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SOMMAIRE

La realisation d'une aile pour une application sp6cifique

requiert l'6tude de l'6coulement autour de cette aile afin de
determiner diff6rents paramfetres a6rodynamiques tels la

distribution de pression et de vitesse ainsi que les forces

sur 1'aile. L7 Industrie a6ronautique est done int6ress6e a

d6velopper des moyens permettant de faire ces calculs Ie plus

pr6cis6ment possible tout en 6tant assez 6conomique en temps

et en argent. Si on tient compte de la viscosit6 et de la

compressibility de 1'air, il faudrait r6soudre les equations
de Navier-Stokes pour obtenir une prediction des propri6t6s

de base de 1' 6coulement. La resolution des equations de

Navier-Stokes pour des applications pratiques est extremement

difficile et demande des ordinateurs de tres grande capacite.

Meme en utilisant ces ordinateurs, Ie temps de calcul est

beaucoup trap long pour que la resolution des equations de
Navier-Stokes soit int6ressante.

Une autre m6thode pour obtenir une prediction dos propri6t6s
de l'6coulement est celle des essais en soufflerie. La

difficult^ de cette m6thode est qu'elle est tres on6reuse

puisque ^r^elle demande de grandes installations.
/\

Nous nous proposons de tester une methods appel6e VII ou

Viscous-Inviscid Interaction qui nous permettrait de calculer

la distribution de pression et autres parametres

a6rodynamique pour di£f6rentes ailes tri-dimensionnelles.
Cette m6thode est bas6e sur l'hypoth6se suivante,

1'ecoulement peut etre divis6 en deux parties, une partie

externe ou les effets visqueux sont n6glig6s et une partie

proche de la surface de 1'aile ou il faudra tenir compte de

la viscosity. Cette hypoth6se est certainement valide puisque

\^-'
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dans beaucoup d'applications de 1'a6rodynamique, les effets
de la viscosity et de la turbulence sont limit6s a une tr6s

mince region pres de la surface de 1'aile/ region qui est

appel6e la couche limite, et au sillage. Dans cette region,
nous devrons r6soudre les equations de la couche limite. A

1'exterieur de cette region, les equations non-visqueuse^

d'Euler ou toute autre approximation appropri6e sera r6solue.

Les deux regions seront r6solues s6par6ment et les deux

solutions obtenues seront combin6es de fagon interactive pour

obtenir la solution au probl6me. Cette m6thode est beaucoup

plus 6conomique que la resolution des equations de Navier-

Stokes ou que les essais en soufflerie. De plus, elle donne
des r6sultats tres satisfaisants.

")

Le rapport expose done la th6orie n6cessaire a la

construction d'un programme en utilisant cette m6thode. Pour

Ie calcul non-visqueux, deux m6thodes de panneaux sont

6tudi6es. Le chapitre 1 pr6sente la th6orie de ces deux

m6thodes. Le chapitre 2 pr6sente la th6orie des diff6rents

modeles pour la couche limits utilises .JDe plus, ce chapitre

pr6sente aussi la module pour la combinaison des deux
solutions. Le modele retenu est celui de la vitesse de

transpiration. L'effet de la couche limite vient ajouter une

composante de vitesse normale. Cette m6thode a 1'avantage de

ne pas changer la g6om6trie du problfeme a chaque iteration.

Le chapitre 3 pr6sente une description des prograinmes et des

instructions afin de les utiliser. Le chapitre 4 pr6sente les

r6sultats pour trois cas qui ont 6t6 test6s et compares avec

des r6sultats exp6rimentaux disponibles ou d'autres r6sultats

pr6sent6s dans les r6f6rences. Finalement, les annexes

pr6sentent des informations compl6mentaires a la th6orie

pr6sent6e dans les chapitres 1 et 2.



ABSTRACT

One must study the flow around a wing and obtain the

aerodynamic parameters, for instance the pressure and
velocity distributions and the overall forces, to design

successfully this wing for a specific application. The

aeronautical industry is interested to develop methods that

are accurate yet not too costly to calculate these

aerodynamic parameters. If one takes into account the

viscosity and compressibility of the fluid, one must resolve
the Navier-Stokes equations to predict the basic flow

properties. The solution of the Navier-Stokes for practical
applications is extremely difficult and involves the use of
supercomputers. Even then, the computational time involved is
prohibitive.

Another method used to obtain the basic flow properties is

the use of wind tunnels. The disadvantage of this method is

that it is very costly as it requires large installations .

The object of the project is to test a method named VII or
Viscous-Inviscid Interaction to calculate the pressure

distribution and other aerodynamic parameters. The method is

based on the following assiunption, that the flow can be

divided in two separate regions, an external region where the

effects of viscosity can be neglected and an internal region
near the surface of the wing where the viscosity is taken

into account. This assumption is certainly valid for many

practical applications because the effects of viscosity and
turbulence are confined to a thin region near the body

surface, region named boundary layer, and its wake. In this

region, the boundary layer has to be solved. In the external

region, the inviscid Euler equations or a suitable
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approximation are solved. The two solutions are obtained

separately and then are matched in an iterative manner to

obtain a composite solution to the problem. This method is

less expensive or time-consuming than the solution of the

Navier-Stokes equations or the wind tunnel testing. It gives

very accurate results.

The report presents the theory necessary to construct a code

using this VII method. Two panel methods are studied for the

inviscid calculation. Chapter 1 presents these two methods.

Chapter 2 presents the different models used for the boundary

layer calculation. It also presents the matching technique
for the two solutions. The model studied is the transpiration

velocity model. It has the distinct advantage that the

geometry of the body remains constant during the calculation.

Chapter 3 describes the computer codes and gives instructions

for the use of these codes. Chapter 4 presents the results

for three test cases that have been studied and compared with

experimental results when available or other results taken

from the references. Finally, the appendices presents

additional information to complete the theory presented in

chapters 1 and 2.
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R^SUMfi

De plus en plus, 1'Industrie a6ronautique utilise des
m6thodes num6riques pour aider dans la conception d'avions.

II est certainement possible d'obtenir des r6sultats tres

pr6cis avec plusieurs des m6thodes num6riques employees. Une
de ces m6thodes est connue sous Ie nom de "Viscous-Inviscid

Interaction" ou VII. Le but de ce pro jet est d'adapter des

programmes utilisant cette m6thode et de les tester.

La m6thode de VII peut etre s6par6e en trois parties
distinctes. D'abord une methods num6rique pour Ie calcul de

1'ecoulement dans la partie ou la viscosity est negligee.

Deuxiemement, une m6thode de calcul pour la couche limite. Et

finalement, une m6thode de combinaison pour les r6sultats des

deux premieres m6thodes. Cette m6thode est particuli6rement
efficace pour les cas ou la couche limite demeure attach^e

jusqu'au bord de fuite comme les ailes d'avion en regime de
croisiere. Dans ce pro jet, tous les cas 6tudi6s tombent dans

cette cat6gorie.

L'hypoth^se de base pour Ie calcul potentiel est que
1'gcoulement est non-visqueux et irrotationel done

incompressible. Dans ce cas, la vitesse V peut Stre d6riv6e

d'un potentiel $ par la relation suivante

V: = V > (1)

L'6coulement est done r6gi par 1'equation suivante

v2 e> = o (2)

Cette equation est une des plus 6tudi6e et est appel6e



ix

liquation de Laplace. Toutes les solutions de 1'equation de
Laplace sont des fonctions harmoniques .

Les methodes num6riques les plus souvent utilis6es pour

resoudre ce type de probleme sont les m6thodes de panneaux.

Le principe de superposition peut done etre appliqu6 & cause
de la lin6arit6 de liquation. Ce principe sp6cifie que la

somme de di£f6rentes solutions de 1'equation aux d6riv6es

partielles est aussi une solution de 1'equation. Ainsi,
l'6coulement irrotationel et incompressible autour d'une aile

peut-etre repr6sent6 par la sonirne de diff6rents 6coulements
irrotationels et incompressibles 616mentaires. Ces

6coulements sont appel6s des singularit6s comme les sources,

tourbillons et doublets. Les m6thodes de panneaux distribuent

des singularit6s sur la surface de 1'aile ou sur la surface
de cambrure moyenne et obtiennent les paramfetres de
l'6coulement en r6solvant Ie syst&me d'equations lin6aires

resultant. La formulation math6matique de ces m6thodes de

panneaux nous vient du th6oreme de Green. Dans Ie pro jet,
deux m6thodes de panneaux sont 6tudi6es, la m6thode de la

distribution des singularit6s internes conune d6crite par

Singh8 et la m6thode des singularit6s 6gales de Newling9. Ces

deux m6thodes sent d6crites ci-apres .

M6thode des sin ularit6s internes

Cette m6thode distribue des sources et des tourbillons sur la

surface de cambrure moyenne de 1'aile. Elle r6sout cette

distribution de singularit6s en appliquant la condition
frontifere de vitesse normale. Cette vitesse normale est 6gale

a z6ro pour la premiere iteration et est non-nulle pour les
autres iterations. La vitesse normale est calcul6e a certains

points choisis sur la surface de 1'aile. Ces points sont



appeles points de collocation. Le calcul de la couche limits
vient modifier cette vitesse normale pour les autres

iterations suivant la premiere. Les Figures 3 & 7 montrent la

g6om6trie de 1'aile et sa discretisation.

Des sources et des tourbillons sent distribu6s sur la surface

de cambrure moyenne, en laissant un espace pres du bord

d'attaque. De plus, la distribution de tourbillons est
appliqu6e sur la surface du sillage aussi. Deux sources
lin6aires sont plac6es sur des lignes L^ et Lz pres du bord

d'attaque dans la direction de 1'envergure. Finalement, un
tourbillon en fer a cheval est plac6 sur la ligne L3 qui est

a mi-distance entre Li et Lz. Les deux sources lin6aires et

Ie tourbillon en fer a cheval sent places pour mieux simuler

la rondeur du bord d'attaque. Venant du th6oreme de Green,

lrequation a r6soudre est la suivante

-4nVjip=f[a^(K^}dS+ f CyxKy]npdS
Sc S^S^

+E (^^p)^+ / ^i+"2) (^^p)^
^3 LI'+L,

(3)

La composante normale de V est z6ro a tous les points de
collocation h la premiere iteration et non-nulle pour toutes
les autres.

Pour obtenir la solution pour l'6coulement non-visqueux, on

doit r6soudre 1'equation (3) simultan6ment avec la condition
de Kutta. Pour ce faire, on doit discr6tiser 1'equation

int6grale pour obtenir un systeme d'equations alg6briques
lin6aires. L'aile est discr6tis6e en petits 616ments appel6s

panneaux, d'ou Ie nom de la m6thode. La formation de ces

panneaux est d6crite en plus de detail en annexe A. La Figure
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3 montre la discretisation de la surface. On voit que ces

panneaux sent form6s par deux series de lignes qui sont
approximativement paralleles, uno dans Ie sens de la corde et
1'autre dans Ie sens de 1'envergure. Les centroides de ces

panneaux sont choisis comme points de collocation ou est
appliqu6e la condition frontiere. Des points de collocation
sont ajout6s pres du bord d'attaque. Pour calculer la surface
de cambrure moyenne. Ie programme fait la moyenne entre les
coordonn6es z des panneaux correspondants sur 1'intrados et
1'extrados. La discretisation de cette surface est montr6e a

la Figure 4.

La force de la distribution de sources est constante sur un

616ment mais varie d'616ment en 616ment. La force de la

distribution de tourbillons reste constants dans la direction

de 1'envergure mais varie lin6airement dans 1'autre
direction. Pour obtenir un r6sultat, nous devons satisfaire

la condition de Kutta. Cette condition sera satisfaite en

maintenant la valeur des tourbillons au bord de fuite a z6ro.

L'equation integrate (3) peut etre approxim6e par Ie systeme
d'equations alg6briques lin6aires suivant:

M-l(J-D (M-D (r-i> W-D

A^sk+ E ^Y^+£^(o^+o^)
:+1 k=l k=-L

M-l

+EP^^=-^
(4)

Ajk, Bji,, Cjk et Djk sont les composantes normales de la vitesse
induite au ji6me point de collocation par la kieme source,

tourbillon, source lin6aire et tourbillon en fer a cheval

respectivement. Les equations n6cessaires pour calculer ces
vitesses induites sont donn6es dans les annexes B et C. Ce

systeme d'equations est 6crit sous foinne matricielle et est
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r6solu par un technique d'orthogonalisation pour obtenir les
valeurs des singularit6s. On peut alors calculer la vitesse

& tout point de collocation par

Nr

V.7-=E y.A+^
k=l

(5)

ou Vjk repr6sente la vitesse induite au jieme point de
collocation par la kieme singularity 11^. NT repr6sente Ie

nombre de singularites. Une fois les vitesses connues. Ie
coefficient de pression est calculi comme suit

cp. =l-
v^v,

^
(6)

Les forces sur 1'aile sont calcul6es par une integration

num6rique en supposant que la pression est constante sur

chaque panneau.

M6thode des sin ularit6s 6 ales

Cette m6thode distribue des singularites sur la surface de

1'aile. L'aile est discr6tis6e de la meme fagon que dans Ie

cas de la m6thode des singularit6s internes. Une distribution

de sources et de tourbillons eSt plac6e sur la surface. La

valeur des tourbilions est constante sur chaque panneau mais

varie de panneau en panneau. La vorticit6 reste constante
dans la direction de 1'envergure mais varie lin6airement dans
1'autre direction. Pour r6duire Ie nombre d'inconnues, la

valeur des singularit6s est suppos6e 6gale sur des panneaux

correspondants sur 1'intrados et 1'extrados. Nous avons une

equation integrate a r6soudre que nous transformons en
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systeme lin6aire par la discretisation de la surface. Le
systems est Ie suivant

MXN MXN

£ ^o^^ B,^Yj, =-^^ (7)
k=i *=1

Ajk et Bjk repr6sentent les vitesses induites par la kieme
source et tourbillon respectivement sur Ie jieme point de

collocation. Les valeurs des singularit6s sont obtenues par

une technique d'orthogonalisation. Ensuite, la distribution

de pression et de vitesse sont obtenues de la meme fa^on que
dans Ie cas de la m6thode des singularit6s internes.

Calcul de la couche limite

La deuxieme partie de la technique VII est Ie calcul de la

couche limite. Une hypothese est formulae, que Ie gradient de

pression a travers la couche limite est n6gligeable et que
seulement les d6riv6es normales des contraintes en

cisaillement sont importantes pour Ie calcul. Le calcul de la

couche limite se divise en trois parties: un calcul

laminaire, une prediction de la transition et un calcul

turbulent.

Dans Ie pro jet, la methods utilis6e pour Ie calcul de
l'6coulement laminaire est la m6thode de Thwaites10. La
transition de l'6coulement laminaire a turbulent est calculer

grace au critere de Mitchel . Cette transition est suppos6e
soudaine. Cette hypoth6se nous permet d'obtenir les valeurs

de depart pour Ie calcul de l'6coulement turbulent en

supposant qu'elles sont 6gales a celles de l'6coulement
laminaire.
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La m6thode integrate d6crite par P. D. Smith" est utilis6e

pour Ie calcul de la couche limite turbulente en trois
dimensions. Trois equations sont primordiales a ce calcul:

les deux equations de la quantity de mouvement et liquation

de la continuity. Un systeme de coordonneees curvilignes non-

orthogonales est n6cessaire & la resolution du probl^me. La
surface de 1'aile est divis6e en une s6rie d'616ments

quadrilat6raux.

Les trois equations fondamentales sont 6crites pour Ie
nouveau systeme de coordonn6es. Pour r6duire Ie nombre
d'inconnues, des profils de vitesse sont supposes dans la
direction de l'6coulement et la direction de 1'envergure. De

plus, des relations empiriques sont utilis6es pour les
coefficients de friction et Ie coefficient d'entrainement.

Avec toutes ces simplifications. Ie nombre d'inconnues est

r6duit a trois, l'6paisseur dans la direction de l'6coulement

6ii, Ie parametre de forme H et |3, 1'angle entre la ligne de
courant ext^rieure et la ligne de courant correspondante sur

la surface de 1'aile. Le systeme d'equations aux d6riv6es

partielles du premier ordre en fonction de ces trois
inconnues est 6crit comme suit

F^^F^^Q^ .

-8P=.<
ll^l^+8ll^llP^=51

36 11
.

21~9x
3^

/r

+Q^F.^9H+Q^F, M^
Jll^2lHg^^llz-2lp-^--2

^^f^^^
(8)

Les expressions pour les dif£6rents F, J et S sent donn6s en

annexe D. Ces equations sont hyperboliques. Les equations

hyperboliques ont deux directions caract6ristiques r6elles.
Une m6thode de differences finies est utilises pour les



XV

r6soudre. Le plan x-y est divis6 pour former une grille
rectangulaire comme montr6 a la Figure 9. Parce que les
equations sont hyperboliques, il y a Ie concept d'un front
qui avance. Au point (i, j) / tous les termes du membre de
droite sont connus, alors on peut calculer les d6riv6es.

Ensuite, les d6riv6es au point (i+l, j) sont trouv6es par

extrapolation. La sous-routine effectuant Ie calcul de la
couche limite revolt de 1'information du calcul potentiel.
Ces donn6es sent interpol6es par une technique de spline

bicubique.

Vitesse de trans iration

Une fois Ie calcul de la couche limite compl6t6, nous devons

calculer la vitesse de transpiration qui vient modifier la

vitesse normale pour un autre calcul non-visqueux equivalent.
Cette vitesse de transpiration est donn6e par liquation

suivante:

wi.=1 9 / "eAl^^ + 3 ( ueA2<3r
^ AI Qy{h^ .) (9)

Cette vitesse modifie les conditions aux limites pour Ie

calcul potentiel et la distribution de vitesse et de pression

sont recalcul6es pour Ie prochain calcul de la couche limite.

Ces vitesses de transpiration sont calcul6es apres chaque

cinq iterations du calcul de la couche limite. Le proc6d6

it6ratif arrete quand la difference entre les coefficients de

portance obtenus entre deux iterations est plus petite qu'une

certaine valeur pr6-d6termin6e.

Modifications aux ro ranunes
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Les programmes 6taient originalement destines a etre utilises
aur un mini-ordinateur Horizon III et ont 6t6 modifies pour

etre utilises sur Ie systfeme MUSIC. II y a plusieurs

differences entre les deux compilateurs FORTRAN. D'abord

toute la structure d'entree et de sortie de donn6es a 6t6

chang6e. Les programmes doivent gtre ex6cut6s en lot puisque
la demande de m6moire 6tait trop grande. Originalement, il y

avait trois programmes, un pour chacune des deux m6thodes de
panneaux et un pour Ie calcul de la couche limite. Chacun de

deux programmes pour les m6thodes de panneaux a 6t6 regroupe
avec Ie programme pour Ie calcul de la couche limite pour ne

former que deux programmes.

Pour combiner les programmes, il faut passer les variables en

paramfetres. Pour ce faire, les prograinmes ont dus @tre
dissect^s pour bien comprendre leur structure. Le compilateur
sur Ie Horizon III est mains strict que celui sur MUSIC. Cela

nous a oblige a apporter des modifications de quelques

fonctions et quelques boucles. Pour utiliser ces programmes,
des batchfiles ont 6t6 Merits et 1'usager n'a qu'a ex6cuter

ces batchfiles. La description complete des programmes et de

leur utilisation est d6crite au chapitre 3.

Trois cas ont 6t6 6tudi6s & 1'aide des programmes. Le cas

d'une aile polygonale avec profil NACA 0005. Ce cas teste

bien les limites de la m6thode. Les r^sultats obtenus sont

compares avec la solution de Roberts14. La comparaison est
montr6e par les Figures 10 h 13. Les r6sultats sont

satisfaisants except^ pr6s de la base de 1'aile. Quand on

s'61oigne de la base de 1'aile, les r6sultats sont tres
satisfaisants. Le deuxi&me cas 6tudi6 est celui d'une aile

quasi-rectangulaire avec profil NACA 64A410, done un profil
cambr6. Les r6sultats sont obtenus pour les deux methodes de

panneaux et sont montr^s aux Figures 14 & 16. Les r6sultats
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concordent tr6s bien. Finalement, Ie troisieme cas est celui

d'une aile avec un angle de fl6che de 45° et profil NACA
64A010. Les r6sultats obtenus sont compares avec des

r6sultats exp6rimentaux. La comparaison est montr6e aux

Figures 17 a 21. La difference est de 1'ordre de 1. 11%. On
peut done voir que les r6sultats obtenus par une technique
VII sont tres satisfaisants. De plus, nos tests num6riques

ont demontr6 que la m6thode des singularit6s internes est
environ deux fois plus rapide que 1'autre m^thode 6tudi6e.

L'application bidimensionnelle de la couche limite donne de
tres bans r6sultats pour des cas ou 1'angle de fleche et

1'allongement ont des valeurs raisonnables. Pour des cas ou
la couche limite ne demeure pas attach6e jusqu'au bord de

fuite, une m6thode tridimensionnelle de la couche limite

devra etre appliqu6e.

Nous n'avons pu obtenir de bons r6sultats avec des ailes tr&s

minces, de prof il NACA 0002. De plus, pour des angles

d'attaque sup6rieurs & 9°, les r6sultats ne sent pas tres
satisfaisants.

Pour am61iorer les r6sultats obtenus, une methode

tridimensionnelle complete pourrait remplacer la m6thode

quasi-tridimensionnelle utilis6e dans ce pro jet. De plus,
d'autres m6thodes de panneaux pourraient etre essay6es pour

Ie calcul potentiel combine avec une correction pour la
couche limite.

La technique VII est tres certainement une alternative de
choix aux m6thodes d'essais en soufflerie ou & la resolution

des equations de Navier-Stokes car elle donne de tr6s bans

resultats et elle est tres 6conomique d'utilisation. Elle
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peut meme etre 6tendue au calcul d'autres cas int6ressants
coimne en regime transsonique par exemple, ou une mod61isation

pertinente de la couche limits au pied des ondes de choc sera
n6cessaire.
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OBJECTIVE

The objective of the project has been to adapt existing codes

and have them working for the calculation of various problems

associated with low speed flow past clean wings using a

viscous-inviscid interaction technique. The external inviscid

flow calculation is done using a panel method whereas an

integral method is used for the calculation of the boundary

layer correction. Two different panel techniques are explored
and used throughout the project. These are the internal

singularity distribution method in which a distribution of

singularities is placed on the mean camber surface and the

equal singularity method in which a distribution of

singularities is placed on the body surface with the

assumption that the strength of the singularities on two

corresponding panels on the lower and upper surfaces are

equal. The two potential flow solutions are then matched by

using a surface transpiration model in an iterative manner.



INTRODUCTION

The design of a wing for a specific application involves

satisfying several specifications and to realize this

objective, an appropriate planform geometry and airfoil must

be chosen. To successfully develop a satisfying wing, one

must understand the physics of the flows. The calculations

for the design and development of wings involves prediction,

as accurately and as quickly as possible, of the basic flow

properties: pressure, velocity and the overall forces on and

near the system. Because of the fact that air is a viscous

and compressible fluid, the equations of Navier-Stokes have

to be solved to realize this prediction while some form of

turbulence modelling is necessary for the large regions of

turbulent flow occurring at the high Reynolds number involved

in aviation. The computational efforts and problems involved

with the solution of the Navier-Stokes equations/ even with

the simplification for steady flows, are foinnidable. For

practical applications, the computational time involved in

the solution of these equations is prohibitive.

Fortunately/ in many practical applications of aerodynamic

interest, the effects of viscosity and turbulence are

confined to relatively thin shear layers near the body

surface and its wake. Outside this region one can obtain

highly accurate results by solving the inviscid Euler

equations or a suitable approximation to them. The solution

of the inviscid Euler equations involves much less effort and

computational time than the solution of the time-averaged

Navier-Stokes equations. We can take advantage of this fact

by calculating separately the external inviscid flow and the

viscous boundary layer and then coinbine the results

interatively to provide a composite solution to the problem.



This technique

interaction"(VII),

is known as 'viscous-inviscid

Most of the viscous-inviscid interaction methods use some

form of panel methods for the calculation of the external

inviscid flow and momentum integral equation for solving the

boundary layer. Finally, the results obtained from these two
calculation methods are combined iteratively, with an

appropriate matching condition.

The use of the viscous-inviscid technique should reduce the

need for wind tunnels which are much more expensive. This

technique enables us to obtain the basic flow properties, the

pressure and velocity distributions and overall forces for an

arbitrarily shaped body by specifying the complete geometry

of the body involved and the freestream flow conditions.

For many problems of great practical importance, the separate

potential flow and boundary layer solutions are relevant and

provide high overall accuracy. They must be combined with
sufficient attention to the mathematical modelling of the

interaction between the two solutions . By arranging the

calculation in an iterative manner, each successive inviscid

solution provides the pressure distribution necessary for the

next boundary layer correction solution, the displacement

effect of which is then used to modify the inner boundary

conditions for a near inviscid calculation. This loop must be

repeated until the necessary precision is attained. This

precision is measured by calculating the difference between

the calculated total lift coefficients between two successive

iterations. The viscous-inviscid interaction approach is most

successful in the cases where the boundary layer remains

attached up to the trailing edge of the wing, as would



normally be the case for a transport aircraft under cruising

conditions. In the project, all cases examined fall in this

category. It is however possible to apply the VII technique

to applications where there is a significant amount of

boundary layer separation near the trailing edge, or at the
foot of a shock wave in transonic flow, or in the case of

multi-element aerofoils. These cases have been examined in

the Sinhamapatra thesis1.

The effect of the boundary layer on the external inviscid

flow is simulated by means of an inviscid calculation of the

flow over a solid displacement surface. The boundary layer

correction changes the geometry of the surface. A different

approach called the transpiration model was proposed

originally by Lighthill2, in which the displacement effect is
simulated by means of a distribution of sources on the true

surface of the wing, leading to a non-zero component of the

normal velocity there. So for the first calculation of the

potential flow, the normal velocity is equal to zero at the

body surface. For the subsequent calculations, the boundary
conditions of normal velocity at the body surface are

modified to obtain a non-zero component. This apporach is the

one chosen for the project.

In a viscous-inviscid interaction scheme, a fundamental

assumption is made, the overall flow can be divided into

separate regions, the inner region where the Navier-Stokes

equations or a suitable approximation to them must be solved,

and the outer region where a potential flow calculation is

accurate enough. This assumption is valid for flows at high

Reynolds number which constitute the most interesting cases

of external aerodynamics. To match the two solutions, we must

insure that the composite flow field is continuous at the



interface between the inner and outer regions with respect to

the magnitude and direction of the velocity.

It is more convenient to use the second of the two models of

displacement effect mentioned earlier. The transpiration
model has the advantage that, if a panel method is used, the

matrix of influence coefficients does not change from

iteration to iteration and can be inverted and stored once

and for all. This is due to the fact that the geometry of the

body remains constant during the scheme and the influence

coefficients depend only on the geometry. Only the right-hand

side vector of normal velocities changes at every iteration.

Whereas the solid displacement model changes the geometry of

the body at every iteration so the matrix of influence

coefficients has to be recalculated. In a panel method, the

most time-consuming step is certainly the calculation of the

influence coefficients. For this particular advantage/ the

transpiration velocity model has been used throughout this

project.

The precision of a VII scheme depends mostly on the inviscid

calculation. The governing equations for inviscid flow are

the Euler equations which can be approximated for low speed

flows by the Laplace's equation. It is then known as

potential flow. As exact analytic solutions to the potential

flow is known only for two-dimensional bodies with specific

geometry, it is necessary to use numerical methods that

approximate the solution. The accuracy of these methods can

be made as great as possible by sufficiently refining the

numerical solutions. Analytical methods for the resolution of

the potential flow problem exist and they work by introducing

approximations into the analytic formulation itself and thus

limit the overall accuracy.



One class of numerical methods used for the resolution of the

potential flow is known as the panel method, which are

nominally exact for the hypothetical case of zero Mach number

and infinite Reynolds number. Two of these panel methods for

three-dimensional wings are examined in this project, equal

singularity model which distributes sources and vortices on

the body surface, and the internal singularity model which

distributes sources and vortices on the mean camber surface

of the wing. In both cases, the boundary conditions are

satisfied on the body surface. Comparisons have been made

between these two methods and results are compared with

available experimental or numerical solutions . It has been

found that the equal singularity method takes about twice as

much time as the mean camber method for comparable accuracy.

The major part of the theory necessary for this project has

been taken out of the thesis "Viscous-inviscid matching on

aerofoils and wings at low speed" by K. P. Sinhamapatra1. This

reference has been essential to this work.



CHAPTER I INVISCID CALCULATION METHODS

1. 1 The otential flow

The theory presented in this chapter is taken from the

following references: Sinhamapatra1, Kuethe and Chow3 y Milne-
Thomson'1, Masson and Paraschivoiu5, Paraschivoiu6 and Gerhart
and Gross7.

The basic hypothesis of the potential flow calculation is

that the flow is inviscid and irrotational and therefore

incompressible. The inviscid formulation of the continuity

equation and the linear momentum theorem are respectively:

V-T+^-Vp=0 (1. 1)

T-W-^
p

(1. 2)

In equations (1. 1) and (1. 2), p is the density of the fluid,

p its pressure and V its velocity.

The condition of incompressibility means that the density p

is constant. Also, we have that

vl2VW=V (J-L) +-7x7x V=V (-L-l) (1. 3)

because the flow is irrotational and therefore

VxV=0 (1. 4)

Equations (1. 1) and (1. 2) for irrotational and incompressible



flows are

v-^o

1^1)=-^
pV(^J)

(1. 5)

(1. 6)

Because the flow is irrotational, the velocity V can be

derived from a potential $ by the following relation

V = V > (1 . 7)

By replacing equation (1. 7) in the continuity equation, the

following equation is obtained

V2$ = 0 (1-8)

Equation (1. 8) is one of the most studied equation and is

named the Laplace's equation. All solutions of the Laplace's

equation are harmonic functions. The velocity potential $ of

a irrotational and incompressible flow is governed by the

Laplace's equation. To solve the problem of a potential flow,

the Laplace's equation has to be solved. Then the linear

momentum theorem gives the pressure.

The numerical methods most often used to solve the potential

flow calculation are based on panel techniques. These methods

take advantage of the uniqueness theorem for the Laplace's

equation and solve unknowns only on the body surface.

Laplace's equation is a linear partial differential equation

of the second order. Because of the linearity of the

equation, the superposition principle can be applied. This

principle states that the sum of different solutions of the

linear partial differential equation is also a solution of



the equation. The irrotational and incompressible flow past

a wing can be represented by the sum of different elementary
irrotational and incompressible flows. The potential of the

more complex flow ^ can be expressed as the sum of a series

of potentials $e of elementary flows as follows

N

3> = ae^e (1. 9)

where Bg is a constant. These elementary flows are due to

singularities such as sources, vortices and doublets. The

panel methods distribute singularities on the body surface or
the mean camber surface and then obtain the flow parameters

by solving the resulting system of linear equations. The

mathematical formulation underlying the panel techniques

follows from Green's theorem.

Green's theorem states that for any domain S2, if Fi and Fz are

two arbitrary scalar fields and they are second order

continuous throughout ft then,

fff( F^72F^ -F^F^) dQ =ff (F^li-VF^ -f^-VFg) dS (1 .10)

Where n is the local normal to the surface S enclosing the

domain and is defined as pointing into S (Figure 1). For the

three dimensional potential flow, Fi may be replaced by total

potential ^ satisfying the Laplace's equation throughout the

domain S2 and F; may be replaced by 1/r where for any source

point Q inside S2, r is defined as the length of the vector r

from Q to a fixed observer point P. The derivatives in the

Nabla vector operator v are taken with respect to the
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coordinates of the source point Q. Equation (1. 11) gives the

potential at point P, $p:

(1. 11)
4Ti T^p=[f-j-n^dS +f{^n^ (^) dS

These integrals exclude the singular point at which P and Q

coincide and r = 0. In particular cases

T = 1 when P lies inside

T = 0 when P lies outside

T = 1/2 when P lies on a smooth part of S.

Equation can be extended to the multi-domain problem (Fig. 2).

For a point P in any of the domains, each domain having a

closed boundary consisting of a number of connected portions

of which a portion interfacing two domains A and B being

denoted as SAB/ if ^A and $B denote the single-valued local

potentials on the two chosen sides A and B of any one of

these surfaces and n^ denotes the local outward normal vector

corresponding to side A, then potential at point P can be

obtained by integrating over all such surfaces:

^'^p=Ej'/[-^-(V^-V^)+(^-^)^. V(^)]dS ^^^
+J'/[-^.v<o^<DA.V(^)]ds

In the case where the boundary So lies at a finite distance

from the inner boundaries, a fictitious region S2o may be

considered to lie outside So, extending to infinity. The

contribution to the total potential $p from the boundary So

may be grouped with those from the number of surfaces SAB.
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In the external aerodynamic problem, So is assumed to lie

indefinitely far from all the inner boundaries. For a point

P lying close to So the contribution to 4n$p from all the

inner boundaries SAB becomes indefinitely small. The potential

and velocity at all points on this boundary So are

unperturbed values which would exist if no other boundaries

SAB were present. For any point P lying inside So, the last

integral in equation (1. 12) may be replaced by the local

value of the function 4TiSp corresponding to the unperturbed

field at this point and this fixes the additive constant for

$ as governed by the uniqueness theorem, for formulation

which directly employs the unknown values of total potential

on the wetted surface. Equation (1. 12) can then be rewritten

for any point P lying off or on any of the various boundaries

as equation (1. 13):

47T'n(>^4^+E J>JT-^nA -(v^-V<t>B)+(<t>A-<l>5)^-V(^)]^1'13)
^s

T is defined as in equation (1. 11). The integral excludes the

singular point when P and Q coincide and where r = 0. Each of

the terms under the integral in the right hand side of

equation (1. 13) can be interpreted in terms of singularities.

The first term may be interpreted as the perturbation

potential induced at an external point P by a source

distribution of density a = ^'(V^A - V$B)/4TC on each surface

portion SAB and the second term can be interpreted as the

perturbation potential induced at an external point P by a

normal doublet distribution of density 4 = (^A - ^B)/4Tt on the

same surface, the doublet axis being along n^. We can then

rewrite equation (1. 13) for any point P not lying on any of

the surfaces SAB ass
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<t)p^+E//(oj<:i-^)ds (1. 14)
'*B

KI and K; are scalar kernel functions depending only on the

geometry of the wing. Ki = -(1/r) and Kz = n^* (1/r) =

(nA. r)/r3.

For points P lying on one of the boundaries, a limiting

analysis is required as P tends to Q on the boundary.

Integral equation (1. 14) must be defined to include the local

singular contribution -2Ti»i riA'h on side A of S due to the

local doublet density 4p.

Applying the operator Vp, the derivatives are calculated with
respect to the point P, to the equation (1. 14), we obtain an

equation in terms of velocity:

^=VE/J'((T^-^)ds (1. 15)
S^B

K3 and K^ are vector kernel functions depending only on the

geometry of the wing. K3= - Vp(l/r) = r/r3 and K^= Vp(nA*V(l/r)
= (HA. Vp)r/r3.

For points P lying on one of the surfaces SAB / the integral

is defined to include the local singular contribution 2TiOpnA

on side A or -2na n^ on side B.

Instead of using source and doublet distributions, we can use
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other coinbinations of singularity distributions with or

without vorticity distribution.

Equation (1. 15) can be rewritten in terms of the surface

source and vorticity distribution.

^='^+Ej'J>(o^+YX^)ds (1. 16

'AB

The vorticity distribution must satisfy the Helmholtz

theorem. Helmholtz second theorem states that "A vortex

filament cannot end in a fluid; it must extend to the

boundaries of the fluid or form a closed path. ". In the

present method, two panel techniques are used. Both of them

uses a source and vorticity distribution.

The configurations producing circulation generate wakes that

carry away the vorticity generated in the boundary layer on

the wing surface. These wakes can spring either from sharp

edges or smooth surfaces. There is a difference between the

potentials in the regions lying on each side of the wake. The

contribution to the total integral in equation (1. 15) from

the wake surface is

[f^^dS (1. 17)

Sn is the upper wake surface and $" is the difference between

the potentials in the regions on each side of the wake

surface.
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In the panel technique, discretisation is applied at three
different levels: the satisfaction of the boundary

conditions, the approximation of the geometry and the

approximation of the distribution of singularities.

The present calculation scheme makes use of two different

panel methods, the internal singularity distribution
technique due to Singh8 and the equal singularity model by
Newling9. These two methods will be the subject of this

chapter. Their working principles will be exposed.

1. 2 Internal Sin ularit Method

The method is used to calculate the incompressible and

inviscid flow around a clean wing. It distributes source and

vorticity singularities on the mean camber surface of the

body. It then solves this distribution of singularities by

satisfying the boundary condition of normal velocity. The

normal velocity is zero for the first iteration and non-zero

for the subsequent calculations at selected points on the

body surface. These points are called collocation points.

Figures 3 to 7 illustrates the wing geometry and its

discretisation. Figure 5 represents the vorticity

distribution on the mean camber surface.

Source and vorticity singularities are distributed on the

mean camber surface, leaving a small gap near the leading

edge. The choice of the size of that gap near the leading

edge and the element adjacent to it on the mean camber

surface is very important and has to be carefully determined.

The criterion used was developed in the Sinhamapatra thesis1.

The determination of the size of the gap was realized by

studying extensively, numerically, various wings with
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different aerofoil sections and planforms. The most accurate

criterion is that the point on the wing surface corresponding

to the end of the mean camber line near the leading edge,

1=1, shall have a slope of about 2. 5008^, RLE being the

leading edge sweepback angle. The next spanwise line, 1=2,

should be placed such that the slope is not less than

O. VCOS^LE. Once these sizes are determined, the remaining

elements distribution can be fairly arbitrary.

In the present calculation scheme, the mean camber surface is

designated as Sc and the wake surface as Sy. The vorticity

distribution Yg is placed on Sc and S,, whereas the source

distribution is placed on Sc. In addition to those, two

discrete line source a^ and 0^2 are placed on two lines near

the leading edge in the spanwise direction. These two lines

are designated as Li and Lz. To complete the singularity

model, a set of horseshoe vortices are placed with the bound

vortices on a line L3 halfway between Li and L;, and the

trailing vortices lie in the streamwise direction along the

mean camber surface past the trailing edge and extending into

the wake to infinity downstream. The line sources Li and L;

and the bound vortices on L3 are placed to simulate the

rounded shape of the leading edge of a subsonic airfoil.

For this singularity model, the total velocity at any point

P, not lying on the mean camber surface, can be written as:

4ii^=4-rt^J*o^;dS+ f fyxJQiS
~Sa S^S»

/ (°L^L2)K^il^K^^
(1. 18)

L^L^
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This equation is designated as equation (1. 18). In this

equation/ the various vectors K represent the appropriate
induced field.

The equation for the normal velocity of the point P is

obtained by taking the outward normal component of the
various induced velocities.

-^^.n~^ffa, CK~^)dS^ f (yxX;)-^dS
s^s^

^E (^'^)^+ / <^i+°2) (^'^)dl
(1. 19)

£l ^

The outward normal component of the velocity Vp, Vp-n? is zero

at the collocation point on the wing surface for the first

iteration but is non-zero for the subsequent equivalent

inviscid flow calculations.

To obtain the solution for the present inviscid flow

calculation, we have to solve equation (1. 19) simultaneously

with the Kutta condition. To achieve this objective, we have

to discretise this integral equation to obtain a set of

linear algebraic equations. The wing surface is discretised

into a number of small elements, known as panels hence the

name of the numerical method. The foi-mation of these elements

from the input points is described in detail in the Appendix

A. The points defining the wing are input in such an order

that they define a family of approximately parallel curves

lying on the wing surface. The figure 3 illustrates this.

These approximately parallel curves are designated as N-



17

lines. On a lifting wing, they are oriented in the freestream

direction. On each of the N-line, the points are input

beginning at the trailing edge, around the section curve of

the wing and back to the trailing edge. Each N-line contains

the same number of input points. Points from adjacent N-lines

are linked to form surface elements. The set of elements

formed from two adjacent N-lines is designated as a strip of

elements.

The order in which the points are input is very important

because it determines the direction of the outward surface

normal vector. The normal vector must point into the flow

field. The elements are approximated as plane trapezoids. The

centroids of the elements are selected as control points

where the boundary condition is applied. They are known as

collocation points. An extra set of collocation points along

the leading edge are also given as input to the definition of

the wing geometry.

To determine the curve on the mean camber surface, the code

calculates the z coordinate of any point on the mean camber

surface by averaging the z coordinate of the two

corresponding point on the lower and upper surface. The

curves obtained as such are designated as M-lines. Points on

adjacent M-lines are linked to form another family of curves,

termed as I-lines. The different curves on the mean camber

surface are shown in figure 4. The mean camber surface is

divided into a number of small elements by these M-lines and

I-lines.

The strength of the uniform surface source distribution

varies from surface element to element whereas the strength

of the bound vorticity distribution vary linearly in the
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chordwise direction but remain constant in the spanwise

direction and vary from element to element. The strength of

the line source singularities is uniform in each element but

vary from element to element.

If we defines Ns the number of spanwise strips and Nc the

number of chordwise divisions, so that each strip has Nc

elements, it results in Ns x Nc elements which is denoted as

Nt, the number of mean camber surface element. There are two

corresponding panels for each mean camber surface element in
addition to 2Ns elements corresponding to the leading edge

gap. So there are 2Nt+2Ns elements on the wing surface.

There are Nt unknown values of source strengths and Nt+Ns

unknown vorticity strengths. In addition, there are 2Ns

values of line sources and Ns values of horseshoe vortices so

the total number of unknown singularity strengths is 2Nt+4Ns.

Another Ns collocation points are taken at the leading edge

in addition to the 2Nt+2Ns collocation points corresponding

to each panel on the wing surface. The remaining Ns equations

are taken from the application of the Kutta condition by

setting the bound vorticity at the trailing edge to zero. So

we have 2Nt+4Ns equations and the same number of unknowns.

To obtain the results for the potential flow calculation, we

have to satisfy the Kutta condition. The Kutta condition is

satisfied by setting the bound vorticity strength at the

trailing edge of the wing at zero.

The integral equation (1. 19) can be approximated by a set of

linear algebraic equations. These can be written as:
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E Adk°3k+ E B^Y^+EC7Jc(CILlJc+OL2^)
^1 " ^i *°i (1. 20)

+E^jcT^=-^;-^

j=l, 2, 3,.., 2(I-l)(M-l)

This set of equation is equation (1. 20). Aji,, Bj^, C^ and D^

are the normal components of the velocities induced at the j-

th collocation point by the k-th surface source, bound

vorticity, line source and horseshoe vortex respectively.

Appendix B contains the equations necessary to calculate the

velocity induced by a source distribution whereas Appendix C

contains the equations needed to calculate the velocity

induced by a vortex segment, a semi-infinite vortex line and
a line source.

This set of simultaneous linear equations can be written in

matrix form and thus can be solved by an orthogonalisation

technique to obtain the unknown singularity strengths.

Once the singularity strengths are known, the total velocity

at any j-th collocation point can be calculated with the

following equation:

NT

V3= ^n^^: (1. 21)

Vjk represents the total induced velocity at the j-th
collocation point by the k-th singularity Hp. NT represents

the nuinber of singularities.

Once the velocities are known, the pressure coefficients at
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the collocation points are calculated from the equation

(1. 22):

~v~. 'v~.

c"-1--^ (1. 22)

To obtain the forces on the wing, a numerical integration of

the pressure assuming the pressure to be constant over each
surface element is performed. The force on a particular

element j can be written as

^=-^C^ (1. 23)

^=E ^ (1. 24)

Equation (1. 24) calculates the total force on the wing
surface.
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1. 3 E ual Sin ularit Method

This model was developed by Newling9. The equal singularity

method distributes singularities on the wing surface and the

boundary conditions are satisfied on the wing surface also.

The organization of input points and surface panels is
similar to the internal singularity distribution method. The

chosen singularity distribution is composed of sources and

vortices. A linearly varying vorticity is superimposed over

a uniform source surface distribution on every panel. The

vorticity remains constant in the spanwise direction but

varies linearly in the chordwise direction. The uniform

source strength varies from panel to panel.

For each lifting strip, if N+l points are used to define the

aerofoil geometry, there will be N surface panels. So for

each lifting strip, there are N+l unknown vorticity strengths

and N unknown source strengths . To reduce the number of

unknowns, it is assumed that the singularity strengths on

corresponding panels on the upper and lower surfaces of the

wing are equal. With this assiunption, it leaves us with

(N/2+1) unknown vorticity strengths and N/2 unknown source

strengths for each lifting strip. We can further reduce the

number of unknowns by the application of the Kutta condition.

The bound vorticity strength at the trailing edge is set to

zero so that the number of unknown vorticity strengths for

each lifting strip is reduced to N/2. The total number of

unknowns for M lifting strips is M x N.

[K:H^dS=-4u'V~^
s

(1. 25)

In equation (1. 25), K is the vector kernel and TC represents
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the unknown generalised singularity strengths distributed on

the wing and wake. Equation (1. 26) is the governing integral

equation and can be used to form a square system of M x N

linear equations in unknown singularity strengths. Equation

(1. 26) can be expressed as:

MV.N
2

 

<N
2

E A^jc+E ^Y^=-^^
k=i k=i

(1. 26)

j = 1, 2,..., M x N

Aji, and Bj^ represent the induced velocities by the k-th
source and vorticity element respectively on the j-th

collocation point. This set of linear equations is solved

with the use of an orthogonalisation method. Once the

singularity strengths are known, the velocity and pressure
distribution are calculated in the same manner as in the

internal singularity method.



CHAPTER II BOUNDARY LAYER CORRECTION

2. 1 Boundar La er Calculation

The second component of prime importance of any VII scheme is

the boundary layer calculation. The calculation of the

viscous part of the problem has usually involved the

assumptions that the pressure gradient across the boundary

layer is negligible and that only the normal derivatives of

the shear stresses are important to the calculation. For

turbulent flows the Reynolds normal stresses are almost

always neglected.

In the aerodynamic range of Reynolds niimbers, the flow is

predominantly turbulent but it is still necessary to use a
method for the laminar boundary layer ahead of the transition

and another method for determining the starting conditions

for the turbulent boundary layer.

In the present method, the method used for the calculation of

the laminar boundary layer calculation is the Thwaites10
method. The transition from laminar to turbulent flow is

calculated using the Mitchel criterion which gives transition

in a pressure gradient on the basis of a relation between Re

and Rx given by

^>1. 174(1+^°^)^-46
R^

(2. 1)

The transition can be assumed to be sudden. This assiunption

enables us to obtain the starting values for the turbulent

boundary layer calculation by assuming that they are equal to

the values for the laminar boundary layer calculation.
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For the laminar boundary layer calculation, the Thwaites

method is used. A set of transformation formulas are

suggested by Stewartson as described in Sinhamapatra1 to
transform the compressible momentum integral equation into

the form of incompressible flow. These transformation

formulas are:

6. =f(l-^)dn (2. 2)

8S/(1-^.)
JeT

u^

u.
dn

eT

(2. 3)

'WT-t'^:) f-1 (2. 4)

where V^ = {a^/a^V^ and U^ = (ao/aJU with a being the speed

of sound. Subscript "o" denotes values at stagnation

condition, "e" denotes values at the edge of the boundary

layer, "w" denotes values at the wall and "T" stands for

transformed parameters.

An integral method for the resolution of the boundary layer

calculation solves the Karman momentum equation:

4e. (H.2-^)A^e-1
U^~ds=2£ (2. 5)

The shape parameter H is defined as H = 6*/6 and the skin
friction coefficient as Cf = Tw/(ispe Ue2) .
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With the modifications to the boundary layer characteristics

S*, 6 and ty, equation (2. 5) will transfoi-m to its

incompressible form. To solve this equation, Thwaites
introduced two non-dimensional parameters

^-e2 /d2u, __e2 du^
J"=-u:^-d^^so=-T^s- (2. 6)

'=A
u^

dU.
dn' n=a (2. 7)

With the help of equations (2. 6) and (2. 7) and known exact

results, Thwaites found the solution of equation (2. 5) for

incompressible flow in the form of a quadrature for the

momentum thickness:

e2

v

0. 45
~uf ~^ ds (2. 8)

The other boundary layer parameters such as 6" and Cf can be

obtained from Thwaites' table of m, 1 and H, which relates

these parameters on the assumption of a one-parameter family

for velocity profiles. The calculation necessitates the

following empirical relations:

H

1

H

1

2. 0 + 0. 983 (m + 0. 25) + 5. 83 (m + 0. 25)2

(0. 0484 - 0. 818m)l/z for m < 0
6. 283m + 495m3

2. 0 + 0. 61 e

(0. 0729 - 0. 773m)l/2 for m > 0
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and 1=0 for m S 0. 089 and then S* = H9 and Cf = 2vlUe/9

where S* and 9 are defined as follows:

.../(X-^)dn (2. 9)

e=-3-fpC7(^-U)dn
Pe^2JO"

(2. 10)

The integral method for the calculation of the three
dimensional turbulent boundary layer is due to P. D. Smith".

Three equations are of prime importance to the calculation of

the turbulent boundary layer characteristics: the two

momentiun integral equations and the continuity integral

equation also known as the entrainment equation. A non-

orthogonal curvilinear coordinate system is necessary in the

present method for the calculation procedui'e. The surface of

the wing is divided into a set of quadrilateral elements. The

non-orthogonal coordinates lines and the grid system is used

to solve the three governing partial differential equations.

A finite difference technique is used for the calculation

procedure.

In the axes system used in the present method, x and y form

a non-orthogonal curvilinear grid on the wing surface, the z-

axis is normal to the wing surface. The figure 8 shows the

axes system. This axes system was introduced by Myring12. U,
v and w represent the velocity components in the x, y and z

directions respectively.
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An element of length ds on the body surface is given by

ds2 = hi2 dx2 + hz2 dyz + 2gdxdy (2. 11)

In equation (2. 11), hj, h; and g are the metrics of the

surface coordinate system.

Myring12 and Smith" have developed the three governing

integral equations in the non-orthogonal curvilinear

coordinate system. The momentum integral equations are:

Ill^^+e"
^a^. e.

3"e (2-M2) ^13 g

A, 9y

+-L-1L (J±
"&F 'V"e' +g^^X;+'clj
[^(2-^)^A(^). A.

+AI

+A.

9y h^u q 9y ' h

1 aul+^ ul-
Al"e 9X *vl "ej

9u^ U-,

AzUe 5y
^J^^, -^

u. u.
+Q^k^= '£1

22^2

(2. 12)

21|±9^+^
AI Qx

+J-a^+e;
Aa By ".

^<2-M2>.AA<^).2

22|

+AI

+A,

9v,

9x A^u q Qx' Jh^
'9^e (2-M2) ^1 9 ( g^-,
~W A, u, 'g3y^/ "2j

A^Ug olx Ug 3 u^
9v, V.

AzUe 9y
^, -^

u.
+®11-^1= f2

(2. 13)

The continuity integral equation is given by;



28

P^e^l
^(-^i(^6-u, A^-^(^(^6-u^))
~9x'^ 9y' h,

u,
^^^^^
AI 9x ^3y

(2. 14)

M is the Mach nmnber and pg is the density at the edge of the

boundary layer, atz = S. Cfi and Cf2 are the skin friction

coefficients in the x and y directions respectively. F is the

entrainment coefficient. The velocity components at the edge

of the boundary layer in the x and y directions are denoted

by Ui and Vj respectively. The resultant velocity is denoted
by Ue and given by

u.2 -u'2 + ^+ ^ (2. 15)

The parameters k^, kz, k3, li, I;, Is and q are function of the

metrics of the surface coordinate system and are developed in

the appendix D. Appendix D also gives the various integral

thicknesses.

Equations (2. 12) to (2. 14) are the governing equations and

fonn the basis of the present calculation method. There are

too many unknowns and we have to reduce this number. To

accomplish this and reduce the number of unknowns to three,

Myring12 and Smith1 have assiimed specified forms of the
velocity profiles along the streamwise and spanwise
directions. This is done by making use of the observed

similarities between the characteristics of the boundary

layer in two and three dimensions. They have further made use

of the empirical relations for the skin friction coefficients

Cfi and Cfi and the entrainment coefficient F. Empirical

knowledge of these parameters is restricted to the streamline
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coordinate system; s, n and z directions, and so all the

integral thichnesses are expressed in terms of the velocity

components along and normal to the external stream direction.

Appendix D gives the expressions relating On, 612 / 821 / ^22r Ai

and A; in terms of 611, 6^, Ozi, 622, Si, 82, and a. The 6 s

and 6 s represent the integral thicknesses in the stream line

coordinate system, a denotes the angle between the x-axis and
the external stream line and \ is the angle between the x-

axis and the y-axis. The velocity components in the s and n

directions are represented by U and V respectively.

There are three different shape parameters. They are denoted

as H, H, Hi and they are defined as:

H-^
H=^ (2. 16)

^=^f-&. (l-^)dz
9lljn Pc'- "e'

(2. 17)

H. - 6:81
Hl=~o^ (2. 18)

J? + 1 = (H+l) (1+0. 2M2) (2. 19)

The streamwise velocity profile has been assumed to be of the

form:

-u- = (4)n
'5u

(2. 20)

which gives H= 1 + 2n (2. 2L)
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The crossflow velocity profile has been assumed by Mager as

described in Sinhamapatra1 to be of the form:

-^ . (l-^)2tanp (2. 22)

where B represents the angle between the external stream line

and the corresponding limiting stream line on the surface of

the wing.

By using these assumed velocity profiles, the crossflow

thicknesses may be related to the streamwise momentum

thickness 611 by the expressions given by the equations (D-23)

to (D-26) in appendix D. The skin friction coefficient in
external flow direction Cf and the two components Cfi and Cfz

in the direction of the x and y axes may be written in terms

of fi and Cf. These expressions are given by the equations (D-

27) and (D-28) in appendix D.

The entrainment coefficient is given by the expression (2. 23)

F = 0. 025H - 0. 022 (2. 23)

The number of unknowns in the equations (2. 12) to (2. 14) can

be reduced to three by using the empirical expressions. These

three unknowns are the streamwise momentum thickness Q^, the

shape parameter H and the angle between the external stream

line and the corresponding limiting stream line on the

surface of the wing fi. The system of first order partial

differential equations in terms of these three unknowns may
be written in the form:
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9Qa+fi__p____9H
F11'^T+011F11H~^

39 11

'21~9x
36,

+0

{, +Q^F^=S,
.

9H^. P:.. 9^. =<ll-F21^+011-F21i}i^=52 (2. 24)

J. '11

8x +Q^^+Q^^=s,

The expressions for the different Fs, Js and Ss are given by

equations (D-31) to (D-42) in appendix D.

The form of these equations may be shown to be hyperbolic.

The physical sense of an hyperbolic equation is a propagation

phenomenon. Hyperbolic equations have two real characteristic
directions. These characteristic directions define zones of

influence and zones of dependence. The zone of influence is

the region affected by the flow perturbations generated at a

particular point P. The zone of dependence is the region

where perturbations generated within influence the flow at

the particular point P.

The niunerical method used to solve these equations must take

into account these characteristic directions. If fluid is

entering the region of integration across any boundary, then

boundary conditions must be specified along that boundary.

Also the forward stepsize x is limited by the condition that

the downstream point must lie in the zone of influence of the

upstream point and its immediate neighbours . The x-y plane is

divided to form a rectangular grid as shown in figure 9.

Because the equations are hyperbolic, there is the concept of

a front proceeding forward. So at the point (i, j) all the

coefficients and quantities on the right hand side of the

equations are known, the derivatives (SQ^/Sx)^^ , (SH/6x)i,j
, (SB/6x)ij can be calculated. Then we can extrapolate the

values to the point (i+l, j) by using equations of the form
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(Q^^. j= (e.. )z, ^Ax(^)^^ (2. 25)

The forward stepsize is governed either as specified before

so that the downstream point must lie in the zone of

influence of the upstream point and its immediate neighbours,

or if it less, x is taken to be 10Q^, x s= 5.

The numerical method used must take note of the

characteristic directions. We assume that the angles between

the characteristic directions and the x-axis are a and a+B.

If both a and a+B are positive, a backward difference scheme

is used. If both a and a+B are negative, a forward difference

scheme is used. If a and a+J5 are of opposite signs, a central

difference scheme is used instead. The use of these equations

means that if fluid is entering the computational region

through either side boundaries, then boundary conditions must

be specified along that boundary.

The subroutine executing the boundary layer correction

receives input data from the potential flow calculation. The

input velocity distribution and geometry are interpolated by

using bicubic spline interpolation technique. The metrics of

the surface coordinate system and their derivatives are also

interpolated by bicubic spline interpolation by using the

cartesian coordinates of the surface of the wing. Streamw^ise

and crossflow displacement thicknesses 61 and 6; are re-

interpolated by a spline to obtain their values at the

collocation points of the equivalent potential flow.
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2. 2 Trans iration Velocit

Once the boundary layer calculation is finished, we have to

calculate the surface transpiration velocity to modify the

boundary conditions for the equivalent potential flow

calculation. The surface transpiration velocity is defined

using the continuity equation:

^(^), A(^)^(P. )=O3xv-AT/"3yv-h ~Qz (2. 26)

The transpiration velocity W^ is obtained by integrating this

equation with respect to z from 0 to 6. For incompressible

flow, we obtain the following equation:

wlw=~.
'lw Q\

_a_^_u^g^_a_f^A2gi
5xv-?^-/ '~9y'~h^

(2. 27)

The transpiration velocities change the boundary conditions

for the equivalent inviscid flow and the velocity and

pressure distributions are recalculated for the next boundary

layer calculation. These transpiration velocites are

calculated after each five iterations of boundary layer

calculation. The whole calculation technique stops when the

difference in the values of the sectional lift coefficients

of the wing in subsequent iterations is small enough.



CHAPTER III THE PROGRAM

3. 1 Descri tion of the codes

This section presents the general description of the codes.

First, the internal singularity code will be described. The

code is divided into two major parts, the subroutine PANEL

which does the inviscid calculation and the subroutine BLAYER

which calculates the boundary layer correction. The MAIN

program first calls PANEL then reads the input file
ANSWER.DAT. If ANSWER.DAT contains 1 then the MAIN program

calls BLAYER, or else it stops.

The subroutine PANEL does all the inviscid calculation

without calling any other subroutine. Its different

calculation steps are described in the following algorithm:

1. Read input data of geometric parameters.

2. Calculate wing surface geometry.

3. Calculate camber surface geometry.

4. Calculate panel geometry (sides, diagonals, control

points, normal vectors).
5. Form the influence coefficients matrix.

6. Solve the singularity strengths by successive

orthogonalisation.

7. Solve the aerodynamic quantities (velocity, pressure,

forces).

8. Write the results in an output file.

After the inviscid calculation, the necessai-y parameters are

passed on to the BLAYER subroutine which applies the boundary

layer correction. First BLAYER calls the INTER subroutine

which interpolates the pressure and velocity distribution for
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the calculation of the boundary layer growth. Then INTER

calls the TRANSP subroutine which calculates all the boundary

layer parameters and corrects the right-hand side normal

velocity terms. Then BLAYER calls FIRSTI, which for the first

iteration, assigns the correct values of influence

coefficients to the appropriate variables. This FIRSTI

subroutine is necessary to match correctly the original

inviscid calculation and viscous calculation codes, so it was

added. Then BLAYER solves the singularity strengths by

successive orthogonalisation and obtains the aerodynamic

quantities. It then writes the results in different output
files.

The subroutine TRANSP calculates the laminar boundary layer

and then the turbulent boundary layer. Finally, it calculates

the transpiration velocity. It calls upon three small

subroutines INTP, DERIV, INTR several times during its

execution. The subroutine INTP executes a linear

interpolation in two dimensions. The subroutine DERIV

computes the derivatives. Finally, the subroutine INTR solves

the differential equation by a fourth order Runge-Kutta

method. This completes the description of the internal

singularity code.

The equal singularity code works in a similar manner. The

MAIN program calls the subroutine PANEL which does the

inviscid calculation and depending on the value of

ANSWER. DAT, calls upon the subroutine BLAYER to calculate the

boundary layer correction. In this case, the subroutine

BLAYER is exactly the same as in the internal singularity

code, only the PANEL subroutine differs.

First, PANEL calls the subroutine PLAN which reads the
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various input geometric parameters. Then it calls the
subroutine GEOINFL which calculates the influence

coefficients matrix. In turn, GEOINFL calls the subroutine

FLAT which calculates the panel geometry (sides, diagonals,

control points, normal vectors ) . Then GEOINFL calls DLAT
which calculates the induced velocity due to a unit source

distribution. Finally, GEOINFL does the calculations

necessary to obtain the influence coefficients matrix. PANEL
then calls the subroutine SOLVE which obtains the singularity

strengths. It calls upon the subroutine MATINV which inverts
a matrix. Then PANEL calls the subroutine RESULT which

computes the pressure and velocity distributions and the
overall forces on the wing. Finally, PANEL calls the

subroutine SWITCH which, as its name indicates, switches the

various parameters needed in the boundary layer calculation
in order to match them. This concludes the description of the

two codes.

3. 2 Modifications to the codes

The codes were originally designed to run on a Horizon III

minicomputer and they had to be modified considerably and

adapted to run on the Music system which is installed on an

IBM 7171 mainframe computer. The original Fortran compiler

has many differences with the compiler used on the Music

system. These differences has forced us to make changes in

the codes.

First, the input and output structures had to be completely

changed. The codes were modified as to be executed in batch

form so all the input and output files were to be defined in

the batchfile. It was not possible to execute the codes in

interactive mode because of the large memory requirements and
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the computational time involved.

Originally/ there were three codes: a code for the inviscid
calculation using the equal singularity method, one for the

internal singularity method and finally, one that performed

the boundary layer correction. To run on the Music system,
the codes were combined as to obtain only two codes. Both

codes performing the inviscid calculation were combined with

the boundary correction code. In the input file, the user has

to specify whether the boundary correction is to be applied
or not.

To combine the codes, the parameters have to be matched so

that when they are passed from one subroutine to another,

they have to be consistent. So in order to combine the codes,
one had to dissect and come to know the internal working of

the codes as to make sure to combine them properly. There

were several small changes to be made because of the

differences between the two compilers. Several functions had

to be changed to the proper type, for example, SQRT had to be

changed to DSQRT because the compiler on the mainframe is

more strict. Furthermore, the Music compiler does not accept

the DO WHILE loop so all these loops in the codes had to be

transformed to DO loop. To achieve this, one has to carefully

work out all of the possibilities of a loop in order to make

sure that the transformation does not change the loop in any

case.
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3. 3 Usin the codes

To codes have been modified to be executed in batch using a

batchfile. Appendix E lists the batchfiles used to execute

respectively the program using the equal singularity method

and the internal singularity method. In the batchfile, the

user has to specify a nuinber of parameters, such as the

memory space needed, the approximate time needed to do the
calculations and the various input and output files.

In the first batchfile, VI IE. JCL, we can see the main code is

VII.EQU. To execute this code, three input files have been

defined, EQUAL1.DAT, ANSWERl.DAT AND STRIP. DAT/ which are

associated respectively with i/o unit 5, 3 and 12. In

addition, there are four unnamed output files. Examples of

the three input files are included in Appendix F. EQUAL1.DAT

lists the parameters used to define the geometry of the wing,

which are the coordinates defining the airfoil shape, the

general planfonn shape, sweepback angle, aspect ratio and

the taper ratio. The angle of attack must also be specified.
ANSWER!. DAT is either one or zero. If the user wants to use

the boundary layer correction, ANSWERl. DAT must be set to one

and in the other case to zero. STRIP.DAT lists parameters

pertaining to the boundary layer calculation such as the
maximum number of iterations, the tolerance which is the

maximal value of the difference between the calculated values

of succeeding iterations, dx, ds and the Reynolds number.

In the batchfile, VIII.JCL, used to execute the internal

singularity method, the central file is VII. INT. The user

must again supply three input files, namely SWINGS. DAT,

ANSWER1.DAT and STRIP. DAT. ANSWER1.DAT and STRIP.DAT are the

same input files as in the case of the equal singularity
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method. SWINGS. DAT is the equivalent of EQUAL1. DAT. The code

writes the results in four unnamed output files. The user

then has to name the output files himself.

The first input file listed in Appendix F is the case of a

wing with a cross section airfoil NACA 64A410 with an aspect

ratio of 4. 9 and a taper ratio of 0. 85. The code reads on the

first line IPL, M and NSYM. IPL is assigned a value between

1 and 6 to describe the general geometry of the planform of

the wing. IPL is equal to 1 for a rectangular wing, 2 for a

tapered wing, 3 for a tapered wing with both edges oblique,

4 for a swept wing, 5 for a strake wing and 6 is for the

special case when all the corner points are input. M

represents the number of spanwise division and NSYM is either
0 or 1. If the user wants the code to take into account the

symmetry of the wing, NSYM must be put to 1. The second input
line lists the spanwise divisions position in y/s. The third

line lists respectively, the aspect ratio, the taper ratio

and the sweepback angle. Then, the code reads NALPHA which is

the number of angle of attacks to be calculated and the

different alphas. The fifth line lists the number of panels

on a given section and then the coordinates of the airfoil

are given in table form for x/c and z/c.

The input file for the internal singularity code is a little

bit different. Parameters are input in a different order.

First, the code reads the nuinber of panels and the number of

spanwise division. Then, it reads NPLAN which is similar to

IPL in the case of the equal singularity code, NALPHA and

NSYM. The third line lists the aspect ratio, the taper ratio

and the sweepback angle. Then the different alphas are read.

The fifth line lists the different position of the spanwise

stations. Again, the coordinates of the airfoil are listed in
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tabular form. Finally, the code reads the direction cosines

of the normal at the leading edge point and the leading edge

coordinates.

In the case of a strake wing, some additional information

must be input, namely the semi-span, the root chord, the

strake sweep, the leading edge sweep, the trailing edge sweep
and the strake width.

In the two batchfile, if one wants to run another case, one

has to replace EQUAL1. DAT or SWINGS. DAT by the name of the

input file containing the pertinent data.

To retrieve the results, the user has to use the OSJR

command. When OSJR is typed, the screen shows the various

jobs that have been executed. They are assigned a four-digit
number. To visualize the results, the user must type OUT

j=xxxx where xxxx represents the number of the job. Then the
screen shows different files from d=l to d=n. These files

hold all the information about the compilation and execution

of the codes along with the results. d=l and d=2 lists

several statistics about the compilation and execution. d=3

lists the time and CPU necessary to execute the code. d=4

lists all the code lines and d=5 lists all the subroutines.

When debugging a program, it is these two files that hold

precious information. All the files after d=5, from d=6 and

up, are the output files. To copy these files to the library,

the user must type OUT j=xxxx, d=n, file=name, where xxxx is

the job number, n is the file number and name is the name

given to the file, for example RESULTS. DAT. Then the job must

be either deleted or routed to MUSIC or a printer.



CHAPTER IV RESULTS AND DISCUSSION

Three cases were examined in the project. The first one is

the case of a slender strake wing with a cross section

airfoil NACA 0005 having the following characteristics: a

semi-span of 1, a root chord of 1. 5, a strake sweep of 75°,

a leading edge sweep of 35°, a trailing edge sweep angle of
9° and a strake width of 0. 25 at an attack angle of 5°.

Experimental results were not available, so the results are

compared with Roberts" datiun Solution. Roberts solution
divides the wing into 12 spanwise divisions and 42 chordwise

divisions whereas the present method divides the wing into 11

spanwise divisions and 31 chordwise divisions. The figures 10

to 13 show the comparison of pressure distribution. One can

see that at the root of the wing, at y/s=0. 035, the results

do not coincide very satisfactorily but going outboard, the

results coincide almost exactly for the stations at y/s=0. 28

and y/s=0. 9 for a lesser number of panels. The agreement is

quite good.

The second compares the results obtained with the two

different potential flow calculation methods. The two methods

were used to calculate the pressure distribution and the load

distribution on a wing having the following characteristics:

aspect ratio of 4. 9, taper ratio of 0. 85 and no sweepback.

The cross section airfoil of the wing is a 7. 6% thick NACA

64A410, so it is a cambered wing. The wing is set at an angle

of attack of 6 degrees . The results were also compared with

the potential flow results obtained by Sinhamapatra . Figures
14 and 15 show the pressure distributions calculated at two

different spanwise stations: y/s=0. 1 and y/s=0. 9. One can see

that the two curves obtained with the equal singularity and

internal singularity methods coincide very well. They agree
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also very much with the potential flow results obtained by

Sinhamapatra1. Figure 16 shows the load distribution

calculated in the three cases. Again, one can see that the

results obtained agree satisfactorily with the results of

ref. 1.

The third involves the comparison between the three different

methods discussed in the present report, namely, the inviscid

calculation using the internal singularity method and the

equal singularity method, and the iterative VII technique

using the equal singularity method for the potential flow

calculation. They are applied to a swept wing of aspect ratio

of 3, taper ratio of 0. 5 and a sweepback angle of 45°. The

cross section of the wing is an airfoil 7. 6% thick NACA

64A010. Figures 17 to 19 show the comparison of pressure
distribution between the three. Then the lift distribution

obtained by the two potential flow calculation methods are

shown in Figure 20. The results obtained by the VII technique

are then compared with experimental results taken from Kolbe

and Boltz15 in Figure 21. It is found that the strip theory

application of the boundary layer correction to the inviscid

solution gives reasonably accurate results. There is a
difference of 1. 11% between the values of lift obtained with

the VII technique and the experimental results as seen in

Figure 21. The results obtained with the inviscid calculation

only and the VII technique differ by 4. 12%. The difference

between the results obtained with the two different panel

methods differ by about 1. 5% with the equal singularity

method being the more accurate as shown in Figure 20.

The strip theory approach to the boundary layer correction

gives fairly good results for wings having simple planform

with moderate values of aspect ratio, taper ratio and
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sweepback angle. In cases with a large crossflow, or cases

where the boundary layer does not remain attached until the

trailing edge, a fully three dimensional boundary layer
scheme is necessary. Developing a fully three dimensional

boundary layer correction scheme involves much more time and

considering this fact, the strip theory approach is very
useful in the first stages of the design of a three

dimensional wing. One can obtain very rapidly rough values of

the various aerodynamic parameters needed, and if need be,

one can then modify the code to accomodate a fully three

dimensional boundary layer correction. On the MUSIC system,
the time needed to execute the inviscid calculation with the

internal singularity method is about 10 seconds of real

computational time and 18 seconds for the equal singularity

method. Depending on the niuaber of users actually logged on

the network, it takes from 5 to 20 minutes of real time. We

can see that the internal singularity is about twice as fast

as the other method studied.



CHAPTER V CONCLUSION

The objective of the present project was to test a method

that would predict the basic flow parameters with reasonable

accuracy, and would be less time-consuming than the other

methods used at present, such as wind tunnel testing or
Navier-Stokes solvers. The viscous-inviscid interaction

method has been applied to the case of three-dimensional

clean wings or wings with all the control surfaces in initial

position. This represents the case of an aircraft in cruising
condition. Two different panel methods have been used for the

potential flow calculation and an integral method has been
used for the boundary layer calculation. The two solutions

are then matched by the transpiration velocity model in an

iterative manner. The transpiration velocity model was used

because it has the distinct advantage that the geometry of

the wing surface remains constant during the calculation and
therefore the influence coefficients matrix remains constant

and can be stored and inverted once and for all . In

comparison with the displacement thickness model, where the

body surface is modified with each iteration, and therefore
the influence coefficients have to be recalculated each time,

a considerable amount of computational time has been saved.

Even if the method is strictly first-order with the three-

dimensional boundary layer simplified by a strip theory

approach, the results obtained are sufficiently accurate for

the cases studied for the preliminary design stages of an

aircraft. However, there are restrictions to the method. It

has been found that for a very thin wing, NACA 0002, both

potential flow calculation methods failed to provide
reasonable results for unknown reasons . It has been

established that both methods are able to provide such
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results. Sinhamapatra1 shows some results for the case of a

very thin wing with cross-section airfoil NACA 0002. Also for

high angles of attack, for alpha higher than 9 degrees, again

the method failed to provide accurate results.

Because the equal singularity method code and the boundary

layer correction code were not designed to be matched and the
various variables are calculated in different order, we had

to write subroutines to arrange the parameters in the right

order so that the boundary layer code would receive the

transferred data correctly. Unfortunately, all the various

parameters are organized correctly except for the influence
coefficients. So because of time constraints/ the two codes

are not quite matched but it would not be arduous work to

finish the matching and obtain results of VII method using

the equal singularity method. The results provided in the

report for VII are for the boundary layer correction code

matched with the internal singularity code. The results

obtained could be compared with those using VII with internal

singularity method.

To improve the present method, one could finish the matching

of boundary layer and equal singularity model. Also, a fully

three-dimensional boundary layer calculation method could be

used to replace the strip theory approach used in the present

method. This would certainly improve the accuracy of the

results in the cases where the crossflow is considerably

large. Finally, the method could be extended to multi-

aerofoil sections. The basic flow properties could be

calculated for wings with deflected flaps in any position. In

these cases, there is a significant amount of boundary layer

separation, either at the trailing edge, or at the cavities

beneath the slats and shrouds of multi-element airfoils.
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Also, in high lift condition, additional viscous effect

occur, namely the wake-boundary layer intercation. To obtain

satisfactory results, the method would have to include wake-

boundary layer interaction and higher order boundary layer

correction terms.

Finally, the viscous-inviscid interaction method could be

applied using other panel methods, especially those using a
doublet distribution. Also, triangular panels could be tried

because they are more flexible and represent more accurately

any complex surfaces. Normandin16 uses a potential flow
calculation method based on a doublet distribution and

triangular panels and the results obtained are very

satisfactory. This method could be tried using the method
described in Nonnandin16 and matching it with a boundary layer

correction by the transpiration velocity model.

The viscous-inviscid interaction technique is certainly a

very attractive alternative to the traditional method of wind

tunnel testing because of the high cost involved, or to the

Navier-Stokes solvers because of the enormous computational

resources needed. The VII technique can be used to obtain

satisfactory results and the present method can be extended

to a number of interesting cases as described earlier, even

to transonic flows with an appropriate modelling of the

boundary layer separation at the foot of shock waves.
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APPENDIX A FORMATION OF ELEMENTS FROM INPUT POINTS

Appendix A gives an outline of the method used to calculate
the different geometric parameters necessary to define the

geometry of the wing. The coordinates of the input points are

(Xki, Yki/ZkSk=l, 2, 3, 4) for a particular element in the
reference system. The four different subscripts k are used to
list the coordinates of the four corners of the quadrilateral

element in a condensed manner. In vector form,

1~^ , rr i'X^=X^Y^+Z^
(A. l)

T, J, k are the unit vectors along the axes of the reference

coordinate system. The corner points k=l and k=2 are placed
on the first n-line and the corner points k=3 and k=4 are on

the second n-line. This is shown in figure YY. Quantities

associated with the first n-line are denoted by the subscript

F and quantities associated with the second are denoted by S.
The n-line vectors can be expressed as:

~p~y=xi-x^
TS=^-^

(A. 2)

Two parallel sides of the trapezoidal element are supposed to

be parallel to the weighted average of the two n-line
vectors. The unit vector IE parallel to the two parallel

sides of the trapezoid is expressed as:
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'PF+PS
1E=

(A. 3)
p-^-p,

It is also the unit vector the axis of the element coordinate

system. Examining equation (A. 3), we can see that each

parallel side has the same midpoint and the same length as

the segment of n-line from which it was formed. The side

lengths dp and dg and the midpoints in vector foi-m Xy and Xg

are:

^=
ds-

(A. 4)

X;=- (X^^X;1)
X;=A (^?+^?)

(A. 5)

The corner of the trapezoidal elements are the endpoints of

the parallel sides. They can be expressed in vector form,

^=^-|d^
X2=XF+^FTE
^=^+-|^7;

1
xi=XS~~^dSlE

(A. 6)

Now the normal vector to the plane of the element and its

corresponding unit vector can be calculated and are expressed
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as

N= CX^ -X^) x (^ - .Xi)
(A. 7)

^^-. (A. 8)
N\

n is also the unit vector along the $-axis of the element

coordinate system. The unit vector along the T^-axis of the

element coordinate system can be calculated by taking the

cross product of the other two unit vectors:

jg=n x lj
(A. 9)

The three unit vectors expressed in equations (A. 3), (A. 8)

and (A. 9) can be written in the component form as,

^;=a,J+a,j+^37c
T^s^J+a^J+a^

n = TTE=a3 1I+a32'J+a33K

or

1E 3ll al2 al3 2

J\B = a21 a22 a23 J

^ 33^ a^ ^33 ^

(A. 10)
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This 3x3 matrix of components a^j enables us to transform
the coordinates of the points and the components of vectors
between the reference and the element coordinate systems.

The origin of the element coordinate system is taken as the

point whose coordinates are the averages of the those of the
input corner points. The average point is denoted as Xav and
can be expressed as,

3^=^ (X-^X-,) (A. 11)

The element coordinates of the corner points can expressed

using this new origin. The equations are,

S;=a,, (X^-x^) +a^ (^-^v) +ai3 <^-^)
Tl^a^l (^-^av) +^22 (^-^v) +a23 <^-^)

(^=1, 2, 3/4)

(A. 12)

(Xk, Yi,, Z^) are the coordinates of Xi, from equation (A. 6).
Figures 18 and 19 illustrates the various geometric

parameters to be calculated to completely define the geometry
of each wing element. We can see that

Til = 112
r\'3 = r\l = -^i

(A. 13)

The width of the element w is

y=11l - T13 = 2 ^
(A. 14)
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The slopes of the non-vertical sides of the element (Fig. 19)

are

2n32=

m41=

(^-$3*)
w

(^0
w

(A. 15)

The coordinates of the centroid of the element can be

calculated in the element coordinate system and are expressed

as

w
r\o=-T

Jn32--m41

2 F*4. P*-P*-F*
i3"r^2~^l-^4 (A. 16)

_7n3 2+m4 1,
'o--^- 'lo

Now the reference coordinates of the centroid can be

expressed as

xo=xav+allSo+a2 in<

Yc,=Y^+ai2^a+a22^.
zo=za^+al3So+a23T1<

(A. 17)

The centroid calculated in equation (A. 17) is now taken as

the origin of the element coordinate system and replaces the

average point. With this new origin, the element coordinates

of the corner points can be expressed as
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^=^ - ^
^k=r\k ~ Ho

(^=1, 2, 3, 4)

(A. 18)

Other geometric parameters can be calculated. They are the

points where the sides intercept the x-axis (Fig. 19) b^ and

b^i and the lengths of the sides diz, d^, d^ and d^i.

^32=

^1=

_ ^2 - ^2r\3
w

$4T1l - ^1T14
w

(A. 19)

dl2
^34

= ^
= dc

^2 = w(l+m^)

d^ = w(l+m^)
1

2 \ ~2

(A. 20)



APPENDIX B VELOCITY INDUCED BY A SOURCE DISTRIBUTION

Appendix B presents the near-field or exact formulas which
are used in the present method to calculate the induced

velocity due to a source distribution. The calculation starts

with the various geometric parameters calculated in Appendix
A. We need the coordinates of the corner points ^, f\^,

k=l, 2, 3, 4, the width w from equation (A. 14), the slopes msz

and m^i from (A. 15), the intercepts b^ and b^i from equation

(A. 19) and the side lengths di2, d32/ ^ and d^ from equation

(A. 20). Figure 19 illustrates all these geometric parameters.

The equation giving the potential due to a source

distribution of unit density at a particular point P with

coordinates x, y, z is

4,^ffldA-^
4. V. J J r 4n,

^d^dri (B. l)
((x-02+(y-n)2+z2) 2

The distance between point P and a point on the panel with

coordinates (S, r\, 0) is denoted r in equation (B. l). The

range of integration is the area A of the panel. The

components of the induced velocity in the element coordinates

system are

(x-^) dSdrivj=^=J_i
vx~~9x~~iuH
v^-^!f <y;3n) d»-
v-'^M^d^

(B. 2)

To simplify the calculation of equation (B. 2), the integrals
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are expressed as the sum of four terms. Each of these four
terms depends only on one side of the quadrilateral panel.

The following preliminary quantities are to be calculated:

r^ (x-S^)2+(y-Tij, )2+z2
A-=l, 2, 3,4

(B. 3)

a>=-
^,

p*-^
Yjc='

.k
J<-=1, 2, 3,4

(B. 4)

p^32)=^(z2+(y-n^)2) - (x-^)(y-n^)
Jc=3 2

p^l>-^(z2 +(y-n^)2 - (x-^)(y-n^)
Jc=4,l

(B. 5)

The basic functions are

^ (mn) =]^oq .
rm+-rn~djnn

^+-^n+^
(B. 6)

m, n consecutive i. e. mn=12, 23, 34 or 41

Tw} =tan-l| -^
(32)

(zr,}
J.c=3,2

Tw =tan-l| -^
(41)

(^^)
Jc=4,l

(B. 7)
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Using the above preliminary functions, the components of the

induced velocity due to a trapezoidal source element of unit

density may be written as

47lV;=- z, <32>+ (41)

{1+m^) (1+^21) ^
m.

47l^s=-I. <12>+I, <34)+
(1+^3Z2)

4^V^-TW}+TW)^TW-Tw

'32 ^ (32)_

, 2 \ ~2

in.

(l+<l)

'41
1

,2 \ ~2

(41)
(B. 8)

The velocity induced at the i-th control point by the j-th

panel can be written in vector form as,

(B. 9)
v^=v,s 1EJ v^ T^, + v^T^=IEJ BJ

iEj/ JEjf kEj are thS unit vectors along the axes of the
element coordinate system given by equation (A. 10).



APPENDIX C VELOCITY INDUCED BY HORSESHOE VORTEX

AND A UNIFORM LINE SOURCE

C. 1 Velocit Induced b a Vortex Se ent of Unit Stren th

In the reference coordinate system which is rectangular, the

induced velocity at any point (X, Y, Z) by a vortex segment

extending from (Xi, Yi, Zi) to (Xz, ^. z, Z;) and having

vorticity directed from (Xi, Y^, Zi) to (X;, Y;, Zz) according

to the right hand rule as shown in Figure 20, can be found by
application of Biot-Savart's law. The components Ui, Vi and
w^ of this velocity along the X, Y and Z directions

respectively can be expressed as follows,

"1=

vl=

wl=

1 4TCC?
(a^b^+c^) ^

^1 - 1

(a^b^c^}'2
1 4iid

1 4itd
(ai2+^2+ci2)^

(cosOi-cosO^)

[cosQ^-cosQ^)

(cosS^-cosO^)

(C. l)

In equation (C. 2),

al=<y2 -rl) (Z-Z^)
b^(Z^-Z^) (X-X^)
c^(x^-x^) (y-y-i)

(y-r-i) (Za-Zi)
(Z-Zi) (X^-X^)
(X-X^} (Y^-Y^)

(C. 2)

and
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cos6i=
R^-R^^

2L12R1

cose,. R1;R^
J12J

(C. 3)

d=^(l-cos6, ) 2
(C. 4)

where

L^= (X, -X^2^Y, -Y, )2+(Z, -Z^)
(C. 5)

R^ (X-X^2+{Y-Y^]2+(Z-Z^2
k=l,2

(C. 6)

C. 2 Velocit Induced b a Semi-Infinite Vortex Line of Unit

Stren th

The velocity induced at any point (X, Y, Z) by a vortex line

extending from infinity to a point (X*, Y*, Z ), and having a

vorticity defined as positive in the vector direction of the

vorticity points toward the point (X, Y, Z) as shown in

Figure 21, can be expressed in terms of its components u;/ Vz

and Wz along the X, Y and Z directions respectively as,

a+ 1
U2=-

V2=-

^2=-

a*24. ±, t2+c-247Idi
jb*

(l-cos8*)

(l-cos9*)
a^^^cf2 4"di

°' -^T^-COSQ"}
3<24.2)-2+c*2 41Idi

(C. 7)
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where in equation (C. 7),

a =Ay(Z-Z*} - A, (y-y*)
b'^A^X-X*) - A^(Z-Z*)
c*=^(y-y+) - Ay(z-x')

(C. 8)

where A^, Ay and A, are the direction cosines of the vortex
line in a direction from point (X*, Y*, Z*) to infinity along
the vortex line. These direction cosines are independant of

the sign of the vorticity.

^, _ A^(Z-X*)+Ay(r-y*)+A^(Z-Z*) (C. 9)
Rf

di = J?*(l-cos2 9*)
(C. 10)

R^ = (X-X*)2+(Y-Y*}2+(Z-Z*)2
(C. 11)

C. 3 Velocit Induced b a Line Source of Unit Stren th

The velocity induced by a line source between point A(Xi, Yi,

Zi) and point B(X2, Y;, Z;) with line source of unit density
as shown in Figure 22 can be expressed as,

ytLS) = -E e + 5 '3
(C. 12)

where

-E - ^i^-^
4^[R, R^

(C. 13)
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D =
4iid

-z-i'e -z'2'e
i?1"1 .CV2

-3-(cose, -cos6,)
471 C?

(C. 14)

where

cos0i=
>2_E>24. r?_
Ci -^(2 'r-L'A5

2LABR-L
>Z_p2_^2_
'1 --fc2 --t-'AB

co3e^"±2L^

d = R^(l-cos2 e^)

(C. 15)

(C. 16)

RI and Rz are the lengths of the vectors to the point (X/ Y,

Z) from the ends of the line between (Xi, Yi, Zi) and (Xz, Yz/
Zz). These vectors are

7;= (x-x^) ?+ (y-yj, ) J+ (z-z^) 7c (C. 17)

^=|^|= {X-X,}^(Y-Y^^(Z-Z^
(C. 18)

k= 1 or 2
-¥ -*

e is the unit vector along the direction AB and is given by,

^_-^-_ (^l) ^^ ( ̂ 2-^) j^ (^2-^) ̂  (C . 19 )
\AB\ -'AB . 'AB .JAB
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£^= (X, -X^2^(Y, -Y^2^(Z, -Z^
(C. 20)

d is the vector drawn from AB (or its extension) to the point

(X, Y, Z) such that it is perpendicular to AB hence,

~3 = (exz^) x e
(C. 21)

Using equations (C. 17), (C. 18) and (C. 20), d can be obtained
from equation (C. 21).

-* -»

Once E*, D*, e, d are known, the induced velocity vector can
be obtained from equation (C. 12).



APPENDIX D THREE DIMENSIONAL TURBULENT BOUNDARY LAYER

D. 1 The Governin E uations

For the coordinate system described in Chapter II, the

boundary layer momentum integral equations are

9@'11

~^x
AI

+©'11

e 12

+AI
1 9^i

9x A^Ug q9x \
.

^(i-"2>. AA(A)^

1 50i
~h^~Qy

12

9y A^Ug g 9y" h

(D. l)

u,-+k. ^-
A^ ~9x ' ^ Ug

+A.
u.1 3ui , v-i

^+k2-l+k3-
A^u^ 9y "2 u^ "3 u

.

J=^
'22-^2 I-i

9@ 21
-dx-
AI

+©'21
"a^ (2-M2) ^iA(-o:)+i.

+e'22

Qx h^u^ q 9x' h^
m9ue (2-M2) ^^_9_(_^-

":

1 30'22

A;~a7

+AI a^
9y A^Ug g 8y v A;

1 9^1

(D. 2)

J_^^^1+2^|+A,
.J^T^+11^+13T^ A^'ay"2^^^+9^|= 12

M is the Mach number and u^, Vi are the velocity components

in the x and y directions respectively at the edge of the

boundary layer. Ue is the resultant velocity at the edge of

the boundary layer and is given by

ul = u^v^-^u^
illl2

(D. 3)

Cfi and Of; are the skin friction coefficients in the x and y

directions respectively and k^, k;, k3, li, I;/ 13 and q are

the functions of the metrics hi, h; and g and are given as
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^1=
hlff\

Jc. =^
'2~'gi

1 Qh^ g Qh^_ 1 Qg
A, 9y ^ 9x ^ 9x

9g+^9h2- 9 3A,1

37'"2-ax ~^~9y
9h, __9h,]^'1A<1+<4;'2>^-2^

=A 3g^ 3Ai_ 9r
Li~"~^ ~^"J'-li~^7

9h^
2 ax'"l-ay AI ax<?'

^9\̂
12=^\

1

'3~~^[
q2 =(hM2 -g2

l Qh2^ g 9h2
_ 

l 9g

As 9x ^ 9y h,2 9X

A^(l+(
A1A2

)2) 3^2
~ax -2ff

3A11
~9y\

(D. 4)

ai, BZ, b^ and b; are other quantities function of the metrics
that are needed. Their expressions are

.

AiA

^2=

bz=

^-

^
. ^

^2
(D. 5)

h^h,

The entrainment or continuity integral equation is given as

Peue<3r ^^-U^WV 16-^4 (D. 6)

u.
^46+Zi. a6-i,J=j.
T, ^x+T, ^y~wl\=l

wi is the velocity component in the z direction and F is the
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entrainment coefficient. F is given as

F = 0. 025ff - 0. 022
(D. 7)

D. 2 Various Into ral Parameters and Em irical Relations

In non-orthogonal cuirvilinear coordinate system, the integral

parameters are:

pu(Ui-u)®n=J'p"ul7/dz
.o P^

e..r;^>.
pu(^-v)

?21=/ . ..2
Jo Peue

PV(VI-V)
''22-/ . _2

.O Peue'

dz

dz

(D. 8)

Peul-PUA. -f'"1.:
.u

dz
0

6

A^fpevl:pydz
'2 J P.ue

(D. 9)

In the streamline coordinate system (s, n, z):
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ell-!";rdz
^rv^..

821 =/- \uv dz
'0 Pe"e

e"=/-e5
'0 Peue

dz

»i-'fp'ul :pc/dz
^ { P^e

6-/-^dz

(D. 10)

(D. 11)

In this coordinate system Ug = Ui.

The different shape parameters are defined as

H-^

^1=
-

6̂
11

H-w. {l-^dz
H + 1 = (H+l} (1+0. 2M2)

(D. 12)

For incompressible flow, the two shape parameters H and H are
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identical in value. The various integral thickness parameters

of the two axes systems are related as

0^=[8^sin2(^-c()-(ei 2+e2i)sin(A--a)cos<l-a) (D. 13)

+Q^cos2 (X-a}]/sin2k

0^2=[6iiSinasin(^-0() +6i2sin(^-a) cosa-OgiSinacos (^. -(d). 14 )
-Q^cosacos (>. -a, } ] /sin2A

02i= [OiiSinasin (A. -a) -O^sinoccos (A-a) +e2 iSin(A, -a) CO^B. 15)

-Q^cosacos (A, -a) ] /sin2 ^.

6iiSin2a- (612+621) siT}. acosa+Q^cos2 <x, (D. 16 )

sin2^

6^sin(^, -a) -b-^cos (X-a)
sinA,

(D. 17)

S^sina+S^cosa
2 sin^,

(D. 19)

a is the angle between the x-axis and the external streamline

and /I is the angle between the x-axis and the y-axis and can

be obtained from the following relations:

cos\=-g-
A1A2
V, sinl

slna=
u,

(D. 20)
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With the assumed velocity profiles/ power law for the

streamwise component of the velocity and Mager13 profile for
the crossflow component/ the following relations are obtained

(D. 21)
H= 2n + 1

H. = ^-
'l ~ ~yrT

6^ ==6^tanp^(H)

ei2 
= e^tanpf^CJ?)

62 = 8^tanpf2 (^)

6^ =e^tan2p^(H)

(D. 22)

(D. 23)

(D. 24)

(D. 25)

(D. 26)

R> is the angle between an external streamline and the
corresponding limiting streamline on the surface of the wing.
The following relation is used for the skin friction
coefficient in the external flow direction. The two

components of the skin friction in the x and y directions can

be expressed as

c^ = c^
sin(A, -ot) -cos (A, -a) tan

sin^,
(D. 27)

sina+cosatan
'" ~ t'f sin^,

(D. 28)



69

The various f functions necessary to calculate equations

(D. 23) to (D. 26) and their derivatives with respect to H for
Mager13 are given are follows

£.. =-21

f. =-

(H-l) (H+2)
16H

(H-l] (H+3} (H+5}
. 12. 1Z~J-21 -L2

(H+3) (H+4.}
2(2^+1)

[(H-l) (H+2)]2
f^f^ ̂ ^Sf^(H2+5H+5)
^21 [(H+3) (^+5)]2
' --FJ

. 21--L2

. 22

^'1

fi

^12

.^22
12f2i-.f^(2Jif+7)

(ff+3) (ff+4)

(D. 29)

' denotes differentiation with respect to H.

The coefficients necessary to calculate equations (2. 18),

(2. 19) and (2. 20) and the complete of required functions are
given as:

defining t = tanB
(D. 30)

and tt=(l+t2)/sin2A
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^11=
sin2(^, -a) - (^2+^21) sin(^-a) cos (^. -a) t+^cos2 (A. -a) t2

s in2 ̂,
^2=(sinasin(X-a) +[f^cosasin(A, -a) -f^isinacos (A. -a)]&

-f^cosacos O. -oi) t2) /sin2A,
F2i=(s-inasin(A-a) +[f^co3asin(\-a) -f^sinacos (A-a)]t

-f^cosacos (A. -a) t2) /sin2A

^22 =

F^

^2=

sin2a+ (^12+^21) sinacosa£+f22cos2at2
sin2 A,

Hsln{X-a) -f^cos(\-ot) t
sinX

Hsina. +f^cosaC
sinX

(D. 32)

Jl=

J'2=

^sin(X-a) +f^cos{X-ct) t
sin^,

J^sina-f^cosat
sinX

(D. 31)

F11H=
-(f^+f^)si. n(X-a. }cos(k-a) t+f^cos2(X-a) t-

s in2 ̂,

-Fi2H=. ([-fi2cosasin(^-a) -A'iSinac°s (A-a)]t
-f^cosacos (X-a) t2) /sin2X

.F2i/f=([-f2 'icosasin(^-a) -^sinacos (^, -a)]t
-f22cosacos (A. -a) t2) /sin2^

(jFi'2+^2'i} sinacosat+f2'2cos at
sin2A,

(l+0. 2Af2)sin(A-a) -f^cos(\-a) t
sin^,

(1+0 . 2Af2) sinoi+f^cosat

22H-

^1H=

F2H= sin^.

(D. 33)

J^-

J2H=

Hi'sin(A, -a) +f2'cos (A, -a) t
sinX

H{sin.a-ficos(^. -<t) t
sinA,

(D. 34)
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.^lla=
2cos(^-(x)sin(^. -a) (f^t2-!} +(^+^2) (2cos2 (^. -a)-1) t

s in2 X

-Fi2B= ([cosasin(^-a) -cos (A, -a) sinajd-^a^2)
- (fi2+^2i) (cosacos (X-a) +sinasin(^, -a) ) t) /sin2 ^,

JF21a=-F12a

F22a=

^la=-

^»=

2sinacosa (1-^22&2)+(fi2+-f2 i) (2cos2a-l) t

sin2X
Hcos(\-a} +.f2 Sin(^, -a) t

sinA,
Hcosa-f^sinat

sinX

(D. 35)

-H-^cos (1-a) +f^siii(\-(x, ) t
l71«= sin^
J..=

^cosa+f^sinat
'2u sinA

(D. 36)

J?;'llP=[-(-fl2+-f2 l)sin(x-a)cosa-a) +2f22cos2<l-a) fc]fcfc
i;'^n='[^i->sin(X-a) cosa-f^cos (A, -a) sina12P

-2^^cosacos (^, -a) fc] tt
. 22

-F2ip;= [-^2isln^-a) cosa~^i2cos (^-a) sina
-2f^cosacos(^-a) t]fcfc

(D. 37)

-F22P

^:i
'2P=

(fi2+-^2i) sinacosa+2f22cos a&]t£
-f^cos (X-a)^ttsinX
.f^cosajttsiriA.

Jlp= -flp
J2P= --F2p

(D. 38)



72

^iu-1 lla

2F^cos>,
sinA

.F'12<1=

^1^=

cos(Jl-a) sina+f^cosat+sin(X-a) jfggCosat+. fgiSina t-2^2S.
s in2 ^.

cos(A, -a) sina+f2 icosa£+sin(^, -a) -f22cosa&+-fi2sina t-SFsi5

sin2 X

.F22A:=
2F^-, cos)L'22

F^=

^=-

sinX
Hcos{X-a}+f^sin{\-a} t-F^cos\

sin^,
jToCOsA,

sinA,

(D. 40)

cos (X)
^=-^»-J"i "sini'

cosX
J2l=-^2

sinA

(D. 39)

The S functions are defined as follows

_ cfi h -A r p ^a -i- s' ^^
?il =-^-/21-°11 ^lla-^+2-ll, l-^ ̂ -rll|&c ax

Al/^2aell
A, l6^ 9y

(2-"2> ̂ . ^AJ^^AA
Ug 9x q 9x[^

+^ .. ^. p.. M. F.. 9a- B\
?12Hay+F12P'iy+'F12a^:+"F'12^^ (D. 41)

+^'(2r^^i^>+^'^<i^+Tl)
3u, k^v^ JC,AiUi

^. (^:^'"2'ul. '>+"3'ur)+F2AA11
u,

u,
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.

==-^^-6^ r^.. aa ir^, ̂  T.J (2-M2) 9ue-hl ? (-^) +2^,
^=-^^-e^[F2i«-^+^u-^+^i| '~JJ ' -^+-^-&, t-^)+^iJ

=^h. -Q^ r^.. aa ir^, ̂  T.J (2-M2) 9ue-hl ? (-^) +2^,
=~f^~Qll[F21a^F2^Jx+F21\ '~u, ' ~^+~S~9x(~^)+13nl\

hl, F229Q^^^ iff+P__. a&+P-^ aa+^. aA
+-§ (^~w+F22f{^+F22^+F22<t^F22^
^, [ <2-Af2) ̂ ^A(^)^A])^f-3-a^+2Aul i3Alyl+F22[^u^'~w+~S^(t, )+lM)+Fl[i^+ ^u/ ^u,+F,, [ ^-" / -^:£+-^^-. (-

22 L Ug 5y g- 3y l A^

<^:^+^1)^A1^(__^1
'2' h^u^ 9y u,

aa ,.T_a^+A^ J2 8el1
Jlci^+t7ui^+^;(e^~9FS.-Fh^M.^J^^-^-

BH^^ ap^. T 9a^^ 81
+^^+J2p-^+t72a-^+^-^) +Jl<'2H- ay'"2P-3y 9y

(1-M2) 9u
u,

(D. 42)

(D. 43)

+AA^-2:n+A, r. f <1-M2) a^+-^A(_£+^^(t))+^t72| ^ul ' -Q^^iy^

ax

)1]
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Appendix E Batchfiles

/INCLUDE SOUMET.A. OS
//MEOO JOB (ADMAQN,QVTEME), 'PASCAL',
// MSGLEVEL-d.D.MSGCLASS-A,
// CLASS-4,
// TIME-10,
// REGION-32000K
/*ROUTE PRINT MUSIC
/*JOBPABM L-10
// EXEC FORTVCLG
//FORT. SYSIN DD *
/INCLUDE MEOO:VII.EQU(NEST)
/*
//GO.SYSIN DD *
/INCLUDE MEOO:EQUALl.DAT(NEST)
/*
//GO. FT06F001 DD SYSOUT-A
//TRACEUR DD DSN-&TRILOG,SPACE°(TRK, (1, 1)), UNIT-INTRDR
//GO. FT03P001 DD *
/INCLUDE MEOO:ANSWER1.DAT(NEST)
/*
//GO. FT04F001 DD SYSOUT-A
//GO. FT12F001 DD *
/INCLUDE HEOO:STRIP.DAT(NEST)
/*
//GO. FT14F001 DD SYSOUT-A
//GO. FT16F001 DD SYSOUT-A
/*
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/INCLUDE SOUMET.A. OS
//MEOO JOB (ADMAQN, QVTEME), 'VOTRE NOM ICI',
// MSGLEVEL-(1, 1), MSGCLASS-A,
// CLASS'4,
// TIME-10,
// REGION-32000K
/*ROUTE PRINT MUSIC
/*JOBPARM L-10
// EXEC FORTVCLG
//PORT. SYSIN DD *
/INCLUDE MEOO:VII.INT(NEST)
/*
//GO. SYSIN DD *
/INCLUDE MEOO:SWING5.DAT(NEST)
/*
//GO. FT06F001 DD SYSOUT-A
//TRACEUR DD DSN-&TRILOG,SPACE-(TRK, (1, 1)), UNIT-INTRDR
//GO. FT03F001 DD *
/INCLUDE MEOO:ANSWER1.DAT(NEST)
/*
//GO. FTO^FOOl DD SYSOUT-A
//GO. FT11F001 DD SYSOUT-A
//GO. FT12F001 DD *
/INCLUDE MEOO:STRIP. DAT(NEST)
/*
//GO. FTl^FOOl DD SYSOUT-A
/*
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AppencLLr T Input Files

3 5 1
0. 0 0.2
A. 9 0. 85
1 6.0
31
1.0
0. 89896
0. 79849
0. 64915
0. 5A975
0. 50011
0. 45050
0. 40090
0. 30166
0. 25200
0. 20230
0. 15252
0. 07770
0. 02724
0. 00918
0.0
0. 00582
0. 02276
0. 07230
0. 147A8
0. 19770
0. 24800
0. 2983A
0. 39910
0. 44950
0. 49989
0. 55025
0. 65085
0. 80151
0. 9010^
1.0

0. ^1
0.0

0. 6 0. 8 1.0

-0. 00021
-0. 00076
-0. 00229
-0. 01086
-0. 01736
-0. 02024
-0. 02266
-0. 02436
-0. 02537
-0. 02499
-0. 02406
-0. 02244
-0. 01919
-0. 01251
-0. 00796
0.0
0. 01112
0. 02095
0. 03865
0. 05366
0. 06126
0. 06705
0. 07131
0. 07552
0. 07522
0. 07344
0. 07040
0. 06106
0. 03967
0. 02038
0. 021
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31 5
3 1 1
4. 9 0. 85
6.0
1. 0 0. 8 0
1.0
0. 89896
0. 798^9
0. 64915
0. 54975
0. 50011
0. 45050
0. 40090
0. 30166
0. 25200
0. 20230
0. 15252
0. 07770
0. 02721
0. 00918
0.0
0. 00582
0. 02276
0. 07230
0. 147^8
0. 19770
0. 2*800
0. 2983^
0. 39910
0. 44950
0. ^9989
0. 55025
0. 65085
0. 80151
0. 9010'i
1.0
0. 982^24

0.0

1. 6 0. 4 0. 2 0.0
-0. 00021
-0. 00076
-0. 00229
-0. 01086
-0. 01736
-0. 02024
-0. 02266
-0. 02436
-0. 02537
-0. 02499
-0. 02406
-0. 0224A
-0. 01919
-0. 01251
-0. 00796
0.0
0. 01112
0. 02095
0. 03865
0. 05366
0. 06126
0. 06705
0. 07131
0. 07552
0. 07522
0. 0734^
0. 070^0
0. 06106
0. 03967
0. 02038
0. 021
0. 186661 0. 0 0.0
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Q

a) p within a b) p on the boundary

Figure 1 Green's theorem: The Single Domain
Problem



n1

^>

Q,

*2 a

n3 ^

n1 Qi

"1

79

n2

*1

4>4

Q4
n4

n1

n1

n1

Figure 2 Green's Theorem: The Multi-Domain Problem



N-Iines

80

collocation points
on leading edge

a- y

\

. <s

collocation points
on wing surface

Figure 3 Wing Surface Elements
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gap near leading
edge

a'
b'

L1
L2

L3 /

mean camber
surface elements

M-lines

Figure 4 Mean Camber Surface Elements
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Gap near leading edge

vwttow
alonga
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k-3 k-2 k=1

1-1

i-a
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vortMty
dbtribuUon

j-5 r4

*9ffil*nni» wuu vwaeM in wt*»

^3 j-2 J°1

Figure 5 Vorticity Distribution on Mean Camber
Surface Elements in Internal Singularity
Model
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rko

rki
rkg
rk

rk-rk 4

to

A1

A2

A3

A4

ry<

^

Yy»

ys

y4

= 0

M-lines bounding
k-th lifting strip

rko

"<1
rk 2

rks

rk-rk4

to

Figure 6 Trailing Vortex Filaments Along M-Lines
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Modified element (A'B'C'D-)
over whtah uniform source
and linearly varying
vorticity are distribirtod.
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original T)-axis

c'
F

DD
Tt-axis

original
element (ABCD)

S-axls original g-axis

Figure 7 Modification Involved for Trapezoidal
Element
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Ay ^

Upper boundary

1,J+

I.J

I.J-1

1+1 ,J

Direction of integration

Lower boundary
AX

x-^

Figure 8 Computational Mesh
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Z,W (nonnal to surface)

Y,V

General view
n,v

\
\
\

x,u

y»v

Section of body surface

(s, n) are the
streamline
coordinates

3-^.--
View in the plane of the surface

s,u

x,u external streamline
direction

Figure 9 Coordinate System
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0
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+
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+
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+
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+
+
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, |t^a|l® 1i^n§|3^;l|^
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+
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-Cp
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comer points
second q-line

pf

first Ti-line
-input points-
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i"Put _ midpoints of the vecftors
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input
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corner points

Figure 22 Input Points Forming a Trapezoidal
Element
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w
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Figure 23 Plane Trapezoidal Element
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/-R2
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Figure 24 Vortex Segment
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Figure 25 Semi-Infinite Vortex Line
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Figure 26 Line Source Segment
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