
Titre:
Title:

Analyzing GPU Performance in Virtualized Environments: A Case
Study

Auteurs:
Authors:

Adel Belkhiri, & Michel Dagenais

Date: 2024

Type: Article de revue / Article

Référence:
Citation:

Belkhiri, A., & Dagenais, M. (2024). Analyzing GPU Performance in Virtualized
Environments: A Case Study. Future Internet, 16(3), 72 (18 pages).
https://doi.org/10.3390/fi16030072

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/57587/

Version: Version officielle de l'éditeur / Published version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use: CC BY

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

Future Internet (vol. 16, no. 3)

Maison d’édition:
Publisher:

Multidisciplinary Digital Publishing Institute

URL officiel:
Official URL:

https://doi.org/10.3390/fi16030072

Mention légale:
Legal notice:

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.3390/fi16030072
https://publications.polymtl.ca/57587/
https://doi.org/10.3390/fi16030072

Citation: Belkhiri, A.; Dagenais, M.

Analyzing GPU Performance in

Virtualized Environments: A Case

Study. Future Internet 2024, 16, 72.

https://doi.org/10.3390/fi16030072

Academic Editors: Jerry Chou and

Wu-Chun Chung

Received: 29 January 2024

Revised: 19 February 2024

Accepted: 21 February 2024

Published: 23 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Analyzing GPU Performance in Virtualized Environments:
A Case Study
Adel Belkhiri * and Michel Dagenais

Department of Computer and Software Engineering, École Polytechnique de Montréal,
Montréal, QC H3T 1J4, Canada; michel.dagenais@polymtl.ca
* Correspondence: adel.belkhiri@polymtl.ca

Abstract: The graphics processing unit (GPU) plays a crucial role in boosting application performance
and enhancing computational tasks. Thanks to its parallel architecture and energy efficiency, the
GPU has become essential in many computing scenarios. On the other hand, the advent of GPU
virtualization has been a significant breakthrough, as it provides scalable and adaptable GPU re-
sources for virtual machines. However, this technology faces challenges in debugging and analyzing
the performance of GPU-accelerated applications. Most current performance tools do not support
virtual GPUs (vGPUs), highlighting the need for more advanced tools. Thus, this article introduces a
novel performance analysis tool that is designed for systems using vGPUs. Our tool is compatible
with the Intel GVT-g virtualization solution, although its underlying principles can apply to many
vGPU-based systems. Our tool uses software tracing techniques to gather detailed runtime data and
generate relevant performance metrics. It also offers many synchronized graphical views, which gives
practitioners deep insights into GVT-g operations and helps them identify potential performance
bottlenecks in vGPU-enabled virtual machines.

Keywords: GPU virtualization; GVT-g; performance analysis; software tracing

1. Introduction

Accelerators are specialized processors that have been developed and integrated into
computer systems in response to the growing demand for high-performance computing.
These accelerators aim to assist the central processing unit (CPU) in executing certain
types of computations. Several studies have demonstrated that offloading specific tasks to
accelerators can considerably boost the overall system performance [1]. Hence, the use of
accelerators has become a typical approach to handling the high computational demands
in various industries and research fields. This has motivated hardware manufacturers to
develop a variety of specialized accelerators, including accelerated processing units (APUs),
floating-point units (FPUs), digital signal processing units (DSPs), network processing units
(NPUs), and graphics processing units (GPUs).

The GPU, which is considered one of the most pervasive accelerators, was initially
devised for graphics rendering and image processing. However, in the last few years,
its computational power has been increasingly harnessed for parallel number crunching.
Nowadays, GPU-accelerated applications are present in many domains that are often
unrelated to graphics, such as deep learning, financial analytics, and general-purpose
scientific calculations. On the other hand, virtualization plays a fundamental role, as
it enables many modern computing concepts. Its primary function is facilitating the
sharing and multiplexing of physical resources among different applications. Particularly,
virtualization significantly enhances GPU utilization by enabling more efficient allocation
of its computational power. In general, the main advantage of virtualizing computing
resources lies in reducing energy consumption in data centers, which, in turn, contributes
to reducing operational costs. Hence, a variety of new applications that leverage the

Future Internet 2024, 16, 72. https://doi.org/10.3390/fi16030072 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16030072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-6299-5574
https://orcid.org/0000-0002-6095-6149
https://doi.org/10.3390/fi16030072
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16030072?type=check_update&version=1

Future Internet 2024, 16, 72 2 of 18

capabilities of virtual GPUs (vGPUs) have emerged. Examples of such applications that
benefit from vGPU acceleration are deep learning, virtual desktop infrastructure (VDI), and
artificial intelligence applications.

It is worth noting that virtualizing GPUs presents more complex challenges than
the virtualization of CPUs and most I/O devices, as the latter rely on well-established
technologies. These challenges stem from several key obstacles. First, there is significant
architectural diversity in hardware among GPU brands, complicating the development
of a universal virtualization solution. Second, using closed-source drivers from popular
GPU brands, such as NVIDIA, poses a significant challenge for third-party developers
in developing virtualization technology for these devices. Third, most GPU designs lack
inherent sharing mechanisms, leading to a GPU process gaining exclusive access to its
resources, thereby blocking other processes from preemption. In addition, several studies
have shown that the overhead involved in process preemption is substantially higher in
GPUs than in CPUs [2,3]. This increased overhead is essentially due to the higher number
of cores and context states in GPUs. It is important to note that some recent GPUs, such
as the NVIDIA Pascal GPU [4], include support for preemption at the kernel, thread, and
instruction levels to mitigate these challenges.

Before developing advanced GPU virtualization technologies, practitioners used the
passthrough technique to enable VMs to access physical GPU (pGPU) resources directly.
This approach, however, has limitations, such as the inability to share a GPU among
multiple VMs and the lack of support for live migration. Major GPU manufacturers
such as NVIDIA, AMD, and Intel have introduced their brand-specific virtualization
solutions to address these issues. These include NVIDIA GRID [5], AMD MxGPU [6], and
Intel’s Graphics Virtualization Technology—Grid generation (GVT-g) [7]. The first two
virtualization solutions are based on hardware virtualization capabilities, whereas the third
one, Intel’s GVT-g, provides a software-based solution for full GPU virtualization. GVT-g
is open source and has been integrated into the Linux mainline kernel, which makes it a
desirable option due to its accessibility and potential for broader integration.

On the other hand, performance analysis tools for GPUs are important for debug-
ging performance issues in GPU-accelerated applications [8]. These tools help understand
how the GPU resources are allocated and consumed, and they facilitate the diagnosis
of potential performance bottlenecks. They are particularly crucial in virtualized envi-
ronments, where resource sharing in vGPUs and its impact on performance need to be
better understood. However, developing practical tools for monitoring and debugging
vGPUs remains challenging. This is because virtualized environments often present many
layers, encompassing hardware, middleware, and host and guest operating systems, which
increase the isolation and abstraction of GPU resources, making it difficult to pinpoint the
causes of performance issues.

The landscape of GPU performance analysis features diverse tools, with academic
contributions tailored to specific GPU programming models or diagnosing particular GPU-
related performance issues. For instance, the works in [9,10] leveraged library interposition
to capture runtime events from OpenCL- and HSA-based programs, respectively. While
they enabled the analysis of GPU kernel execution and CPU–GPU interaction, they pre-
sented high overhead and faced challenges for broader analysis and portability. On the
other hand, vendor-provided options, such as vTune Profiler [11] and Nsight Systems [12],
leverage dynamic instrumentation and hardware counters to gather performance data
and unveil application behavior in various aspects. These tools offer interesting analyses
covering kernel execution, memory access patterns, and GPU API call paths. Nevertheless,
they are often limited in terms of openness and cross-architecture applicability. In summary,
while each of these tools has its strengths and weaknesses, a common shortfall is their
lack of support for vGPUs—with the exception of Nsight Systems, which, however, is
proprietary and closed-source software.

This paper presents a novel performance analysis framework dedicated to GPUs
virtualized with the GVT-g technology. Our framework uses host-based tracing to gather

Future Internet 2024, 16, 72 3 of 18

performance data efficiently and with minimal overhead. Tracing is a proven technique
for collecting detailed performance data from complex systems. A key advantage of our
approach is that it does not necessitate the installation of any agents or tools within the
VMs, as tracing is confined to the host operating system’s kernel space. The benefits of
this methodology include ease of deployment, preservation of VM owner privacy, and
cost-effectiveness. This study’s contributions are as follows:

1. Efficient instrumentation of KVMGT, the open-source implementation of GVT-g for
KVM [13], and integrated modules within the Linux Trace Toolkit Next Generation
(LTTng) [14] to collect performance data from both the virtualization solution and the
Intel GPU driver.

2. Development of a unified, stateful model capable of filtering and organizing the
collected trace data. This model simplifies data processing and supports our analysis
in computing many performance metrics.

3. Implementation of various analyses within Trace Compass [15], an open-source per-
formance analyzer, and a series of synchronized graphical views. These views aim to
assist practitioners in understanding GVT-g’s internal mechanisms and in diagnosing
many performance issues related to vGPU usage.

The remainder of this paper is organized as follows: In Section 2, we conduct a
comprehensive literature review of the methodologies and techniques applied in GPU
virtualization. Section 3 introduces prominent GPU profiling and performance analysis
tools. Section 4 details the design of our proposed framework and outlines several pertinent
performance metrics. Next, Section 5 presents three practical scenarios that demonstrate
the effectiveness of our framework. Following this, Section 6 assesses and discusses the
overhead associated with using our framework. Finally, we summarize our findings and
contributions in Section 7.

2. Background

In this section, we delve into the methodologies and technologies that form the foun-
dation of GPU virtualization. Understanding these virtualization technologies is crucial for
developing performance analysis solutions, as they directly impact the allocation and man-
agement of host resources. Despite challenges, such as proprietary GPU drivers and non-
standardized GPU designs, a number of virtualization techniques have been developed [1].
We categorize these techniques into four primary categories: PCI passthrough, single-root
input/output virtualization (SR-IOV), para- and full virtualization, and API remoting.

2.1. PCI Passthrough

PCI passthrough utilizes hardware virtualization technologies—specifically, Intel
VT-d [16] and AMD-Vi [17]—to allow VMs to access the pGPU of the host directly. While
this method offers near-native GPU performance, it limits one GPU to a single VM, leading
to potential resource underutilization. Google Cloud is an example of a cloud service
employing this technology [18].

2.2. SR-IOV

SR-IOV addresses the resource-sharing limitation of PCI passthrough. Partitioning
a single physical device’s hardware functions into physical functions (PFs) and virtual
functions (VFs) allows multiple VMs to share a single device. Supported by major hyper-
visors such as KVM and Xen [19,20], its implementations include NVIDIA GRID [5] and
AMD MxGPU [6]. SR-IOV offers balanced performance, equitable pGPU distribution, and
enhanced security via vGPU isolation.

2.3. API Remoting

API remoting virtualizes GPUs by intercepting and processing API calls in the guest OS.
While effective, it requires frequent updates to wrapper libraries to stay aligned with evolving
GPU frameworks [21–25]. This approach is notable for its high-level virtualization capabilities.

Future Internet 2024, 16, 72 4 of 18

2.4. Para- and Full Virtualization

GPUs in this category are virtualized at the driver and hypervisor levels. Paravirtual-
ization employs customized GPU drivers in the guest OS, whereas full virtualization uses
standard drivers. A notable example is Intel GVT-g [7], a technology that utilizes mediated
passthrough (MPT) for efficient and isolated vGPU access. This method supports advanced
features such as live migration [26] and enhances vGPU density [27,28], contributing to its
comprehensive utility in virtualized environments.

Although not widely adopted in cloud environments due to competition from pro-
prietary solutions, GVT-g holds significant value for its distinctive technical advantages.
It seamlessly integrates with the Linux kernel as an open-source software-based solution,
enabling community customization and broader applicability compared to closed-source
alternatives. Furthermore, its lightweight design minimizes performance overhead and
hardware dependence, making it a cost-effective option for diverse computing scenarios.

3. Related Work

As the complexity of GPU-accelerated applications continues to grow, the need for
effective performance analysis methods becomes increasingly critical, particularly in vGPU-
based systems. Our study of existing GPU performance analysis tools shows that they offer
different levels of analysis, and they are mostly dedicated to specific GPU architectures.
High-end production-quality tools such as vTune Profiler [11] and Nsight systems [12]
are notable for their comprehensive approach to analyzing GPU-accelerated applications.
They provide a holistic understanding of the application runtime behavior, particularly
unveiling the interaction between CPU and GPU, which is crucial for effective optimiza-
tion. In contrast, tools proposed in academic research are often tailored to specific GPU
programming models or addressing particular GPU-related performance issues.

Many vendors offer dedicated software for profiling GPU applications, such as
NVIDIA Nsight Systems, Intel vTune Profiler, and AMD Radeon GPU Profiler [29]. These
tools leverage various techniques such as binary instrumentation, hardware counters, and
API hooking to gather detailed performance events. Despite providing rich insights into
kernel execution, CPU–GPU interaction, memory access patterns, and GPU API call paths,
these tools are often limited in terms of openness, flexibility, and cross-architecture appli-
cability. In addition to proprietary offerings, the GPU performance analysis ecosystem
encompasses feature-rich open-source tools. For example, HPCToolkit [30,31] and TAU [32]
are two versatile tools tailored for analyzing heterogeneous systems’ performance. These
tools offer valuable diagnostic capabilities for pinpointing GPU bottlenecks and determin-
ing their root causes. For instance, through call path profiling, they provide insights for
kernel execution and enable the identification of hotspots in the program’s code.

Aside from the established profilers, academic research also presents many innovative
tools for the diagnosis of performance issues in GPU-accelerated applications. Zhou et al.
proposed GVProf [33], a value-aware profiler for identifying redundant memory accesses
in GPU-accelerated applications. Their follow-up work [34] focused on improving the
detection of value-related patterns (e.g., redundant values, duplicate writes, and single-
valued data). The main objective of their work was to identify diverse performance
bottlenecks and provide suggestions for code optimization. GPA (GPU Performance
Advisor) [35] is a diagnostic tool that leverages instruction sampling and data flow analysis
to pinpoint inefficiencies in the application code. DrGPU [36] uses a top-down profiling
approach to quantify and decompose stall cycles using hardware performance counters.
Based on the stall analysis, it identifies inefficient software–hardware interactions and
their root causes, thus helping make informed optimization decisions. CUDAAdvisor [37],
built on top of LLVM, instrumentalizes application code on both the host and device sides.
It conducts code- and data-centric profiling to identify performance bottlenecks arising
from competition for cache resources and memory and control flow divergence. The main
disadvantages of these tools lie in their considerable overhead and exclusive applicability
to NVIDIA GPUs. On the other hand, several profiling tools leverage library interposition

Future Internet 2024, 16, 72 5 of 18

and userspace tracing to capture runtime events, enabling the correlation of CPU and GPU
activities. For example, CLUST [9] and LTTng-HSA [10] employ these techniques to profile
OpenCL- and HSA-based applications, respectively. However, a substantial drawback
of these tools is their tight coupling with specific GPU programming frameworks, which
limits their capability to provide a system-wide analysis.

To sum up, the current landscape of GPU performance analysis tools is diverse, with
each tool differing in openness, targeted GPU architectures, and depth of analysis. A
significant limitation among these tools, with the notable exception of those offered by
NVIDIA, is their lack of support for vGPUs (Table 1). This gap is particularly significant
considering the growing importance of GPUs in virtualized environments. Our research
aims to address this oversight by proposing a method for analyzing the performance of
GPUs virtualized via GVT-g. We detail this method and the framework that it implements
in the following section.

Table 1. A comparative analysis of a few state-of-the-art tools alongside our framework.

Tool GPU Arch. GPU APIs Analysis Levels vGPU Support Overhead

ValueExpert [34] NVIDIA CUDA Thread No Moderate

GPA [35] NVIDIA CUDA Thread No High

CLUST [9] - OpenCL Thread No Moderate

LTTng-HSA [10] - HSA Thread No Moderate

DrGPU [36] NVIDIA CUDA Thread, instruction No High

GVProf [33] NVIDIA CUDA Thread, instruction No Moderate

CUDAAdvisor [37] NVIDIA CUDA Thread, instruction No High

Our framework Intel - System-wide, thread Yes Low

4. Proposed Solution

This paper presents a new performance analysis framework for vGPUs managed
with GVT-g. The architecture of this framework is depicted in Figure 1. It comprises
three main subsystems: a data collection subsystem, an analysis subsystem, and a visual-
ization subsystem. The first subsystem is in charge of collecting meaningful performance
data from GVT-g and the Intel GPU driver. The second subsystem processes the collected
data and derives relevant performance metrics. The visualization subsystem consists of
several graphical views that display the results of the analysis conducted by the second
subsystem. We implemented the visualization and analysis subsystems as extensions of
Trace Compass [15], an open-source trace analyzer. This tool can analyze a massive amount
of tracing data to enable the user to diagnose a variety of performance bottlenecks. More-
over, Trace Compass supports interactive graphical interfaces, pre-built analyses, event
filtering, and trace synchronization. We present the design details of those subsystems in
the following subsections.

In addition, we used KVM [38] to build our virtualization environment since it is the
default hypervisor of Linux. The role of KVM is to enable VMs to leverage the hardware
virtualization capabilities of the host machine (e.g., VT-x and AMD-V on Intel and AMD
machines, respectively). In Linux, KVM is implemented as three kernel modules: kvm.ko,
kvm-intel.ko, and kvm-amd.ko. At the user-space level, we used QEMU [39] to run the
guest OSs of our VMs.

Future Internet 2024, 16, 72 6 of 18

Trace Files

Kernel

QEMU

Virtual
Machine

Virtual
Machine

KVMGT Tracing
Module

D
a
ta

 M
o
d

e
l

i915

Performance Analysis
System

Hardware ...

A
p
p
lic

a
ti

o
n

D
a
ta

 A
n
a
ly

ze
r

G
ra

p
h
ic

a
l
V

ie
w

s

Figure 1. Architecture of the proposed framework.

4.1. Data Collection

Logging and tracing are fundamental techniques for collecting runtime data from
software. Logging involves recording data in one or more log files and detailing application
failures, misbehavior, and the status of its ongoing operations. These high-level human-
readable data help in swift bug troubleshooting. In contrast, tracing captures low-level
details of software execution, focusing on diagnosing complex functional issues and identi-
fying performance bottlenecks. The resultant data tend to be extensive and detailed. Unlike
logging, tracing requires a specialized tool known as a tracer. A multitude of tracers are
available for nearly all modern operating systems. For example, in Linux systems, notable
tracers include Ftrace [40], Perf [41], and LTTng.

Our framework relies on the tracing technique for gathering low-level data for our
analysis. It uses LTTng as a tracer because of its versatility and minimal overhead. It is
worth noting that we have confined our tracing scope to the host machine to minimize
intrusiveness. In addition, as GVT-g is a kernel module (named kvmgt.ko in Linux systems),
our focus is restricted to kernel space tracing. This involves instrumenting the GVT-
g module’s source code to introduce new tracepoints and using a selection of existing
tracepoints in i915, the host GPU driver. Table 2 details a subset of these tracepoints, which
are essential for our analysis.

Table 2. A subset of the kernel events required for our analysis.

Tracepoint Description

gvt_workload_queue Indicates the addition of a GPU request to the vGPU queue after
submission by a VM process.

gvt_workload_submit Marks the forwarding of a request from GVT-g threads to the host
graphics driver (i915).

gvt_workload_complete Fires upon completion and removal of a GPU request from GVT-g
data structures.

gvt_sched_switch Reports the remaining time slice for each vGPU upon scheduling out.
i915_gem_request_add Indicates the queuing of a GPU request by the host GPU driver.

i915_gem_request_submit Fires when a request’s dependencies are resolved and it is ready
for execution.

i915_gem_request_in Indicates the sending of a GPU request to the hardware for execution.

i915_gem_request_out Marks the removal of a request from the host GPU driver’s
data structures.

i915_intel_engine_notify Indicates the completion of a GPU request by one of the GPU engines.

i915_gem_object_create Triggered when a new GEM object is created, indicating the allocation
of a new chunk of memory within the GPU’s memory space.

i915_gem_object_destroy Occurs when a GEM object is destroyed, signaling the release of the
memory associated with that object.

4.2. Data Analysis

The data generated by tracers are inherently low-level and complex, making any
manual analysis very complex. The trace events are semantically interconnected and can be

Future Internet 2024, 16, 72 7 of 18

fully understood only within their specific context. Consequently, our principal objective is
to develop an automated analysis system that improves the interpretability of the collected
data. This system aims to assist practitioners in rapidly identifying performance issues
arising from utilizing GPU resources in virtualized environments.

4.2.1. Data Model

As it is designed for offline analysis, our framework requires a robust data model to
organize the data collected from the traced kernel subsystems efficiently. An efficient model
is indeed essential for generating metrics and graphical representations effectively. Thus, it
is necessary to have a thorough understanding of the GPU request’s lifecycle—from when
a VM process initiates a request to the point where the hardware executes it and returns a
response. Such a comprehensive insight is paramount for diagnosing intricate performance
anomalies effectively.

Figure 2 illustrates the various states that a GPU request undergoes throughout its
lifecycle in the system. Initially, a process within a GPU-accelerated VM generates a request
for GPGPU or graphics processing operations. This request is first received by the VM’s
GPU driver, which places it in a waiting queue (1). As GPU requests often depend on
others, these dependencies must be resolved before the request attains the “Submitted”
state (2). Once all preceding requests in the queue have been executed, the guest OS’s
GPU driver removes the request from its waiting queue and forwards it to the vGPU for
execution (3). Subsequently, GVT-g intercepts the request and queues it in the vGPU’s
waiting queue associated with the VM (4). When the vGPU’s scheduler allocates time for
this vGPU, the request is passed to the host GPU driver (5), which then places it in another
waiting queue (6). The request awaits its turn for execution, pending the resolution of its
dependencies (7) and completing all prior queued requests. Once these conditions are
met, the host GPU driver dispatches the request to the hardware for execution (8). Upon
completing the request, GVT-g receives a notification (9) and informs the guest OS via a
virtual interrupt.

Created Waiting
(i915 Q)

Submitted

Waiting
(KVMGT Q)

Executed Submitted Waiting
(i915 Q)

1 2

3

4

5

6

78

9

V
M

 V
ie

w
H

o
s

t
V

ie
w

K
V
M
G
T

10

Event

1 gem_request_add
2 i915_gem_request_submit
3 i915_gem_request_in
4 gvt_workload_queue
5 gvt_workload_submit
6 gem_request_add
7 i915_gem_request_submit
8 i915_gem_request_in
9 intel_engine_notify
10 i915_gem_request_out

Figure 2. States of a GPU request along with the corresponding tracing events.

Modeling the collected performance data is mandatory for computing relevant per-
formance metrics, such as the average wait and execution times of requests per vGPU. To
this end, we used Trace Compass [15], a powerful trace analyzer that integrates several
interesting pre-built performance analyses. These analyses save the data representing the
states of the system to be monitored in a disk-based data structure called a state history tree
(SHT) [42]. We store the states of our system in an attribute–tree data structure (Figure 3).
This data structure exhibits sets of hierarchical attributes, which are updated each time
one of the events described in Section 4.1 is handled. Thus, according to our model, one
or many vGPUs can be attached to one pGPU. Both a pGPU and a vGPU each have their

Future Internet 2024, 16, 72 8 of 18

own driver waiting queue. A GPU request is identified by its sequence number (seqno), its
context (ctx), and the engine to which it should be sent for execution (ring).

pGPUs

pGPU 1

Driver Waiting Queue

Driver Waiting Queue Length

vGPUs

vGPU 1

vGPU Waiting Queue

vGPU Waiting Queue Length

Request 1

seqno

ctx

ring

Engines

RCS

BLT

VECS

VCS

State History Tree

Request 1

seqno

ctx

ring

Figure 3. Excerpt of the tree-based data structure upon which our analyses are based.

4.2.2. Performance Metrics

A performance metric is a quantitative measure of a system’s performance in a specific
aspect. Mainly, performance metrics help assess the status of a system and pinpoint
potential performance problems. This section introduces several performance metrics that
our framework calculates.

GPU Utilization

This metric quantifies the occupancy levels of both the pGPU and the vGPU. It is
expressed as the percentage of the time during which the GPU is actively processing
requests. Considering that the GPU operates multiple engines to process requests in
different queues concurrently, we calculate this metric on a per-engine basis. The formula
below uses ts and te as markers, representing the start and end timestamps, respectively,
for the execution of an individual request denoted by i. Thus, the GPU utilization metric
U is calculated as the sum of the execution durations of all requests tracked during T, the
observation period. This sum is then divided by T to obtain the utilization percentage.

U = ∑
i

tei − tsi

T
× 100

Waiting Queue Length

This metric indicates the number of requests awaiting execution or processing. It is
used by practitioners to identify bottlenecks or performance degradation, especially when
examined alongside other metrics. The waiting queue length metric varies based on factors
such as the frequency of request issuance, the size of the requests, and the hardware’s

Future Internet 2024, 16, 72 9 of 18

execution rate. It functions as a counter that increments with each request added to the
queue and decrements when a request is removed.

Average Wait Time

As previously noted, the hardware does not execute GPU requests immediately; they
spend some time in various queues, awaiting processing by the pGPU. This delay, or
waiting time, starts when a request is queued in the waiting queue of the guest GPU driver
and ends when it is dispatched for execution. It is indeed a key factor in evaluating the
performance efficiency of the vGPU, as it directly impacts the total time required to process
GPU requests. In addition, analyzing the waiting time can provide some insights into
potential performance bottlenecks or inefficiencies in the GPU request handling process.
Our framework estimates the average wait time (WT) of GPU requests using the formula
below. It calculates it by summing the waiting durations (W) of individual requests
observed within a specific period and then dividing this sum by n, the total number
of requests.

WT = ∑
i

Wi
n

Average Latency

Furthermore, our framework calculates the average time taken to process GPU requests
from issuance to completion. As depicted in Figure 4, this metric encompasses both the
waiting time and the execution time. The latter refers to the duration that a GPU engine
requires to execute the request. To calculate the average latency, denoted by L in the
formula below, our framework sums the waiting (W) and execution (E) times for all
requests processed within a given observation period. This sum is then divided by the
number of requests, n, to yield the average latency value.

L = ∑
i

Wi + Ei
n

KVMGT
waiting
queue

position 3

position 1

position 2

R1

i915
waiting
 queue

position 3

position 1

position 2

R1

G
u
e
st

 O
S

H
o
st

 O
S

GPU

VECS

RCS

VCS

R1

waiting time exec time

i915
waiting
 queue

position 3

position 1

position 2

R1

Figure 4. The queuing and processing phases of GPU requests.

GPU Memory Usage

The i915 GPU driver provides deep insights into memory usage through specific
events (e.g., i915_gem_object_create and i915_gem_object_destroy). By tracking these
events, we can measure the total memory allocated and subsequently released by Graphics
Execution Manager (GEM) objects, representing the dynamic footprint of GPU memory
usage. This metric is crucial for understanding how memory allocation and usage impact
performance, particularly in virtualized environments where optimizing resource utiliza-

Future Internet 2024, 16, 72 10 of 18

tion is paramount. Using this metric helps pinpoint potential memory-related bottlenecks
and inefficiencies both in the host machine and within VMs.

4.3. Visualization

The presentation of information in a trace analysis framework should be made in
a manner that enhances the user’s comprehension of the analyzed system. Hence, our
framework provides various views, each tailored to illustrate a specific aspect of GVT-
g operations. These views have been integrated as plug-ins within Trace Compass, a
versatile open-source trace visualization tool. Examples of the visualizations our framework
provides include the GPU usage view, an XY chart that graphically represents the percentage
of utilization of vGPUs and pGPUs. Another visualization is the latency view, which
displays the durations spent by GPU requests in queues and during execution. This view
employs a time graph format, where colored rectangles represent the latencies of individual
GPU requests, each marked with its corresponding request ID. Our framework can display
the transitions of a request between queues using arrows from the source to the destination.

5. Use Cases

This section aims to demonstrate the practicality and effectiveness of our framework
in diagnosing and examining performance issues in GPU-accelerated VMs. We detail the
configurations used in our investigations in Table 3.

Table 3. Experimental configurations of the hardware and software.

Host Machine Virtual Machine

CPU Intel Core i7-7500U @2.70GHz vCPU 2
GPU HD Graphics 620 vGPU Mem. Low: 64 MB/High: 384 MB
RAM 16 GB RAM 4 GB
OS Ubuntu 16.04 (Kernel 4.14.15) OS Ubuntu 16.04 (Kernel 4.15)
Qemu v2.11.1
LTTng v2.10.8

5.1. GVT-g Scheduling

In this case study, we use our framework to examine the internal mechanics of the
GVT-g scheduler, as its operations may impact the performance of GPU virtualization
solutions. Specifically, GVT-g uses a kernel thread named gvt_service_thr and multiple
additional threads, which are referred to as workloads thread X, where “X” represents a
specific engine supported by the pGPU, such as render or video command streamers.
The gvt_service_thr is responsible for managing vGPU scheduling and context switching,
and the workloads thread X threads are initiated when a vGPU is activated. These threads
concurrently monitor the waiting queue, facilitating the transfer of GPU requests to the
host GPU driver, as depicted in Figure 5.

Figure 5. Time-graph view illustrating the wait times of GPU requests in GVT-g and host driver
queues, as well as their respective execution times. It also shows how the scheduler defers the
execution of vGPU1 requests to the next period when its allocated time slice is exhausted.

Future Internet 2024, 16, 72 11 of 18

Our initial experiment involved two GPU-accelerated virtual machines (VM1 and
VM2) sharing a single pGPU via GVT-g, with each VM hosting a similarly configured vGPU
and equal resource allocation weights. These weights, assigned by GVT-g at instantiation,
determine each vGPU’s share of pGPU resources. We executed a series of benchmarks
from the Rodinia GPU benchmark suite [43] on VM1. We repeated these benchmarks after
completely shutting down VM2. Figure 6 presents histograms comparing the benchmarks’
execution times in both scenarios. Notably, the benchmarks executed slower when VM2
was idle than when it was shut down, with significant time discrepancies in the Gaussian,
Lud, and Heartwall benchmarks. This study considered a VM idle if it did not engage in
significant GPU workloads.

To investigate the performance difference, we analyzed the execution of the Gaussian
benchmark on VM1 using our framework. Figure 7 illustrates the benchmark’s execution
duration and GPU utilization. Initially, the benchmark lasted 59 s with an average GPU
utilization of about 45%. In contrast, after shutting down VM2, the benchmark was
completed in 27 s with a GPU utilization near 80%. This comparison highlights the
performance impact of VM2’s concurrent operation, despite it being inactive.

Further examination of the GVT-g scheduler’s operations revealed its reliance on time
multiplexing for fair pGPU resource distribution among vGPUs. The scheduler, which was
operated via the gvt_service_thr thread, simultaneously managed all of the GPU engines
to minimize scheduling complexity and avoid synchronization bottlenecks. It assigned
time slices to vGPUs based on their weights, deducting the aggregate execution time of a
vGPU’s requests from its time slice (see the formula below). If a vGPU depletes its time
slice within a certain interval (100 ms), the scheduler suspends its operations, recalibrating
time slices every ten intervals (one second) and ignoring past debts or credits.

10

15

20

25

30

35

40

45

50

55

60

Gaussian Lud Srad Heartwall Hotspot Myocyte

E
x
e

c
u

tio
n
 t

im
e

 (
s
)

Benchmarks

VM1 - VM2 idle
VM1 only

Figure 6. Latencies of benchmarks when executed in multi-VM and single-VM contexts.

Figure 7. XY view depicting the GPU usage percentages for two consecutive runs of the Gaussian
benchmark in VM1. It also highlights the significant increase in GPU usage following the shutdown
of VM2, which led to faster execution of the benchmark.

Time Slice = 100 ms ×
vGPUweight

∑i GPUi
weight

Future Internet 2024, 16, 72 12 of 18

Example 1. Let us consider two vGPUs sharing the host GPU’s resources, and each is assigned an
identical weight. In this scenario, the GVT-g scheduler assigns each vGPU a 50 ms time slice per
period. If one vGPU is removed, the remaining one receives the entire 100 ms time slice per period,
fully utilizing the available resources.

The GVT-g scheduler follows a round-robin policy, cycling every 1 millisecond to
inspect vGPU queues for new requests. Upon finding requests, the scheduler activates the
underlying vGPU for processing if its time slice remains. Concurrently, the ‘workloads
threads X’ handle the active vGPU’s requests and update statistics for the previously active
vGPU. If a vGPU exhausts its time slice, the scheduler then schedules another vGPU, as
shown in Figure 5.

In short, our analysis shows that a VM cannot use the idle time slice of another VM
due to the GVT-g scheduler policy. While this aligns with typical cloud computing models,
it is suboptimal for private cloud data centers seeking to maximize vGPU acceleration. We
propose enhancing the GVT-g scheduler with an algorithm that allows a VM to process its
GPU workloads when the host GPU resources are unoccupied. A configuration option can
be set during startup to allow GVT-g to apply the appropriate scheduling algorithm based
on the deployment environment, enabling more efficient GPU resource management.

5.2. Analysis of Contention for Resources

This second use case looks into the extent to which the performance of a vGPU-enabled
VM can be affected by the presence of other VMs. In our experiment, two collocated VMs
shared host GPU resources via GVT-g, and their vGPUs were configured identically, as
detailed in Table 3. On VM1, we ran the Gaussian benchmark, while VM2 executed a
variety of benchmarks characterized by various intensities of host GPU resource usage
(e.g., varying workload sizes, diverse request frequencies, etc.). For example, Figure 8
demonstrates the effects of workload sizes from these benchmarks on the Gaussian bench-
mark’s execution time. Notably, the execution time of the Gaussian benchmark increased
significantly when run concurrently with the Hotspot benchmark. Our framework view,
which is depicted in Figure 9, further illustrates that during the Hotspot benchmark’s
execution, GPU usage for the Gaussian benchmark did not exceed 20%, but this rose to 40%
after the Hotspot benchmark ended.

20

30

40

50

60

70

80

Gauss./Hotspot Gauss./Lud Gauss./Heartwall

E
x
e

c
u

tio
n

 t
im

e
 (

s
e

c
o

n
d

)

Benchmarks

Figure 8. The execution time of the Gaussian benchmark (VM1) increased when it was concurrently
executed with the Hotspot benchmark (VM2). Contention for GPU resources between the two VMs is
a plausible cause.

Future Internet 2024, 16, 72 13 of 18

Figure 9. View depicting the GPU usage during concurrent runs of the Gaussian/VM1 (red) and
Hotspot/VM2 (blue) benchmarks. It also demonstrates the negative impact of the size of workloads
executed by vGPU2 on the performance of vGPU1.

This experiment shows that the performance of one vGPU can be considerably affected
by another vGPU that is co-located. Our analysis indicates that this is primarily caused by
the disparity in workload sizes: approximately 18 ms for vGPU1 (Gaussian benchmark)
versus 800 ms for vGPU2 (Hotspot benchmark). The i915 GPU driver’s scheduler lacks
preemptive multitasking capabilities, meaning that it cannot interrupt an ongoing workload.
Thus, the GVT-g scheduler uses a coarse-grained sharing approach for the host GPU time
to compensate. Time slices are allocated to vGPUs in proportion to their weights, and the
execution times of GPU requests are subtracted from these slices. Outstanding balances
(debts and lefts) from previous periods are carried over for up to ten periods, explaining
why the large workloads from vGPU2 adversely affected vGPU1’s performance.

Despite enhancing scheduling fairness among vGPUs and, thus, improving VM appli-
cation responsiveness, this method’s drawback lies in its coarse-grained approach to host
GPU time-sharing. This becomes particularly problematic when a vGPU’s workload size
exceeds the period length.

In summary, this use case demonstrates that the GVT-g scheduler struggles to main-
tain fairness between vGPUs under certain conditions, which is largely due to the i915
driver’s lack of preemption support and the implementation of its coarse-grained sharing
mechanism. Because the scheduling algorithm’s focus is to maintain interactive program
responsiveness, we suggest disabling the debt and leftover management feature when VMs
are tasked with running non-interactive tasks.

5.3. Virtual Machine Placement

Live migration, a key feature supported by most modern hypervisors, involves relo-
cating VMs to balance the load on physical host machines. This process not only optimizes
physical resource utilization within data centers but also ensures adherence to service-
level agreements. VM placement, which is a critical component of VM migration, entails
selecting the most suitable physical machine to host a VM. Many placement algorithms
have been developed over time to maximize resource utilization in cloud data centers and
minimize energy consumption. The efficiency of a placement algorithm is paramount,
as studies show a strong correlation between resource optimization and the reduction of
operational costs in data centers [44].

Effective VM placement algorithms often depend on sophisticated monitoring tools.
These tools assess VM resource requirements and identify performance issues stemming
from resource overcommitment. Overcommitment leads to VMs competing for shared
resources, causing frequent interruptions and prolonged execution times for running
programs. To mitigate this, several algorithms co-locate VMs with complementary resource
demands on the same host. For example, pairing a CPU-intensive VM with a disk or
network-intensive VM can optimize resource utilization and enhance overall performance.
Similarly, aligning VMs that alternate between CPU and GPU resource demands within the
same host proves beneficial. Hence, co-locating CPU- and GPU-bound VMs optimizes the
use of both processing units, which lowers the frequency of VM preemption and boosts the
overall system performance.

Future Internet 2024, 16, 72 14 of 18

Seeking to optimize VM placement within our private cloud, which was managed via
OpenStack [45], we leveraged our performance analysis framework to incorporate GPU us-
age data from running VMs as a key input parameter. This optimization involved migrating
VMs that exceeded a predefined CPU usage threshold over a certain period to host ma-
chines that were mostly engaged with GPU-intensive tasks. This reallocation significantly
enhanced the resource utilization across our cloud infrastructure and reduced the execution
times of applications within the VMs. The view from our tool in Figure 10 illustrates this
strategy, showcasing a VM that alternates between CPU and GPU computing phases.

To validate our approach, we used the sched_switch, kvm_entry, and kvm_exit events
to compute the number of VM preemptions. Our method involved tracing the operating
system kernels of the cloud host machines and categorizing VMs as either GPU-intensive
or CPU-intensive using our analysis framework. For example, we observed several CPU-
intensive VMs, such as VM-532 and VM-533, co-located on the same host and frequently
preempting each other for CPU resources, as depicted in Figure 11. Conversely, other
hosts housing VMs primarily running GPU-intensive programs with minimal CPU depen-
dency were identified. We then tagged VMs accordingly as ’CPU-intensive’ and ’GPU-
intensive’. Our refined placement algorithm reassigned CPU-intensive VMs to hosts with
GPU-intensive VMs when CPU-overcommitment-induced preemptions surpassed a spe-
cific threshold. After the implementation of this optimized algorithm, a marked decrease in
VM preemptions was observed. Figure 12 illustrates this improvement, showing a signifi-
cant reduction in the preemptions of VM-532 after VM-535’s relocation, with preemption
counts dropping from 23,125 to 15,087.

Figure 10. View showing a VM deployed in our private cloud that alternated between CPU-intensive
and GPU-accelerated computations.

Figure 11. View showing how VM-532 and VM-533 preempted each other as they competed for the
same CPU resources.

Figure 12. Our analysis shows that after applying the optimized VM placement algorithm, VM-532
was rarely preempted by the GPU-intensive VM-535.

6. Tracing Cost Analysis

Thissectionexamines thecost implicationsassociatedwith theuseofour framework—particularly
the trace data collection phase. As noted before, our approach relies mainly on efficient

Future Internet 2024, 16, 72 15 of 18

host kernel tracing. However, the overhead introduced by this tracing must be min-
imal to prevent any significant impact on the performance or behavior of the system
under observation.

To estimate the overhead incurred by our tracing method, we conducted a series of
experiments using a VM, the specifications of which are detailed in Table 3. This VM was
utilized to execute selected benchmarks from the Rodinia benchmark suite [43], which
were chosen due to their varied workload sizes and submission frequencies. Our results,
as summarized in Table 4, indicate that the operational overhead from active tracepoints
was modest, averaging around 1.01%. This low overhead confirmed the efficiency of our
tracing approach in gathering runtime data without significantly burdening the system.

Storing trace files can be problematic for most tracing tools, as they generate data in
large amounts. This storage cost is mostly influenced by two factors: the event frequency
and the chosen storage format. Our findings, which are illustrated in Table 4, show that
the size of the trace files did not directly correlate with the benchmark execution times.
Rather, it was more closely related to the number of events generated, which, in our
context, corresponded to the volume of GPU request submissions. Owing to our strategy
of selectively activating a limited number of tracepoints, we managed to keep the trace file
sizes within reasonable limits, thus mitigating potential storage issues.

Table 4. Tracing overhead.

Benchmark Exec Time
(ms)

Exec Time w/
Tracing (ms) # Events Trace Size

(KB)
Overhead *

(%)

Gaussian 26,393 26,906 49,255 1228 1.906
Hotspot 29,455 30,161 9122 248 2.341

Lud 16,736 16,862 19,866 512 0.743
Myocyte 36,935 37,061 158,587 3788 0.341

Srad 13,206 13,238 73,973 1843 0.237
Heartwall 14,795 14,873 4110 148 0.525

* The overhead is computed as the percentage increase in execution time with tracing enabled.

7. Conclusions

A GPU is a powerful computing unit with remarkable characteristics, including a
highly parallel architecture and energy efficiency. Hence, this device has found extensive
application in diverse domains, such as heterogeneous and embedded systems, where it
greatly improves application performance. These applications range from autonomous
driving to media transcoding and graphics-intensive applications. The interesting attributes
of this accelerator have prompted the introduction of vGPU-accelerated VMs, opening up
opportunities to address CPU bottlenecks in data centers and enabling end-users to harness
the power of high-performance computing devices for a variety of applications.

While our review of the existing literature shows various performance analysis tools
for GPUs, support for vGPUs remains a significant gap. Unfortunately, the only tool offer-
ing vGPU support, NVIDIA Nsight Systems, is closed-source software and lacks publicly
available documentation. To address this gap in research, our study introduces a novel
diagnostic tool that is specifically designed to analyze vGPU performance. Utilizing GVT-g,
Intel’s virtualization technology for on-die GPUs, as a foundational platform, our frame-
work provides detailed insights into GVT-g operations. It facilitates an exhaustive analysis
of VMs equipped with vGPUs, thereby enhancing the understanding and optimization of
their performance.

Our approach leverages LTTng, a low-overhead tracer, to collect the low-level data re-
quired for our analyses. Through this tool, we traced the host machine kernel to gain a better
understanding of vGPU resource utilization. Furthermore, we developed a suite of auto-
synchronized views in Trace Compass to unveil the intricate dynamics of vGPU-accelerated
VMs as they interact with the host GPU resources. Finally, our analysis reveals that the
tracing overhead is minimal at approximately 1.01%. Looking ahead, future iterations of
our work will expand this approach to encompass other GPU virtualization technologies,

Future Internet 2024, 16, 72 16 of 18

such as MxGPU and NVIDIA Grid. These technologies have gained prominence in the data
centers of major cloud providers, making our research even more pertinent and valuable in
the evolving landscape of GPU virtualization.

Author Contributions: Conceptualization, A.B.; Methodology, A.B.; Software, A.B.; Validation, A.B.;
Investigation, A.B.; Writing – original draft, A.B.; Supervision, M.D.; Funding acquisition, M.D. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was financed by the Natural Sciences and Engineering Research Council
of Canada (NSERC), through the NSERC Alliance project 554158-20, in partnership with Prompt,
Ericsson, Ciena, AMD, and EfficiOS. The APC was funded by Adel Belkhiri.

Data Availability Statement: The source codes of the proposed framework are available on the
author’s GitHub: https://github.com/adel-belkhiri (accessed on 20 February 2024).

Acknowledgments: We would like to thank the Natural Sciences and Engineering Research Council
of Canada (NSERC), Prompt, Ericsson, Ciena, AMD, and EfficiOS for supporting this research.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Hong, C.H.; Spence, I.; Nikolopoulos, D.S. FairGV: Fair and Fast GPU Virtualization. IEEE Trans. Parallel Distrib. Syst. 2017,

28, 3472–3485. [CrossRef]
2. Ji, Z.; Wang, C.L. Compiler-Directed Incremental Checkpointing for Low Latency GPU Preemption. In Proceedings of the 2022

IEEE International Parallel and Distributed Processing Symposium (IPDPS), Lyon, France, 30 May–3 June 2022; pp. 751–761.
[CrossRef]

3. Hong, C.H.; Spence, I.; Nikolopoulos, D.S. GPU Virtualization and Scheduling Methods: A Comprehensive Survey. ACM Comput.
Surv. 2017, 50, 1–37. [CrossRef]

4. NVIDIA. GP100 Pascal Whitepaper. 2016. Available online: https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-
architecture-whitepaper.pdf (accessed on 20 February 2024).

5. Nvidia Grid: Graphics Accelerated VDI with the Visual Performance of a Workstation. 2013. Available online: http://www.
nvidia.com/content/grid/vdi-whitepaper.pdf (accessed on 20 February 2024).

6. AMD MxGPU. 2024. Available online: https://www.amd.com/en/graphics/workstation-virtualization-solutions (accessed on
20 February 2024).

7. Tian, K.; Dong, Y.; Cowperthwaite, D. A Full GPU Virtualization Solution with Mediated Pass-through. In Proceedings of the
2014 USENIX Conference on USENIX Annual Technical Conference, USENIX ATC’14, Philadelphia, PA, USA, 19–20 June 2014;
USENIX Association: Berkeley, CA, USA, 2014; pp. 121–132.

8. Aceto, G.; Botta, A.; Donato, W.; Pescapè, A. Cloud monitoring: A survey. Comput. Netw. 2013, 57, 2093–2115. [CrossRef]
9. Couturier, D.; Dagenais, M.R. LTTng CLUST: A System-wide Unified CPU and GPU Tracing Tool for OpenCL Applications. Adv.

Softw. Eng. 2015, 2015, 940628. [CrossRef]
10. Margheritta, P.; Dagenais, M.R. LTTng-HSA: Bringing LTTng tracing to HSA-based GPU runtimes. Concurr. Comput. Pract. Exp.

2019, 31, e5231. [CrossRef]
11. Intel VTune Amplifier. 2024. Available online: https://software.intel.com/en-us/intel-vtune-amplifier-xe (accessed on

20 February 2024).
12. Nvidia Nsight Graphics. 2024. Available online: https://developer.nvidia.com/nsight-graphics (accessed on 20 February 2024).
13. Song, J. KVMGT: A Full GPU Virtualization Solution. In Proceedings of the KVM Forum, Düsseldorf, Germany, 14–16 October

2014; The Linux Foundation: San Francisco, CA, USA, 2014.
14. LTTng Project. The LTTng Documentation. 2024. Available online: https://lttng.org/docs/v2.10/ (accessed on 20 February 2024).
15. Trace Compass. 2024. Available online: http://tracecompass.org/ (accessed on 20 February 2024).
16. Abramson, D.; Jackson, J.; Muthrasanallur, S.; Neiger, G.; Regnier, G.; Sankaran, R.; Schoinas, I.; Uhlig, R.; Vembu, B.; Wiegert, J.

Intel Virtualization Technology for Directed I/O. Intel Technol. J. 2006, 10, 179–192. [CrossRef]
17. van Doorn, L. Hardware Virtualization Trends. In Proceedings of the 2nd International Conference on Virtual Execution

Environments, VEE ’06, Ottawa, ON, Canada, 14–16 June 2006; ACM: New York, NY, USA, 2006; p. 45.
18. GPUs on Compute Engine. 2024. Available online: https://cloud.google.com/compute/docs/gpus/ (accessed on

20 February 2024).
19. Zhang, J.; Lu, X.; Panda, D.K. Performance Characterization of Hypervisor-and Container-Based Virtualization for HPC on SR-

IOV Enabled InfiniBand Clusters. In Proceedings of the 2016 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), Chicago, IL, USA, 23–27 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1777–1784.

20. Zhang, J.; Lu, X.; Panda, D.K. High-Performance Virtual Machine Migration Framework for MPI Applications on SR-IOV Enabled
InfiniBand Clusters. In Proceedings of the 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
Orlando, FL, USA, 29 May–2 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 143–152.

https://github.com/adel-belkhiri
http://doi.org/10.1109/TPDS.2017.2717908
http://dx.doi.org/10.1109/ipdps53621.2022.00078
http://dx.doi.org/10.1145/3068281
https://images.nvidia.com/content/pdf/tesla/whitepaper/ pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/ pascal-architecture-whitepaper.pdf
http://www.nvidia.com/content/grid/vdi-whitepaper.pdf
http://www.nvidia.com/content/grid/vdi-whitepaper.pdf
https://www.amd.com/en/graphics/workstation-virtualization-solutions
http://dx.doi.org/10.1016/j.comnet.2013.04.001
http://dx.doi.org/10.1155/2015/940628
http://dx.doi.org/10.1002/cpe.5231
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://developer.nvidia.com/nsight-graphics
https://lttng.org/docs/v2.10/
http://tracecompass.org/
http://dx.doi.org/10.1535/itj.1003.02
https://cloud.google.com/compute/docs/gpus/

Future Internet 2024, 16, 72 17 of 18

21. Gupta, V.; Gavrilovska, A.; Schwan, K.; Kharche, H.; Tolia, N.; Talwar, V.; Ranganathan, P. GViM: GPU-accelerated Virtual
Machines. In Proceedings of the 3rd ACM Workshop on System-Level Virtualization for High Performance Computing, HPCVirt
’09, Nuremburg, Germany, 31 March 2009; ACM: New York, NY, USA, 2009; pp. 17–24.

22. Gupta, V.; Schwan, K.; Tolia, N.; Talwar, V.; Ranganathan, P. Pegasus: Coordinated Scheduling for Virtualized Accelerator-based
Systems. In Proceedings of the 2011 USENIX Conference on USENIX Annual Technical Conference, USENIXATC’11, Portland,
OR, USA, 15–17 June 2011; USENIX Association: Berkeley, CA, USA, 2011; p. 3.

23. Duato, J.; Peña, A.J.; Silla, F.; Mayo, R.; Quintana-Orti, E.S. rCUDA: Reducing the number of GPU-based accelerators in high
performance clusters. In Proceedings of the International Conference on High Performance Computing Simulation, Caen, France,
28 June–2 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 224–231.

24. Lee, C.; Kim, S.W.; Yoo, C. VADI: GPU Virtualization for an Automotive Platform. IEEE Trans. Ind. Inform. 2016, 12, 277–290.
[CrossRef]

25. Shi, L.; Chen, H.; Sun, J.; Li, K. vCUDA: GPU-Accelerated High-Performance Computing in Virtual Machines. IEEE Trans.
Comput. 2012, 61, 804–816. [CrossRef]

26. Ma, J.; Zheng, X.; Dong, Y.; Li, W.; Qi, Z.; He, B.; Guan, H. gMig: Efficient GPU Live Migration Optimized by Software Dirty
Page for Full Virtualization. In Proceedings of the 14th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, VEE ’18, Williamsburg, VA, USA, 24–25 March 2018; ACM: New York, NY, USA, 2018; pp. 31–44.

27. Dong, Y.; Xue, M.; Zheng, X.; Wang, J.; Qi, Z.; Guan, H. Boosting GPU Virtualization Performance with Hybrid Shadow Page
Tables. In Proceedings of the USENIX Annual Technical Conference, Santa Clara, CA, USA, 8–10 July 2015; USENIX Association:
Berkeley, CA, USA, 2015; pp. 517–528.

28. Xue, M.; Tian, K.; Dong, Y.; Ma, J.; Wang, J.; Qi, Z.; He, B.; Guan, H. gScale: Scaling up GPU Virtualization with Dynamic Sharing
of Graphics Memory Space. In Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC 16), Denver, CO,
USA, 22–24 June 2016; USENIX Association: Berkeley, CA, USA, 2016; pp. 579–590.

29. Devices, A.M. AMD GPU Open-Radeon GPU Profiler. 2024. Available online: https://gpuopen.com/rgp/ (accessed on
20 February 2024).

30. Gupta, R.; Shen, X.; Zhou, K.; Krentel, M.; Mellor-Crummey, J. A tool for top-down performance analysis of GPU-accelerated
applications. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
San Diego, CA, USA, 22–26 February 2020; pp. 415–416. [CrossRef]

31. Cherian, A.T.; Zhou, K.; Grubisic, D.; Meng, X.; Mellor-Crummey, J. Measurement and Analysis of GPU-Accelerated OpenCL
Computations on Intel GPUs. In Proceedings of the 2021 IEEE/ACM International Workshop on Programming and Performance
Visualization Tools (ProTools), St. Louis, MO, USA, 14 November 2021. [CrossRef]

32. TAU Performance System. 2024. Available online: http://www.paratools.com/tau (accessed on 20 February 2024).
33. Zhou, K.; Hao, Y.; Mellor-Crummey, J.; Meng, X.; Liu, X. GVPROF: A Value Profiler for GPU-Based Clusters. In Proceedings of

the SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, Atlanta, GA, USA,
9–19 November 2020; pp. 1–16. [CrossRef]

34. Falsafi, B.; Ferdman, M.; Lu, S.; Wenisch, T.; Zhou, K.; Hao, Y.; Mellor-Crummey, J.; Meng, X.; Liu, X. ValueExpert: Exploring
value patterns in GPU-accelerated applications. In Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Lausanne, Switzerland, 28 February 2022; pp. 171–185. [CrossRef]

35. Zhou, K.; Meng, X.; Sai, R.; Grubisic, D.; Mellor-Crummey, J. An Automated Tool for Analysis and Tuning of GPU-Accelerated
Code in HPC Applications. IEEE Trans. Parallel Distrib. Syst. 2021, 33, 854–865. [CrossRef]

36. Hao, Y.; Jain, N.; Van der Wijngaart, R.; Saxena, N.; Fan, Y.; Liu, X. DrGPU: A Top-Down Profiler for GPU Applications.
In Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, London, UK, 7–11 May 2023;
pp. 43–53. [CrossRef]

37. Knoop, J.; Schordan, M.; Johnson, T.; O’Boyle, M.; Shen, D.; Song, S.L.; Li, A.; Liu, X. CUDAAdvisor: LLVM-based runtime
profiling for modern GPUs. In Proceedings of the 2018 International Symposium on Code Generation and Optimization, Vienna,
Austria, 24–28 February 2018; pp. 214–227. [CrossRef]

38. Kernel Virtual Machine. 2019. Available online: https://www.linux-kvm.org (accessed on 20 February 2024).
39. QEMU. 2024. Available online: https://www.qemu.org/ (accessed on 20 February 2024).
40. Ftrace-Function Tracer. 2018. Available online: https://www.kernel.org/doc/Documentation/trace/ftrace.txt (accessed on

20 February 2024).
41. Perf: Linux Profiling with Performance Counters. 2024. Available online: https://perf.wiki.kernel.org (accessed on

20 February 2024).
42. Montplaisir-Gonçalves, A.; Ezzati-Jivan, N.; Wininger, F.; Dagenais, M.R. State History Tree: An Incremental Disk-Based Data

Structure for Very Large Interval Data. In Proceedings of the 2013 International Conference on Social Computing, Alexandria,
VA, USA, 8–14 September 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 716–724.

43. Che, S.; Boyer, M.; Meng, J.; Tarjan, D.; Sheaffer, J.W.; Lee, S.; Skadron, K. Rodinia: A benchmark suite for heterogeneous
computing. In Proceedings of the IEEE International Symposium on Workload Characterization (IISWC), Austin, TX, USA,
4–6 October 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 44–54.

44. Masdari, M.; Nabavi, S.S.; Ahmadi, V. An overview of virtual machine placement schemes in cloud computing. J. Netw. Comput.
Appl. 2016, 66, 106–127. [CrossRef]

http://dx.doi.org/10.1109/TII.2015.2509441
http://dx.doi.org/10.1109/TC.2011.112
https://gpuopen.com/rgp/
http://dx.doi.org/10.1145/3332466.3374534
http://dx.doi.org/10.1109/protools54808.2021.00009
http://www.paratools.com/tau
http://dx.doi.org/10.1109/sc41405.2020.00093
http://dx.doi.org/10.1145/3503222.3507708
http://dx.doi.org/10.1109/TPDS.2021.3094169
http://dx.doi.org/10.1145/3578244.3583736
http://dx.doi.org/10.1145/3168831
https://www.linux-kvm.org
https://www.qemu.org/
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://perf.wiki.kernel.org
http://dx.doi.org/10.1016/j.jnca.2016.01.011

Future Internet 2024, 16, 72 18 of 18

45. Open Infrastructure Foundation. OpenStack: Open Source Cloud Computing Infrastructure. 2024. Available online: https:
//www.openstack.org/ (accessed on 20 February 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.openstack.org/
https://www.openstack.org/

	Introduction
	Background
	PCI Passthrough
	SR-IOV
	API Remoting
	Para- and Full Virtualization

	Related Work
	Proposed Solution
	Data Collection
	Data Analysis
	Data Model
	Performance Metrics

	Visualization

	Use Cases
	GVT-g Scheduling
	Analysis of Contention for Resources
	Virtual Machine Placement

	Tracing Cost Analysis
	Conclusions
	References

