura and Be jan (1984) for a viscous fluid. The

boundary layer equation were solved analytically using a

modified Oseen linearization method (Gill, (1966)). Since the

Brinkman equation reduces to the Darcy equation as the

permeability K-»0 and to the Stokes equation as K--°° we can

check the previous results in these two pecial cases.

a) Da«l: the Darcy medium

Taking the limit of Eqs. (3. 20-3. 25) when <p=90° for Da->0

and R-^-°° it is readily found that

v = - o:3/2 exp(-o;x* )

Y x . *,
T = -- - -exp(-o!X" )

a1/2 a

for x* = 0

(3. 26)

a

Nu = -
2

where a=R2/5 and x*=(l/2 - x) .

The above equations, when translated into corresponding

notations, are the same as those obtained by Bejan (1983) .

b) Da » 1: the viscous fluid

Taking the limit of Eqs. (3. 20-3. 25) when y=90° for Da-^°°

and R-»«> it is readily found that
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v = -

Ra

2a3
exp(-ax*) sin(ax*)

4a4 1
T = - Y - - exp(-ax*) cos(ax*)

Ra a
(3. 27)

Nu = a/2

where a9=Ra2/32, Ra=R/Da, and x*=(l/2-x). The above equations

are similar to the results obtained by Kimura and Be jan

(1984) .

3. 3. 2 C si.np < 0

This corresponds to an unstable temperature gradient in

the core region so that C in temperature distribution (3. 13),

would be negative (positive) for siny> positive (negative).

For positive inclination the motion is clockwise, while it is

counterclockwise for negative inclination. In either case

this motion, which cannot be started from rest condition with

conductive temperature field, will be referred to as "anti-

natural" since it is opposite in direction to the natural

motion (see for instance Moya et al. (1987)). It may be also

termed as "isolated" since its forms a separate branch on the

bifurcation diagram (Ehrhard and Mueller (1990)).
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An analysis similar to the above can be carried out such

that we obtain

-cosh(a*x)-cosh(a*/2) cos(b*x)-cos(b*/2)
^ ^ ^ ^.., » ^-^.. ^ ,., ^ ^^,. ^.. ,.,^

BiC|
-sinh(a*x) sin(b*x)

a*2
+ a,

b*2 ]-

b*

Cx cotip

v = B^ |sinh(a*x) - 03 sin(b*x)

(3. 28)

(3. 29)

(3. 30)

Nu =
2 B^ C F - C cot<p

where

a* = (^+l)/2Da, b* = (/?-!)/2Da

(3. 31)

1 - 4RCDa siny? , 0:3 =
sinh(a*/2)

sin(b*/2)

sinh(a*/2) sin(b*/2)
F = + a:

a*2 J b*2

cosh(a*/2) cos(b*/2)
G = + a-.

a* ' "3 b*

BI =
1 + C COty

GC

The value of C is given by:



Ot
B, cot<p P - B^ 2 | Q +

a*2-b*2
( . - . -) sl

a*2b*2 'a*2+b*z' -I 2
1| + - = 0

34

(3. 32)

where

a

2a*2
cosh(a*/2) - 2 sinh(a*/2) ]

+ -- |b* cos(b*/2) - 2 sin(b*/2)
2b*2

a,

Q = -- (sinha* - a*) + -l-(sinb* - b* )
4a*3 4b*3

S = a* sin(b*/2)cosh(a*/2) - b* cos(b*/2)sinh(a*/2)

Here again a numerical procedure can be used to solve Eg.

(3. 32) in order to obtain C as a function of R and Da. The

temperature and velocity distributions and Nusselt number are

then given by Eqs. (3. 28) to (3. 31) respectively.

3. 3. 3 C. siny> =0, (y» = 0)

This corresponds to a horizontal porous layer. For this

particular situation we will consider the case where the

layer is heated either by the bottom or either from the

sides. Also the cases with either rigid or free horizontal

surfaces will be studied.
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With <p = 0 the governing Eqs. (3. 8)-(3. 10) reduce to

V2^ =DaV4^/ - R
81

ay
(3. 33)

3^ 31 9^ 9T
V2T= - - - - -

9y ax ax ay
(3. 34)

The governing Eqs. (3. 33) and (3. 34) together with the

approximation, Eqs. 3. 13, yield the following differential

equations

d4^

dx4
- a2

d2^

dx2
= RCa2 (3. 35)

and

d2$

dx2
o

d9

dx

where cr2 =Da' 1 . The constant C depends upon R and Da and the

thermal boundary conditions imposed on the end regions of the

cavity.

The thermal boundary conditions are

3T

ax
a at x = ± 1/2 (3. 36a)
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3T

b

ay
at y = ± A/2 (3. 36b)

The constants a and b for bottom heating are a=l, b=0,

while for sidewall heating they are a=0, b=l.

Integration of Eg. (3. 34) over the control volume illus-

trated in Fig. 3. 1, together with the thermal boundary

conditions, yield

r1 /2

:1/2

3T
(VT - -)

ay
dx = -b (3. 37)

at any y position.

3. 3. 3. 1 All boundaries rigid

The hydrodynamical boundary conditions over the whole

perimeter of the enclosure are the no-slip condition. Both ^

and its normal derivative are zero at all boundaries. The

solutions to Eqs. (3. 35) are

RC|- cosh(ax)
^ = -I( - coth(a/2)) - a(x2 - 1/4)| (3. 38a)

2aL sinh(o. /2)
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RC2
T = Cy+x|a + -(4x2-3) | -

L 24

RC2 rsinh(crx)

2a2 Lsinh(a/2)
- crX C0t]l( a/2)]

(3. 38b)

To obtain an expression for the constant C, condition

(3. 37) can be used to give

coth2 (a/2)r lcoth(o. /2)
R2C2 (a2-6) - I +2

12a3 So. 2 OSh2 Q. /2 J 120 a/

1 2
>1 - - + -

,4

sinha -1 C0th(a/2) 1
+ + aR|- -

So;3 sinh2 (a/2) L12 2a
^]- 1 - -= 0

c

(3. 39)

The value of the axial temperature gradient C may be

evaluated numerically from the above equation, for a given

Darcy-Rayleigh number R and Darcy number Da, using a Newton-

Raphson scheme. On taking the appropriate values of a and b,

Eqs. (3. 38) and (3. 39) can be applied to both botton and side

wall heating.

In the particular case of a cavity heated from the

bottom (a=l, b=0), Eq. (3. 39) gives

C = 0 (3. 40a)

or
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c = ±
1 1

I1 - R(TT+^ -
,2

1 C0th(cr/2)

12 a2 2a
)]/A

where

C0th(a/2)
A = R2 (a2-6) -

12a3

(3. 40b)

COth2(a/2)

8a2 LCOSh2 (o. /2),

+ 21 <3- 41)

1 2
+ - +

sinh a

120 a4 8a3 sinh2 (a/2)

When the Darcy-Rayleigh number R is below a critical

value R , there is no convective flow possible and the only

value of C is zero. Heat transfer is through conduction

alone. However, when R is above Rp, there are two additional

convective solutions representing symmetrical clockwise and

counterclockwise circulation. Substituting R=R(; and C=0 into

Eq. (3. 40b), it is found that

Rc =
(Da+l/12)-( Da/2) coth (1/2 Da)

(3. 42)

This prediction of the critical Darcy-Rayleigh number is

correctly obtained from the present parallel-flow analysis

because the convection that occurs when a constant heat flux

or a constant pressure is applied on the boundaries of a

horizontal layer is at zero wave number. Using linear stabil-
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ity analysis Nield (1968), in the case of a porous layer, and

Sparrow et al. (1964), for a fluid layer, found zero wave

numbers for the onset of convection.

From the temperature distribution, the Nusselt number is

Nu =

1-(RC2/12)[l+(6/a2)(2-a coth(a/2))]
(3. 43)

i) Darcy porous mediiim limit

As Da-+0, the Brinkman equation reduces to Darcy's law. In

this limity we obtain

RCrl

^ = -|-(e"<x-i/2) + e-°<^+l/2> - l)-(x2 - 1/4)| (3.
2 LQ'

44a)

RC2
T= Cy+ x|a + - (4x2 - 3)

24

R2C3 + 10C(12 - aR) - 120b = 0

Also, for bottom heating we can get

(3. 44b)

(3. 45)

Nu =

(1/6) + (10/R)

and

Rc = 12

(3. 46a)

(3. 46b)
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which have been obtained by Vasseur et al. (1987) and Nield

(1968) , respectively.

ii) Viscous fluid limit

For Da-»°°, the governing equations are those for a

viscous fluid. In this case

^ =
Ra C

24
X4 - X2/2 + 1/16]

T= Cy + x
Ra C2

a - -(x4 - 5x2/6 + 5/16)
120

RaaC3 + 5040(720 - a Ra) - 362, 88Gb = 0

(3. 47a)

(3. 47b)

(3. 48)

where Ra=R/Da is the Rayleigh number for a viscous fluid.

This Rayleigh number does not depend on the permeability of

the porous medium and should not be confused here with the

Darcy-Rayleigh number R used for a porous medium.

For a bottom-heated cavityy

Nu =
(3/10)+(504/Ra)

and

Ra^ =720

(3. 49a)

(3. 49b)
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respectively. These results have been obtained by Vasseur et

al. (1987) in a study of the natural convection in an

inclined fluid layer with uniform heat flux. The critical

Rayleigh number was given by Sparrow et al. (1964)

3. 3. 3. 2 Upper surface free, lower rigid

We assume that surface tension is negligible and that the

free surface remains horizontal everywhere. Since there is no

shear stress at the free surface, ^ and its second normal

derivative are both zero. Applying the same procedure as

before, it is found that the streamfunction and temperature

field are given by

^ =

and

T =

A B x2
- _ eax + - e-ax - RC - - Dx + F

a a 2

rA B x3 Dx2
Cy+C|- eax-l- e-ax+RC -+--Fx|+ax+G

(3. 50a)

L«2 ^
(3. 50b)

6 2

where

A =
RC raea/2 2

+ e-Q!/2 - - sinh(a/2)
H

RC rae-0/2
B = - I - ea/2

H L 2
+ - sinh(a/2)

a



RC r4 sinh2 a/2
D = - I - sinh a

H L a

RC RC r cosh a sinh a

F=--+-I 1+ (2-a2)( - )
8 Ha L 2 a

G = -
RC2

Ha2

2(l-a)L-Q.,
a cosh(a/2) + sinh(a/2)

a

From condition (3. 37), the value of C is given by

A2+B2 A+B 2AB
sinh a(---) - cosh(a/2)D(-) + (-)

a' a

p4 1^ pA+B^
+sinh(a/2)D |- + -|

,2

-4 l-i rA+B-i R2 C2
+

.a2 4J L a J 480

a 2RC RC-

+ 2 sinh(a/2)|F - - - - - -|(A-B)/a
,2C a£ 8

+ cosh( a/2)[-
a 2RC RC

F + - + - +
C a2 24

-|(A-B)/a

42

H = 2 (sinh a - a cosh a) (3. 51)

1 D2 b
+ -(aR - FRC + -)-1--=0

12 2 C
(3. 52)
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It is also possible to obtain explicit expressions for

and Nu for a bottom-heated cavity. However, since the algebra

is straightforward and the expressions lengthy, they will not

be presented here. Of particular interest is the critical

Darcy-Rayleigh number Rp, which is given by

RC=
1/12+[(cosh2 (a/2))/a2H](a-2tanh(a/2))[2+(a-4/a)tanh(a/2)]

Viscous fluid limit

(3. 53)

For Da-»°°, it is readily shown that

\s, =
Ra C

24

x3 3
- -X2 +

24 88-
^+3

120 8 16 8

(3. 54a)

RaC2 5555
T= Cy +x|a - -(x4 - -x3 - -x2 + -x + -)| (3. 54b)

4536 1, 451, 520
Ra2C3 + -C(320 - a Ra) - b = 0

19 19
(3. 55)

while, in the particular case of a bottom-heated cavity, the

Nusselt number and critical Rayleigh number are

Nu =
(193/760)+(4536/19Ra)

(3. 56a)

and



Ra^ = 320
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(3. 56b)

3. 3. 3. 3 Both horizontal surfaces free

If both upper and lower surfaces are free, the resulting

streamfunction and temperature fields are

^ =
RC r COSh (crX) a2

( - 1) -- (X2
a£ L cosh(a/2)

-i-l (3. 57a)

and

X2 1 1
= Cy + x|a +RC2(- --+ -) | -

,28 Q-'

RC2 sinh(ax)

a3 COSh(c(/2)
(3. 57b)

The axial temperature gradient C is determened from

sinh(a') -a 1 la 1 1
2R2C2 + - + -(- + - - -)

4a5 cosh2(a/2) 960 24 RC2 a2 8

1 r a3 a2
|CQSh(a/2)(3a + -)-3(- + 2)sinh(a/2)| (3. 58)

6a5 COSh(a/2)

1 r2 a l-i ra
+

-0;

\- + - - - -I I- cosh(a/2)-sinh(a/2)I -1 - -= 0
(2 RC2 8J L2 J Ca3 COSh (a/2) La2 RC2 8J L2

For a bottom-heated cavity, the Nusselt number is given

by

Nu = (3. 59)
1 + (RC2/a2)[l - (a2/12) - (2/a)tanh(a/2)]



The critical Darcy-Rayleigh number is

45

RC =
2Da3/2 tanh[l/(2Da1/2)] + (1/12) - Da

(3. 60)

Viscous fluid limit

For Da-K», the above equations reduce to

Ra C rx4 x2 5
^ = - I- - - + -

8 L3 2 48-
(3. 61a)

Ra C2 5 25
T= Cy +x[a - -(x4 - -x3 +

120 2
!!>]
16

(3. 61b)

3024 362, 880
Ra2C3 + - C(120 - aRa) - b = 0

31 31

and, for a bottom-heated cavity, we have

(3. 62)

Nu =
(29/155) + [3024/(31 Ra)]

and

Ra^ =120

(3. 63a)

(3. 63b)

3. 4 NUMERICAL SOLUTION

Solution for the flow field and the temperature distribu-

tion within the cavity may be found by standard numerical
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methods. The governing equation for stream function (3. 8),

vorticity (3. 9), and temperature (3. 10) are first discretized

according to a central difference scheme. The discretized

equations for ^, «/ and T are then solved twice at each time

step, using the latest available field values, until conver-

gence to a steady solution is achieved. Boundary conditions

(3. 11a) and (3. lib) are used for T and ^ respectively. For

the vorticity equation, the latest values of u from Eq. (3. 8)

on the boundaries are used to obtain the new field values.

The discretized Poisson equation for ij) is solved expli-

citly with a successive over-relaxation method whereas the T

and w equations are solved using an alternating directions

implicit method. The resultant set of finite-difference

equations is tridiagonal in form and therefore both easy and

economical to solve on a computer. In order to achieve both

the desirable accuracy and the dominance of the principal

diagonal of the tridiagonal systems of the finite difference

equations, very small time steps are used.

The adiabatic boundary condition for the temperature

equation is implemented at the strip wall using image points.

A first-order formulation for the vorticity boundary condi-

tion is used since second-order formulations have been
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reported to generate unstable solutions at low Darcy numbers.

It is believed that this is due to the velocity profiles

associated with the Brinkman-extended Darcy model, which

display a peak very close to the wall (Lauriat and Prasad

(1987)) .

Convergence of the solution is based on the criterion

s|fk. i-f
s If.

< R» (3. 64)

where f stands for 19, T or u and the subscript k indicates

the iteration order. The summation is over all mesh points.

In most cases the residue, Res' was se^ squal to 10'4 for ^

and 10'5 for both T and u. The converged results were stored

on disk after each run to be used as initial condition for

the next calculations.

The numerical results exhibited in this chapter were all

obtained using uniform grids. A grid of 51 x 51 was found to

model accurately the flow fields described in the results.

Increasing the number of grid points further had no visible

effect on the numerical results. For example , for Da=10'6

(Darcy medium) and R=250, increasing the number of grid

points from 2601 to 6561 yielded an increase in the value of
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the Nusselt number of only 1. 35%. in order to check the

accuracy of the results, an energy balance was used for the

system. For this the heat transfer through each x=constant

plane was evaluated at each location for -l/2<x<l/2, and

compared with the heat input at x=l/2. For most of the

results reported here, the energy balance was satisfied to

within 1-2%.

3. 5 RESULTS AND DISCUSSION

It has been shown that the problero is dependent upon

Rayleigh number R, Darcy number Da, angle of inclination y>

and aspect ratio A. However, the flow structure and heat

transfer over the central part of the cavity become indepen-

dent of A provided that the aspect ratio is made large enough

for the parallel flow assumption to be valid. In fact, with

the thermal boundary conditions considered herey parallel

flow can be easily established if the end effects are not

very strong, i. e., if the aspect ratio and/or the Rayleigh

number are large enough. For a Darcy medium (Da=0), it has

been demonstrated numerically by Vasseur et al. (1987) that,

for R<500y this is indeed the case when A>2. All the numeri-

cal results presented in this study were obtained for cavi-

ties with an aspect ratio A=3 and 4. It is worthwhile men-

tioning here that this behavior cannot be generalized to the
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case of cavity with isothermal walls for which the solution

does depend upon the aspect ratio of the cavity no matter how

large is the aspect ratio (see for instance Prasad and

Kulacki, (1983)).

Numerical results were obtained for a wide range of

Rayleigh numbers extending from the pseudo-conduction to the

boundary layer regimes, and for various values of Da and ip -

Some typical results are presented in Figs. 3. 2(a) to 3. 2(1)

which clearly illustrate the fact that, in the core of the

cavity, the flow can be considered as parallel, i. e. with u =

0. At each end of the cavity the flow is turned around in

regions that are approximately square. This is to be

expected since, as demonstrated analytically among others by

Sen (1987), the length scale characterizing the flow in the

end regions is comparable to the depth of the cavity.

Effects of the Darcy number are illustrated in Figs.

3. 2(d) to 3. 2(f) corresponding to R=250 and y>=90 . The

streamlines of Fig. 3. 2(d), with Da=10'4, are closely spaced

near the solid boundariesy this result indicating that the

fluid velocity is a maximum in this region. This is expected

since when Da is small enough, i. e., when the viscous term

which is responsible for the boundary effects becomes negli-

gible, the Brinkman model predicts results qualitatively
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similar to Darcy/s law which allows fluid to slip on a solid

boundary. However, as the Darcy number is increased the

viscous Brinkman term becomes gradually more important and

slows down the flow in the neighborhood of the walls as can

be seen by comparing Figs. 3. 2(d)-3. 2(f). In particular, the

isotherms and streamlines of Figs. 3. 2(f), with Da=l, are

characteristic of a pseudo-conduction regime. Effects of

increasing Rayleigh number can be observed from Figs.

3. 2(g)-3. 2(i) with »?=80° and Da=10-3 . The development of the

boundary flow regime with an increasing Rayleigh number is

clearly illustrated by the formation of a plateau in the core

region as well as by the steepness of the temperature and

velocity profiles near the thermally active walls.

The isotherms and streamlines for Da=10'4, 5 x 10'2 and

10-1 and R=250 are presented in Figs. 3. 3(a) to 3. 3(c) for

the case of a horizontal cavity with all rigid boundaries,

heated from the bottom. It is seen from these figures that

the flow rate within the cavity decreases significantly as Da

increases. The streamlines become relatively more and more

sparsely spaced near the solid boundaries, and the strong

flow circulation depicted in Fig. 3. 3(a) decreases as Da

increases. This indicates that the viscous Brinkman term

becomes gradually more important and slows down the fluid in

the neighborhood of the walls. Consequently, the maximum
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horizontal velocity drifts gradually from the solid wall

toward the horizontal middle plane. The sequence of Figs.

3. 3(a) to 3. 3(c) also illustrates the effect of Da on the

temperature field. When Da is small, the extreme contortion

of the isotherms in Fig. 3. 3(a) provides some indication of

the velocity of the fluid. As Da increases, the flow is

gradually inhibited by the viscous forces; the temperature

field indicates that heat transfer by conduction becomes

relatively more important than that due to convection. Figure

3. 3(d) shows the results obtained for Da=5xl0-2 and R=250 in

the case of a cavity, with all rigid boundaries, heated from

the side. It is evident from Figs. 3. 3(b) and 3. 3(d) that,

for the same values of R and Da, the magnitude of the convec-

tion with bottom heating is higher than that with side wall

heating.

Typical streamlines and isotherms for a cavity with an

upper free surface are presented in Figs. 3. 3(e) and 3. 3(f)

with bottom heating and side wall heating respectively. The

absence of shear at the free surface of the cavity results in

larger horizontal velocities at the top than at the bottom of

the cavity. Consequently, the center of the eddy is displaced

upwards. Dimensionless temperature distributions are nearly

anti-symmetrical, with deviations from anti-synunetry due to

higher velocities at the free surface. As in the case of a
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cavity with all rigid boundaries, the convective heat trans-

fer for a given set of R and Da is greater for a cavity

heated from the bottom than for a cavity heated from the

side.

The dependence of the stream function at the center ^. on

the Darcy number Da and Darcy-Rayleigh number R is presented

in Figs. 3. 4a and b for bottom heating and side wall heating,

respectively. The convection becomes less and less vigorous

as the Darcy number (i. e., viscous effects) is increased. The

limits for Darcy's law (Da-^0) and viscous fluid (Da-+°°) are

also presented on these graphs as dashed lines for compari-

son. When Da is sufficiently small, the prediction of the

Brinkman model is in agreement with Darcy's law. As R is

increased, a smaller Da is required to obtain such an agree-

ment.

Figures 3. 5 and 3. 6 show the dependence of the Nusselt

number Nu on R and Da for a cavity with all rigid boundaries,

heated from the bottom. For a given Da there is a critical

Darcy-Rayleigh number R^, below which convection is not

possible. Thus, for each of the Darcy numbers considered

in Fig. 3. 5, the Nusselt number approaches the conduction

solution, Nu^l and ^-»0 as R^ . The limits are R^=12 for

Darcy's law (Da-»0) and Ra^ =R^/Da=720 for a viscous fluid
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(Da-»°°) . From Fig. 3. 6 it is seen that, as usual, the Nusselt

number increases with R, but the effect of the Darcy number

is just the reverse. Thus, for a given value of R, the

Nusselt number decreases toward unity as the Darcy number

increases. For example, the heat transfer is by conduction

alone up to R=500 when Da=0. 6. Although in general the

Nusselt number increases with R, it is clear from Fig. 3.5

that Nu tends asymptotically toward a constant value that

depends on Da. For instancey according to Eqs. (3. 46a) and

(3. 39a), Nu-^6 for a Darcy medium (Da-»0) , while Nu-^10/3 for a

viscous fluid (Da->°°) , respectively. This surprising result

has not been observed for a cavity heated from the side,

where Nu always increases with R. However, the flow structure

in the two cases is quite different. For instance, with side

wall heating the horizontal surfaces are insulated and the x

dependence of the temperature field is characterized by a

slightly stable stratification. On the other hand, with

bottom heating the lower horizontal surface is heated while

the upper one is cooled, this situation resulting in a

strongly unstable stratification of the layer.

From the numerical results it was observed that, when R

is relatively small, the flow structure consists simply of a

layer of hot fluid in the lower half of the cavity, below a

layer of cold fluid in the upper half. As R is increased,
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convective motion gradually brings more and more hot fluid

into the upper layer and cold fluid into the lower layer,

giving rise to the formation of two new layers of fluid in

the central part of the cavity. The flow structure is then

made up of a thin layer of cold fluid below a thin layer of

hot fluid, near the center of the cavity, these two layers

being sandwiched between two thick layers of cold and hot

fluid located respectively near the upper and lower horizon-

tal boundaries. As R is further increased, the thickness of

the two centrally located layers increases while that of the

layers adjacent to the boundaries decreases. However, this

process cannot continue indefinitely since it would result in

the disappearance of the two layers of fluid adjacent of the

boundaries, which is impossible because of the thermal

boundary conditions applied there. Ultimately, an equilibrium

has to be reached where the thickness of the fluid layers and

the Nusselt number remain constant even if the Darcy-Rayleigh

number is increased further.

Good agreement between the numerical results and the

analytical solution is observed in Figs. 3. 5 and 3. 6. In Fig.

3. 5 it was not possible to obtain numerical results beyond

the Darcy-Rayleigh numbers depicted on the graph, since the

flow was found to become oscillatory. Hence there should be a

certain limit for the Darcy-Rayleigh number over which the
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analytical solution is also not valid. This limit could be

determined from a stability analysis of the parallel flow in

the core region. It should also be mentioned that, in the

case of a cavity heated from the bottom by a constant heat

flux, the unicellular flow discussed in this study is not the

only mode of convection possible since, as already discussed

by Vasseur et al. (1987), this situation may also lead to

Benard-type multicellular convective motion, for which the

present theory is naturally not valid.

The prediction of Nu for the case of a cavity heated from

the side by a constant heat flux requires a knowledge of the

temperature distribution on the vertical walls. This necessi-

tates a detailed analysis of the flow and temperature pat-

terns in the end regions as carried out, for instance, by

Cormack et al. (1974) for a shallow cavity with differen-

tially heated end walls. Since, in the present study, the end

regions have been considered only through a control volume

analysis, it is not possible to obtain an analytical expres-

sion for Nu. As a substitute, the temperature difference

AT=T(1/2, 0)-T(-1/2, 0) at the y=0 section is used in Fig. 3.7

to characterize the temperature field. Since the heat trans-

fer is globally in the y direction, AT is relatively small

and varies little with R. All the curves in Fig. 3. 7 are

observed to pass through a maximum at a value of Da that
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depends on R. The peaks are also predicted by the viscous

limit of Eqs. 3. 47b and 3. 48 with a=0 and b=l, and occur at

Da=R/1205. They result from the fact that, for a given value

of R, AT goes from zero as Da->°° (that is, Ra=R/Da-^0; pure

conduction state) to a maximum value and then back to zero in

the other limit Da->0 (that is, Ra-»°°, where the vertical heat

diffusion contributes to the reduction in T) .

The variation of the Nusselt number with cr2 (Da' 1 ), for a

typical value of R=100 is presented in Fig. 3. 8 for a cavity

heated from the bottom. In the same figure, the Nusselt

number obtained from Darcy/s law is also shown as a horizon-

tal dashed line. It is clear from Fig. 3. 8 that with R fixed,

the Nusselt number increases as a2 increases (that is. Da

decreases) for the three hydrodynamic boundary conditions

considered in this study. As expected, all the curves are

seen to approach the Darcy value asymptotically as Da-+0.

Furthermore, it is apparent from Fig. 3. 8 that the heat

transfer rate for a cavity with all rigid boundaries is

smaller that for a cavity with either one or two free surfa-

ces. This result is reasonable on physical grounds since,

when a surface is rigid (that is, with no slip) heat transfer

through this surface must be by conduction. However, the

tangential velocity permitted by a zero-shear free surface

allows convection to play a role in the heat transfer pro-
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cess. As can be seen from Fig. 3. 8, the analytical and

numerical results, although quite close, do not match as well

for the free-free case as compared to the rigid-rigid case.

Numerically it is easier to approximate a rigid surface than

a free surface . The numerical results for the free-free case

could have been improved by using a finer mesh size in the

vicinity of the free surfaces. However, because of the

additional computational expense, this was not considered

necessary.

Tables 3. 1 to 3. 4 show the analytically predicted heat

transfer and stream function at the center (^) as a function

of R and Da for a cavity with one and two free surfaces, and

for a cavity heated from the bottom and by the side. In these

tables the values in brackets were obtained numerically. The

results clearly indicate that for all the cases considered,

both the heat transfer and convective motion decrease as Da

increases for the same value of R. The same trend is observed

as R decreases with Da fixed. With a given set of R and Da,

it is observed that the heat transfer for a cavity with two

free surfaces is always greater than that for a cavity with a

single free surface, especially when the permeability of the

medium is large. For instance, the percentage increase in the

heat transfer rate is about 7. 5% when R=300 and Da=5xl0'4 and

27. 5% when R=300 and Da=5xl0"2 (see Tables 3. 1 and 3. 3).
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The critical Darcy-Rayleigh number R for the onset of

convection in a Brinkman layer heated from the bottom by a

constant heat flux is plotted in Fig. 3. 9 as a function of Da

for the three hydrodynamical boundary conditions considered

in this study. The solid curves are the results of Eqs. (3. 42

), (3. 53) and (3. 60), respectively. As mentioned earlier, the

critical Darcy-Rayleigh number R =12 for a Darcy medium has

been obtained by Nield (1968). On the other hand, the value

Ra =120, for the case of a fluid layer with both boundaries

free, has been obtained independently by Hurle et al. (1967)

and Nield (1967). All these results are presented as broken

lines in Fig. 3. 9. When the Darcy number is small (wl0'4),

the three curves are seen to approach the Darcy value as an

asymptote. This is to be expected, since in the limit Da->0

the Brinkman model reduces to Darcy/s law and, except in a

very thin layer near the boundaries, the velocity profile is

the same in both models. However, when Da is large («1), each

of the curves tends asymptotically toward the particular

critical Rayleigh number obtained for a horizontal layer of

fluid with corresponding hydrodynamical boundary conditions.

For intermediate values of Da a smooth transition of the

curves between these limits is observed.

Considering the Brinkman model, the onset of convection

in a fluid-saturated permeable layer has been investigated
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recently by Rudraiah et al. (1980). Using a single-term

Galerkin expansion, the critical Rayleigh number was obtained

for various boundary conditions in terms of the Darcy number.

In particular, for the case of a cavity with all rigid

boundaries heated from the bottom with a constant heat flux,

it was found that

Ra^ = 720 +17. 14 Da -1 (3. 65)

such that Ra^ =720 when Da-»°° and R =17. 14 when Da->0. Although

the above equation predicts the viscous situation correctly,

it obviously gives the wrong result in the case of a Darcy

medium. On the basis of this result it was concluded by Nield

(1983) that it is not always justifiable to use the Brinkman

equation within the bulk of a porous medium whose porosity is

not close to unity. However, Eq. (3. 65) does not predict

correctly the critical Darcy-Rayleigh number for a Darcy

medium due to the inaccurate approximation used by Rudraiah

et al. (1980) to solve the Brinkman equation, rather than on

some limitation of the equation itself. In fact, the exact

solution of this problem is given by Eq. (3. 42), which yields

the correct result Rc=12 as Da-»0. The case of a Brinkman

layer with lower boundary rigid and upper boundary free has

also been considered by Rudraiah et al. (1980), for which it

was found that

Ra^ = 320 + 15. 238 Da- 1 (3. 66)
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while, for a layer with both boundaries free,

Ra^ = 120 + 12. 143 Da-1 (3. 67)

Here also, the above results predict the exact critical

Rayleigh number for the viscous case but show discrepancies

with the Darcy/s law solution.

Attention will now be directed to a vertical cavity (ip=

90 ), this situation being of practical interest. Fig. 3. 10

and 3. 11 show respectively, the stream function at the center

of the cavity, ^, and the Nusselt number, Nu, as a function

of R for different Da obtained from the analysis together

with the corresponding results calculated from the numerical

procedure described in the previous section. The curve for Da

=0 represents the limiting case of a Darcy medium while that

for Da=l corresponds, approximately, to a viscous fluid. The

effect of an increase in the Darcy number appears to be very

similar at all Rayleigh numbers. As the permeability of the

porous medium, and hence Da, is increased the boundary

frictional resistance (Brinkman) becomes gradually more

important, adding to the bulk frictional drag induced by the

solid matrix and thus reducing the convective motion (see

Fig. 3. 10). As a result, relatively less heat is removed

from the thermally active walls and the Nusselt number

decreases with Da. From Fig. 3. 11 it is also evident that,
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when the Rayleigh number is high, the Nusselt number increa-

ses at a faster rate with a decrease in Da. The analytical

solution of the boundary layer regime obtained by Vasseur and

Robillard (1987) using an Oseen approach is shown on these

graph by dotted lines. Good agreement between both theories

is observed when the Rayleigh number is high enough. It can

also be observed from Figs. 3. 10 and 3. 11 that much larger

Rayleigh number are required at high Darcy numbers for the

boundary layer flow regime to start. In both Figs. 3. 10 and

3. 11 the numerical results are seen to be in good agreement

with the analytical solution.

Consideration will be given next to the effect of angle

of inclination, typical results being presented in Figs. 3. 12

to 3. 15.

Figures 3. 12(a)-(c) show the velocity profiles at mid-

height of the enclosure for R=100 and various values of Da at

<p=30~ , 90 and 120 respectively. At a fixed inclination

angle a significant change in the velocity field with an

increase in the Darcy number is observed to occur. The

smaller the Darcy number, the closer it follows the Darcy

medium profile (Da=0) which is shown as a dotted line in the

graphs. With Darcy/s model the no-slip boundary condition is

not satisfied and the velocity is maximum at the wall. In
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Brinkman/s model, the velocity is zero at the wall, increases

to a peak value and then drops back to zero in the core

region of the enclosure. As the value of Da increasesy not

only does the position of the peak velocity shift away from

the wall but its magnitude is considerably reduced. It is

noted in Figs. 3. 12(a)-(c) that, for some values of Da, the

velocity in the core of the cavity can be greater than the

Darcy velocities. In fact for a given x it is seen that in

the core, v goes through a maximum as Da is reduced. A

similar trend has been reported recently by Lauriat and

Prasad (1983) and was found to be related to the relative

magnitudes of the diffusion and the buoyancy terms. Thus, for

a given R, when Da is small enough the viscous forces have no

effect in the core. The diffusion term is confined between

the walls and the velocity peaks as well as the velocity

profiles in the core follow Darcy/s law. At higher Darcy

numbers, the viscous and buoyancy terms are of the same

magnitude and the vorticity diffuses through the entire

cavity. The velocity in the core may then be greater than the

Darcy profile, as depicted by the curves for Da=10"3 and 10~ 2

in Fig. 3. 12(a). With Da increased further, viscous effects

become more important, the buoyancy induced convection within

the cavity is reduced, and the velocity profiles approach

those in a fluid cavity. Thus the curves for Da=10' 1and Da=l

in Fig. 3. 12(a) are below the Darcy profile. The effect of
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the orientation angle on the velocity profile, at a fixed

Darcy number, is illustrated in Figs. 3. 12(a)-(c). The

curves illustrate the fact that, in general, the convection

becomes less and less vigorous as the orientation angle of

the cavity is increased. The effect of Da and y on tempera-

ture profiles at y=0 is illustrated in Figs. 3. 13(a)~(c). All

the curves have a constant slope on the wall (x=-l/2) since

constant heat flux is prescribed on it. When Da is small, the

convective motion is high since the only resistance to the

flow within the porous medium results solely from the pre-

sence of the solid matrix. Since the same quantity of heat is

extracted from the wall, the wall temperature drops to a

minimum value when Da=0. However, as Da is increased the

effect of the viscous term becomes more important, the

convection motion reduces, less heat is removed from the wall

and its temperature increases significantly.

Figure 3. 14 shows the variation of ^, the stream

function at the center of the layer, with angle of inclina-

tion <p, for various values of Da at a fixed R=500. Figure

3. 14 shows the corresponding variation of Nu. Since the

transformation 'p-^-<p, ^->-^, T-*T, y-^-y, x-^-x does not alter the

governing equations, nor the boundary conditions (3. 10)

-(3. 13), the flow is symmetric in opposite quadrant. There-

fore only results in quadrant 1 and 4 are presented. The
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continuous lines in the first quadrant represent natural flow

(for <p> 0) while the dashed lines in the third quadrant

represent the anti-natural flow (for <p<0). Thus the antinatu-

ral flow for p>0, in the second quadrant would be the mirror

image of the antinatural flow for <p<Q in the fourth quadrant.

When Da=l, there is only one steady state for each inclina-

tion ip. However, for Da> 0. 35 three values of ^ and Nu are

possible for inclination around zero. The range of inclina-

tion for multiple steady states is a function of both the

Darcy number and the Rayleigh number. Verification of the

results of analysis by numerical computation is also indica-

ted on Figs. 3. 14 and 3. 15.

Figure 3. 16 shows the variation of the angle at which the

maximum heat transfer rate across the cavity occurs, y^ , with

Rayleigh number for various values of the Darcy number. For

small R, i. e. the pseudo-conduction regime^ the temperature

field is conduction dominated. The largest buoyancy force and

circulation take place when the cavity is vertical, i. e. when

the temperature gradient is horizontal. Thus all the curves

in Fig. 3. 16 tend towards <p^=90 when R is small enough.

Naturally, as the Darcy number is increased the effect of the

viscous term is enhanced and the pseudo-conduction regime is

maintained up to relatively higher values of R. For interme-

diate R, i. e. in the asymptotic regime, the variation of the
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angle sp with R is complex. For all the Darcy numbers

considered, when R increases ip^ first decreases down to a

value of approximately 33. 5 and then starts to increase

again. The smaller the Darcy number, the smaller the Rayleigh

number required to reach the minimum value of <p . Finally,

when R is large enough, i. e. in the boundary layer regime,

all the curves tend again towards <p=90 , i. e. the maximum

heat transfer occurs when the cavity is vertical, a similar

trend has been reported in the past by several authors while

studying numerically the natural convection of a fluid (Da»

1) in an inclined cavity with two opposing isothermal wall

(see for instance Catton, (1978)).

3. 6 SUMMARY

In the present Chapter, the problem of laminar convection

within a thin (A»l) inclined rectangular cavity, filled with

a fluid saturated porous layer, has been solved by both

numerical and analytical methods. In the formulation of the

problem use has been made of the viscous shear stress term

due to Brinkman in order to satisfy both the no-slip and

impermeable conditions on the bounding rigid surfaces. A

constant heat flux is applied for heating and cooling the two

opposing walls of the layer while the other two walls are

insulated. It is demonstrated that for this heating process,
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the flow is quasi-parallel almost everywhere, except in

regions adjacent to the end walls, provided that the aspect

ratio of the cavity is large enough. Of course, for fixed

values of Da and <p, the analytical solution becomes more

accurate when either A or R is increased. It can also be

expected that in boundary layer regime (R-^°°) , the analytical

solution can be applied to cavities with an aspect ratio

A=0(l). the present analytical solution is found to reduce to

the regular Darcy porous medium and viscous flow solutions in

the limit of low (Da«l) and high (Da »1) porosities,

respectively.

Detailed results for the flow field, temperature dis-

tribution, and heat transfer rates have been obtained. From

these results, the following remarks are in order.

1. Horizontal cavity:

Two types of thermal boundary conditions are considered.

In the first case the cavity is heated from the bottom by a

constant heat flux, while in the second the heat flux is

applied on the side walls. Results are obtained for (1) a

cavity with all rigid boundaries, (2) a cavity with a free

upper surface, and (3) a cavity with both horizontal bound-

aries free.
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The results demonstrate the dependence of the Nusselt

number on the Darcy-Rayleigh and Darcy numbers. As Da->0, the

flow field is similar to that given by an analysis using

Darcy's law, except in a thin region next to a boundary. The

viscous effects are largely confined to this region, where

the horizontal velocity increases from a zero value at the

wall to a peak value. Results obtained from Darcy^s law are

valid when Da is approximately smaller than 10'6. An increase

in Da results in a decrease of the peak velocity and an

increase of the thickness of the viscous region. The overall

heat transfer reduces significantly with an increase of the

permeability (Da) of the porous medium, the reduction being

larger at higher Darcy-Rayleigh numbers. When Da is high

enough, that is, when the Darcy resistance due to the solid

matrix becomes negligible with respect to that resulting from

the boundary effects, the present solution approaches that

for a viscous fluid. This situation is approximately reached

when Da»l for R=102 and Da«0. 3 for R=500.

For a given set of R and Da, the presence of a free

surface was found to increase the heat transfer rate through

the cavity significantly, especially when the permeability of

the medium is large. For instance, when R=100 and Da==0. 01,

the percentage increase in the heat transfer rate, with

respect to a cavity with all rigid boundaries, is approxi-
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mately 22% for a cavity with a free upper surface and 52% for

a cavity with two free surfaces.

The critical Darcy-Rayleigh number for the onset of

motion has been obtained explicitly in terms of the Darcy

number for each of the hydrodynamical boundary conditions

considered in this study. It is shown that the results of

viscous fluid (Da-»°°) and the Darcy medium (Da->0) emerge from

the present solution as special cases. The basic reason for

this agreement is that a layer heated from the bottom by a

constant heat flux becomes unstable at zero wavenumber for

which the present analysis is exact.

2. Inclined cavity:

The orientation of the cavity has, for given values of

Rayleigh and Darcy numbers, a large effect on the heat

transfer rate. For a given value of Da, the maximum heat

transfer rate across the cavity occurs at an angle y>^-»90°

(boundary layer regime). For intermediate values of R (asymp-

totic regime) the value of <p^ reaches a minimum value of

approximately 33. 5° independently of the Darcy number.

At a given Rayleigh number and for small enough inclina-

tions around bottom heating multiple steady states exist
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provided that the Darcy number is sufficiently small. The

range of tilt angles for multiple steady states is function

of both R and Da.



CHAPTER 4

A POROUS LAYER I TH MULTIPLE PARTITIONS

4. 1 LITERATURE REVIEW

Available studies of natural convection in a partitioned

cavity are concerned mostly with vertical air- filled enclo-

sures, with the vertical walls held at different tempera-

tures. Duxbury (1979) experimentally investigated vertical

rectangular enclosures, divided by heat conducting parti-

tions, for Rayleigh numbers approaching 106. The effect of

thermal radiation on the configuration considered by Duxbury

has been studied numerically and experimentally by Nakamura

et al. (1984). Nishimura et al. (1985, 1987) have proposed a

boundary layer solution for this system and confirmed its

validity by experiments. It was found that the heat transfer

rate is independent of the position of the partition if the

boundary layer thickness is less than the half-width of each

cell constructed by the partition.

Alsoy the effect of partition position on the heat trans-

fer rate has been investigated numerically by Tony and Gerner

(1986). It was concluded that a centrally located partition

produces the maximum reduction in heat transfer. Anderson and
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Bejan (1981) measured the overall heat transfer through

single or double partitions. The net heat transfer was shown

to vary inversely with (1+N)0-61 , where N is the number of

vertical partitions inserted in the middle of the enclosure.

Numerical results for the case of a vertical cavity with five

partitions have been reported by Jones (1980). It was found

that the effect of dividing the enclosure into six cells

reduces the heat transfer by, approximately, a factor of 6.

The effect of inclination angle on the present problem has

been considered by Acharya and Tsang (1985). For an enclosure

with an aspect ratio of 2 the maximum average Nusselt number

is obtained when the system is tilted at an angle of approxi-

mately 60° with respect to the horizontal plane. A few

studies have also been devoted to the case of horizontal

enclosures, with multiple partitions, heated from below. The

Rayleigh-Benard stability limit for the multi-layer situation

was predicted by Lienhard (1987) . The same problem was also

considered by Kamiuto (1985, 1986) who concluded that equal

spacings of the partitions yield the minimum heat transfer

rate through the system. Finally, it was demonstrated exper-

imentally by Mishimura et al. (1989) that natural convection

in each cell of the multi-layer system is identical to the

ordinary Benard problem, i. e. thermal coupling by conduction

through thin partitions with a high conductivity is minute.
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The objective of the present chapter is to study analyti-

cally and numerically the behavior of natural convection heat

transfer in a rectangular, tilted, porous layer with multiple

partitions. A constant heat flux is applied for heating and

cooling the two opposing walls of the enclosure while the

other two walls are insulated. An approximate solution, valid

for long shallow systems, is developed. The results of the

analysis are verified through numerical calculations.

4. 2 STATEMENT OF THE PROBLEM

Consider the natural convective motion of a fluid filling

a homogeneous, isotropic, porous medium confined by an

impermeable rectangular enclosure divided by N unequally

spaced diathermal partitions. The enclosure, shown in Fig.

4. 1, is of height H/, width Lf and is tilted at an angle <p

with respect to the horizontal plane. The two end walls of

the enclosure are insulated while a uniform heat flux q' is

applied along both side walls. The present fully partitioned

enclosure may be viewed as N+l non-partitioned cavities shar-

ing In common N thermally active surfaces. The thermal condi-

tions along those partitions are not known a priori.

Assuming the validity of Darcy/s law and the Boussinesq

approximation and neglecting inertial effects, the equations
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describing, in each of the N+l non-partitioned cavities, con-

servation of momentum and energy in the porous medium are,

respectively

V2
9T,

^, = -R[-- si
3T,

sinp + - cosy? |
9x 9y J

V2 T, =
9^, 9T, 3^, ST,

By 3x 9x By

U1- =
a^,

ay
V; = -

3^;

ax

(4. 1)

(4. 2)

(4. 3)

where R=g;0KL/2 q//at/k is a Darcy-Rayleigh number based on the

constant heat flux q', the permeability K of the medium and

the overall width L' of the enclosure. In the above equation

i (=1, to N+l) refers to a given non-partitioned cavity.

Equations. (4. 1) to (4. 3) have been reduced to dimension-

less form by introducing the following scales

(x, y) = (x/, y')/L/ ^, = ^, //a

T, = (T', - T^)/(q^L'/k)

(4. 4)

where the symbols are defined in the nomenclature and primes

demote dimensional variables.

The hydrodynamical boundary conditions are zero normal
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a^,
^, = - = 0i on all walls

an

where the direction of n is normal to a given wall,

The thermal boundary conditions are

3T

ax
1 ; k =

r?k

x = r?k T_+ = T_~
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and

y = ± A/2 ;
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0
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(4. 5a)

(4. 5b)

(4. 5c)

(4. 5d)

where A=H//L/ is the enclosure aspect ratio and rj^ (k= 0, N+l)

is the position, in the x-direction, of the N partitions and

the two side walls of the enclosure. The subscripts + and

indicate the right and the left side of a partition respec-

tively.

Equations. (4. 5e) express the continuity of temperature

and heat flux at the surfaces of each of the N partitions

while Eqs (4. 5b) and (4. 5d) result from the thermal boundary

conditions applied on the enclosure.
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Equations. (4. 1) to (4. 3) together with boundary condi-

tions (4. 5), complete the formulation of the problem. The

controlling parameters are R, A, y? and >?^ (k=l to N) the

position of the N partitions.

4. 3 NUMERICAL METHOD

To obtain numerical solution of the complete governing

Eqs. (4. 1) and (4. 2), finite-differences were used. The solu-

tions consist of the stream function and temperature fields

in the x and y directions as well as the Nusselt number.

Numerical results have been obtained for the case of an

enclosure with a single off-center partition. As mentioned

before the thermal conditions along the partition are not

known a priori. The solution methodology involves obtaining

consecutive solutions for each cell of the enclosure. The

calculation process is initiated by solving the left cell

with an assumed heat flux distribution along the partition.

The resulting temperature at each grid point along the parti-

tion is used as the thermal boundary condition for the right

cell. Thus, the solution for the right cell can be obtained

which provides an updated heat flux distribution along the

partition. The calculation is repeated until converged solu-
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tions have been obtained in both cavities. Typically 7-10

consecutive calculations are required for complete conver-

gence for which consecutive changes in both the heat flux and

the temperature along the partition are less than 1%. This

procedure becomes complex as the number of partition

increases and for this reason only an enclosure with a single

partition has been considered.

4. 4 APPROXIMATE ANALYTICAL SOLUTION

In this section an approximate solution to the present

problem is presented for the case of a long shallow cavity (A

=H//L/»1). In this limit, as discussed in Chapter 2 the flow

and temperature fields in each of the N+l cells must be

respectively of the following form:

and

^, (x, y) = ^, (x)

T, (x, y) = cy + $, (x)

(4. 6)

(4. 7)

where C is the temperature gradient along the y direction.

The fact that C is the same in each cell follows from Eq.

(4. 5c) .

Substituting Eqs. (4. 6) and (4. 7) into Eqs. (4. 1)-(4. 2),

the governing equations can be reduced to the following ordi-
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nary differential equations

d30,

dx3

d$,
. 2 -_ = ^2a

and

d^,
dx3

-c

dx

d^;

dx

= a^ C COtp (4. 8)

(4. 9)

where a2=RC sinip.

Integrating Eqs. (4. 8) and (4. 9) and making use of Eq.

(4. 7) and the boundary conditions, Eqs. (4. 5), one obtains

respectively for each of the i= 1, N+l cavities

^i -BA 1 -
COSha(X - P, )

cosh(aM, )
(4. 10)

and

T.. =
B [- sinhcr (x - P, )

Cy + -
a L COSh(aM,)

(4. 11)

:. ]-+ tanh(aM, ) + 2Si | - C cot<p (x - »?,-.,)

where

0 , 1=1

s, =

p, =

i - 1

S tanh aVl^ , i > 2
k= 1

(»?i+r?i - 1 ) '?{ -??i - 1
; M, (or M^) =

2 2

(4. 12)
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B = (1 + C cotip)

In the above equations the constant temperature gradient

C depends upon R, <p, r, ^ (k=l, N) and the thermal boundary

conditions imposed on the end region of the enclosure (adiab-

atic walls). Following the procedure described in Chapter2

(see Eq. (2. 14)) it may be shown that the value of C is given

by

N+ 1

c = - s
i = 1

^1-

r?i -1

[^I.] dx (4. 13)

In the above equations the integrations are a sum of the

convective heat fluxes in the N+l cavities. This is derived

from the condition of uniform heat flux at the boundaries.

Substituting Eqs. (4. 10) and (4. 11) into Eq. (4. 13) and

integrating yields:

B2 siny N+1 sinh(2crM, ) - 2o. M,
c = s

2aC ,, ^ cosh2 (crM, )

2B N+1
+ - costp E tanh(o. M, ) - o-M, (4. 14)

i = 1a

The value of the axial temperature gradient C may be

evaluated numerically from the above equation, for a given



79

Rayleigh number R, inclination angle p and position of the N

partitions ^^ , using a Newton-Raphson scheme.

Since the temperature of each thermally active wall

varies linearly in y, the heat transfer rate can be expressed

in terms of a Nusselt number at the y=0 section, defined as:

Nu -[^j^-^
AT/ J k AT

(4. 15)

where the dimensionless temperature differences AT=Tfi, 0)
^

-T(0, 0). This definition of Nu results from the fact that in

the present problem, contrarily to the case of isothermal

walls, the effect of convection is not to increase the heat

flux across the boundaries but to decrease instead the tem-

perature induced within the enclosure during this heating

process.

Substitution of Eg. (4. 11) into Eq. (4. 15) yields:

Nu =

S tanh(aM, )I - C coty (!-»;)
01 L 1=1

(4. 16)

In the particular case of a cavity divided by N parti-

tions equally spaced we have »?^=k/N, »?,,. ̂  =(k-l)/N and Eq.

(4. 16) reduces to
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Nu =
2B
- (N + 1) tanh(l/2N) - C coty?/N
Q;

(4. 17)

where, according to Eq. 4. 14, the value of C is given by

C = ^ (N+l) B
a'

B siny>

2 cosh2(a/2N)
(sinh(a/N) - a/N) (2. 18)

- C COS<p (a/N - 2 tanh(o. /2N))

4. 4. 1 The horizontal cavity heated from the bottom

It is of interest to examine the particular case of an

horizontal layer heated from the bottom. For this situation y>

=0 and cr-^O and it may be shown that the flow and temperature

fields, in each of the 1=1, N+l cells, are given by

-RC

^, = [x2 -2 P, x+ r,, n, ^ j (4. 19)

RC2 r x3
T, =cy +- | -- p, x2 + »?, »?,. i x

- »?,-»72,-. i /2 + S2/2| + X (4. 20)

=+^ 5[
2R

N+1 , N+ 1

R S 2M3^ - 3[ /S M5
k=1 " k=1

(4. 21)
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1 -

where

RC2

12
[ rl\ + (1-»?N)3 - 6^3 ]
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(4. 22)

^2 =

0 , i < 2

i - 1

S (^k »?k- 1 Mk ) ' i > 3
k=2

and

0 , N = 1

23 =
S (»?k »?k-1 Mk) ' N > 2

k=2

(4. 23)

(4. 24)

From Eq. (4. 21) it is seen that when R<3/(2 SNM^), C=0
k= 1

is the only value of C and there is no convection possible

(Nu=l). For R>3/(2 S" M3^) two symmetric counter-rotating

convection cells bifurcate from the rest state and the

resulting velocity and temperature distribution are given by

Eqs. (4. 19) and (4. 20) respectively. The present analysis can

also predict the critical Rayleigh number Rp for the onset of

motion since, as demonstrated by Nield (1968), this happens

at zero-wave number (parallel flow) for a layer heated from

bottom by a constant heat flux. Substituting R=R and C=0

into Eq. (4. 21), it is found that
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N + 1

2 S M3
k= 1
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(4. 25)

such that when N=0 we get Rg=12 which is the known result

for a Darcy medium between two rigid boundaries (Nield,

1968).

For a layer divided by N partitions equally spaced, Eq.

(4. 25) reduces to

R^ =12 (N + 1)' (4. 26)

The above result indicates that, in the case of thin par-

titions with a high conductivity, natural convection in each

cell constructed by the partitions is identical to the ordi-

nary Benard problem.

4. 4. 2 The vertical cavity heated from the side

The case of a vertical cavity heated from the side is of

practical interest. For this situation ip=90° , o. 2=RC and Eqs.

(2. 10), (2. 11), (2. 14) and (2. 16) reduce to

R

". "J 1 -
COShcr (X - P, )

cosh(aM,)
(4. 27)



1 r sinho; (x - P, )
T, = Cy + -

a L COSh (crM, )
+ tanh(o. M, ) + 2S, | (4.
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28)

R2 N+1 sinh(2aM, ) - 2aM,
a5 = - S

2 ,-.1 COSh2(aM, )
(4. 29)

Nu =
2 N+1

S tanh(o. M, )

(4. 30)

a i = 1

For a cavity divided by N partitions equally spaced Eqs.

(4. 29) and (4. 30) reduce to

a5 =
(N+l) _ sinh(a/(N+l)) - a/(N+l)

R2
2 COSh2(a/2(N+l))

(4. 31)

and

a

Nu = coth[ a/2(N+l) ]
2(N+1)

(4. 32)

The boundary layer regime may be deduced from the above

results. For this situation R-^°° and Eq. (4. 31) yields that

a->(N+l)1/5 R2/5 such that C^(N+1)2/5 p-1/5. The resulting

Nusselt number is given, according to Eq. (2. 32), by:

Nu = - R2/5 (N+l)-4/5
2

(4. 33)
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The above result is consistent with the face that (1+N)

represents the total number of boundary layer pairs (thermal

resistances) encountered by the end-to-end heat flow.

4. 5 TWO POROUS LAYERS SEPARATED BY A THERMAL BARRIER

In this section we suppose that we have a system consist-

ing of a thermal barrier which is sandwiched between two

porous layers. A constant heat flux is applied for heating

and cooling the two opposing walls of the inclined system.

The porous medium occupies the region 0<x<»?i and ri^<x<l

and the thermal barrier occupies the region »?2<x<»?3. In

general the thermal conductivity k^ of the thermal barrier

differs form the thermal conductivity k of the two porous

layers.

The governing Eqs. (4. 8) and (4. 9) and boundary condi-

tions, Eqs. (4. 5), can be applied to the present problem.

However, at the interfaces between the porous layers and the

thermal barrier, the continuity of the heat fluxes requires

that:

3T,

(9x

3T,
K*-

x=»?^ ax x=»?i
(4. 34a)

and
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K*
3T-

ax x=r>2

9T,

ax x=
(4. 34b)

»?2

where K'=k^/k is the solid to porous conductivity ratio.

Proceeding as in the preceeding section it may be shown

that the velocity and temperature distributions, in the two

porous layers, are given respectively by:

B

^ =^ 1 -
COSha(X-»?, /2)

COSh(a»7^ /2)

B psinhcr (x->?^ /2)
Ti = Cy+- [ + tanh(a»?, /2)

a L COSh(a»?^ /2)

(4. 35)

- xCcoty; (4. 36)

and

^ -![ 1 -
cosha[x-(l+ri^ )/2]

COShcr [ (1-»/2 ) /2]
(4. 37)

B F sinh o. [x-(»?2+l)/2]
T3 = CY+- I - + 2tanh(ari^/2)

a L COSh Q; (1-»?2 ) /2

(4. 38)

1

+ tanh[(l-^2)/2]I + ( -^+ C cot^)(^3 - r, ^ ) - xCcoty

The temperature distribution within the thermal barrier

is obtained by solving the Laplace equation V21^=0, with
appropriate boundary conditions, as:
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X 2B

T2 = cy + ^*+ - tanh(a»?, /2) - »?^( -^+ C coty ) (4. 39)
K* a

and the value of c is

K"

(sinh(a»?^ ) - an^) sinha(l-ri^) -a(l-r, ^)

cosh2 (a»?^/2) cosh2o. (l-»72 )/2

- Q | a(l+»?i- »72 ) - 2tanh(ari^/2) - 2tanh[a (l-f?^ )/2 ]

(4. 40)

Where

P = RB2 sinp/2o. 3D

Q = RBC COSy>/o;3D

D = [1 + (»?2-»?, )(K* - 1)]

From Eqs. (4. 15) and (4. 38) the Nusselt number is given by

Nu =

2B ar, ^ 1-r, ^ 1
-tanh- + tanh-- + - (»?2-'?i )

2 2 K*a

- Ccoty (l+n^-r, ^)

(4. 41)

In the special case of a horizontal system heated from

the bottom we have y?-»0° and a-»0, such that Eq. (4. 40) reduces

to



C = ± - 10(Rb - 12c)/a
R
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(4. 42)

where

a == ri^+(l-r, ^)'

b = ^3 + (l-r, ^)-

C = 1 + (^-»?i ) (K*-l)

(4. 43)

From the above equation it follows that the critical

Rayleigh number R^, for the onset of motion, is given by

RC =
12 [1 + (^3-^)(K*-1)]

n^ + (l-^)3
(4. 44)

while Eg. (4. 41) Yields

Nu =
RC2 (1-K*)

1 - - b + -- (n^-n^)

(4. 45)

12 K'

The problem of a porous layer, of extension ri, horded by

a solid layer, of extension (!-»?), may be deduced from the

above results by letting ri^=ri and ri^=l.

For a vertical system heated from the side it may be

shown that, in the boundary layer regime (R-+°°) and
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a^R2/5 [l+(l-^)(K*-l)]-1/s such that the Nusselt number is

given by:

Nu =

2 . . (1-»?)
- tanh(o;»y/2) +

K*

(4. 46)

For a horizontal system heated from the bottom the margi-

nal stability is given by:

RC =
12 [»? + (1->?)K*]

(4. 47)

The critical Rayleigh number thus varies with the thermal

conductivity of the solid. When K*=0, it is the same as for

a single layer, i. e R^=720/»?2. However, with increasing K\

R^ increases linearly. This is due to the distribution of

thermal resistance in each layer.

4. 6 ANALYTICAL AND NUMERICAL RESULTS

Numerical solution of the complete governing Eqs. (4. 1)

and (4. 2) under the boundary condition (4. 5) were obtained

for a wide range of Rayleigh numbers and for various values

of ^. All results were obtained for a system with an overall

aspect ratio of 3 and a single off-center partition, some

typical results are presented in Figs. 4. 2a - 4. 2f. Figure
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4. 2a, with R=50, y>=90° and ri=0. 5 represents the isotherms and

streamlines of a pseudo conduction regime. At higher Rayleigh

numbers, the evolution of the flow structure can be observed

from Figs 4. 2b - 4. 2c corresponding to R = 300 and 500.

Effects of the position of the partition can be seen by com-

paring Figs 4. 2c and 4. 2d where »? =0. 5 and 0. 2 respectively.

Finally, effects of the inclination y are illustrated in Figs

4. 2c, 4. 2e and 4. 2f with R=500, >?=0. 5 and p=90° , 60° and 0°

respectively. An examination of the streamlines in the above

figures clearly shows that, except in regions close to the

upper and lower boundaries, the flow can be considered as

parallel. Consequently, the velocity and temperature profiles

are invariant in the y-direction.

The heat transfer results for a vertical porous layer

divided by a single partition is presented in Fig. 4. 3 as a

function of R for different positions ri of the partition. The

case with »?=0 corresponds to a non partitioned enclosure

while that with »?=0. 5 to an enclosure containing a central

partition. Due to the syinmetry of the problem with respect to

r)=0. 5, results are only presented for 0<>?<0. 5. In the

intermediate regime, 10<R<100, the presence of a parti-

tion is seen to decrease Nu and the greatest reduction in

heat transfer is obtained for a centrally located partition.

A similar trend has been reported numerically in the past by
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Tong and Gerner (1986), for a partitioned air-filled enclo-

sure with vertical isothermal walls at different tempera-

tures. In the boundary layer regime, it has been shown

recently (Anderson and Bejan (1981), Vasseur et al., 1987)

that the Nusselt number, in a non partitioned porous layer

(n=0), is given by Nu= R2/5/2. According to Eqs.

(4. 29)-(4. 30), the heat transfer through a partitioned layer

tends asymptotically towards Nu=R2/5/(2)9/5 as R-^°° and this,

independently of the position r, of the partition. As illus-

trated in Fig. 4. 3, the Rayleigh number necessary to reach

this asymptotic limit increases considerably as the value of

ri is made smaller. Recently, a boundary layer model has been

proposed by Nishimura et al. (1987) to study heat transfer in

air-filled enclosures with an off-center partition. It was

also found by these authors that, in the boundary layer

regime, the heat transfer rate is independent of the position

of the partition if the boundary layer thickness is less than

the half-width of each cell constructed by the partition. In

the present problem the dimensionless boundary layer thick-

ness is given by S=a~'[ =(2R2)-1/5. Thus the minimum width

»?^,-^ of a cell satisfying the boundary layer approximation is

given by »?^ , ̂ =25=(4R-1 )2/5 .

The effects of N equally spaced partitions on the heat

transfer through a vertical layer are presented in Fig. 4. 4.
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On increasing the number of partitions N the Nusselt number

decreases drastically but, the introduction of the parti-

tions, does not produce a proportional reduction in heat

transfer. In the boundary layer regime the heat transfer is

given by Eq. (4. 33) as Nu=R2/5 (N+l)-4/5/2. The Ray Ieigh

number necessary to reach this regime had to be increased

considerably as the number of partitions is increased. From

Eq. (4. 33) it is noted that a number of partitions between

1-5 has the effect of reducing the heat transfer rate by

42-76%.

The effects of »y, N and R on heat transfer through a hor-

izontal system heated from bottom are illustrated in Figs.

4. 5 and 4. 6. Figure 4. 5 shows Nu versus the position r?, of a

single partition, for various values of R. According to Eq.

(4. 25) the critical Rayleigh number for the onset of motion

in a system with a single partition is given by:

Rc=12/['?3+(l-»?)3 ]. Thus, as depicted by Fig. 4. 5, convection

is possible for all the values of ri only when R>48. For Rayl-

eigh numbers up to approximately 100 the greatest reduction

in heat transfer is obtained when the partition is located at

the center of the layer (>?=0. 5). However, as the Rayleigh

number is increased further the position of the partition,

for a minimum heat transfer, is shift towards lower (or, by

symmetry higher) values of »?. Thus, when R-*°°, the greatest
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reduction in heat transfer is obtained for »7«0. 27 (0. 73)

while no reduction in heat transfer is observed for a cen-

trally located partition (Nu=6 for ri=0, 0. 5 and 1). This sur-

prising result is a consequence of the particular thermal

boundary conditions considered here. As discussed by Vasseur

et al. (1987) the Nusselt number, for a layer of porous

medium heated from the bottom by a constant heat flux, tends

asymptotically towards Nu--6 as R-»°°. Thus, for a system with N

equally spaced partitions, the same asymptotic value of Nu

will be reached provided that R is made large enough. Natu-

rally, in the absence of a stability analysis, the existence

of a unicellar flow at large R is questionable. However, it

must be mentioned that such flows have been observed numeri-

cally, in a single layer of porous medium, up to a Rayleigh

number of approximately 800 (Vasseur et al. (1987)). For

higher values of R the flow patterns were found to be

slightly oscillating.

The case of an horizontal porous layer with N equally

spaced partitions is depicted in Fig. 4. 6. The Nusselt number

decreases drastically on increasing the number of partitions

N but the introduction of the partition does not produce,

similarly to the vertical case, a proportional reduction in

heat transfer. For each value of N there is a critical Rayl-

eigh number R^=12 (N+l)2, Eq. 4. 26, below which the fluid
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is at rest and heat transfer occurs only by pure conduction

(Nu=l). As already discussed, when R is made large enough

all the curves tend asymptotically towards Nu=6.

Figure 4. 7 shows Nu as a function of the inclination

angle <p, for R=103, in the case of a porous layer with N

equally spaced partitions. As the angle of inclination p

approaches 180° all the curves tend towards unity, indicating

that the heat transfer is mainly due to conduction. This is

expected since p=180° corresponds to the case of a system

heated from the top which causes no convection as the density

gradient is stable. For a given number of partitions N it is

seen that the Nusselt number starts first to increase with

decreasing y , passes through a peak and then begins to

decease. The peak in Nusselt number occurs at about 65° for N

=0 but is at about 35° for N=3. Therefore, the peak in

Nusselt number takes place at a lower inclination angle when

the number of partitions is increased.

Tables 4. 1 to 4. 3 present a verification by numerical

computation of the results of analysis for the Nusselt number

as a function of Rayleigh number and inclination angle. As

can be seen from these tables the Nusselt numbers predicted

by the analytical solution compare satisfactorily (within a

few percent) with the results of the numerical solution.
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The streamline and isotherm contour plots at a Rayleigh

number of 8xl02 are presented in Figs. 4. 8a-4. Se for a

system consisting in a vertical porous layer of extension ri ,

horded by a solid slab of extension (1-rj) . Effects of the

porous layer thickness »? are illustrated in Figs. 4. 8a and

4. 8b for K =1, where K*=k^/k is the solid to porous conduc-

tivity ratio. Effects of increasing the conductivity ratio

can be seen by comparing Figs 4. 8b and 4. 8c corresponding to

K"=1 and 5 respectively.

The heat transfer through this system, as predicted by

Eqs. (4. 40) and (4. 41) (with ^=90°, r, ^=r, and ^^=1) , is

presented in Fig. 4. 9 as a function of n and K* for R=800.

The limit ri-^l corresponds to a single layer of porous medium

for which Nu=7. 25 while >?--0 corresponds to a solid slab for

which Nu=K*. Figure 4. 9 indicates that, for K* <1, the

Nusselt number increases monotonically with ri since the natu-

ral convection heat transfer is enhanced as the thickness of

the porous layer is made larger. However, for K* >1 i. e. when

the conductivity of the solid is higher than that of the

porous medium; the Nusselt number is seen to reach a minimum

value at a position ri which depend upon K*. This follows

from the fact that, for rj=0, the heat transfer by pure con-

duction through the solid slab is given by Nu= K* (>1). As the

value of ri increases slightly the natural convection within
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the porous layer is weak and heat transfer through this

medium is also approximately by conduction. However, since

the conductivity of the porous layer is lower than that of

the solid slab the heat transfer starts first to decrease. As

the value of T) is further increased the natural circulation

and the resulting heat transfer within the porous layer are

both enhanced and the Nusselt number begins to increase up to

a maximum value at »?=!. Verification of the results of analy-

sis by numerical computation is also indicated on the figure.

4. 7 SUMMARY

The solution of the natural convection heat transfer in a

partitioned, inclined, porous layer with uniform wall heat

flux is discussed in this Chapter. The problem of a single

layer is obtained as a limiting case, and this compare well

with the known results. The problem is solved for the case of

constant-flux boundary conditions. Results obtained for this

special case should be useful for estimating heat transfer in

a system with more general boundaries conditions. The follow-

ing conclusions can be made:

1. In the case of a vertical porous layer divided by N

equally spaced partitions, the Nusselt number, in the bound-
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ary layer regime, varies inversely with (1+N)4/5 . For a

porous layer divided by a single partition, the greatest

reduction in heat transfer, in the intermediate regime, is

reached when the partition is centrally located. However, in

the boundary layer regime, the heat transfer is independent

of the position of the partition provided that the boundary

layer thickness is less than the half-width of each cell con-

structed by the partitions.

2. The critical Rayleigh number for the onset of motion in a

bottom horizontal porous layer divided by N diathermal parti-

tions has been obtained. Each cell constructed by the parti-

tions behaves identically like the ordinary Benard problem,

i. e. thermal coupling by conduction through partitions is

nil. When the system consists of a solid slab and a porous

layer, the conductivity of the solid has an important effect

on the critical Rayleigh number , which increases linearly

with the conductivity ratio of the solid and the porous

medium.

3. The orientation of the partitioned porous layer has, for

a given Rayleigh number, a large effect on the heat transfer

rate. The maximum heat transfer occurs when the system is

heated from the bottom, i. e. for 0<<p<90° . For a given

Rayleigh number, as the number of equally spaced partitions
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increases the angle at which maximum energy transfer takes

place shifts towards lower values of ip.

4. The present theory is limited by the assumption of two-

dimensional, unicellular, steady laminar flows and nothing

can be inferred about the possible development of three-

dimensional flows within the range of inclination angles con-

sidered in this study. Such flows are expected to occur when

the system is slightly inclined with respect to the horizon-

tal plane. On the other hand, it is possible with the present

theory to predict the critical Rayleigh number for the onset

of convection in a system at zero tilt angle. This is due to

the fact that a layer, heated from the bottom by a constant

heat flux, becomes unstable at zero wave numbers for which

the present analysis is exact.



CHAPTER 5

THE L INSTABILITY AND NATURAL CONVECTION IN

A FLUID LAYER OVER A POROUS SUBSTRATE

5. 1 LITERATURE REVIEW

The thermal stability of superposed porous and fluid

layers has been studied in the past by Nield (1977, 1983)

using linear stability analysis, for various boundary condi-

tions at the upper and lower surfaces of the system. In par-

ticular, an exact solution was reported for the case of a

porous layer sandwiched between two fluid layers with rigid

top and bottom boundaries when a constant heat flux is

applied at the bottom. The same physical situation was also

considered by Pillatsis et al. (1987) for the case of free,

fixed-temperature boundaries. Somerton and Catton (1982)

studied the stability of fluid-saturated porous medium with

internal heat generation under a fluid layer with a fixed

temperature difference between two rigid boundaries. Exper-

imental data relevant to the critical Rayleigh number in a

composite layer have been reported by Sun (1973).

Recently the natural convection in a rectangular enclo-

sure horizontally divided into fluid and porous regions has

been studied numerically by Nishimura et al. (1986) . The



99

numerical calculation was found to satisfactorily predict

experimental data obtained for a rectangular enclosure filled

with silicone oil and glass beads. Poulikakos (1986) used a

general flow model to describe the convection inside the

porous bed of a horizontal composite layer. This flow model

accounts for friction caused by macroscopic shear as well as

for the inertia effects. Extensive numerical results were

obtained for the heat and fluid flow phenomena at Rayleigh
numbers considerably higher than critical.

The purpose of the present chapter is to consider buoyan-

cy-driven convection in a cavity consisting of a fluid layer

over a saturated porous layer. The system is heated from the

bottom by a constant heat flux and it is assumed that the

cavity is shallow. Under these conditions, approximate ana-

lytical solutions for unicellular convection in the central

region of the cavity can be obtained using a parallel flow

assumption. Results are presented for critical Rayleigh num-

bers as well as the effect of Rayleigh number, Darcy number

and other parameters on the convective heat transfer.

5. 2 FORMULATION OF THE PROBLEM

The composite system investigated in the present study is

shown schematically in Fig. 5. 1. A horizontal fluid layer of
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thickness h/^ extends over a porous substrate of thickness

h/p. The overall thickness of the composite layer is denoted

by L/. The fluid is assumed to have constant properties,

excluding density in a buoyant term, which is assumed to vary

linearly with temperature; i. e., the Boussinesq approximation

is utilized. The fluid-saturated porous medium is considered

homogeneous and isotropic with the fluid and the porous mat-

rix being in local thermal equilibrium. The interface between

the fluid and porous layers remains horizontal. The vertical

walls of the enclosure are insulated while the lower and

upper walls are heated and cooled respectively by a uniform

heat flux q/.

The fluid layer occupies the region 0<x<»? where ri=

h/^/L/, while the porous medium is in »?<x<l. The governing

equations for each region will be discussed separately.

5. 2. 1 Porous layer

In the present analysis, Brinkman^s extension has been

incorporated to the Darcy formulation governing flow in a

porous medium. This, together with the equations of mass and

energy conservation in the porous region are

9U/P av'p
+ -- = o

3x/ Qy'
(5. 1)
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U. p = - I- --+ ^ y2u

/. ^ L ax^
/p - P^(T'p - T^)j
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(5. 2)

K r ap .̂p
v^p = - [- -"+ ^ V2v/p

^, L 9y, -P - - P.

u'
3T'

9-X.1

<9T'
+ V'

kp
V2T/,

3y/ pc,

(5. 3)

(5. 4)

where the symbols are defined in the nomenclature and primes

denote dimensional variables. It should be noted that ^^ and

ft f are generally different from one another. Using the dimen-

sionless variables

(x, y) = (x^y^)/L'

(u*, v*) = (u/p, v/p)L//a,

T* = (Tf -T\)/AT' (5. 5)

AT/ = q/L'/k^

^ = ^'p/"f

we transform Eqs. (5. 1) to (5. 4) to the following dimension-

less form in terms of the stream function

Da 8T*
v2^* = - v4 ^* - R-

G By
(5. 6)



9T* 3T*
U* - + V* - = -yV2T*

ax 9y

u* =
<9^"

ay .
V* =

3^*

ax
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(5. 7)

(5. 8)

where Da=K/L/z is the Darcy number, R=gK/3q'L/2/a^ k^ i/^ is a
Darcy-Rayleigh number based on the permeability K of the

porous medium and constant heat flux q/, G=p. ^/p, the ratio of
the viscosity of the fluid and that of the porous medium and

-7=kp/kf the ratio of the effective thermal conductivity of

the porous medium and the thermal conductivity of the fluid.

5. 2. 2 Fluid layer

Using the scales defined in Eq. (5.A)_the dimensionless

governing equations for the fluid layer are

9ii) 9u 91
u - + v -^ = Pr V2u + Ra Pr -- /

as)iax

87 81
u - + v - = V2T

^^r .

UJ

ax

= - v2^

ay

a^ a^
u == - , v = -

ay 9x

(5. 9)

(5. 10)

(5. 11)

(5. 12)
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where Pr=i/^/a^ is the Prandtl number and Ra=g/3L/4 q'/a^ k^ ;/^ is

a Rayleigh number. It is noted that Ra, R and Da, in Eqs.

(5. 6) and (5. 9), are related by

R = Ra Da (5. 13)

5. 2. 3 Boundary conditions

The non-dimensional boundary conditions at the four walls

of the enclosure are

9^ 8T
x=0, ^= - =0, - =1

ax ax
(5. 14a)

a^* 3T* i
x = 1, \Sf* = -= o, - = _ (5. 14b)

9x ax 7

A a^f 9^* 8T 8T*
y=±-, ^ = ^ =-=-=o, -=-=Q (5. 14C)

2 9y By 3y 3y

where A = H//L/ is the cavity aspect ratio.

At the interface (x=ri) six continuity conditions can be

specified in the following form, coupling the fluid region to

the porous region

u~ = u

v = v

(5. 15a)

(5. 15b)



5v* 5v

9x 3x

32v* G 92v
- v* -= G

5x2 Da 3x2

T* = T= 0

3T* 1 3T

9X -y 9x
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(5. 15C)

(5. 15d)

(5. 15e)

(5. 15f)

The above equations express the fact that the velocity,

shear stress, temperature and heat flux at the interface are

all continuous. The continuity of the pressure at the inter-

face, in general, imposes a condition on both components of

the velocity field (see Nishimura et al. (1986) ). However,

in the present analysis, only a condition on the horizontal

velocity, Eq. (5. 15d), will be required. It is to be noted

that velocity and shear stress matching at the interface is

possible only if Brinkman's extension is considered for the

porous medium. It is also because of this that the physically

real no slip condition on the solid walls of the system is

possible to satisfy.

Equations (5. 6) to (5. 12) together with boundary condi-

tions (5. 14) and (5. 15), complete the formulation of the

problem. The controlling parameters are A, Pr, G, -7, Da and
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Ra = R/Da.

5. 2. 4 Approximate solution

An approximate solution can be sought for a long shallow

cavity (A=H//L^°°) . In this limit, as discussed in previ-

ous chapters, the flow velocity in the central portion of

the cavity can be assumed to be parallel and in the y-direc-

tion. Thus,

u* = u = 0; v* = v* (x) and v = v(x)

in the core region of the system.

(5. 16)

As the fluid moves with a constant velocity in the cen-

tral part of the cavity, the uniform heat flux qf at the

walls increases its temperature linearly. There is, however,

an unknown transverse variation of the temperature in the

x-direction. One way of taking this into account is to write

T* = Cy + ff* (x) ; T= Cy + $(x)

where C is the y-temperature gradient. The fact that C is the

same in the two layers follows from Eg. (5. 15e).

Substituting Eqs. (5. 16) and (5. 17) into Eqs. (5. 6) to

(5. 12), the governing equations for the porous region can be
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reduced to the ordinary differential equations

d3v* dv*

dx3
- a2 = - RCa2

dx

and

d2$'

dx2
v*C

where o. ':=G/Da. For the fluid region we have

d3 v

dx3
-RC

and

d2e

dx2
VC

(5. 18)

(5. 19)

(5. 20)

(5. 21)

The constant C depends upon Ra, R, Da, G and 7 and the

thermal boundary conditions imposed on the end regions of the

cavity. Following the procedure described in Chapter 2 the

value of C can be evaluated from the following equation:

n

vffdx + 7 v*$*dx = C[»? + 7(1-'?) ] (5. 22)

at any y. The integrals are a sum of the convective heat

fluxes in the fluid and in porous medium respectively. This

is derived from the condition of uniform heat flux at the

boundaries.
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The heat transfer rate can be expressed in terms of a

Nusselt number at the y=0 section, defined as

Nu =
AT

(5. 23a)

where the temperature difference AT across the section is

given by

AT = T* (1/2, 0) - T(-l/2, 0)

5. 3 ALL BOUNDARIES RIGID

(5. 23b)

The hydrodynamical boundary conditions over the whole

perimeter of the enclosure are the no-slip conditions. The

solutions to Eqs. (5. 18) and (5. 19) satisfying boundary con-

ditions (5. 14a) and (5. 15e) are

v* = E(eax - e a) + F(e-ax - e-tt) + RC(x - 1) (5. 24)

and

C E

]e°x - e°"? - a(x-^)ettC-(x+^) + (1-a)]
T cr' L 2

F r
+-|e'QX - e-ar? - a(x-^)e-a[-(x+^) - (i+a)]

a'

RC X-t,
+ - (x->, ) [ (x+»?) (x-3) + r, 2 + 3] + - - (5. 25)

6
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while the solutions to Eqs. (5. 20) and (5. 21) satisfying

boundary conditions (5. 15c) are

x->
v = - RaC- + Ax2 + Bx + D

6
(5. 26)

and

RaC
c

120

B

-(X5 - r, ^) + -(x4 - »?4) + -(x3 - ^3)

D

+ -(X2 -^2)[ + ^ -^) (5. 27)

In order to satisfy the no-slip condition. Eg. (5. 14a),

D=0 in the above equations. However, the following deriva-

tions will be written in terms of this constant since, the

case of a system with an upper free surface will be consid-

ered for which the value of D is not zero.

From the matching conditions at the porous medium-fluid

interface, Eqs. (5. 15b) to (5. 15d), it follows that

RaCG»?2
2AG»? + BG - a(Eea1 - Fe-a??) = + RC

2

2AG - a2 (Eea + Fe-a) = RaCG>? - RCa2 (r, - 1)

(5. 28)

(5. 29)



A»?2 + BT) +D - E(earl - ea) - F(e-ar? - e-a)

RaCri'-
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+ RC(r, - 1) (5. 30)

while the conservation of mass requires that

Ati
y . _ Er

+ B- + Dr, - -|ea"? - ea [1 + a(^ - 1) ]
2 a-

FF ^ RaC»?4 RC
+ -|e-"»? - e-a[l - a(r, - l)]| = - + -(r, - 1)2 (5. 31)

a<- J 24 2

Since D=0 in the present situation the four constants A,

B, E and F can be obtained explicitly (or numerically from

Eqs. (5. 28) to (5. 31) but are not presented here because the

resulting expressions are lengthy.

The next task is to determine C, the unknown constant

temperature gradient in the y-direction in the core region.

Substituting equations (5. 24) to (5. 27) into equations (5. 22)

and integrating yields, after some straightforward but labo-

rious algebra, an expression of the form

K, C3 - (Kg - K3)C = 0 (5. 32)

The constants, K^ , K^ and K3, in Eg. (5. 32), depend upon
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Ra = R/Da, Da, r/, G and

Equation (5. 32) yields the three following solutions

C = 0 or C = ± (Kg - KS)/Ki

where K, is always positive.

(5. 33)

From Eq. (5. 33) it is seen that when K^>Kg two symmetric

counterrotating convection cells bifurcate from the rest

state. For this situation Eq. (5. 32) can be solved numeri-

cally, using for instance a Newton-Raphson scheme, to obtain

C as a function of the parameters of the problem. The temper-

ature and velocity distributions as well as the Nusselt num-

ber can then be evaluated from Eqs. (5. 24) to (5. 31) and

(5. 23) respectively. When K^>^ , C=0 is the only real value

of C and there is no convection. The marginal state, which

determines the critical Rayleigh number, Ra^ , is when K^=Ks.
Eq. (5. 32) then yields

Ra.

120

B- D'
+ -(n - l)3 - -^ - -^3 - _^2

6 12 6 2

Qarl ^ -r, a - 1 (»?-!).
+ E/ - + ea

r°iar
a'

Q-ari
+ F; e ar -r, a +1 (r, - 1)

ex'
1 - + ^(1-ri) (5. 34)
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where A/, Bf , D', E/ and F/ are the coefficients A, B, D, E

and F in Eqs. (5. 28) to (5. 31) divided by C. It is possible

to predict directly, from a parallel flow analysis, the crit-

ical Rayleigh number for the onset of motion, because when

heating is by a constant heat flux, the convection occurs at

zero-wave number (Nield (1968, 1977, 1983)) for which the pre-

sent solution is exact. Naturally the present method cannot

be applied in the case of a layer heated isothermally from
the bottom.

We can check the above formula against known results for

some special cases.

(i) Let >? = 1, -y =1; or7 =1, G=l, Da^°°, »7. We get

(5. 35)Ra^ = 720 J

which is the known result for a viscous layer between two

rigid boundaries (Sparrow et al. (1964)).

(ii) If we let r? =0, 0=7 =1, we have

RC =

Da + - - ^Da coth(l/^Da)/2
12

(5. 35)
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the result for a Brinkman medium between two rigid boundaries

(Vasseur et al. (1988)).

(iii) If, however, »? =0, G=-y = 1, Da-^0, we find that

RC = 12 (5. 37)

which is the result for a Darcy medium between two rigid

boundaries (Nield (1968)).

The solution for the particular case of two immiscible

layer of fluids in a shallow cavity, can be deduced from the

present analysis by taking the limit of Eqs. (5. 24) to (5. 32)

for Da-^°°. The same result can be obtained more simply by sol-

ving the governing equations when the cavity is filled with

two different, viscous, immiscible fluids. It is found that

the critical Rayleigh number, for the onset of motion, is

given by

Ra, =
»? + 7(1 - ri)

x
(5. 38)

where

x

G

= -|A(», 4 - 6r, 2 +8ri - 3) + 2F (r, 3 - 3r, 2 + 3r, - 1)
12

- -(n5 - io»?2 + 15r, - 6)
10

]-^. (. ATI + 2F - -)
12 10
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A= - (N - FQ/2)
M

F =
RM - 3NP

W[r, + G(l- r, )] - 3PQ/2

N = -C»?4 - G(^4 - 4T, +3)]
24

M = »?3 - G(»?3 - 3»? + 2)

P = n2 - G(n2 - i)

Q = r, 2 - G(l - r,)

-;[.R = -[n3 - G(^3 - i)]3 - Kf^ -

The critical Rayleigh number Ra =720 (Sparrow et

al. (1964 )) for a single layer of fluid between two rigid

boundaries can be recovered from Eq. (5. 38) by setting

^ =1, r, =lor^ =1, G=l ( r,)

The present analysis can also predict the behavior of a

system consisting of a liquid layer over a solid layer. let-

ting G=0 (i. e., /^ ^°°) into Eq. (5. 38) it is found that the

marginal stability condition is given by



Ra,=
720 [r, + -y(l - r, )]

,5
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(5. 39)

However, substituting G=l into Eq. (5. 38) yields the

critical Rayleigh number for a system consisting of two liq-

uid layers with equal viscosity but different conductivities

which is

Ra, = 720[n -^ 7(1-'?)] (5. 40)

From Eqs. (5. 39) and (5. 40) it is seen that the critical

Rayleigh increases linearly with increasing 7.

5. 4 UPPER SURFACE FREE

In this section it is assumed that the upper boundary of

liquid layer is open to the ambient air. Thermocapillary

forces acting at the free surface are taken into account but,

for simplicity in the analysis, we consider that the free

surface remains horizontal everywhere. For this case, the

dimensionless Eqs. (5. 6) to (5. 12) and boundary conditions

(5. 14) and (5. 15) would still apply, with the exception that

the no-slip condition a^/3x=0 on the upper surface x= 0(see

condition (5. 14a)) should be replaced by the condition

a2 ^/3x2=-Ma5T/9y. Thus, making use of Eq. (5. 17), we

now have



X = 0, ^ = 0,
<92^ ai

= -Mac, - = 1
ax2 ax
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(5. 40)

Where Ma is the Marangoni number, defined as

Ma =
SL q'L

"f/^f kf
(5. 41)

in which S is the surface tension gradient with respect to

the temperature, i. e., S=-9a/9V.

For this situation the core solution for the system may

still be given by Eqs. (5. 24) to (5. 27) but with

B = MaC

from boundary condition, Eq. (5. 40)

(5. 42)

The four unknown constants A, D, E and F may be evaluated

from Eqs. (5. 28) to (5. 31) and an expression for the constant

temperature gradient C for the present case can be derived in

the form of Eg. (5. 32). The marginal state, which determines

the critical Rayleigh number, is still given by expression

(5. 34) which can be checked against known results for some

special cases
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(i) let »? =1, -y =lor7 = 1, G= 1, Da-»°°, r, , \ie get

Ra, Ma^
+ 1

320 48
(5. 43)

which agrees with the prediction of Nield (1964) . Thus when

the Marangoni effect is negligible (Ma^=0) , we find that

the critical value for the onset of buoyancy-driven instabil-

ity is

Ra^ = 320 (5. 44)

which was obtained by Sparrow et al (1964) . Also under

microgravitational condition (Ra^=0) the onset of motion in

a surface tension driven fluid layer occurs at

Ma = 48 (5. 45)

(ii) Letting »? =0, Ma^ =0 , G=-y=l, we get

Da i- ^ Da

RC = - +
1

12

cosh2--(^ Da-2tanh-
-1

2Da(sinh^ Da-^ Dacosh^ Da)

2+(^Da-4/^Da)tanh(^Da/2)

(5. 46)

as obtained by Vasseur et al. (1988) for a Brinkman layer with

an upper surface free.
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The marginal stability for a system of two immiscible

layer of fluids is obtained by taking the limit of Eqs.

(5. 24) to (5. 32) for Da-»". It is found that

Rac vlac
GP + - GQ = r, + ^(1 - r,}

120 6
(5. 47)

15
P = 9r?5 (1 - 1/G) -15T, + 6 + -TJry4 (1 - G) + G|

8

3

Q = -2^ (1 - 1/G) +3r, - l -- T\r, 2 (1 - G) + G\
8

,4

T =
5»?4 (1 - 1/G) + 8», - 3

, 3 -r, s - G(r, - 1)(^ +^ + i)

By setting -i=l, r)=lor^=l, G=l(ri) in the above

result, Eqs. (5. 43) to (5. 45) can be recovered. On the other

hand, letting G=0 (i. e., /^ -^°°) into Eq. (5. 47) it is found

that the marginal stability in a liquid layer over a solid

layer is given by

Ra, n5 Ma, n3
+ =»? +7(1 - '?)

320 48
(5. 48)

Letting G=l in Eq. (5. 47) yields the marginal stability

for two liquid layers with equal viscosity and different con-
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ductivities as

Ra,

320

Ma.

48
= r, + -7 (!-»?) (5. 49)

5. 5 CRITICAL RAYLEIGH AND MARANGONI NUMBER RESULTS

We have obtained analytical solutions for the heat and

fluid flow in a shallow horizontal composite system, consist-

ing of a fluid layer over a porous substrate, heated from

below by uniform heat flux. The hydrodynamic boundary condi-

tions include both rigid and free upper surfaces with a rigid

lower bounding surface. As a by-product we have also obtained

threshold values, i. e., the critical Rayleigh and Marangoni

numbers, marking the onset of motion in the system. In this

section the onset of buoyancy-thermocapillary instability

will be first discussed.

5. 5. 1 Composite system with a rigid upper surface

The marginal stability of the composite system considered

in this study is given, in general, by Eq. (5. 34). For the

case of a system with a rigid upper surface Ma^=0 and Ra,

depend upon ri, G, 7, Da and Ra^=R^/Da. The effects of each of

these parameters will be considered separately. Fig. 5. 2 show
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the variation of Ra^ with Da and r,, for G='y=l, as predicted

by Eq. (5. 34). The bounding case of the porous (Brinkman) bed

problem. Eg. (5. 36), results when »?=0 and the bounding case

of the fluid layer , Eq. (5. 35), results when r, =l. Both lim-

its are seen to be favorably reproduced by the method used in

this work. The presence of a porous bed (»?<1) leads to a more

stable situation since, for a given Da, a larger Ra, is

required to destabilize the system. For a given value of ri,

as Da increases, the porous bed becomes more permeable, it is

easier for the fluid to move, and a smaller Ra^ is required

to cause motion. It is also observed in Fig. 5. 2 that as Da

is made large enough, all the curves tend towards the bound-

ing case of the fluid layer (Ra^=720). This behavior is

expected since it is well known that, in the absence if iner-

tia effects, the Brinkman equation reduces to the Navier-

Stokes equation as Da-+°°.

Table 5. 1 illustrates the effect if G=/^^/// on the

marginal stability of a liquid-porous bed system for -7=1, n

=0. 5 and various values of Da. The case G=0 (i. e., ^n^°°)

corresponds to a single layer of fluid, of extension r,,

bounded by rigid walls. The values obtained in this study are

in good agreement with the critical Rayleigh number predicted

by Sparrow et al. (1964) i. e., Ra^=720/»?5 , where r, 5 is an



120

effect of geometry and temperature difference on the layer.

The case G=l and Da-^°° also corresponds to a single fluid

layer, of unit extension, for which Ra =720. We calculated

Ra^ for G=l, 7=1 and Da=l, 10 and 102 , and obtained Ra.

=728. 6, 720. 9 and 720. 1 respectively. It is seen from Table

5. 1 that, for a given value of Da, decreasing the parameter G

enhances the stability of the system. Although various mod-

els, such as Lundgren/s (1972), have been postulated in the

past in order to predict G it does not yet appear possible to

accurately estimate y. ^ ///p for any given porous medium.

Nevertheless, Lundgren's predictions for porous media com-

posed of stationary spheres of uniform size, indicate that G

can possess values greater than as well as less than unity.

Thus, in the case of foametal, the value of G can range from

0. 0625 to 100 (Neale et al. (1974)).

The effect of G on Ra^ for a system consisting of two

superposed layers of immiscible fluids (Da^°°) , equation

(5. 38), is illustrated in Fig. 5. 3 for 7=1 and various val-

ues of r,. Results are presented only for G< 1 because of the

principle of symmetry (Ra^ for given values of r, and G is

equal to Ra^ for (1-r, ) and 1/G). The case G=l ( r, ) corre-

spends to a single layer of fluid (of viscosity ^^ ) for which

Rac=72°- the case »y=0 also corresponds to a single layer

of fluid (of viscosity ^ ) for which Ra^=720/G.
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The variation or the critical Rayleigh number with the

conductivity ratio -y=kp/k^ may be expressed as

Ra\ = Ra, [r, + 7(1-'?)] (5. 50)

where Ra^ is the critical Rayleigh number of the fluid-porous

system in the absence of conductivity ratio effect (i. e.,

when 7=1). When G=l, the value of Ra is given in Fig. 5. 2 as

a function of Da and >?. It is seen, from Eqs. (5. 35), (5. 36)

and (5. 50) that Ra*^=720 for a single layer of fluid (»?=!)

and Ra\=^/{Da[(Da+l/l2)-Da1/2/2coth(Da1/2/2)]} for a single

layer of Brinkman medium (»?=0) . When -y-<-0 (i. e. k -+0) the
porous layer behaves as an insulator and Ra* =Ra »?, where rj

is an effect of temperature difference. When 7-^°° (i. e., k^->°°)

the porous bed behaves like a perfect conductor and

Ra\=Ra^(l-'?) . Equation (5. 50) indicates that increasing -7

leads to a more stable situation and that the effect of -y is

more pronounced as the porous layer becomes thicker relative

to the fluid layer (»?-*0) .

5. 5. 2 Composite system with a free upper surface

For the case of a system with a free upper surface, with

surface-tension effects allowed for, the Marangoni number is

not zero and all the parameters appearing in Eq. (5. 34) have
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to be considered. Table 5. 2 illustrates the effects of T) and

Da on the marginal stability of a fluid-porous bed system

when G=7=l. The threshold values for Benard-Marangoni convec-

tion may be expressed as

Ma, Ra,
+ - = 1

A B
(5. 51)

where the coefficients A and B depend upon Da, the Darcy num-

ber of the porous bed, and ri, the dimensionless position of

the interface between the fluid layer and the porous bed. For

a given value of T) , the case Da-^°° corresponds to a single

layer of fluid, for which A-»48 and B-^320 in agreement with

the values predicted by Sparrow et al. (1964). The stability

of the system can be enhanced either by decreasing Da, for a

fixed value of »?, or by decreasing ri, for a fixed value of

Da. This follows from the fact that, by decreasing the per-

meability (Da) of the porous medium or increasing the rela-

tive presence of the porous medium (»;), it is more difficult

for the fluid to move and greater Ra^ and Ma^ are required to

cause motion.

Threshold values for the onset of motion of

Benard-Marangoni convection for a two fluid layer system are

predicted by Eq. (5. 47). When the thermal conductivity of

the fluid layers is the same (/y=l) Eq. (5. 47) reduces to Eq.
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(5. 51) where A and B depend now upon »? and G. Samples of

results, for this situation, are listed in Table 5. 3.

5. 6 FLOW AND HEAT TRANSFER RESULTS

The steady state natural convection heat transfer, occur-

ring in the present system, when the Rayleigh and Marangoni

numbers are well above the critical valuesy is now discussed.

For this situation the resulting velocity and temperature

fields in the core region of the cavity are described by Eqs.

(5. 24) to (5. 32) while the Nusselt number is given by Eg.

(5. 21) .

In Figs. 5. 4(a) and 5. 4(b) the analytically predicted

horizontal velocity distributions and temperature profiles,

at the vertical center line of a system with all rigid bound-

aries, are presented for Ra=104, »?=0. 5, 0=7=1 and various

values of Da. Since the Brinkman equation has been used to

model the porous layer, the no-slip boundary condition can be

imposed on the bottom boundary of the cavity and the velocity

at the upper and lower surfaces is zero. A significant change

with the velocity and temperature fields with an increase in

Da is demonstrated in Figs. 5. 4. If the permeability of the

porous medium is high, for example for a Darcy number equal
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to 1, the fluid flow penetrates easily into the porous medium

and the resulting velocity profile approaches that for a vis-

cous fluid layer. In this case, the convective heat transfer

is important, just as the temperature profile in Fig. 5. 4(b)

suggests. The flow structure is made up a layer of cold fluid

under a layer of hot fluid, near the horizontal center line

of the cavity, these two layers being sandwiched between two

layers of cold and hot fluid located respectively near the

upper and the lower horizontal boundaries. Decreasing per-

meability (i. e.. Da) quickly reduces the intensity of the

fluid motion inside the system. The major part of the flow

becomes confined in the pure fluid space and the resulting

heat transfer becomes gradually quasi-conductive. Thus, when

Da=5xl0-4 , the temperature profile is very close to that of

pure conduction, shown as a dotted line in Fig. 5. 4(b). The

flow structure now simply consists of a layer of hot fluid

in the lower part of the system, under a layer of cold fluid

in the upper part.

Predicted horizontal velocity distributions and tempera-

ture profiles, at the vertical center line of a system with a

free upper surface, are presented in Figs. 5. 5(a) and 5. 5(b)

respectively. The governing parameters are Ra=104, ^=0. 5,

G=-y=l, Da=5xl0"3 and various values of Ma. It is evi-

dent from Figs. 5. 4(a) and 5. 5(a) that, for the same values
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of the governing parameters, the magnitude of the core velo-

city is higher in the case of a free upper surface than that

in the case of a rigid upper surface. This is due to the fact

that the condition of zero shear at the free surface allows

larger horizontal velocities within the cavity. When surface

tension forces augment buoyancy forces (Ma>0) increased

velocities occur throughout the system, as depicted in Fig.

5. 4(a). The increased core velocity for the free surface

system (Ma>0) leads to an enhancement of the longitudinal

convective transport of heat. Accordingly, more hot fluid is

carried in the upper part of the cavity and cold fluid in the

lower part and the resulting vertical temperature stratifica-

tion is reduced (compare Figs. 5. 4(b) and 5. 5(b)). As

result, it is expected that the Nusselt number, for a system

with a free surface, must be larger than that for a system

with a rigid upper surface.

For the purpose of presenting the heat transfer results,

a system with -Y=G=I and Da=103 is considered. The variation

of Nu with ri and Da is illustrated in Figs. 5. 6(a) and 5. 6(b)

for a system with a rigid upper surface and a free upper sur-

face (Ma=0) respectively. For a given »? there is a critical

Rayleigh number Ra^, Eq. (5. 34), below which convection is

not possible (pure conduction state) . Thus for each of the rj

considered in Figs. 5. 6, the Nusselt number approaches the
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pure conduction solution (v=0, Nu=l), as Ra tends toward the

value of the corresponding critical Rayleigh number. When Ra

is higher than Ra^ the Nusselt number is seen to first

increase, as usual, with Ra. But it is clear, from Fig. 5. 6,

that Nu tends asymptotically toward a constant value which

depends upon »? (when -y , G and »? are fixed). This phenomena

has already been discussed in the past for the case of a hor-

izontal porous layer heated from the bottom by a constant

heat flux (Vasseur et al. (1988)).

5. 7 SUMMARY

Thermal instability and natural convection heat transfer

for a porous bed under a fluid in a shallow cavity heated

from the bottom by a constant heat flux are studied analyti-

cally. Navier-Stokes equation and Brinkman/s equations are

used for the fluid motion in the fluid region and for that in

the porous region, respectively. The equations are solved

using a parallel flow assumption. The major conclusions of

this study are as follows.

1. Critical Rayleigh numbers for a system with a rigid upper

surface depend upon ri, G, -7 and Da. The limiting cases of

single layer of porous medium (»?=!) and of a pure fluid (r)

=0)have been obtained and these compare well with known
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results. The presence of a porous bed (»?<!) leads to a more

stable situation. Large Da results in a less stable situation

due to the increased freedom for fluid motion in the porous

layer allowed by the increase in permeability. Also increas-

ing 'y or decreasing G results in a more stable system.

2. The upper boundary condition, for a cavity with a free

upper surface, has a pronounced influence on the critical

Rayleigh and Marangoni numbers for marginal stability of the

system. A free upper boundary will result in much smaller

critical values. As a by-product results have also been

obtained for a single layer of fluid. For this situation,

when buoyancy and surface tension gradients are operative,

the critical states are given by Eq. (5. 43) which is the

result obtained by several authors, using a linear stability

analysis.

3. Analytical expression for the heat and fluid flow phe-

nomena at Rayleigh and Marangoni numbers considerably higher

than critical have been obtained. The effect of several

dimensionless groups on the flow pattern at these high Rayl-

eigh numbers is documented. The present analysis shows that

the presence of a free surface can significantly increase the

heat transfer rate through the cavity.



CHAPTER 6

A SHALLOW CAVITY FILLED I TH TWO I ISCIBLE FLUIDS

6. 1 LITERATURE REVIEW

In a recent paper Villers and Flatten (1988) presented

some interesting experimental results concerning the mecha-

nism of natural convection in a system containing two immis-

cible superposed liquid layers of different density. The sys-

tern studied consisted of a combination of water and heptanol

in a shallow rectangular cavity with differentially heated

end walls. The horizontal velocity profiles in each layer

were measured, as a function of elevation, using laser Dop-

pier Anemometry. The resulting velocity profiles revealed the

existence of three convective cells; not only was there one

buoyancy induced cell in each layer but also a third interme-

diate convective cell in the water layer. The position (i. e.,

in which layer) and the relative size of the third cell were

speculated to depend on various parameters like expansion

coefficient, viscosity, thickness of each fluid layer and,

more likely, on the interfacial tension (the so-called Maran-

goni or thermocapillary convection). Many interesting ques-

tions were raised by these authors who pointed out the need

for a theoretical investigation on this fundamental problem

in fluid dynamics.
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Investigations concerning heat and fluid flow phenomena

caused by natural convection in systems containing multiple

fluid layers are scarce. Numerical simulations of steady

state free convection heat transfer results for a closed,

square container filled with a liquid and a gas were pub-

lished by Oosthuizen and Paul (1983). The transport phe-

nomena in horizontal annul! formed by two circular cylinders

and filled with two immiscible fluids was studied numerically

by Projahn and Beer (1987). Streamlines and temperature dis-

tributions were obtained over a wide range of Rayleigh num-

bers, and it was found that the thermocapillary convection

improves heat transfer. However, no studies of the problem

addressed in this Chapter seem to be available in the litera-

ture despite its importance for many technical applications.

6. 2 FORMULATION OF THE PROBLEM

The problem under consideration is that of two-

dimensional, laminar convection in two immiscible fluids of

different densities in a stable configuration enclosed within

a shallow rectangular cavity. A schematic representation of

the geometric arrangement is depicted in Fig. 6. 1 with the

heavier fluid at the bottom. Each layer is of height h, / The

thermal conditions which are also shown are heating and cool-

ing by a constant heat flux q/ through the horizontal walls
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(i. e., bottom heating), or through the vertical walls (i. e.,

side wall heating). Thus, for bottom heating a=l, b=0,

while for sidewall heating a=0, b=l. All fluid properties

are taken to be constant except the density of the fluids,

for which the validity of the Oberbeck-Boussinesq approxima-

tion is assumed.

The dimensionless Navier-Stokes and energy equations gov-

erning the problem are

-1-1 ^ r 1 1 aTi
J(^,, V2^, ) = [ J Pr, V4^, - [ _- J Ra, -1

'' " ~1' L^J "' ' '' L^*2k*J ^' ax

J(^'T') = LJv2Ti

u, =
a^,

ay
V.. = -

a^,

ax

where

(6. 1)

(6. 2)

(6. 3)

3f 9y 9f 3g
J(f, g) =-----.

9x 9y Qy 3x

Ra, =g^, q/H/4/i/, a, k, and Pr, =^, /a, are the Rayleigh and

Prandtl numbers respectively in each fluid layer i (i=l, 2).

The upper number within [ ] refers to 1=1, and the lower num-

ber to i=2.
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Dimensionless variables were used to obtain Eqs. (6. 1) to

(6. 3). The scaling factors are H/ for the spatial coordi-

nates, a^ /Hf for the velocity, q/H'/k, for the characteristic

temperature difference and cr^ for the stream function. The

physical property rations of the two layers are defined as

-Y' = >72/Tf1 (6. 4)

where 'y stands for a , i3* , fi* , p* and k* respectively. It is

noted that the thermophysical properties of the heavier fluid

(i=l) are chosen for reference to obtain consistent dimen-

sionless equations for both fluid regions.

The non-dimensional boundary conditions at the four walls

of the enclosure are

d^i
^1 =

^2 =

dy

d^,

dy

= 0;

= 0;

3T,

ay
-a

k*
3T,

ay
-a

d<?,. 9T^ , aT2
^, = -- = 0; -- = -b, k*i = -b

dx ax 5X

at y=0

at y=l

(6. 5a)

(6. 5b)

at x=±A/2 (6. 5e)

where A=L//H/ is the cavity aspect ratio.
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At the interface between the two fluid layers y=»?

(where »?=h, r/Hf) the continuity of temperature, heat flux,

velocity, pressure and shear stress require that

Ti = Tg ;

^1 = ^ ;

3^1 3^2

8T, 3T,
^ = k*^-

9y 9y

3^1 3^

9y 3y

0

ax ax

a2 ^,

3y2
A»

S2 ^

ay2
Ma

8T

9X

(6. 6a)

(6. 6b)

(6. 6c)

(6. 6d)

where Ma=Sq/H/2/cr^^ k^ is the Marangoni number and S= -9a/9V

is the surface tension gradient with respect to the tempera-

ture. In the present mathematical model the surface between

the two fluids is assumed to be flat and to remain unchanged

under flow conditions (an assumption which seems reasonable

for the relatively low velocities occurring in natural con-

vection processes).

Equations (6. 1) and (6. 2) together with the boundary con-

ditions, Eqs. (6. 5)-(6. 6), complete the problem definition.

The solution to this problem is dependent on the following
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parameters: A, ri, a* , k*, ^ , Ma, Ra, and Pr, (i=l, 2). It can

be noted that Ra^Ra, p* ̂ * / (a*//*k* ) .

6. 3 APPROXIMATE SOLUTION

The present problem can also be significantly simptifical

by the approximation of parallel flow for which

^, = ^i (Y) and T, = C, x + ff, (y) (6. 7a, b)

where the C, /s are constants representing the unknown temper-

ature gradients in the x direction in the two fluid layers.

In order to satisfy the continuity of temperature at the

interface (y=»?), it follows that

Ci = c^ =c (6. 8)

Substituting Eqs. (6. 7) and (6. 8) into Eqs. (6. 1)-(6. 2)

the governing equations can be simplified to

and

d4^,

dy4

d20,

dy2

= L\J
.a

Ra, C (6. 9)

pl -] d2^,
^J ^-c (6. 10)
L^'J dyz
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Solutions to Eq. (6. 9) with boundary conditions (6. 6)

are

^1 =
Ra^ C

24
y' (y-»?) [(y+'?) + ^ ] (6. 11)

Ra, C

^2 = :l::y't2(y<'-. *) | ^ (y*+. *) + A,
24

(6. 12)

where y*=(l-y), ri*=(l-ri), and

AI =-[Kr?*3-^2 (4/. *^ +5^*) - »?*G]
nH

1 r - K
AZ = - I'?3 - -, »?*2 (4»?* + 5^r, ) + riG\

?*H L ^
(6. 13)

* . *
G = 12Ma/Ra, , H = 2 (»?* + ^ ri) , K= p

Solutions to Eq. (6. 10) with boundary conditions (6. 6)

are

RaiC2 r(y5 -»?5)

24
- n2

(Y3-'?3)

3

-(y4 -*?4) (y3 -'?3)-
+ A^ I - r, | - a(y-r,)

4 3
(6. 14)

and
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Ra^C2 K r(y*5-»?*5)

p. " L- 5

(y*3-, *3).., . --l^ ^--"-' . ^., >Y-'
,.*24

+ A,
(y*4-^*4) (y*3-^3)-,-'?

3 r*
(y-»?) (6. 15)

It is noted that, due to the normalization, the dimen-

sionless temperatures are zero at the interface y=>7.

An integral condition on the average heat flux can be

imposed at any x section,

n k*
u^ff, dy + -
0 a

U^2 dY = C(»? +k*»y*) - b (6. 16)

Substituting all the quantities in the above equations,

the integrals were solved by using symbolic algebra. The

resulting expression yields a transcendental equation for the

constant C, which was solved numerically by a secant method

to obtain C as a function of the parameters of the problem.

Typical values of C are presented in Tables 6. 1 to 6. 4 (for

convenience the absolute values of C is given). With the

thermal boundary conditions considered in this study, C is

negative for sidewall heating but can be indifferently posi-

tive or negative in the case of bottom heating.
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The heat transfer rate for the bottom heated cavity can

be expressed in terms of a Nusselt number at the x=0 section,

defined as

Nu =
q/H'

AT/k,

1

AT
(6. 17)

where the temperature difference AT=T(0, 0)-T(0, 1). The Nus-

selt number for sidewall heating is very much dependent on

the flow pattern in the end regions and thus cannot be suit-

ably predicted here with the parallel flow approximation.

6. 4 RESULTS AND DISCUSSION

As observed experimentally by Villers and Flatten (1988),

the pattern of convection of the present system is character-

ized by two cells in each of the fluid layers as well as the

possible appearance of an additional secondary cell in one of

the fluid layers. A secondary cell will appear in the bottom

layer if r, =0 at a position y^ such that 0<y^ <»?. Similarly a

secondary cell will occur in the upper layer if ^:=0 at a

position which satisfies ^<y^<l. From Eqs. (6. 11) to (6. 13)

the values of y, and y^ are given respectively by:

Yl = [ri2(2^r, + 3r?*) - Kr, it 3 + »?*G]/^H (6. 18)

and
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(6. 19)

Form Eq. (6. 18) it follows that two cells will be

observed in the bottom layer when the conditions

z < 0 and z > -2»?2 (1 + /x* »?/»?* ) (6. 20a, b)

are satisfied, where z=riz-Krj*2+G. This flow pattern is

illustrated schematically in Fig. 6. 2(b) and will be referred

as regime II in the following discussion. As the value of y,

decreases from rf to zero the size of the secondary circula-

tion is enhanced due to the boundary surface effect, while

the primary circulation, weakened gradually due to the buoy-

ancy effect, disappears when

z < -2r, 2 (i + ^ri/ri") (6. 21)

Under this condition , the resulting flow pattern con-

slsts of a clockwise, buoyancy induced, primary circulation

in the upper layer driving a secondary counterclockwise cir-

culation in the bottom layer, regime I in Fig. 6. 2(a). On the

other hand, for

z > 0 and z < 2Kr?*2(l + »?*//<*»?) (6. 22a, b)

the secondary circulation will appear in the upper layer,

regime III in Fig. 6. 2(c). Naturally, as the value of y^

increases from ri to unity secondary circulation in the upper
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layer is strengthened progressively; the primary circulation

is weakened and disappears when

z > 2K»?*2 (1 + r, it /^r,) (6. 23)

as illustrated in Fig. 6. 2(d), regime IV. For this situation

the secondary circulation in the upper layer is driven by the

primary buoyancy induced flow in the lower layer.

It should also be mentioned that, since conditions

(6. 20a) and (6. 22a) cannot be satisfied at the same time, it

is impossible for a secondary circulation to appear simulta-

neously in the two fluid layers. From the above equation it

is seen that the parameters responsible for the appearance of

the secondary cell are G, K, /z* and »?. However, the flow

structure is independent of the particular thermal conditions

applied on the system, i. e. sidewall heating or bottom heat-

ing.

The limiting case of a single layer of fluid with an

upper rigid surface can be recovered by setting >?=0 or »?=

1 in the present solution. For this situation, a clockwise

gravity induced circulation results as illustrated by regime

V in Fig. 6. 2(e). The case of a single layer of fluid, with

an upper free boundary, can also be predicted by the present

analysis by letting p. *-^0 and ri-^1. For this situation, fluid
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motion occurs due to the combined influences of buoyancy and

surface tension and two cell will be observed if 0<y^ <ri,

i. e. when the condition

-3 < G< -1

is satisfied.

(6. 24)

The above equation requires that G be negative in order

to observe two cells in the fluid layer. This will be the

case only when the two driving forces, buoyancy and surface

tension, counteract each other. This happens in certain situ-

ations like in the case of water below 4 C or for some par-

ticular liquid metal alloys. However, in general, surface

tension effects augment buoyancy, i. e. induce fluid motion in

the same direction, resulting in a positive value of G.

The zones of occurrence of the various flow structures

described in Fig. 6. 2 are presented in Fig. 6. 3. Figs. 6. 3(a)

and 6. 3(b) are for a system with two fluid layers of equal

viscosity (fi* =1) , and the effect of the viscosity ratio p. * of

the two fluid layers is illustrated in Fig. 6. 3(c). In Fig

6. 3(a) G (i. e. Ma) is zero, resulting in a K-»? diagram, while

In Fig. 6. 3(b) K=l, resulting ina G - »y diagram. All dia-

grams are divided into four zones by three lines correspond-

ing to Yi=0, Yi=y2 ='? and 73=1 respectively. The line
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ri=0 and »?=! correspond to regime V. As mentioned earlier,

the flow structures predicted by the present analysis is

independent of the thermal conditions applied on the system

(i. e. sidewall or bottom heated by a constant heat flux) as

long as the flow inside the system remains approximately par-

allel for a shallow cavity. These results are also valid for

the case of a system with differentially heated isothermal

vertical end walls since, as demonstrated by Cormack et al.

(1974a), a parallel flow solution is also possible for this

situation. However, they cannot be applied to the case of a

system heated isothermally from the bottom since it is well

known that the resulting flow pattern, contrary to the case

of a system heated from the bottom by a constant heat flux,

is not parallel, corresponding rather to multicellular Benard

cells.

Figures 6. 4(a) to 6. 4(c) show the effects of the parame-

ters K, G and //" on the variation of horizontal velocity with

depth for »? =0. 5, i. e. when both fluid layers have the same

thickness. In all the graphs u*=10u/(Ra^C/24) such that

the resulting velocity profiles are valid for both heating

modes considered in this chapter. The flow structures of

Figs. 6. 2 are also identified on Figs. 6. 4 for easier inter-

pretation of the graphs. Referring to the velocity profiles

in Figs. 6. 4(a) and 6. 4(b), it is observed that a secondary
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circulation is present in the top layer when the fluid flows

from the hot to the cold vertical wall along the interface

surface, and in the bottom layer when it flows in the oppo-

site direction. The case where the velocity vanishes at the

interface between the two fluid layers(K=l in Fig. 6. 4(a)

and G=0 in Fig. 6. 4(b)) corresponds to a transition, from

regime II to regime III, where the secondary cell is located

exactly at the interface and has a zero thickness. From Fig.

6. 4(b)it is seen that when the interfacial tension plays a

major role (G=0. 4), the velocity profile is characterized

by a change of sign in the slope near the interface. This

result is in agreement with the experimentally obtained velo-

city profiles reported by Villers and Flatten (1988). How-

ever, interfacial surface tension is not the only factor

responsible for the appearance of secondary flows since the

parameters K and /z" play an equivalent role, as demonstrated

by Figs. 6. 3(a) and 6. 3(c). Finally, the effect of the vis-

cosity ratio ^ is illustrated in Fig. 6. 4(c) for G=0 and K

=1. As expected, when p. * =1 the velocity profiles are the

same, but in opposite directions, in the two fluid layers of

equal thickness. Also, the velocity magnitude in the upper

layer is enhanced (or reduced) when the viscosity ratio is

smaller (or greater) than unity.
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The effects of the parameters K, G and p. * on the variation

of vertical temperature distributions, $*=1000/(Ra^C2/24),

are presented in Figs. 6. 5(a) to 6. 5(c) for a system of two

fluid layers of equal thickness (rj=0. 5) , heated from the

side (a=0, b=l). All the temperature profiles become nor-

mal to the ceiling and the floor of the layer system, because

these boundaries are adiabatic. Also, due to the normaliza-

tion, $'=0 at the interface between the two fluid layers.

The temperature distributions in Figs. 6. 5(a) and 6. 5(b) vary

in accordance with the configuration of the flow regime cor-

responding to the particular values of K and G considered.

Since we are dealing with a multicellular system, the

maximum stream function ^ , within each fluid layer, can be

used to identify the sense and magnitude of the various pos-

sible circulations. The coordinates are chosen such that

clockwise (or counterclockwise) movement will be associated

with positive (or negative) ^. Figure 6. 6 shows 9 as a

function of G, with fixed values of Ra^ and rj, for the case

of a system heated from the bottom. For this situation there

is a critical Rayleigh number Ra^ , below which no motion is

possible. Following the procedure described by Vasseur (1988)

it can be shown that, for the present problem, the critical

Rayleigh number is given by
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720 (r, + »?*k* ) H a* fi*

H(a*/. * 

r,
5 + Kr, il5)+5/2fzi'nnil (ai'n2 -^*2)(^2 - K^*2 + G)

(6. 25)

Figure 6. 7 shows the marginal stability curve as a func-

tion of parameter G for various values of ri, when /z* =1 and K

=1. When »?=0 or 1, Ra^=720, in agreement with single

layer results obtained by Sparrow et al (1964) using a lin-

ear stability analysis. When ri=0. 5, Ra^ =16x720, indepen-

dent of the value of G. For all other values of ri the criti-

cal Rayleigh number is a strong function of G as depicted in

Fig. 6. 7.

The values of ^ in Figs. 6. 6(a)-(c) correspond to a

system with K=l, /i*=l, Ra, =4xl04 and rj=0. 5, 0. 45 and 0. 55

respectively. Figure 6. 7 indicates that, for r, = 0. 5, the

critical Rayleigh number for the onset of motion is

Ra^=l. l52xl04 independent of the parameter G. Thus, in Fig.

6. 6(a) there is always motion within the system, for all the

values of G considered, since Ra^ is well above the critical

values. When G=0, i. e. in the absence of Marangoni effect,

the flow is driven solely by the buoyancy effect and one cell

of equal size and strength develops in each of the two fluid

layers. Due to the symmetry of the system the circulation

within the two fluid layers can be indifferently clockwise (C
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negative) or counterclockwise (C positive) . For convenience,

only the clockwise circulation is shown in Figs. 6. 6(a)-6(c).

For G>0 a boundary surface tension gradient is induced at

the interface between the two fluid layers which give rise to

the formation of a secondary counterclockwise circulation in

the upper layer (regime III) . As G increases further, the

secondary circulation grows up and progressively displaces

the original clockwise cell, in the upper layer, which disap-

pears completely at G=l. For G>1, regime IV prevails and

the flow, consisting of a clockwise circulation in the bottom

layer, and a counterclockwise circulation in the top layer,

is driven progressively more and more by the Marangoni

effect. The strength of the circulation in each fluid layer

tends asymptotically towards the value |^|=2. 38. Finally,

it is observed in Fig. 6. 6(a) that the flow pattern is per-

fectly symmetrical with respect to the sign of the parameter

G.

The results obtained for the same conditions, but when ri

=0. 45y are presented in Fig. 6. 6(b). It is first observed

that the symmetry with respect to G is now destroyed. Also it

is seen that when G>1. 74 rest state, with parallel

straight line isotherms, prevails inside the system. This

follows from the fact that, according to Fig. 6. 7, Ra^=

4xl04 is above the critical Rayleigh number. Onset of motion
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at G=1. 74 (Ra^=4xl04) can be observed in Fig. 6. 6(b) at

which the rest state ^=0 becomes unstable and two convec-

tive states bifurcate from it. As already mentioned, for

convenience and due to the symmetry of the two possible flow

circulations a single convective state is represented in Fig.

6. 6(b) with a clockwise circulation in the bottom layer

(dashed line)and a counterclockwise circulation in the top

layer (continuous line). This flow pattern, corresponding to

regime IV, prevails down to G=1. 44 below which an interme-

diate cell appears in the upper layer (regime III). As the

value of G decreases further the size of the intermediate

cell gradually extends inside the top layer while that of the

counterclockwise circulation progressively disappears. Thus,

when G =0. 1 the flow in the upper layer consists of a single

clockwise circulation. This situation corresponds to the case

G=0 in Fig. 6. 6(a) except that the size and strength of the

cells in the two layers are now not equal due to the fact

that the two fluid layers do not have the same thickness. For

G<0. 1, a counterclockwise secondary cell appears in the

bottom layer (regime II), this circulation progressively dis-

placing the original clockwise circulation which disappears

when G=-0. 64. For G<-0. 64 flow regime I, with a clockwise

circulation in the upper layer and a counterclockwise circu-

lation in the bottom layer prevails. However, as the value of

G decreases further towards G-+°° the magnitude of ^ does not
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approach asymptotically a given value, as for the case with ri

=0. 5 but rather continues to increase continuously. The

results obtained for ri=0. 55 are presented in Fig. 6. 6(c).

The sequence of events are observed to the same but are

reversed with respect to the values of G, Fig. 6. 6(c) being

the mirror image of Fig. 6. 6(d).

For the purpose of presenting the heat transfer results,

a system, heated from the bottom, with p. * =1 is considered.

The variation of Nu with G and r, is illustrated in Fig.

6. 8(a) for Ra^=4xl04 and K=l, i. e. for the conditions

considered in Fig. 6. 6. When »? =0. 5 the curve is symmetri-

cal with respect to G, and Nu is maximum at G=0 i. e. when

the convection is driven solely by the buoyancy effect. As

the value of G increases (or decreases) toward infinity the

Marangoni effect becomes more and more predominant. The flow

is then driven by the surface tension at the interface

between the two fluid layers and the Nusselt number tends to

unity although, as indicated by Fig. 6. 6(a), [^ | tends

toward a fixed value, namely 2. 38. For this situation it is

seen from Table 6. 3 that the axial temperature gradient C

becomes very small, i. e. the convective terms in the energy

equation are negligible such that now the energy and the

momentum equation are decoupled. The results obtained for »y=

0. 45 and 0. 55 are similar, the two curves are the mirror
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image of each other, but the symmetry with respect to G is

now destroyed due to the different thickness of the two

fluid layers.

The effects of K and Ra on Nu for a system with G=l, p*

=1. 0 and r;=0. 5 are illustrated in Fig. 6. 8(b). As the value

of K is increased the curves for Nu are seen to first

increase up to a peak value and then decrease monotonously

down to a value of Nu=1. 14 for all the Rayleigh numbers con-

sidered. The peak in the maximum Nu occurs at K=l when Ra is

large but shifts towards larger values of K as the Rayleigh

number is decreased. From Fig. 6. 8(b) it is also seen that,

although in general Nu increases with Ra^ , it is clear that

the Nusselt number tends asymptotically toward a constant

value. This phenomenon has already been observed in the past

for the case of a single fluid layer (Vasseur (1987)) and is

related to the particular heating mode considered in this

study.

The effect of G on the Nusselt number Nu for the case of

a single layer of fluid heated from below with a free upper

surface is depicted in Fig. 6. 9. When G>0, i. e. when the

surface tension forces augment buoyancy forces the heat

transfer is almost constant for the range of G considered.

However, when G<0, i. e. when surface tension counteracts
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buoyancy the Nusselt number decreases rapidly reaching the

value Nu=l at G=-1. 79. This behavior can be explained from

Eq. (6. 25) which predicts that when G>-1. 79 the critical

Rayleigh number Ra^ ̂ , for the onset of motion in the system,

is equal or above 4xl04 . It is recalled that, for the case a

single layer of fluid with a free upper surface, a two cell

structure will be observed for -3<G<-1 as predicted by Eq.

(6. 24). This result is independent of the heating mode (side

or bottom) of the system.

6. 5 SUMMARY

The problem of natural convection in two immiscible

fluids heated from the side or from below by uniform heat

flux has been studied analytically. The solution is based on

the parallel flow approximation which is expected to be valid

when the aspect ratio of the system is greater than approxi-

mately two. The present work has attempted to clarify the

variety of flow patterns which might occur and the conditions

under which they do. Four different convection patterns are

possible as a result of the complex interaction between buoy-

ant and interfacial surface tension forces. Limiting cases of

a single layer can also be obtained from the analysis.

Despite its simplicity the model developed in this Chapter is

qualitatively in good agreement with experimental results.
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Also, the critical Rayleigh number for the onset of motion

has been predicted explicitly, in the case of a system heated

from the bottom, as a function of the relative importance of

the different physical properties of the two layers.



CHAPTER 7

CONCLUSIONS

The problem concerning natural convective heat transfer

in a shallow rectangular cavity (A»l) with uniform heating

and cooling through opposite walls has been investigated both

theoretically and numerically. The theoretical phase of the

investigation was primarly concerned with the development of

analytical solutions based mainly on the parallel flow approx-

imation introduced by Cormack et al. (1974a) to study the

problem of a horizontal fluid enclosure with differentially

heated end walls. A number of separate problems have been

considered and they are summarized below along with the

important results:

1. CONVECTIVE HEAT TRANSFER IN AN INCLINED SHALLOW POROUS

CAVITY

The analysis is based on the Brinkman equation which is

applicable to porous media with high permeability and can

account for the no-slip conditions at a solid surface. The

results demonstrate the dependence of the Nusselt number on R

and Da. As Da->0, the flow field is similar to that given by

an analysis using Darcy/s law, except in a thin region next
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to a boundary. The viscous effects are largely confined to

this region, where the axial velocity increases from a zero

value at the wall to a peak value. Results obtained from

Darcy's law are valid when Da is approximately smaller than

10'6. The overall heat transfer reduces significantly with an

increases of the permeability (Da) of the porous medium, the

reduction being larger at higher R. When Da is high enough,

that is, when the Darcy resistance due to the solid matrix

becomes negligible with respect to that resulting from the

boundary effects, the present solution approaches that for a

viscous fluid .

The orientation of the cavity has, for given values

of R and Da, a large effect on the heat transfer rate. For a

given value of Da, the maximum heat transfer rate across the

cavity occurs at an angle ip^^90° when R is relatively large

(boundary layer regime). For intermediate values of R

(asymptotic regime) the value of <p^ reaches a minimum value

of approximately 33. 5° independently of Da. At a given R and

for small enough inclinations p around bottom heating mul-

tiple steady states exist provided that the Darcy number is

sufficiently small. The range of tilt angles for multiple

steady states is function of both R and Da.
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In the special case of a horizontal porous layer (<p=0)

heated from the bottom results have been obtained for (1) a

cavity with all rigid boundaries, (2) a cavity with a free

upper surface, and (3) a cavity with both horizontal bound-

aries free. The critical Darcy-Rayleigh number for the onset

of motion has been obtained explicitly in terms of the Darcy

number for each of these three hydrodynamical boundary condi-

tions. It is shown that the results of viscous fluid (Da-»°°)

and the Darcy medium (Da-^0) emerge from the present solution

as special cases. The basic reason for this agreement is that

a layer heated from the bottom by a constant heat flux

becomes unstable at zero wavenumber for which the parallel

flow approximation is exact.

2. AN INCLINED POROUS LAYER DIVIDED BY MULTIPLE PARTITIONS

The effects of multiple heat conducting partitions on

natural convection within a rectangular, tilted, porous layer

is considered. An approximate solution is obtained by assu-

ming the validity of Darcy/s law and neglecting inertial

effects. It is found that:

i) In the case of a vertical porous layer divided by N

equally spaced partitions, the Nusselt number, in the boun-

dary layer regime, varies inversely with (1+N)4/5. For a
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porous layer divided by a single partition, the greatest

reduction in heat transfer, in the intermediate regime, is

reached when the partition is centrally located. However, in

the boundary layer regime, the heat transfer is independent

of the position of the partition provided that the boundary

layer thickness is less than the half-width of each cell

constructed by the partitions.

ii) The critical Rayleigh number for the onset of motion

in a horizontal porous layer divided by N diathermal parti-

tions has been obtained. Each cell constructed by the parti-

tions behaves identically like the ordinary Benard problem,

i. e. thermal coupling by conduction through partitions is

nil. When the system consists of a solid slab and a porous

layer, the conductivity of the solid has an important effect

on the critical Rayleigh number, which increases linearly

with the conductivity ratio of the solid and the porous

medium.

3. THERMAL STABILITY OF SUPERPOSED POROUS AND FLUID LAYERS

The buoyancy driven convection in a system consisting of

a fluid over a saturated porous layer heated from below is

studied. Use is made of the Brinkman model for the porous

medium in order to ensure the matching of the velocities and
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shear stresses at the interface between the two medium. It is

found that:

i) The critical Rayleigh numbers for a system with a

rigid upper surface depend upon ri, G, ^ and Da. The presence

of a porous bed (»;<!) leads to a more stable situation. Large

Da results in a less stable situation due to the increased

freedom for fluid motion in the porous layer allowed by the

increase in permeability. Also increasing -y or decreasing G

results in a more stable system.

ii) The upper boundary condition, for a cavity with a

free upper surface, has a pronounced influence on the criti-

cal Rayleigh and Marangoni numbers for marginal stability of

the system. A free upper boundary will result in much smaller

critical values.

iii) Analytical expression for the heat and fluid flow

phenomena at Rayleigh and Marangoni numbers considerably hig-

her than critical have been obtained. The effect of several

dimensionless groups on the flow pattern at these high Ray-
leigh numbers is documented.
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4. CONVECTION IN TWO IMMISCIBLE SUPERPOSED LIQUID LAYERS

The problem of natural convection in two immiscible

fluids heated from the side or from below by an uniform heat

flux is considered. The present work has attempted to clarify

the variety of flow patterns which might occur and the condi-

tions under which they do. Four different convection patterns

are possible as a result of the complex interaction between

buoyant and interfacial surface tension forces. Despite its

simplicity the model is qualitatively in good agreement with

the experimental results obtained by Villers and Flatten

(1988), Also, the critical Rayleigh number for the onset of

motion is predicted explicitly, in the case of a system

heated from the bottom, as a function of the relative impor-

tance of the different physical properties of the two layers.
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R=400, Da=10-2, (a) <p=20° , (b) p=35° , (c) <p=50°
R=250, ^=90°, Jd) Da=10-4 , (e) Da=10-2 , '(f)' Da=l
Da=10-3, p=80° / (g) R=50, (h) R=250, (i) R=500
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a) R = 250, Da = 10-4, ^,, = 5. 957, T^, = 0. 576,
Tn>in = -0-576, NU = 4. 400

170

b) R = 250, Da = 5 X 10-2, ^^
T^, ^ = -0. 991, NU = 2. 324

= 3. 117, T^,, = 0. 991,

C) R = 250, Da = 10-1, ^., = 2.200, T^., = 1. 131,
!", " = -1. 131, Nu = 1. 872

3. 3: Numerical solutions for the flow and temperature

field.



171

d) R = 250, ^Da= 5 x 10-2, »"" = 2. 443, T. " = 0. 233,= -n ->n -»m 2~^ ^-^max ~~ ""t"*-'' .Lmax - ". ^->-'y-0. 233, AT = 0. 377

\.l

e) R = 100, Da=5 x l0-2, ^
T^,^ = -1. 150, Nu =2. 148'°

= 2. 282, T^, = 1. 119,

f) R
T.

100,
= 0. 266,

Da
T,m i h

= 5 X 10-3,
= -0. 258,

max
AT = 0. 415

1. 974,
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3. 12: Velocity profile at mid-height of the enclosure, y =

0, as a function of Darcy number Da for R = loo and

(a) y> = 30°, (b) y> = 90°, y>= 120° .
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4. 1: Schematic diagram of the partitioned inclined porous

layer.



191

,n

r^l/

4. 2: Isotherms and streamlines for

R=50,(a)
(b)

»?=0. 5, <p=90°
R=300, »?=0. 5, y?=90°

(c) R=500, >?=0. 5, y>=90°
(d) R=500, r?=0. 2, <p=90°
(e) R=500, rj=0. 5, <p=60°
(f) R=500, »?=0. 5, <p=0°
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4. 3: Heat transfer through a vertical porous layer with a
single partition: effect of the partition position.
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N equally spaced partitions.



197

10 N=0

|6

2

3

I

20 40
I

60 80 100

0

120 140 160 180

4. 7: Effects of inclination angle p or heat transfer

through a porous layer with N equally spaced parti-

tions, R = 1000.
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4. 8: Isotherms and streamlines for a vertical porous layer

horded by a solid slab.

(a) R=800, »?=0. 3, K* =1
(b) R=800, >7=0. 7, K*=l
(C) R=800, »?=0. 7, K*=5
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6. 2: Flow structures in the two layers,
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M

to
.^
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R

100

300

Da = 5 x 10-4

Nu i|<,

0. 379
(0. 373)

0. 294
(0. 281)

2. 650
(2. 641)

3.991
(3. 973)

Da = 5 x l0-2

Nu ^i,

0. 397
(0. 401)

0. 309
(0. 311)

2. 291
(2. 306)

3.459
(3. 156)

3. 3: Analytical and Numerical (in parentheses) Temperature
Difference and Streamfunction at Center for a Cavity with Both
Boundaries Free and Bottom Heating

R

100

300

Da = 5 x 10-4

Nu ^

3. 695
(3. 726)

4. 836
(4. 965)

3. 702
(3. 700)

6. 677
(6. 695)

Da = 5 x 10-2

Nu ^

3.098
(3. 016)

4. 373
(4. 292)

3.013
(2. 978)

5. 557
(5. 525)

3. 4: Analytical and Numerical (in parentheses) Temperature
Difference and Streamfunction at Center for a Cavity with Both
Boundaries Free and Side Wall Heating
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R

50

100

200

300

500

Nu

Analytical

1. 42

1. 81

2. 36

2. 80

3. 44

Numerical

1. 41

1. 80

2. 36

2. 79

3. 42

4. 1: Analytical and Numerical Nusselt number for a verti-

cal layer (y? = 90°) with a central partition.

Nu
R

100

200

300

500

800

Analytical

1. 76

2. 73

3. 33

4. 05

4. 61

Numerical

1. 74

2. 67

3. 25

3. 95

4. 51

4. 2: Analytical and Numerical Nusselt number for an hori-

zontal porous layer (y? = 0°) with a central parti-

tion.
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Nu
<p

0

20

40

60

90

Analytical

3. 33

3. 61

3. 66

3. 48

2. 80

Numerical

3. 25

3. 53

3. 59

3. 43

2. 79

4. 3: Analytical and Numerical Nusselt number for an

inclined porous layer with a central partition, R =

300.
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Da
G

0

0.01

0.1

1

2

5

10

5x10-4

23, 040

12, 793

9, 965

8, 790

8, 540

8, 231

8, 004

10-3 '

23, 040

10, 689

7, 060

5, 906

. 5, 722

5, 533

5, 418

10-1

23, 040

7, 390

1, 986

805

591

398

313

1

23, 040

7, 351

1, 919

729

504

295

204

5. 1: The effect of G and Da on the critical Rayleigh

number Ra^ for a fluid-porous bed system with rigid

upper surface: ^ = 1, ri =0. 5.
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T\
Da

0.2

A B

0.4 0.6

A B

0.8

5x10-4 703.0 9, 028.7 466.3 7, 568.7 187.3 2, 781.2 85.0 | 817.1

10-3 432. 0 5, 022. 3 364. 2 4, 617. 6 171. 0 2, 262. 6 81. 1 749.9

10-2 115. 3 977. 6 116. 0 894. 1 93. 7 774. 4 61. 0 453.2

10-1 57. 2 398. 0 56. 3 382. 3 54. 5 374. 1 49. 9 338.1

49. 0 328. 01 48. 9 326. 3 48. 7 325. 51 48. 2) 321.9

10

102 48.0

48. 1 320. 8 48. 1 | 320. 6 43. 1 320. 6 48. 0 320.2

320. 1 48. 0 320. 1 48. 0 320. 1 48. 0 320.0

5. 2: The effect of Da and »? on the critical Rayleigh Ra^

and Marangoni Ma numbers for a fluid-porous bed

system with free upper surface, G= -y = 1.



233

T\
G

0.5

10

0.2

A B

0.4 0.6

0. 2 124.7 , 231. 8 82.6 747.1 80.6

0.8

0. 1 159. 7 , 942. 2 105. 8 1, 043. 8 106. 0 974. 2 80.3

660. 2 71.6

77.7 -594. 5 61. 9 479. 4 58. 5 425. 5 57.7

48. 0 320. 0 48. 0 320. 0 48. 0 320. 0 48.0

27.3 166.4 I 34.3 196.0 I 39. 9 233. 6 40.7

11.9 68.2 18.8 91.4 29.5 14S.6 34.5

720.4

539.6

418.1

320.0

254,1

?9.0

6. 1 34. 4 10. 7 48. 4 21. S 91. 2 31. 0 1S5.4

5. 3: The effect of G and n on the critical Rayleigh Ra^

and Marangoni Ma^ numbers for a fluid-fluid system

with free upper surface, 7 = 1.
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|C|

Rs,

1Q3

10-»

1. 15x104

1Q5

10°

107

Side wsll hsaSin

0. 990

0. 672

0. 635

0. 195

0. 045

0.010

Bo^o.n hestin

0

0. 267

0. 089

0.028

6. 1: The effect of Rayleigh number Ra, on axial tempera-

ture gradient C, with r; = 0. 5, K = 1, G = 0, ^ = 1.

|C|

K

0

0.5

1

3

10

Side wall heatin

0. 304

0. 352

0. 338

0. 122

0.075

Bottom heatin

0. 172

0. 329

0.379

0. 140

0.091

6. 2: The effect of parameter K on axial temperature

gradient C, with ri = 0. 5, G=0, ^ = 1, P.a, = 10s .
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|C|

G

0

0.5

1

5

10

Side wall heatin

0. 337

0. 258

0. 189

0. 071

0. 045

Bottom heatin

Q. 379

0. 240

0. 143

0. 031

0. 015

6. 3: The effect of parameter G on axial temperature gra-

dient C, with r, = 0. 5, K=l, ^ =1, Ra, = 105 .

1C!

~w

0

0.5

1

5

10

Side wall heating

0

0.258

0. 338

0. 405

0. 408

Bottom heating

0

0. 313

0. 379

0. 348

0. 323

6. 4: The effect of parameter fi on axial temperature gra-

dient C, with r; = 0. 5, K= 1, G= 0, ^=1, Ra,

10s.
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