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SOMMAIRE 

La chute spectaculaire des prix du pétrole enregistrée ces 

dernières années et la baisse graduelle des perspectives d'exploration, 

orientent l'industrie du pétrole vers l'exploration de gisements connus. 

Par ailleurs, le relèvement de la productivité exige de mieux comprendre 

et d'utiliser correctement les caractéristiques naturelles d'un gise-

ment, en procédant à sa caractérisation avancée. La caractérisation 

avancée d'un gisement comporte deux aspects interconnectés: 1) l'aspect 

géologique-qualitatif qui permet d'appréhender le gisement comme un 

phénomène naturel, 2) 1 'aspect quantitatif-numérique, qui permet la 

représentation numérique 1 1 équivalente" sous forme d'un maillage servant 

aux études de simulation de l 'écoulement du gisement. 

D'importants progrès ont été réalisés dans l'amélioration de 

l'aspect qualitatif de la caractérisation des gisements. Par contre 

l'aspect numérique reste peu développé. En outre, les progrès réalisés 

dans d'autres secteurs se rapportant à la simulation des gisements, 

telle que les formulations complexes de transport des fluides, les 

méthodes numériques approfondi es, 1 es super-ordinateurs, etc. ont fait 

ressortir davantage le besoin d'améliorer la fiabilité, la certitude et 

le niveau de précision de la caractérisation quantitative-numérique des 

gisements. Afin d 1 améliorer la description numérique des gisements, la 

présente étude propose des méthodes géos tat i s tiques avancées, dans le 

cadre de la théorie des fonctions aléatoires intrinsèques d'ordre k 
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(FAI-k). Les techniques géostatistiques ont des propriétés qui revêtent 

un intérêt particulier pour la caractérisation des gisements. En effet, 

1) e 11 es permettent de quantifier les propriétés inhérentes aux gi se

ments géologiques comme la zonation, la continuité, la dérive et les 

anisotropies; 2) elles fournissent directement depuis l'échelle de la 

carotte et des données d'enregistrement jusqu'à l'échelle du modèle de 

bloc de gisement, des estimations non biaisées sur les propriétés des 

roches qui serviront de données géologiques pour les études de simula

tion de l'écoulement du gisement; 3) elles produisent des représenta

tions simulées de variables pertinentes reproduisant les variations 

in-situ des prop riétés des roches qui serviront à vérifier la 

sensibilité des résultats de la simulation de l'écoulement aux données 

géologiques. 

Dans ce travail, nous avons donné une grande importance à 

l I é 1 aborat ion et à la présentation point par point d I une technique 

complète pour la simulation conditionnelle de la FAI-k. Cette dernière 

est une méthode stochastique qui génère la réalisation de phénomènes 

non-stationnaires (comme les propriétés des roches des gisements de 

pétrole dans bien des cas), reproduisant ainsi la covariance générali

sée, et les valeurs des données disponibles aux endroits d'échantillon

nage. La technique envisagée nécessite les étapes suivantes: 1) simula

tion en direct des méthodes de Wiener-Levy et leur intégration; 2) 

l'utilisation de la méthode des bandes de retour pour générer des 

réalisati ons en R
n

; 3) conditionnement par rapport aux données
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disponibles; et 4) vérification de la covariance généralisée reproduite 

à l 1 aide de variogrammes généralisés. 

L 1 estimation du tenseur effectif de perméabilité est un problème 

bien connu de la caractérisation des gisements. On a tenté à plusieurs 

reprises de le régler. mais aucune solution générale définitive n'a 

jamais été proposée. Nous proposons ici une nouvelle approche dans un 

cadre stochastique en deux étapes. La première étape de ce processus 

porte sur la simulation conditionnelle des perméabilités scalaires dans 

un maillage à haute densité. représentant le gisement d 1 hydrocarbures à 

1 1 échelle macroscopique. La réalisation de simulations conditionnelles 

des perméabilités par point reproduit l 1 histogramme et le variograrrme 

(ou la covariance) des données disponibles ainsi que les mesures prises 

aux lieux d 1 échantillonnge. L 1 étape suivante porte sur la reconstruc

tion simultanée des composantes du tenseur effectif des perméabilités à 

l 1 échelle mégascopique. représentant le modèle de gisement utilisé dans 

les simulations d 1 écoulement. Dans cette dernière étape, les résultats 

publiés tirés de la solution des équations d 1 écoulement en ce qui 

concerne les milieux poreux statistiquement anisotropes au moyen de la 

théorie du continum stochastique. sont généralisés pour des blocs finis 

et utilisés en même temps que les caractéristiques statistiques des 

perméabilités par point obtenus par simulation conditionnelle. 

Les techniques dont i 1 est question aux paragraphes précédents 

ont servi à caractériser numériquement le gisement de Crystal Viking 
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dans le centre-sud de l I Al ber ta. Plus précisément, à l 1 aide de la 

description géologique qualitative détaillée du gisement, on a d'abord 

évalué les limites des unités géologiquement homogènes de ce gisement 

avant d'en simuler deux réalisations conditionnelles. À l'intérieur de 

ces 1 imites, les propriétés des roches du gisement (paros ité, perméa

bilité, saturation en huile résiduelle et saturation en eau) sont 

évaluées et simulées conditionnellement à l'aide des structures de 

corrélation de chaque variable par unité géologique du gisement. C'est 

ainsi que le gisement de Crystal Viking est entièrement caractérisé. 

Les modèles numériques obtenus serviront aux simulations d'écoulement 

dans d'autres études. 

Bien que les techniques géostatistiques présentent d'importants 

avantages, elles sont difficiles sur le plan théorique et opérationel. 

Par ailleurs, l I industrie du pétrole ne dispose pas toujours du savoir

faire nécessaire. On propose donc une approche pour le transfert des 

connaissances impliquées. Cette approche revêt la forme d'une nouvelle 

théorie appelée 11la théorie de la géostatistique artificiellement intel

ligente 11 . Cette théorie est basée sur le point de vue que le géostatis

ticien est un processeur de symboles représentant tous les aspects des 

connaissances dans le domaine. La théorie proposée a des avantages 

opérationnels indéniables; un système informatique peut lui être intégré 

pour reproduire les activités du géostatisticien. 

proposée, on présente un petit système appelé BOU-1. 

D'après la théorie 

Ce système calcule 

des variogrammes expérimentaux et malgré sa simplicité, on constate 
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qu'il est compatible avec un géostatisticien. En outre, le BOU-1 

possède toutes les propriétés que commande la théorie proposée; c'est en 

effet à tous égards un processeur de symboles représentant les 

connaissances géostatistiques. La théorie proposée et les expériences 

qui s'y rattachent suggèrent que l'édification d'un système expert 

autorisant la caractérisation géostatistique des gisements est une 

entreprise parfaitement réalisable. 



ABSTRACT 

The drastic fall of oil prices during the last years, together 

with the gradual reduction of exploration prospects, has imposed a stra

tegic shift of the Petroleum Industry towards the enhanced exploitation 

of known reservoirs. Enhanced productivity, however, requires a better 

understanding and the proper utilization of the natural characteristics 

of a reservoir, i.e. advanced reservoir characterization. Reservoir 

characterization incorporates two sequentially interrelated aspects: 

(i) the geological-qualitative, providing the understanding of a petro

leum reservoir as a natural phenomenon; and (ii) the quantitative-nume

rical, providing the "equivalent" numerical representation of the reser

voir in the form of a grid to be used in reservoir flow simulation 

studies. 

Si gnifi cant advances have been made to date in improvi ng the 

qualitative aspect of reservoir characterization; however, the same is 

not true for the numerical aspect. In addition, advances in other areas 

related to reservoir simulation, such as sophisticated fluid transport 

formulations, elaborate numerical methods, super-computers, etc. have 

further emphasized the need to improve-upgrade reliability, certainty, 

and level of detail i n  quantitative-numerical reservoir charac

terization. To contribute in upgrading numerical reservoir description, 

this study presents and develops elaborated geostatistical methods 

within the framework of the theory of Intrinsic Random Functions 
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of order k (IRF-k). Geostatistical techniques have properties of 

particular interest and importance to reservoir characterization. They 

(i) quantify inherent geological reservoir properties such as zonation,

continuity, trends and anisotropies; (ii) provide, directly from the 

scale of core and log data to the scale of the reservoir block model, 

unbiased estimates of reservoir-rock properties ta be used as geological 

input to reservoir flow simulation studies; and (iii) generate condi

tionally simulated representations of pertinent variables reproducing 

the in-situ variation of rock propert i es to be used to check the 

sensitivity of flow simulation results to geological input. 

Particula� emphasis is given ta the development and presentation 

of a comprehensive step-by-step technique for the conditional simulation 

of IRF-k. The latter is a stochastic method that generates realizations 

of non-stationary phenomena (such as rock properties of petroleum reser

voi rs, in many cases), reproduci ng thei r genera li zed covariance and 

honoring the available data at sampled locations. The technique 

proposed requires the following steps: (i) on line simulation of Wiener

Levy processes and of thei r i ntegrat i ans; ( i i) use of the turni ng bands 

method ta generate realizations in R
n
; (iii) conditioning ta the

available data; and (iv) verification of the reproduced generalized 

covariance using generalized variograms. 

The estimation of the effective permeability tensor is a well 

known problem in reservoir characterization. Several attempts have been 
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made to tackle the problem; however, none introduced a general defini

tive solution. A new approach is proposed here, within a stochsatic 

framework and in the form of a two step process. The first step of this 

process includes the conditional simulation of scalar point permeabili

ties on a dense grid representing the hydrocarbon reservoir at the 

macroscopic scale. Conditionally simulated realizations of point perme

ability at the latter scale reproduce the histogram and variogram 

function of the available data as well as measurements at sampled 

locations. The next step includes the simultaneous reconstruction of 

the components of the effective permeabil ity tensor at the megascopic 

scale, representing the reservoir black model as used in flow simula

tions. In the latter step, published results derived from the solution 

of flow equations for statistically anisotropie porous media using the 

stochastic continuum theory are generalized for finite blacks and 

utilized together with statistical characteristics of the conditionally 

simulated point permeabilities. 

The techniques discussed in the previous paragraphs are used to 

numerically characterize the Crystal Viking field in south-central 

Alberta. More specifically, using the detailed geological-qualitative 

description of the field, the boundaries of the geologically homogeneous 

zones of the Crystal reservoir are first estimated and then two realiza

tions are conditionally simulated. Within the boundaries of the units. 

the reservoir rock properties: porosity, permeability, residual oil 

saturation and water saturation, are estimated and conditionally 
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simulated using the correlation structures of each variable per 

geological unit of the reservoir. Thus, the Crystal Viking reservoir is 

completely characterized. The numerical models produced will be used as 

input ta flow simulations in future studies. 

A lthough geostati sti cal techniques have si gnifi cant advantages, 

they are theoret i ca 11 y and operat i ona 11 y diffi cu lt. Furthermore, the 

required know-how is not yet widely available in the Petroleum Industry. 

A perspective is therefore suggested for the transfer of the knowledge 

involved, and is in the form of a new theory termed 11theory of Artifi

cial ly Intelligent Geostatistics". The theory is based on the view that 

the Geostatistician is a processor of symbols representing all aspects 

of thi s knowl edge in the damai n. The proposed theory has si gnifi cant 

operational advantages; that is, a computer system can be built to 

reproduce the activities of a Geostatistician. Based on the proposed 

theory, a small system named BOU-1 is presented. The system undertakes 

the task of calculating experimental variograms and, although simple, it 

is shown to be compatible with a geostatistician. In addition, BOU-1 

has all properties that the proposed theory called for; it is in all its 

basic aspects a processor of symbols representing geostatistical know

ledge. The proposed theory and relevant experimentation suggest that 

future building of an Expert System for geostatistical reservoir charac

terization is indeed a feasible perspective. 
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1. GENERAL INTRODUCTION

The continuous stochastic process approach to the estimation and/or 

simulation of space dependant data in Geosciences, termed Geostatistics, 

was introduced long time aga (Matheron, 1965), and today has developed 

into a collection of techniques used worldwide by the Mining Industry. 

In the Petroleum Industry, however, Geostatistics has, to date, found 

very l imi ted use. This must be attri buted te the fact that li ttl e has 

been done in adapting and developing the techniques te the peculiarities 

of oil exploration and development, and that geostatistical theory is 

still considered as mathematically obscure and operationally difficult. 

During the last years, due to bath economic hardship as well as a 

reduction of the possible new large oilfield discoveries, the Petroleum 

Industry has been directed towards a more efficient exploitation of 

known reservoirs using enhanced recovery techniques. Enhanced producti

vity, however, requires a better understanding and description of the 

natural characteri sti cs of reservoi rs, upon whi ch better recovery pro

cesses can be designed, tested and implemented. The forecasting of 

the behavior of reservoirs under given recovery techniques is performed 

through reservoir flow simulation studies. The numerical description of 

the reservoir in a form of a grid (matrix of numbers) constitutes a 
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large part of the input to the flow simulator. The reliability and 

accuracy of the numerical description of the reservoir are crucial to 

the results of the simulation and depend upon the methodology as well as 

techniques used for the inference of the numerical models or reservoir 

properties. 

It is the aim of this study to present the generalized theory of 

linear geostatistics termed 11intrinsic random functions of order-k 11 or 

IRF-k (Matheron, 1973; Chiles, 1977) for reservoir characterization, 

develop a comprehensive step by step technique for the conditional 

s imul ati on of IRF-k in three-dimens i ans, and furthermore, devel op the 

methodology required in modeling characteristics of petroleum reservoirs 

as well as to suggest how the properties of these models should be 

used. 

The IRF-k theory represents the generalized linear geostatistical 

theory as it relaxes the major assumption commonly made about the pheno

menon to be modelled, namely stationarity. · In simple terms, stationa

rity impl i es that fi rst and second order moments are invariant under 

translation in space. This, however, is not necessarily true, particu

larily in the presence of distinct trends (drifts), as is very common is 

sedimentary deposits (Rendu and David, 1977) such as oil deposits 

(Delfiner et al., 1983). It is easy to show that stationarity 

depends on the sca le of exami nation of a phenomenon. In addition the 

stationary case is a simple derivation of the IRF-k theory. 
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Historically, the first attempt to remove the stationarity 

assumption is found in 11 Universal Kriging 11 (Matheron, 1969). Universal 

Kriging requires the splitting of a phenomenon into a stationary random 

component and a drift of a polynomial form. This dichotomie approach, 

however, creates a 1
1 vi ci ous · ci rel e 11 (Chauvet and Gall i, 1982), as it 

requires one to estimate one unknown component from another. 

Geostatistics provides two different techniques and consequently 

models, namely, unbiased minimum estimation variance (estimated mean or 

kriged) and conditionally simulated model. The latter is a combination 

of kriged values and simulated correlated variates. Conditionally simu

lated models faithfully mimic the spatial variability of the phenomenon 

under study and can be used as possible representations of the real 

fluctuation of the phenomenon, thus provi ding pl anners and opera tors 

with "what if 11 tools. Conditional simulation of IRF-k is seen as the 

most generalized form of linear geostatistics and, in this sense, it is 

used in the title of this study. 

The key t o  the application of geostatistics for modelling 

characteristics of oil deposits is the sequence of methodological steps 

to be fo 11 owed, so that transformation of geo l ogi cal rea li ti es i nto 

mathematical abstraction is possible. It has been shown (Dimitrako

poulos, 1985) that such a transformation is valid only if an oil deposit 

is divided into different geologically homogeneous demains and each 

domain is treated separately. Geologically, homogeneous demains are 
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represented by the different sedimentary facies and depositional 

environments of the deposit. However, one should keep in mind that such 

a methodological approach introduces to the final numerical model the 

subjectivity of a geological interpretation. 

IRF-k represents a generalized mathematical theory. However, it 

should be clear from previous statements that the knowledge of the theo

ry itself is not a sufficient condition for an operator to carry out a 

successful application. In addition ta the theoretical background, 

methodological and empirical knowledge are needed. 

The geostatistical knowledge and expertise required for applica

tions are not generally available in the Petroleum Industry. A perspec

tive for the transfer of geostatistical knowledge is therefore seen as 

part of the a im of thi s study. Expert systems, i.e. computer programs 

with knowledge in a given demain, are suggested as the perspective for 

the required knmvledge transfer. A geostatistical theory upon which 

such systems may be buil t has been devel oped and termed 11theory of 

artificially intelligent geostatistics 11
• Accordingly, the geosta

tistician is seen as a processor of geostatistical symbols representing 

his knowledge in the dornain. The theory introduces developments in the 

field of artifical intelligence to the geostatistical world. The major 

dynamic consequence of such an introduction is that geostatistical 

procedures can be advanced ta the extent that a system can be designed 

and implemented to carry out complete geostatistical studies using a 
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very simple input. Then, the operator of such a system will not be 

required to have any particular knowledge of geostatistical theory or 

experi ence in the damai n. Another important characteri sti c of such a 

system is that it will be able to reason about its decisions and actions 

during the operation. 

1.1 Previous Work 

Applications of the IRF-k theory in the Petroleum Industry are 

limited and mostly related to IRF-0 (stationary phenomena). In the 

relevant literature, one may distinguish studies related to Ci) oil 

exploration and ( i i) oil reservoi r characteri zat ion, eva l uat ion, and 

development. 

Haas and Jousselin (1975) as well as Hass and Viallix (1976) use 

data from geophysical surveys such as arrival time and seismic velocity 

to map geological horizons and estimate boundaries of oil impregnated 

layers. Seismic data are also used by Olea and Davis (1977) to map 

geological formations in the Magellan Basin, South America. Maps are 

produced using universal kriging and maps of 1
1 residuals 11 are used to 

detect locations of possible hydrocarbon accumulations. David et 

al. (1986) use the IRF-k theory and seismic information to map a part 

of the cont i nenta 1 s l ope off the eas t coas t of the U. S. They al so 

extensively discuss manipulation of large data sets in the form of 

seismic lines. Dowd (1984) constructs geological models of a major oil 
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beari ng formation of a large are a in the North Sea from we 11 data by 

conditionally co-simulat"in g two variables. These variables are the 

total thickness of the formation and the ratio of the thickness of each 

of the four units of the formation to the total thickness. Different 

co-realizations can then be used to interpret the possible geological 

features of the area. 

Specialized geostatistical techniques (Chiles, 1976) have also 

been used. The first, termed 11 external drift 11 , combines the use of 

"accurate" data from wells with 11inaccurate 11 data from seismic surveys. 

T h e  second integrates well measurements of elevations with dip 

information, for examp le, from di pmeter 1 ogs. Sorne examp les of bath 

techniques appl ied in the mapping of geological horizons are given by 

Delfiner et al. (1983). 

More recent geostatistical theoretical developments include tech

niques which allow mapping of surfaces from seismic data in the presence 

of faults (Marechal, 1984) and techniques al lowing the use of data in 

the form of inequality constraints. The latter techniques has been 

developed either as a combination of kriging and quadratic minimization 

(Dubrule and Kostov, 1986), or in terms of a Bayesian-type formalism 

termed 11 soft kriging 11 (Kostov and Journel, 1985). Bayesian kriging has 

also been used to estimate surfaces using data from bath seismic surveys 

a n d  exploratory wells COmre, et al., 1988). Factorial kriging 

(Galli et al., 1984), a combination of spectral methods with 



7 

kriging, has also been used in detecting geochemical anomalies, which 

may suggest the existence of oil accumulations (Galli, 1985; personal 

communication). 

With the exception of factorial kriging, the special ized geo

statistical techniques described in the previous paragraph can. in addi

tion to their use in oil exploration, find very significant applications 

in oil-reservoir characterization. This becomes apparent considering 

the lack of large number of wells in most oil deposits and the 11 fuzzy 11 

nature of certain phenomena such as the oi 1-water contact (Kostov and 

Dubrule, 1986), etc. 

Haas and Mollier (1974) as well as Haas and Jousselin (1975) 

present case studies where reservoir parameters such as porosity and 

reservoir boundaries are kriged and then a volumetric calculation of the 

oil in place is derived. Delfiner and Chiles 0977) use conditional 

simulation of IRF-1 to provide different realizations of the top of a 

dame shaped reservoir. These models are then used ta derive a probabi

listic estimate of hydrocarbons in place. The use of geostatistical 

techniques to derive reserve estimates of hydrocarbon accumulations is 

discussed and compared to traditional methods by Jones (1984). 

Delfiner et al. 0983) provide some examples of two-dimen

sional mapping of reservoir characteristics such as depth to the top of 

the reservoir, thickness, porosity and water saturation. Helwick and 
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Luster (1984) construct two-dimensional co-realizations of porosity and 

permeabi li ty to deri ve permeabi li ty est imates whi ch are then used for 

fluid-flow simulation. Simulated fields representing sand-shale sequen

ces with given variograms are used by Desbarats (1987a, b) as the basis 

for numerical estimation of effective (b1ock) permeability. Deutsch 

(1986) uses a technique termed 11 power averagi ng 11 , based on Desbarats 

work and an empirical formulae for two component materials suggested by 

Korvin (1982). 

Geostatistical techniques have also been used in non-conventional 

oil deposits. Dimitrakopoulos (1985) estimates and conditionally simu

lates the oil content and boundaries of oil saturated geologically homo

geneous zones in the Athabasca tar sands, Alberta. Dowd and Royle 

(1977) as well as Zwicky (1977) present variograms of percent weight oil 

from the same depos it. Examp 1 es of mappi ng the oi 1 content of oil 

shales using IRF-k is given by Davis and David (1978). 

1.2 Philosophy and Objectives of this Study 

The title of a dissertation is descriptive of its content. It 

may, in addition, be indicative of an underlying philosophy as is the 

present case. Developments in science and engineering are viewed as 

being invoked by reality, interact with it and should produce useable 

results which can further interact with the real world. ThePetroleum 

Industry represents such a real worl d, where needs are recogni zed and 
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and research is directed to satisfy them. The major recognition here is 

the need for better numerical reservoir characterization. With the 

gradual shifting of the Industry towards more efficient exploitation of 

existing reservoirs, it has been widely recognized (Lake and Carroll, 

1986) that quantitative description of reservoir-rock variables must be 

improved to provide more accurate and reliable numerical equivalents of 

reservoirs. 

Stochastic methods in the form of geostatistics are chosen for 

numerical-quantitative reservoir characterization. This choice is not 

accidental; rather it relates to the understanding of hydrocarbon reser

voirs as natural geological phenomena. The formation of an oil deposit 

is a combination of independant physical processes in time and space. 

These processes include burial of organic rich sediments, maturation of 

organic matter, migration, entrapment and accumulation of migrating 

hydrocarbons and. in some cases. post-entrapment alterations. As an end 

result of these processes, it should be apparent that an oil deposit is 

not a random phenomenon. The configuration and the distribution and 

fluctuation in space of the characteristics of a hydrocarbon accumula

tion depend upon the trapping situation and the properties and spatial 

distribution of the rock bodies which hast the hydrocarbons. The 

properties of the reservoir rock are themselves a result of their 

depositional setting, post-depositional diagenetic alterations and 

structural deformation. As a result, the characteristics of a reservoir 

and their spatial distribution and variability are not random, certainly 
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not on a macro-sca le. To recogni ze oil reservoi rs as a non random 

natural phenomenon entai l s to the search for methods and techniques 

which can indeed quantify inherent geological reservoir properties such 

as zonation, continuity, trends and anisotropies. This is precisely 

what geostatistical methods uniquely providè. 

It was stated earlier, that the present study also aims to 

provide  a perspective for geostatistical knowledge and expertise 

transfer to the Petroleum Industry. This is a further recognition of 

reality. To recall a philosophical term used by the fathers of 

artificial intelligence, we live and function in a certain "Zeitgeist", 

that i s the milieu of our t imes wi th i ts techno l agi cal trends and 

advances. Bath the availability of technology and need for knowledge 

transfer are real and this should be recognized particularly in applied 

sciences. Consequently, to case efforts after the identification of a 

problem, and the development of proper methodology and solutions, would 

be incomplete without considering who, how, when and what the end users 

need. It would, furthermore, be incompatible with the claim that 

realities should be or are recognized. 

The specific objectives of this study are as follows: 

i) The exami nation of the nature of reservoi r-rock variables

such as porosity, permeability, water and residual oil saturations, the 
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review of the basic aspects of the IRF-k theory and the outline of the 

advantages of the theory with respect ta reservoir characterization. 

ii) The development of a comprehensive step by step technique

for the conditional simulation of IRF-k fncluding the non-conditional 

simulation. 

iii) The development of a simple, workable approximation for the

reconstruction of the effective black permeability tensor. This is 

meant ta be examined within the limits of this study and in the sense of 

improving current Industry practices. 

iv) The complete and detailed numerical-quantitative character

ization of all pertinent variables of the Crystal Viking reservoir in 

south-central Alberta. 

v) The provision of an expert system perspective for the trans

fer of geostatistical knowledge and expertise to the Petroleum Industry 

by developping a theory upon which the perspective can be materialized 

in the future. 

Each of the above objectives is tackled and developed separately 

in the following chapters. 



2. GEOSTATISTICAL MODELING OF RESERVOIR-ROCK PROPERTIES

2.1 Introduction 

The actual performance of a reservoir during production is predicted 

from reservoir simulation studies. A controlling factor in the quality 

of predictions is the numerical description of reservoir-rock properties 

such as porosity, permeability and fluid saturations (Coats, 1982; Aziz 

and Settarï. 1979; Haldorsen; 1983). Furthermore, while the sophis

tication of fluid transport formulations, numerical methods and nume

rical models continues to increase, quantitative geological modelling 

remains significantly less advanced. As a result, prediction problems 

arise from unreliable reservoir description (Haldorsen, 1986). For 

these reasons, it has already been suggested (Haldorsen, 1986, 1983) 

that more emphasis be given to increasing the sophistication and 

reliability of quantitative reservoir characterization. 

During the last few years, attempts at reservoir description (Lake 

and Carroll, 1986) have had two major aspects. The first is quali

t a t i v e-geo l ogi cal and the second quanti tat i ve-numeri cal . Al though 

attention was given and progress has been made in the former (Krause 

et al., 1987; Rei nson et al., 1988), there is much room for 
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improvement in the latter, sa that qualitative information provided by 

the first aspect can be translated into a usable reservoir model. 

The present study is a natural step in the continuing effort to 

improve geological reservoir description. It attempts to provide basic 

elements of a generalized stochastic framework (Gel 1 fand and Vilenkin, 

1964; Matheron, 1973) which wil l al low an effective transformation of 

geological descriptions to computer processable numerical equivalents. 

The reasons that stochastic models, as opposed to deterministic, are 

chosen are due ta: (i) Geological variables exhibit a locally random 

behavior (Fig. 2.1), but on average there is a structural aspect in 

spatial variability (correlation structure) which is expressed with the 

similarity of neighboring values (Fig. 2.2). The stochastic approach 

(ii) enables the estimation of large volumes from core samples using

best (optimal) estimators: (iii) provides a measurement of uncertainty 

in the above estimation; and (iv) allows the generation (simulation) of 

fields of values which 1 look like 1 reality in terms of their variation 

pattern. The stochastic framework in modelling geological variables was 

originally introduced in the mining industry (Matheron, 1965; David, 

1977; Journel and Huijbregts, 1978) and found extensive use in ground 

water hydrology CDelhomne, 1979; Neuman, 1982). In reservoir enginee

ring, few authors have attempted to use stochastic methods for parameter 

estimation (Hewett, 1986; Da Costa e Silva, 1985) or simulation 

CDimitrakopoulos, 1985; Desbarats, 1987, 1987b, 1988) using restricting 

(stationary) assumptions. 
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2.2 Stochastic Conception of Porous Media and the Problem of Changing 

Scales 

The consideration of fluid flow through a porous medium intro

duces the concept of continuum, which impliés a statistical averaging of 

properties over the volume of the medium within which the flow occurs. 

In addition, it implies that flow appears within volumes larger than a 

representative elementary volume (Bear, 1968), i.e. at least larger than 

a single pore and in fact larger than a sufficient number of pores to 

permit statistical averaging of properties (Fig. 2.3). Note that 

different views on this formulation have also been expressed (Baveye and 

Sposito, 1984). 

The dependance of the flow equation formulation on statistical 

averaging over some volume introduces the known problem of scale (Bear, 

1968; Bear and Braester, 1972). Two conceptual scales associated with 

porous media will be considered here. Following previously established 

terminology (Pickens et al., 1977; Haldorsen, 1983), we will 

consider the macroscopic scale which represents a volume v of about a 

core plug, and the megascopic representing volume V of the size of grid 

blacks used in flow simulation studies. 

Probabilistic definition of porous media at different scales, was 

long introduced (Prager, 1961; Matheron 1967; Deffeyes et al.,

1985) and follows the idea of a porous medium as an aggregation of 
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particles and void spaces more or less frequently distributed over the 

whole. Accordingly, on the microscopie scale we may consider a random 

function I(x) such that 

ICx) = { 
l V X € A 

0 V x A 

where A is a set of space occupied by particles (grains) and x E R 3
• 

The probability of point x hitting a grain when put randomly in 

domain v of volume v of a porous medium is 

dx 
Pv = J v I(x) v

The pore space fraction of volume y_, or porosity, may be defined as 

qv = 1 - E [pvJ where E denotes mathematical expectation. Similarly any

property Zv may be defined at the present scale.

On the macroscopic scale, it is reasonable to assume that proper

ties are more or less homogeneous and isotropie. This, however, is not 

always valid on the megascopic scale (Fig. 2.3). In the latter case and 

in terms of random functions, a parameter Zv of a porous medium may be

Zv =- J vZ<x) dx
V 

(2.1) 
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where Z(x) is a point random function representing the macroscopic 

scale. Note that a volume v on the latter scale is effectively a point 

compared ta the megascopic volume V. In practice, a limited number of 

measurements of Z(x) at a discrete set of points within demain V are 

available. Then, the estimation of Z
v 

may be formulated as a l inear 

weighted average of available values at x
a

, a ;  1, ... ,N such that 

In the following sections, a stochastic methodology on how Z
v 

can 

be estimated from available data as well as how different realizations 

of Z
v 

can be numerically simulated is presented. Note that Equation 

(2.1) is not valid for permeability, which is separately discussed in 

Chapter 4. 

2.3 Formulation of Geostatistical Estimation Theory 

The generalized theory of the stochastic mathematical formalism 

for the estimation of characteristics of reservoir-rock properties has 

been termed the 11theory of intrinsic random functions of order k" Cor 

IRF-k) and developed by Matheron (Matheron, 1971, 1973). It represents 

a parti cul ar case of genera li zed stochasti c processes with stat i onary 

increments of order k as defined by Gel 'fand and Vilenkin (Gel 1 fand and 
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Vilenkin, 1964), in combination with Wiener 1 s optimal estimators 

(Wiener, 1949). 

2.3.1 Generalized increments of order k 

Let Z(x) be a function in R
n 

and consider the linear combination

(2.2) 

where À
a 

are weights and Z(x
a
) values of Z(x) at point x

a
.

Z(À
m
) is by definition a generalized increment of order k (GI-k) 

if and only if the weights À
a 

and points x
a 

have the property

= 1, ... ,(n+k)!/n!k! (2.3) 

where f
1 
(x) are monomials of degree k of the coordinates x, N the number

of sample points, and n the dimensions in space. If Z(x) has a 

po 1 ynomi a 1 component (trend) , it wi 11 not contri bute to the i ncrement 

and thus the k
th

+l order increment Z(À
m
) filters out polynomials of 

degree k. 
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As an example, it follows from Equation (2.3) that in order for 

Z(Àm) to be a GI-k with k = 0,1,2 in R 3 of Z(x), the weights Àa must be

as follows 

N 
for k = 0: I Àa

= 0 
a=l 

N 
k = 1: I Àa

= 0, 
a=l 

N 

k = 2: I Àa 
= 0,

a=l 

N 
a 

I À x
a 

= 0,
a=l 

N 
a 

I À Ya = O,
a=l 

N 

I Àaz = 0 
a=l a 

N ' ). az = 0 L " a '
a=l
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2.3.2 Intrinsic random functions of order k 

An intrinsic random function of order k (IRF-k) is a random 

function whose kth-increments are weakly stationary. More specifically,

if Z(x) is an IRF-k in Rn , the GI-k Z(Àm) sÙch that

has a mean and variance independant of x. 

It has been shown (Matheron, 1973) that if we replace Z(x) with 

any combinations {Y(x) + m(x)} where Y(x) is a random function such as 

E[Y(x)J = 0 

and m(x) a random function such that 

(n+k) ! /n ! k! 
E[Z(x)J = m(x) = I A

1
f

1 
(x)

l =l
(2.5) 

where A
1 are random coefficients and f1 known functions, the GI-k Z(À

m
) 

remains the same. Then an IRF-k can be seen as an equivalent to a class 

of functions with random polynomial components up to order k. 
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It follows from above that the first order moment of an IRF-k is 

(2.6) 

and the second order moment is 

where K(h) is a covariance function representing a class of equivalent 

functions termed generalized covariance (GC). A GC is a characteristic 

function for a class of random functions and it is defined up to an even 

polynomial of degree � 2k. It is the covariance of an IRF-k. 

The models of GC-k used in practice and the associated monomials 

in R 3 of the GI-k of Equation (2.3) are as follows 

for k = 0 (stationary case) 

K(h) = cô + a
0 

jhj 

and 

for k = 1 (linear drift) 

K(h) = cô + a
0lhl + a

1 1hl
3

and 



f 1 (x) = {l,x,y,z}

for k = 2 (quadratic drift) 

K(h) = cô - a
0 lhl + 

a1 1h1
3 

- a2 1h1
5

and 
l 2 2 2 f (x) = {l,x,y,z,xz,yz,xy,x ,Y ,z}

24 

c is a positive constant and ô a Dirac o-function. cô represents 

possible random variation and is termed nugget effect. Coefficients of 

the above GC 1 s satisfy the constraints 

5 n+3 
a0, a2 � O and a1 � -2 � - -- a a ; n R n_

3 n+l O 2 

The inference of a GC-k in terms of the order k and the 

coefficients ak, may be formulated as a minimization problem (Davis and 

David, 1978), least-square regression (Delfiner, 1975), quadratic, maxi

mum likelihood or minimum norm estimation (Kitanidis, 1983). 

2.3.3 Estimation using the IRF-k model 

Let z(xa) with a = l, ... ,N be a set of values from one realiza

tion of an IRF-k Z(x) at xa in Rn. The average value of zv<x
0

) over
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demain V centered at point x
0 

of the same realization is estimated by 

a linear weighted average of the available values as 

or in terms of IRF-k 

For the estimator Zv<x
0

) to be unbiased, the following condition

must be satisfied 

which requires 

(2.8) 

For the estimator Z�(x
0

) to be best, the estimation variance o�RF
must be minimal under the constraints imposed by Equation (2.8). Then, 

i t i s 
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Using the standard Lagrangian technique under the constraints in Equa

tion (2.8) oiRF is minimized if we consider

2 (n+k)!/n!k!) N '\afl
(x) l 

<1> = 0rnF - 2 L µl ( L /\ v a - f vCxo) > 
l=l a=l 

8$/8'A 
and 

8$/8µ 

we conclude 

= 0, V 

= 0, V 

a = l, ... , 

l = 1, ... J 

N 

(n+k)!/n! 

(2.9) 

where µ1 are Lagrange multipliers, and K(va,V) and K(va,vb) the average
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GC value between volumes v
a

,vb and V.

From equations (2.9), it can be shown, that the estimation 
. 2 . 

variance o IRF 1s

2 
0IRF (2.10) 

Equations (2.9) represent the system of equations in estimating 

with the IRF-k model. It is clear that system (2.9) allows the 

calculation of the weights Àa so that the estimator Z�(x
0

) is unbiased

and optimal in the l east-square sence. The only requi rement for the 

calculation of a {À , a=l, ... ,N} is the knowledge of the GC K(h), and the 

order of the polynomial drift. 

2.3.4 The common case of IRF-0 

When the order of an IRF is O, the mean m(x) given in Equation 

(2.5) becomes a constant 

and Equations (2.9) and (2.10) reduce and may be rewritten respectively 

as 



and 

2 
0

IRF 
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(2.11) 

(2.12) 

where y represents the average variogram value among volumes v
a
,v

b 
and 

V. The vari ogram fun et ion re 1 ated to the GC when k = 0 by the re 1 at ion

y(h) = K(O)-K(h) is defined as 

y(h) =½var [Z(x)-Z(x+h)J 

1 2 
= - J 

V 
[Z(x) - Z(x+h)J dx 

2V 
(2.13) 

where V is the domain over which variable Z(x) is defined, and h is the 

distance between two points. 

The variogram is a very common tool in stochastic estimation, and 

unlike ordinary covariances it is always defined. It is estimated from 

a set of data by 



* 1 N 
2 

y (h)= - I [Z(x 
;
) - Z(x .+h)J 

2N i =1 
1 
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(2.14) 

A l imited number of functions are admissible variograms 

(Matheron, 1971; Christakos, 1984) with ·the most common being the 

spherical 

y(h) = C [1.5(h/R) - 0.5 (h/R)3
J when h � R

= C when h > R (2.15) 

where h is distance, R is the range or correlation scale, and C is the 

sill (Figures 2.4 and 2.5). 

2.4 Conditional Simulation Using Generalized Covariances 

The stochastic model considers a characteristic of an oil deposit 

as a realization of a random function, which can be estimated as des

cri bed in the previ ous paragraphs. However the estimation, a lthough 

unbiased and optimal, is a smoothing operation. It is possible to gene

rate different realizations, i.e. numerical models mimicking the spatial 

variation of the real deposit as well as reproducing the data and their 

statistical properties. 
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Conditional simulation of an IRF-k Z(x) in R 3 is the technique 

which , given real izations (data) of Z(x) at points {x
a

, a==l, ... ,N} and 

the corresponding GC, allows the construction of different realizations 

of Z Cx) with the fol l owi ng two propert i es: Ci) Reproduce the gi ven 

realizations at {x
a

, a=l, ... ,N}; (ii) Reproduce the GC of Z(x). 

Consider an IRF-k S(x) with the same GC as Z(x). We can write 

* * 

S(x) = s Cx) + [S(x) - S (x)J 

The conditional simulation of Z(x) {x
a

, a=l, ... ,N} and GC K(h) is then 

defined as 

* * 

Zc5(x) = Z (x) + [S(x) - s Cx)J (2.16) 

Z
cs 

(x) wil l reproduce the data x
a 

since Z (x
a

) = Z(x
a

) and S(x
a

) =

S (x
a

), because kriging estimators are exact interpolators (Matheron, 

1971). 

Taking the k
th 

increment of Z
cs

(x) at any point xb we have 

then it i s 
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which leads to (Delfiner, 1975). 

(2.17) 

The above shows that i ndeed the Z
cs 

(x) has the same GC as the

original Z(x). 

In order to produce Z
cs

(x), realizations of an IRF-k S(x) must be 

available, as required by Equation (2.16). These realizations are gene

rated in a two step process detailed in Chapter 3. Briefly, the two 

steps required are Ci) the simulation of Wiener-Levy processes 

on lines, and (ii) the addition of the contribution from each line in 

two or three dimensional space using the turning bands method (Matheron, 

1973). 

2.5 Conditional Simulation Using Variograms 

Conditional simulation using variograms is extensively discussed 

elsewere (Journel, 1984). A short outline is given have. 
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The conditional simulation of Z(x) {xa, a=l, ... ,N} with y(h) is

defined as 

(2.18) 

The defined random function Z
cs

(x) has the following properties:

(i) reproduces the variogram mean and variance of Z(x), and (ii) repro

duces the available data. 

For the conditional simulation Zcs(x) in Equation (2.18) a reali-

zation of Z(x) such as Z
s
(x) is required. The latter realization 

is generated by (i) simulating random numbers on lines, (ii) imposing 

appropriate moving averages, and (iii) using the turning bands method to 

construct two or three dimensional simulations with a given variogram. 

In practice, conditional simulation with a GC or a variogram 

requires the following steps: 

1) simulation of a regular grid of values with the same GC or variogram

of the data,

2) estimation of the grid points using the original data,

3) estimation of the grid points using the simulated values at the sam

ple points and the CG or variogram of the data,

4) summation on each grid point of the corresponding values from steps

(1) and (2) and subtraction of the value from step (3).
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The first step in any application of stochastic models is the 

evaluation of the correlation structure of the variable under study. 

Accordingly, the experimental variogram, as defined in Equation (2.14), 

is calculated and subsequently modeled. An experimental variogram may 

exhibit two possible general patterns. In the first, the values of the 

experimental variogram steadily increase with distance as is the case of 

the variograms of porosity and residual oil saturation in Figure 2.2, 

and water saturation in Figure 2.4. In the second. the experimental 

variogram increases first but after some distance, called correlation 

sca le or range or zone of influence, more or l ess stab il i zes about a 

value, ca 11 ed sil l • as in the case of perme ab il ity in Figure 2. 2 and 

weight percent oil content in Figure 2.5. 

A steadily increasing experimental variogram indicates the exis

tence of trends in the variable under study. This is relatively common 

in reservoir-rock variables and represents a quantification of geologi

cal trends within a reservoir. Mathematically and in terms of random 

functions, the existence of trends is expressed by Equation (2.5). The 

IRF-k theory is specifically designed to handle the existence of trends. 

More precisely, by considering generalized increments of order k, the 

existing trends are filtered out as expressed by Equation (2.6). The 

most important intricacy in the presence of trends is the inference of 
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the generalized covariance. The experimental variograms, are useful in 

demonstrating the existence of trends. 

The inference of the generalized covariance of a set of data is 

automated, based on several techniques mentioned earlier. The applica

tion of one of these techniques provides the admissible generalized 

covariances for k = 0,1,2, which are the common cases. In addition, 

statistics which evaluate each model are provided from a standard 

procedure, which is the re- estimation of known data from surrounding 

values and the evaluation of estimation errors. For example, given a 

set of 144 data points which represent depths from the mean sea level ta 

the top of the Crystal Viking reservoir in south-central Alberta, the 

possible generalized covariance models were found to be K(h) = 27.41, 

K(h) = -0.0266331hl, and K(h) = -0.02032�hJ + 0.000867Jhj 3 with k = 1. 

Of these, the third one was selected as it gave the smallest average 

error. The i nferred genera li zed covariance was subsequent l y used for 

the estimation of the regional top of Crystal reservoir depicted in 

Figure 2.6. The estimation applied has also produced the associated 

estimation errors mapped in Figure 2.7. Note that, as is logical, the 

estimation error increases around the margins of the area where the well 

control is poor. 

An additional example is given in Figure 2.8, a cross-section 

taken from a three-dimensional estimated model of residual oil satura

tion (ROS) of the Crystal reservoir. Data from core analyses were used 
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to directly estimate the average value of ROS over grid blacks with ·a 

resolution of 300 x 300 x 1 metres. 

In the case that the experimental variogram of a data set reaches 

a sill, then an admissible variogram modelîs fitted. This is demons

trated in Figure 2.5 where the spherical variogram model below 

y(h) = 0.25 + 0.75 [1.5(h/900) - 0.5(h/900) 3 J V h s 900 m 

y(h) = 1.0 V h > 900 m 

is fitted to the experimental points. The fitted model may then be used 

for estimation and error assessment using Equations (2.11) and (2.12). 

An example is given in Figure 2.9, a cross-section taken from a three

dimensional model of estimated weight percent oil saturation in part of 

the Athabasca oil sands deposit, Alberta. The depicted model was cons

tructed using different variogram models and data for each of the dif

ferent horizontal geological zones present. In this way, qualitative 

characteristics of every zone are incorporated into the model. The 

associated estimation error is given in Figure 2.10. 

The simplified estimation Equations (2.11) and (2.12) are easier 

to apply than the respective generalized Equations (2.9) and (2.10). 

This is why they are most commonly used in the Mining Industry. Trends 

are not uncommon in mineral deposits. In practice, however, estimation 
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of a grid point or volume proceeds using a restricted number of sur

rounding data from relatively smal 1 distances. Then, it might be pos

sible to ignore the presence of trends and use a variogram model which 

only fits the first few experimental variogram values, ignoring the 

restof the actual correlation structure of the phenomenon under study. 

The use of the generalized or the simplified equations is related ta the 

objectives of mode 11 i ng. Unlike the mining industry, the Petroleum 

Industry is more interested in conditionally simulated models than 

smooth estimated ones. It is important to check the sensitivity of flow 

simulations to possible realistic variations of the reservoir-rock des

cribing input. This can only be done objectively using conditionally 

simulated models of the variables. If it is found that these models do 

not influence the flow simulation, then estimated models of the variable 

may be used as they represent the average of a very large number of 

conditionally simulated realizations. 

In the practice of conditional simulation, the presence of trends 

cannot be ignored and bypassed. The only possibility is to use Equation 

(2.16) which defines the conditional simulation using generalized cova

riances. Equation (2.18) is only applicable in the case of variograms 

with a sil l. 

To demonstrate the differences between estimation and conditional 

simulation, Figures 2.11 and 2.12 present, somehow differently, the 

thickness of a pay zone from a part of the Athabasca deposit. In Figure 
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2.11, thickness is estimated and as such, it represents a smoothed 

reality. In Figure 2.12, thickness is conditionally simulated and 

evidently it is a 11 lookalike 11 of the real variation. 

Examples of three-dimensional conditional simulations are presen

ted in Figures 2.13 and 2.14. The former shows a cross-section of 

conditionally simulated boundaries and weight percent oil saturation 

from a pay zone of a part of the surface minable area of the Athabasca 

oil sands. In this case, Equation (2.18) was used. Figure 2.14 depicts 

a horizontal section from a three-dimensional conditionally simulated 

grid of porosity from a unit (H) within the Crystal reservoir. Equation 

(2.16) was used for the construction of this model. For the conditional 

simulations, the available data were mainly from core analysis. In 

addition, measurements from porosity logs were used in some wells with 

no core data. Although, porosity data from logs are not as accurate as 

core data, they are better than any estimate. However, it is important 

to specify that inference of a GC or a variogram should be done using 

only one source of data as mixing may produce erroneous results. 

Finally, it should be stressed that in the application of 

stochastic models, attention should be paid to the geological charac

teri st i cs and heterogeneit i es of the reservoi r under study CDimitrako

poul os, 1985), as geological controls critically influence the results 

of numerical characterization. 
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FIGURE 2.11: Estimated thickness of a pay zone in part of the Athabas

ca oil sands deposit, Alberta. 
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FIGURE 2.12: Conditionally simulated thickness of the same pay zone 

shown in Figure 2.11 
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FIGURE 2 .13: Cross-section of candit iona l ly s imul ated boundari es and wei ght percent oil 

saturation from a pay zone from a part of the Athabasca oil sands.
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FIGURE 2.14: Horizontal section from a 3-D conditionally simulated 

grid of porosity from a unit within the Crystal Viking 

reservoir. 



2.7. Summary 
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The need to provide reliable detailed numerical models describing 

the variability of geological reservoir-rock properties leads to the 

application of stochastic methodology. 

The theory of intrinsic random functions of order k is a conve

nient mathematical formulation which leads to models which� 

(i) account for the correlation structure of a variable which in turn

•passes• qualitative information to numerical models;

(ii) account for the naturally occurring trends within reservoirs;

(iii) provide best unbiased linear estimation;

(vi) are uniquely appropriate in performing direct estimations on the

megascopic scale using data from the macroscopic one;

(v) provide assessment of the estimation in terms of an estimation

error; and

(vi) can uniquely provide conditionally simulated realities of any

pertinent variable, which may be used to check the sensitivity of

flow simulations to reservoir describing input.



50 

The above characteristics suggest that stochastic methodology, as 

outlined, is very promising in terms of advancing the sophistication of 

numerical reservoir characterization to the current levels of reservoir 

simulation. 

In the following chapter the technique of conditional simulation 

of IRF-k, outlined in section 2.4, is developed in detail. 



3. CONDITIONAL SIMULATION OF INTRINSIC RANDOM FUNCTIONS OF OROER k

3.1 Introduction 

Conditional simulation of stationary natural processes was 

introduced in Geostatistics by Journel (1974). Several aspects and 

deve l opements on stat i onary s imul at i ans have recent l y been presented 

(Christakos, 1987; Davis, 1987; Mantoglou, 1987; Luster, 1985). How

ever, conditional simulation of non-stationary stochastic fields has 

seldomly been addressed since the first use of the technique in two 

dimensions, (Chiles 1977) despite the fact that geological variables 

commonly exhi bit di st i net trends. Such variables are propert i es of 

petroleum reservoirs like porosity, fluid saturations, boundaries, etc. 

as shown in Chapter 2. As in the stationary case, conditional simu

lations of non-stationary fields which mimic the spatial variability of 

the actual phenomenon under study can be generated. The latter property 

is of particular interest in sensitivity studies. In the petroleum 

industry, for example, it is fundamental to assess the sensitivity of 

reservoir flow simulations ta possible variations of the geological 

input. This can be done objectively by using realistic representations 

of the fluctuation of the pertinent variables as provided by conditional 

simulations. 
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In the present study, a comprehensive step-by-step procedure of 

conditional simulation of non-stationary physical processes is deve

loped, within the framework of the theory of intrinsic random functions 

of order k and the turning bands method (Matheron, 1973). More speci

fically, the procedure includes the following steps. First, the Wiener

Levy process is used to simulate an IRF-k in R1
• Then, simulations in 

Rn are obtained by surnming contributions from those in R1
• The condi

tioning process is described and the quality of the simulations is 

examined using experimentally calculated generalized variograms. In 

order to gain some insight into practical aspects of the proposed tech

nique, examples in two and three dimensions are given. 

3.2 Non Conditional Simulations 

3.2.1 The Wiener-Levy process 

A Wiener-Levy or Brownian motion process is a stochastic process 

{W(x), x � O} in R1 with the following properties (Parzen, 1962; 

Antelman and Savage, 1965) 

i) {W(x), x � O} has stationary independent increments

ii) for all x > 0: W(x) is normally distributed

iii) for all x > O: E[W(x)J = 0 



iv) WCO) = O.
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As a consequence of (i) and (iv), to state the probability law•of 

W(x), it is sufficient to state the probability law of [W(x + h) - W(x)J 

with x + h > x. Because of (ii), the inè:rement [W(x + h) - W(x)J is 

normal and its law is determined by its mean and variance. It is 

and 

E[W(x + h) - W(x)J = 0 (3.1) 

(3. 2) 

where 0
2 is an empirical characteristic of the process in hand. 

In the di screte case, the Wiener-Levy process W
0 
(x) i s an

IRF-0 with the following additional characteristics (Orfeuil, 1972) 

where {R;, i = l, ... ,N} is a set of independent random variables with

realizations of values +1 or -1 and probability of occurence 1/2. Note 

that relation (iii) is valid in the discrete case if R; 
is gaussian.
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In addition, one may consider the pth, p # 0, integration W
P

(x) 

of a W
0

(x) process in R 1 such that 

The descrete integration of Wp(x) is defined as 

vii) W
P

(O) = O for all p � 1

-+ --

where e is the norm of vector e = x 0x 1 = X;X;+l

(3.3) 

For the di screte process W
0 
(x), i t i s easy to show that equat ion 

(3.1) is valid, i.e. 

E [W (x. l) + R. J 
0 ,- 1 
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Table 3.1: Representation of an IRF-k in terms of Wiener-Levy processes 
and corresponding GC in R1 for order k � 2. 

k Y(x) 

0 b
0W0(x) -b�wlhl

Ki (h) 

1 b
0W0 (x) + b1W1(x) -b�wlhl + bi

3� lhl 3

2 b
0
W

0
(x) + b1W1(x) + b

2W2(x) -b2wlhl+[b2-2b b JJ!Llhl 3- b 2__Ji/ lhl 5o 1 o 2 3 ! 25! 



In addition, it is 

i 
= I E [RJ.Jj=l 

= I n} (1) + } C-l)J = o , for all x
j=l 

where R = R
p
, for all p, and i and j are defined by 

j > i.

Setting (j-i)e = lhl, one obtains 

1 h 1 
Var[W (x + h) - W (x)J = - E [R2 Jo o e 
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which becomes 

(3. 4) 

Since 

Eq. (3.3) shows that the generalized covariance (GC) of W
0
(x) will be

(3. 5) 

In conclusion, one can construct a rea 1 i zat ion of a Wiener

Levy process W
0

(x) in R1 by simply generating random numbers of +1 or

-1 drawn from a normal distribution with zero mean and variance of 1 and

by applying properties (v) and (vi). The produced realization will have 

a GC K(h) = - lhl (Fig. 3.1). From this, realizations of the p
th

summa

tion of W
0

(x) can be generated. 

3.2.2 Simulation of IRF-k in R1

It has been shown (Matheron, 1973) that an IRF-k in R1 admits a 

polynomial generalized covariance (GC) if and only if it admits the 

representation 
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k-1

Y(x) = b
0
W

0
(x) + bl fxW

0
(u) du+ ... + bk J

x (x-u) W (u) du (3.6)
o o ( k-1) ! 

o 
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with bp real coefficients, and W
0

Cx) a representation of an IRF-0 with

a GC such that K(h) = - lhl,

Equation (3.6) may be rewritten as 

Y(x) = I bp WP(x)
p=O 

where WP(x) is defined in (3.3). 

Wp(x) is an IRF-p with a GC-p

(2p+l)! 1 1 2p+l _ h , p - 0, ••• , k

(3. 7)

(3.8) 

Note that since WP(x) is an IRF-p it is also an IRF-k for all p s k. 

If Y(x) is an IRF-k in R1 which admits the representation (3.6) 

or its equivalent (3.7), and the linear combination 

I Àa Y(xa) is a GI-k, then
a=l 



where K
1
Ch), h = x

a 
- x

b
, is the GC-k of YCx). 

In addition, taking (3.7) into account one finds 

Var [ I À
a
Y(x

a
)J

a=l 

where K
p,q

(h) is the cross GC of the IRF-k's W
P
(x) and W

q
(x). 

It follows from (3.9) and (3.10) that the GC of Y(x) is 

60 

(3.9) 



where (see Appendix A) 

Equations (3.11) and (3.12) lead ta 

with 

� p+l w lhl2p+l. K1 ( h) == L. a 1 ( -1 ) 
p==O P (2p+l)! 

p-l i+l 
I (-1) 2b;b2p-ii =max CO, 2p-k) 
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(3.11) 

(3.12) 

(3.13) 

(3.14) 

From equations (3.13) and (3.14), Table 3.1 may be constructed showing 

the representat ion of an IRF-k in terms of Wiener-Levy processes and 

corresponding GC in R 1 for k � 2. 

It follows from above that realizations of an IRF-k in R 1 with 

given polynomial GC with real coefficients can be generated from reali

sations of the processes W0 (x) and W
P

(x), provided that the appropriate 



62 

coefficients are calculated. For example, if k=2 and the required GC in 

R1 i s 

it is sufficient ta simulate a realization of the IRF-2 

where the coefficients are calculated by solving the system 

b2 
0 

::;: a
0 

3 (b
2 - 2b

0
b2)

::;: al 1 

5 (b
2 

::;: a2)2

What needs ta be shown next is how from simulations of an IRF-k 

in R1
, realizations in Rn can be constructed and what the relations 

between the coefficients of the one-di mens i ona l and n-dimens i anal GC' s 

must be in order for the n-dimensional real ization ta have a specific 

GC. 
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3.2.3 The Turning Bands Method and Simulation of IRG-k in R
n

It has been shown (Matheron , 1973) that if Y(x) is an IRF-k in R1

with GC K1 Ch) an IRF-k in Rn is defined sueh that:

(3.15) 

where s is a unit vector chosen randomly from a unit sphere in Rn with 

probability distribution w
n 

coneentrated in the sphere and invariant 

under translation. Then , Zs(x) has an isotropie GC sueh that

(3.16) 

Equation (3.16) defines a one-to-one mapping of the GC-k in R1 to an

isotropie GC-k in Rn and it is ealled the turning bands operator (T
n
). 

For the operator Tn the equivalent GC 1 s in R1 and Rn are res

peetively the following 

and 

k 
= I 

p=O 
(3 .17) 



with 

k p+ 1 1h1 2P+ l 
= l (-1) apBn P p=O ' ( 2p+l)! 
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(3.18) 

It follows that if a random field having polynomial GC with coeffi

cients, say CP, is to be simulated in Rn, the coefficients ap of the

corresponding CP in R 1 are

k = 2, 

(3.19) 

From equation (3.19) it follows, for example, that in R 2 and for 

a = TT C 0 2 0 

al == 9rr C
2 1 
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Finally, if the appropriate random fields in R1 can be simulated, 

then a n-dimensional field can be constructed by applying 

()=-1-� ( ) Z5 X ½ L Y . <X, S .> 

N z • l l l 
1= 

(3.20) 

which is the discrete approximation of (3.15) with N being the number of 

independant one-dimensional random fields (Fig. 3.2). 

3.3 Conditional Simulation of Random Fields with Generalized 

Covariances 

Conditional simulation of an IRF-k Z(x) in Rn is a techni

que which, given values of Z(x) at particular points {xa, a =

1, ... , N} and the corresponding GC, allows the construction of different 

realizations of Z(x) which have the following two properties 

i) honor the given data available at {xa, a = l, ... ,N};

ii) reproduce the GC of Z(x).

Cons i der an IRF-k S (x) with the same GC as Z (x) but not corre-

1 ated to it. S(x) can be simulated as previously shown in section 2.4. 

One can write 

* * 

S(x) = S (x) + [S(x) - S (x)J 
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Figure 3.2: Schematic representation of the turning bands operator. 
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The conditional simulation of Z(x). {xa, a = 1, ... ,N} with GC K(h) is 

then defined as 

* * 

Z
c5

(x) = Z (x) + [S(x) - s (x)J (3.21) 

Where S (x) is an estimate of S(x), as if S(x) is only now in at 

{xa, a = l, ... ,N}. 

* 

Apparently, Z
c5

Cx) will reproduce the data {x
a
} because Z (x

a
) = Z(x

a
) 

* 

and S(x
a
) = S Cx

a
), which follows from the exactness of the kriging 

estimator. 

Cons i der now the covariance between the kri gi ng error and a 11 

increments of order k. It has been shown (Delfiner, 1976) that they are 

orthogonal to each other 

Taking the k
th 

increment of Z
c5

(x) at any point x
a 

one finds 

then it is 
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and as Z(x) and S(x) have the same GC 

The above shows that indeed Z
cs 

Cx) and ZCx) have the same general ized 

covariance. Furthermore, one can show that the estimation variance of 

Z
cs

(x) is twice the estimation variance of Z (x). Indeed

(3.22) 

3.4 Verification of Simulations Using Generalized Variograms 

The reproduction of a given generalized covariance of a condi

tionally or non-conditionally simulated realization of an IRF-k may be 

ch eck e d  by comparing the experimental and theoretical general ized 

variograms (GV) in different directions. GV 1 s are simpler to obtain but 

direct 1 y re 1 ated to GC I s. Aspects of the GV re 1 ated to the present 

subject are presented next. Additional information may be found 

elsewere (Christakos, 1984; Chiles, 1979). 



The generalized variogram of order k in R1 is 

1 =---,--=-- VAR [Ak (x,h)J
k+l 

C2k+2 

(3.23) 

where A
k 

(x,h) is a generalized increment of order k (GI-k) such that 

k+l . i 
= I C-1)7 ck+l Y(x+ih)

i=O 
(3.24) 
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Note that, the GI-k in Eq. (3.24) is stationary if Y(x) is an IRF-k, and 

therefore y
k
(h) in expression (3.23) is independent of x. In 

addition, considering relations shown in Appendix B, it is 

k+ 1 k+ 1 . +. i j 
= I I C-1)7 J ck+l ck+l K<<ï-j)h)
i =O j =O 

k-1
= 1 

m=-k-1 
(-l)m Cm+k+l K(mh)2(k+l) 
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and therefore 

k+l
r (h) l ' (-l)m ck+l+m K(mh) k = ____,.k-+�1- m=�Ck+l) 2Ck+l) 

C2k+2 

(3.25) 

From Eq. (3.25). the relations between generalized covariances and 

generalised variograms for k=0,1,2 in R 1 may be derived. More specifi

cally, it is 

y
0

(h) = K(O) - K(h) 

r
1 
(h) = K(O) - 4/3 K(h) + 1/3 K(2h) 

y2(h) = K(O) - 3/2 K(h) + 3/5 K(2h) - 1/10 K(3h) (3.26) 

The experi mental generalized variogram may be calculated from 

(3.27) 

where Nh is the number of finite differences � (x,h) available (eq.

the number of pairs Y(x+h)-Y(x) if k=O). From Eqs. (3.27) and (3.24) it 

follows that for k = 0,1.2 it is 



* 1 Nh 2 
Y1= 6N r [Y(x) - 2Y(x+h) + Y(x+2h)J 

h 1 = 1 

* 1 Nh 2 Y 2= 20N 
r [Y(x) - 3Y(x+h) + 3Y(x+2h) - Y(x+3h)J 

h l =l 
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(3.28) 

Concluding, Eqs. (3.28) show how the experimental generalized 

variograms of a realization of an IRF-k can be calculated for the common 

cases of k=0, 1, 2 in one direction. Then they can be compared to the 

theoretical ones given by Eqs. (3.26) ta verify the reproduction of the 

GV and therefore the GC. 

3.5 Two- and Three-Dimensional Examples 

Realizations of an IRF-2 with generalized covariance 

have been simulated in two and three dimensions. The two dimensional 

realization (Fig. 3.3) is on a 40 x 40 regular grid of 1600 points and 

has been constructed using 90 equally spaced one-dimensional simula

tions. The three-dimensional realization is on a 20 x 20 x 20 regular 

grid of 8000 points. It has been produced by summing 15 simulations on 

lines joining the mid-points of the opposite edges of a regular icosahe

dron, as is the standard practice (Journel, 1974). A horizontal section 

from the middle of the generated grid is presented in Figure 3.4. 
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The reproduction of the GC was tested by calculating directional 

experimental generalized variograms and comparing them ta the theoreti

cal one. In the two-dimensional example experimental GV 1 s of order 2 

were calculated along axes x, y and the two diagonals. The comparison 

to the theoretical one is shown in Figure 3�5. In the three-dimensional 

case experimental GV 1 s of order 2 were calculated along the three ortho

gonal axes and compared to the theoret i ca 1 one in Figure 3. 6. Both 

comparisons suggest that the initial generalized covariance has been 

preserved reasonably wel l. The observed differences between simul ated 

and theoretical values should be attributed to the discretezation invol

ved in the one-dimensional simulations and the finite number of lines 

used. 

The conditional simulation of IRF-k is next applied ta 1 real 

l ife I data from the Crystal Viking ail field, Alberta CRei nson, 1985).

The first application involves elevations in meters below the mean sea 

level of the bottom of the Crystal Field using data from 144 wells. The 

GC inferred from the data set is of order 1 and has the form 

K(h) = - 0.027691 lhl + 0.000344 1h1 3 

A realization of the bottom of the Crystal Field (Fig. 3.7) was 

simulated on a grid of 38 x 50 points with a grid spacing of 300 metres 

The reproduction of the GC is verified using the four one-dimensional 

GV 1 s shown in Figure 3.8. The second application includes the genera-
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tian of a realization of percent porosity from a sedimentary unit within 

the Crystal reservoir. Available data include 186 regularized samples 

of 1 metre length representing porosity derived from core analyses. The 

GC inferred from the data is of order 0 and geometrically anisotropie in 

two dimensions with 

Kvert(h) = 0.52 x 10- 3 
- 0.121 x 10- 3 jhl 

A realization of porosity was conditionally simulated on a 

regular grid of 19 x 32 x 105 points with a resolution of 300 metres 

horizontally and 1 metre vertically. The geometric anisotropy was 

treated by properly scaling the grid. A horizontal section and a cross 

section from a generated realization of porosity are presented in 

Figures 3.9 and 3.10 respectively. The quality and reproduction of the 

GC is checked by computing experimental GV's of order zero on the hori

zontal and vertical planes. The results are plotted in Figures 3.11 and 

3.12 respectively and show that preservation of the GC is excellent. 
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Figure 3.3: Contour map of a non conditional simulation of an IRF-2 

in two dimensions. 
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FIGURE 3.4: Cross-section from a non conditionally simulated reali

zation of an IRF-2 in three dimensions. 
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FIGURE 3.5: Experimental and theoretical generalized variograms of 

a simulated realization of an IRF-2 in two dimensions. 
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FIGURE 3.6: Experimental and theoretical generalized variograms of 

a simulated realization of an IRF-2 in three 

dimensions. 
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FIGURE 3.7: Contour map of conditionally simulated realization of 

the bottom of the Crystal Viking reservoir Alberta. 
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FIGURE 3.9: Horizontal section from a three dimensional condi

tionally simulated realization of porosity of a sedi

mentary unit within the Crystal Viking reservoir, 

Alberta 
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FIGURE 3.10: Cross-section from a three-dimensional conditionally simulated realization 

of porosity of a sedimentaryunit within the Crystal Viking reservoir. Alberta. 
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Figure 3.11: Horizontal experimental and theoretical generalized variograms 

of the conditionally simulated realization of porosity in 

Figures 9 and 10. 
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A comprehensive step by step technique for the conditional simu-

1 ation of IRF-k has been presented. The turning bands operator trans

forms the problem of simulating n-dimensional random fields into simu

lation in R 1
• On .li ne realizations of an IRF-k are generated using 

Wiener-Levy processes and their su1TIT1ations. The calculation of the 

appropriate coefficients for the processes on lines, sa that they repro

duce the GC of the IRF-k in R1
, is of main importance here. Next, by a 

folding back procedure realizations of IRF-k in R
n 

are constructed.

Given the non conditional simulations, conditional simulation of 

an IRF-k may be defined as the sum of an estirnated random function using 

the IRF-k theory and a carre 1 a vari ate with the same GC as the 

process under study. Conditional simulations of random fields honor the 

data values available and reproduce the GC of the physical process. 

Verification of the latter is performed in this study by using gene

ralized variograms. 

The examples presented show that the conditional simulation of 

IRF-k is feasible and produces realistic results. Furthermore, it is 

particularly flexible and accounts for anisotropies in the simple case 

of linear GC 1 s. 
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Conditional simulations of IRF-k can be used to model most of the 

reservoir-rock properties. However, the non additive permeability 

requires special treatment, and it is discressed separately in the 

following chapter. 



4. GEOSTATISTICAL ESTIMATION OF THE EFFECTIVE PERMEABILITY

TENSOR FOR THREE-DIMENSIONAL PETROLEUM RESERVOIR SIMULATORS

4.1 Introduction 

The understandi ng, predi et ion and hi story mac hi ng of reservoi r 

performance during production as well as the optimization of hydrocarbon 

recovery are based on reservoi r fl ow s imul ati on studi es. In these 

studi es, the reservoi r i s represented by a large gri d of rectangul ar 

b l ocks. Effective reservoi r-rock propert i es such as paros ity, perme

abil ity, fluid saturations etc., are then assigned to each of these 

blacks. The assignment of a representative value for each of these 

variables to each grid black is of critical significance for the simula

tion results (Haldorsen, 1983; Coats, 1982; Aziz and Settari, 1979). It 

is a problem of interpolation and simultaneous change of scale, and it 

is based on measurements from a limited number of core samples, 

geophysical logs, and the geological characterization of the reservoir. 

The most challenging reservoir-rock property is permeability, whose 

non-additive c haracter does not permit the direct estimation of 
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effective black equivalents from the available core measurements, thus 

requiring the development of specialized techniques. 

Permeability refers to the ability of a porous medium to transmit 

fluids. It is the single most important gèological property effecting 

subsurface flow, and reservoir simulation depends critically upon its 

accurate estimation. To date, considerable efforts have been made to 

tackle the calculation of permeability in heterogeneous geological 

formations. These efforts may be classified in three groups. The first 

includes numerical methods based on Monte Carlo simulations as 

introduced by Warren and Price (1961), improved to account for spatially 

carre l ated perme ab il it i es (Smith and Freeze, 1979; Smith and Schwarts, 

1981) and developed for sand-shale sequences by Desbarats (1987a, b, c). 

Combination of averaging formulae (Korvin, 1981) with simulations have 

also been attempted (Deutch, 1986). The next group includes streamline 

methods based on the geometry of discontinuous shales in sand-shale 

sequences, and on a stream tube concept (Haldorsen and Lake, 1982; Begg 

and King, 1985; Begg et al., 1985). The third group includes analy

tical methods based either on a self-consistent approach (Dagan, 1979) 

or on perturbation methods for statistically isotropie (Matheron, 1967; 

Bark et al., 1978; Gutjahr et al. 1978) and statistically aniso

tropie formations (Gelhar and Axness, 1983). To this last group, expe

rimentation with the quantity of flow in order to derive upper and lower 

limits for effective black permeabilities (Le Loc'h, 1987) may be added. 
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The different approaches taken in the above studies have signi

ficantly contributed to the understanding of the factors controlling 

permeabil ity. However, together wi th advantages, a 11 these methods 

havetheir limitations. Numerical methods although more general are 

approxi- mate, tedious and their performance critically depends upon the 

relative lengths of the discretization grid and the correlation scale of 

permea- bi l ity. Streamline methods are suitable for only a limited 

number of simple shale configurations and low shale fractions. 

Analytical methods may be restricted by assumptions of isotropy or by 

limits in the distribution and shape of the spatial correlation of 

permeability. Nervertheless, it is possible to expand the existing 

techniques and extent their applicability, thus providing significant 

improvements of the current practices. 

In the present study, the estimation of effective permeability is 

examined within a geostatistical framework (David, 1977; Journel and 

Huijbregts, 1978), where permeability is considered as second-order 

stat i onary and ergodi c random funct ion. characteri zed by and predi cted 

from a 1 imi ted n u mber of statistical moments. Accordingly, an 

ad-hoc generalization of the results of Gelhar and Axness (1983) to 

finite fields, such as flow simulator grid blocks, is developed in the 

following sections. The proposed methodology is illustrated in an 

example from the 1 H 1 pool of the Crystal Viking field, south-central 

Alberta (Figure 4.1). 
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FIGURE 4 .1: Limits and well central of the Crystal Viking pool 'H', 

Alberta (modified after Reinson et al., 1988). 
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The basic concepts and definitions for the geostatistical 

estimation of the effective permeability for three-dimensional grid 

blacks. as required in petroleum reservoir simulation studies, are 

presented in this section. 

Consider point permeability K(x) at point (x) in R3 as a scalar, 

second order stat i onary and ergodi c random funct ion (RF). Then, the 

natural logarithm of K(x), Y(x) = ln K(x) is also a second order 

stationary RF with first and second order moments given by 

E[Y(x)J = a 

Var[Y(x)J = o(O) = 0
2 

Cov[Y(x), Y(x+h)J = o(h) 

y(h) = 0 2 -a(h) 

(4.la) 

(4.lb) 

(4.lc) 

(4.ld) 

where a and 0 2 real constants, and o(h), y(h) the autocovariance and 

variogram functions respectivelly. The ensemble geometric mean of K(x) 

is defined by 

K = e
G 

E[Y(x)J 
(4.2) 

The arithmetic spatial average of Y(x) over volume v is defined by 



Y = _J J Y (x) dx 
V V 

V 

(4.3) 

As a combination of the RF 1 s Y(x) in volume v, Yv is also a RF with

=_Jf E [Y(x)J = a 
V V

=_l 2 f f o(jr-sj) dr ds 
V 

V V 

= o(v,v) = 0
2 

- y(v,v)

(4.4a) 

(4.4b) 
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where o(v,v) or y(v,v) represent the average values of o(h) or y(h) when 

the extremities of vector h independatly describe volume v, and are 

calculated from charts (David, 1977).

Next, one may consider the spatial geometric average of K(x) over 

volume v defined by 

Kv = exp C _J f Y(x) dx)
V V 

(4.5) 

If Y ( x) i s a mu 1 t i var i a te  normal random funct ion, Y v i s al so

multivariate normal then, considering the properties of the log normal 

distribution (Aitchison and Brown, 1957), the mean and variance of Kv
are given by 
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y 
o(v,v) 

E[KVJ = E[e V]
= KG Ce 2 

) (4.6a) 

and 

y 

E[KVJ
2 Ceo(v, v)

--:
l)Var[KvJ = Var[e vJ = (4.6b) 

Note that, if Y(x) is not assumed multivariate normal, then using 

y 

a Taylor series expansion of e v and dropping the terms of third order 

of hi gher, the mean and variance of K
v 

are approximated by the above 

relations. In addition, the moments in equations (4.6) depend on the 

volume v through o(v , v), and furthermore under ergodic assumptions, as 

the average volume becomes large, it is 

(4.7a) 

and 

(4.7b) 

It i s apparent that the ensemb 1 e geometri c mean KG defi ned by

equation (4.2) and the spatial geometric average Kv defined in equation

(4.5) are two distinct quantities, related by equation (4.7a). 
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Using the basic definitions previously described, an ad-hoc

method for the effective permeability estimation of finite three dimen

sional anisotropie fields is developed in the present section, based on 

results by Gelhar and Axness (1983). The above authors derived, using a 

perturbation approach, an approximate analytical expression for the 

estimation of the effective permeability of infinite flow fields with 

anisotropie exponential spatial correlation. The latter may be expre

ssed in the form of an exponential variogram 

y(h) 
h. 

::; 0
2 Cl-exp (- _l)) À, 

l 

(4. 8 ) 

where hi denotes distance, Ài the range of correlation with i::;1,2,3.

Accordingly, the effective permeability KE .. is
lJ 

(4.9) 

where gij is a quantity depending on the anisotropy ratio and obtained

by charts in Ge 1 har and Axness (1983). The resul ts summari zed above 

suggest that is infini te fields KE .. is estimated by the combination KG
lJ 

and a correction factor as shown in equation (4.9). A similar combi-

nation of Kv and a correction factor may be then used for finite fields,

such as reservoir grid blacks. Considering the relation between Kv and

KG in (4.7a) the following approximation is suggested



KE = Kv exp(y(v,v) (½-g .. ))
. . l J 
lJ 
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(4.10) 

Note that as volume v➔00 equation (4.10) becomes the same as 

equation (4.9). This may be considered as a justification for approxi

mating KE by equation (4.10). It remains that in practice Kv is not 

known for every grid black. It is, however, possible to provide 

estimates using the technique of conditional simulation, described in 

section 2.5. 

For the conditional simulation, available point log-permeability 

measurements at data locations and their variograms are used to provide 

realistic representations of the actual point log-permeabilities Y(x) at 

every point in the reservoir. Then the conditionally simulated point 

l og-permeabi lit i es wi thi n every reservoi r gri d b l ock can be used to

provide estimates of Kv such that

(4.11) 

where Yc5(x) are the N conditionally simulated point log-permeabilities

within volume v. Considering equation (4.11), equation (4.10) may be 

then approximated by 
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K 
E .. 

lJ 

(4.12) 

where s 2 is an estimate of y(v,v) calculated as the variance of the 

simulated points within the reservoir grid black. s 2 provides different 

estimates for y(v.v) for every reservoir grid black and seems, at 

present, preferable ta y(v,v). The latter, is a single value for every 

reservoir black given a specific variogram y(h) of point log-permeabi

lities. 

In the practice of reservoir simulation, it is required that the 

effective horizontal and vertical permeabilities are assigned ta each of 

the reservoir grid blacks. 

apropri ate gij.

This is obtained by considering the 

4.4 Applicational Aspects and Limitations of the Proposed 

Methodology 

The methodol ogy proposed for the determi nation of the effective 

permeability of reservoir grid blacks has limitations. These arise 

mainly from the formulation of equations (4.9) and (4.12). 

It is assumed that the log-permeability Y(x) follows a gaussian 

law. However, it is common in practice that Y(x) has a bi- or multi

modal distribution. The multi-modality of the distribution of Y(x) and 
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in fact any other reservoir-rock property suggest that different geolo

gical units may be mixed. It is possible that given a detailed geologi

cal description of a reservoir in terms of sedimentary facies, diagene

tic zones and structural deformations, different geologically homoge

neous zones wi thi n the reservoi r can be estab li shed so that each zone 

exhibits a uni-modal distribution. Therefore, if sufficient geological 

information is not available then the proposed method may not be suit

able, depending on the shape of the distribution of Y(x). 

The spatial variability of permeability represented by the 

variogram (4. ld) is strictly assumed to be exponential as in (4.8). 

Although the shape of the covariance does not represent a problem, the 

fact that the model can not account for a possible nugget effect, i.e. a 

percentage of random variation or variation due to measurement errors, 

could be a limitation. It should, however, be pointed out that the 

effect of neglecting à nugget effect, if present, is not clear. It 

seems, however, that the nugget effect, if present, acts as a filter on 

the influence of the largest (horizontal) correlation scale (Desbarats, 

1988). The latter is indicated by two observations. First, it has been 

suggested from simulation experimentations (Warren and Price, 1961) that 

if no correlation structure is present (pure nugget effect), effective 

permeabilities tend towards the geometric mean of the permeability 

field. Second, it is apparent in equation (4.9), that as the horizontal 

range increases relative to the vertical one, the effective horizontal 

and vertical permeabi lit i es tend towards the ari thmet i c and harmoni c 
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means respectively and thus are moving away from the geometric mean. 

The above observations suggest that negl ect i ng the nugget effect when 

present may have an apparent impact only in cases of a very large 

anisotropy ratio. In the latter case, results from equation (4.9) wi11 

tend to overestimate the horizontal and underestimate the vertical 

effective permeabilities. 

Equation (4.9) provides exact results when the anisotropy ratio p

... 00, i.e. in the ideal case of perfectly layered media. It concludes 

that the effective horizontal permeability is the arithmetic mean, and 

that the effective vert i ca 1 permeabi 1 ity i s the harmoni c mean of the 

elementary permeabilities K(x). The validity of the above results are 

demonstrated i n  several studies (Gutjahr et al., 1978; Dagan, 

1979). 

The two steps of the proposed methodology are developed within a 

geostatistical framework where ergodicity is an implicit assumption. In 

genera 1, ergodi ci ty requi res the overa 11 sca le of the prob lem to be 

large compared to the correlation scale of the natural logarithm of 

point permeability. This may be verified when the variograms of Y(x) 

exhibit destinct sills indicating that the correlation scale is indeed 

small relative to the problem scale. 

The application of the present method requires that every grid 

block in the reservoir is discretized in smaller sub-blocks on which 
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conditional simulation will be performed. Although discretization is 

standard practice in numerical applications, the optimal discretization 

l engths are not known. It i s therefore suggested that discret i zat ion 

lengths are chosen as small as possible within the limitations of the 

available computer hardware. 

The determi nation of the effective permeabil i ty tensor in the 

present study was investigated relative to the needs of reservoir flow 

simulation. The latter signifies that the important flow parameter is 

the average quant ity of fl ui d whi ch 1 eaves the reservoi r or i s pumped 

into it. In such a case the stochastic flow solutions of Gelhar and 

Axness (1983) or the methodology developed here will provide, within the 

limitations already discussed, realistic results. It is important to 

note, however, that in other app li cati ans where the f1 ow parameter of 

i nterest i s the vari abil ity of the hydraul i c head the approach may 

produce misleading results. This is due to the fact that the variation 

of the hydraulic head, unlike the quantity of flow, is substantially 

dependant on  the geometry and orientation of possible localized 

impermeable barriers or high permeable pockets. 

4.5 Field Application 

In this section, the use of the proposed methodology is illus

trated in an example from pool 1 H 1 of the Crystal Viking oil field in 

south-central Alberta (Fig. 4.1). Pool 1 H 1 of the Crystal field is a 
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FIGURE 4.2: Histograms of the logarithmic transform of permeability 

core measurements from the Crystal Viking pool 1 H 1
• 
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shallow channel-bar sandstone body representing the final episode of 

bay-fill facies deposition under transgressive conditions (Reinson et 

al., 1988) and it can be considered, in terms of its sedimentary 

facies, as a geologically homogeneous unit with more or less horizontal 

stratification. 

Data on permeabil i ty from core anal y ses are ava il able from 28 

wells within the limits of pool 'H'. The histogram of natural logarithm 

of the data is presented in Figure 4.2. The shape of the distribution 

in the last figure indicates that the distribution is uni-modal and thus 

the belief that pool 1H 1 represents a geologically homogeneous unit is 

statistically supported. Furthermore; the same figure suggests that one 

may safely consider that permeability in the pool under investigation 

follows a log-normal law. The experimental horizontal and vertical 

logarithmic variograms of the data are presented in Figs. 4.3 and 4.4 

respectively. The apparent stability of bath experimental variograms at 

l arger di stance suggests that the present prob lem i s exami ned at a

sufficiently large scale ta ensure that ergodic assumptions are reason

ably met. The fitted exponential models (Eq. (4.6)) are also presented 

on the same figures. Bath variogram models tend towards a sill of 4.01 

md 2
, while correlation distances are 150 m and 4 m for the horizontal 

and vertical variograms respectively. The anisotropy ratio is 37.5 and 

the corresponding values for parameters 911 and 933 are 0.02 and 0.95 

respectively. 
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Following the approach presented in the previous paragraphs, the 

logarithmic transforms of macroscopic permeabilities are first condi

tionally simulated on a dense grid of resolution 30 x 30 m horizontally 

and 0.5 m vertically. Given that the grid chosen ta represent the black 

model of the pool (megascopic scale) is of j00 x 300 m horizontal and 1 

m vertical resolution, the grtd for the conditional simulation used here 

seems sufficiently dense. Nevertheless. the criterion for the chosen 

grid density is, in this case, the limits of the available computer 

memory. The total number of conditionally simulated points within the 

boundaries of pool 'H' are 307000. The histogram of these points is 

presented in Figure 4.5. Representative horizontal and vertical vario

grams of the simulated point log-permeabilities are depicted in Figs. 

4.6 and 4.7 respectively. 

The horizontal and vertical components of the effective permeabi

lity tensor are estimated for every one of the 1535 blacks representing 

pool 'H' at the megascopic scale. The estimation of the components of 

the effective permeability is based on the geometric mean and variance 

of the 200 conditionally simulated macroscopic permeabilities in each 

black as well as the anisotropy ratio of the field. In Fig. 4.8 a 

cross-section showing the variation of the èstimated horizontal permea-

bilities is presented. The corresponding vertical permeabilities are 

depi cted in Fig. 4. 9. The ari thmet i c. harmoni c and geometri c means of 

the same section are plotted in Figs. 4.10, 4.11 and 4.12 respectively. 

Comparison of the above figures shows, as expected, that the estimated 
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horizontal permeabilities are higher than the geometric mean while the 

vertical ones are lower. Furthermore, the horizontal and vertical 

permeabilities are bounded by the arithmetic and harmonie means respec

tively. The variation of the logarithmic variance of the section in the 

previous figures is presented in Fig. 4.13. 

4.6 Conclusions 

A new approximate approach is used ta estimate the components of 

the effective permeability tensor at the scale of reservoir grid blacks 

as used in flow simulations, from the sample scale. The suggested 

methodology is a two step process which includes first the conditional 

simulation of scalar permeabilities on a high density grid of points 

representing the reservoir at a fine scale. The second step is the 

averaging of the simulated values within each grid black using an ad

hoc genera 1 i zat ion of a Gel har and Axnes s (1983) formu l ae, for the 

estimation of the effective permeability tensor. 

The proposed approach attempts ta provide a simple substitute ta 

the direct estimation of effective properties of large reservoir volumes 

from core data, since direct estimation is not applicable in the case of 

permeability. Although it has limitations, like any other method propo

sed for the permeability problem, it provides the means for significan

tly improving the existing practices at least in the cases of reservoirs 
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with sufficient geological control ta distinguish geologically homoge

neous units. The method is demonstrated with an application at the 

Crystal Viking pool 'H', representing a single sedimentary unit. 



5. QUANTITATIVE-NUMERICAL CHARACTERIZATION OF THE CRYSTAL

VIKING FIELD, SOUTH-CENTRAL ALBERTA: AN INTEGRATED APPROACH 

5.1 Introduction 

The Crystal Viking Field is located in south-central Alberta 

(Figure 4.1) and situated in a north-south orientation within the 

regional facies of the Lower Cretaceous Viking Formation (Beaumont, 

1984; Reinson and Foscolos, 1986) of the western Canadian sedimentary 

basin. Crystal is a substantial oil field and it has been in production 

since the early eighties. In order ta understand the complexities, 

assess the primary recovery trends, and predi et the behavi or of the 

reservoir particularly under secondary oil recovery schemes, detailed 

studies were undertaken (Reinson, 1985) ta geologically describe and 

characteri ze the field. The natura 1 step succeedi ng the qualitative

geol ogi ca 1 analysis of the Crystal reservoir is its quantitative-numeri

cal characterization. This is approached with the view expressed in the 

last few years (Lake and Carroll, 1986) that more emphasis should be 

given to developing more elaborate and reliable reservoir models. 
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An integrated approach i s fa 11 owed in the quantitative des cri p

t ion of the Crystal reservoir, and is based on two aspects: first, a 

detailed sedimentological model is available ta serve as a basis, that 

is to define distinct, geologically homogeneous units (zones). Second, 

a geostatistical methodology is utilized. The latter is founded on the 

statistical analysis of patterns of variations (correlation structures) 

of available data sets within individual units of the reservoir, 

accomodating thus the. transformation-integration of qualitative 

descriptions to quantitative models. The use of the geostatistical 

methods in terms of the theory of intrinsic random functions of order k 

(Matheron, 1973) has addition al si gnifi cant advantages for reservoi r 

characterization. Geostatistical techniques lead ta numerical models 

which Ci) account for naturally occurring correlations, anisotropies and 

trends within reservoirs; (ii) provide a statistically best, linear, 

unbiased estimation and estimation variance; (iii) are uniquely appro

priate for the direct estimation of effective properties of large volu

mes from core samples or log measurements; and Civ) can be used to 

generate simulated realities of any pertinent variable. 

The present study was undertaken ta complete the characterization 

of the Crystal Viking reservoir by providing quantification of zonation, 

continuity, trends, anisotropies and, most importantly, spatial varia

tion of geological variables, upon which the evaluation and assessment 

of secondary or enchanced oil recovery techniques coul d be based. 

Specific objectives of the present study include (i) the complete 
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quantitative characterization of the Crystal Viking reservoir in terms 

of sedimentary unit boundaries, porosity, permeability, water saturation 

and residual oil saturation; and (ii) the demonstration of methodology, 

abilities and advantages of a synergetic application of geostatistical 

techniques ta petroleum reservoirs. 

5.2 Geology of the Crystal Viking Field 

The geology of the Crystal Viking field is detailed in terms of 

sedimentary facies, depositional environments and stratigraphie rela

tionships in Reinson et al. (1988). Accordingly, two major sedimentary 

facies are di st i ngui shed withi n the reservoi r, whi ch ranges up to 30 

meters thick. These facies are estuary tidal-channel and estuary bay

fil l facies deposited under transgressive conditions. The deposition of 

the tidal-channel facies is attributed ta three successive and partially 

superimposed channe l deposit i onal events. The se are referred to as 

stages A, Band C and correspond to the three distinct sandstone units 

which constitute the bulk of the reservoir, that is, the Crystal 1 A 1

pool (Figure 5.1). In most of the field the three depositional stages 

are partially superimposed with downcutting and scouring relationships, 

while towards the north the three stages diverge. In the southernmost 

part of Crystal, channel stages appear to amalgamate into one sand body 

where the different stages bodies are not clearly distinguishable. 
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The estuary bay�fill facies are divided into subtidal estuarine 

muddy subfacies (EM) and shallow channel-bar sandstone subfacies CH). 

The muddy deposits separate the shallow channel-bar facies from the 

tidal-channel facies of the 1 A 1 pool creating an impermeable barrier, 

attributing to the hydrodynamically separate 'H' pool (Figure 4.1) 

within the shallow channel-bar sands. These sands thin-out in the 

north, while in the south they merge with the tidal channel sands from 

whi ch they cannot a lways be di st i ngui shed. Schemati c cross-secti ans 

from north to south depicting the sand bodies A, B, C, H and the muddy 

deposits EM are presented in Figure 5.2. 

The five distinct sedimentary units A, B, C, EM and H form the 

geological basis in the application of geostatistical techniques for the 

numerical characterization of the Crystal reservoir. 

5.3 Geostatistical Methods 

The geostat i sti cal techniques used for the quantitative charac

teri zat ion of the Crystal Viking field are based on the 1
1 theory of 

intrinsic random functions of order k 11 or IRF-k (Matheron, 1973). A 

comprehensi ve presentat ion and discussion on advantages and appl i cabi-

1 i ty of the theory in reservoir characterization problems was detailed 

in Chapter 2. 
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Extensive core data and high-quality geophysical logs are 

available for the Crystal Field, due both ta its recent discovery and 

development, and to detailed facies analysis studies. Within the area 

of the field (Figures 4.1 and 5.1), there are 140 wells, of which 112 

lie within the limits of 'A' and 'H' pools. 

From the avail able data two major sets are constructed. The 

first includes the tops and bottoms of the five distinct units in every 

well in meters below the mean sea level. Tops and bottoms are picked 

from the available core descriptions for 74 wells while the rest are 

picked from well-logs. The locations of the wells are also recorded in 

meters east and north from the lower left corner of the study area. 

The second data set i ne 1 udes data on paros ity, permeabil ity, 

residual oil saturation from 74 wells within the limits of the reser

voir, derived from core analyses. In addition, the data set includes 

measurements of water saturation from resistivity logs from 92 wells. 

Water saturations are calculated from resistivity logs using Archie's 

equation for clean sands, and it is considered a good approximation, 

although it may slightly overestimate the actual water saturation when 

sandstones are not particularly clean. It should also be noted that 

porosity measurements from porosity logs are included in the data set 

w h e n  core  measurements are not available. However, log derived 



122 

p o r osities were not used to provide any statistics on porosity. 

Finally, every measurement of the present data set is identified and 

coded with respect to the unit (H, EM, C, Band A) to which it belongs, 

using the first data set. 

5.5 Data Statistics 

Simple statistics in terms of histograms of the data sets are 

presented in this section per variable and unit. Note that unit EM 

representing shales is of no interest and therefore excluded. 

In Figure 5.3 the relative frequency histograms of core sample 

porosity for units H, C, Band A are presented. They appear to follow a 

normal distribution as is usually the case with porosities, although 

units C, Band A exhibit slightly positive skewness. Average porosities 

range from 9 to 11% with standard deviations ranging from 3 to 4%. 

Relative frequency histograms of the log derived water satura

tions are depicted in Figure 5.4. Apparently, water saturations in 

units C, A and B exhibit a slight negative skewness. The distribution 

in unit A with most of the samples over 50% reflects the fact that it is 

mostly below the oil-water contact as it is known from production data 

of pool 1 A 1
• Average water saturations range from 58% ta 70% with 

standard deviations from 10 to 18%. The high average water saturations 

per unit refl ect the f act that the water-oil contact of the reservoi r 
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particularily in the 1 A 1 pool, is not a 1 clear eut' but rather it is 

controlled by the sedimentary facies of the reservoir and is thus quite 

"dispersed" depending on continuity of the facies. 

In Figure 5.5, the relative frequency distributions of core sam

ple residual oil saturation. are shown. Apparently, the distributions 

aremore "flat" and skewed than the ones of the previous variables. Fur

thermore, units H, B and A exhibit a clear bimodality with a large per

centage of samples below 1%. The bimodal behavior of these histograms 

can be explained if one considers the fact that units H, Band A also 

exhibit high water saturations and the data contributing ta bimodality 

most likely represent samples with very high water saturation and no 

hydrocarbons in place. Average residual oil saturations range from 3 ta 

8% with standard deviations from 3 to 5%. 

Final ly, the histograms of the Jogarithmic transform of core 

permeabil ities are presented in Figure 5.6. Relative frequency histo

grams of log-permeabil ity reasonably approximate normal distributions, 

suggesting that permeability, as is commonly the case, is lognormally 

distributed. Average permeabilities range from 10 to 26 md with 

standard deviations from 13 ta 32 md. Statistics of permeability data 

per unit are summarized in Table 5.1. 

The hi stograms of the pertinent vari ab 1 es present some average 

characteristics of the available data. The most important of these is 
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FIGURE 5.3: Relative frequency histograms of core sample porosity · 

per unit of the Crystal field 
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TABLE 5.1 - Summary statistics of core sample permeabilities and log

permeabilities per unit of the Crystal reservoir. 

Unit 

H 

C 

B 

A 

Mean 

19.11 

26.42 

10.91 

10.58 

Permeability Cmd) 

Standard Deviation 

32.13 

29.87 

16.91 

13. 71

Mean 

1.39 

2.60 

1.17 

o. 72

Log-permeability 

Standard Deviation 

2.02 

1.56 

1.81 

1.99 
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that they exhibit unimodal distributions, with the exception of residual 

oil saturation in some of the units. The unimodality of the distribu

tions may be seen as a statistical verification that indeed the sedimen

tary units H, C, B and A represent single populations as far as their 

properties are concerned. It could be suggested that, perhaps, addi

tional units could be defined to accomodate the bimodality of residual 

oil saturation histograms in units H, Band A. This could be done if it 

was possible to clearly identify the oil-water contact. The latter, 

however, is not identifiable because water saturation is not controlled 

by gravity but rather by the sedimentary facies, their interrelations 

and continuity. In addition, further subdivision of the reservoir could 

create other implications such as insufficient data in the new units to 

perform statistical analysis. Finally, it should be noted that the 

IRF-k theory does not impose any restrictions on the data statistics. 

The only exception is permeability as it is later discussed. 

5.6 lnherent Structural Characteristics of the Data 

The average variation patterns (structures) of all pertinent 

variables for each sandstone unit in the Crystal field are quantified, 

in the present section, in the form of genera 1 i zed covariances or 

variograms. 

Fi rst, the order k and coefficients of the correspondi ng gene

ral ized covariances of the tops and bottoms of units H, EM, C, Band A 
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are inferred from .the data using a minimization technique (Davis and 

David, 1978). The corresponding order and coefficients for all units 

are given in Table 5.2. The existing trend in all data sets is linear 

(k=l) most likely reflecting the general south-east dip of the reservoir 

in combination with its north-south channel�like shape. 

The generalized covariances of core sample porosities are calcul

ated for bath the horizontal plane (well ta well) and vertically (down

hole) for every unit. All generalized covariances are inferred from the 

corresponding experimental variograms presented for units H, C, Band A 

in Figures 5.7, 5.8, 5.9 and 5.10 respectively. The experimental vario

grams suggest, in all data sets and directions, the existance of a 

constant trend (k=O). The coefficients of the general ized covariances 

are calculated from the equivalent variograms fitted to the experimental 

variograms and are given in Table 5.3. The experimental variograms also 

i ndi cate the existence of anisotropies expressed wi th the more rapi d 

increase of the variogram values in the vertical variograms than in the 

horizontal ones. This suggests better continuity on the plane, which is 

expected considering the natural near-horizontal stratification of the 

reservoir. Furthermore, experimental variograms exhibit fluctuation 

around the fitted models. In general, such fluctuations reflect either 

simple sampling variations or structural aspects such as the clustering 

or a 1 ternat ion of l ow and hi gh va 1 ues. The fluctuation of the present 

experimental variograms should most likely be attributed to sampling 

variations, since persistant or distinct periodicity do not appear. 
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dual oil saturation in unit C; average horizontal (top) 

and vertical Cbottom) . 
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The ·generalized covariances of log derived water saturations are 

also calculated from experimental variograms depicted in Figures 5.11, 

5.12, 5.13 and 5.14 for units H, C, B and A respectively. As in the 

case of porosities, experimental variograms indicate the existence of 

constant trends (k=O) in all units and directions. In addition, they 

indicate the presence of anisotropies with water saturations varying, on 

average, s l ower from we 11 to we 11 than down-ho 1 e. The coefficients of 

the generalized covariances for water saturations for every unit are 

derived from their equivalent variograms and are summarized in Table 

5.4. 

The experimental variograms of core sample residual oil satura

tion are presented in Figures 5.15, 5.16, 5.17 and 5.18 for units H, C, 

B, and A respectively. They also indicate the presence of bath a cons

tant trend (k=O) and anisotropies. Again, down-hole residual oil satu

ration variograms increase faster than well-to-well ones. The coeffi

cients of the generalized covariances as derived from their equivalent 

variograms are given in Table 5.5. 

Experimental horizontal and vertical variograms of the logarith

mic transforms of core sample permeabilities are calculated for each of 

the units H, C, B and A and presented in Figures 4.6 and 4.7 and 5.19 to 

5.21 respectively. The log-permeabilities are used because this is 

appropriate with lognormal variables (David, 1977), as wel l as due to 

restrictions imposed by the assumptions made in estimating effective 
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TABLE 5.2 - Generalized covariances of the tops and bottoms of the dif

ferent units of the Crystal reservoir. 

Unit 

Top of H 

Top of EM 

Top of C 

Top of B 

Top of A 

Bottom of A 

Orcier 

k 

1 

1 

1 

1 

1 

1 

Nugget Effect 

cô 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

Coefficient Coefficient 

aa 

0.020327 0.000867 

0.031176 0.0 

0.048809 0.0 

0.052577 0.0 

0.032296 0.0 

0.027691 0.000344 
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TABLE 5.3 - Generalized covariances of core sample porosities per unit 

of the Crystal reservoir. 

Unit 0rder Nugget Effect 

cô(*l0 3 )

H 0 0.250 

C 0 0.307 

B 0 0.187 

A 0 0.202 

Coefficient 

Horizontal 

(*10 6 )

0.760 

0.121 

0.797 

0.883 

ao 

Vertical 

(*10 3)

0.946 

0.199 

0.122 

0.131 

Coefficient 
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TABLE 5.4 - Generalized covariances of log derived water saturations per 

unit of the Crystal reservoir. 

Unit Order Nugget Effect 

cô(*l0 3) 

H 0 1.701 

C 0 1.652 

B 0 2.529 

A 0 1.481 

Coefficient 

Horizontal 

(*106)

6.872 

8.571 

0.786 

7.602 

ao 

Vertical 

(*10 3 ) 

1.512 

2.002 

1.449 

1.453 

Coefficient 
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TABLE 5.5 - Generalized covariances of core sample residual oil satura

tion per unit of the Crystal reservoir. 

Unit Order Nugget Effect 

cô(*l0 3)

H 0 0.182 

C 0 0.188 

B 0 0.416 

A 0 0.203 

Coefficient 

Horizontal 

(*106)

0.257 

0.304 

0.536 

0.682 

ao 

Vertical 

( *10 3) 

0.100 

0.112 

0.103 

0.139 

Coefficient 
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permeabilities. All experimental variograms exhibit transition struc

tures with variogram values ·increasing with distance up to an upper 

limit. Subsequently, as distance increases, they exhibit no correlation 

tending towards or osciliating around a value (sill). Transition zones 

are much longer on the plane than vertically, indicating better conti

nuity horizontally in all units. The variogram models of permeability 

are restricted by the theory used in the succeeding paragraphs on perme

ability estimation to exponential ones of the form 

(5.1) 

where o} is the sill or variance of the log-permeability field and À the 

carre 1 at ion sca le equa 1 to a thi rd of the apparent l ength of the tran

sition zone of the experimental variogram. The parameters of the expo

nential models inferred for each unit of the Crystal reservoir are 

presented in Table 5.6. 

5.7 Estimated Block Models of Reservoir-Rock Properties 

The estimation of pertinent reservoir-rock properties is based 

upon the estimation of the boundaries of units H, EM, C, B and A. 

Accordingly these boundaries are first estimated using equations (2.9) 
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TABLE 5.6 - Exponential variogram models of core sample permeabilities 

per unit of the Crystal reservoir. 

Unit 

H 

C 

B 

A 

Correlation distance 

À-horizontal (m) 

150.0 

490.0 

700.0 

600.0 

Correlation distance 

;>,.-vert i ca 1 (m) 

4.0 

1.8 

2.0 

4.0 

Sil 1 

02 
f 

4.04 

2.43 

3. 27

3.96 



153 

and (2.10) and the generalized covariances inferred from the data. Tops 

and bot toms of reservoi r units are estimated on a regular gri d of 38 x 

52 points at 300 x 300 meters grid spacing. The grid spacing is slight

ly larger than the average well spacing within the limits of the Crystal 

'A' and 'H' pools. The estimated tops and bottoms of all Crystal units, 

as we 11 as the associ ated estimation variance, are presented in the 

figures included in Appendix C. Isopachs of Crystal facies are also 

included in Appendix C. 

Estimated models of porosity, permeability, water saturation and 

residual oil saturation at the megascopic scale are created by first 

superimposing over the entire reservoir a regular three-dimensional grid 

with a north-south orientation. The grid set-up is followed by the 

identification of the reservoir unit to which each grid block belongs, 

using the positions in space of the estimated tops and bottoms of the 

units. The grid spacing is 300 x 300 x 1 meters resolution, and is 

selected by considering several factors including the average well 

spacing, the average variation structures of the pertinent variables as 

well as both abilities of reservoir flow simulations and simulation 

strategi es. It shoul d be noted that although several factors must be 

taken into account, a very important criterion, as far as reservoir-rock 

properties are concerned, is their correlation structures. For example, 

in the present study, permeabil ity variograms exhibit transition zones 

on the plane wi th di stances rangi ng from about 450 to 2100 meters. 

Then, in order to express the horizontal variability and continuity of 
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permeability in all units, the horizontal grid resolution should be the 
. 

. 

smallest possible with respect to the minimum apparent correlation 

distance, i.e. the 450 meters in this case. 

Based on the gri d set-up descri bed above, porcs i ty, water and 

residual oil saturations for every black within the limits of the reser

voir and per sandstone unit are estimated using the inferred generalized 

covariances. Estimation proceeds separately for every unit. Cross-

sections from the constructed models showing the variation of each 

variable within the boundaries of each unit are presented for porosity, 

water saturation and residual oil saturation in Figures 5.22, 5.23 and 

5.24 respectively. The corresponding estimation variances are shown in 

Figures 5.25, 5.26 and 5.27. 

The estimation of permeabilities using specialized methodology is 

described in a separate section. 

5.8 Conditionally Simulated Models of Reservoir-Rock Properties 

Candit i ona l s imul ati ons of pertinent propert i es are performed on 

the same grid set-up as in estimation, using the generalized covariance 

of each variable. As is demonstrated by the definition of conditional 

simulation in equation (3.21), the technique consists of an estimate of 

the variable plus a simulated correlation variate. Estimation under 

minimum variance c onstraints, although statistically best, is a 
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FIGURE 5.23: Cross-section from the estimated model of water satura
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FIGURE 5.25: Estimation standard deviations corresponding to the · 
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smoothing operation. Ta the contrary, conditional simulation is an 

attempt ta recons truct:-represent ac tua l fluctuation. Furthermore, the 

variate added ta the estlmate in equation (3.21) is not unique; thus, it 

is possible to generate different conditionally simulated models of the 

same variable. 

The boundaries of the units H, EM, C, B and A are first condi

tionally simulated and two realizations of each are generated. Condi

tionally simulated tops and bottoms of all units are subsequently used 

to identify the unit to which every grid black of the reservoir at the 

megascopic scale belongs to. 

Based on the generated realizations of unit boundaries, two 

rea li zat i ans of each of the variables, paros ity, water and res i dua 1 oil 

saturation for every unit, are generated, represent i ng thei r condi

t i ona l l y simulated models at the megascopic scale. Cross-sections from 

the first realization are depicted in Figures 5.28, 5.29, 5.30 and from 

the second one in Figures 5.31, 5.32, 5.33. Comparison of these cross

sections with the estimated ones graphical ly expresses the difference 

between estimation and conditional simulation. 

Validation of all conditionally simulated variables is performed 

by comparing the generalized covariances of the generated realizations 

ta the corresponding ones inferred from the data and used as input for 

the  simulations. The comparisons for each of the conditional 
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FIGURE 5.28: Cross-section from the first conditionally simulated 

realization of porosity of the Crystal reservoir . 
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FIGURE 5.29; Cross-section from the first conditionally simulated 
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FIGURE 5.30: Cross-section from the first conditiona11y simulated 

realization of residual oil saturation of the Crystal 

reservoir . 
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FIGURE 5.31: Cross-section from the second conditionally simulated 

realization of porosity of the Crystal reservoir 
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FIGURE 5.32: Cross-section from the second conditionally simulated 

realization of water saturation of the Crystal reservoir 1-' 
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FIGURE 5.33: Cross-section from the second conditionally simulated 

realization of residual oil saturation of the Crystal reservoir 
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simulations performed show a good reproduction of the generalized 

covariances. An example is shown in Figure 5.34. Additional figures 

compari ng experimenta l and theoret i cal genera li zed covariances of the 

conditionally simulated variables are included in Appendix O. 

Conditional simulations of reservoir-rock properties are of 

particular importance to reservoir flow simulations. It is standard 

practice ta check the sensitivity of flow simulation results to varia

tion of reservoir-rock input by arbitrarily altering parameter values. 

Conditionally simulated models can provide sound realistic representa

tions of the actual parameter variability, thus providing viable alter

natives as wel l as space for experimentation with other more uncertain 

flow simulation parameters. 

5.9 Determination of the Effective Permeability Tensor 

Permeability is not an intrinsic rock property like the other 

reservoir parameters whose modelling was presented in the previous sec

tions. It is rather an entity arising when an attempt is made to 

describe flow through a porous medium using Darcy 1 s equation and is 

expressed (Bear, 1968) as a second-rank symmetri c tensor whose off

diagonal components reduce ta zero when the principal components of the 

tensor coïncide with the coordinate system, as is usually the case. Due 

to its character, the effective horizontal and vertical permeabilities 

of reservoir blacks cannot be estimated directly from core samples. 
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To this problem, different solutions have been used in different cases 

CDesbarats, 1987; Begg et al., 1985; Begg and King, 1985; Haldorsen 

and Lake, 1982). An additional approach, consistant with the 

methodo l ogy fo 11 owed in th i s s tudy, i s used for the mode 11 i ng of the 

effective  horizontal and vertical permeabil ities in the Crystal 

reservoi r. (See Chapter 4). 

The approach that is followed in the present study is essentially 

a two step process. First, the grid set-up representing the reservoir 

at the megascopic scale, as used previously for the modelling of other 

pertinent variables, is discretized to a much denser grid with a resolu

t ion of 30 x 30 meters hori zonta 11 y and 0. 5 m vert i ca 11 y, so that a 

reservoir black is represented by 200 points at the macroscopic scale. 

Subsequently, the logarithmic transforms of core sample permeabilities 

are conditionally simulated at the macroscopic scale using equation 

(2.18) and the exponential variogram models derived from the data. The 

conditionally simulated models of units H, C, B and A are validated by 

comparing the variograms of each unit to the corresponding rnodel. The 

validation shows that variograms have been well reproduced. In addi

tion, the mean and variance and, in fact, histograms of the data are 

reproduced. The figures cornparing variograrns of the conditionally 

simulated point log-permeabilities and the corresponding histograms are 

included in Appendix E. 
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The effective horizontal and vertical components of the permea

bility tensor at the megascopic scale can be simultaneously reconstruc

ted for any reservoir black from the simulated points within the black 

using an ad-hoc extension of analytical _expressions derived by Gelhar 

and Axness (1983). According to the result� in Chapter 4 it is: 

KE = KE = Kv exp [s 2 (½ - g 1 i) J
1 1 2 2 

K 
E33 

(5.2) 

where KE is the effective permeability, Kv the spatial geometric average

of point permeabilities, and s 2 the variance of simulated points within 

a black. 911 and 933 are functions of the anisotropy ratio calculated 

from charts. 

Using formulae (5.2), the effective horizontal and vertical 

components of reservoir black permeabilities are estimated, using the 

anisotropy ratio of each unit. The anisotropy ratios of units H, C, 8 

and A, derived from the correlation distances of the corresponding 

exponential variograms models, are 37.5, 272, 350 and 150 respectively. 

Cross-sections representi ng the variation of reconstructed horizonta 1 

and vert i ca 1 permeabil it i es of the Crysta 1 reservoi r and withi n the 

estimated boundaries of each unit are depicted in Figures 5.35 and 5.36 

respectively. 
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The derivation of the formulas in equations (5.2) and (5.3) 

imposes certain assumptions. Log transforms of core sample permeabili

ties are considered to follow a normal .distribution and exhibit an ani

sotropie exponential correlation structure. The distributions of log

permeabilities in all units of the Crystal reservoir, as already pointed 

out, approximate normal ones. Furthermore, the exponential variogram 

models fit well to the experimental ones. Ergodicity is an implicit 

assumpt ion of the method used. The operat i ona l. consequence of ergo

di city is that experimental variograms exhibit a sill at larger dis

tances. Apparently, bath horizontal and vertical variograms of permea

bility in all units clearly show an upper bound at larger distances. 

Two additional factors of the methodology followed are the aniso

tropy ratios and the discretization of the reservoir blacks. It is 

evident from equations (5.2) and (5.3) that as the anisotropy ratio 

increases, horizontal and vertical permeabilities tend towards the 

arithmet i c and harmon i c me ans respective l y. It i s therefore expected 

that permeabilities in cases of very large anisotropy ratios such as in 

units C, Band A (p = 150 to 350) tend towards the above means of the 

conditionally simulated points in each black. The effect of discretiza

tion on the results is not clear. It should be noted, however, that 

density of the discretization grid reaches the limits of the available 

hardware. Furthermore, the 200 points corresponding to every reservoir 

black present a statisticaly sufficiently large number to estimate the 

spatial geometric mean of macroscopic permeabilities of the black. 
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The approach. used in mode} l ing effective permeabil.ities of the 

Crystal reservoir is a simple, workable engineering approximation which 

seems to have provided reasonable results and which could be used in 

other reservoirs with similar characteristics. 

5.10 Summary 

In the present study, the complete quantitative-numerical charac

terization of the Crystal Viking reservoir, south-central Alberta, is 

presented and i s based on a comprehens ive qua l itat i ve-geo l ogi cal des

cription. Geological variables including unit boundaries, porosities, 

water and residual oil saturations as well as permeabilities are 

considered. 

An integrated approach is consistantly followed in the context of 

effectively combining quantitative information and quantitative models. 

Integration is founded on two major aspects. First, the natural 

heterogeneit i es of the Crystal reservoi r are recogni zed, l eadi ng to the 

separation of the reservoir into distinct geologically homogeneous units 

(zonation). Second, geostatistical (stochastic) techniques are 

ut il i zed. The 1 atter quant ify natura l i nherent characteri sti es of the 

anisotropies which are directly used in modelling the megascopic spatial 

variability of pertinent variables utilizing the techniques of best, 

minimum variance estimation and conditional simulation. 
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Estimated models capture average variation and provide detailed, 

reliable numerical descriptions of pertinent variables of the Crystal 

reservoir. Thus they will be used as geological input '.to reservoir flow 

simulation, while the associated estimation variances provide a confi

dence measure to be taken into account. The two conditionally simulated 

r e a 1 i z a t ions  generated reproduce the in-situ i nherent fluctuation 

and will provide realistic alternatives in checking the sensitivity of 

flow simulation results to geological reservoir-rock describing input. 

Effective horizontal and vertical permeabil ities at the megas

copic level of representation at Crystal are simultaneously reconstruc

ted using core sample conditional simulation in combination with aver

aging formulae derived from the direct solution of the flow equation. 

The approach used at Crystal is simple, workable, and seems to present a 

reasonable engineering approximation far more elaborate than common 

practices in the Industry. 

The present study on the Crystal Viking fi el d demonstrates a 

methodology based on geostatistical techniques which provide sophisti

cated models in a synergetic effort to improve reservoir description and 

increase the certainty of reservoir representations. It is hoped that 

the methodology presented wil l be found useful in characterizing other 

reservoirs as well. To enhance the usibil ity of the presented metho

dology, and in general geostatistical techniques for numerical reservoir 

description, the problem of geostatistical knowledge transfer using 

expert systems will be examined in the following chapter. 



6. THE EXPERT SYSTEM PERSPECTIVE: A THEORY OF ARTIFICIALLY

INTELLIGENT GEOSTATISTICS

6.1 Introduction 

Geostatistical techniques, in terms of the IRF-k theory, were 

reviewed, developed and applied in the previous chapters. The proper

ti es, abil it i es and advantages of these techniques were demonstrated. 

Furthermore, it was suggested that, since they improve the reliability 

of models describing reservoir-rock properties, they should be used for 

reservoir characterization by the Petroleum Industry. However, when one 

considers the Industry, that is a real life situation, as an inseparable 

guide of theoretical developments, one inevitably is forced to consider 

one add i t i ona 1 rea l ity. Si mp l y, whether the knowl edge and expertise 

required to put geostatistical techniques at work are available and if 

not, to provide a perspective in terms of knowledge transfer. 
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Ta understand the magnitude of the problem of knowledge transfer, 

as far as geostatistics is concerned, one may recall the example of the 

Mining Industry where the experts in the field declare: 11 After twenty 

years of geostatistics, it can be stated that from the technological 

transfer view, .. it .is a quasi-total fai1u·re 11
; (David et al., 1987). 

Considering that the Petroleum Industry has only discovered geostatis

tics in the last few years, one should realize that it is imperative ta 

provide, at least, a perspective for the transfer of the knowledge and 

expertise involved. The latter may be examined in the light of techno

logical developments in the field of Artificial Intelligence and parti

cul arl y the area of Expert Systems. Expert systems are computer pro

grams which contain knowledge in a demain and can therefore be used by 

non-experts ta perform e 1 aborate tasks. They have been used for know-

1 edge transfer in other areas related ta the Petroleum Industry, inclu

di ng we 11-1 og carre lat i ans (01 ea and Davis, 1986; Kuo and Stratzman, 

1987), dipmeter interpretations (Smith and Baker, 1983), sedimentary 

basin classification and resource assessment (Miller, 1986) and recog

nition of sedimentary environments (Shults et al., 1988). 

Expert system technology is suggested here as a perspective for 

geostatistical reservoir characterization. The suggestion, however, is 

not as simple as i t may appear. The rel ated knowl edge i s not a mere 

collection of rules of thumb, as it is, for example when one has to 

correlate the resistivity response of a sequence of rocks as expressed 

by its increase or decrease on well-log curves. Rather, one has to deal 

wi t h  a n  el aborate mathematical model and the intricacies arising 
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not only from the phenomenon ta be studied but also from the model 

i tse lf. It i s therefore necessary that in order- ta provi de a viable 

operational perspective. such as an expert system, one must view geosta

tistics as a model and provide a new expanded view of the model itself, 

upon which new perspectives may be founded·. This is attempted in the 

next paragraphs where the model is not geostastistics but the geostatis

tician as bath a theoretician who develops geostatistical formulations 

and a practitioner dealing with everyday applications, exhibiting 

knowledge and intelligence. 

6.2 Elements of Intelligence in Geostatistics: The Geostatistician 

In scientific developments, theories, formulations, models or 

applications, there is an underlying characteristic expressed. This 

characteristic is intelligence. Intelligence is neither an inherent 

property of a theory, model or solution nor an entity in itself, but 

rather an ability exhibited by the Persan who puts things together based 

on knowledge - understanding of an area of work or problem. It should 

therefore be evident that ta examine the source of intelligence in 

geostatistics, one is bound ta consider the geostatistician as the 

Persan bath developping and using a mathematical model, as well as his 

knowledge in the demain of application. 
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The Geostatistician involved in problem solving may be seen as 

engaged in a series of cognitive processes in order to perform his task. 

These processes are concerned with the effective and competent (i)

selection of the parts of his knowledge relevant to the problem and (ii) 

the combination of them in the process of inventing a solution. If the 

exi st i ng knowl edge i s i nadequate, then knowledge acquired from 

experience in problem solving guides the search for knowledge relevant 

to the problem in hand. At higher levels of difficulty, it may be 

requ i red to i nteract and combine deve l opments from other fie 1 ds with 

geostatistical knowledge to discover new techniques capable of tackling 

the given problem. Next, if a solution has been invented or discovered 

then the results of application are assessed, in a similar manner as 

before, by effectively selecting, combining and comparing different 

pieces of knowledge. If the results are not satisfactory, the above 

processes are repeated taki ng i nto ac cou nt what has been l earned from 

the whole experience. 

From the processes outl ined above, it may be concluded that 

intelligence in geostatistics is the ability of the Geostatistician to 

invent and/or discover as well as assess, by �ffectively selecting and 

combining pieces of relevant knowledge using the relational know-how in 

the domain. Apparently, the source of intelligence in geostatistics 

lies in the dy�amic interaction of the different parts of geostatistical 

knowledge as manipulated and processed by the cognitive tasks that the 

Geostatistician performs. It is therefore necessary to consider geosta

tistical knowledge and furthèr identify its content. 
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Geostatistical knowledge may be seen as including (i) the strict 

stochastic model as it has been developed (Matheron, 1965) and the nume

rous associated techniques; (ii) operational intricacies of the model 

and techniques; (iii) applicational facts related to the field of appli

cation, variable under investigation and particular case study. To 

these, one may add (iv) the relational know-how, that is how all pieces 

of knowledge in (i) ta (iii) are related, interact and could be effi

ciently and effectively combined as well as general methodological know-

1 edge on how to search for a so 1 ut ion, and i nteract wi th other fields 

and developments. To suggest how the above knowledge is being used, one 

must suggest a medium and a form of expression. However, ta do so one 

must first adopt a view of the Geostatistician itself. The latter, as 

it will be further discussed, directs the approach of how geostatistical 

knowledge should be conceptualized. 

To provide scientifically sound formulations, it is necessary not 

only to state the abjects of study such as the Geostatistician with his 

i nte 11 i gence and knowl edge, but al so to provi de the approach that i s 

taken for the study. To put it in more proper terms, a paradigm (Kuhn, 

1970) is needed. The paradigm chosen here is directly adopted from the 

field of Artificial Intelligence, from which the present paper heavily 

borrows. In Artificial Intelligence, the Persan is viewed as a proces

sor of symbols representing knowledge, a processor which exhibits intel-

1 igence by performing various cognitive tasks (Newel l and Simon, 1972, 

1976). Accordingly, it is simply rephrased that the Geostatistician, as 
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being a Person, is viewed as symbolic processor, but specialized rather 

than generic. 

6.3 A Theory of Artificially Intelligent Geostatistics 

Motivation drawn from the pragmatic need to transfer geostatis

tical knowledge and expertise led, in the previous paragraphs, to the 

examination of the intelligence and knowledge of the Geostatistician. 

The latter is conceived �s an abstraction of "collective" knowledge in 

the domain to simultaneously represent a theoretician and a practi

tioner. The focus was impl icitly shifted from the traditional geosta

tistical model expressed in the probabilistic formalism of random func

t ions, to an attempt to concei ve a dif ferent expanded mode 1 where the 

traditional one, although definitive, is clearly not the sole 

attribute. 

Considering the view previously discussed it is possible to cons

truct a theory establishing the abstraction of Geostatistician as a wide 

model of geostatistics, which may ·. be termed "theory of Artificial ly 

Intelligent Geostatistics". "Artificially" should be seen as expressing 

the intent to consider the operational objective of building computer 

systems for geostatistics, while 11 Intelligent 11 signifies the intent to 

tackle deeper analytical objectives of demystifying, clarifying and 

explicating geostatistical knowledge, leading to a better understanding 

of i nte 11 i gence as i s requ i red if ope rational objectives are to be 
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realized. The theory of Artificially Intelligent Geostatistics simply 

states that: 

(i) The Geostatistician is a processor of symbols.

(ii) The Geostatistician performs cognitive processes which can be

expressed as the effective combination of relevant pieces of

knowledge.

(iii) The effective combination of knowledge is guided by relational

knowledge.

Civ) Advice generated from geostatistical knowledge is always followed. 

(v) Results of geostatistical problem solving may be assessed.

The above theory is founded, as explicitly stated, upon the view 

of the Geostatistician as a processor of symbols performing cognitive 

tasks in geostatistical problem solving. This view is in itself neither 

right nor wrong. It is adopted for the same reasons that it is adopted 

in Artificial Intelligence, that is, models with operational conse

quences and uses can be buil t upon it. It i s adopted for the same 

reasons that the Persan is viewed as an economic agent in Economies and 

not a bi o 1 agi cal organi sm as i s vi ewed in Medi cfoe. The theory of 

Artificially Interligent Geostatistics, however, needs like any 

scientific thèory to Ca) unify a number of observations and (b) predict 

new effects that can be experimentally tested. 

The Geostatistician is an instant of the general abstraction 

Persan representing the 11 collective 11 human intelligence. As such it 
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unifies all observations about the Persan as shown in the twenty years 

or more of research in Artificial Intelligence. The theory proposed 

here must also unify observations within the demain of specialization, 

mainly geostatistics. Sorne examples should therefore be considered. 

Suppose that structural analysis is to be performed on porosity 

data from a horizontal sandstone unit representing a fluvial channel 

with northeast-southwest orientation. Several parameters will be consi

dered including the directions at which variograms will be calculated. 

One way is to calculate variograms for many directions. However, the 

geometry and orientation of the sand body may be considered. The 

related knowledge wil l suggest that anisotropy is probably present and 

most likely the major axis of it will follow the major axis of the sand 

body i.e. the northeast. Thus, knowledge on variography and knowledge 

on the given study case are combined by the empirical knowledge that 

relates them. Consider now that. experimental variograms do not exhibit 

clear transition zones. Then histograms of porosity are examined and 

f o u n d t a i l e d t o t h e ri g h t , i n di cati n g th a t out l i ers may ex i s t. 

Exclusion and recalculations are ündertaken to find if, as is very 

common, the new variograms do exhibit structures, which are then related 

to permissible variogram models. Thus, the variogram of porosity of the 

given sandstone unit has been revealed by consistantly using not only 

pieces of geostatistical knowledge but also knowledge on how they are 

related. Apparently, the advice from geostatistical knowledge has always 

been followed. Furthermore, the revealed variogram model can be assessed 

either by a jacknife technique or nei field data, if available. 
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As a second example a real situation taken from the modelling of 

permeability in the previous chapters is considered. Permeability is 

not additive. Therefore estimation of black permeabilities from point 

ones cannot be direct. It is, however, known that point permeabilities 

can be conditionally simulated. Similarly, discretization of volumes is 

also a known procedure. Relating the two, a black can be seen as a 

collection of conditionally simulated point permeabilities. Next, a 

formulation is needed to relate the point permeabilities to the permea

bility of the black. It is known that permeability is an entity arising 

when flow is considered; therefore, it is evident that developments in 

subsurface stochastic hydrology sl1ould be considered. Indeed, 

developments in the latter field provide the formulation to derive the 

permeability of a black. Thus, by combining different pieces of know

ledge as guided by the knowledge of their relations, a new method in 

estimating black permeabilities is discovered. The new method may be 

assessed by using the knowledge of the form�lation or new field data. 

The above examples show that the theory of Artificially Intelligent 

Geostatistics unifies observations on how geostatistical knowledge is 

being used in order for the Geostatistician to discover or invent. 

The same can be concluded by considering any of the numerous published 

papers on geostatistics. The theory must also be able to predict 

effects which can be tested experimental ly. The 1 atter can be demons

trated by the operational dynamic consequences of the theory in the form 

of computer programs whi ch val i date the theory. However, before the 
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dynami c aspects of the theory proposed here are exami ned and examp les 

presented, there are two important aspects to be considered. First, how 

knowledge that is being used is expressed, represented and how it could 

be manipulated, that is processed. 

6.4 Symbolic Realization and Epistemological Aspects of 

Geostatistical Knowledge 

Symbols, or more generally, the symbolic realization of knowledge 

is inherent to the very notion of a processor of symbols (Newell, 1980). 

In the tt1eory of Artificially Intelligent Geostatistics, the Geostatis

tician is therefore bound to operate in a world of symbols representing 

all aspects of his knowledge. This world is a (geostatistical) universe 

of di scourse where everythi ng can be expressed in terms of symbo 1 s 

associated with physical relationships. Symbols and their relation

ships, as for example, one symbol next to another, are symbolic struc

tures which can encode and express knowledge in the universe of 

discourse. Geostatistical symbolic structures consist of elementary 

(primitive) entities such as distance, location, grade, etc., and 

el ementary processes such as addition, power, expectat ion, etc. whi ch 

have a fixed meaning and are not further analysed within the conceptua

lization of the demain. Symbolic structures have referents; in fact, 

thi s i s precisely what makes a combination of tokens (elements) 

symbolic. Referents signify the ability of symbols and symbolic struc

tures to designate. For instance, in geostatistics, the combination of 

the symbolic structure (RANGE, VARIOGRAM-1) and the primitive symbol 

10km designate that the RANGE of VARIOGRAM-1 is 10 km. In addition, 



187 

symbolic structures are interpretive. in the sense that symbols 

designating a process can be performed by the symbolic processor. For 

example, interpretation of the symbolic structure (CALCULATE 

EXPERIMENTAL-VARIOGRAM) des i gnates the process CALCULATE whi ch can be 

performed on the EXPERIMENTAL-VARIOGRAM. 

The symbolic realization provides the medium necessary to express 

knowledge. However, if it is to enhance representation and processing 

of complicated geostatistical symbolic structures, one must consider, in 

an epi sternal ogi cal sen se. broad cl asses of symbol i c structures repre

sent i ng geostatistical conceptual units. Furthermore. one must examine 

the relations of these conceptual units ta provide some basic semantics. 

The above will then provide the means to examine forms that can repre

sent knowledge. Accordingly, four major distinct associative conceptual 

units will be considered, namely concept, description, attribute and 

value. 

Concepts are general formal geosta:tistical symbolic structures 

such as the conception of variogram� estimation, conditional simulation 

etc. For examp le, a spheri cal variogram i s a specifi c des cri pt ion of a 

variogram. Attribute� are also symbolic structures or symbols. A sphe

rical variogram, for example, has range, still, nugget effect, and 

distance as attributes, and conversely these attributes are parts of the 

description of the spherical variogram. · Values correspond to every 

attribute and are specific parts of it, expressed as primitive symbols, 

such as the primitive symbol 10km, whi.ch may be the value of the 
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attribute RANGE. In addition, values may be attached formulae or 

precedures which can be carried out to yield specific values. 

The cons i der·ati on of different con cep tua l units represents an 

abstraction mechanism (Lehnert, 1981). Two kinds of abstraction mecha

nisms may be distinguished (Levesque and Mylopoulos, 1979). The first 

is the distinction of concepts, sub-concepts and descriptions generating 

a taxonomy known as IS-A hierarchy. An IS-A expresses universal quanti

fication. The second abstraction mechanism is the distinction of des

criptions, attributes, and values. These conceptual units generate a 

taxonomy known as PART-OF hierarchy expressing existential quantifi

cation. The significance of the IS-A and PART-OF hierarchies is that 

characteristics and properties of one conceptual unit can be inherited 

by another. For example, one may consider the concept variogram and its 

sub-concept experimenta l vari ogram. From the IS-A hi erarchy one can 

deri ve that an experimenta 1 vari ogram IS-A vari ogram and it therefore 

describes the spatial structure of a variable. Furthermore, the expe

rimental variogram wil 1 inherit a description, say spherical variogram. 

From the PART-OF hierarchy, the experimental variogram with spherical 

description will inherit the existing attributes range, still, nugget 

effect as well as values through some heuristic or algorithmic proce

dure. In addition, the value of an attribute may be a known constant 

(default value), which has been selected according to prior knowledge in 

the domain. 

FinaTly, individual real conceptual units are considered as 

instances of abstract ones. For example, the variogram y(h) = 0.5 is an 



Variogram CONCEPT 

DESCRIPTION 

Range 

Sill 

Nugget eff ect 

INSTANT-OF 

ATTRIBUTE 

10 km 

.07 (%) 
2

.004 (%)
2
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VALUE 

Figure 6.1: Formal geostatistical conceptual units and their semantics. 
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INSTANT-OF the concept variogram, the range 10 km is an INSTANT-OF the 

attribute range, etc. A graphical example of geostatistical conceptual 

units and their formal semantics are presented in Fig. 6.1. 

6.5 Knowledge Representation and Inference 

The paramount aspect of the realization of knowledge as a collec

tion of symbolic structures is that it can be represented. Then infe

rence of new know·1 edge can be attai ned. The most common representation 

of knowledge is in the form of predicate calculus as developed in logic 

(Kleene, 1967). Predicate calculus consists of formulas and every 

legitimate (syntacticly and semanticly valid) expression is called a 

well formulated formula (wff). Wff 1 s are made of elementary (atomic) 

formulas consisting of predicates and arguments. For example, to express 

the relation between an individual range, say RANGE-1, and the concep

tual units of range, spherical variogram and variogram, we may write the 

atomic formulas: 

(INSTANCE-OF RANGE-1 RANGE) 

(PART-OF RANGE SPHERICAL-VARIOGRAM) 

(IS-A SPHERICAL-VARIOGRAM VARtOGRAMY 

Atomic formulae can be connected with connectives and quantified 

with quantifiers. Connectives are the conjunction (A), disjunction 

(V), negation c-,), implication (➔), and equivalence(-). Quanti fiers 

are the existential ( 3) and the universal (\1). In addition, predi-

cate calculus permits the use of variables. Consequently, complex 
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statements can be expressed. For example, we may express that every 

spherical variogram has sill, range, and possibly nugget effect in the 

form of a wff as follows: 

(Vx) (IS7A x S�ERICAL-VARIOGRAM) ➔ 

3 y (IS-A y RANGE) A 

3 z (IS-A z SILL) A 

3 u (IS-A u NUGGET-EFFECT) V 

--, u (IS-A u NUGGET-EFFECT)) 

Knowledge is also represented by semantic (associative) networks 

(Brachman, 1979; Shapiro, 1971; and others). Semantic networks consist 

of nodes representing conceptual units and arcs Cl inks) between the 

nodes whi ch correspond to re 1 at ions. The knowl edge represented pre

vi ous l y in the form of predicate atomic formula can, for example, be 

represented in a semantic network as follows: 

VARIOGRAM 

IS-A 

SPHERICAL-VARIOGRAM 
PART-OF 

� 

INSTANCE-OF 

RANGE-1 
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Networks may also be partitioned CHendrix, 1979) into subnets (spaces) 

which can be considered separately, increasing the usability of network. 

Frames (Minsky, 1975; Aikins, 1983) are special structures which tie 

together associated conceptual units and relations as well as instances. 

They are equivalent to a collection of semantic network nodes and arcs 

that describe a particular relation. For example, a frame describing a 

spherical variogram may be as follows: 

(SPHERICAL-VARIOGRAM (HAS-A RANGE) 

CHAS-A SILL) 

CHAS-A NUGGET-EFFECT)) 

Knowledge is very commonly represented in the form of rules 

(Buchman and Shortliffe, 1984). Rules are conditional statements which 

consist of antecedent-consequent symbolic pairs in the general form: 

The condition for the validity rule is that it must be bath syntacti

cally and symbolically valid. Rules can capture·empirical and judg-

mental knowledge in .a universe of discourse. They express causal 

re 1 at i ans between antecedents and consequents; however, they do not in 

general include formal justifications. In general, rules do not repre

sent in context explicitly stated knowledge in the domain (Clancey, 

1983a). However, they can be grouped together on the bas i s of context 
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to represent ,knowledge explicitly. The latter may be obtained by 

combining rules and frames. In general, combinat ions of different 

knowledge representations (multiple representation) can be used to 

capture the knowledge in a universe of discourse. Furthermore, it is 

suggested that special attention should be paid in the representation 

schemes that are functionally more suitable to express geostatistical 

knowledge. 

Knowledge represented in some form can be processed to infer new 

knowl edge. The most common i nference i s deduct ion. Oeduct ion i s seen 

in formal logic (Kowalski, 1979), as being based on a set of axioms 

(truths) from which new axioms are derived using formal rules of infe

rence. Deduction is a sound inference which means that every deduction 

is correct. The most simple rules of inference are: 

l)modus ponens;

given 

2)modus tolens;

given 

x \ deduce y 

X ➔ y) 

x ➔ deduce -x ➔ -y
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3)universal specification:

given 

More general rules of inference also exist, which subsume the simpler 

ones. The most general rule of inference is resolution (Robinson, 1965), 

presented extensively by Nilsson (1980) and Loveland (1978). Resolution 

i s a camp l ete rul e of i nference, whi ch means that if an axi om can be 

deduced from a set of axioms, then resolution will prove it. Rules of 

inference and particularly resolution are subject ta operational 

problems such as combinatorial explosion and halting (Winston, 1983). 

Although formal logic provides significant rules of inference. it 

is not always the best or unique inference medium. Inference can be. in 

addition. formulated in the form of search (Nilsson. 1989; Gardner, 

1981). Accordingly, a desired solution is seen as a goal and possible 

steps to achieve the goal as states. The search based on heuristics is 

performed to find the steps leading ta the goal. For example, if it has 

geen decided that an experimental variogram has a specific sill, range 
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and nugget effect, the solution of the problem of fitting one of the 

appropriate models can be formulated as search in which the goal is ta 

fit a model and the steps are to try the different available models. 

Search can then be performed by using a heuristic function measuring the 

goodness of fit of every possible variogram model. Search is also based 

on deduct ion as we 11 as other ki nds of i nference such as abduction 

(Pop le, 1973) and induction (Brown, 1973). Abduction is, in simple 

terms, expressed by the relation: 

given A ➔ 

8

B (

J abduct A 

Induction represents the derivation of general izations from specific 

facts applying to individual instances. Bath abduction and induction 

are not sound kinds of inference and are guided by heuristics. 

6.6 Dynamic Aspects of the Theory: The Explicit Knowledge Formalism 

The theory of Artifically Intelligent Geostatistics is a ration

alization of the performing Geostatistician. As such, it incorporates 

dynami c aspects, that i s, ope rational mode l s in the form of computer 

systems that can be buil t to exhi bit what the theory ca 11 s for. In 

fact, operational models constitute the predictive aspect of the theory 

and are the new effects which can be experimentally tested. 

The ope rat i anal forma li sm express i ng the dynami c aspects of the 
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theory and a t the s ame t i me an i nseparab le part of it, i s termed the 

explicit knowledge formalism. The formalism calls for computer systems 

which contain, explicitly, geostatistical knowledge in all its types and 

aspects as previously discussed. 

Ta further elaborate on the explicit knowledge formalism one may 

first consider conventional geostatistical programs which, like any 

other conventional program, are based on the scheme: 

INPUT ➔ METHOD ➔ OUTPUT (6.1) 

where method i s a numeri cal a 1 gori thm and INPUT, OUTPUT sets of nume

ri cal values. This scheme may be seen as posess i ng some knowl edge on 

how to follow-perform a geostatistical procedure which can be carried 

out or not. However, the program does not have any I consciousness I of 

what the input is, what the output represents or what the meaning of the 

operation it is designed to perform is about. Traditional programs as 

in (6.1) are, however, consistent with the traditional conception of 

geostatistics as a strict probabilistic model. They are designed to 

carry out the calculations geostatistical theory requires for its 

application, and in this sense fulfill their objectîves. The explicit 

knowledge formal ism as the operational side of an expanded geostatis

tical theory provides a different objective: this objective is to build 

geostati stical expert systems having al 1 types of geostatistical know

ledge is part of them and accordingly the ability to create, modify, 

reproduce or copy and destroy geostatistical knowledge. 
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The exp li ci t knowl edge forma li sm i ntegrates the fo 11 owi ng: ( i)

a 11 types and aspects of geos tat i s t i cal knowl edge; Ci i) symbo li c, non

al gori thmi c methods for knowledge representation, inference and rea

soning; and (iii) numerical data processing. It can therefore provide 

a new formulation of geostatistical programs in the scheme: 

INFORMATION ➔ SYSTEM ➔ JUSTIFIED RESULTS (6.2) 

where INFORMATION is simple general information on a specific applica

tion; JUSTIFIED RESULTS is the output including numerical results, 

interpretations, evaluations as well as a detailed account of the steps 

followed, knowledge involved together with full explanations and reaso

ning; SYSTEM is a collection of a storage of different kinds of geosta

tistical knowledge and an engine for the processing of knowledge. 

Traditional programs as in scheme (6.1) one part of SYSTEM as simple 

attached procedures used to returned numeri cal values needed for geo

stati st i cal attributes (recall previous presentation of conceptual units 

also depicted in Fig. 6.1). 

Implementation of systems according to scheme (2) one critically 

contra 11 ed by: 

a) Theoretical foundations.

b) The acquisition of geostatistical knowledge and particularly the

expertise for problem-solving in the domain.
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c) The functional representation of geostatistical knowledge.

d) The inference mechanism (engine) for geostatistical knowledge

processing.

e) The interface to the user of the collection of the required

information and transformation of it to a processable form

(representation).

f) The interface to conventi ona l subrouti nes for cal cul at ion of

specific values, results evaluation and interpretation.

6.7 BOU-1: A Prototypical Experimental System 

BOU-1 is an experimental system entirely based on the theory 

presented in the previ ous paragraphs. It represents an exp l oratory 

attempt to investigate the feasibility of larger geostatistical systems, 

study aspects related to geostatistical knowledge representation, and 

finally evaluate the theory upon which it is based. In this sense, the 

calculation of experimental variograms which the system is able to 

perform or some further evaluation on variogram models is not its main 

contribution because it was never meant to be. What are indeed impor

tant are the properties the system has. that is essentially the knowled

ge it can contain, use and how it proceeds. 

BOU-1 is implemented in Golden Common LISP (Gold Hill Computers, 
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1986) available on PCs. The choice of LISP (Charniack et et., 1980) 

as the programming language is based on the facts that LISP provides a 

very flexible and relatively fast environment for symbolic manipula

tions, it is interpretive and is featured by functional modularity. 

Pros and cons of different programming languages for symbolic manipula

tions from an implementational point of view are discussed by Forsyth 

(1984a). 

As a knowledge-based system, BOU-1 schematically consists of 

(Figure 6.2) Ca) the knowledge-base which is the system 1 s storage of 

symbolically represented knowledge about geostatistical domain subjects, 

namely calculation and evaluation of experimental variograms; (b) the 

inference mechanism which structurally controls the processing of the 

knowledge base; (c) interface with subroutine VARI03 (Geostat Systems 

International Inc., 1983) for variogram calculation; Cd) the user inter

face for the collection of information; and (e) a 1
1 blackboard 11 where 

numerical values of global variables are stored and accessed during 

consultat i ans. 

Multiple representation is used in BOU-1. Accordingly, knowledge 

is represented by rules, frames and networks. Rules consist of an IF 

(antecedent) and a THEN Cconsequent) part (Figure 6.3) and are used to 

capture empirical relationships among entities in the geostatistical 

domain. On the basis of content, fules can be disinguished as inferen

tial and control. The former are directly related to the inference 

process, while the latter are directly related to the flow of the sys-
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Figure 6.2: Main parts of BOU-1. Arrows indicate information flow. 



(RULE 2-no-of-directions (IF (No-OF-SAMPLES is less than 150) 
(No-OF-SAMPLES is greater than 75) 
(PREFERENCE-IN-DIRECTION is NO) 

(THEN (No-OF-DIRECTIONS-NOIR is 4))) 

(RULE 2-Check-no-of-pairs (IF (No-OF-DIRECTIONS-NOIR is 1) 
(No-OF-PAIRS is greater than 49) 
(No-OF PAIRS is less than 100)) 

Figure 6.3: 

(THEN (TIME TO STOP) 
(FINISH PART-2))) 

Sample rules from the knowledge-base of BOU-1. 
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tem. Bath contextually and operationally, rules are classified into 

three groups. The first includes rules related to the initialization of 

the numeri cal values for the parameters needed to execute subrout i ne 

VARI03; the second, rules related to the evaluation of the results that 

VARI03 returns and; the last, rules related to the quantification of 

characteristics of the experimental variogram. Frames, implemented as 

nested association lists (Winston and Horn, 1985), are used to store and 

retrieve the current values of parameters for the execution of subrou

tine VARI03, as well as describe taxonomie relations between concepts, 

descriptions, attributes, and values in the domain. Frames consist of 

their name, slots, facets, and values as shown in Figure 6.4. Simple 

networks (Figure 6.5) are used to transform or deduce facts from the 

information the user provides. 

The i nference process in B0U-1 proceeds in a forward-chai ni ng 

fashion. Antecedents are matched against facts, rules trigger, conse

quents are new facts added to the initial ones, matching is repeated and 

so on until no rule triggers. The process is implemented using rules 

and facts in the form of lists which flow through algorithmically inter

connected and i nvoked fun et i ans. Confl i et i ng faèts ·common 1 y deduced 

during consultation of the system are treated by always retaining the 

latest deduction and discarding the earlier fdr truth maintenance. 

The control structure of the system is simple. The system 

executes the top task on an agenda as defi ned wi thi n the program, and 

then proceeds with the execution of the second one. A task corresponds 



(INPUT-FOR-VARI03 (No-OF-DIRECTIONS-NOIR (MUST-BE-SET-TO 4) 
(MUST-BE-SET-TO 10) (MAX-STEP-STEP 

• 

• 

• 

• 

(FPUT 1 2D-GEOMETRICALLY-ANISOTROPIC-3DV I NUGGET-EFFECT I IS (* O. 5 
(+ NUGGET-1 NUGGET-V))) 

(FPUT 1 2D-GEOMETRICALLY-ANISOTROPIC-3DV 1 SILL 'IS (* 0.5 (+ SILL-1 

SILL-V))) 

(FPUT 1 20-GEOMETRICALLY-ANISOTROPIC-3DV 'RANGE 1 IS (MAX RANGE-1 

RANGE-V)) 

(FPUT 1 20-GEOMETRICALLY-ANISOTROPIC-3DV 1 ANISOTROPY-RATIO 1 IS 
(/ (MAX RANGE-1 RANGE-V) 
(MIN RANGE-1 RANGE-V)) 

CFPUT 1 20-GEOMETRICALLY-ANISOTROPIC-3DV 'DISTANCE 'IS 1 FUNCTION-OF 
ANISOTROPY-RATIO) 

Figure 6.4: Simple frame structures as used in BOU-1. 
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Do you want the data to be printed back? 

1 

204 

l y 

(ECHO-PRINT-IECHO is NO) (ECHO-PRINT-IEYHO is YES) 

Do you want only points 
inside the area selected 

.--------------for variogram calcula
tian to be printed 

N 

(ONLY-IN-AREA-POINTS is NO) 
l y

(ONLY-IN-AREA-POINTS is YES) 

Figure 6.5: Sample network used to transform information to 
processable by system facts. 
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to an operational part of the system. Three such parts are distin

guished. The first deals with the initialization of the parameters 

critical for the run of subroutine VARI03, the second with the evalua

tion of the results of the run and the third with the suggestion of the 

characteristics of a possible variogram model. 

gned that tasks can be repeated if requi red. 

The system is sa desi

Thi s i s done through 

control rules and it is required in the second part if the results from 

VARI03 are not considered by the system as satisfactory. The control 

flow of the system is given in Figure 6.6. 

A consultation session with B0U-1 proceeds with the system asking 

simple questions as in Figure 6.7. Then the parameters for running 

VARI03 are chosen and reported to the user as in Figure 6.8. Explana

tions in the choice of the parameters are also provided (Figure 6.9). 

Next VARI03 is executed, the results are evaluated and if satisfactory, 

the system asks the user to give some simple judgments on the experi

mental variograms (Figures 6.10 and 6.11). Then B0U-1 evaluates the 

experimental variograms. Results (Figure 6.12 and 6.13) and expla

nations (Figure 6.14) complete the session with B0U-1. 

B0U-1 is a prototypical experiment in the perspective of automa

ting geostatistical operations. As an experiment, it has shown that 

geostatistical knowledge can be well represented in the form of rules, 

frames, and networks. It would be interesting, in future developments of 

the system, to examine the possibility of using more generalized forms 

for the representation of empirical relations such as 11 covering sets" 



Collection of Initial Information 

----➔ Transformation of Information to Facts 

l 
Triggering of Rules 

l 
Inference of Values and Update of Frames 

Explanations-Reasoning 

l 
Summary of Results --- ➔ Termination 

l 
Collection of Information 

Figure 6.6: Overview of control fl�w in BOU-1. 
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Are we dealing with more than one variable? 

Are we dealing with two dimensional data? 

Give me the minimum X coordinate: 770.0 

Give me the maximum X coordinate: 882.5 

Give me the minimum Y coordinate: 730.0 

Give me the maximum Y coordinate: 817.6 

How many samples are involved: 112 

(Y or N) 

(Y or N) 
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No 

Yes 

Figure 6.7: Sample questions asked by BOU-1 for the collection of 
initial information. 



Dear Roussas, I have reached the following conclusions for 

PART-1 according to what you have just told me. If you need more 

explanation, you can just ask me. 

Figure 6.8: 

(IECHO IS 1) 

( IACM IS 0) 

CIVERT rs 0) 

(ZOMAX IS 0) 

(ZMIN IS 0) 

(ZMAX rs 0) 

(NO-OF-DIRECTION-NOIR IS 4) 

Sorne conclusions reached by BOU-1. 
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Do you want to know why: (Y or N) Yes 

Rule 2: 2-NO-OF-DIRECTIONS 

- concludes: (NO-OF-FIRECTIONS-NDIR IS 4) 

- because: (PREFERENCE-IN-DIRECTION IS NO) 

(NO-OF-SAMPLES IS GREATER THAN 75) 

(NO-OF-SAMPLES IS LESS THAN 150) 

Figure 6.9: Sample of explanations provided by BOU-1. 
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Figure 6.10: Experimental variograms, calculated by BOU-1. 



Are you ready to continue with PART-2? (Y or N) Yes 

Experimental variograms have been calculated in the directions: 
(0 45 90 135) 

Give me your estimates of the nugget effects in all directions in a 
list form - in the same order as above: 

(0,11 0,11 0,10 0,12) 

Give me your estimates of the sills in all directions in a list 
form - same order as above: 

(0,32 0,30 0,33 0,33) 

Give me your estimates of the ranges in all directions in a list 
form - same as above: 

(17,2 18,0 17,5 17,0) 

Figure 6.11: Questiohs BOU-1 is asking the us�r in PART-2. 
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Dear ROUSSOS, I have reached the following conclusions for 
PART-2 according ta what you have just told me. If you need more 
explanations you can just talk tome: 

(VARIOGRAM-MODEL IS 30-ISOTROPIC-20V) 

(SET VARIOGRAM-MODEL-FRAME NSR-FRAME) 

(FINISH 'PART-2) 

Figure 6.12: Report of deductions in PART-2. 
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I have concluded PART-2 and now I will give you a summary of my 
conclusions. 

The variogram model: 40-ISOTROPIC-2DV 

WHERE 

- the value of the NUGGET-EFFECT is: 0.11

- the value of the SILL is: 0.32 

- the value of the RANGE is: 17.425 

Figure 6.13: Conclusions of a consultation with BOU-1. 



Do you want ta know why? (Y or N) Yes 

Rule: 8-4D-ISOTROPY-20-VARIOGRAM 

- concludes: (VARIOGRAM-MODEL IS 4D-ISOTROPIC-2DV) 

(SET VARIOGRAM-MODEL-FRAME NSR-FRAME) 

(FINISH 'PART-2) 

- because (RANGES ARE EQUIVALENT IN ALL DIRECTIONS) 

(SILLS ARRE EQUIVALENT IN ALL DIRECTIONS) 

(NUGGETS-EFFECTS ARE EQUIVALENT IN ALL DIRECTIONS) 

(2D-IVERT IS YES) 

(NO-OF-DIRECTIONS-NOIR IS 4) 

Figure 6.14: Explanations on deductions made in PART-2. 
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(Reggia et al.. 1983) as a substitute for rules. Frames are shown 

to be more appropriate to represent conceptual units and their formal 

relations from the geostatistical theory as well as situational-prototy

pical knowledge in the demain. Frames could also be used to control the 

agenda of tasks that a larger geostatistical system will execute and 

possibly ta group and classify rules in a contextual manner. Networks 

were found particularly flexible in transforming user provided informa

tion to facts processable by the system. It has been realized that net

works could be used ta guide the collection of information and reason 

about why a specific question is asked at different stages of the opera

tian of a large system. Furthermore, networks could direct the classi

fication of different cases of deposit and regionalized variables that 

may need special treatment by the system. 

The current inference engine of BOU-1 can easily be expanded to 

process more advanced knowl edge structures. A backward-chai ni ng i nfe

rence function could be added, although its need has not been obvious so 

far. In addition, the inference engine could be expanded ta augment 

multiple representation with separate reasoning processes for every 

representational scheme in the direction of a hybrid representation and 

reasoni ng engi ne (Brachman et al., 1985; Vilain, 1985). Probabil i s

t i c reasoning for uncertain information could also be implemented in a 

Bayesian type formalism (Duta et ·a1 .. 1978), fuzzy logic (Zadeh, 

1965) or other formalisms of non-classic logic (Mandani and Efstathiou, 

1984). However, questions about the operational meaning of probabilis

tic reasoning have been raised (Forsyth, 1974b). 
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The system BOU-1 presented in the previ ous section has some 

significant properties and abilities with respect ta the theory of arti

ficially intelligent geostatistics. First, it undoubtedly represents a 

processor of symbols, possessing and manipulating geostatistical demain 

knowl edge in different forms. Second, the tasks it performs are based 

upon the combination of relevant pieces of knowledge. for example, dif

ferent parts of the knowledge base are used for the task of initializing 

the input of subroutine VARI03 than for the task of evaluating the 

results. Third, pieces of knowledge are related by relational knowled

ge. For example (Figure 6.3), different pieces of knowledge from expe

ri ence, i.e. the number of samp les and the number of direct i ans to 

calculate variograms are related in the form of a rule, and in another 

rule the number of directions is related ta the pairs of samples used ta 

calculate points of the èxperimental variogram. Finally, the system has 

the abil ity ta assess resul ts; for examp le, the experimenta l vari ograms 

are assessed in terms of the number of pairs used in the calculation of 

the first variogram point. In short, BOU-i has all the properties that 

the theory calls for. 

A campa ri son may al sa be cons i dered. Gi ven a set of data on 

porosity from a petroleum reservoir, experimental variograms are calcul

ated independantly by BOU-1 and·a geostatistician. As it is depicted in 

Figure 6.15, the experimental variograms are very similar, due to the 

fact that similar parameters have been used for their calculations. The 
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main difference is that the geostatistician used a step of 350 meters 

while BOU-1 used 500 meters. Although the task is simple, the compa

rison demonstrates the viability of building systems compatible to 

geostatisticians. In addition, BOU-1 verifies the proposed theory. 

BOU-1 is at present the only system based on the theory proposed 

here. It is evident that more such systems will provide a more exten

sive verification. It should, in addition, be pointed out that BOU-1 

represents a prediction that new systems can be built from the proposed 

theory. 

6.9 Summary 

Recognizing the need for transfer of geostatistical knowledge and 

expertise, a theory of Artificially Intelligent geostatistics has been 

proposed following the paradigm in the field.of Artificial Intelligence. 

Accordingly, thè Geostatistician is perceived as a processor of symbols, 

effectively combining all aspects of geostatistical knowledge repre

sented by these symbols, in order to invent or discover. The opera

tional side of the theory is termed explicit knowledge formalism and it 

is an integration of geostatistical knowledge, symbolic non-algorithmic 

techniques, and numerical data processing. An example has been pre

sented in the form of an experimental system for calculation and evalua

tion of experimental variograms. The properties and abilities in 

representi ng and process i ng knowl edge of the presented system support 
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the proposed theory; however, more systems are needed to sufficiently 

validate the theory. 

The theory presented represents a perspective for the future 

development of geostatistical expert systems which can indeed provide 

the required transfer of knowledge and expertise in the Petroleum Indus

try as well as other areas of application of geostatistics. It should 

be, however, pointed out that the building of expert systems is not the 

goal of the presented theory. Expert systems are only the embodyment of 

the current (at each time) state of knowledge, technology, understanding 

and theoretical developments. The real goal is to further understand, 

explicate, demystify and comprehend geostatistical knowledge and skills, 

which in turn will be reflected upon the building of expert systems. 



7. CONCLUSIONS AND RECOMMENDATIONS

The aim of this study was ta present the conditional simulation 

of IRF-k, viewed as the generalization of geostatistical theory, in the 

quantitative-numerical characterization of petroleum reservoirs, and 

furthermore to provide a perspective for the transfer of the knowledge 

and expertise involved. 

Following the specific objectives set in Chapter 1, the nature of 

reservoir properties was investigated and tl1e basic elements of the 

IRF-k theory were presented indicating the suitability of geostatistical 

methods for model 1 i ng reservoi r-rock vari ab 1 es. The technique for the 

conditional simulation of IRF-k was fully developed showing that non

stationary phenomena such as reservoir variables can be conditionally 

simulated to reproduce bath available data and data structures as 

expressed by their generalized covariances. The modelling of permeabi

lity was also examined and a new approximate approach was proposed. 

Although thé approach has limitations, it represents an improvement over 

pract i ces in the Industry and coul d be found usefu1 in reservoi rs with 

good geological control and characteristics satisfying theoretical 

requirements imposed by the method. 
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Geostatistical techniques were used for the quantitative-numeri

ca l characteri zat ion of the Crystal Viking reservoi r in south-centra l 

Alberta. Every unit of the reservoir was modelled separately. The 

quantification of variation patterns in terms of generalized covariances 

or variograms was used to subsequently estimate and conditionally simu

late all pertinent variables. The produced models are intended ta be 

used as input to reservoir flow simulations by the company operating the 

reservoir. 

Finally, a perspective for building geostatistical expert systems 

was provided as the dynamic aspect of the theory of artificially intel

ligent geostatistics. The theory and an example suggest that indeed the 

perspective provided is realistic and feasible. 

The major conclusions that can be drawn from this study are that 

geostatistical techniques have properties of particular interest and 

importance to reservoi r characteri zat ion. They ( i) quantify i nherent 

geological reservoir properties such as zonation, continuity, trends and 

anisotropies; (ii) provide, directly from the scale of core and log data 

to the scale of the reservoir block model, unbiased estimates of 

reservoir-rock properties ta be used as geological input to reservoir 

flow simulation studies; (iii) generate conditionally simulated repre

sentations of pertinent variables reproducing in-situ fluctuation of 

propert i es, to be used to check the sens i t i vi ty of fl ow s imul at ion 

results to geological input; and (iv) can be transfered in the form of 

computer systems to be used by non-geostatisticians. 
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Several research subjects remain open ta future developments, 

the major ones are emphasized next. 

The problem of permeability estimation remains largely unsolved. 

Future research could be directed ta study the quantity of flow, ta 

somehow 'by pass' the estimation of permeability. Another direction 

could be ta consider fractal pore geometry and related flow equations. 

Reservoir-rock properties change as reservoir exploitation 

proceeds. It would be interesting to consider the development of tech

niques which could account for such changes given that laboratory data 

on physico-chernical alterations within the reservoir are available. 

Qualitative information is often available in oil reservoirs. 

Techniques to account for this information such as Bayesian or Fuzzy 

geostatistics could be considered and assessed. 

The expert system perspective opens a new area of research and 

developments. One area is research on the level of the Geostatistician, 

which could lead to better understanding and demystifying geostatistical 

knowledge, as well as explicate geostatistical skills. A second area of 

research includes the development of geostatistical expert systems for 

reservoir characterization. Such systems coul d be seen to contai n, 
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along with geostatistical expertise, information on groups or oil plays, 

that is families of genetically related reservoirs in a sedimentary 

basin. This information could be used ta guide reservoir characteriza

tion of a given oil pool even in the case that the available well data 

are not sufficient. 
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Let WP(x) be the pth integration of the Wiener-Levy process W
0
(x)

n R1
, in the sense of Eq. (7). The latter equation gives 

= 
WP_1(x), or

WP(x) = J
x WP_1Cu) du.

0 

)(x) is an IRF-k and the corresponding GI-k is 

W k+ 1 • i bk Cx,h,p) = L (-1)1 ck+l WP(x+ih)
i =O 

, applying (Al), Eq. CA2) writes 

b� (x,h,p) 
k+l . i 

Jx+ih= L C-1) 1 ck+l wp-l Cu) du
i=O X 

(Al) 

(A2) 

k + 1 . i J X k + 1 k + 1 · j J X+; h 
L C-1)1 ck+l wp-l Cu) du + ï ï C-l)J ck+l . wp-l Cu) du CA3)

i=O o i=l j=l x+(1-l)h 

k+l . ; 1t I C-1)1 ck+l = o. and
i =O 

k+l 
C-l)j j 

k 
C-l)jI Ck+l = I 

j=i j=i 

= (-1) k+l

j-1 k 
C-l)jCk + 

j=i 

k-1
- l (-l)Q CQ + 
Q=i-1 k 

cj + 
k (-1) k+ 1

k 
(-l)j cjI 

j=i k



nserting the last two equations into Eq. (A3) one gets 

k+l 
�� (x ,h,p) = I (-1); c�-l Jx+ih W 1 (u) du

i=l x+(i-l)h 
p-

Let 

then 

k= - I (-l)i ci Jxth W (u+ih) du 
i=O k 

x 
p-l 

= _ 
J

x+h Aw < h l) d uk-1 u, ,p- u.
X 

(A4) 

(A5) 

k+ 1 k+ 1 . +. ; . 
PPP = I I <-1) 1 

J ck+l c�+l kp<<i-j)h). <A6) 
i =O j=O 

, applying Eq. (A4) onto Eq. (A5) one obtains 

p = J
xth du Jxth dv E[tw (u,h,p-1) tw (v,h,p-l)Jpp X X k-1 k-1 

this point Appendix Bis used to get 
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2k 
ppp

= (-l)k Jx+h du Jx+h dv L (-l)i c1
k 

kp-l Cv-u-kh+ih) (A?)
X X i=O 

By applying Eq. (A4) twice, first in terms of kp-l (.) and then in
erms of I1 kp-l (.) one finds

k+ 1 k+ 1 . . i j 
= - I I c-1> 1 +J c

k+l c
k+l I2 kp-l cci-j)h) CAB) 

i =O j =O 

1ere Appendix B has been used. Comparing equations (A6) and (AB) one gets 

(A9) 

· by applying (A9) several times

(AlO) 

ich is the GC-k corresponding to the WP(x). In order to find now the
oss-GC of two IRF WP(x) and Wq(x) let us take p � q, so that Wq(x) can be
nsidered an IRF-p also. Then 

PPP
= E[�� (x,h,p) �� (x,h,q)J (Al1) 



k+ 1 k+ 1 . + . ; . 
= I I c-1) 1 

J ck+l ci+i kpq (<i-j)h). (A12) 
i =O j=O 
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By applying Eq. (A4) Q = p-q times on�� (x , h ,p) of Eq. (All) one 
ets 

k+l-Q k+l ; j = e I I <-l)i+j ck+l-Q ck+l kq (u1-x+Ci-j)h), (A13) 
Q i=O j=O 

here Sn= (-l) Q Jx+h du 
X 

X 
Q J

uz+h du1 . By using Appendix Bonce more
U2 

nd b y  applying Eq. (A4) Q = p-q times in terms of kq (.) one obtains

�. taking Appendix B into account 

k+l k+l ·+· i j P = I I C-1) 1 J ck+l ck+l I
Q 

kq (u1-x+(i-j)h) (A14) pq i =O j=O 

)mparing equations (A12) and (Al4) one finds 

(Al5) 

F K
0
(h) = -wlhl, Eq. (AlO) and (A15) yield respectively 



= (-l ) q+l wlhl 2q+l

(2q+l)! 

= (-l)
q+l wlhl p+q+l

(p+q+l) ! 
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(Al6) 

(Al7) 
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It will be demonstrated that for a function f(x) and j and k

tegers, the following relation holds 

1 
0 q=O 

r'lever, 

P+q 
p q 

(-1) C C f(x+(p-q)h) 
j+k r 

= (-l)
k L (-l)

r 
C f(x+(r-k)h) 

j k r=O j+k

Indeed if Pis the left hand side of Eq. (81) and n=p-q 

j j-n

P = l (-l)
n l 

n=-k q=O 

j-n n+q n+k

1 c� c
J
. = c 

q=O j+k

q n+q 

C C 

k j 

f (x+n l1) 

j hence 

P = 1 
n=-k

n+k

(-l)
n C f(x+nh) 

j+k 

ich by setting r=n+k concludes 

j-k r 
P = 1 (-l)

r-k C f(x+(r-k)h) 
r=O j+k

j+k r 
= (-l)

k l (-l)
r

C f(x+(r-k)h) 
r=O j+k

(81)
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CONOITIONALLY SIMULATED REALIZATION OF THE CRYSTAL UNITS AND HISTOGRAMS OF 

REALIZATIONS 
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6-6 Simuloted Reolizotion (3315 points) 
---- Theoreticol 

0.000 ------------�-----------�_, 

0 1000 2000 

DISTANCE (h) - m 

w 
0 
1-' 



6.000 

5.000 

4.000 -

,,,---..,. 
..C 3.000 -

<( 

2 

2 2.000 -
<( 
G 

POINT LOG-PERMEABILITY UNIT A - VERT. 

Di.-Di. Simulated Realization (3315 points) 
---- · Theoreticol 

4 8 12 

DISTANCE (h) - m 



* 
1 
>-

() 30 
z 
w 

:::> 

a 
W 20 

a: 
u_ 

w 

> 10

1-

<( 
.....J 
w 

a: 

* 
1 

>-

() 
z 
w 

:::> 

a 
w 

a: 
u_ 

w 

> 

1-

<( 
.....J 
w 

a: 

30 

20 

10 

0 

-4 -2 0 

·Unit: H

Mean: 1.39 

sd: 2.02 

2 4 6 8 -4 -2 0 

LOG-PERMEABILITY 

Unit: B 

Mean: 1. 17 

sd: 1.83 

2 4 6 8 -4 -2 0 

LOG-PERMEABILITY 

Unit: C 

Mean: 2.59 

sd:1.57 

2 4 6 

Unit: A 

Mean: 0.72 

sd: 1.98 

2 4 6 

303 

8 

8 






