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Quantifying uncertainty and improving prospectivity mapping in mineral 
belts using transfer learning and Random Forest: A case study of copper 
mineralization in the Superior Craton Province, Quebec, Canada 

Dany Lauzon a,b,*, Erwan Gloaguen b 

a Civil, Geological and Mining Department, Polytechnique Montréal, C.P. 6079 Succ. Centre-ville, Montréal, Quebec H3C 3A7, Canada 
b Centre Terre Eau Environnement, Institut National de la Recherche Scientifique, 490 Couronne St., Quebec City, Quebec G1K 9A9, Canada   

A R T I C L E  I N F O   
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A B S T R A C T   

Mineral prospectivity mapping (MPM) involves identifying locations with a higher potential for mineral 
exploration based on a set of explanatory variables. In cases where there is a scarcity or absence of unfavorable 
sites that adequately represent the geological context for deposit discovery, generating synthetic negative data 
sets becomes necessary to employ a machine learning algorithm optimally. Moreover, when favorable sites are 
insufficient for deposit discovery within a geological zone, machine learning methods can potentially result in 
large and highly uncertain prospecting areas. This article proposed a concept based on transfer learning by 
applying the knowledge gained from mineral belt signatures in different geological zones to a related area. The 
positive training data were taken from five mineral belts distanced from each other, while the negative data were 
sampled using geological constraints based on the distance to occurrences and spatial associativity. The results 
demonstrate that transfer learning, combined with geological constraints applied to the creation of negative 
datasets, improves model performance and prediction of known deposits while significantly reducing un
certainties. Mineral prospectivity models for predicting potential copper formations were generated using data 
from the Quebec Government’s spatial reference geomining information system, SIGEOM. The case study for this 
work focused on the geological province of the Superior Craton, which encompasses the vast majority of 
northeastern Quebec.   

1. Introduction 

Mineral Prospectivity Mapping (MPM) is a process that assimilates 
mining exploration data (i.e., exploratory variables) such as lithological, 
structural, and topographic maps, airborne magnetic, gravimetric, and 
radiometric surveys, and geochemical data to produce a map of the 
mineral potential to predict favorable areas for the discovery of new 
deposits. Approaches are generally based on either the geological and 
morphological knowledge of the deposit (knowledge-driven) or the 
geological signature extracted from the data (data-driven), or a hybrid 
approach (Carranza and Laborte, 2015). Knowledge-driven predictive 
mapping relies on experts in geology who have a deep understanding of 
geological formations and mineral indicators. This expertise enables 
them to identify and interpret new deposits (Daviran et al., 2022; Lusty 
et al., 2012). One can cite fuzzy logic (Boadi et al., 2022; Tao et al., 
2021), index overlay (Boadi et al., 2022), Dempster-Shafer belief theory 

(Mohammadpour et al., 2021), analytical hierarchy process (Xi et al., 
2023), and data envelopment analysis (Ali Hosseini and Abedi, 2015) as 
common approaches. In contrast, data-driven predictive mapping as
signs evidential weights empirically based on the spatial relationship 
between the exploratory variables and known mineral deposits (Harris 
et al., 2001). Several data-driven methodologies can be recognized such 
as weights of evidence (Tao et al., 2021), artificial neural networks 
(Chen et al., 2022), Bayesian modeling (Mao et al., 2023), logistics 
regression (Zhao et al., 2023), support vector machine (Zhang et al., 
2022), and decision tree analysis (Yin and Li, 2022). 

The choice between knowledge-driven and data-driven approaches 
depends on the exploration context. Knowledge-driven techniques are 
applied in more “greenfields” exploration regions, i.e., regions with no 
or few known deposits (Daviran et al., 2022). Here, geologists rely on the 
predictive power of ore genesis models to find mineral deposits in pre
viously unexplored areas or areas where they are not already known. On 
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the other hand, data-driven modeling methods are useful in areas with 
known occurrences, like established mining camps, known as brown
fields (Carranza and Laborte, 2015). In these areas, geologists search for 
deposits near or adjacent to an already operating mine, or well- 
documented areas. Alternatively, a combined approach may be prac
tical, using data-driven techniques in areas with known deposits and 
applying the knowledge to areas without known deposits, assuming 
similarities in geological terrain and mineral exploration models (Harris 
et al., 2015). 

The advent of machine learning has significantly heightened the 
utilization of classification methods in data-driven mineral prospectivity 
mapping. This method involves categorizing geographic locations into 
prospective or non-prospective areas, yielding results presented as bi
nary maps or maps indicating a confidence range of prospectivity. 
Classification approaches are generally divided into two categories: (i) 
unsupervised methods and (ii) supervised methods. In unsupervised 
methods, data-driven techniques are employed to generate clusters 
based on inherent similarities and dissimilarities within the spatial 
dataset, providing a nuanced perspective on mineral prospectivity 
(Cheng et al., 2023; Esmaeiloghli et al., 2021; Jansson et al., 2022; 
Soltani and Imamalipour, 2022; Torppa et al., 2019). Conversely, su
pervised methods undergo a training process using specified training 
samples to enhance their predictive capabilities (Carranza and Laborte, 
2015; Harris et al., 2022; Parsa et al., 2022; Rodriguez-Galiano et al., 
2015; Silva dos Santos et al., 2022; Zuo and Carranza, 2011). Supervised 
machine learning methods require two data sets: 1- a class of interest 
representing the locations of known ore-formations (positive data) and 
2- a contrast class such as locations without deposits (negative data) to 
train the model. Properly trained, these methods can predict a more 
precise delineation of prospective zones than manual data-driven 
methods by learning the relationships between the exploratory vari
ables and the positive-negative data (Rodriguez-Galiano et al., 2015; 
Silva dos Santos et al., 2022; Zuo and Carranza, 2011). It is important to 
note that in ore-formation processes, the positive data, are rare non- 
random events, while negative data is the result of common and 
random geological processes in unknown locations (Silva dos Santos 
et al., 2022). 

Previous studies have shown that randomly generated negative data 
sets can never be guaranteed to represent true negatives (Carranza, 
2009). However, various techniques can be used to reduce the margin of 
error. One can use the spatial distribution of deposits to define areas 
where new deposits are less likely to be found (Carranza et al., 2008), 
while others may limit negative data to lithological units that are less 
favorable to ore formation (Nykänen et al., 2015), or a combination of 
both methods (Silva dos Santos et al., 2022). One can also choose 
negative data sets by considering the spatial locations of unrelated 
mineral deposits (i.e., mineral deposits that involve a commodity 
different from the commodity of interest). Such an approach introduces 
less uncertainty compared to the use of randomly selected negative 
datasets. (Lachaud et al., 2021). However, studies barely focus on the 
nature of positive data. Indeed, it cannot be certain that at a given site, 
positive data reflects the entirety of the ore-formation mechanisms or 
signatures for a given mineral. For example, copper deposits may be 
associated with hydrothermal fluids (Ross et al., 2020), massive volcanic 
sulfides (Mathieu, 2019), sedimentary exhalative deposits (Card and 
Poulsen, 1998), or nickel-copper (Ni-Cu) mafic–ultramafic complexes 
(Lawley et al., 2021), to name a few. Each of these mechanisms has a 
distinct geological signature that must be considered in the positive data 
to better predict the mineral potential into a given geological province 
using machine learning techniques. 

One way to improve prospectivity mapping and reduce associated 
uncertainties can be by using transfer learning (TL). TL seeks to enhance 
comprehension of the current task by establishing connections with 
tasks conducted in different contexts but within a related source domain. 
This approach augments learning by establishing relationships between 
prior tasks and the target task, resulting in more logical, expedited, and 

better solutions (Hosna et al., 2022). In our application, TL addresses a 
research problem that involves leveraging knowledge acquired learning 
prospectivity indicators in well-known geological regions with multiple 
ore-formation signatures (i.e., brownfields), and applying it in an 
underexplored region or a region with limited positive examples (i.e., 
greenfields). For instance, the knowledge gained from learning to 
recognize mineralization in a well-documented geological sub-province 
can be applied to the task of identifying mineralization in a geologically 
distinct sub-province located far away from the original learning task. 

In this article, a TL-based framework for quantifying uncertainty in 
mineral prospectivity mapping of critical and strategic minerals is pro
posed. Positive data are sampled across multiple geologic zones and 
settings to learn various deposit mechanisms, while negative data are 
generated at random locations constrained by spatial and geological 
criteria. Sparse geochemical data are integrated into the learning pro
cess using a regression interpolation method. The Random Forest (RF) 
algorithm was chosen for MPM because of its ability to randomly 
bootstrap and permute predictor maps throughout each tree. This 
randomness helps prevent the overfitting of the generated models. It is 
worth noting that RF has been effectively used for mineral prospectivity 
mapping by several authors, including Carranza and Laborte (2015), 
Harris et al. (2015), McKay and Harris (2016), Zhang et al. (2022); 
Zhang et al. (2019), Ford (2020), Parsa and Maghsoudi (2021), Silva dos 
Santos et al. (2022). The methodology is applied to a real case study for 
Cu prospectivity in the Superior Craton geological province, which 
covers most of the northeastern Quebec province in Canada. 

2. Metallogenic and geological context of the Superior Craton 
Province 

The Superior Province, located in Eastern Canada, encompasses a 
vast area of approximately 1.4 x 106 km2, establishing itself as the 
largest Archean craton on Earth. Within this region, one can discover a 
diverse array of both common and rare rock formations, showcasing a 
wide range of metamorphic grades ranging from subgreenschist to 
granulite facies. This province serves as a host to numerous globally 
renowned mineral deposits, including exceptional reserves of gold and 
base metals (Ayer et al., 2008; Card, 1990; Card and Poulsen, 1998; 
Hathway et al., 2008; Percival et al., 2012) as well as many smaller but 
economically significant deposits. 

The Superior Province contains a large variety of deposit associated 
with critical and strategic minerals that are classified based on their 
form, composition, and specific lithological associations (Card and 
Poulsen, 1998; Hathway et al., 2008). To name a few, deposits associ
ated to volcanogenic massive sulphides (VMS), hydrothermal fluids 
deposits (HF), sedimentary exhalative deposits (SEDEX), Cu-Mo por
phyries, Li-Cs-Be-Ta-Sn-U-Th pegmatites, Ni-Cu sulphides in layered 
gabbro/ultramafic sills, or Ni-Cu-PGE gabbro/ultramafic stocks are 
unique to the Superior Province. Those deposits are not uniformly 
distributed into the subprovinces, but rather are distributed in ’mineral 
belts’ that contain deposits of diverse metal associations and of different 
types (Card and Poulsen, 1998). 

Five regions containing mineral belts within the Superior Craton 
province were selected: I. Matagami region, II. Chibougamau area, III. 
Rouyn-Noranda District, IV. Troilus region, and V. North zone of the La 
Grande subprovince. These mineral belts are contained in three sub
provinces: Abitibi, Opatica, and La Grande subprovinces (See Fig. 1). 
They were chosen for their various types of deposits associated with Cu 
mineralization, all mainly within greenstone belts (See Fig. 2). Table 1 
summarizes the types of deposits found in each region where the 
occurrence of Cu acts as the principal commodity. All types of deposits 
have been utilized for the training and validation (see Table 1). We 
acknowledge that these deposits result from inherently diverse mecha
nisms. Nevertheless, accurately pinpointing these mechanisms consti
tutes a complex challenge. Our objective is to identify Cu commodity by 
leveraging exploratory variables, without making a distinction based on 
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the specific nature of the deposits. 
The next subsections introduce a summary of the metallogenic and 

geological processes present in the selected areas: the Abitibi sub
province for areas I, II, and III; the Opatica subprovince for area IV; and 
the La Grande subprovince for area V (refer to Fig. 2 for labeling). 

2.1. Abitibi subprovince 

The Abitibi Subprovince is characterized by its composition, con
sisting of approximately 40 % metavolcanic and metasedimentary rocks 
primarily found in the Abitibi greenstone belt, and 60 % granitoid rocks, 
predominantly in the form of large batholiths. Within the greenstone 
belts, volcanic and related intrusive rocks account for around 80 % of 
the rock types, while metasedimentary rocks make up the remaining 20 
%. The Abitibi greenstone belt encompasses numerous Neoarchean 
volcano-sedimentary sequences. It also comprises a diverse range of 
intrusions, varying from synvolcanic mafic-ultramafic complexes to 
post-tectonic granite. Significant volcanic activity occurred between 
2.75 and 2.70 Ga, followed closely by deformation, regional 

metamorphism, and plutonism between 2.70 and 2.65 Ga (Card and 
Poulsen, 1998). 

The Abitibi Subprovince hosts Au and Cu deposits which are pri
marily associated with HF, which are spatially corrolated with large- 
scale fault and shear zones (Harris et al., 2022). The subprovince is 
also enriched with base metal mineralization, particularly Cu and Zn, 
commonly found in association with VMS within the greenstone belts. 

2.1.1. Matagami-Chibougamau mineral belt 
The Matagami-Chibougamau mineral belt is of interest as it hosts 

mainly Zn-Cu VMS deposits, and Cu-Au HF deposits, and, of minor 
importance, intrusion hosted Ni-Cu deposits. The VMS deposits of the 
northern volcanic zone are hosted by mafic-felsic volcanic sequences 
that are older than 2.715 Ga. Vein Cu-Au deposits are hosted mainly by 
two distinctive layered intrusions of different ages, one of 2.728 Ga 
composed mainly of gabbro and anorthosite, and one aged of 2.716 Ga 
(Card and Poulsen, 1998). These deposits are mainly localized in shear 
zones that cut transversely across the layered intrusions. 

Fig. 1. Geological provinces of Quebec, Canada, and subprovinces of the Superior Province (pink units). The labeled black rectangles show the five study areas 
within the Superior Province. (I- Matagami region, II- Chibougamau area, III- Rouyn-Noranda District, IV- Troilus region, and V- North zone of the La Grande 
subprovince). Tags in the 000X format represent the NTS map-sheet number in the SIGEOM database, with NTS sheets delimited by gray lines. Figure adapted from 
SIGÉOM (2022). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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2.1.2. Timmins-Val d’or mineral belt, Rouyn-Noranda district 
The Timmins-Val d’Or mineral belt contains six main volcanogenic 

massive sulphide districts including Rouyn-Noranda District approxi
mately aged of 2.70 Ga. The VMS deposits of the Rouyn-Noranda district 
are among the most intensively studied in the world. Most deposits may 
be linked to one major center of volcanism. The intrusions are inferred to 
be the subvolcanic heat sources that drove convective hydrothermal 
systems in overlying volcanic rocks that occupy a paleocauldron struc
ture. Some deposits near the structure may have no direct relationship to 
the major volcanism episode but may occur in correlative (Card, 1990). 

Most of the deposits are from HF, or VMS with some others associated 
with SEDEX, and Ni-Cu ore deposits in mafic–ultramafic complexes 
(SIGÉOM, 2022). 

2.2. Opatica Subprovince, Frotet-Evans-Troilus greestone belt 

The magmatic-tectonic history of the Opatica Subprovince starts 
with an early period of high-grade metamorphism at ca. 2.718 – 2.721 
Ga, and ends with strike-slip faulting occurring after 2686 Ma, with 
thermal activity occurring as late as 2.657 Ga. The regions have been 

Fig. 2. Regional geological maps, fault locations (black lines), and copper occurrences (orange symbols) of the studied areas. Each area is divided into two (black 
dotted lines), one for training (zone A) and one for validation (zone B). Mineral belts are associated with metavolcanic and metasedimentary rocks, labeled in shades 
of green. The complete color codes can be consulted at the following address: MERN (2014). (I- Matagami region, II- Chibougamau area, III- Rouyn-Noranda District, 
IV- Troilus region, and V- North zone of the La Grande subprovince). Figure adapted from SIGÉOM (2022). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Table 1 
Number and proportions of each type of deposit (or occurrence) observed by region.  

Region VMS HF SEDEX Ni-Cu Others Undefined Total 

1- Matagami 36 (32.43 %) 29 (26.13 %) 16 (14.41 %) 14 (12.61 %) 5 (4.51 %) 11 (9.91 %) 111 
2- Chibougameau 26 (8.84 %) 180 (61.23 %) 29 (9.86 %) 7 (2.38 %) 31 (10.55 %) 21 (7.14 %) 294 
3- Rouyn-Noranda 48 (17.91 %) 140 (52.24 %) 3 (1.12 %) 8 (2.99 %) 42 (15.67 %) 27 (10.07 %) 268 
4- Troilus 26 (37.68 %) 23 (33.33 %) 5 (7.25 %) 1 (1.45 %) 7 (10.14 %) 7 (10.14 %) 69 
5- La Grande 8 (16.67 %) 22 (45.83 %) 0 (0 %) 0 (0 %) 9 (18.75 %) 9 (18.75 %) 48 

Note 1. VMS: Volcanogenic massive sulfide ore deposit, HF: hydrothermal fluid filings (copper and gold), SEDEX: Sedimentary exhalative deposits, Ni-Cu: Magmatic 
nickel-copper deposits, Others: porphyry deposits, veins of silver-lead-zinc, epithermal deposits, banded iron formation deposits, etc. Undefined: No information about 
the ore formation in the SIGEOM database. 
Note 2. Copper mineralization is one of the main ore formations in the listed deposits. 
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affected by several phases of deformation accompanied by low- to 
intermediate-pressure greenschist- and amphibolite-facies meta
morphism. They are enclosed and intruded by voluminous granitoid 
rocks. In the northeastern part of the Archaean Frotet-Evans-Troilus 
greenstone belt lies the Troilus gold-copper deposit. The Troilus region 
contains many occurrences of Au, Cu, and Mo mineralization; Troilus 
being the largest Au-Cu deposit found to date. 

2.3. La Grande subprovince 

The La Grande subprovince is situated in the east-central region of 
the Superior Province in Québec Province. It is characterized by complex 
sequences of Archean volcano-sedimentary and plutonic rocks that have 
undergone multiple deformation events. The subprovince comprises a 
series of submarine volcanic sequences, including the Guyer Group 
(2.82–2.81 Ga) and the Yasinski Group (2.75–2.73 Ga), along with 
sedimentary sequences overlaying tonalitic gneiss basement (3.45–2.79 
Ga). These rocks have been intruded by intermediate to felsic plutonic 
rocks (~2.72–2.71 Ga). The geological history of the La Grande area 
includes four significant compressional deformation events during the 
Archean period, accompanied by three associated metamorphic epi
sodes. A prominent steeply dipping foliation, trending ENE (East- 
Northeast), dominates the region. The La Grande subprovince hosts a 
world-class gold deposit and several other deposits of base metals such 
as Cu, Zn, Ni, and Li (Mercier-Langevin et al., 2012; Sappin et al., 2018). 

3. Materials and methods 

MPM needs exploratory variables that reflect the characteristics of 
deposits. This section outlines the different steps required to obtain a 
mineral prospectivity map according to the proposed methodology. 
Firstly, the RF algorithm is presented. Then, explanatory variables 
representative of metallogenic deposit models are selected to generate 
predictive maps. In addition, subsampled data (here, geochemical data) 
are interpolated using an RF regressor. Finally, the sampling strategy for 
negative data is specified, and the methodology to address uncertainties 
is outlined. 

The data is compiled from the SIGÉOM database (SIGÉOM, 2022) 
and the QGIS software as well as the Python programming language are 
used for data preparation, model training, and data modeling. The scikit- 
learn, SciPy, NumPy, pandas, shap, and Matplotlib libraries were used. 
All the scripts and associated data are available on GitHub in the Data 
Availability Statement section. 

3.1. Random Forest 

The Random Forest algorithm is a supervised learning method that is 
frequently employed for regression and classification tasks. It utilizes an 
ensemble of decision trees, where each tree is trained on a random 
subset of the training data. To enhance diversity within the ensemble, 
random feature selection is employed at each tree node (Breiman, 
2001). In each decision tree, the internal nodes are split into two 
descendant nodes based on the value of one or more exploratory vari
ables. If the exploratory variable is continuous, the split is determined by 
a cut-off value, while for categorical exploratory variables, a binary split 
is applied. The final prediction is obtained by combining the predictions 
of each optimized decision tree through averaging for regression tasks or 
voting, with the majority class selected as the final prediction for clas
sification tasks. 

The best predictor and the best split are obtained using a slicing 
criterion, a function that measures the quality of a split. For a regression 
task, one measure is the mean squared error (MSE), which is equal to 
variance reduction as feature selection criterion and minimizes the L2 
loss using the mean of each terminal node. The mean squared error 
formula is given by: 

MSE =
1
n
∑n

i=1
(yi − ŷi )

2 (1)  

where n is the number of samples in the node, y represents the true 
target values of the samples in the node and ŷ represents the predicted 
target values of the samples in the node. The split that results in the 
lowest MSE is selected as the best split during the training process of the 
decision tree in the Random Forest regressor. 

For classification task, the algorithm aims, as an example, to mini
mize Gini impurity, a metric used to estimate the probability of incorrect 
classification at a specific node. The Gini impurity formula is given by: 

Gini Impurity = 1 −
∑n

i=1
p2

i (2)  

where pi represents the probability of an instance belonging to class i 
within the node. The Gini impurity measures the degree of impurity or 
randomness in a node. It quantifies the likelihood of misclassifying a 
randomly selected instance in the node based on the class distribution. A 
lower Gini impurity indicates a purer node with more homogeneous 
class labels. By selecting splits that result in the greatest reduction in 
Gini impurity, the algorithm achieves a more homogeneous distribution 
of class labels, leading to improved separability and more accurate 
predictions (Breiman, 2001; Rodriguez-Galiano et al., 2014). 

The optimal hyperparameters for the Random Forest algorithm were 
determined using a grid search strategy. It conducts a random search 
within a parameter space defined by the user, employing cross- 
validation on batches of the training set. A 5-fold cross-validation 
strategy with 100 iterations was implemented to explore the optimal 
values of RF-related hyperparameters. Table 2 shows the parameter 
space used in this study. 

3.2. Transfer learning 

The idea behind TL is to focus on applying the knowledge gained 
from solving a given task to a related one (Hosna et al., 2022). The TL 
model is applied in this study to learn the associations between Cu 
mineralization and the corresponding exploratory variables within four 
well-identified mineral fields. The trained model is then applied to 
improve the MPM within a poorly documented distant field. This 
methodology will be compared with a local approach (LA), which pre
dicts prospectivity maps solely based on information from the sur
rounding area. LA partitions a specified area into two segments (e.g., I-A 
for training and I-B for validation, as defined in Fig. 2). In contrast, TL 
employs other regions (e.g., regions II, III, IV, and V, as defined in Fig. 2) 
as training sets to capture patterns and relationships from a more 
extensive set of input features and geological signatures related to 
mineral belts. It’s noteworthy that TL is also validated using the same 
validation sets as the LA (i.e., region I-B). Note that set I-A is not used for 
training in TL to avoid spatial bias when comparing both approaches. 
Fig. 3 shows the difference between LA and TL. 

To conduct both LA and TL approaches, we employed Random Forest 
(RF) to classify nodes as prospective areas or not. As mentioned previ
ously, LA focuses the training on a specific area using data from the 

Table 2 
Set of hyperparameters of the Random Forest algorithm for the random search 
strategy.  

Hyperparameter Set 

bootstrap [False,True]
max_depth [2,5,10,20,30,40,50,None]
max_features [auto, sqrt]
min_samples_leaf [1,2,3,4,5]
min_samples_split [2,3,5,10]
n_estimators [100,200,300,400,500,600,800,1000]
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vicinity of the validation zone. In contrast, TL utilized training data from 
various geological zones with similar regional metallogenic proc
esses—specifically, greenstone belts with Cu mineralization. It can be 
inferred that LA is applied in a brownfield context, where we search for 
deposits near or adjacent to already operating mines. On the other hand, 
TL combines approaches by using data-driven techniques in well-known 
deposit areas (i.e., brownfields) and applying that knowledge to areas 
without known deposits or with only a few occurrences (i.e., green
fields). This assumes similarities in geological terrain and mineral 
exploration models, extending the predictive capabilities to promising 
regions where exploratory variables are available but lack positive data. 

3.3. Preparation of exploratory variables 

The exploratory variables are selected based on the formation 
mechanisms of the deposits present at the study sites and exploration 
data available from the SIGEOM database. These correspond to regional 
geological maps, fault and contact location maps, airborne magnetic and 
gravimetric geophysical surveys, and point geochemical analysis data. 
To simplify the reading, only the maps associated to the Rouyn-Noranda 
district, areas III-A and III-B, will be presented in this section. Note that 
all the features for all areas were re-interpolated or estimated to an 
identical regular grid with the same cell, a regular grid of 0.002◦

longitude by 0.002◦ latitude. 

3.3.1. Indicator of regional geology 
The regional-scale geological mapping of Quebec is the outcome of 

compiling works primarily conducted by government agencies (both 
provincial and federal) as well as mining exploration companies. It in
corporates the results of numerous surveys, compilations, and geological 
syntheses conducted across the Quebec territory between 2012 and 
2021. Additionally, high-resolution magnetic surveys conducted since 
2012 have contributed to refining the geological interpretation. These 
extensive efforts, carried out at various scales, have facilitated the cre
ation of relatively comprehensive geological coverage at the regional 
level. The Ministry of Natural Resources and Forestry (MRNF, 2023) 
produced the map at a scale of 1/2,000,000. The geology of the Rouyn- 
Noranda district is depicted in Fig. 2, area III. 

3.3.2. Indicators of geological contacts and faults 
Geological contacts and faults are known to be potential major 

conduits for fluid transport and sources of hydrothermal fluids (Harris 
et al., 2022). This information is represented by buffering geological 

contacts and fault locations from the SIGEOM database, creating two 
binary maps indicating the presence of contacts and faults. A buffer of 
100 m was applied. 

Subsequently, for each feature, two additional maps are generated. 
One indicates the distance to the nearest geological contact (or fault), 
and the other indicates the density of geological contacts (or faults). A 
high density suggests a higher likelihood of having a connected pathway 
for the circulation of hydrothermal fluids (Harris et al., 2022; Mathieu, 
2019). The density is calculated using a moving average with a buffer of 
500 m. The buffer was derived from the study by Harris et al. (2022), 
where the authors indicated that the influence of alteration and 
mineralization around faults and contacts extends around 500 m. The 
value was determined by the first author’s experience while mapping 
various greenstone belts in Ontario, adjacent to the Québec Province, 
where greenstone belts are either the same or geologically similar. Fig. 3 
and Fig. 4 show respectively the geological contacts and faults maps 
used for the Rouyn-Noranda district (Fig. 2, area III). 

3.3.3. Indicators of geophysics 
The compilation of low-resolution gravimetric data was carried out 

by the Geological Survey of Canada (GSC, 2023). All acquired data are 
referenced to the IGSN71 reference level to create a consistent dataset 
on a planetary scale. The data used to create the maps are interpolated 
on a 2 km grid with an interpolation limit of 20 km, including data 
acquired from 1944 to 2015. Currently, most base stations have been 
replaced to achieve a precision of 2 µGal (2x10-8 m/s2). The Bouguer 
anomaly was calculated using a vertical gravity gradient corrected for 
free-air with a value of 0.3086 mGal/m and a density of 2670 kg/m3 for 
Bouguer correction. The maps used for the prospectivity mapping are 
the Bouguer anomaly and the first vertical derivative map of gravity 
anomalies. Fig. 5 shows the normalized low-resolution gravimetric maps 
used for the Rouyn-Noranda district (Fig. 2, area III). 

The compilation of high-resolution magnetic data was carried out by 
the Ministry of Natural Resources and Forests, Québec (MRNF, 2023). 
The surveys used for this map have a line spacing ranging from 100 to 
300 m with a flight height between 40 and 100 m. The values of the 
residual component of the total magnetic field are interpolated on a 75 
m grid. The map of the residual magnetic field of Quebec was created 
using the GridKnit tool from Geosoft. The first vertical derivative and the 
analytic signal were calculated using the Fourier transform method with 
the MAGMAP module from Geosoft. The maps used for the prospectivity 
mapping are the residual magnetic field, the first vertical derivative, and 
the analytic signal. Fig. 6 shows the normalized high-resolution 

Fig. 3. The disparity lies in the training area between the local approach (LA) and the transfer learning methodology (TL). Data within the red area are employed for 
training, with validation performed on data within the blue area. In TL, four remote regions with a similar geological context are utilized to predict prospectivity, 
while in LA, the nearby area is used for predicting prospectivity. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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Fig. 4. Features associated with geological contacts. A – Binary geological contact location map, B – Geological contact density prediction map. C – Geological 
contacts distance map. (Symbols – black: main Cu mineralization, white: secondary Cu mineralization, stars: mines, circles: deposits, Triangle: occurrences). 

Fig. 5. Features associated with faults. A – Binary fault location map, B – Fault density prediction map. C – Fault distance map. (Symbols – black: main Cu 
mineralization, white: secondary Cu mineralization, stars: mines, circles: deposits, Triangle: occurrences). 

Fig. 6. Features associated with low-resolution gravity data. A – Map of the Bouguer anomaly, B – Map of the first vertical derivative of gravity anomalies. (Symbols 
– black: main Cu mineralization, white: secondary Cu mineralization, stars: mines, circles: deposits, Triangle: occurrences). 
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magnetic maps used for the Rouyn-Noranda district (Fig. 2, area III). 

3.3.4. Indicators of geochemistry 
Geochemical data, which offer insights into rock types, alteration 

minerals, and anomalous concentrations, are of immense value in min
eral exploration (Lachaud et al., 2023). In our study, only the chemistry 
of rocks has been considered. The data was obtained from SIGEOM and 
processed according to the methodology presented in the following 
section. These indicator elements, Au, Pb, Ni, Zn, Cu, were used in the 
modeling process, along with ten oxides (K2O, MgO, Na2O, CaO, Fe2O3, 
MnO, SiO2, Al2O3, P2O5, TiO2). Note that geological processes, such as 
differentiation, alteration, mineralization, and weathering, can be 
characterized by geochemical alteration indexes. These indexes serve as 
valuable tools for understanding and quantifying the intensity or extent 
of alteration zones, a mechanism present in our study (Lachaud et al., 
2023; Mathieu, 2018). These indexes, derived from oxide percentages, 
include the carbonate-chlorite-pyrite index (CCPI) (Eq. (3)), the Ishi
kawa alteration index (IAI) (Eq. (4)), the advanced argillic alteration 
index (AAAI) (Eq. (5)), and the Altered-Unaltered index (UAI) (Eq. (6)). 
Both high values of IAI and CCPI indicate the presence of hydrothermal 
alteration in the altered products. An increase in AAAI represents strong 
SiO2 enrichment and chlorite, carbonate, and feldspar destruction. An 
AUI value higher than 1 may indicate altered rocks, while unaltered 
rocks may have an AUI value lower than 1 (Mathieu, 2018). It is 
important to note that all these indexes represent different aspects of 
hydrothermal alteration and ore formation, reflecting the chemical and 
mineralogical changes that occur during the weathering process and 
indicating the density of alteration. For a comprehensive review of 
methods for alteration indexes (CCPI, IAI, UAI), refer to Mathieu (2018), 
and for insights into AAAI, consult Williams and Davidson (2004). 

CCPI =
Fe2O3 + MgO

Fe2O3 + MgO + Na2O + K2O
(3)  

IAI =
K2O + MgO

K2O + MgO + Na2O + CaO
(4)  

AAAI =
SiO2

SiO2 + 10(MgO + Na2O + CaO)
(5)  

AUI =
FeO + MnO + MgO
CaO + K2O + Na2O

(6) 

Integrating geochemical data into the machine learning process re
quires transforming the point geochemical dataset into geochemical 
maps. Generally, the inverse distance method and Kriging-based 
methods are commonly used to interpolate geochemical data across 

the grid. Nevertheless, the results of such interpolations are generally 
smooth and not constrained to lithological units. To achieve this, RF 
regressor is employed, which allows evaluating the similarities between 
observation locations and geographical and geological attributes, 
namely exploratory variables, such as geological contacts, fault loca
tions, geophysical data, regional geology, and any other parameters 
deemed relevant for estimation. By employing an RF regressor, our 
method fulfilled the requirements of our study, conditioning geochem
ical data accordingly to rock lithology and exploratory variables without 
the need for additional assumptions associated with more advanced 
techniques like regression kriging. All feature maps shown in section 
3.3.1 to 3.3.3 were used as exploratory variables to predict geochemical 
data. Before conducting the interpolation, the geochemical data were 
averaged at the grid cell level to reduce noise. Grid data are not provided 
in the regressor to enable a more accurate estimation of geological units 
lacking measured geochemical data. Regression scores surpass 0.80 for 
all conducted regressions. Fig. 7 illustrates the rock geochemical maps 
for CCPI, AUI, SiO2, Al2O3, Au, Cu, Zn, and Ni obtained for the Rouyn- 
Noranda district (Fig. 2, area III). The resulting maps demonstrate 
consistency with geology, as shown by the SiO2 map, where the granitic 
units in the centers exhibit grades varying between 70 and 75 %, which 
are typical values for granite. 

3.4. Sampling negative data 

Accurate selection of training and validation sets is an important step 
in the Random Forest algorithm to learn patterns and relationships from 
the input features (i.e., exploratory variables) and target labels (i.e., 
deposits or non-deposits). However, in many applications in geo
sciences, these sets are biased by the inherent spatial correlation. These 
sets require to be sampled accordingly to the geological problem to 
prevent overfitting and to help detect when the model becomes too 
complex and fails to generalize well to new data (Silva dos Santos et al., 
2022). 

One proposed solution is to geographically divide the training and 
validation sets, such as allocating one in the northern region and the 
other in the southern region (Silva dos Santos et al., 2022). This is done 
by dividing area in sections A and B as shown in Fig. 2. The split between 
sections A and B is made to achieve a fair distribution of training and 
validation data across both sections. The idea is to create training and 
validation zones that are likely to be similar without being entirely 
identical. If they were identical, assessing TL gain over LA could be 
challenging, as the validation zone would closely resemble the training 
zone. Moreover, constraints on the negative datasets are necessary to 
sample signatures that are more likely to be inert, without 

Fig. 7. Features associated with high-resolution magnetic data. A – Residual magnetic field map, B – Map of the first vertical derivative of the residual magnetic field, 
C – Analytical signal map. (Symbols – black: main Cu mineralization, white: secondary Cu mineralization, stars: mines, circles: deposits, Triangle: occurrences). 
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mineralization. Two constraints can be applied to sample the negative 
data (Carranza et al., 2008; Nykänen et al., 2015; Silva dos Santos et al., 
2022). The first constraint assesses the favourability of lithologic units to 
represent the strength of spatial association (SA) between rock units (R) 
and known deposits (D) (Nykänen et al., 2015; Silva dos Santos et al., 
2022). SA, Eq. (7), is calculated by comparing the proportion of a unit’s 
area covered by known deposits, P(R∩D), to the proportion of the study 
area occupied by the same unit, P(R), as: 

SA(R) =
P(R ∩ D)

P(R)
=

N(R ∩ D)/N(D)

N(R)/N(A)
(7)  

where N(R ∩ D) represents the number of known deposits of type D 
contained in the rock unit R, N(D) is the number of known deposits of 
type D, N(R) is the number of pixels associated with the rock unit R, and 
N(A) the number of pixels of the study area A. To generate the spatial 
association map, we assign the SA value calculated for the rock unit 
present at the coordinates. Fig. 8A presents SA of region III. This metric 
helps prioritize negative samples from lithologic units that show less 
association with known deposits. The second constraint involves point 
spatial analysis to determine the proximity of deposits to each other in 
space (see Fig. 8B). This analysis helps identify how closely the deposits 
are located, aiding in the selection of negative samples that are spatially 
distant from known deposits (Carranza et al., 2008). Negative data are 
drawn randomly from areas with SA below the 25 % quantile. This en
ables the sampling of geological units with a significantly low proba
bility of containing an occurrence due to the scarcity of observed 
occurrences within these units and their extensive surface area. Fig. 8 
shows the applied constraints to the Rouyn-Noranda district (Fig. 2, area 
III). 

3.5. Assessing uncertainties 

The uncertainty of the predictions was assessed by generating 200 
sets of negative data. For each set, the negative dataset was combined 
with the positive dataset from the study area. The combined dataset was 
then divided into training and testing sets based on sections A and B 
defined in Fig. 2. The RF model was trained using the training set, and 
subsequently, a potential map of the test area was generated using the 
trained model. The process was repeated 200 times to capture 

variability, and predictions and metrics were stored for each realization. 
Finally, the mean and standard deviation of the potential maps were 
calculated. 

4. Results and discussion 

The study is divided into two sections to highlight the advantages of 
TL in the mineral belt for Cu prospectivity mapping. It is worth 
mentioning that the methodology can be applied to other critical and 
strategic minerals such as zinc, nickel, or lithium, for instance. First, the 
well-documented Rouyn-Noranda area (Section III-B, Fig. 2) will be 
utilized to validate the approach by comparing the traditional LA with 
the more comprehensive regional approach based on TL. Second, the La 
Grande region (Section V-B, Fig. 2) will showcase the advantages of the 
proposed approach in cases where the surveyed region is not thoroughly 
explored. To lighten the results section, we focused on presenting results 
for zones III and V—a well-documented region (III) and a sparsely 
documented remote area (V). Although studies were conducted for re
gions I, II, and IV, the results closely mirror those of regions III and V. 
Fig. 1 and Fig. 2 visually depict the training and validation zones for 
these regions, but their results will not be presented. 

Table 3 summarizes the number of mines, deposits, and occurrences 
found in each area where Cu is the main commodity. Field sizes are also 
indicated. Note that sets A and B have been created based on Fig. 2 by 
converting the coordinates of Cu deposits into a regular grid of 0.002◦

longitude by 0.002◦ latitude. If several ore formations are in the same 
grid cell, the most important formation (mine followed by deposits and 
occurrences) is selected. 

4.1. Transfer learning approach on a well-documented dataset 

The first study site, the Rouyn-Noranda district, is one of the most 
extensively studied VMS ore deposits in the world. Mineralization is well 
documented and geochemical analyses are present in large quantities (i. 
e., over 35,000 analyses). The intrusions are inferred to be the sub
volcanic heat sources that drove convective hydrothermal systems in 
overlying volcanic rocks that occupy a paleocauldron structure (Card, 
1990). 

The training and validation set for LA separate the paleocauldron 

Fig. 8. Features associated with geochemical data. (Symbols – black: main Cu mineralization, white: secondary Cu mineralization, stars: mines, circles: deposits, 
Triangle: occurrences). 
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structure into two parts consisting of regions III-A for training and III-B 
for validation (refer to Fig. 2). In contrast, TL uses the other eight regions 
(I-A, I-B, II-A, II-B, IV-A, IV-B, V-A, and V-B) as training sets to learn 
patterns and relationships from a larger number of input features and 
mineral belt geological signatures. Note that III-A is removed from the 
training sets to avoid biased from the inherent spatial structure of the 
exploratory variables of region III. 

4.1.1. Mineral prospectivity mapping and uncertainty quantification 
For each of the two approaches mentioned above, two hundred po

tential maps were generated. Subsequently, mineral prospectivity maps 
are produced, including an average predicted prospects map and a mean 
standard deviation map indicating prediction inconsistency in test areas 
(Fig. 9). The Maps in the left and right columns of Fig. 9 relate to the LA 
and the TL approach, respectively. 

Maps generated using TL exhibit more promising results compared to 
the LA. This is evident through an increase in mean probabilities, and a 
decrease in mean standard deviations. Quantitatively, the probabilities 
associated with occurrences increased from an average of 73 % to 79 %, 
and the mean standard deviation decreased from 6 % to 5 %. Also, TL 
significantly enhances the prediction of hotspots, with an average 
probability of 94 % for mines compared to 81 % in the LA, and better 
predict secondary Cu mineralization (white data, not provided in the 
training sets) than the LA with the probabilities associated with occur
rences increased from an average of 75 % to 83 %, and the average 
standard deviation slightly decreases from 5 % to 4 %. Table 4 provides a 
summary of these statistics categorized by type of mineralization, i.e., 
mine, deposit, or occurrence. Overall, prospectivity zones seems better 
defined (i.e., >50 %): adopting the LA, the 200 models predicted on 
average probabilities of 67 % with mean standard deviation of 6 %; 

Table 3 
Number of mines, deposits, and occurrences per region and per section, and field dimensions.   

Section A Section B Dimensions 

Region Mine Deposit Occurrence Mine Deposit Occurrence Long. Lat. 

I- Matagami – 3 49 13 5 38 2◦ 1◦

II- Chibougameau 18 3 112 6 4 150 2◦ 1◦

III- Rouyn-Noranda 18 – 62 5 3 59 1◦ 0.5◦

IV- Troilus – – 32 – 2 19 0.5◦ 0.5◦

V- La Grande – – 20 – – 18 1◦ 0.25◦

Fig. 9. Spatial association map (A). Point spatial analysis map (B). Realization 1 of negative data (C). Realization 95 of negative data (D). (Symbols – black: main Cu 
mineralization, stars: mines, circles: deposits, Triangle: occurrences, white squares: negative data). 
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while adopting the TL approach, the average probabilities become 73 % 
with mean standard deviation of 5 %. 

4.1.2. Impact of TL on prediction of hotspots for exploration targeting 
Two categorical maps were generated to highlight prospecting areas. 

Fig. 10(A and B) illustrates the region where the average probability 
exceeds 50 %, indicating promising areas. Fig. 10(C and D) incorporates 
thresholds from Fig. 9(A and B) and assigns labels based on average 
probabilities. Areas with probabilities above 90 % are labeled red, those 
between 80 % and 90 % are labeled gold, between 70 % and 80 % are 
labeled yellow, between 60 % and 70 % are labeled lime, and between 
50 % and 60 % are labeled green. Take note of the black circles in 
Fig. 10D, which indicate high-potential areas lacking known Cu occur
rences. These areas appear to be promising candidates for future 
exploration targets. 

Firstly, there is a significant decrease in the prospecting area passing 
from 63.30 % to 57.91 %. These areas are mainly associated with 
intrusive igneous rocks and have a low probability of containing copper 
mineralization. By incorporating the four other mineral belts, the model 
provides a better characterization of the inert signature of intrusive 

igneous rocks, allowing us to narrow down the search areas to the most 
attractive ones. Moreover, TL better identifies the hotspots for explo
ration targeting compared to the LA. This phenomenon is shown in the 
increase in the number of principal occurrences in the red-gold cate
gories, from 21 to 39, or from 18 to 25 for secondary mineralization. 

4.1.3. Feature importance 
Silva dos Santos et al. (2022) emphasize the importance of reliable 

prospecting maps, which necessitate models built upon reasonable input 
data, including proxies that represent various mechanisms responsible 
for ore formation. However, achieving reliable and interpretable results 
is equally crucial, and this can be challenging due to the inherent “black 
box” nature of machine learning models. To shed light on this issue, 
SHapley Additive exPlanations (SHAP) values are computed to provide 
explanations for individual model predictions. SHAP is a method 
derived from cooperative game theory used to attribute a value to each 
feature in a prediction (Lundberg and Lee, 2017). They aim to explain 
the output of machine learning models by quantifying the contribution 
of each feature to the model’s prediction for a specific instance. SHAP 
values provide a way to distribute the “credit” for a model’s prediction 
among its input features, offering insights into the importance and 
impact of each feature on the final output. Fig. 11 displays the SHAP 
values associated with the 200 trained models using the LA (A) and TL 
(B). All simulated values are incorporated in Fig. 11. 

The LA consistently places significant emphasis on gravity surveys 
(BouguerBR and AnoGrav1DBR), as well as fault characteristics 
(Fault_Distance and Fault_Density). The algorithm suggests that miner
alization is predominantly linked to medium-low density rocks, such as 
those found in the greenstone belt, and highlights the importance of 
fault locations, indicating the probable influence of hydrothermal fluids 
on Cu-mineralization. On the other hand, the TL approach presents a 
different perspective. It focuses more on structural geology, one of the 

Table 4 
Summary of average probability and standard deviation by type of mineraliza
tion, i.e., mine, deposit, or occurrence for local approach (LA) and transfer 
learning (TL) for primary (PM) and secondary (SM) mineralization.   

Average probability (%) Average standard deviation (%)  

Mine Deposit Occurrence Mine Deposit Occurrence 

PM- LA 81 76 66 5 6 6 
PM- TL 94 82 71 3 4 5 
SM- LA 75 77 68 5 6 6 
SM- TL 83 79 72 4 5 5  

Fig. 10. Potential maps (A-B). Standard deviation maps (C-D). Left column: local approach (LA). Right column: transfer learning (TL). (Symbols – black: main Cu 
mineralization, white: secondary Cu mineralization, stars: mines, circles: deposits, Triangle: occurrences). 
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main migration mechanisms for hydrothermal fluids, with a strong 
emphasis on fault locations and geological contacts. In addition, 
importance is given to rocks with high CCPI (R_CCPI) and AUI (R_AUI) 
indices, indicating locations where rock units have potentially been 
altered because of processes such as chloritization, an alteration of 
magmatic rocks characterized by hydration and potassium release, or 

the passage of hydrothermal fluids (Mathieu, 2019). This disparity in 
emphasis illustrates that the geological interpretation of the results 
differs between the two methods. The TL method seems to capture a 
greater geological signature of the underlying mechanisms associated to 
Cu commodity. 

Fig. 11. Prospecting maps (A-B). Labeled prospecting maps (C-D). Left column: local approach (LA). Right column: transfer learning (TL). (Symbols – black: main Cu 
mineralization, white: secondary Cu mineralization, stars: mines, circles: deposits, triangle: occurrences). 

Fig. 12. SHAP value of the feature importance. A) Local approach (LA). B) Transfer learning (TL).  
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4.2. Transfer learning approach on a remote region 

The La Grande sub-province is located within the central-eastern part 
of the Superior Province of Quebec (See Fig. 1, area V). It is character
ized by complex sequences of Archean volcano-sedimentary and 
plutonic rocks that have undergone multiple deformation events. The 
subprovince hosts a world-class gold deposit and several other base 
metal deposits such as Cu, Zn, Ni and Li (Sappin et al., 2018). These 
recent discoveries have increased interest in the region, underscoring 
the need to better define areas of mineral prospectivity. Exploration and 
new regional mapping provide an improved geological framework, but 
some areas lack positive data to capture the geological signature of Cu 
mineralization by machine learning. TL should therefore be favored. 

The training and validation set for the LA separate the zone into two 
equal parts consisting of regions V-A for training and V-B for validation 
(refer to Fig. 2). In contrast, TL uses the eight following regions I-A, I-B, 
II-A, II-B, III-A, III-B, IV-A, and IV-B as training sets. For each of the two 

approaches, two hundred potential maps were generated. Subsequently, 
mineral prospectivity maps are produced, including an average pre
dicted prospects map, a mean standard deviation map indicating pre
diction inconsistency in test areas, and a hotspots map for exploration 
targeting (Fig. 12). The left column represents the LA, and the right 
column is associated with the TL approach. Take note of the black circles 
in Fig. 12D, which indicate high-potential areas lacking known Cu oc
currences. These areas appear to be promising candidates for future 
exploration targets. Fig. 13. 

Maps generated using TL yield more promising results compared to 
the LA. This is evident through higher average probabilities, lower 
average standard deviations, and improved identification of areas of 
interest for exploration. In terms of quantitative analysis, the probabil
ities associated with occurrences have increased from an average of 81 
% to 89 %, while the average standard deviation has decreased from 5 % 
to 4 %. Overall, the hotspots areas appear to be more precisely delin
eated and closely aligned with observed occurrences. For instance, using 

Fig. 13. Potential maps (A-B). Standard deviation maps (C-D). Labeled prospecting maps (E-F). Left column: local approach (LA). Right column: transfer learning 
(TL). (Symbols – black: main Cu mineralization, white: secondary Cu mineralization, Triangle: occurrences). 
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the LA, the 200 models predicted mean probabilities of 70 %, whereas 
the TL achieved mean probabilities of 75 %. This is also demonstrated by 
an increase in the number of occurrences in the red-gold category, rising 
from 12 to 22 (including secondary mineralization). It is important to 
note that the TL indicates no occurrence out of 22 in the green, lime, and 
yellow categories, whereas the local method identifies 12 out of 22, 
corresponding to 55 % of the occurrences. This significant difference can 
be attributed to the limited number of positive data points from region 
V, amounting to 38 occurrences for LA as opposed to 599 for TL. The 
difference between the number of mines/deposits/occurrences in 
Table 1 (742 in total) and the 599 occurrences quoted here, is related to 
several mineralized formations present in the same grid cell. It appears 
that the TL provides a good understanding of Cu ore formation mecha
nism in greenstone belts and can be used to predict under-sampled or 
under-documented remote areas. 

4.3. Impact of TL on seven different supervised machine learning methods 

To highlight the potential of TL in mineral prospectivity mapping, we 
reconducted experiments in sections 4.1 and 4.2 using various super
vised machine learning algorithms, including logistic regression (LR), k- 
nearest neighbors (KNN), support vector machine (SVM), artificial 
neural networks (ANN), adaptative boosting (AdaBoost), and extreme 
gradient boosting (XGBoost). The training and validation methodology 
is identical with that presented in section 4.1 for the well-documented 
region (brownfield) and in section 4.2 for the remote region (green
field). Tables 5 and 6 present the validation results for regions III-B, the 
well-documented region, and V-B, the remote region, respectively. RF 
results are also provided. 

Four metrics—Brier Score (BS), Recall (RC), Predicted Probability of 
Mineralization (PPM), and the Prospecting Area (PA)—were computed to 
compare LA to TL. BS provides a measure of the mean squared difference 
between predicted probabilities and actual outcomes, offering a way to 
evaluate the calibration and accuracy of probabilistic predictions. Lower 
BS indicates better predictive performance. RC measures the ability of a 
model to correctly identify all relevant instances (positives) from the 
total number of actual positive instances in a dataset. Lower RC indicates 
better predictive performance. PPM is associated with the average pre
dicted probability of principal mineralization, averaging the predicted 
probability of mines, deposits, and occurrences where Cu is present as 
the main commodity. A higher PPM indicates better performance of the 
model in predicting Cu occurrences. PA defines the prospecting area of a 
region by computing the percentage of area where the average model- 
predicted probability exceeds 50 %. Upon inspecting the results, we 
observed that the reduction in the prospecting area is mainly linked to 
the improved classification of granitic formations as areas not mineral
ized with Cu—where occurrences are considered improbable. Generally, 
a lower value indicates better performance in our cases. We highlighted 
all best values between LA and TL in green, the worst in red, and similar 
remains black to aid understanding of Tables 5 and 6. The presented 
values are the means obtained from the 200 realizations, along with 
their respective standard deviations if available. 

Checking Tables 5 and 6, we observe that TL consistently out
performs LA, as evidenced by most metrics labeled in green, with only 9 
in red out of 84. Specifically, in Table 5, regardless of the supervised 
machine learning algorithm used, BS values are significantly lower for 
TL than LA. This suggests that TL generated more accurate probabilistic 
predictions than LA for the well-documented area. This superior per
formance is also reflected in lower RC values, indicating that TL pre
dicted fewer false negatives, meaning a higher proportion of actual 
positives was correctly identified. As a result, there are higher predicted 
probabilities associated with mines, deposits, and occurrences where Cu 
is present as the main commodity. Moreover, standard deviations 
(values in parentheses) are, for the most part, lower for TL than LA. TL 
seems to produce a model with less uncertainty than LA, enabling a more 
precise prediction. Similar conclusions can be drawn for Table 6, which 
is associated with metrics computed in the remote area. 

Note that the gain provided by TL is less pronounced in Table 6 due 
to only 18 positive data in the validation set, with 9 of them in the same 
neighborhood (See Fig. 12). This is the reason why some algorithms, 
especially, XGBoost underperformed when applied using LA. Despite 
that, on average, the TL approach recognizes that 43.14 % of the area is 
worth prospecting, while LA mentions 46.29 % in the remote area. This 
significant reduction of 3.15 % is attributable to better recognition of 
inert zones. As LA is carried out on a very limited dataset, making this 
distinction is not easy, which is not the case with TL which has a larger 
database. Ultimately, the results indicate that using TL can significantly 
improve forecast accuracy compared to LA, due to its ability to capture 
more geological signatures of copper mineralization in mineral belts. 
Importantly, this improvement using TL is not limited to RF but can be 
extended to several other supervised machine-learning algorithms. 

5. Conclusions 

This study investigated the impact of TL on mineral prospectivity 
mapping by training and validating a Random Forest model using five 
geographically distant mineral belts within the same geological Prov
ince. Two criteria were employed to restrict the selection of negative 
examples, involving the establishment of buffer zones based on distance 
and spatial association with copper deposits. A total of two hundred 
potential maps were generated to compare TL with LA. To assess model 
uncertainty, the mean and standard deviation of the potential maps were 
calculated, identifying areas where model predictions exhibited the 
highest stability. Results indicated that the utilization of TL significantly 
enhanced accuracy and reduced the standard deviation of predictions 
for mines, deposits, and occurrence locations compared to LA. By aug
menting the positive data in the training set, TL demonstrates an 
improved ability to capture geological signatures of copper minerali
zation in mineral belts. This was shown in a more accurate prediction of 
the hotspots in the validation tests, helping for exploration targeting. 
The case study focused on the Superior Craton geological province, 
encompassing a significant portion of northeastern Quebec, Canada, in 
the context of copper prospectivity mapping. 

Table 5 
Comparison between local approach (LA) and the transfer learning method (TL) based on seven supervised machine learning algorithms for the well-documented area. 
(RF: random forest; LR: Logistic regression; SVM: Support vector machine; KNN: K-nearest neighbors; AdaBoost: Adaptative boosting; XGBoost: Extreme gradient 
boosting; ANN: artificial neural networks).  

Supervised machine learning method LA TL 

BS (-) RC (-) PPM (-) PA (-) BS (-) RC (-) PPM (-) PA (-) 

RF 0.26 (0.03)  0.18 0.73 (0.06)  0.63 0.10 (0.01)  0.17 0.79 (0.06)  0.58 
LR 0.51 (0.04)  0.26 0.81 (0.12)  0.57 0.12 (0.05)  0.13 0.85 (0.03)  0.54 
KNN 0.32 (0.05)  0.28 0.75 (0.14)  0.47 0.15 (0.02)  0.19 0.82 (0.12)  0.55 
SVM 0.45 (0.04)  0.17 0.78 (0.09)  0.59 0.12 (0.05)  0.11 0.87 (0.03)  0.56 
ANN 0.52 (0.05)  0.25 0.86 (0.17)  0.61 0.21 (0.06)  0.21 0.92 (0.13)  0.56 
AdaBoost 0.38 (0.08)  0.20 0.91 (0.16)  0.61 0.11 (0.02)  0.14 0.96 (0.07)  0.59 
XGBoost 0.45 (0.08)  0.26 0.83 (0.33)  0.65 0.11 (0.02)  0.15 0.96 (0.07)  0.59  
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All python codes can be found on GitHub at: https://github.com/ 
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for access to raw and processed data. 
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GSC Geological Survey of Canada 
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