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COMPUTING THE LAGRANGE DUAL OF THE MANY-MATERIAL PROBLEM

The primal optimization problem takes the form

max
{Tk,m}

f({|Tk,m⟩})

s.t.
∑
m

(
⟨Sk|Pj |Tk′,m⟩ − ⟨Tk,m|χ−†

k,mPj |Tk′,m⟩ −
∑
m′

⟨Tk,m| −G(k)†
0 Pj |Tk′,m′⟩

)
= 0 ∀j, k, k′,

⟨Tk,m|Pj |Tk′,m′⟩ = 0 ∀j, k, k′,m ̸= m′.

(S1)

This notation differs from the main text via ψk,m → Tk,m. As in the main text, |Sk⟩ is a source k, the polarization
current due to source k is |Tk⟩ =

∑
m |Tk,m⟩ with |Tk,m⟩ the polarization current due to source k and material m

and is defined in the design region V . χk,m is the susceptibility of material m at ωk, and G(k)
0 is the corresponding

vacuum propagator acting on sources to yield their corresponding fields in vacuum—namely, via convolution of the

vacuum Green’s function G
(k)
0 (r, r′, ωk) satisfying

c2

ω2
k

∇ × ∇ × G
(k)
0 (r, r′, ωk) − G

(k)
0 (r, r′, ωk) = δ(r − r′). I and Pj

represent spatial projections onto either the full or a subset Vj ∈ V of the design region V , respectively. Lastly, f is
a quadratic function of the polarization currents |Tk,m⟩.
For the first constraint, we will take the real and imaginary parts and write the Lagrange multiplier corresponding

to a given j, k, k′ as λj,k,k
′

R/I (symmetric and asymmetric constraints respectively). For the second, we will use Lagrange

multipliers λk,k
′,m,m′

SO/AO (symmetric/asymmetric orthogonal constraint). Now we can write

L(T, S) =
[
⟨Topt| ⟨S|

] [−ZTT (λ) ZTS(λ)
ZST (λ) 0

] [
|Topt⟩
|S⟩

]
, (S2)

where L is the Lagrangian, |Topt⟩ =
[
|T1,1⟩ |T1,2⟩ . . . |T1,m⟩ . . . |T2,1⟩ . . . |Tns,m⟩

]T
for ns sources and m mate-

rials, |S⟩ =
[
|S1⟩ . . . |Sns⟩

]T
, and ZTT and ZTS = ZST† matrices represent the quadratic and linear parts of the

Lagrangian, respectively. We also denote N the numerical length of a single |Tk,m⟩ vector.
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Writing out the constraints we find

ZTS = Olin +
∑
j

1

2



λ
j,1,1
R Pj . . . λj,ns,1

R Pj

...
...

...

λj,1,1R Pj . . . λj,ns,1
R Pj


...λ

j,1,ns

R Pj . . . λj,ns,ns

R Pj

...
...

...

λj,1,ns

R Pj . . . λj,ns,ns

R Pj





−
∑
j

1

2i



λ
j,1,1
I Pj . . . λj,ns,1

I Pj

...
...

...

λj,1,1I Pj . . . λj,ns,1
I Pj


...λ

j,1,ns

I Pj . . . λj,ns,ns

I Pj

...
...

...

λj,1,ns

I Pj . . . λj,ns,ns

I Pj




,

(S3)

ZST = ZTS†, (S4)

where Olin is the linear part of the objective.

ZTT = Oquad

+
∑
j

 R
j
1,1 . . . Rj

1,ns

...
. . .

...

Rj
ns,1

. . . Rj
ns,ns

+
∑
j

 I
j
1,1 . . . Ij1,ns

...
. . .

...

Ijns,1
. . . Ijns,ns

+
∑
j

 Sj
1,1 +Aj

1,1 . . . Sj
1,ns

+Aj
1,ns

...
. . .

...

Sj
ns,1

+Aj
ns,1

. . . Sj
ns,ns

+Aj
ns,ns

 , (S5)

with

Rj
k,k′ = Rj†

k′,k =
1

2
λj,k,k

′

R


(χ−1†

k,1 I−G(k)†
0 )Pj . . . −G(k)†

0 Pj

...
. . .

...

−G(k)†
0 Pj . . . (χ−1†

k,mI−G(k)†
0 )Pj



+
1

2
λj,k

′,k
R


(χ−1

k′,1I−G(k′)
0 )Pj . . . −G(k′)

0 Pj

...
. . .

...

−G(k′)
0 Pj . . . (χ−1

k′,mI−G(k′)
0 )Pj

 , (S6a)

Ijk,k′ = Ij†k′,k =
1

2i
λj,k,k

′

I


(χ−1†

k,1 I−G(k)†
0 )Pj . . . −G(k)†

0 Pj

...
. . .

...

−G(k)†
0 Pj . . . (χ−1†

k,mI−G(k)†
0 )Pj



− 1

2i
λj,k

′,k
I


(χ−1

k′,1I−G(k′)
0 )Pj . . . −G(k′)

0 Pj

...
. . .

...

−G(k′)
0 Pj . . . (χ−1

k′,mI−G(k′)
0 )Pj

 , (S6b)
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with −G(k)†
0 Pj or −G(k′)

0 Pj present in every off-diagonal element. Furthermore,

Sj
k,k′ =

1

2


0 Pjλ

j,k,k′,1,2
SO . . . Pjλ

j,k,k′,1,m
SO

Pjλ
j,k,k′,1,2
SO 0 . . . Pjλ

j,k,k′,2,m
SO

...
...

. . .
...

Pjλ
j,k,k′,1,m
AO Pjλ

j,k′,2,m
SO . . . 0

 = Sj
k,k′

T
= Sj

k′,k, (S7a)

Aj
k,k′ =

1

2i


0 Pjλ

j,k,k′,1,2
AO . . . Pjλ

j,k,k′,1,m
AO

−Pjλ
j,k,k′,1,2
AO 0 . . . Pjλ

j,k,k′,2,m
AO

...
...

. . .
...

−Pjλ
j,k,k′,1,m
AO −Pjλ

j,k,k′,2,m
AO . . . 0

 = Aj
k,k′

†
= −Aj

k′,k. (S7b)

(S7c)

Oquad is the quadratic part of the objective and all R, I, S,A are m×m block matrices of N ×N matrices. We can
compute the dual function G:

G(λ) = sup
|T ⟩

L(λ, T ). (S8)

We find the stationary point |T ∗⟩ of L by solving the relation

∂L
∂ ⟨T ∗|

= 0, (S9)

which leads to the linear system

ZTT |T ∗⟩ = ZTS |S⟩ . (S10)

In order for the dual to be finite, ZTT must be positive definite, so this linear system is invertible, leading to

|T ∗⟩ = ZTT−1ZTS |S⟩ , (S11)

G(λ) = ⟨S|ZSTZTT−1ZTS |S⟩ . (S12)

Finally,

∂G
∂λi

= 2Re

{
⟨T ∗| ∂Z

TS

∂λi
|S⟩

}
− ⟨T ∗| ∂Z

TT

∂λi
|T ∗⟩ . (S13)

In the specific case of maximizing absorption, Olin = 0. Absorbed power is∑
k,m

Zc

2ωk
⟨Tk,m| Imχk,m

|χk,m|2
|Tk,m⟩ , (S14)

with Z the vacuum impedance, giving us Oquad (being careful of the negative sign in Eq. (S2)). Each term can be
normalized as desired by the incident or total power.

SOLVING THE DUAL PROBLEM

In order to solve the convex dual problem using an interior point method, we must first find an initial feasible point.
This requires choosing λ such that ZTT is positive definite, thereby ensuring that ZTT is invertible and therefore
that the dual is well defined. This can be done reliably by leveraging the fact that the imaginary part of the Maxwell

Green’s function, ImG(k)
0 , is positive semidefinite [4]. Take Pj=0 = I to be the projector corresponding to global

constraints, which is always enforced in our implementation. By setting all Lagrange multipliers λ = 0 except λj=0,k,k
I
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for all k, we set Rj
k,k′ = Sj

k,k′ = Aj
k,k′ = 0 for all k, k′, j. This also sets Ijk,k′ = 0 for all j, k ̸= k′ and, although not

necessary, for all j ̸= 0, k = k′. The quadratic part of L becomes

ZTT = Oquad +

I
0
1,1 . . . 0
...

. . .
...

0 . . . I0ns,ns

 , (S15)

with I0k,k taking the following block diagonal form:

I0k,k = λ0,k,kI


Asym

(
Iχ−1†

k,1 −G(k)†
0

)
. . . 0

...
. . .

...

0 . . . Asym
(
Iχ−1†

k,m −G(k)†
0

)


= λ0,k,kI


I
Imχk,1

|χk,1|2
+AsymG(k)

0 . . . 0

...
. . .

...

0 . . . I
Imχk,1

|χk,m|2
+AsymG(k)

0

 ,
(S16)

which is positive definite for Imχk,m > 0. Therefore, as long as all materials have some loss (as they do in the main

text), we can simply increase λ0,k,kI for all k to make ZTT (λ) positive definite for any finite Oquad. We initialize all

bounds calculations in the main text (where ns = 1) by setting λ0,k,kI = 1 ∀k. When Imχk,m = 0, we may be able
to generalize the technique utilized in Ref [1] (Supporting Information, Section 11).

DESIGN REGIONS WITH NON-VACUUM BACKGROUNDS

The calculations in the previous section assumed the design region has vacuum background. However, the scattering
theory can be readily modified to include non-vacuum backgrounds. We define χb as the background susceptibility,
∆χk,m ≡ χk,m −χb, and write the total field at at frequency k as Ek,tot. We also define the difference in polarization
|∆Tk,m⟩ ≡ |Tk,m⟩ − |Tb⟩ ∼ ∆χk,mEk,tot where |Tb⟩ is the polarization of the background. The Green’s function

including the background G(k)
b is defined to map a difference in polarization to its resulting field: G(k)

b |∆Tk,m⟩ is the
scattered field due to the additional polarization. Lastly, assuming |Sk⟩ is sourced by some current Jvac, we replace
|Sk⟩ → |Sk,b⟩ by the field sourced by the same Jvac in the presence of the background design region. Overall, the

scattering theory is defined by the relations |Ek,tot⟩ ∼ |Sk,b⟩+
∑

m G(k)
b |∆Tk,m⟩. The new optimization problem can

be written

max
{∆Tk,m}

f({|Tb⟩ , |∆Tk,m⟩})

s.t.
∑
m

(
⟨Sk,b|Pj |∆Tk′,m⟩ − ⟨∆Tk,m|∆χ−†

k,mPj |∆Tk′,m⟩ −
∑
m′

⟨∆Tk,m| −G(k)†
b Pj |∆Tk′,m′⟩

)
= 0 ∀j, k, k′,

⟨∆Tk,m|Pj |∆Tk′,m′⟩ = 0 ∀j, k, k′,m ̸= m′.
(S17)

where f must be modified accordingly by replacement of |Tk,m⟩ → ∆Tk,m + |Tb⟩.

NUMERICAL DETAILS: SPARSE FORMULATION

The optimization problem described in Eq. S1 contains a very large number of constraints, making the calculation
of ZTT computationally expensive. However, noting that G0 is proportional to the inverse of the sparse Maxwell
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operator M, we can rewrite the constraints in Eq. S1∑
m

(
⟨Sk|PjG−(k′)

0 G(k′)
0 |Tk′,m⟩ − ⟨Tk,m|G(k)†

0 G−(k)†
0 Pjχ

−†
k,mG−(k′)

0 G(k′)
0 |Tk′,m⟩

−
∑
m′

⟨Tk,m|G(k)†
0 G−(k)†

0 (−G(k)†
0 )PjG

−(k′)
0 G(k′)

0 |Tk′,m′⟩
)
= 0 ∀j, k, k′,

⟨Tk,m|G(k)†
0 G−(k)†

0 PjG
−(k′)
0 G(k′)

0 |Tk′,m′⟩ = 0 ∀j, k, k′,m ̸= m′.

(S18)

Now, taking G(k)
0 |Tk,m⟩ as the new optimization vector and cancelling inverses, all constraints can be represented

using sparse matrices. G−1
0 can be calculated using Woodbury inversion of known Maxwell operators.

INVERSE DESIGN DETAILS

All calculations were run at increasing resolutions until converged. Multiple material topology optimization was
done by writing ϵ = ϵ2+(ϵ1+(ϵbackground−ϵ1)ρ2−ϵ2)ρ1 for ρ1, ρ2 ∈ [0, 1] and optimizing over the continuous variables
ρ1, ρ2. The derivatives of the objective with respect to modifications in ρ1, ρ2 were computed with Ceviche [2]. The
resulting optimization problem was solved with NLopt [3].

Inverse designs are often binarized to reflect realistic devices. In the multi-material case, we define a binarized design
as one where each pixel is exclusively one of the available materials. To better compare with bounds (which at high
enough resolutions mimic the behavior of non-binarized devices), inverse designs were not deliberately binarized with
the exception of when vacuum is not available in the optimization problem. In these examples shown, binarization
only marginally affected performance.
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