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On the simultaneous computation of target inventories and intervals for 
bimodal bike-sharing systems 

Maria Clara Martins Silva a, Daniel Aloise *,a, Sanjay Dominik Jena b 

a GERAD and Polytechnique Montréal, 2500 Chem. de Polytechnique, Montréal, H3T 1J4, Canada 
b CIRRELT and School of Management, Université du Québec à Montréal, 405 Rue Sainte-Catherine Est, Montréal, H2L 2C4, Canada   
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A B S T R A C T   

The emerging demand for electric bicycles in recent years has prompted several Bike-Sharing Systems around the 
world to adapt their service to a new wave of commuters. Many of these systems have incorporated electric bikes 
into their network while still maintaining the use of regular mechanical bicycles. However, the presence of two 
types of bikes in a Bike-Sharing network may impact how rebalancing operations should be conducted in the 
system. Regular and electric bikes may exhibit distinct demand patterns throughout the day, which can hinder 
efficient planning of such operations. In this paper, we propose a new model that provides rebalancing recom-
mendations based on the demand prediction for each type of bike. Additionally, we simulate the performance of 
our model under different scenarios, considering commuters’ varying inclination to substitute their preferred 
bike with one of a different type. Our empirical experiments indicate the potential of our model to improve user 
satisfaction, reducing the total lost demand by approximately 10%, while reducing the lost demand for electric 
bikes by around 30%, on average, when compared to the existing rebalancing strategy used by the real-world 
Bike-Sharing System under study. Remarkably, this was accomplished while maintaining an almost identical 
average hourly count of rebalancing operations.   

1. Introduction 

In the last years, bike-sharing systems (BSS) have gained traction as 
an alternative transportation mode due to their numerous advantages 
such as the absence of greenhouse gases emission, the promotion of a 
healthy lifestyle, as well as easy and facilitated access. The history of this 
mobility service dates back to the 60s and has continuously evolved over 
time [34]. The fourth BSS generation, which we are currently experi-
encing, is marked by the inclusion of solar-powered docking stations, 
real-time system data, mobile apps, flexible parking, and electric bikes, 
also known as e-bikes [20]. 

In comparison with regular bikes, e-bikes are faster, easier to ride, 
especially on hilly paths, and overall they cause less fatigue [18]. To 
make BSSs more attractive to a group of commuters who are mainly 
interested in these advantages, BSSs around the world have introduced 
e-bikes into their networks – e.g. BIXI (Montréal), Citi Bike (New York). 
Nonetheless, regular bikes still please loyal commuters who search for 
health benefits or for a cheaper transportation mode. In [39], it is shown 
that the introduction of e-bikes in BSSs, alongside regular bikes, 
contributed significantly to the augmentation of BSSs revenues. 

However, a network with two types of bikes indeed introduces new 
challenges at every step of the service’s logistics. This is especially the 
case for dock-based BSSs, where the docks at the stations must be shared 
by both types of bikes. As such, too many bikes of a given type may lead 
to lost demand of the second type, and vice-versa, given that the number 
of docks is limited at each station. Hence, at the moment of rebalancing 
the inventory of a station, it is important to dynamically determine the 
number of ideal available bikes of each type in the stations of the system 
to guarantee its effective service. 

Fig. 1 presents the hourly average number of bikes rented on BIXI- 
Montreal in July 2022, where we can observe that the demand for 
regular and electric bike trips bounces over the day. Fig. 2 highlights the 
considerable variation in e-bike demand per station at BIXI. While we 
can identify areas with high demand, it is notable that high-demand 
stations can be found adjacent to low-demand stations. This shows 
that understanding bike demand at station level is a complex task – even 
more in the presence of a heterogeneous bike offer. Additionally, the 
demand for bikes has undergone a significant transformation in recent 
years, driven by the shifts in working habits brought about by the 
COVID-19 pandemic [14,30]. 
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Besides, reallocating bikes through rebalancing operations can be 
quite expensive since it involves fuel costs, truck maintenance, driver’s 
salary, etc. The trucks used for rebalancing are also responsible for CO2 
emissions and other polluting gases, which contradicts the BSS’s 
commitment to sustainability. Therefore, it is important to optimize the 
effectiveness of rebalancing operations, updating the inventories of 
stations that yield minimal lost demand in the system. Nonetheless, 
leaving to the operator alone the task of understanding both demands 
and their correlations, while assuring that the rebalancing operations 
respect the BSS’s limited resources, may lead to suboptimal rebalancing 
decisions. 

The primary objective of our paper is to underscore the significance 
of incorporating demand predictions for both regular and electric bikes 

when making dynamic rebalancing decisions within a station-based 
Electric Bike-sharing System (EBSS), i.e., a bimodal BSS that has both 
regular and electric bikes. In light of this, we propose a model that 
identifies imbalanced stations and determines the target inventory for 
each bike type. Essentially, our model provides recommendations for 
when and how many bikes of each type should be added or removed 
during the rebalancing process. By considering the expected demand for 
each bike type within a specific time period and accounting for station 
capacity, our model aims to optimize the rebalancing performance. 

To evaluate our model effectiveness, we collected data from BIXI- 
Montreal1 and conducted simulations to compare the inventory 
response between our proposed rebalancing strategy and the one 
currently employed by BIXI. Furthermore, our simulations explore 
various policies regarding the option of replacing one type of bike with 
another for a trip. 

The paper is organized as follows. Section 2 reviews relevant liter-
ature on our research topic. Section 3 describes the proposed model to 
compute inventory intervals and target inventory for both regular and 
electric bikes. Section 4 presents the data, the tuning process, the in-
ventory simulator, and the results of our experiments. Finally, our final 
remarks are given in Section 5. 

2. Related works 

One key performance indicator to assess a BSS is its service level, 
which is computed as the ratio between the number of satisfied trips and 
the total number of demanded trips [29]. It indicates whether a BSS is 
able to meet the commuters’ demand, which is paramount for customer 
satisfaction. 

The strategies to improve the service level in BSSs can be grouped 
into two main categories: network planning and operational rebalanc-
ing. The first consists of designing an ideal network configuration by 
optimizing the number of stations, docks and bikes, the location of the 
stations, initial inventories, etc., to reduce the total lost demand in the 
system [6,29,33]. The second represents an intervention, that can be 
performed either by the BSS operator or by the commuters, to redis-
tribute the network’s assets, e.g. bikes or batteries, among the stations 
[2,7,23,28,36]. 

Fig. 1. Hourly average number of rentals on BIXI-Montreal BSS in July 2022.  

Fig. 2. Average number of rented e-bikes per day at BIXI in July 2022.  

Table 1 
Summary of strategies to improve the service level in EBSS.  

Strategy Research 
article 

Network Parking Methodology 

Operational 
rebalancing 

Fukushige 
et al. [8] 

Unimodal Free- 
floating 

User-based approach 
for rebalancing 

Tan et al.  
[36] 

Unimodal Parking 
locations 

Optimization of routes 
for battery exchange 

Zhou et al.  
[37] 

Unimodal Free- 
floating 

Optimization of routes 
for battery exchange 

Network 
planning 

Zhu [39] Bimodal Station- 
based 

Optimization of bikes 
and e-bikes fleet 

Chen et al.  
[5] 

Unimodal Station- 
based 

Optimization of bikes 
fleet and number of 
docks 

Zhou et al.  
[38] 

Unimodal Parking 
locations 

Optimization of 
parking locations 

Martinez 
et al. [26] 

Bimodal Station- 
based 

Optimization of 
stations locations 

Hosseini 
et al. [15] 

Unimodal Station- 
based 

Optimization of 
stations performance  

Soriguera  
[35] 

Unimodal Station- 
based 

Optimization of e- 
bikes fleet, number of 
stations, number of 
docks, and rebalancing 
rate  

1 www.bixi.com. 
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Many studies in the literature have proposed strategies to improve 
the service level in BSSs with regular bikes. However, works that 
consider systems with shared e-bikes, hereafter denoted EBSSs, have just 
recently emerged. Table 1 summarizes the main works in the literature 
whose goal is to improve the service level in EBSSs. They are classified 
according to the strategy to improve the service level (operational 
rebalancing or network planning), the BSS network composition 
(unimodal or bimodal), the parking configuration (capacitated station- 
based, uncapacitated parking locations or free-floating), and their 
methodology. 

Fukushige et al. [8], Tan et al. [36] and Zhou et al. [37] propose 
operational rebalancing strategies since they both deal with the reallo-
cation of resources in the system. Fukushige et al. [8] study a user-based 
approach to better understand in which scenarios BSS commuters are 
stimulated to return bikes to a desired location under financial in-
centives. Tan et al. [36] and Zhou et al. [37] present models that propose 
travelling routes for exchanging discharged batteries for charged bat-
teries among e-bikes in the system. Battery recharging is directly related 
to the performance of the service provided since e-bikes with discharged 
batteries remain unused in the system. In our work, we assume that 
battery recharging is conducted independently of the rebalancing pro-
cess. This assumption is based on information provided by BIXI opera-
tors. At Bixi-Montreal, almost 20% of the stations are powered, allowing 
battery recharging on site. 

The remaining references in the table address network planning 
strategies, i.e., they approach the problem of fleet dimensioning [5,35, 
39], dock dimensioning [5,35]), locating the stations [26,38], reba-
lancing rate, i.e., reallocated bikes per hour [35], and the correlation 
between the performance of the stations and external factors, such as the 
weather, population characteristics and availability of nearby public 
transportation [15]. 

Our proposed model proposes to optimize the service level of a 
bimodal and station-based EBSS using target inventory values and in-
ventory intervals to assist in the rebalancing process. The target in-
ventory value represents the ideal number of bikes for a station and it is 
often used to establish how many bikes that station should have in a 
given time period in order to improve its performance [6,12,13,16,17, 
19,33]. Works proposing the computation of target inventory values 
vary depending on the metric used to assess the stations performance. 
For example, the performance of a station can be evaluated based on the 
expected lost demand [19,33], the expected satisfied demand [12,16, 
17] or the commuters waiting times [6]. The inventory interval consists 
of an acceptable range in which the inventory can fluctuate while still 
meeting the expected demand. They are usually used to select which 
stations from the network need to be rebalanced [3,17,29]. 

3. Proposed model 

In this Section, we present the model developed to automatically 
generate target inventory values and inventory intervals for bimodal 
BSS based on demand prediction. 

3.1. Target inventory values 

Target values refer to the ideal fill level to which the operator may 
want to set the station inventory for each bike type during the reba-
lancing process. Addressing the challenge of generating target values for 
two different types of demand that share station docks requires careful 
consideration to ensure that both demands are met without exceeding 
the station’s capacity. So, to ensure the feasibility of the rebalancing 
recommendations provided by our target inventory values, our model 
divides the number of docks for each demand based on their respective 
service levels. Additionally, it establishes the optimal initial inventory 
within the allocated number of reserved docks for each demand. 

Our model starts by training a machine-learning model to predict 
hourly rentals and returns at station-level for both types of bikes. Several 

studies in the literature focus on demand prediction of BSSs [see, e.g. [1, 
4,9,22,24,25,27]]. In this work, we use a predictive model based on a 
Gradient-boosted tree, introduced in [17] which considers historical 
data as well as exogenous features such as weather conditions or 
holidays. 

After forecasting the demand at each station of the BSS, we calculate 
their respective service levels. In our study, considering the availability 
of two types of bikes, we chose to compute the proportion of satisfied 
trips independently for each bike type. This approach allows us to assess 
the service level for each type of bike individually, taking into account 
their specific demand patterns and availability. 

To calculate the service level of a station, we model its inventory as a 
queue with a single server. The capacity of this queue is set to match the 
number of available docks at that particular station. Similar to other 
works that address the random rentals and returns of commuters in a 
BSS, such as [10,11,17,21,29,31,32], we assumed that the trips follow a 
Poisson distribution, so that the times between rentals and returns 
follow exponential distributions. 

For a station s with an initial inventory of f and a specific number of 
docks, denoted as CR , allocated for regular bikes out of the total capacity 
of Cs docks, the expected service level for regular bikes during the time 
period [0,T] can be computed as follows: 

SLR
s

(
f , T,CR

)
=

∫ T
0 μR

s (t)
(
1 − pR

s (f , 0, t)
)
+ λR

s (t)
(
1 − pR

s

(
f ,CR , t

))
dt

∫ T
0 μR

s (t) + λR
s (t)dt

,

(1)  

where pR
s (f ,N, t) is the probability that the station s stores N regular 

bikes at hour t, knowing that its initial inventory is equal to f at time 0; 
μR

s (t) and λR
s (t) represent the predicted rental and return for regular 

bikes at hour t and station s. Here, the superscript R refers to values that 
are specific to regular bikes. Likewise, the service levels for e-bikes are 
computed as in Eq. (1) by replacing μR

s (t), λR
s (t), pR

s (f ,N, t) and CR by 
μE

s (t), λE
s (t), pE

s (f ,N, t) and CE , respectively, where the superscript E 

refers to values regarding e-bikes only. 
Indeed, Eq. (1) depends on the number of docks CR allocated to 

regular bikes at the analyzed time period. This allocation may vary to 
optimize the performance of the system based on the anticipated trip 
demand. In our model, the number of docks allotted for regular and 
electric bikes at station s for time period [0, T], denoted CR

s (T) and 
CE

s (T), respectively, are determined as: 

CR
s (T) = argmax

C∈{0,…,Cs}

{
ΛR

s (T,C)+ΛE
s (T,C − Cs)

}
, (2)  

and 

CE
s (T) = Cs − CR

s (T), (3)  

where function ΛR
s (T, x) (resp. ΛE

s (T,x)) is chosen as the maximum or 
the average value of SLR

s (f ,T, x) (resp. SLE
s (f ,T,x)) for f ∈ {0,…,x}. The 

choice of the function as max or avg. influences the service level we want 
to optimize (the best or the average-case, respectively). 

Once the number of docks reserved for regular bikes and e-bikes are 
determined, our model proceeds to compute the target inventory values 
for regular and e-bikes for time period [0,T] as: 

T
R

s (T) = argmax
f∈{0,...,CR

s (T)}

{
SLR

s

(
f ,T,CR

s (T)
)}

, (4)  

and 

T
E

s (T) = argmax
f∈{0,...,CE

s (T)}

{
SLE

s

(
f ,T,CE

s (T)
)}

. (5) 

The above equations compute the target values as the inventory fill 
levels that maximize the service-level for the corresponding bike type. 
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Note again that the number of docks allotted to regular and electric 
bikes, CE

s (T) and CE
s (T), respectively, sum to the total dock capacity of 

the station, as defined in Eq. (3). As such, the computed target values 
respect the capacity of the station and the number of docks reserved for 
each type of bike. This ensures that the recommended rebalancing ac-
tions based on the target inventory values are practical and feasible to 

implement. 

3.2. Inventory intervals 

Inventory intervals typically serve as an indicator when a station 
should be rebalanced: this is the case when the station inventory falls 
outside of the defined interval. Considering only the total rentals or 
returns without distinguishing between different types of demand can 
obscure the identification of lost demand for a specific type of bike. 
Similarly, creating inventory intervals tailored to each demand while 
assuming that the total number of docks is always available can lead to 
undesirable situations. For instance, a station may become completely 
full without triggering any alerts because neither demand (for regular or 
e-bikes) has exceeded its upper or lower bounds. Therefore, it is crucial 
to take into account the station capacity when setting inventory in-
tervals to ensure optimal inventory management and prevent potential 
issues. 

To calculate the inventory intervals, we begin by computing the 
maximum and minimum service levels for each demand for time period 
[0,T], which are given by 

SLR
s (T) = min

f∈{0,...,CR }
SLR

s

(
f , T,CR

s (T)
)
, (6)  

and 

SLR

s (T) = max
f∈{0,...,CR }

SLR
s

(
f , T,CR

s (T)
)

(7)  

for regular bikes. These values can be analogously obtained for e-bikes, 
by replacing the superscript R by E . 

Then, accepted service levels at station s for time period [0,T] are 
calculated for each type of bike as: 

ΩR
s (T) = SLR

s (T) + βR

(

SLR

s (T) − SLR
s (T)

)

, (8)  

and 

Fig. 3. Simulation of the inventory and rebalancing process in the model B0. 
Orange bikes represent regular bikes whereas blue bikes represent e-bikes. 

Fig. 4. Simulation of the inventory and rebalancing process in our model. 
Orange bikes represent regular bikes whereas blue bikes represent e-bikes. 

Table 2 
Optimized hyperparameters values used in the tests.  

Bike substitution Model (βR ,βE ) 

None shared-RE max (0.4,0.3) 
shared-RE avg (0.4,0.5) 

All bikes shared-RE max (0.4,0.2) 
shared-RE avg (0.4,0.4) 

Reg. bikes → E-bikes shared-RE max (0.3,0.5) 
shared-RE avg (0.3,0.5) 

E-bikes → Reg. bikes shared-RE max (0.4,0.3) 
shared-RE avg (0.4,0.3)  

Table 3 
Results regarding the simulated models: the average number of rebalancing 
operations per hour and the lost demand (in % with respect to the total served 
demand).  

Simulated 
model 

Bike 
substitution 

Total lost 
demand 
% 

Regular 
bikes lost 
demand 
% 

E-bikes 
lost 
demand 
% 

Rebalancing 
per hour 

B0 None 3.32 2.46 5.89 25.08 
shared- 

RE max 

3.07 2.75 4.01 25.77 

shared- 
RE avg 

3.00 2.67 3.98 26.40 

B0 All bikes 2.25 1.84 3.45 23.16 
shared- 

RE max 

2.10 1.88 2.80 25.42 

shared- 
RE avg 

2.07 1.83 2.78 26.61 

B0 Reg. bikes 
→ E-bikes 

2.89 1.86 5.99 25.63 
shared- 

RE max 

2.66 1.97 4.85 26.48 

shared- 
RE avg 

2.64 1.93 4.78 26.86 

B0 E-bikes → 
Reg. bikes 

2.98 2.84 3.42 22.36 
shared- 

RE max 

2.81 2.95 2.40 24.50 

shared- 
RE avg 

2.80 2.93 2.43 24.36  
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ΩE
s (T) = SLE

s (T) + βE

(

SLE

s (T) − SLE
s (T)

)

, (9)  

The model incorporates two hyperparameters, βR and βE , which are 
specific to each type of bike. These hyperparameters provide flexibility 
for the operator to fine-tune the computed inventory intervals for a 
station based on the behaviour patterns of its user base. By separately 
adjusting the values of βR and βE , the operator can also customize the 
inventory intervals to be more or less stringent for each demand type 
throughout the day. 

Finally, the inventory intervals for regular bikes and e-bikes at sta-
tion s for time period [0,T] are computed as: 

I
R

s (T) =
{

f ∈
{

0, ...,CR
s (T)

}⃒
⃒SLR

s

(
f ,T,CR

s (T)
)
≥ ΩR

s (T)
}

(10)  

and, 

I
E

s (T) =
{

f ∈
{

0, ...,CE
s (T)

}⃒
⃒SLE

s

(
f ,T,CE

s (T)
)
≥ ΩE

s (T)
}

(11) 

Remark that, by definition, inventory intervals contain target in-
ventory values. This avoids that a station could be categorized as un-
balanced immediately after a rebalancing operation has taken place. 

Finally, because the availability of e-bikes is compromised due to 
battery discharging, there might be an underestimation of the actual 
demand for e-bikes used in training our Gradient-boosted tree. In 
response to this concern, we increased the predicted hourly demand for 
e-bikes by 10%, aligning with observations made by BIXI operators who 
reported us that, on average, approximately 10% of e-bikes are un-
charged per hour in the system. Thus, we aim to obtain a more accurate 
computation inventory intervals and target inventory values, by iden-
tifying additional rebalancing demand for e-bikes. 

4. Computational experiments 

In this section, we assess our model in comparison with the approach 
used by BIXI in 2022. First, we will present the data used in our ex-
periments. Then, we briefly explain our simulations to emulate the in-
ventories based on the rebalancing strategy applied. Next, we discuss the 
process for selecting the best hyperparameters, βR and βE , for our 
model. At last, we present the results collected from our experiments. 

4.1. Data 

In light of the fact that BIXI added a considerable amount of e-bikes 
to its network in 2022, we opted to collect only the data from the 
aforementioned year. Thus, the data used in our experiments contain 
hourly information from April to September 2022, being grouped into 

three categories: temporal, weather, and trip data. The first category 
includes time features, such as hour, day of the month, day of the week, 
month, and holidays. The second category contains data describing the 
weather, such as temperature, humidity, rain, and wind speed. Both 
temporal and weather data were collected from the official website of 
the Government of Canada2 (except for the holiday feature which was 
manually noted). The trip data is composed of the number of rentals and 
returns at each station and it was provided by BIXI3. In addition to the 
data mentioned before, BIXI also provided the inventory intervals used 
in 2022 and network information that includes the capacity of the 745 
stations. 

The collected data was divided between train, validation, and test 
datasets. Given that we have access to the inventory intervals manually 
computed by BIXI operators for August and September 2022, we assign 
these months to the validation and test dataset, allocating the first 15 
days of August and September to the validation dataset and the 
remaining days of these months to the test dataset. This distribution was 
chosen to evaluate the rebalancing strategies under varying weather 
conditions, as these months can present contrasting temperatures and 
rain features. The training dataset, meanwhile, contains data from April 
to July 2022. 

The proportion of trips made with regular bikes and e-bikes is 
consistent across all datasets. In the training dataset, approximately 76% 
of trips were made using regular bikes whereas 24% of the trips used e- 
bikes. In the validation and test datasets, the proportion of trips using 
regular bikes and e-bikes is 75% and 25%, respectively. 

4.2. Experiment 

Our proposed model, denoted hereafter shared-RE , is compared 
against a baseline approach, namely B0, that corresponds to the strategy 
applied by BIXI operators in 2022. The inventory intervals and target 
inventory values used to assist the rebalancing operations at BIXI were 
manually determined by their operators. These decisions were based on 
historical trip data at each station, without differentiation between 
regular bikes and e-bikes. 

4.2.1. Simulation of B0

Simulation B0 begins by initializing the inventories of regular and 
electric bikes at the stations with their respective target inventory 
values. However, it is worth noting that BIXI employs a unique target 
inventory value for each station during specific time periods. To 

Fig. A.5. Flowchart of the selection procedure of stations for rebalancing.  

2 https://climate.weather.gc.ca/.  
3 https://bixi.com. 
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decouple this single target inventory value between regular bikes and e- 
bikes, a straightforward approach is to distribute it based on the pro-
portion of each bike type rented at the station during the observed 
period. This distribution can be determined by analyzing the training 
dataset, which ensures that the distribution of bikes aligns with the 
observed rental patterns. 

Then, at each simulated hour, the inventory of each station is 
updated with the historical rentals and returns from BIXI data. At this 
point, the simulation verifies which stations trigger a rebalancing alert, 
that is, which stations surpass the bounds of their inventory interval. The 
simulation also keeps track of the lost demand, i.e., how many bikes 
were missing during the rentals and how many bikes could not be 
returned due to full stations by assuming that all rentals and returns 
happen simultaneously at every simulated hour. Thus, we stress the 
network to capture its possible failures. We note that uncharged bikes 
still occupy docks for our simulation. 

Due to constrained rebalancing capacity, the alerted stations are 
prioritized based on their degree of imbalance, computed as the devia-
tion of their inventory from the target value. Consequently, only a 
limited subset of stations, within the capacity threshold, undergo reba-
lancing procedures per hour. 

Fig. 3 illustrates the simulation of the bike inventory of a station 
using B0. In the illustration, the station raised an alert due to the 
shortage of bikes, i.e. its inventory (3) is below the inventory lower 
bound (4). Assuming that the station is selected to be rebalanced, the 
inventory of regular and e-bikes is updated according to the target in-
ventory value and the station’s historical demand observed in the 
training data. 

4.2.2. Simulation of our model 
shared-RE provides inventory intervals and target inventory values 

for each type of bike used in the EBSS. Therefore, alerts are individually 
raised for each type of bike demand, and stations are rebalanced ac-
cording to the associated target inventory values. 

Similar to the simulation of B0, the simulation of shared-RE emu-
lates the inventory based on rentals, returns, and rebalancing operations 
conducted hourly accounting for the rebalanced capacity of the system. 
However, in this scenario, the target inventory and inventory intervals 
are customized for each demand. This allows the rebalancing alerts to 
identify and address inventory deficiencies or excesses specific to each 
demand, and calculate target inventory values accordingly. 

During the simulation of our model, the rebalancing process is con-
ducted to replenish the inventory of a station, taking into account the 
target values for regular and electric bikes. These target values are 
separately computed based on the demand for each type of bike, as 
explained in Section 3.2. This approach enables the rebalancing process 
to be triggered by the demand of a specific bike type. In Fig. 4, for 
example, only the inventory of e-bikes drops below the lower bound of 
its inventory interval. Subsequently, the rebalancing process focuses on 
restoring both the regular and e-bike inventories to their respective 
target values. This reflects a more realistic operational scenario, as an 
employee is already dispatched to the station for replenishment. In the 
given example, two e-bikes and one regular bike are added to the station 
during the rebalancing process. 

4.2.3. Additional simulation remarks 
This section presents remarks that are applicable to both simulations 

detailed in Sections 4.2.1 and 4.2.2. 
First of all, the inventory of the stations is initialized at the beginning 

of the simulations by distributing the total number of bikes in the system 
(i.e., 6377 regular bikes and 2015 electric bikes for the considered 
simulated period) proportionally to the target inventory values of each 
bike demand at the first simulated hour. More precisely, the initial in-
ventory of regular bikes at each station s is made equal to: 

bregular ×
T

R

s (1)
∑

s′∈ST
R

s′ (1)
,

where bregular corresponds to the total number of regular bikes in the 
system and S to the set of stations. The initial inventory of e-bikes at each 
station is defined likewise. 

Throughout the simulation, the amount of bikes in the system is kept 
consistent by employing an algorithm that selects stations while 
ensuring an equilibrium between the bikes taken from and added to 
these stations. A detailed explanation of this procedure is provided in 
Appendix A. 

Finally, the simulations take into account that 10% of the electric 
bikes are uncharged per hour. These bikes are randomly chosen at the 
beginning of each simulated hour, making them unavailable in the 
system, and hence, incurring lost demand. The code for both simula-
tions, as well as the code of the proposed model, can be accessed in the 
repository.4 

4.3. Analysis of commuters preferences 

Based on the commuters’ preferences, four different scenarios are 
emulated regarding bike substitutions:  

• None: in this scenario, users never replace their desired bike with 
another type.  

• All bikes: in this scenario, users are flexible in their preferences and 
will always accept any available bike, regardless of their initial 
choice.  

• Reg. bike → E-bikes: only users who seek regular bikes accept an e- 
bike if the first is unavailable.  

• E-bike → Reg. bikes: only users who seek for an e-bike accept a 
regular bike if the first is unavailable. 

By simulating these different scenarios, we can analyze the impact of 
bike substitution preferences on the overall bike availability and system 
performance. This provides insights into the feasibility and desirability 
of allowing bike substitutions in a bike-sharing system and helps opti-
mize the allocation and utilization of bikes based on customer 
preferences. 

4.4. Tuning 

The values of βR and βE were tuned through simulations with the 
validation set with the objective of minimizing the lost demand. Table 2 
presents the optimized hyperparameter values, where shared-RE max and 
shared-RE avg refer to the use of Λs(⋅) as the maximum or the average 
service level obtained for different values of the initial inventory (see 
Section 3.1 - Eq. (2)). 

The analysis of Table 2 reveals a discernible pattern in the values of 
the hyperparameters βR and βE based on the bike substitution policy 
implemented. When there are no bike substitutions or restrictions on 
bike types, the values of both hyperparameters are fairly similar. How-
ever, in scenarios where regular bikes can be substituted with e-bikes, 
the inventory intervals display greater stringency towards e-bikes, 
leading to lower values of βR and higher values of βE . Conversely, in the 
scenario where only electric bikes can be replaced by regular bikes, the 
hyperparameter results exhibit the opposite trend. This demonstrates 
the model’s ability to prioritize each demand independently, as well as 
its capacity to adapt to the users’ preferences. 

4 https://github.com/datascientistbss/Paper_Journal. 
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4.5. Results 

Our results compile the number of rebalancing operations and lost 
demand computed from the simulations of the baseline and our pro-
posed models. The inventory intervals and the target values for B0 were 
provided by BIXI for the following time periods in a day: from 6 am to 9 
am, from 9 am to 11 am, from 11 am to 4 pm, from 4 pm to 7 pm, and 
from 10 pm to 6 am. These same time periods were used by shared-RE to 
compute inventory intervals and target values. Besides, the root mean 
squared error (RMSE) of the Gradient-boosted tree demand prediction 
on the test data was 1.70. 

Our experiments considered an hourly rebalancing capacity of 50 
stations. This value was provided to us by BIXI as the valid capacity for 
the year 2022. 

Table 3 presents the results regarding the number of rebalancing 
operations per hour and the percentage of lost demand over the total 
served demand from the simulations of models B0, and shared-RE and 
its different settings of bike substitution. 

In summary, the results show that:  

• The performance of both shared-RE max and shared-RE avg indicates 
a minimal difference in terms of lost demand and rebalancing op-
erations when implementing the dock division at a station based on 
either the best or average service level provided.  

• Our model consistently outperforms the baseline model, reducing the 
total lost demand by up to 10% (bike substitution = ‘None’, shared- 
RE avg). More specifically, the inventory intervals and target in-
ventory values generated by our model have proven to be highly 
effective in decreasing lost demand for e-bikes when compared to 
BIXI’s rebalancing strategy, reducing the lost demand for e-bikes by 
up to 32%. This demonstrates that shared-RE max and shared-RE avg 

effectively identify and adapt to the increasing demand for e-bikes 
better than B0.  

• When comparing the various configurations of user preferences, the 
results align with our expectations across all models. The scenario 
where no bike substitution is allowed generates the highest lost de-
mand, while the scenario where any substitution is accepted yields 
the lowest demand loss. The remaining scenarios fall somewhere in 
between these extremes. Notably, the scenario where only regular 
bikes can be replaced by electric bikes results in less lost demand 
than the reverse scenario. This can be attributed to the considerably 
higher demand for regular bikes observed in our simulation data, 
which can be partially attributed to the fact that 76% of BIXI’s bikes 
are regular ones. Consequently, the majority of lost demand cases 
computed in our simulations involve regular bikes.  

• By introducing the option to replace regular bikes with electric bikes, 
the occurrences of lost demand can be significantly reduced. This is 
due to the potential to fulfill the demand for regular bikes with 
available electric bikes, thereby mitigating lost opportunities for 
riders.  

• Overall, B0 requires fewer rebalancing interventions than our model. 
This result is expected as the simulation shared-RE can detect im-
balances of each type of demand, leading to a higher number of alerts 
and, consequently, a higher number of rebalancing activities. 
Nevertheless, the rebalancing operations carried by shared-RE 

respect BIXI’s maximum rebalancing capacity.  
• We observe that the average number of rebalancing operations per 

hour in all simulations is significantly lower than the hourly reba-
lancing capacity of 50 stations. This is attributed to the reduced 
demand typically observed from 10 pm to 7 am, as illustrated in 
Fig. 1. During these off-peak hours, the number of alerts and, 
consequently, rebalancing operations, is considerably lower than 50. 
In contrast, in periods of high demand the number of alerts is often 
greater than the rebalancing capacity – in a single simulated hour, 
the maximum number of observed alerts was 398. 

5. Conclusion 

5.1. General discussion 

Rebalancing bike-sharing systems is a multifaceted task that en-
compasses numerous factors such as demand variability, time sensi-
tivity, and user preferences. As electric bikes become more popular in 
existing systems, accounting for such additional demand adds 
complexity to the rebalancing planning. We propose a model capable of 
providing targeted rebalancing recommendations for station-based 
Electric Bike Sharing Systems, comprising both regular and e-bikes. 
Our model leverages predicted demand for the upcoming hours to tailor 
recommendations specific to the demand of each bike type. 

From a theoretical perspective, our work extends existing works on 
the definition and computation of service-levels [see, e.g. 29], inventory 
target values and inventory intervals [see, e.g. 17] for regular bikes to 
bimodal systems with both regular and electric bikes. Here, a simulta-
neous computation is required to ensure that the total station capacity is 
not exceeded when considering both types of resources. Our model of-
fers an automated division of docks per station based on predicted de-
mand while allowing for customization according to the operator’s 
requirements for each demand. One significant advantage is that our 
model independently adjusts the inventory intervals for each bike type. 
This flexibility is crucial, as it accommodates the varying preferences of 
BSS users. One proposed model variant, namely shared-RE max, com-
putes the inventory intervals and target inventory values aiming to 
maximize the ratio of satisfied trips while dividing the available docks 
between regular and electric bikes. Conversely, the alternate variant, 
denoted shared-RE avg, aims to maximize the average of this ratio across 
varying initial inventory values. Both variants are compared against B0, 
a rebalancing strategy emulating the current practice at BIXI Montreal. 

From a practical perspective, the mechanisms of inventory intervals 
and target inventory values are often already an essential part of the 
rebalancing process. A major advantage of our approach is hence its 
relative simple deployment in existing decision-making processes and its 
minimal requirement of resources: a computer with moderate process-
ing power and a database to feed the prediction model. Furthermore, the 
manual computation of inventory targets and intervals, although com-
mon in BSSs, may result in suboptimal performance. This issue is 
particularly pronounced in the context of bimodal EBSSs, where the 
nuances of each demand type may be overlooked. Such manual 
computation can hence be easily replaced by an automatized compu-
tation of such parameters, without the need of restructuring the existing 
information and decision-making process. 

Our empirical experiments show that our proposed model is able to 
reduce the amount of total lost demand in all simulated scenarios, 
demonstrating its ability to adapt to diverse trip patterns and com-
muters’ preferences. In the scenario with the greatest difference in 
performance, our model managed to reduce the total lost demand by up 
to 10% and the lost demand for electric bikes by up to 32% over the 
baseline model B0. 

The results further demonstrate the importance of comprehending 
commuters’ preferences and their willingness to substitute their initial 
bike choice when designing a rebalancing strategy. This understanding 
enables operators to make informed decisions regarding the supply of 
each bike type, ensuring the provision of a high-quality service. Addi-
tionally, our results show that actively encouraging commuters to 
consider alternative bikes when their desired option is unavailable can 
have a significant impact on reducing the lost demand. This effect was 
particularly pronounced when the initially preferred bike type exhibits 
higher demand compared to the other. By promoting bike substitution, 
operators can effectively mitigate the occurrence of lost demand, lead-
ing to improved service reliability and user satisfaction. 

Finally, from a financial perspective, the predictive models used 
within our method make use of open-source libraries, therefore cir-
cumventing the need for licensing costly optimization solvers, which 
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would be required when using classical rebalancing optimization 
models. However, it is important to note that our algorithm proposes 
rebalancing recommendations on a tactical level, i.e., it identifies the 
ideal station inventories without explicitly proposing vehicle routes. 
Operators are therefore required to design rebalancing routes based on 
these recommendations, either by manual planning or using routing 
algorithms. 

5.2. Limitations and future work 

Due to the use of actual trip data in our experiments, we have not 
considered information about trips that were not undertaken due to the 
unavailability of bikes or docks, also referred to as unobserved demand. 
In future research, we plan to address this limitation by conducting 
experiments using synthetic data. This will enable us to explore a wider 
range of scenarios and accurately quantify demand losses, allowing for a 
more comprehensive evaluation of the rebalancing recommendations. 

Finally, the rebalancing recommendations provided by our model 
can be seamlessly integrated into optimization routing models. This 
integration would allow for the optimization of the entire rebalancing 
process in a unified manner, maximizing the effectiveness and efficiency 
of the system as a whole. This direction holds promise for future research 
and offers potential for further improvements in the field of bimodal 
bike-sharing system management. 
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Appendix A. Maintaining equilibrium between the number of bikes picked up and dropped off 

This step is crucial as it ensures that the number of bikes in the network remains stable thorugh the simulation. 
Let us define four distinct lists that categorize the stations inventory requirements: the lists S R + and S R + contain alerted stations that require 

additional regular and electric bikes, respectively; whereas the lists S R − and S E − contain the stations that require regular and electric bikes to be 
removed from their inventory. The rebalancing process starts by assigning the stations that raised rebalancing alerts to one list associated to regular 
bikes (S R + or S R − ) and/or to another list associated to electric bikes (S E + or S E − ). Stations on all lists are sorted based on their deviation from the 
target inventory value, ensuring that those with the greatest difference have a higher priority and, therefore, a higher chance of being selected for 
rebalancing. 

The stations are iteratively selected to be rebalanced according to the value of the variables accumulatorR and accumulatorE . These variables store 
the number of regular and electric bikes either exceeding or missing in the network after a sequence of rebalancing operations have occurred – note 
that negative values signalize missing bikes whereas positive values signalize exceeding bikes in the system. The stations are chosen for rebalancing 
with the goal of consistently driving the variables accumulatorR and accumulatorE towards zero. 

Fig. A.5 presents the flowchart of the process of selecting the stations to be rebalanced. The procedure starts by identifying which accumulator 
(accumulatorR or accumulatorE ) has the highest absolute value and if its value is positive or not. This step is critical as it dictates from which list (S R +, 
S

R − , S E + or S E − ) the next station to be rebalanced will be drawn. After the list is selected, the first station of the list, i.e. the station with the highest 
priority, is selected to be rebalanced regarding both regular and electric bikes. This results in updating accumulatorR and accumulatorE , and on 
removing the selected station from all lists where it is present. That procedure continues until that the number of selected stations reaches the 
maximum rebalancing capacity. Besides, the procedure is halted whenever it selects, according to the accumulator variables, a list of stations that is 
empty. 
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