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COMPUTING THE LAGRANGE DUAL OF THE MANY-MATERIAL PROBLEM

The primal optimization problem takes the form

max FQITkm)})

{Tk,m}

st 30 ((SkI Thrm) = (Tl Xi o5 T = D (Thom| = GRS T ) ) =0 Wi, kK, (S1)

m m’

(T | Py | T ) =0 Vi, kK ym #m'.

This notation differs from the main text via v m — Tk m. As in the main text, |Si) is a source k, the polarization
current due to source k is [Ti) = >, |Tk,m) with [T} n,) the polarization current due to source k and material m

and is defined in the design region V. X m is the susceptibility of material m at wy, and G(()k) is the corresponding
vacuum propagator acting on sources to yield their corresponding fields in vacuum—mnamely, via convolution of the

vacuum Green’s function Gék) (r,r',wy) satisfying %V x V x Gék)(r, r' wi) — G(()k)(r,r’,wk) =0(r—1'). Tand P;
w

represent spatial projections onto either the full or aksubset V; € V of the design region V, respectively. Lastly, f is
a quadratic function of the polarization currents |Tj ).

For the first constraint, we will take the real and imaginary parts and write the Lagrange multiplier corresponding
to a given j, k, k" as )\gj’[k’ (symmetric and asymmetric constraints respectively). For the second, we will use Lagrange

multipliers /\g’g /’Xgm (symmetric/asymmetric orthogonal constraint). Now we can write

e(r.) = [Tl 151 | oy 2 oM ). (52)

where £ is the Lagrangian, |T,,:) = [|T171> Ti2) .. Tim) --- |T21) --. \TnmmﬂT for ng sources and m mate-

rials, [S) = [|S1) ... |Sns>]T, and ZTT and ZT9 = Z5TT matrices represent the quadratic and linear parts of the
Lagrangian, respectively. We also denote N the numerical length of a single [T}, ,,,) vector.



Writing out the constraints we find
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where Qy;, is the linear part of the objective.
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with —(G(()k)TIP’j or —(G(()k/)IE”j present in every off-diagonal element. Furthermore,
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Oguaa is the quadratic part of the objective and all R, I, S, A are m x m block matrices of N x N matrices. We can
compute the dual function G:

G(A\) =sup LA\, T). (S8)
|T)

We find the stationary point |T™*) of £ by solving the relation

oL
0 (T*|

=0, (S9)

which leads to the linear system
ZTT |1y = 279 |9). (S10)

In order for the dual to be finite, Z77 must be positive definite, so this linear system is invertible, leading to

|T*) = ZzTT-12758) (S11)
G(\) = (S| 25T Z2TT-1 775 3). (S12)
Finally,
oG L 077s L 0zTT
oy :2Re{(T \ Dy |s>} — (T Dy ) . (S13)

In the specific case of maximizing absorption, Q;;,, = 0. Absorbed power is

Zc Im xx.m
Py <Tk~,m| : ‘Tk,m> , (814)
2 2wy Xkm |

k,m
with Z the vacuum impedance, giving us Ogyqq (being careful of the negative sign in Eq. (S2)). Each term can be
normalized as desired by the incident or total power.

SOLVING THE DUAL PROBLEM

In order to solve the convex dual problem using an interior point method, we must first find an initial feasible point.
This requires choosing A such that Z77 is positive definite, thereby ensuring that Z77 is invertible and therefore
that the dual is well defined. This can be done reliably by leveraging the fact that the imaginary part of the Maxwell
Green’s function, Im Gék), is positive semidefinite [4]. Take P;=¢ = I to be the projector corresponding to global

. Lo . . . . - i=0,k,k
constraints, which is always enforced in our implementation. By setting all Lagrange multipliers A = 0 except A}
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for all k, we set Rk b= Si o= Ak w = 0 for all k, k', j. This also sets I,c w = 0 for all j,k # k' and, although not
necessary, for all j 75 0,k = k. The quadratlc part of £ becomes

I?’l ... 0
ZTT = @quad + ) (815)
O 707/5777/8
with I,(; . taking the following block diagonal form:
_Asym (]IX,;llJr — ng)T) e 0
=2 ; . ;
—1 k
I 0 ... Asym (]kamt — Gé ”)
M-I
[ Xk + As ymG( ). 0 (816)
|Xk,1|
0,k,k
= >\I y
I
0 oI T Xk, 1 5+ AsymG(k)
L ‘Xk:,m

which is positive definite for Im x ,, > 0. Therefore, as long as all materials have some loss (as they do in the main
text), we can simply increase A)"™F for all k to make Z77T(\) positive definite for any finite QOgyqq. We initialize all
bounds calculations in the main text (where ny = 1) by setting )\?’k’k =1 Vk. When Im x4, = 0, we may be able
to generalize the technique utilized in Ref [1] (Supporting Information, Section 11).

DESIGN REGIONS WITH NON-VACUUM BACKGROUNDS

The calculations in the previous section assumed the design region has vacuum background. However, the scattering
theory can be readily modified to include non-vacuum backgrounds. We define x; as the background susceptibility,
AXkm = Xk,m — Xb, and write the total field at at frequency k as Ej; 1or. We also define the difference in polarization
AT, m) = [Tem) — [Tb) ~ AXk,mEk o where |Tp) is the polarization of the background. The Green’s function

including the background Gl(,k) is defined to map a difference in polarization to its resulting field: Gl()k) |ATy, ) is the
scattered field due to the additional polarization. Lastly, assuming |S) is sourced by some current J,,., we replace
|Sk) — |Sks) by the field sourced by the same J,,. in the presence of the background design region. Overall, the
scattering theory is defined by the relations |Ej tot) ~ [Skp) + >, Gém |AT}, ). The new optimization problem can
be written

{An%?ﬁ} fHITy) , |[ATk m)})

s.t. Z((ShbmﬂATk’, )~ (ATil Axii By AT ) = Y ATk | — G AT, ,>)=o Vi, kK

m m/

<ATk,m‘ ]Pj |ATk’,m’> =0 Vja k7 k/-, m 7& m'.
(S17)
where f must be modified accordingly by replacement of | T} 1) — ATk . + |Tp).

NUMERICAL DETAILS: SPARSE FORMULATION

The optimization problem described in Eq. S1 contains a very large number of constraints, making the calculation
of ZTT computationally expensive. However, noting that Gg is proportional to the inverse of the sparse Maxwell



operator M, we can rewrite the constraints in Eq. S1

— (K k' k —(k — — (K k'
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. k P . . . .
Now, taking G(() ) |T). m) as the new optimization vector and cancelling inverses, all constraints can be represented
using sparse matrices. G, ! can be calculated using Woodbury inversion of known Maxwell operators.

INVERSE DESIGN DETAILS

All calculations were run at increasing resolutions until converged. Multiple material topology optimization was
done by writing € = €2+ (€1 + (€packground — €1)p2 — €2)p1 for p1, p2 € [0,1] and optimizing over the continuous variables
p1, p2. The derivatives of the objective with respect to modifications in py, po were computed with Ceviche [2]. The
resulting optimization problem was solved with NLopt [3].

Inverse designs are often binarized to reflect realistic devices. In the multi-material case, we define a binarized design
as one where each pixel is exclusively one of the available materials. To better compare with bounds (which at high
enough resolutions mimic the behavior of non-binarized devices), inverse designs were not deliberately binarized with
the exception of when vacuum is not available in the optimization problem. In these examples shown, binarization
only marginally affected performance.
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