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SOMMAIRE

Dans ce memoire nous etudions la caracterisation de la qualite de la

dispersion dans les melanges contenant des particules spheriques en utUisant un

indice nouvel. En premier lieu, la simulation sur ordinateur a ete utilisee pour

generer plusieurs structures types representant les dispersions de particules

spheriques. Ensuite, 1'etat de melange dans ces structures a etc caracterise par

1'evaluation statistique.

Dans les materiaux polyphases, dont les charges plastiques font partie,

1'homogeneisation se manifeste egalement par 1'etat de la phase dispersee dans la

matrice. Mentionnons ici qu'il existe generalement trois formes d'arrangement de la

charge dans la matrice, ces formes representent les differents etats de melange. Ce

travail a ete consacre a une etude de 1'etat de melange. Nous aliens montrer que les

donnees obtenues permettent de discriminer avec precision les differentes structures

contenant des particules spheriques. Afin de mieux cerner Ie probleme, Ie travail dans

ce memoire a ete divise en cinq chapitres. Le contenu de chaque chapitre est decrit

brievement dans les paragraphes suivants:

Nous donnons, dans Ie premier chapitre, une description generale du

probleme. La structure de melange se compose de deux phases: une phase continue

(matrice) et une phase discontinue representee par des particules spheriques. Pour



une structure chargee de particules spheriques, 1'arrangement des particules dans la

matrice peut etre aleatoire ou agregatif. Done les problemes se poseront dans 1'etude

de 1'etat de melange:

i) quelle est la qualite de la dispersion dans Ie melange ?

ii) comment on peut evaluer les differences entre 1'arrangement aleatoire et

1'arrangement agregatif?

Done, Ie projet de recherche propose repondra a trois objectifs:

i) la simulation des melanges contenant des particules spheriques.

ii) la definition d'un indice de melange.

iii) la caracterisation de la qualite de la dispersion dans les melanges contenant

des particules spheriques en utilisant un nouvel indice.

Dans Ie deuxieme chapitre, une revue bibliographique consacree aux travaux

traitant de la simulation sur ordinateur. De nombreuses etudes sur la simulation de

la structure contenant des particules spheriques ont ete faites. La plupart de ces

etudes portent sur la generation des structures dans lesquelles la fraction volumique

de la charge sont tres elevees.
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Ensuite, on a developpe deiix modeles de simulation pour creer la structure

dans laquelle sont disperses d'une fagon aleatoire les particules de la meme taille ou

de tallies differentes. L'algorithme est base sur la simulation de Monte Carlo.

Premierement, une approche par simulation peraaettra de generer la structure en

utilisant Ie generateur de nombre aleatoire. Ensuite, plusieurs sortes de structures

avec particules rigides sont evaluees a 1'aide de la methode statistique, qui permet de

doimer une interpretation quantitative. Ce modele est nomme comme modele de

nucleation ". D'autre modele nomme " modele de vibration " sera analyse. Parmi les

deux modeles utilises pour constituer les structures chargees, mentionnons que Ie

modele de nucleation peut 6tre considere comme Ie modelc 1c plus general. Dans ce

modele, tous les tests pour evaluer la qualite de la dispersion ont etc realises sur

plusieurs mesures geometriques.

Le troisieme chapitre traitera de 1'interpretation de 1'analyse statistique sur les

mesures geometriques. L'evaluation statistique joue un role important. La structure

d'un "bon" melange est tellement compliquee qu'il n'existe pas de regularites

evidentes a reconnaTtre. Pour situer notre travail par rapport a ce qui a ete realise,

il faut mentionner que tous les parametres proposes ont besoin, pour leur validation,

de 1'evaluation statistique. A notre connaissance, les litteratures ne disposent pas

suffisamment de mesures pratiques pour valider 1'etat de melange. Un des objectifs

de la presente contribution est de combler ce vide.

Id on peut s'appuyer ce qui a dit Lord Kelvin: " I often say that when you can

measure what you are talking about and express it in numbers, you know something
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about it; but when you cannot express it in numbers, your knowledge is of a meagre

and unsatisfactory kind. ". Nous avons aussi remarque que la methode statistique ne

part pas completement de zero. Notons id que la faisabilite de cette approche ait

ete deja demontree, il semble quand meme qu'il y a un certain nombre de problemes

qui n'ont pas ete resolus jusqu'a maintenant et qui touchent les selections des

parametres de caracterisation et les techniques de mesure.

Afin de demontrer de quelle maniere la recherche proposee repond aux

besoms, un exemple de 1'evaluation de la qualite de melange est fait. La solution du

probleme a ete composee en deux etapes. La premiere etape vise la selection de

parametres. Cette methode pourra ensuite servir a calculer les donnees obtenues. Le

but de la deuxieme etape est de realiser un terme statistique pouvant discriminer les

differentes arrangements des charges dans une section d'observation.

Dans Ie quatrieme chapitre, nous proposons un indice de melange pour

predire Ie niveau de la dispersion des charges dans Ie melange, grace a la theorie

developpee dans Ie deuxieme et Ie troisieme chapitres. L'indice de melange sert a

mesurer les distances entre les particules adjacentes. Cette mesure est importante

pour predire 1'etat de melange lors du finissage d'un produit. Par exemple un

composite qui possede un indice de melange faible aura tendance a former une

agregation de matiere.

Le travail presente des informations interessantes sur plusieurs schemas

proposes. Pour des raisons de simplicite et pour un meilleur controle de la prise
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d'echantillon, on a tente d'examiner toutes les valeurs obtenues en utilisant 1'indice

propose et en les comparant directement avec les mesures rapportees par d'autres

auteurs. Les effets des donnees tels que la fraction volumique de la charge dans Ie

melange. Ie rapport de diametre des particules et la distribution de la taille des

particules, ont ete observes dans les resultats.

L'effet de la fraction volumique de la charge dans Ie melange sur 1'etat de

melange peut etre significatif, ce qui explique 1'importance de nombre des particules

sur 1'etude de 1'etat de melange. A notre connaissance, Ie nombre suffisant des

particules dans une section d'observation est necessaire pour evaluer la qualite de

melange. On note aussi qu'a partir d'un certain pourcentage de charge, 1'effet du

nombre des particules est negligeable. Par contre, 1'effet de la distribution des tallies

des particules peut etre considere negligeable sur la qualite de dispersion de la

charge dans Ie melange. Nous constatons egalement une difference assez importante

dans les resultats obtenus dans la structure melangee avec deux types de charge. La

qualite de melange augmente avec la diminution du rapport de diametres. Les

resultats obtenus et leur interpretations detaillees sont traites dans ce chapitre.

Nous terminons cette etude par un conclusion et des recommandations qui

nous semblent utiles. Ce projet, en plus d'apporter a la caracterisation de la qualite

de la dispersion dans les melanges contenant des particules spheriques en utilisant

un indice nouvel, nous a permis de mieux comprendre et de prevoir 1'etat de la

dispersion dans les melanges. Nous avons verifie que cette methode est bien consacre

a 1'etude de la qualite de la dispersion. L'indice de melange, K, augmente avec
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1'amelioration de la qualite de melange. On peut done dire que plus 1'indice de

melange augmente, plus la qualite de melange est parfaitement obtenue.

On a rem que que ce travail a permis de voir que les resultats sont efficace

au fur et a mesure qu'ils deviennent disponibles. Cependant, il y a encore beaucoup

de travail a faire pour ameliorer 1'efficacite de la simulation en utilisant Ie modele

propose. Par exemple, la simulation de la structure supercharge n'a pas ete obtenue.

On a aussi remarque que ce modele de caracterisation de la qualite de la

dispersion dans les melanges nous a permis de mieux comprendre et de predire Ie

niveau de la dispersion. D'un point de vue qualitatif, il semble que 1'indice propose

puisse servir a la caracterisation de 1'etat de la dispersion des charges dans les

melanges. Nous avons verifie que Ie modele pouvait etre utilise pour connattre

1'arrangement des particules spheriques dans un cube, ainsi que 1'evaluation de 1'etat

de la dispersion des charges dans les melanges. D'apres les resultats de la simulation,

nous pouvons conclure que 1'approche que nous avons adoptee peut en realite etre

utilisee ou pratique pour mesurer 1'etat de la dispersion de charges dans les

melanges.



ABSTRACT

This work deals with the characterization of the dispersion quality in dispersion

of spherical particles, for which a new index of mbdng is proposed. The computer

simulation has been used to generate these structures. The evaluation of the

dispersion state is mainly carried out in terms of statistic.

The work presented here is divided into five parts. The problem is defined and

discussed in Chapter 1. Review of literature is presented i chapters 2 and 3,

respectively. In chapter 2, the computer simulation model is developed in order to

create the structures with monosize and multisize spheres by their sequential random

placement within a prescribed enclosure. This algorithm is based on the concept of

Monte Carlo model. The first step in the algorithm is to generate the structures by

using random number generator. Then, those different simulated structures with rigid

spheres are mainly assessed by means of statistical method which commonly provides

quantitative support for statements. This simulation model is named as "nucleation

model". Furthermore, a simulation model known as "vibration mode" is presented as

well. In which the packing density has been achieved higher than in the first model

caused "vibration" controls the motion of the packing. Many efficient ways for

characterization of the dispersion state have been introduced in chapter 3. It is

commonly acceptable that the statistical evaluation plays an important role. This is
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because of the high viscosity of polymer material, diffusion is negligible in polymer

mbdng, nevertheless, the structure of a good mixture is so complex that no apparent

regularity can be recognized. Therefore, one can regard this structure as random

rather than regular. In chapter 4, attention has been focus on the examination of

resiilts, in which an index of mixing is proposed. It has shown the practical

determination of the level of dispersion of fillers. Also, the assembly of the quality

of dispersion by using other summarized geometrical characteristics was cited in light

of present studies. As expected, the treatment gives the reason to identify the

difference between the mixtures. Lately, the concluding remarks are outlined by

which one can predict the quality of dispersion effectively.

It was found that the quality of dispersion in a mkture has been well

characterized by using the proposed index of mixing. The results indicate that the

nucleation model is adequate for generating the structures with either monosize or

polydisperse spheres of which the concentration is 32% in volume. It can be

evidenced that the present system to predict the state of mmng in structures of

randomly arranged spheres might be used to characterize the state of dispersion in

real mbrtures.
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CHAPTER 1

INTRO UCTI N

In this chapter, the brief introduction about the mbcing process and the role

of the dispersed phase in mbcture qre described as a convenient source of reference.

The problem in the present research is outlined in a comprehensible way. The

overview of this study has been presented as well.

1.1 ROLE OF MIXING OPERATION

Mixing is widely used in many industries whose products are food stuffs,

plastics and rubber, glass, ceramics, paper, drugs, paint, and others. The materials to

be mked are either fluids or particulate solids. Regardless of the compound exact

nature, the most important questions in this area are:



when the mixture is well mbced?

what is the quality of mixing?

A traditional but insensitive reply to these questions is that a mbrture is well

mixed when it is good enough to fulfil its function.

Filler Matrix

+

Mixing

Filler aggregate

-c .

More Mixing

Fig. 1 Illustration of the mixing process of the filled structure.



For example, blending of a colour concentrate into a can of paint, p per and

medicine making, and so on, are practically mentioned to the aspect of quality of

mKing[l 1-14]. Although the question is centuries old, the state of knowledge relative

to an understanding of the fundamentals of these operations is not well developed.

Specially, the estimate of the state of mbdng is still a challenging topic. This is not

necessarily true with all products, but quality conscious product makers can design

products that fit into their requirements. Therefore, the evaluation of " goodness of

mixing " becomes an important aspect of the mixing process.

As of today, this area of research is still in an early exploratory stage although

some work has been carried out in this field[l-10]. The principal difficulties lie in

measuring the randomness of "haphazard" or "irregular" disposition of ingredients in

the mixture. Moreover, it is very difficult to describe the state of structure and to

obtain an overall description applicable to all phenomena occurring in the structure.

Therefore, to represent at least some of important features of the given problem

under study is inevitable. The absence of adequate approaches to a description of the

uniformity of mmng in a composite is the reason for our study.

1.2 DESCRIPTION OF PROBLEM

In this work, we study characterization of the state of dispersion of filler in

simulated structures. The structure consists of a two phase material: a continuous

phase (matrbc) and of a discontinuous phase represented by spherical particles.



a

(a)

(b)

(c)

Fig.2 Description of the arrangement of filler in a cross-section of observation

(a) ordered arrangement, (b) segregate arrangement, (c) random arrangement.



Consider the Figure 2, an ordered arrangement of circles that is characteristic

of crystalline structures is shown in the Figure 2(a). It is relatively easy to characterise

such system: two parameters ( a and b) are sufficient for a complete description of

this arrangement. The Figures 2(b) and 2(c) represent images that would be viewed

if a sample of filled material were sectioned for observation. The relevant questions

are:

how do we evaluate the differences between pictures?

when is the random state dispersion reached?( It is futile to subject a random

dispersion to further mbdng.)

Considering the statement of preceding paragraph, we will restrict ourselves

to consider the following steps:

having the simulated structures as seen in Fig. l, the cross-section of

observation is cut through the cube.

the dispersion state of the filler in this section could be evaluated by

measuring some geometrical parameters ( to be defined in this work ).

The overall evaluation of the " goodness of mixing " for entire structure must

be fulfilled by randomly selecting a certain number of the sections of observation.

Also, the sufficient number of spheres is necessary while measuring the uniformity of

the filler dispersed in the matrbc. The determination of adequate index of mbcing in

the simulated structures is the principal challenge of this study.



13 OBJECHVE AND APPROACH

The principal objective of this work is to establish the criteria and to develop

the methodology for correctly predicting the state of mixing in simulated composites

of different filler concentrations. In order to determine an adequate index of mixing,

the generation of different formations corresponding to either a uniform (random

) structure or to a several non-unifonn structures is necessary. Each generated

structure is evaluated by cutting a section through it. The plane of observation thus

obtained is subjected to a statistical analysis. The approach of this study can be

summarized in five steps illustrated in the Figure. 3.

SIMULATION
OF

FILLED STRUCTURES

INTRODUCTION
"OF

PROPOSED INDEX

SELECTION
OF

OTHER INDICES

EVALUATION
OF

DISPERSION STATE

CONCLUSION
AND

ECOMMENDATION

Fig.3 Summary of the strategy of this work.



1.4 OVERVIEW OF THE PRESENT STUDY

In the chapter 2, a new algorithm for generation of dispersions designated as

" nucleation model" is described. It provides the simulated structures representing

filled plastics. A monodisperse and a polydisperse particle size distribution are used.
The evaluation of all characteristics is involved in this computer program which is

written in C+ +. In addition, we have developed a second model (" vibration model")

which is used to generate structures with higher concentrations of filler than those

available from the first model. The chapter 3 contains the statistical evaluation of the

generated structures. The examination of the proposed index of mixing is presented

in the chapter 4, in which the comparison of the results obtained by the evaluation

with other characteristics is also discussed. The chapter 5 presents concluding remarks

drawn from this research.



HAPTER 2

MPUTER SIMULATI N

This chapter deals with the investigation of the simulation models. Based on

Monte Carlo model, two simulation models are developed, which are designated as

the " nucleation model" and " vibration model". Evaluation of the dispersed state

of the filler in simulated structures is carried out only in the first model.

2.1 REVIEW OF LITERATURE

The random packing of hard spheres have been studied for many years on

account of their interesting geometrical properties. They are found, for example, in

metallurgy, ceramics, soil science, biology, physics, chemistry, and many fields of

engineering. The procedure used to form a sphere pack varies among different



investigators. Adams and Matheson [15], Bennett [16], Matheson [17] and Powell [18]

placed spheres one at a time in contact with three spheres of an existing sphere pack.

Visscher and Bolsterii [19], Tory et al. [20, 21,22], Chan and Ng [2], Soppe [23] and

Reyes [24] dropped spheres sequentially onto a heap of spheres. Each sphere was

allowed to roll under gravity until it settled down in a stable position. These

computer-generated sphere packings are found to be realistic as evidenced by

agreement between predictions and whatever experimental data available.

The computer simulations can be subdivided into two types. The first one,

which is characterized by its kinetic nature, includes sedimentation of spheres into a

randomly packed bed as well as molecular dynamics and Monte Carlo methods in the

field of thermodynamics. The second one consists of simulation of the growth of

clusters. In fact, several widely different models have been proposed which has been

distinguished between five types[25]:

Polyhedral models. A random packing of identical spheres has been

interpreted in terms of polyhedra whose vertices are at the midpoints of the

lines joining the base and neighbouring ( touching or non-touching ) sphere

centres. A predominance of pentagonal forms was found. These have also

been described in terms of component tetrahedra. Levine and Chernick[41]

used polyhedra formed only by touching spheres.

Coupled sphere models. Blum and Wilhelm[42] used a unit cell in which
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an integral number, such as two or three, of touching spheres are c upled to

form a cohesive unit.

Local sphere shell models. Models in which spheres are centred in shells at

certain fixed distances from a base sphere have been used[43] with triangular

close equispaced models describing the limits of possible values of the base

sphere coordination number.

Monte Carlo models. In the simplest case, spheres are assumed to be placed

randomly one by one throughout the specified space, rejecting any location

which causes " overlapping "[44]. This has been applied to the packing of

spheres along a straight line ( 0-sphere, or line interval packing ), but is in

general cumbersome, producing a large number of unsuccessful trials when the

packing is almost complete due to overlapping. In two dimensions, this

computational problem has been avoided by displacing any overlapping sphere

to accommodate new spheres. An alternative solution for packing about a

base sphere stops the calculation when the number of unsuccessful trials

becomes excessive and then arbitrarily fills in any holes able to accommodate

new spheres. Another application, to the equation of state for hard sphere

molecules, starts with a regular packing in unit space and then attempts

random displacements of arbitrarily selected spheres. An effectively infinite

packing is simulated by applying periodic boundary conditions which are

equivalent to the unit space being surrounded by identical units. This has been
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applied in two dimensions and in three dimensions.

Void models. Models of the void structure are required for instance

in the estimation of flow properties. Scheidegger[45] has reviewed the straight

and serial types of capillary models. Random networks of different sized

capillaries have also been used. The pore size distribution of interconnected

spherical holes, and a set of tubes with recessed pockets. Voids have also been

considered as equivalent to interconnected mking cells. They may also be

represented by fluid envelopes surrounding each sphere and possessing the

average properties of the fluid, while the bed has been regarded as forming

a two component random mixture of voids and solids. The Voronoi polyhedra

also provides a convenient means of finding and size-classifying all voids.

Just as each regular packing has a characteristic packing volume fraction, it

has been found that in random packings of identical spheres a characteristic range

of packing volume fraction is value associated with particular methods of formation.

Three types of random packing configurations are discussed most previously

published experimental and/or theoretical studies. These are defined as[25]:

random-close packing;

random-Ioose packing;

random-poured packing.
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Random-close packings are simulated by optimizing the relative positions of

a pre-arranged assembly of spheres until a maximum bed density (0.64) is obtained

[22]. They are obtained experimentally by dumping spheres in a container and

subsequently compacted by shaking the packing in order to achieve maximum bed

density.

Random-loose packings are simulated by loading individual spheres into local

minima in the upper surface of an evolving packing without allowing them to bounce

to more stable equilibrium points or rearrangements of already positioned spheres.

Experimentally, they are obtained by slow settling or individual loading of spheres
and result in bed densities of about 0.58.

Intermediate packing densities, ranging from about 0.60 to 0.62, are generally

classified as random-poured packings. They are obtained experimentally by

simultaneously dropping a number of spheres into fbced-bed reactors and consist of

a combination of local regions of random-loose and random-close packing. The

simulation procedure is similar to that used for random-loose packings but spheres

are placed sequentially into lowest stable equilibrium point, rather than into the

minima available position in the surface of the developing packing[17].
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For regular arrangements, the maximum packing density of different packing

bed is given in Table 1.

Table 1. Maximum packing fraction of equal size spheres in regular arrangements.

Tetrahedral

Cubic

Tetragonal

Rhombohedral

Hexagonal

Maximum Packing

Fraction

V,

0.34

0.52

0.60

0.70

0. 74

Coordination

Number

z

4

6

8

10

12

The work reported by Tory et a1[20] is a simulation of the very slow settling

of rigid equal spheres from a dilute slurry into a randomly packed bed. Each

sphere is introduced only after the previous one is permanently in place.

Settling takes place into a box defined by {x, y, z }. Initial x and y coordinates

are chosen according to the probability density function g(x, y).

g{x, y)=f(x)f(y) (2. 1)
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where

^(x)= 1/w when 0<x<w

fix} = 0 elsewhere

and f(y) is similarly defined. Both of f(x) and f(y) represent the probability

density function when the random variables (x and y) are subject to the

uniform distribution on the interval (0,w), w is the length of side of a square.

Each sphere is introduced above the bed in a potential field 0(z) in which

0(0) =0 and 0'(z) > 0, for z > 0. A sphere is stable when any roll would

increase its potential. Any sphere which touches the bottom of the container

is considered to be stable.

Based on the above assumption proposed[20], Tory has successfully derived

the detailed configuration of the tetrahedron formed when one sphere settles

on three others (see Figure 4)[21]. The centres of the three supporting

spheres lie on a spherical envelope about the central sphere and determine

a circular cross-section of that envelope. The centre of the central sphere is

taken as the origin and the position of the cross-section is given by the

distance r of its centre and its angle of inclination Q.
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After cross-section is fixed, the positions of the three supporting spheres are

determined on its perimeter. First, the lowest one of the three is positioned

according to the probability which is proportional to the vertical distance from

its highest possible point. Next, a second sphere is similarly placed. The

distribution of the third sphere is uniform over the available region.

This work has dealt with only one random packing, i.e. a random packing

constructed by a computer simulation of the slow settling of equal spheres into

a randomly packed bed[20]. The bulk-mean volume fraction of the particles

is 0.582, which can be considered to be a random loose packing. A similar

statistical geometrical analysis has been tested for the packings.

.M

L <PI^
\

^

0

7^?

8- -'

(a) ' . (b) N !
Fig.4. (a)Coordinate system in units of the sphere diameter, (b) Orientations

of three sphere centres (1, 2 and 3) on the perimeter of a circular cross-section

(view from the CH direction in Fig.4a). The z denotes the cross point with z-

axis. 1P=1Q=1. 0 diameters. Ref[21].
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The failure of many simulations to achieve h mogeneous, dense random

packing led Jodrey and Tory tried various cooperative schemes in 1981. Their

simulation embodies three fundamental ideas and relies heavily on results

established by trial and error in preliminary studies. The principles are the use

of periodic boundary conditions, the spreading apart of overlapping spheres

via a relaxation method, and the use of a form of vibration.

They used the parameter A, as a measure of the overlap:

A. =E ^(A,, 2 -B,,2) 2=1, 2, . . . n (2. 2)
3*1

^. =1

= 0

overlap

otherwise

where 1;, is the indicator function (1 for overlap, 0 otherwise), Ay is the

minimum allowed distance between spheres i and j, and B;j is the observed

distance.

Based on the actual number of overlaps, the mean value of overlaps was

initially 3. 05. Many of these overlaps were easily eliminated by moving the (th

sphere (for which A, was greatest at any given time ) away from thej'th sphere

(for which Ay is greatest) along the first iteration of the vibration stage, the

number of overlaps and the mean value. A, will be decreased.
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Their vibration module slowly contracts the radius, reducing the nominal

density by 0.0001 per iteration and attempts to remove overlaps, beginning

with the most serious and continuing in decreasing order of severity. Only one

sphere is moved at a time and spheres which have already been processed are

removed from the queue. Nominal density and mean overlap fell rapidly

during the first hundred iterations. Yet, at the end of this process, the

packing achieved a true density of 0.633. The maximum overlap was 10'3

compares to, a final radius of approximately 0.999. This simulation which is

illustrated in Figure 5 required 10.03 CPU hours(51. 08 JERT hours) on an

IBM 3032.
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Fig.5. Variation of overlap and nominal density during simulation. Ref. [22].
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Tory and co-workers explored several ways and means of solving the questions

of random packing structures constructed by computer simulation. Studies about

these questions are also concerned by many other investigators.

Visscher and Bolsterli[19] have adopted an alternative procedure to

produce a computed assembly of randomly packed spheres. They dropped

spheres from random positions above an existing random pile of spheres, and

allowed a dropped sphere to roll over the pile until it attained its lowest stable

position. The packing density of such an assembly is 0.582, but this can be

increased to 0.600 by making four or five trials and choosing the sphere that

attains the lowest position.

The study by Adams and Matheson[17] combines the spherical growth

method with the Visscher and Bolsterli[19] method to produce a homogeneous

random packing of hard spheres which is indistinguishable from the packing

of unshaken stacks of ballbearings.

Powell[18] used an improved algorithm based on Matheson's and Tory's

simulation[ 17, 20], but with considerable changes in the logic organisation to

handle a range of particle sizes. In particular, it was not possible to store a list

of available sites for a continuous range of particle sizes, since there is a

different set of available sites for each size of new sphere. A different method

is used by Powell to find a site for each sphere.
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The maximum packing density for equal sized spheres was 0.59, which

compares with 0.606 of Matheson and 0.58 of Tory et al. Decreasing the

searching efficiency produced up to a 3. 5% decrease in the packing density,

but reduced the computer run-time by a factor of 3.

Soppe's structure[23] of sediments of hard spheres in three dimensions is

obtained by ballistic random deposition according to a rain model, followed

by a compression process by means of Monte Carlo simulation. In the rain

model, particles are considered as hard and sticky spheres. One by one the

particles are dropped from a random x,y position above an open container

with sizes X^ Y^ and ̂ . The Z-co-ordinate of the particle is initially ^

+ H, where H is the momentary height of the sediment. The particles move

vertically downward until they touch the bottom of the container or a particle

of the deposition. At first contact with bottom or deposition, the particles are

constrained to stick and remain in their position. At the end of this phase,

ballistic deposits consisting of 10 000 particles and with volume fractions of

about 0. 16 are obtained. In the compression model, they simulate a

process of shaking the container by means of a Monte Carlo technique: a

random particle is chosen and is given a random displacement between 0 and

R^. If the particle in the new position overlaps with any other particle, the

move is rejected. If no overlap occurs and the z-component of the

displacement is negative, the move is always accepted. If the z-component is

positive, the chance that the move is accepted is equal to e^" ( i.e. the

probability density function f(z) corresponds to e°z when z > 0 ). The value



20

ofa is chosen so that for z == | R^ | the chance for acceptance is 0. 001.

Particles are not allowed to move outside the box. This means that the walls

of the container act as hard walls as it implies that periodic boundary

conditions are not fulfilled.

For each of the five particle size distribution widths an Monte Carlo simulation

consisting of 12 runs of 2 000 000 trial steps were performed, each run

requiring about 2500 CPU seconds on an ETA 10-P compute. For the first

run, they have taken R^ = Ro ( mean particle size ), for later runs this value

was gradually decreased to R^ = O. lRo for the 12th run.

Upon the description above, obviously, we could use their schemes of the

packing to generate the structure with filler in our practice. The benefits of investing

in the field of computer simulation packing are substantial, and will be seen to

constructively influence many aspects of our study. A suitable model should aim at

simulating a filled structure of which the explanations can predict the dispersion state

of empirical samples. The present work uses a well-define method for preparing hard

sphere packing on a computer, to form either uniform and non-uniform structures.

The significance of terms " uniform " and " non-uniform " in the text of this work is

given on the page 21 ( section 2.2 ).
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2.2 DEVELOPED MODELS AND METHODOLOGY

The algorithm and program for packing of spheres in a container that have

been developed and discussed in the literature should be significant both in allowing

investigation of different structures and computation of the structural characteristics

of hard sphere packings. We fulfilled our simulation by using two models which we

named as " nucleation model " and " vibration model ". The nucleation model yielded

packing density of 0.32, while the one generated by the vibration model had a density

of about 0.45. The program is written in general form in order to allow for the

random placement of spheres of size prescribed by an arbitrary distribution and to

permit the placement of such spheres in the positions within the cubic container. A

final packing consists of a random assemblage of spheres whose coordinates within

the cube are known exactly. Non-uniform structures are created both by successive

displacement in the container of spheres taken from different regions and by

saturation of other regions of the packing space. Figure. 6 presents the schematic

diagram of one simulated structure. Other illustrations of simulation results are

presented in the chapter 4. In the present study, two types of particle-size distribution

are applied:

the monosize system in which every particle has the same radius.

the polydisperse system in which the size of each sequentially settling particle

is chosen at random from an arbitrarily selected shown in Figure 7.
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Since it is only possible to consider the space occupied by the spheres as the

volume concentration of filler, we define the packing density as follows: the ratio of

the total volume of a number of spheres, V, ='n-Sdk3ni, /6, to the volume V containing

them. It was calculated by counting the number of spheres entirely within the cluster.

0
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Fig.6 Schematic diagram for a solid-filled cube with edge length L^, Ly, L^ and

particle diameter d,.
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PARTICLE SIZE(MICRONS)

Fig. 7 Size distribution of particles used in the present study.
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2.2. 1 NUCLEATION MODEL

2.2. 1. 1 Description of the Model

The simulation is based on the Monte Carlo model. We begin with an empty

column, with four rigid walls and a flat floor. In the system, the random number

generator is used to choose a number on the interval(0, l), and we then find the

number of the coordinate of each sphere. The structure is constructed by simulating

the very slow settling of hard spheres, one at a time, into a random rectangular

enclosure. After specifying the volume space, the desired number of sphere in the

structure, to achieve a given volume concentration of filler, are generated one by one

from a random position. The computer program makes the sphere to expand until

it reaches the defined diameter without any overlap. Then like other previous

spheres, it is permanently set in this position and no further rearrangement is

allowed. Simulation neglect bouncing or the bumping of such spheres are not in any

way consolidated or spread apart by incoming ones. "Nucleation" alone controls the

motion of the spheres deposition and growth. An inelastic collision is assumed

whenever new sphere contacts another sphere already exist inside the column.

At all times the computer memory contains a lists of the x, y and z coordinates

for all the particles in the cluster, a "site" has being defined as a point lying exactly

one particle diameter d; and at least keeping L,, = (d, + d, )/ 2.0 away from all the

other particle centres in the cluster. In each cycle of operation, the program first

selected one of the sites as the new particle location according to the criteria
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described above, and then updated the site list. This updating, which consumed the

bulk of the computing time, consisted in deleting from the site list all other sites

overlapped by the new particle, and then adding to it all the new sites defined by the

new particle in conjunction with other particles already present. Input consisted of

the seed cluster with its sites.

Here we deal with the specific structure, in which the volume fraction of filler,

V(, is given by

vf = E ̂ nd^^ l ^yL, (2. 3)
k=b

where k is the group number of which the particles are of same diameters, n,; is the

number of particles in kth group, d,, is the average diameter of particle in kth group.

The coordinates ( x,, y,, z; ) of the fth particle likely to be randomly found in the

column by a computer with condition that

-dj < ^. < L^-^-.-^ < xi< Lx--f'
^ . __ / . di
^<y, <L^,

d, d,
^ < z, < L.--^2 N ^Z

and

1=1, 2, 3... N (2. 4)
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[(x, -x^2+(yj -y^. )2+(^-^. )2] 2 > (d. +dj) / 2

j=l, 2,...N (2. 5)

Equation 2.4 ensures that all N particles are located within the cubic container,

while Eq.2.5 ensures separation between the particles.

2.2. 1.2 Summary of the Function of the Nucleation Model
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Table 2. Outline of th function of the nucleation model

MAIN PROGRAM

It generates a core of a sphere into the cubic container from a position

chosen randomly by generator, " nucleation " alone controls the deposition

and growing of this sphere by using subroutines 1 - 4. In this way, the

expected number of spheres can be obtained to form the simulation

structure. The statistical evaluation can be carried out by the subroutine 5-6.

SUBROUTINES

l.GENERATOR - to generate the coordinates of a sphere by using

random number generator.

2.NUCLEATION - to let the sphere expand until achieving the defined

diameter, after deposited a core of a sphere in the cube.

3.CHECKING - to determine whether there are any overlaps.

Otherwise, another site is chosen, and so on.

4.CONTROLLER - to determine whether the expected number of spheres

has been achieved during the program execution.

- to get a cross section from the simulated body

- to carry out the results required.

5.0BSERVATION

6.EVALUATION -
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In order to understand more detailed description of the fate of all coming

sphere in the structure, we first explain the function of the model in Table 2. Other

subroutines not essential to the physics of the packing process have been omitted in

this discussion. Fig.8 illustrates the packing simulation in terms of the function of

nucleation model. The main program and 6 major subroutines are denoted by seven

rectangular boxes and a rhombic box while events are encased. A sequence of events

is indicated by the arrows connecting each box.

START

GENERATION

NUCLEATION

SELECTION

NO
CONTROLLER

YES

OBSERVATION

EVALUATION

END

Fig.8 Computer flowchart for the nucleation model.
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2.2. 1.3. CPU Time

Table 3 shows the simulation of required CPU time of simulation. The symbols

N, V and Vf in the table show the number of spheres, the volume of simulation

structure required and the packing density respectively. In the data it can be observed

that an increase of CPU time by increase of the number of sphere is significant.

Table 3. List of CPU time for the simulation by the nucleation model.

Examples

I

II

I

II

I

II

N

3053

5452

6109

10907

12220

21818

v

4xl06

4xl06

4xl06

4xl06

4xl06

4xl06

Y{ CPU time(sec)

5% 250

5% 380

10% 600

10% 800

20% 6000

20% 9000

I -- the simulation for the structure with monosize spheres ( d=5jum ).

II -- the simulation for the structure with multisize spheres ( See Fig. 7).
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2.2.2 VIBRATION MODEL

Since the nucleation model was proposed for the packing of lower volume

concentration of filler in the body, the vibration model enable one to gain the highly

filled. Mason [26] pioneered the technique of generating overlapping spheres and

moving them apart along the line of centres until they were just touching. However,

his spheres were unconfined. When applied to confined spheres this method

generates new overlaps as old ones are eliminates. Thus, Jodrey and Tory used the

relaxation principle [22] of eliminating the largest overlap at each step. Their

program simulates this by alternately expanding and contracting the sphere radii. We

utilize the algorithm based on the features of this method. The conditions and

functions worked out for modelling sphere displacement by this method is valid for

our vibration mode. In the study of simulation by vibration model, i) an outline of the

packing simulation, ii) the approach method, iii) description of the problem solved

by the simulator are taken into account.

2. 2.2. 1 An Outline of the Packing Simulation

Fig.9 shows an schematic of the packing simulation using the vibration model.

In the system, two types of inputs are defined: i) sphere data; ii) container data. The

sphere data specifies information regarding spheres to be packed, while the container

data is the dimension of the filled structure. The computer flowchart of the

simulation in the vibration model is presented in Figure 10.
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Fig. 9 Simulation by using the vibration model.

START

NO

GENERATION

VIBRATION

CONTROLLER

YES

END

Fig. 10 Computer flowchart for the vibration model.
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2.2.2.2 Procedure of the Simulation

The simulation method basically consists of four consequent steps as follows:

In step 1, generate N random interpenetrating spheres with respect to a

certain volume fraction of filler in the cubic container. The use of periodic

boundaries imparts a structure in which all spheres are equivalent.

In step 2, use the Eq. (2. 2). The computer program eliminates the largest

overlap between two spheres in the structure.

In step 3, repeats step 2 with all particles to eliminate all overlaps in the

structure.

In step 4, expand and contract the sphere radii while eliminating the overlap

in order to achieve the close packing.

2.2.2.3. Description of the Solved Problem

We have used the vibration model to build a structure filled with monosized

spheres(d=5/. im) in which the concentration of filler is 42% by volume. After 2000

iterations to move away the overlaps, we achieve a structure that includes 25666

spheres, in which 345 overlaps remain. The largest length of overlaps is 0.009 p,m.

The simulation required 4500 CPU seconds.
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23 CONCLUSION

In this chapter we described two methods to generate filled materials. The

results obtained in the forme of list of coordinates ( x, y and z) from the " nucleation

model" will be subjected to statistical evaluation assuming a section is cut through

the filled space and the thus obtained plane is observed and evaluated.



CHAPTER 3

STATISTI ALEVALUATI

The principal aim of this chapter which begins with a review of pertinent

literature is to interpret the statistical evaluation of the measurements representing

the state of dispersion of filler in the mixture. The statistical evaluation is involved

in the nucleation model.

3.1 REVIEW OF LITERATURE

"I often say that when you can measure what you are talking about and

express it in numbers, you know something about it; but when you cannot express it

in numbers, your knowledge is of a meagre and unsatisfactory kind. " ( Lord Kelvin

) Since we had fulfilled the simulation in computer, analysing the quality of those
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mixtures has been fully deterministic. The study of mbcing covers the f llowing areas:

understanding and description of the physical phenomena;

mathematical modelling of the mbdng process;

characterization of the resulting mktures.

Numerous investigations have been carried out on the measuring the

homogeneity of muctures, which is a quality of immense interest to the published work

to date. In an attempt to shed some light on our problem, the review of literature can

be summarized as follows:

Many different measures were suggested to characterize the quality f

the muture [31-33]. They are based mostly on the following two concepts

introduced by Danckweerts [34]:" scale of the segregation " and " intensity of

the segregation ", I. The scale of the segregation indicates progress of

distributive or dispersive mixing or both, while the intensity of the segregation

indicates the progress of mixing due to diffusion.

I = S2 / S'o (3, 1)

where S2 is the variance of the measurements, So2 is the ma?dmum of the

variance if the elements are completely segregated.

The intensity I ranges from unity (segregation) to zero (homogeneity) and
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provides one useful measure of the goodness of a distribution. These concepts

were implemented by Mohr et al. [35] using the well-known " chess board "

graph seen in Fig. ll.

The evaluation of these mixing characteristics, as suggested by Danckwerts, is

rather complex and lacks physical meaning and is therefore rarely used in

practice. Otherwise, over 30 different mrang indices were reviewed by Fan et

al. [36]. Nevertheless, the relationships among these indices are not well

understood. To facilitate using those indices for a binary system, Fan has

outlined some formulas for the nine most frequently used indices[37].

I !

(c) (Di

Fig. ll(a) Ordered mbrture of equal proportions of black and white particles.

(b) Randomized mixture of equal proportions of black and white particles.

Shen, Ling and Gogos[38, 39] presented the statistical evaluation of the

unifomiity of mixtures, which is an important step in the mixing study. They

call max | F(x)-F(x) | the Kolmogorov test index and to measure the

uniformity of mixtures.
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max)F'(x) -F(x) |^S (3. 2)

Where
A

F(x) is the expected cumulative distribution function, F(x) the measures

one, and 5 threshold value.

For a rectangle with height h and width w, the uniform distribution hypothesis

is used to calculate the expected cumulative distribution function:

F(x, y) = ^ (3. 3)

which is a surface consisting of straight lines as shown in Fig. 12 The measured

distributive function is given by

F(x. y) = 
N{xl y}

N, (3. 4)
total

where N(^| is the total number of dots in the graph, and N(x,y) is the number

of dots whose coordinates(x, y) satisfy x^ X, y ^ Y.
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Fig. 12 Cumulative distributive function of a uniform rectangular mucture[39].

Tovmasyan, et a1[10] have proposed a method of quantitatively describing the

fluctuations in the distribution of a filled thermoplastic by analysing the photo

micrographs of cryogenic fracture surfaces of the composites. The geometrical

characteristics suggested were mean spacing between external surfaces of the filler

particles a, the concentration of the disperse phase A,

which were calculated from

M

a = Lm(l-A)/^^.
J'=l

(3. 5)
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^ = E E ̂ . /^
JzlJzl

(3. 6)

where L is the total length of the observation line drawn for each

photomicrograph; m is the number of observation lines; l,j is the length of the

observation line within the fth particle on the yth line of investigation and k,

is the number of particles intersected by the j'th line of investigation.

The degree of agglomeration of the particles in the system was characterized

by four moments of distribution function with respect to the number of

particles in the agglomerates, F( r, j ), determined from the equation:

k k

^=E^-jn/ E^-. '"-1
Jri ' Jri

(3. 7)

where n is the number of the moment M of the function F(rg, j), Fj is the

number of agglomerates consisting of j particles, k is the number of particles

in the largest agglomerate.

The Figures 13 and 14 show how the functions F(rg,j) and the moments Mn

depend on the superficial degree of filling <f)y The dependence of M^ on 0; is

not strong in the range of degrees of filling from 0. 1 to 0. 15, in which the

particles are quite uniformly distributed in the section of observation. As the

degree of filling is increased above a certain critical value, there is a sharp

increase in the probability of large agglomeration appearing (Fig. 13). Mn
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begins to depend strongly on 0g, especially in the case of M4 (Fig. 14). It can

be explained that the dependence of the fluctuation of the degree of

agglomeration on the concentration of the disperse phase corresponds to the

effects of percolation that often arise in analysis of the electrical and thermal

conductivity of the composites .

F(]')po=dm
wo j

JO}

/ 5 10 20 30 W 50 j

Fig. 13 Dependence of the distribution function of the particles with respect

to agglomerates on the superficial degree of filling, (f). Values of 0: 1-0. 12; 2-

0.21; 3-0.24; 4-0.29; 5-0.32. Ref[10].

^

w

£

2

07 0-2

w,

t1

M,

ys

w,

Fig. 14 Dependence of the moments of the distribution function of the

particles with respect to agglomerates on the superficial degree of filling[10].
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3.2 THE RELATED STATISTICS

As reviewed above, it is not surprising that the use of statistical analysis has

been a major tool of investigations dealing with mixing of solids because of the

random nature of the mbcing processes. Theoretically, the assumption is made that

the mbdng process usually begins with a state in which the components are

completely separated and ideally ends with a random mbcture, that is in which the

probability of finding a particle of any given component is the same at all points in

the mbcture. In practice, however, the mixing process generally does not reach a state

of randomness, due to the fact the particles to be mbced do not have the same

physical properties. This introduces a tendency to segregation, so that no matter how

long the mixing process is continued the final state is one in which the probability of

finding a particle of a given component is not constant throughout the mixture. The

structure of a good mixture is so complex that no apparent regularity can be

recognized. On the other hand, it is commonly acceptable to simplify the problem if

we repeat quite a number of the evaluations in the practice.

3.2. 1 SAMPLE SELECTION

The initial step is to define the scale of scrutiny, and hence the sample size,

required for the product. In our case this will be an area, evidently in which the

determination of a sufficient number of particles to be analyzed is the first major

problem, which describe adequately the distribution of the filler in the system. To

avoid sample selection bias, and to enable precision estimates to be carried out, a
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simple random selection in which every unselected section has an equal chance of

selection should be made. In our algorithm, a sufficiently large number of particles

in a section is desired. If the samples size were too small there would not be enough

dots in the picture for a meaningful statistical analysis.

3.2.2 STATISTICAL ANALYSIS

The statistical analysis of the mixture can be interpreted by using two stages:

The estimation of properties of and characteristics of the mixture, e.g. the

values of mean composition and variance. These estimates can be based on

a variety of sample procedures.

For the purpose of this discussion, the value of mean composition, G, is

defined by

G-^9, 1 n 2=1, 2,...n (3. 8)
2=1

where g,, i=l,... n is the value of composition. Then, the variance, S2, is given by

52 = < E 9i-G ) / (n-1 )
2=1

1=1. 2,... n (3. 9)
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Frequency of
occurrence

fW

Sample composition, y;

Fig.15 Distribution curve for sample compositions.

A single set of sample composition can be plotted in Fig. 15 as an estimate

of the mbrture characteristics calculated from these values. This estimate is of little

value if it is imprecise. As we know, without a knowledge of the precision of the

estimate of the mixture quality, no meaningful comparison of mbrtures can be made

and no process quality control can be established. Therefore, a range of values of

mean composition and variance would be obtained if this process is repeated a large

number of times. The stage 2 is introduced as follows:

The assessment of the accuracy or precision of estimates. The precision is

usually expressed in terms of the confidence in which an estimate can be

stated to lie within specified limits. Such limits are based on the assumption

that the population estimate value would have a predictable distribution if the

selection of samples were repeated a large number of times.
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To measure uniformity by using variance and related statistics is based on the

assumption that the underlying distribution is normal. The likeness of the real

distribution to the normal distribution can be detected by a goodness of fit test, such

as the x test. This test requires a large number of samples to be withdrawn from the

mbrture than would normally be the case for assessing mbcture quality and for this

reason the test is applied occasionally or when the process undergoes a significant

change.

Frequency of
occurrence

fls2}

s.e. tsZ)

Sample variance (s2)

Fig. 16 Distribution curve for a series of sample variance estimate.

33 EXAMPLE FOR EVALUATING MEASUREMENTS

Some of the quantitative techniques outlined above will now be applied to a

typical mixture analysis problem. Let the problem be to assess the state of mucedness

in a simulated structure, which is characterized by the mean distance between a

reference sphere and each spheres in a section of observation and the variance of
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the estimate. In this example, the sample is formed by computer simulation model.

The concentration of filler with polydisperse spheres is 20% in volume. The size

distribution of spheres corresponding in Fig. 7 is provided in Table 4.

Table 4. Particle size distribution used to simulate polydisperse structure.

d =9.0 d =7.0 d = 5.0 d = 3.0 d = 2.0

v. 10% 24% 50% 12% 4%

(1) Determine the scale scrutiny by randomly choosing a cross-section in the

mixture. The Figure 17 shows one such cross-section.

(2) Record the coordinates of each sphere in the picture.

(3) Determine the distance, !;, between the centre of each sphere appearing in

the picture and the centre of its nearest neighbour. Then we plot a diagram for the

study of stages 1 and 2 using the obtained data. For convenience the results are

expressed in terms of the frequency of a class value, thus the chosen class boundaries

and frequency of occurrence are given in the Fig. l8(b).

(4) Postulate class boundaries and calculate the frequency of occurrence of

samples within these boundaries. (See Table 5.)

(5) Convert the class boundaries to t values. (See Table 5.)
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Fig. 17 A random cross-section ( 200p. m x 200 ^m ) obtained from the simulated

polydisperse mbrture, in which the volume concentration of filler is 20%.
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Fig. l8(a) Distribution of the minimum distance between spheres in a section of

observation (shown in Fig. 17). All spheres were used, one after another, as reference

spheres.
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Fig. l8(b) Distribution histogram of the variance of the distance values measured in

a section of observation. All spheres were used, one after another, as reference

spheres.
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(6) Calculate the area of the normal curve coresponding to each class.

(7) Compare the observed frequency and the expected frequency by a x2 test

and deduce the probability of the sampled population being normal.

Table 5. The statistical evaluation to assess the precision of the estimates.

value of area under area for expected observed

normal curve

t 0 to t each class frequency frequency

-00

1. 515

1.585

1.655

1.725

1.795

1.865

1.935

2.005

2.075

2. 145

2.215

2.285

+00

-2.080

-1.648

-1.216

-0.704

-0.352

0.080

0.512

0.944

1.377

1.809

2.241

2.673

0.5000

0. 4811

0.4505

0.3900

0.2812

0. 1371

0.0310

0. 1920

0.3280

0.4150

0.4640

0.4870

0.4961

0.5000

0.0189

0.0306

0.0605

0. 1088

0. 1441

0. 1681

0. 1610

0. 1360

0.0870

0.0490

0.0230

0.0091

1.89

3.06

6.05

10. 88

14.41

16.81

16. 10

13. 60

8.70

4. 90

2.30

0.91

2

7

6

11

23

20

13

6

6

4

2

2
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By means of a grouped frequency diagram or by computation it can be shown

that for this sample G= 1.852 and S2=0. 162. These values of Y and S can be taken

as true values of a normal distribution. Thus the chosen class boundaries are 0, 1.515,

1.585, etc., and in terms of the mean value of 1.852 these boundary values represent

t value of -oo, -2. 080, -1. 648, etc. as t=(ga - G)/S. The values are tabulated above (

Table 5).

The x value is given by:

X2 = (1.890-2)2/1. 890 + (3. 060-7)2/3. 060 + (6. 050-6)2/6. 050 + (10. 880-11)2/10. 880

+ (14. 410-23)2/14. 410 + (16. 810-20)2/16. 810 + (16. 100-13)2/16. 100 + (13.600-

6.0)2/13.600 + (8.700-6)2/8. 700 + (4. 900-4)2/4. 900 + (2. 300-2)2/2. 300 + (0.900-

2)2/0. 900

y2 = 18^044

In this case x has 12-3=9 degrees of freedom, since the total frequency, the

mean and the standard error of the fitted distribution are made equal to those of the

observed distribution.

From x2 tables: x2o.975(9) = 2.700 x2o.o25(9) = 19.023

The fit is good at the 95% level. Hence we are quite confident that the

resulting statistics can be discussed as being withdrawn from a normal population.
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3.4 CONCLUSION

Following the statistical analysis discussed in the section 3. 3, we decide to

evaluate the state of mbcedness of spherical filler in a matrk by these parameters:

the distance, !" between the centre of each sphere appearing in the picture

and the centre of its nearest neighbour;

the spacing distance, a, between the external surfaces of the particles in a

cross-section of observation ( adopted in Ref[10] );

the surface areal fraction, A, of the disperse phase in the mixture when a

cross-section is observed.



HAPTER4

RESULTS AN IS U N

In this chapter, the proposed index of mixing, K, is introduced and examined.

It represents the level of dispersion in several non-uniform structures which have

same volume fraction and particle size distribution in the uniform structure. The

scales of scrutiny are also identical. In parallel, other parameters proposed in the

literatures are evaluated.

4.1 RESULTS OF THE SIMULATION

Before turning our attention to the main part of the results, it is useful to

point out a number of constructional details regarding the analysis schemes. The

following restrained function were used to generate what we believe could be typical

situation of incomplete dispersion. By using them, the different generation systems

are appropriately designated:
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Case 1.

x^ = rand(seed) ;

y^ = rand(seed);

Zj = rand(seed) ;

dJZ <. x^ <. L^- djz

dJZ ^ y, ^ Ly - d^/2 (4. 1)

dJZ ^ z^ ^ L^- d^/2

By using random number generator (i.e. rand(seed) ) in the simulation, the

central position of each sphere in the structure is randomly arranged. This

attempt designed a good mbcture which based on a microstructure similar to

that shown in Fig.2(c).

Case 2.

If the sphere (x;, y,, z;) satisfy this equation:

(x, - x, )2 + (y, - Yo )2 + (^ - z, )2 = 5d,^ (4. 2)

this coming sphere will be considered as thermoplastic powder particle where

(x,, y;, z,) is generated by using Eq. (4. 1), (xo, yo, Zg) is the coordinates of a

thermoplastic powder particle.

This condition simulates a situation where the filler powder is blended with a

thermoplastic powder( the ratio of dp on d^^n is about 5 ). The thermoplastic
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powder particles were then removed from the set as they would become part

of the continuous phase. Actually, we often study this case of which the

properties are influenced by the particle size ratio and volume fraction.

Case 3.

R = (x^ - x^}2 + (y^ - y^)2 + (z^ - z^) (4. 3)

if R ^ S^

if J? s S,

restore this coming sphere (x^, y ̂ , Zj)

remove this coining sphere(x^, y^, z^)

where Sg is the size of the segregation, of which the coordinates are (x^y^z^).

This situation would occur in the early stages of the filler powder being

gradually incorporated into the molten matrbc.

Case 4.

If the coming sphere (x,, y, ) satisfy these conditions:

0 $x^ ^ 70; 0 ^ y^ ^70

130 ^ x^ ^ 200; 130 ^ y^ $ 200

(4. 4)

(4. 5)
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It can not be accepted in the structure. These restrained functions is for

generating the extreme cases of poor mbdng which was a typical agglomerate

observed on the fracture surface of a composite containing glass spheres (

cited from Ref[10] ).

To illustrate the microstructure of designed structures, the Figure 19 shows the

arrangements of circles when the spheres in the polydisperse structures are sectioned

by horizontal plane. The Figure 19(a), (b), (c) and (d) are corresponded to Case 1,

Case 2, Case 3 and Case 4, respectively, in which the volume fraction might be varied

from 5% to 20%.
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4.2 RESULTS OF THE STATISTICAL EVALUATION

The data studied in this work can be classified into the geometrical parameters

related to a cross-section of observation, which indicate the arrangement of circles

in the sectional view, the data regarding the number of sphere in the cross-section of

observation. The examination of the proposed index of mfadng is the major concern

in the present section.

4.2.1 THE PROPOSED INDEX OF MIXING

The following method is proposed to assess the state ofmbcedness of spherical

filler in a matrix. The collection of a cross-section for observation is cut through the

simulated cube. Then by measuring the distance between the centre of each circle

appearing in the picture and the centre of its nearest neighbour, we will find out the

arrangement of filler particles.

li

0 o

0 o
0

0°.

0 0

0'

0^0^-
di "^0 ' °C

^"' o 0 Q

.

o"o/.ooo0
0 ° ° 0 °^ ^

Oo n n^ o0 o"
0 ~ o .0

0

0 0

Fig.20 Illustration of the measurement of 1, in the cross-section of observation.
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The proposed index of mucing is defined as follows:

K-l- IL",- Ll
L,

(4. 6)

where

N

L =^ 1, /N
i=l

2=1, 2,..,N (4. 7)

J

Here, K presents the level of dispersion JD^on-ynifonn_ stnjcture. which, has s^^^

volume_fraction and particle size distribution in the uniform/structure as well as the

scales of scrutiny are also identical, 1; is the minimum distance between two circle

centres while one of these two circles is selected as a reference, L is the mean value

of the minimum distance between a reference circle and each circle in a section of

observation after all circles are consequentially chosen as the reference circle, Ly is

the same value of L measured from a uniform structure.

The index of mbcing, K, varies from 0; all filler particles remain in the form

of agglomerates, to 1; no agglomerate exists in the compound and the dispersion

corresponds to spheres randomly distributed in space.

K

poorest dispersion best dispersion

The results of L are plotted in Fig.21 to 23 for the structure with either

monosize or multisize spheres, either high or low concentration of filler.
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Fig.21 Distribution of calculated values of L in the cross-sections cut along Z-axis of

the column in the structures with polydisperse spheres, in which the volume fraction

of filler is 20%.
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Obviously, the values L of Case 1 plotted in Figure 21 and Figure 22 are

larger than the values obtained for either of 3 other cases. It is obvious that the

higher the degree of aggregation is, the smaller the value of L is.

To numerically compare the values of L shown in Fig.21, the Table 6 gives the

results of L^g^, L,,^ and L which are respectively defined as the maximum values,

the minimum value and the mean values of L appearing on each curve. Table 7

shows L^,^ L^n and L^ean appearing on each curve of Fig.22.

Table 6. Collection of the values shown in Fig.21.

iii

Case 1

4. 786

4.602

4.690

Case 2

4.611

4. 379

4.489

CaseS

4. 319

4. 186

4.248

Case 4

4.478

4.259

4.374

Table 7. Collection of the values shown in Fig.22.

u

-mi n

Case 1

5.723

5.402

Case 2

5.471

5.231

Case 3

5.208

4.958

Case 4

5.298

5.035

5. 556 5.357 5.091 5. 163
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After tabulated those values which are representative value for the estimation

of the quality of mbcing on each curve in Figure 21 and Figure 23, the dispersion state

might be distinguished by comparing the numbers. It should be noted that the

estimation of the dispersion state by using the measurement of L is available only

when the number of spheres is sufficient. As we can see, the values of L shown in

Fig.23 do not appear in such way where the values of L are calculated for the

structure filled with a large number of spheres. Also, it is very difficult to distinguish

those different structures by using the number appearing in Table 8 due to the

number of spheres is only about 200.

Table 8. Collection of the values shown in Fig. 23.

"min

Case 1

8.855

7. 369

8. 093

Case 2

8.819

7. 123

7. 911

Case 3

8. 117

6.474

7.301

Case 4

7.799

6.617

7.317

Since we had all results of the measurement L shown in Figure 21 to Figure

23, the values of K are determined in correspondence with the same position of

sectional plane in each simulated structure and plotted in the Figure 24 to the Figure

33. Each curve is made up of 50 data points, K, evenly spaced along the length of the

column. In order to identify the "goodness of mbcing" for the different cases, however,

the L value of each simulated non-uniform structure is substitute into Eq. (4. 6) and
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Table 9. Collection of the values shown in the Figure 24 to Figure 33.

Case 1

0. 983771Kmean - I

Kmean - II

K,,, - III 0. 951102

Case 2

0.961045

0.960608

0.950452

Case 3

0.909219

0.913737

0.893567

Case 4

0.931542

0.928257

0.871505

I: Calculated results for the polydisperse structure in which the volume

concentration of filler is 20% ( See Figure 24 to Figure 27 ).

II: Calculated results for the monosize structure in which the volume

concentration of filler is 20% ( See Figure 28 to Figure 30 ).

Ill: Calculated results for the polydisperse structure in which the volume

concentration of filler is 5% ( See Figure 31 to Figure 33 ).

Eq. (4, 7). Table 9 shows the results of K^ggn which represents the mean value of K

appearing in the igure 24 to Figure 33.

As is seen apparent from the Fig.24 to Fig.33 and Table 9, the overall

performance of mucing is indicated. The better of the state of mixing is, the larger the

value of K is. More simply, if the reader can superimpose each curve of different case

in Fig.24 to Fig.33 respectively, the difference between the curves is shown directly.

The profile in Fig.24 is the result for the comparison of two uniform structure, which

is significant to estimate the "goodness of mixing".
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Fig.24 Examination of the proposed index of mixing in an uniform structure with

polydisperse spheres, in which the volume fraction of filler is 20%.
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4.2.2 THE KOLMOGOROV TEST

Another relevant test of the "goodness of mfadng" is the Kolmogorov test,

which is suggested by Eq. (3. 2), Eg(3. 3) and Eq. (3. 4). Fig.32 to 35 show the results

of test, in which the value of Case 5 is theoretically proposed as F(x) = F(x) for the
Kolmogorov test. In fact, detailed examination of the actual data of the structures

reveals that none of the 5 value might be zero. The Kolmogorov test profiles describe

the variation of 5 ( see Eq.(3.2) on the different structures. Fig.34 presents the

section of observation with width, w, and length, h. The calculation of 5 could be

explained in this form:

oo. oo_°, o^0
'P_oo:°^06^
&^0^)_0^

^0^ o^Ol^O^O
°nooo°oi9n?0

w

Fig.34 Illustration of the measurements in the Kolmogorov Test.

We examined the Kolmogorov Test by using Eq.(3.3) and Eq. (3.4) only for the
polydisperse structures, in which the volume fraction of filler is 20%. The results

shown in Figure 35 to Figure 38 effectively corresponds to the evaluation of

dispersion quality. As expected, the better the quality of mixing is, the smaller the
value of 5 is.
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volume fraction of filler is 20%.
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4.2.3 OTHER MEASUREMENTS

Since many sets of measurements are used to characterize the state of

dispersion [2, 3, 8, 10, 21, 34, 38, 39], we selected some parameters related to the sectional

cuts, such as the frequency of the variance of the distance between the centre of any

spheres in the section of observation, the frequency of spacing distance and the

surface area occupied by spheres in many chosen sections.

Fig.39 is the histograms of data S,2, which is the variance of the distance, !"

while selected rth sphere as a reference sphere. From the values shown in Fig.39 we

can calculate the average and the variance for the whole set of data. The average will

be the same as that calculated when the data grouped into different groups. But the

variance will not be the same. The histogram for these data is a set of rectangles in

which the height represents the frequency of the variance in each measurements S,2.

This pattern is observed in many, but not all, types of measurements. That is,

measurements near the centre or average of the distribution occur most frequently,

and measurements near the extremes are relatively few. To illustrate the distributions

of frequency whether normal distribution, we made the greatest use of the arithmetic

mean and variance which is an important approach. An estimation based on the

Eq. (3. 8) and Eq. (3. 9) has been carried out in chapter 3. The evaluation of the curve

for uniform structure fit well at 95% level.
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volume fraction of filler is 20%.
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Fig. 40 and 41, respectively, presents the mean spacing distance a based on the

Eq. (3.5) and the surface area A based on Eq. (3.6) occupied by spheres in the section

cut from Z-axis of the column of the structure with multisize spheres. An estimation

based on the statistical method has been carried out in our practice. But the

evaluation of the curve doest not show reasonable results. It can in part be explained

on the lack of the number of samples required.

To combine the measurements ( !" a and A ), the state of mmng might be

estimated and shown a significant properties. In this work, the results of these

statistical measurements do not satisfy our requirement to distinguish an unmixed

state and a perfectly mixed state. One of the reasons is that it has to consume huge

computing time to get a good result in which the difference among four cases can be

discernible.
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4.3 DISCUSSION 

4.3.1 THE EFFECT OF THE NUMBER OF SPHERES 

For all systems investigated we have observed the number of spheres in the 

section of observation plays an important role. It is evident that the sample with low 

concentration can not provide useful information to distinguish the state of dispersion 

in the different structure. Because there are no sufficient composition in all sectional 

plane, so it is impossible to identify the different structure by using these. As we can 

see, the value of L tends to be a constant value with an increase in the density of 

concentration ( see Fig.21 and Fig.22 ). By contraries, it is not stable when the density 

of concentration decrease ( see Fig.23 ) due to the number of spheres is only 200. 

4.3.2 THE EFFECT OF THE PARTICLE SIZE DISTRIBUTION 

Padang a number of various sizes of spheres is executive in our practice. It 

appears likely that in the present study, the particle size distribution do not affects 

the assessment of the state of dispersion. This is also reflected not only one kind of 

particle size distribution. Those data support the conclusion based on a plenty of 

trying time of simulation. As expected, similar trends in Fig.21 and 22 are observed 

and so on. 
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4.3.3 THE PERFORMANCE OF DIFFERENT SIMULATED STRUCTURE 

The results which have been occurred with 3 different non-uniform structure 

are similarly presented, because we only concerned the estimation of uniformity in 

a mixture. This, however, is believed ta have limitation of the recognition of 3 

different non-uniform structure. In order ta distinguish those non-uniform structure, 

there are many other parameters ta select [6,8,10,30]. 

4.3.4 THE WALL EFFECT 

One natural question which might arise at this time is why the value near the 

edge of column is changed sharply than the value in the centre of column. That is 

because of the wall effects, that is, the relatively high porosity near a wall, on the 

geometrical characteristics. 



CHAPTERS 

CONCLUDING REMARKS 

This chapter is devoted to a general discussion of the results obtained in the 

previous chapter, and to the description of some tapies remaining further 

investigation. 

As already mentioned, the method and conditions of preparation have a 

fundamental effect on dispersion quality in the area of filler concentrates. Bence, it 

is ever important to characterize the phase morphology in order to understand the 

correlation between mixing process and compound properties. A study of the 

statistical evaluation of the uniformity of mixtures can provide useful guidance in the 

design of a mixing process. Such a study would have direct practical applications 

whenever a consistent and high quality mixture is required. 
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We have carried out a systematic study of the dispersion state of filler in the 

simulated mixtures which were filled by bard spheres with two particle size 

distributions. Based on our results of geometric studies of mixing behaviour of several 

simulated mixtures, a set of characteristics for the estimation of the state of 

dispersion were given in chapter 4. From the present work, the conclusions can be 

summarized as follows: 

* 

* 

* 

The proposed index of mixing, K, bas been determined, is related to the 

fluctuation in the mean value of the distance between the nearest-neighbour 

particles on the sections of observation. This fonction was introduced to 

account for characterizing the level of dispersion of fillers. The higher the 

value of K is , the better the quality of mixing is. This index is a very good 

indicator of "goodness of mixing", which provides reasonable information of 

the state of mixing in the structure. 

Our data has shown the Kolmogorov test index is well applied to the 

characterization of the simulated mixture as well as the proposed index of 

mixing. The threshold value which is compared with the one of non uniform 

structure must be the smallest if the mixture is uniform. The advantage of the 

Kolmogorov test is its simplicity. The computational time is negligible. 

ln our experience, a sufficiently large numbers of samples is desired. The 

number of spheres in each section of observation should be at least 500. 

Otherwise, it fails to distinguish between uniform and non-uniform states 



* 

* 

* 
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The procedure of the evaluation of other characteristics such as the 

distribution of mean spacing distance( a ), the occupied surface area( A ) in 

the sections of observation are shown in Chapter 4. 

The combination of the nucleation model and Monte Carlo technique 

appears ta be an effective method for the simulation of hard sphere packing, 

but it is less effective in producing dense random packings. In our study, an 

approach ta build a 3D packing simulator was made. The over all packing 

density in random structure is approximately 32%. The computer method 

gives the sphere position with great precision so that the results obtained from 

simulation model are adequate to predict the state of filled mixtures. 

Required CPU time for the calculation was presented. The developed 

simulation model was proved ta be effective for three dimensional simulation 

of packings up ta about 100,000 spheres. 

As a conclusion we can note the ultimate applications of the simulation code 

described here provide strong motivation for its development and for its detailed 

description. These calculations permit the prediction of the state of mixing. The 

introduction of large number of spheres considered as the population in statistical 

evaluation can bring fully signifying results. Future developments will include studying 

the simulation of high density (Vr > 52%) filled structure. Modification of the 

program to evaluate more parameters which can use to predict the state of 

dispersion. Undoubtedly, other experimental applications can be considered. 
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