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Building Domain-Specific Machine Learning Workflows: A Conceptual
Framework for the State-of-the-Practice

BENTLEY JAMES OAKES, Département de génie informatique et génie logiciel, Polytechnique Montréeal, Canada

MICHALIS FAMELIS, Département d’informatique et de recherche opérationnelle, Université de Montréal, Canada

HOUARI SAHRAOUI, Département d’informatique et de recherche opérationnelle, Université de Montréal, Canada

Domain experts are increasingly employing machine learning to solve their domain-specific problems. This article presents to software
engineering researchers the six key challenges that a domain expert faces in addressing their problem with a computational workflow,
and the underlying executable implementation. These challenges arise out of our conceptual framework which presents the “route” of
transformations that a domain expert may choose to take while developing their solution.

To ground our conceptual framework in the state-of-the-practice, this article discusses a selection of available textual and graphical
workflow systems and their support for the transformations described in our framework. Example studies from the literature in various
domains are also examined to highlight the tools used by the domain experts as well as a classification of the domain-specificity and
machine learning usage of their problem, workflow, and implementation.

The state-of-the-practice informs our discussion of the six key challenges, where we identify which challenges and transformations
are not sufficiently addressed by available tools. We also suggest possible research directions for software engineering researchers to
increase the automation of these tools and disseminate best-practice techniques between software engineering and various scientific
domains.

CCS Concepts: • Computing methodologies→ Machine learning; Knowledge representation and reasoning.

Additional Key Words and Phrases: computational workflow, workflow composition, domain experts, machine learning, machine
learning pipelines, software engineering framework
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1 INTRODUCTION

The past two decades have seen machine learning algorithms, especially deep learning, permeate throughout every
scientific, engineering, and business domain to enable new techniques and solve complex challenges. One example of

Copyright Authors 2023. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The
definitive version was published in ACM Transactions on Software Engineering and Methodology, https://doi.org/10.1145/3638243.
Authors’ addresses: Bentley James Oakes, bentley.oakes@polymtl.ca, Département de génie informatique et génie logiciel, Polytechnique Montréeal,
Montréal, Canada; Michalis Famelis, michalis.famelis@umontreal.ca, Département d’informatique et de recherche opérationnelle, Université de Montréal,
Montréal, Canada; Houari Sahraoui, houari.sahraoui@umontreal.ca, Département d’informatique et de recherche opérationnelle, Université de Montréal,
Montréal, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0001-7558-1434
HTTPS://ORCID.ORG/0000-0003-3545-0274
HTTPS://ORCID.ORG/0000-0001-6304-9926
https://doi.org/10.1145/3638243
https://doi.org/10.1145/3638243
https://orcid.org/0000-0001-7558-1434
https://orcid.org/0000-0003-3545-0274
https://orcid.org/0000-0001-6304-9926


2 Bentley James Oakes, Michalis Famelis, and Houari Sahraoui

many is the recent solving of the long-standing protein folding problem, which focuses on how a protein will fold in
three-dimensional space given its one-dimensional representation [67].

The enormous power offered by current machine learning techniques is therefore of great interest to stakeholders
across all domains. However, utilising these techniques often requires a user who is an expert in their own domain
to gain proficiency in not only the concepts of machine learning but also the programming abilities used to call the
low-level libraries. This is undesirable as the domain expert would like to reason about concepts and terms that are in
their own domain. For example, the literature on domain-specific languages shows that solving a problem in the problem
domain is more efficient than solving it in the solution domain [68, 127].

Recently, the rise of low-code platforms partially addresses this issue by raising the level of abstraction from writing
code to interactively defining procedures and GUIs [14, 18]. A domain expert (or “citizen developer”) is thus assisted to
build applications or computations using an easy-to-use and easy-to-deploy interface. The domain expert may also be
able to select domain-specific components which directly address concerns in their domain such as IoT [62], or machine

learning components to simplify machine learning tasks.

Research Problem. In this article, we focus on this intersection of domain experts, low-code solutions, and machine

learning. Specifically, we are interested in the flow-based [92] nature of workflows, which are the typical presentation of
computations in low-code platforms and scientific computing frameworks. That is, these workflows are composed of
computational blocks arranged in a graph structure with the edges denoting data or control dependencies. We note that
this representation perfectly matches with the common notion of a machine learning pipeline where data is ingested,
cleaned, and trained upon to produce a machine learning model [13].

The research question that arises is thus: Given a domain expert and a domain-specific (DS) problem, what are the

techniques required such that a deployable workflow solution involving ML can be easily obtained?

Contributions. Our main contribution to address this research question is a conceptual framework to map out the tools
and techniques for solving a DS problem using a workflow which involves ML, where that workflow is then deployed
into an executable implementation. This framework illustrates that there are multiple choices or routes that a domain
expert may choose from to obtain an executable implementation from their problem. For example, a domain expert
may wish to first consult an expert mapping to determine how the problem should be structured in a ML representation,
before they construct a workflow by manually selecting suitable components from a repository.

These three layers are divided into regions, where problems, workflows, and implementations are organised by the two
dimensions of domain-specificity and complexity of machine learning. The choices of the domain expert can then be
seen as transformations between different regions of our conceptual framework. These transformations are phrased as
interesting challenges which a domain expert who wishes to use machine learning must overcome. These challenges
are further explained in Section 3.2.

In other words, we attempt to organise a) the meaning of, and b) tools and techniques such that a domain expert can:

• Map a DS problem to a form suitable for ML
• Obtain a solution workflow for a DS and/or ML problem
• Experiment with ML tools and techniques within a workflow
• Add DS knowledge to improve ML performance (e.g., feature engineering)
• Produce an implementation from a workflow which is well-suited for a domain expert (in terms of scalability, DS
tooling, etc.)

Manuscript submitted to ACM



Building Domain-Specific Machine Learning Workflows 3

• Extract a workflow from an existing implementation (code, Jupyter notebook)

For example, the first challenge is to assist the domain expert in mapping their problem to a ML solution, such that
the barrier to understanding the ML concepts is reduced. We have identified that this mapping is likely to be performed
through formal reasoning, expert mapping, or a data-driven approach. Huang et al. describe such an expert mapping in
the domain of genomics [61]. Their work assists genomics researchers by mapping drug and tissue structures from the
domain into forms suitable for ML, defining the problem as a ML problem, and recommending suitable ML techniques
for solving the ML problem.

To ground the above framework and challenges, we discuss some state-of-the-practice tools which cater to both
domain experts and the use of machine learning. This provides insights into the possibilities for providing assistance, and
grounds the transformations in our framework. Third, we present six example studies from the literature from different
fields, where the study includes the use of machine learning. We discuss the tools the authors utilised and present
a rough categorisation of the components in their workflow, allowing us to infer the route through our framework
that the domain experts have taken. We also present a discussion concerning the software engineering challenges
raised, and future directions for each of these challenges. To encourage the adoption and application of this conceptual
framework, we also provide an illustrative use of our framework and potential evaluation metrics.

Overall, this article is intended for software engineering researchers as it provides an analysis of the current issues
and tools concerning the use of machine learning by domain experts. We believe this to be a strong contribution which
can form the basis for important software engineering research directions and tools in the future. In particular, we
intend for this conceptual framework to be used by researchers and tool builders to organize the transformations to be
studied and implemented in tools for domain experts.

In other words, our conceptual framework offers an explicit methodology for domain experts to obtain an implemented
solution from their problem by selecting these transformations. In this paper, we present how domain experts are
partially following this methodology by a) highlighting where transformations are not supported in current tools, and
b) describing case studies where users transform their artefacts through regions in our framework. In future work, we
hope to provide complete tool support for this conceptual framework, where the domain expert would be able to follow
this methodology in one tool ecosystem as described in our illustrative case in Section 7.4.

Article Structure. As our framework relates topics from different disciplines, Section 2 provides background on the
topics of domain-specificity, machine learning, workflows, and some workflow tools.

Our three-layer conceptual framework relating problems, solution workflows, and implementations is presented in an
overview in Section 3. Section 4 discusses each layer of this framework in turn including the transformations within
each layer. Section 5 then presents the transformations between layers. These inter-layer transformations involve
turning problems into workflows, and from workflows into an implementation.

Example studies are presented in Section 6 to detail how practitioners from various fields are employing workflow
tools and executing these transformations on their own problems. Section 7 then uses the framework as a basis for a
discussion of the opportunities and challenges for implementing and automating the transformations in the framework.
Section 8 presents our concluding thoughts.

2 BACKGROUND

This section provides a brief background in three core topics of this article: the concept of domain-specificity, machine

learning, and computational workflows.
Manuscript submitted to ACM
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2.1 Domain-Specificity

In this article, we discuss the idea of domain-specificity as relating to the concepts of a particular domain. This is relevant
throughout our framework as a) a domain expert had specific experience and insights into that domain and is less
familiar with concepts outside that domain, b) the problem the domain expert has is (partially) expressed using those
domain concepts, and c) the technical considerations for a solution such as computing platforms and tools may be
specific to that domain. In this article, domain-specificity is manifested as a cross-cutting dimension of the framework as
discussed in Section 3.1. In particular, we specify that problems, workflows, components, and implementations can be
more or less domain-specific. In other words, these elements are domain-specific when they are relevant to experts in that

domain, and not relevant to other domains.
For example, consider the domain of neuroscience which is the study of the nervous system. Relevant concepts to a

neuroscientist include neurons, signals, behaviour, activation, brain hemispheres, neural circuits, and brain damage, with
more according to the sub-field of the neuroscientist. These concepts may be formalised in an ontology1, allowing for
more precise or (semi-) automated reasoning about the concepts and their connections.

Along with these concepts, the data examined by this expert is highly specific to the domain. In neuroscience, this
can include processing of functional Magnetic Resonance Imaging (fMRI) files requiring specialised techniques to
handle motion correction (correcting the movement of the subject within the scanner) and smoothing of the data (to
average out the noise present in the measurement). Finally, the datasets, tools, and computational platforms available to
a neuroscientist are highly domain-specific such as repositories of mouse brain scans2.

As a domain expert is most knowledgeable about concepts from their domains, we follow the approach of domain-

specific modelling in declaring that problems should be solved at a high level of abstraction using domain-specific
concepts [68, 127]. That is, the domain expert should use domain-specific languages instead of general programming
languages, and there should be a layered approach when possible to hide technical and implementation details. This
approach has been shown to lower the cognitive workload of learning new concepts and resulting in increased
productivity [127]. In the context of this article, we are interested in defining possible tool support such that the domain
expert can describe their problem and workflow using domain-specific concepts.

2.2 Machine Learning

Machine learning (ML) can be summarised as “programming computers to optimise a performance criterion using
example data or past experience” [4]. That is, based on a collection of data and experiences, ML seeks to automatically
create models capable of relating output for particular inputs without requiring a programmer to directly implement the
steps for computing such outputs. These definitions therefore capture many applications ranging from interpolating
based on a simple linear regression up to automated driving by using visual data interpreted using neural networks.

One way of categorising ML approaches is into three approaches: supervised learning, unsupervised learning, and
reinforcement learning. In supervised learning, the supervisor provides inputs and labelled outputs, and the technique
must learn the mapping between inputs and outputs. An example would be to train a linear regression of variables,
producing a classifier which can predict whether a tissue sample is a tumor or not [47], or constructing a similarity
function such that related objects can be found. In unsupervised learning, the technique learns without provided labels.
This can offer insights into the structure of the domain such as uncovering related clusters of data or outliers. In

1See https://github.com/SciCrunch/NIF-Ontology for an example.
2For example: https://neuinfo.org/.
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reinforcement learning, the intelligent agent is rewarded with a defined reward function. This allows the agent to explore
possible actions and receive automated feedback.

A ML model must be trained before it can be used for reasoning. For example, consider the scenario of training a
model for a “line-of-best-fit” (linear regression). Once the data points have been loaded and any cleaning necessary
performed, the data is then commonly divided into training and test sets. This allows for an unbiased measure of error
when testing, as the model has not “seen” the testing data beforehand. The linear regression is then learned by a suitable
algorithm, and the linear regression is the produced ML model ready for use. When this model is used it is fed a new
piece of data as input, and it will predict a particular output.

Many libraries are available which implement some form of ML. For example, scikit-learn3 is a popular Python
module which offers a high-level API for ML techniques, while Keras4 provides an API for directly creating neural
networks by constructing each layer into a model. ML techniques are also available directly within academic and
scientific tools such as the MATLAB Statistics and Machine Learning toolbox5.

Machine Learning Pipelines. In ML, the term pipeline is commonly used to denote the steps involved in the training and
reasoning processes. For example, data can be involved in a linear flow of loading, filtering, cleaning, splitting (into a
training and testing set), and trained upon [13].

A similar linear flow is also present for the neural networks used in deep learning. The input data passes through
layers in this network which recognise patterns in the input data, store relationships in the weights between nodes in
inner layers, and then produce output values or categories.

Thus, ML pipelines are a one-to-one match to the workflow formalism we examine in this article. This unification of
structure is important when we discuss workflows which involve components from both a particular scientific domain
as well as ML components.

2.3 Computational Workflows

General workflows have existed for many years, especially in the manufacturing domain. In this article, we focus on
computational workflows which define the steps that a computational device follows to produce results.

In particular, we are interested in workflows which represent flow-based programming by containing discrete steps
representing computational steps [92]. This can be represented by a directed-acyclic graph (DAG) of computational
nodes connected by control and data dependencies. Note that in current workflow systems this restriction on acyclic
graphs is relaxed, as tools may wish to encode control flow structures such as loops over input files.

This concept of data “flowing” through a workflow is quite a natural structure for many computations we examine
in this article. Indeed, some domains may lean into the plumbing metaphor and refer to the workflow as a “pipeline”.
Lamprecht et al. state that, “Another common, more differentiating view is that pipelines are purely computational and
as such a subset of the more general notion of workflows, which can also involve a human element" [78]. To clarify the
terminology in this article, we only discuss computational workflows. That is, the term ‘workflow’ in this article do not
contain human elements and can therefore be equated to pipelines.

3https://scikit-learn.org
4https://keras.io
5https://www.mathworks.com/products/statistics.html
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2.3.1 Workflow Formalisms and Standards. Workflows can be represented in the simplest form as a connected and
directed graph, where nodes in the graph are computations and the edges are dependencies of data or control. Extending
beyond this representation are well-known formalisms which can also represent workflows.

For example, Petri Nets [110] can allow for formal verification of properties such as liveness for the system, or a
Formalism Transformation Graph + Process Model (FTG+PM) can record the formalisms and transformations employed
in the workflow [22]. Another well-known workflow standard is the Business Process Model and Notation (BPMN) [23]
to formalise both automatic and manual workflows within an organisation.

Bringing together both Petri Nets and BPMN is Yet Another Workflow Language (YAWL)6. This workflow language
from the 2000’s takes Petri Nets as a starting point and adds extensions for commonly-seen workflow patterns [124].
The formal semantics of YAWL allow for verification of workflow properties such as soundness (ensuring an option to

complete, proper completion, and no dead transitions) [136].
There are an overwhelming number of workflow management systems available for use. Amstutz et al. maintain an

incomplete listing of more than 300 workflow systems [5]. These systems can be stand-alone or integrated into various
platforms7. More recently, a number of workflow standards have been developed in various sub-fields but none has
yet established dominance over the others [27]. This may soon change with convergence on the Common Workflow
Language (CWL)8.

CWL originated in the bioinformatics community and offers a declarative workflow definition language (a DSL) that
can be written in JSON or YAML to be executed by a workflow execution engine [26]. Of particular interest to this
report is that DS attributes can be added to workflows and their steps as needed by users, allowing for a great deal of
flexibility and discoverability for domain experts. The standard is becoming established throughout multiple domains
and has a number of implementing tools, including upcoming support in the graphical Galaxy workflow tool.

2.3.2 Workflow Management Considerations. The large scale of scientific data and the reproducibility requirements of
scientific processes have encouraged the growth ofworkflowmanagement systemswithin various scientific domains [115].
For example, ensuring that data sources and computations follow the well-known principles of Findable, Accessible,
Interoperable, Reusable (FAIR) [131] demands a comprehensive management system. The life sciences in particular have
a rich history of workflow systems [78, 84, 103, 106, 133].

As workflows explicitly declare the sequence of computations they perform, they assist in the production of
reproducible results [121, 133]. That is, they assist to reproduce the results of another experiment [63]. For example, the
discrete nature of workflow components means that components can be tagged with provenance information [109] and
placed into containers such as Docker containers9. This allows for easily accessible, self-contained units which can be
accessed through repositories and placed into dependency management systems [34].

Many factors can influence whether a computational process is reproducible, and workflows are only one step
towards full reproducibility. For example, Digan et al. discuss 40 reproducibility features sourced from recommendations
and clinical usages of workflows in the natural language processing (NLP) domain [36]. Mora-Cantallops et al. discuss
reproducibility in the context of artificial intelligence/ML [91].

6https://yawlfoundation.github.io/
7These workflows are commonly referred to as “visual scripting”. For example, https://unity.com/products/unity-visual-scripting, https://www.
blackmagicdesign.com/ca/products/davinciresolve/fusion, and https://lensstudio.snapchat.com/guides/visual-scripting/. Lens Studio is of particular
interest with the integration of ML algorithms within the workflow.
8https://www.commonwl.org
9https://www.docker.com
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There are also many other “ilities” relevant for domain experts to use workflow systems. For example, Wratten et

al. evaluate twelve bioinformatic workflow managers using the categories of ease of use, expressiveness, portability,
scalability, learning resources, and pipeline initiatives [133]. Admed et al mentionmodularity and reproducibility amongst
others [2], while Kortelainen adds the important characteristics of licensing and maturity [71]. Other factors may
be connection to specialised tools or computing platforms such as the Hermes middleware platform for increased
scalability [70].

2.4 Workflow Tools and Management Systems

This section will touch upon some current workflow systems and report some of the interesting features and considera-
tions implemented for their use by domain experts.

2.4.1 Text-Based. Current text-based workflow systems seem to follow two approaches: either the system is imple-
mented as a module/library for a general programming language such as Python, or the system ingests a standard
markup language/DSL.

Language Module. A common implementation strategy for workflow tools is to leverage the user’s knowledge of a
general programming language. Commonly, this is Python due to its widespread usage.

For example, luigi is a tool from Spotify10 which allows a user to build up a dependency graph of Tasks which
interact with Target files. These concepts are defined within Python code and the Luigi API offers access to common
database/cloud tools. A web-based scheduler and visualiser is also available for monitoring long-running workflows.

Luigi was extended by Lampa et al. into SciLuigi [76] for scientific workflow requirements such as a separation of
the workflow and the tasks, audit support, and support for high-performance computing. The authors then developed
SciPipe11 in the Go programming language for enhanced type-safety and performance [77].

Workflow systems defined as language modules can also be tailored to particular domains, further reducing the
amount of code a domain expert must write to use the workflows.

For example, the automate tool12 for computational materials science [88] offers workflows to copy and customise
based on specific analysis of materials, and an API to the analysis tools themselves. atomate uses the FireWorks workflow
software which provides provence and reporting support for high-throughput computations [65].

Another example of a domain-specific library for workflows is the nipype Python software package13 to define
workflows in neuroimaging [57]. The intention here is to define components commonly used in neuroscience and have
them as part of the same workflow. This allows domain experts who know Python to quickly build a workflow of
neuroscience-specific tools.

Moving one level of abstraction higher, fMRIPrep14 is an automated workflow built on top of nipype [39, 40]. fMRIPrep
adapts to the input data automatically to performing the appropriate preprocessing steps for functional magnetic
resonance imaging (fMRI), such as head motion correction and skull stripping. This assists in providing replicable
results for neuroimaging studies both in terms of computation and by providing “boilerplate” natural language text for
insertion into a research article’s method section.

10https://github.com/spotify/luigi
11https://github.com/scipipe/scipipe
12https://atomate.org
13https://nipype.readthedocs.io/en/latest/
14https://fmriprep.org/en/stable/
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Replicable results are also important when considering the development of MLmodels. The emerging field of Machine
Learning Ops (MLOps) tackles the automation, provenance, performance, and other aspects of ML in a workflow-based
form [107]. The ZenML Python library15 provides a high-level API to machine learning tasks and tools, while offering
workflow management features such as versioning, scheduling, and visualisation.

Markup or Domain-Specific Language. The other workflow specification commonly seen in workflow management
systems is to have a definition written in either a markup language (such as XML YAML) or a custom DSL for the
workflow itself.

Compi16 is a framework to not only build and run workflows, but also deploy the workflows as command-line
applications or containerised as Docker containers [85]. That is, once a domain expert has built a workflow, Compi
packages the workflow and its dependencies can be easily shared to other domain experts to use as a command-line
application. Compi uses the markup language XML to define the workflows as the creators López-Fernández et al. argue
that a DSL for defining workflows is “less interoperable, being difficult to produce or consume from languages other
than the one on which the DSL is based”, and that XML is “easy to validate syntactically and semantically through
schemas” [85]. A repository of Compi workflows is available through the Compi hub project17 which aims to provide
community exploration of the workflow, including automatic visualisation of the workflow tasks and links to sample
input data [99].

Nextflow18 is a workflow management system “designed specifically for bioinformaticians familiar with program-
ming” [34]. Workflows are designed in a Bash script-like DSL to manage data flow between different workflow
components. The Nextflow tool itself has support for obtaining and setting up Docker containers to allow for greater
reproducibility of workflows.

Nextflow also has an active ecosystem providing validated open-source pipelines. In particular, the nf-core effort19 is
a community-maintained effort to develop “collaborative, peer-reviewed, best-practice analysis pipelines”[42]. Only
one pipeline per data type/analysis is allowed, and all pipelines require quality checks such as a common structure,
MIT licensing, continuous integration tests, linting, and appropriate documentation.

2.4.2 Graphical. With the rise of “low-code” platforms, there are an increasing number of graphical workflow systems
available [14]. A prominent example of this is the domain of business applications, where providers such as outsystems20

and Mendix21 provide graphical interfaces to create applications which can involve ML.
A workflow system straddling the domain-specific and business domains is the Konstanz Information Miner (KN-

IME) [11]. From the University of Konstanz circa 2007, this framework originally focused on pharmaceutical applica-
tions22 but has now scaled up for use within large-scale enterprises. KNIME is based on the Eclipse platform and offers
a component library and canvas for drag-and-drop connection of nodes. KNIME also offers a repository for hundreds of
components and workflows available for use with a selection of curated components available23. Also relevant to this

15https://zenml.io/
16http://sing-group.org/compi/
17https://sing-group.org/compihub/explore
18https://www.nextflow.io/
19https://nf-co.re/
20https://www.outsystems.com/
21https://www.mendix.com
22https://www.knime.com/knime-open-source-story
23https://hub.knime.com/
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article is a feature within KNIME called the “Workflow Coach”. From KNIME community usage statistics, this panel is
able to recommend the next component to use in the workflow24.

The Workflow Instance Generation and Selection tool (WINGS) 25 focuses on semantic workflows, where each input
and component has semantic information attached [53]. This information is represented in the form of triples which
allows for domain-specific information to be used to select workflow components. WINGS can use this semantic
information to select components, input datasets, and parameter values [52].

Fig. 1. Example Node-RED flow to send an email when the weather is nice and a step counter is low. Figure modified from [80].

Node-RED. The Node-RED tool is a web-based editor for creating Internet of Things (IoT) workflows [25]. Nodes
provide built-in functionality or can be customised by adding Javascript code. Figure 1 shows an example flow to remind
a user to exercise. A node communicates with a weather service to obtain the temperature. If this value is above 15,
then the flow communicates with an activity tracker. If this reports that a user’s step count is low, then an email is sent.
Flows can be deployed either to the user’s local machine or many other embedded devices such as Raspberry PIs26.
Nodes and workflows can be shared in an online repository27, allowing users to enhance their workflows with new
nodes28 and sub-workflows.

Orange Tool. The Orange tool offers visual scripting of data mining techniques including machine learning operators
and visualisation capabilities [31, 32]. Originating out of a bioinformatics research group, Orange focuses on providing
an easy-to-learn data science tool. A canvas is provided for users to drag-and-drop nodes from a node library, where
typed connections then aid users in assembling a workflow. Figure 2 shows an example workflow where data is
visualised before clustering occurs with K-Means [102]. Note the option pane for K-Means allowing a user to tune the
parameters. The clustering is then visualised.

Orange has two features which improve the reuse of the tool and its workflows. First is the selection of workflows
available on the Orange website29. This offers 20 sample workflows for performing common data science tasks such as
performing principal component analysis. The second feature is the robust add-on support which provides new nodes
for workflows (which are called “widgets” in Orange). For example, currently there are add-ons for bioinformatics,
education, and explainable AI available from within Orange itself. Users can also create their own nodes to create DS
workflows [54, 123].

Galaxy. TheGalaxy project is a web-based entire computational workbench for developing biomedical workflows [66].
It has spread to other fields as well with over 5000 publications citing Galaxy30. The workbench heavily focuses on

24See https://www.knime.com/blog/the-wisdom-of-the-knime-crowd-the-knime-workflow-coach
25https://www.wings-workflows.org/
26https://projects.raspberrypi.org/en/projects/getting-started-with-node-red/
27https://flows.nodered.org/
28For example, ML nodes: https://flows.nodered.org/node/node-red-contrib-machine-learning.
29https://orangedatamining.com/workflows/
30See https://galaxyproject.eu/citations for publications focused on just one online instance of the workbench.
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Fig. 2. Example Orange workflow to visualise data, cluster it with K-Means, and then show the clustering [102].

concerns such as reproducibility, provenance of data and tools, and sharing of workflows and learnings. Figure 3
shows a few components from a workflow for detecting urothelial (bladder) cancer, as defined in the Galaxy workflow
management tool [66].

An interesting aspect of the Galaxy project is a focus on community and specialisation. For example, there is a
main publicly-available Galaxy instance online31. However, to spread out computation costs and offer the possibility of
specialising the datasets and tools available, Galaxy can run on a user’s local or cloud machine. Furthermore, these
other Galaxy instances can be customised into different workspaces.

We highlight three recent DS specialisations of Galaxy which are publicly available online. Vandenbrouck et al.

developed a Galaxy instance for proteomics research [125], Tekman et al. provide one for “single cell omics” [120],
and Gu et al. offer a ML focus [58]. These specialisations each offer targeted DS tools, workflows, and computational
resources, allowing domain experts to quickly develop workflows.

3 OVERVIEW OF OUR FRAMEWORK

This section will provide an overview of our conceptual framework by discussing its structure, two dimensions, and
relating the framework to our challenge questions introduced in Section 1.

31https://usegalaxy.org/
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Fig. 3. A selection of a workflow described in [47], in the workflow management tool Galaxy [66].

Fig. 4. Our three-layer framework with the problem, solution workflow, and implementation spaces. Each layer is divided into four
regions along the domain-specific and complexity of machine learning dimensions.

As a summary, our conceptual framework maps out the options for a domain expert to choose from such that they
can develop a workflow-based solution to their domain-specific problem using machine learning, and ultimately obtain
a usable implementation. The framework is seen in Figure 4, separated into twelve regions through the division of
three layers and two dimensions. The three horizontal layers define the problem space, workflow solution space, and the
implementation space.

The problem space layer contains the problem of the domain expert. For example, a medical researcher may wish
to classify whether urethelial (bladder) tissue is cancerous or not, as in Section 6.3.3. The solution workflow space
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layer contains workflows which solve the problems from the upper layer. For example, Figure 3 shows a selection
of components which address this problem in the Galaxy workflow tool. The implementation space contains the
implementation details for the workflows in the middle layer. In this Galaxy example, this would be the code as executed
on the local or cloud machines. Section 4 addresses these layers in detail.

Each layer is decomposed into four regions, defined by the domain-specific (DS) andmachine learning (ML) dimensions.
Section 4 also discusses how problems, workflows, and implementations can be mapped or transformed between the
regions in a layer. Section 5 will then discuss the mappings and transformations between layers. That is, how a
problem can be mapped or transformed into a workflow, and how a workflow can be mapped or transformed into an
implementation.

Note that the term ‘transformation’ is used in this article in a broad sense, as in model-driven engineering [113].
That is, transformations have as input an artefact from one region and produce an artefact from another region. For
example, a transformation on the problem layer could map a problem in the DS problem space to the ML problem

space, representing techniques such as an expert mapping [61]. Another transformation would be a mapping between a
problem statement and a workflow which can be used to address that problem. These transformations can be either
manually-performed or automatic, and use code or pattern approaches. Their important feature is that they affect
artefacts through the additional, removal, or modification of elements.

3.1 Dimensions of the Space

This framework defines two dimensions for each layer. First is the notion of domain specificity which captures how
many DS concepts an artefact contains, and how “familiar” the artefact is to experts in that domain. Our hypothesis is
that artefacts with more domain-specific concepts should require lower cognitive complexity for the domain expert to
specify and reason about, as reported by Voelter et al. [127].

Second, the complexity of ML dimension relates to both the amount and cognitive complexity of the ML concepts or
algorithms the artefact contains. This ML dimension aims to capture the specialization and prior knowledge required
to specify and correctly configure the ML components. Our hypothesis is that tailoring the ML complexity to the
level of understanding of the domain expert will aid their modelling task [95], and avoid performance losses from
misconfiguration [137].

For example, consider an artefact from the first layer: a problem to be solved. This problem could be very generic
such as “classifying an image into two categories”. Adding domain specificity comes from adding domain knowledge to
the problem, such as the knowledge that the image is from an MRI scan of a brain, and the classification is on whether the

patient is depressed or not (see Section 6.3.1). This extra information can also have an impact on the solutions available
for the problem, such as requiring particular workflow components to process the MRI images.

The problem can also vary in how complex with regards to ML it is. For example, a domain expert unfamiliar with ML
may simply wish to classify depressed patients using a black-box ML algorithm. As the expert gains more familiarity
with ML techniques, they may desire to search the space of possible solutions. Thus, a more complex ML problem would
be the comparison of multiple ML algorithms or architectures, performing parameter optimization of the components,
or developing an ML agent using reinforcement learning techniques.

In the problem space layer, the problems are categorised based on the DS or ML concepts present. For the solution
workflow layer, this categorisation depends on the proportion of components and their configuration complexity in
the workflow, such as the number of components for processing MRI images. In the implementation space layer, this
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categorisation depends on the use of DS or ML APIs or libraries. Section 4 further discusses how the dimensions divide
up each layer in the framework.

Note that by necessity, these categorisations are fuzzy and we intentionally do not provide boundaries to these
regions or spectrums along the dimensions. Instead, we provide these dimensions to provoke reflection about the
mappings and transformations along these dimensions. That is, what does it mean to make a problem, workflow, or
implementation more domain-specific or involve more complex machine learning, and what are the techniques to do so?

Let us also note that these two dimensions are certainly not orthogonal. Specifically, machine learning is itself a
domain of interest and these two dimensions may overlap significantly depending on the problem of interest. Therefore,
let us state here that when this article refers to domains or domain experts, we refer to a non-machine learning domain.

3.2 Relation to ChallengeQuestions

As expressed in our framework, the domain expert wishes to transform their problem from their domain (the domain-

specific problem region on the top layer in Figure 4) all the way into an implementation using machine learning libraries
(the blended or machine learning implementation regions on the bottom layer). Through these transformations, the
domain expert is able to move around through different regions as shown by the example studies in Section 6, though
support may be lacking for some operations in various tools as discussed in Section 7.2. In particular, we are interested
in determining tool support for transformations enabling the most direct route from the domain-specific problem to a
blended workflow down to a blended implementation.

Here we recall the challenge questions from Section 1 and relate them to specific transformations.

Mapping a DS problem to a form suitable for ML. This challenge refers to how domain-specific problems in the
problem space can be mapped or transformed to include more ML concepts. That is, moving the problems along the ML

dimension in the problem space.

Providing a solution workflow for a DS and/or ML problem. This challenge refers to the mapping between a problem
in the problem space and a workflow in the solution workflow space. That is, moving from the top to the middle layer in
the workflow.

Allowing the domain expert to experiment with appropriate ML components in a DS workflow. This challenge refers
to moving solution workflows on the middle layer along the ML dimension through the integration of more ML
components.

Adding DS knowledge to improve ML performance. This challenge refers to moving solution workflows on the middle
layer along the DS dimension by adding new DS information or components.

Producing an implementation from a workflow which is well-suited for a domain expert. This transformation is between
the middle and bottom layers, as the workflow of the domain expert is mapped or transformed to an executable
implementation.

Extracting a workflow from an existing implementation (code or notebook). This challenge is an inverse to the previous
one, as the implementation on the bottom layer of the framework is instead transformed into a solution workflow on
the middle layer.
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Challenge Selection. These challenges therefore directly correspond to some of the intra- and inter- layer transformations
addressed next in this article. We believe these transformations are most relevant to the tools and example studies
discussed in this article, as they enable the domain expert to move from the domain-specific problem to the final
implementation.

There are a number of transformations which we do not focus on as challenges. For example, it could be possible to
make a problem, workflow, or implementation more general through transformations. While this may be appropriate for
generalizability, this goes against our focus of a domain expert utilizing machine learning. Other transformations not
highlighted as a core challenge include the modification of the implementation layer in either dimension, as we believe
this to be not relevant from the domain expert’s point of view. Finally, we have not highlighted the transformation
from the workflow layer to the problem layer. Conceptually, this transformation would take the workflow and extract
the problem it solves, such as in [35]. This process would thus be performed by workflow repository contributors, and
not the domain expert wishing to find a workflow for use.

4 LAYERS AND INTRA-LAYER TRANSFORMATIONS

This section details the three layers of our framework as shown in Figure 3: the problem space, the solution workflow

space, and the implementation space. The regions and relevant transformations within each layer are then presented.

4.1 Problem Space

The problem space is where the problem of the domain expert is formulated. For example, consider the tissue-drug
problem presented in Section 1, which can be expressed in two ways. In the domain-specific space, the problem is to
predict whether a drug will work well with a sample of tissue [61]. As a machine learning representation, this problem
becomes a numerical prediction for efficacy of the graph structure (for the drug) versus a linear string of characters (for
the genes present in the tissue). A blended version of this problem is visualised in Figure 5 where the structures for the
drug and gene are fed into ML encoders and used to make a numerical prediction related to how the drug affects the
gene.

Fig. 5. The Drug Response Prediction problem from Huang et al. [61].

4.1.1 Artefact Representation. The artefact for this layer is a problem composed of concepts. This problem may be
specified in multiple ways ranging from a simple informal statement to a complex formal representation. For example,
the problem could be specified as natural language research questions, in an ontological manner, in a textual or graphical
domain-specific language (DSL), or in a template-based, requirement-like manner.
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4.1.2 Layer Regions. In our framework, we define four regions for the problem space: General Problem, Domain-Specific

Problem, Machine Learning Problem, and Blended Problem as shown in Figures 4 and 6. These regions are defined by the
domain-specificity (DS) and machine learning (ML) dimensions as discussed in Section 3.1.

Fig. 6. A representation of the problem space, with intra-layer transformations (Section 4.1.3).

A general problem is one which does not refer to any DS concepts, nor does it refer to any ML concepts. This region
is provided for completeness as this article focuses on the other three regions.

Domain-specific problems are those that are specified in the domain of interest by experts. They involve concepts
which are specialised to that domain. In this article, the DS problem is the starting point from which the expert wishes
to solve with a workflow and finally an executable implementation.

A machine learning problem is a problem which involves a higher proportion of complex ML concepts and few DS
concepts. For example, learning how to classify objects by ingesting data from a table involves more ML concepts than DS
concepts. As mentioned in Section 3.1, a complex ML problem could involve the comparison of multiple ML classification
algorithms. An even more complex ML problem may also involve the domain expert adding advanced components (such
as deep learning, convolutional layers, and transformers), or explicitly configuring the ML components (optimising
meta-parameters for training, tuning layer sizes). We would consider these advanced problems are lying “farther” along
the ML complexity dimension. This is because these components and configuration would require extra cognitive effort
and expertise from the domain expert to correctly utilize.

A blended problem is one that contains both DS and ML concepts such as problem represented in Figure 5. This type
of problem may be ideal for the domain expert to begin with instead of a DS one, as the ML concepts can be directly
conceptualised and/or operationalised in the workflow layer. However, it already implies that the practitioners has
access to both domain and machine learning knowledge, and has studied the problem from both domains.

4.1.3 Layer Transformations. As discussed in Section 3.1, it is interesting to reason about how to transform an artefact
on each layer to make it more DS or involve more complex ML components. In other words, to make these problems
more DS/ML specific and less general.

To increase DS, a domain expert will have to encode more domain knowledge into the problem. This could be in
the form of an ontology representing formal knowledge, or by directly specifying features of interest in the domain
and their interaction with other features. For example, consider the example of classifying MRI images for whether
they are from a depressed patient or not (Section 6.3.1. These images represent the structure of a patient’s brain, and
thus the problem may include concepts related to brain structure and function. For example, the problem could shift
from general concepts (“Is this image a depressed brain or not?”) into a more domain-specific one (“Which are the brain

regions active/not active in depressed brains? What is the correlation between activated regions in a depressed brain?”, etc.).
Increasing the proportion and complexity of ML concepts is similar. A ML domain expert will identify structures and

techniques from the ML domain to cast the problem into. This may be to specify the technique(s) used for classification
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or learning, or the representation that the problem should take. This is the transformation which represents our
challenge question: mapping a DS problem to a form suitable for ML.

Direct Mapping. Transformations are also possible directly between the domain-specific and machine learning
problem regions. This transformation is how to take a problem which exists in the domain and map it to a problem in
the machine learning space, or to create a many-to-many mapping. This opens up further possibilities for insights and
implementation.

From a brief investigation of the literature, we have identified three possible techniques for mapping: expert mapping,
ontological reasoning, and data-driven approaches. The first technique represents the manual approach, while the second
and third techniques represent (semi-) automated approaches based on symbolic and data-driven reasoning.

In expert mapping, a group of experts from both the domain of interest and the machine learning domain issue
recommendations about how to map the problem. This is shown by Huang et al. where problems in genomics are
mapped to machine learning representations [61]. This is a high effort technique, but if available, will greatly assist with
workflow and implementation creation as experts will understand how their problem directly maps to an ML solution.

This expert mapping is of course possible in other domains. Aneja et al. provide a table mapping the problems
addressed in the neuro-oncology literature with the ML approach used in those papers [6]. Jablonka et al. provide
another detailed review with mention of how problems in material science were mapped to ML [64]. As explained in
Section 6.2.3, the Kaggle competition website focuses on providing ML solutions for problems. However, this mapping
knowledge is not presented explicitly and must be recovered [118].

Another technique we have identified is where ontological reasoning is performed to (semi-) automatically assist
the domain expert in obtaining an ML or blended problem. In this technique, the expert’s domain and the ML domain
would be explicitly modelled, and then a reasoner would suggest appropriate ML structures and techniques to apply to
the problem.

Existing work suggests particular data cleaning steps or ML workflow requirements based on ontological reasoning
about the characteristics of the data set or user input [51, 53, 117]. Such an approach could be used to suggest the most
appropriate ML algorithms or architectures based on the expert’s problem [78]. For example, if the domain expert wishes
to perform classification on MRI images, a reasoner could operate over medical and ML ontologies (and relationships
between) to suggest that both Convolutional Neural Networks and/or Support Vector Machines may be appropriate for
this solution. This then provides a starting point for the domain expert to acquire more knowledge or begin building
their workflow solution.

The third technique is to consider data-driven approaches, where previous examples can be generalized to provide an
answer for the domain expert. This category includes mining of previous data to provide a mapping. Another emerging
approach could involve querying a Large Language Model (LLM) to map a problem statement in natural text or a formal
representation to another layer region.

Reversing the Transformation. In principle, these transformations could be reversed. That is, a problem could be
made more general with these techniques, and a machine learning problem could be mapped to a domain-specific one.
Improving the generalisation and mapping possibilities for problems could help domain or ML experts understand how
these regions interact and how ML problems correspond to DS problems.
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4.2 Solution Workflow Space

In the second layer of our framework, we define a space of solution workflows. These workflows detail the actions
required to solve the problem defined on the upper layer.

4.2.1 Artefact Representation. The representation of these workflows is based on those described in Section 2.3 with
some available standards presented in Section 2.3.1. The core aspect is that these workflows consist of a directed
sequence of components with explicit control and/or data flow. These components represent a step or action in the
workflow, and they can be typed to enforce structure on the accepted inputs and outputs and define their semantics.

The idea with this representation is to have a unified, graph-like structure amenable for modularity, re-use, modifica-
tion, and sharing. As mentioned in Section 2.3, workflows are already common in scientific domains and structured
“pipelines” are in place in the data science/machine learning world. Therefore our conceptual framework solely focuses
on graph-like workflows as the representation for this middle layer.

4.2.2 Layer Regions. In this space, we again roughly classify workflows into four regions as shown in Figure 7.

Fig. 7. A representation of the solution workflow space, with intra-layer transformations.

A general workflow is one where there are very few domain-specific or machine learning components within the
workflow. Thus it is a catch-all category comprising those workflows not discussed below.

In our framework, a domain-specific workflow is one that has many components from the domain of interest. These
components must address a domain-specific concept which is not of interest to a general user outside of that domain.
Examples include loading a file or database with a domain-accepted structure, a computation performing a specific task
of interest to the domain, or communication with domain entities such as robotic arms.

Another interesting category of components are those that provide domain-specific visualizations. For example,
one of the case studies in this article concerns classifying the presence of urothelial (bladder) cancer based on mass

spectrometry imaging (Section 6.3.3). The set of workflows developed by the authors includes components tailored to
generate heat-map plots out of the imaging data to visualize the classification of areas of the bladder tissue, and to
understand the spectrum information that leads to a classification result [47]. Thus, these visualization components are
domain-specific as they are only relevant for this particular imaging technique. Furthermore, the domain expert should
be assisted to include these components in their workflow, as this will ease workflow development and comprehension
of the results.

As in Section 3.1, we also consider a rough spectrum where some workflows have more domain-specific components
than others. For example, one workflow may simply load data from an MRI file and visualise it, while another may
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perform filtering or spectrum analysis on the data first. This second workflow is thus more domain-specific than the
first.

Similar to our category of domain-specific workflows, a machine learning workflow is one that contains complex ML
components. Again, we state that there is a rough spectrum of these workflows from not including ML components
at all to heavily relying on complex components. An example for such an ML workflow is found in one case study
(Section 6.3.2) which contains multiple components for classifying and scoring. Here, the workflow treats the input
data without considering the domain, and the focus is on configuring and utilizing the ML components. Thus the user
is mainly reasoning about ML concepts when examining this workflow, leading to its classification as a ML workflow.

The blended workflow is one that contains numerous DS and ML components. As well, a component itself may be
labelled as blended, as it may address a DS concern but heavily utilise ML “within” the execution of the component.
We propose that this blended type of workflow is desired for a domain expert to arrive at, since the presence of these
components should raise the level of abstraction and increase the modularity and reuse of the workflow. However,
it may be preferable for a domain expert not familiar with ML to begin working with a DS workflow, and have the
workflow ‘adjusted’ to become more blended over time as they gain familiarity with ML concepts and components.
This offers the domain expert further experimentation, customisation, and optimisation possibilities.

4.2.3 Layer Transformations. We have posed two interesting questions in the introduction of this article of how to
transform a workflow along these two dimensions. That is, to identify the techniques to: a) increase the domain-specificity,
and/or b) complexity of machine learning in a workflow. These correspond to our challenge questions of: a) adding DS
knowledge to improve ML performance, and b) experimenting with ML tools and techniques within a workflow.

A first approach is to ask a domain or machine learning expert to study the workflow and identify where components
should be added or improved. Their knowledge could then be modelled and implemented for automated approaches to
detect and suggest components for use, such as that implemented by Kumar et al. [74]. These recommender systems
could therefore shift the workflow along the domain-specific or machine learning dimensions. We also note that it may
be possible to train and query a Large Language Model (LLM) to offer suitable recommendations [9, 134].

As an example of improving a workflow, consider one that loads genomic data from a table provided in a spreadsheet
for further processing. Depending on the requirements of the user, the loading components may be better replaced
with a component which is able to download up-to-date genomic data directly from a cloud repository. As mentioned
in Section 6.3.3, these domain-specific operations are available in tools like Galaxy.

Domain-specific workflows can also be utilised as a sub-workflow. For example, Sections 2.4.1 and 6.3.1 discuss the
fMRIPrep workflow which is for performing specific pre-processing for neuroscience data. Thus, a domain expert’s
workflow becomes more DS when fMRIPrep is used.

The error of ML techniques may also be lowered when DS information is used. One aspect of this is the field of feature
engineering where new data is extracted from the old to reduce the error of machine learning algorithms such as deep
learning [15]. For example, Fan et al. study the problem of marking reported software bugs as ‘valid’ or ‘invalid’ [45].
From the bug data, they extract new features such as recent number of bugs by reporter, does the bug have a code patch
attached, and bug text readability scores.

Reversing the Transformation. Just as with the layer transformations for the problem space (Section 4.1.3), these
transformations could indeed be reversed to increase the generality of the workflows. That is, to make a workflow
less DS and involve less complex or fewer ML components. This may help to increase the applicability of the workflow
across domains, however we do not consider it further.
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4.3 Implementation Space

Similar to the above layers, the implementation space is also a rough categorisation of possibilities. In our conceptual
framework, the implementation space defines the low-level result which runs on a computational device, such as
produced code or the execution of a workflow engine. For example, some workflow management tools are directly
implemented in Python, or the Orange editor (Section 2.4.2) can directly execute the workflow inside the tool.

4.3.1 Artefact Representation. In this space, the artefacts are represented as code or another machine executable format.
This may be Python code which contains calls to ML APIs, or may be the machine code executed by a workflow engine
which is directly interpreting and executing the instructions within a workflow.

These two examples are not at the same level of abstraction. However, the intention with this representation is that:
a) this code directly calls upon DS and ML APIs, and b) this code should not be written directly by a domain expert as
the level of abstraction is too low.

Fig. 8. A representation of the implementation space, with intra-layer transformations.

4.3.2 Layer Regions. Similar to the above layers, the implementation space layer is defined by the same two dimensions.
The domain-specific dimension defines the proportion of the code which calls upon DS APIs or libraries. The machine

learning dimension defines the proportion for ML APIs or libraries.
A general implementation contains a small proportion of calls to DS or ML APIs or libraries. Thus it is general code.
In a domain-specific implementation the code makes calls into an API or library which provides DS computation. For

example, the nipype library (Section 2.4) offers a neuroscience-specific Python library. Thus the more calls to libraries
like these, the more DS the implementation. Likewise, a machine learning implementation has a high proportion of ML
API or library calls. An example would be directly calling Tensorflow or other ML library from Python.

A blended implementation is one which uses both domain-specific andmachine learning APIs and libraries. Thus theML
libraries are wrapped in a DS interface, and potentially optimised for each DS task. Clearly it would be desirable for the
domain expert to obtain this form of implementation to achieve the most specific implementation. However, the domain
expert should not write the implementation by hand, and preferably they can instead generate an implementation from
their workflow. This is discussed in Section 5.2.

4.3.3 Layer Transformations. Again, the same transformations as the solution workflow layer occur in this layer. Code
can be mapped manually or automatically to either a DS library call or a ML one. These transformations could be useful
for addressing legacy code and updating it (called “cognification”). However, as argued in Section 7, it is not be efficient

Manuscript submitted to ACM



20 Bentley James Oakes, Michalis Famelis, and Houari Sahraoui

to focus on mapping and recommendations at the implementation level. Instead, a more efficient approach would be to
extract the workflow from the code and apply analyses at the workflow level.

5 INTER-LAYER TRANSFORMATIONS

This section defines the possible transformations used to transform an artefact in one of the layers in our framework to
another layer. The transformations discussed here are: a) from the problem space to the solution workflow space, and b)
from the solution workflow space to the implementation space. Note that transforming a problem from the problem space

to the implementation space is classical programming, which we do not elaborate further in this section but appears in
example studies in Section 6.

5.1 Problem Space to Solution Workflow Space Transformations

The transformation between the first two layers of our framework transforms problems from the problem space into
workflows in the workflow space. This transformation corresponds to our challenge question of obtaining a solution
workflow for a DS and/or ML problem. Practically, this transformation is most likely a combination of a domain expert
building and/or finding workflows and workflow components.

That is, a domain expert could: a) find an existing workflow or components in a repository, b) rely on formal or
informal mappings or recommendations to assemble a workflow, or c) build the workflow themselves either from a
component library.

Here we will summarise a few of the techniques available in the tools from Section 2.4 to assist a domain expert in
obtaining or building a workflow.

Component Libraries. Many of the graphical workflow tools (see Section 2.4.2) use a library of components for the
domain expert to select from when building their workflow. Plugins or extensions can extend this component palette
with domain-specific components, allowing for easier selection of these components. For example, the Galaxy tool
offers workflow components which directly obtain data from biology databases. This aids biologists to efficiently obtain
up-to-date data directly into their workflows.

Domain-specific Tutorials and Sample Workflows. The documentation surrounding a workflow tool often provides
numerous examples for using the tool and for solving real-world problems. For example, the Nipype tool discussed in
Section 2.4.1 offers over 30 neuroscience-specific examples on its website. This allows users to get started quickly to
solve their domain-specific problems.

Workflow Repositories. Some of the workflow tools discussed in Section 2.4 have explicit repositories for searching
and obtaining workflows, or have multiple tutorial workflows for demonstrating the use of their components. These
repositories allow for experts to select whole workflows and their component parts for use in solving their problem.

However, a brief glance at these repositories suggests usability issues. For example, one Galaxy workflow repository32

contains hundreds of workflows, yet the only search options available cover free text, user rating, and keyword search.
This may make it quite difficult for a domain expert to find a suitable workflow unless techniques are used to further
recover semantic information [35]. Reproducibility issues may also hamper this search as computations may not be
consistent between runs or user machines [121].

32https://usegalaxy.eu/workflows/list_published
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Automated Recommendations. Recent work by Wen et al. suggests that it may be possible to automatically determine
similarity of workflows in repositories [130]. This could allow for enhanced discoverability of workflows.

Fig. 9. Automated recommendation of a component. Modified from [74].

Workflow tools can also recommend next components to be placed automatically. This allows for domain experts to be
assisted by the tool to build their workflow. For example, the excellent article of Kumar et al. presents a recommendation
engine for the Galaxy framework [74]. This engine integrates into Galaxy itself to provide component recommendations
based on the existing components and the recent usage of that component in the data set. Figure 9 shows the tool
providing a list of recommended next components for the user to select from.

Automated Creation. An interesting technique to create the whole workflow at once is to use machine learning
techniques themselves to create workflows. This is the field of AutoML [60], which uses accuracy metrics to create a
machine learning pipeline for the domain expert’s data. A partial or full workflow for the expert can also be provided
based on their problem and/or their data [52, 53]. As a recent example of this AutoML approach, we point to Dunn et

al. who use a benchmarking set in materials science as the basis for creating material science-specific workflows [37].
Kasalica and Lamprecht also discuss the APE automatic workflow composition tool to build workflows based on
ontological knowledge [69].

Large Language Models (LLMs) may also be suitable for providing recommendations for workflow components to
modify, or the creation of whole workflows at once [134].

5.1.1 Region Transformation. Figure 10 diagrams a selection of the possible transformations between regions on the
top problem space layer into the middle solution workflow layer. For example, a domain-specific problem could be solved
with a blended workflow created through these transformations.

A solid arrow in the figure represents the transformations between the problem layer and the solution workflow
layer, as described above. This includes providing the user with access to workflow repositories, component libraries,
and any other support such that the user can build their workflow. The dashed arrows indicate where domain-specific
component libraries or tutorials can assist in making the solution workflow more domain-specific, alongside the other
transformations for building a workflow.
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Fig. 10. Transformations between the problem space, solution workflow space, and the implementation space.

Note that transformations from the general problem are not represented as this is not the focus of this article. Also
not represented are the unlikely (yet possible) transformations from an ML problem to a DS workflow, or from a DS
problem to an ML workflow.

5.1.2 Reversing the Transformation. As mentioned above, it can be challenging for domain experts to search a workflow
repository and find suitable workflows for their problem. One direction to address this issue is to automatically ‘mine’
the workflow itself and extract the problem that workflow solves, or at least extract some tags and other semantic
information [35].

5.2 Solution Workflow Space to Implementation Space Transformations

The transformations between the middle and bottom layers of the framework (see Figure 10) transform a workflow in
the solution workflow space into some form of code in the implementation space (Section 4.3). This corresponds to our
challenge question of producing an implementation from a workflow which is usable for a domain expert.

The techniques examined here are: a) re-implement the workflow manually (not discussed below), b) code generation
/ Model-Driven Engineering (MDE) techniques, or c) workflow execution directly performed by the workflow tool.

Note that in Figure 10 the transformations are between various regions. This reflects that there may be a benefit
to produce an implementation which relies on domain-specific libraries, on machine learning libraries, or a blended
implementation. For example, Zhou et al. describe a PyTorch-based framework for performing molecular dynamics
simulation with GPU acceleration [139]. This demonstrates that the implementation for a workflow may need to be
tailored based on the workflow domain.

5.2.1 Model-Driven Engineering Techniques. From a workflow defined in a DSL or as components, it can be a straight-
forward process to perform MDE techniques such as code generation [7]. Due to the modular nature of the workflows,
executable code could be generated for each component. This code generation may also take place over a number of
intermediate languages, such as using workflow middleware to handle concerns such as scalability (Section 2.4).

5.2.2 Direct Execution. Another way of executing the workflow is to run it inside the workflow tool itself. This relieves
the domain expert from running the final code themselves, though it may be more difficult to optimise if needed. Many
of the tools in Section 2.4 execute the workflow in this way, either through the host language such as Python or within
Manuscript submitted to ACM
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the tool itself such as Galaxy. This execution may also be local on the domain expert’s machine or run on another
machine.

5.2.3 Reversing the Transformation. An interesting transformation available is to start with a legacy piece of code and
extract the workflow from it as in our challenge question: extract a workflow from an existing implementation. This
could be a manual inspection or an automatic process. Once completed, the workflow could then become the source of
truth and could be moved into a workflow repository for further dissemination and development [20].

6 EXAMPLE STUDIES

This section examines the use of the tools from Section 2.4 in various domains. Example studies selected from the
scientific literature provide a sample of how experts in each domain are building domain-specific workflows utilising
machine learning. This section thus serves to: a) ground our framework in the state-of-the-practice, and b) highlight
research challenges and opportunities where the software engineering community can assist domain experts. In
Section 7.4, we will discuss an illustrative study to investigate how a domain expert could be assisted by tools aligned
to our framework to easily obtain an implementation for their problem.

As a caveat, these example studies have been selected in an ad-hoc and non-systematic manner. Instead, the informal
criteria was based on recent publication, available artefacts, and variety of domain. The intention is to provide a flavour
of the heterogeneity of the domains and the recent use of tools for reflection about expert assistance, not an extensive
literature survey.

We focus on three sets of example studies in this section. The first set is where the study has an implicit workflow.
That is, there is no explicit workflow graph in one of the standards or tools reported in Section 2.4, and the workflow
is expressed in code. The second set of example studies contains explicit workflow artefacts, where the workflow is
explicitly defined using a workflow standard/tool. The third set is one study where the high-level workflow itself is
implicit, but it relies on a sub-workflow defined using a workflow framework.

6.1 Example Study Overview

Table 1 lists the example studies examined in this report and discussed throughout this section. Each study is provided
an identifier based on the primary tool used and a short description. The second column in Table 1 denotes whether
the study has an implicit, explicit, or hybrid workflow, and the third column lists whether the workflow is created
textually or graphically. The last column reports the regions through our framework that the study has artefacts in.
That is, what “path” the authors took through our framework from Section 3. This can be ML, DS, or Blended. For
example, the ES4-nipype study is classified as a blended problem, and domain-specific for both the solution workflow and
implementation. The Kaggle study also shows that a blended workflow can have a strong lean towards one dimension.
In this case the lean is towards the ML dimension, represented by BlendedML.

For each study, the domain-specific problem is described. Then, the regions and transformations from our framework
(Section 3) which are relevant are presented.

6.2 Implicit Workflow Studies

The first four example studies presented focus on implicit workflows where there is not a workflow explicitly defined
in one of the standards or tools from Section 2.4. These studies presented therefore cover cases where the domain
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Workflow Regions
Label Description Repres. Expression Problem Workflow Implem.
ES1-PyTorch Detecting peaks in metabolomic data Textual Implicit Blended Blended Blended
ES2-MATLAB Classifying rock origin based on molecular

structure (geochemistry)
Textual Implicit Blended Blended Blended

ES3-Kaggle Crowd-sourcing ML solution to
marine biology challenge

Textual Implicit ML BlendedML BlendedML

ES4-nipype Detecting depression from MRI images
(neuroscience)

Textual Hybrid Blended DS DS

ES5-Orange Data mining analysis for smart school
Internet traffic.

Graphical Explicit ML ML ML

ES6-Galaxy Classification of urothelial cancer
(bioinformatics)

Graphical Explicit DS DS DS

Table 1. Summary of the example studies.

expert directly writes an implementation of their problem, skipping the workflow layer of our framework (Section 3). A
discussion of these implicit versus explicit workflows is found in Section 7.1.1.

6.2.1 ES1-PyTorch. The first example study we examine represents the situation where a domain expert encodes their
problem directly upon a ML library such as PyTorch or sklearn.

As a Suggested Practice. Directly writing code on an ML library is at a low-level of abstraction requiring a great deal
of ML knowledge. However, we have found two recent publications where this approach is suggested.

For chemistry students, Lafluente et al. present an introductory workshop focusing on utilising Python and visuali-
sation/ML libraries [75]. The example Jupyter notebooks 33 lead students through an introduction to Python, basic
statistics, exploratory data analysis, classification, and regression.

In the field of materials science, Wang et al. suggest that utilising Python code and the PyTorch library is considered
‘best practice’ [128]. The example Jupyter notebooks34 walk a domain expert through an example application to
highlight ML techniques and considerations at a very granular level of detail. For example, the reader is taken through
constructing the layers of a neural network in PyTorch, along with calling the prediction/back-propagation functions.
While this work is very comprehensive and suggests many useful and concrete suggestions for utilising ML in materials
science, we (kindly) suggest that this is the wrong level of abstraction for a domain expert to utilise ML at. While
the libraries themselves already abstract the low-level details, raising the level of abstraction further may be more
appropriate for non-programmers.

Many factors may require utilising ML techniques at this low level of abstraction for functional properties such as
performance. For example, obtaining high degrees of parallelism is cited by Zhou et al. as one reason for building a
material science library upon PyTorch [139]. The PYSEQM library35 implements functions applicable for semi-empirical
quantum mechanics models, offering a high-level and domain-specific interface which is able to compute on the wide
variety of GPUS which PyTorch supports, offering a speedup over other tools.

Example Study. As the publications from Lafluente et al. and Wang et al. are targeted toward chemical science
researchers just beginning to utilise ML, we also present here a study of a chemical analysis tool peakonly utilising ML.

33https://github.com/ML4chemArg/Intro-to-Machine-Learning-in-Chemistry
34https://github.com/anthony-wang/BestPractices
35https://github.com/lanl/PYSEQM
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High-level Step Step Description Classification
Obtain Data Load file Load .mzML input data into tool DS

ROI detection Run algorithm to detect ROIs DS
Calculate Classify Run classification with CNN ML

Integrate Run integration with CNN ML
Analysis Plot Plot integrated ROIs DS

Write out Write output CSV file General
Table 2. Implicit workflow components in peakonly tool (Melnikov et al.) [90]

Melnikov et al. present an application of deep learning to classifying and integrating peaks in raw liquid chromatography-
mass spectrometry (LC-MS) data [90]. The problem studied in the work is how to detect regions of interest (peaks)
which occur in the noisy LC-MS data. Figure 11 is a visual abstract of the paper36 showing how the data is first classified
by a convolutional neural network (CNN) as a) noise, b) one or more peaks, or c) requiring manual classification. A
second CNN then provides the integration boundaries. The results from the CNN are validated against another tool.
The authors provide a graphical tool peakonly to perform these actions and visualise the output.

Fig. 11. Visual abstract from Melnikov et al. demonstrating classification and integration of peaks [90].

Problem Layer. The DS problem specified in the study is to detect and integrate the peaks in the data. The authors
have transformed this into a blended problem by utilising the expert mapping given by prior work, where deep learning
is used to perform peak detection and noise filtering.

Solution Workflow Layer. Figure 11 displays a high-level view of the paper’s approach to peak classification and
integration. This forms the basis of the workflow components which we extract in Table 2. Note that these steps are
performed by a user interacting with the peakonly graphical interface, though a runner script is available.

Table 2 is our attempt at extracting the steps in the workflow from the publication and tool of Melnikov et al. The
first column is the high-level step which summarises the individual steps in the second column. The description column
details what the step performs, with the quoted text copied from the code to explain the DS steps. The last column in
Table 2 is our rough classification of whether the step is general (generic programming code), domain-specific (DS), or
machine learning (ML).
36Figure reprinted (adapted) with permission from [90]. Copyright 2020 American Chemical Society.
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First, the DS file format is loaded into the tool. Then an algorithm runs to detect the regions of interest (ROIs). These
two steps are highly domain-specific. The two CNNs are executed to first classify the ROIs and then to integrate the
ones with detected peaks. We classify these as ML-intensive steps. Finally, the user is presented with the ROIs in a list
where they are able to visually inspect the plot. The data can then be exported to a CSV file.

From our classification of these steps, it is fair to say that this is a blended implicit workflow. There is a balance of
both DS and ML components within the workflow.

Implementation Layer. The implementation for the peakonly tool is in the Python language, with usage of common
data science/ML libraries (matplotlib, numpy, pandas, scipy, PyTorch) as well as the DS library pymzML for mass
spectrometry data. This code can be classified as blended due to the extensive mixed use of these libraries within the
tool.

Remarks. The peakonly tool is an excellent example of domain experts utilising ML to solve a DS problem and
providing an easy-to-use graphical interface to it. This lowers the barriers to entry for other domain experts to utilise
ML on their similar problems.

6.2.2 ES2-MATLAB. For the second study which focuses on using the common MATLAB tool which combines data
processing and ML techniques, we have selected a publication from Hasterok et al. in the field of geochemistry [59].
The studied problem is to use the chemical composition of metamorphic rocks to classify whether the origins of the
rocks were sedimentary or igneous. The resulting MATLAB code is available on GitHub37.

Problem Layer. On the problem layer, there is a clear DS problem of classifying rocks on their chemical structures.
However, the authors venture further into the ML domain to determine which available ML classifiers are best

suited for their problem. They describe investigation of principal component analysis (PCA) to filter the data before
classification, as well as comparing K-nearest neighbour, decision trees, ensemble trees, and testing various parameters
within these classifiers.

A robust knowledge about applying ML to their DS problem is shown. Thus we can classify this paper as addressing
a blended problem. The method of transforming the DS problem into a blended problem is not detailed, but based on
the extensive related work cited we surmise that the authors gained this knowledge by reading past work which is a
form of expert mapping.

Solution Workflow Layer. As mentioned, the solution provided by the authors does not contain an explicit workflow.
Instead, the MATLAB code forms an implicit workflow operating on the input data and resulting in a classification or
prediction. The authors provide their code in separate MATLAB scripts with comments, allowing us to reconstruct the
predictor workflow and divide the scripts into DS and ML classifications. Note that this table contains workflows for
both the training and prediction processes.

From this overview of the workflow, we can conclude that there is a mix of both DS and ML components. Thus this
is a blended workflow.

37https://github.com/dhasterok/global_geochemistry/tree/master/protolith/
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High-level Step Step Description Classification
Obtain Data Load learning data Data loaded into MATLAB General

Treat learning data prep_for_cluster.m selects data for train-
ing and testing. Can select to use meta-
igneous/meta-sedimentary rocks or not

Blended

Training Training Using code generated from MATLAB’s Classifi-
cation Learner app

ML

Analysis Write out Write out model files General
Plot Plot training performance General

Prediction Convert and read
predict data

Converting XLS data to CSV, and reading General

FEFIX “Convert all Fe to FeO and calculate
Fe2+/Fe_total ratio”

DS

CAT2OX “Convert cations to oxide data when missing” DS
OXIDE_NORM “Computes the oxide norm for a set of given

oxides”
DS

Prediction Use MATLAB predict function with the clas-
sifier and input data

ML

Analysis Write out Write to CSV file General
Analyse Plot classification performance General

Table 3. Implicit workflow components in MATLAB scripts for predicting protoliths (Hasterok et al.) [59]

Implementation Layer. Following the classification of the implicit workflow as blended, it is clear that the implementa-
tion is also blended. This code was (presumably) hand-written by the authors. The exception is the code in the training
step38. This code seems to have been generated by the MATLAB Classification Learner app39.

Remarks. From reading the publication of Hasterok et al, it is clear that the authors have obtained a great deal of ML
knowledge in addition to their domain expertise. They discuss pre-processing the data through principal component
analysis (PCA) and perform a comparison between multiple ML classification techniques. This knowledge of both
domains is reflected by the classifications given by our framework, where all of the problem, solution workflow, and
implementation are blended.

The authors also leverage the ML functions built-into MATLAB for performing the training and classification,
including the use of a MATLAB app to generate the appropriate training code. This sets the example study apart from
ES1-PyTorch where the low-level ML library was directly used. Instead, MATLAB provides a higher level of abstraction
for the domain expert, demonstrating how tool support can assist domain experts in applying ML concepts.

The code provided contains an implicit workflow defined in MATLAB code. However, the authors have taken the
time to modularise this code into various functions. This improves the usability and reproducibility of the code amongst
other researchers.

6.2.3 ES3-Kaggle. Kaggle40 is an online data science platform allowing data scientists to share models and code. Kaggle
is well-known for its “challenges”, where an organisation posts their data and an evaluation metric, and asks the Kaggle
community to come up with a solution to that metric. For example, the “NFL Big Data Bowl” challenge asked for a

38train_RUSBoost_Classifier_30l_1000s_20190222.m.
39https://www.mathworks.com/help/stats/classificationlearner-app.html
40https://kaggle.com/
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prediction of how far one team will advance on the field during one play [56]. The data provided contained position,
speed, and rotation information for each player on the field, weather information such as temperature, humidity, and
wind velocity, and other data points. Once the competition has ended, the organisation can contact the winners to
obtain an explanation of their solution.

Kaggle can be employed as a crowdsourcing tool to provide ML solutions for DS problems [17]. Briefly, the benefits
of this approach is that domain experts can directly interface with ML experts on Kaggle-hosted forums to share best
practices and domain-specific information. The hope is that this will lead to knowledge transfer and provide high-quality
insights for the domain experts, and offer money, prestige, and valuable skill training for the ML experts [119].

There are a number of drawbacks, however. The domain experts have to spend effort to set up the contest by providing
prize money and accurate problem data. Also, the solution provided by theML experts may not be immediately applicable
to the DS problem and lessons learned must be transferred back to the domain experts.

For example, in the Killer Shrimp Challenge a trivial solution was found by participants. The data was organised such
that all data points with an index value greater than or equal to 2917769 had the presence of the killer shrimp. Thus the
solutions of participants could simply test the index of each data point to obtain perfect accuracy on the predictions.

As an example of the effort required to transfer the ML lessons learned back to the domain experts, we point to the
excellent article of Sutton et al. [118]. This article examines the top three solutions of a materials science challenge to
determine the impact of the representation versus the learning method on the final accuracy. They describe how the
first-place solution was a novel ML representation for material properties.

Problem Layer. Returning to the Killer Shrimp Challenge, the underlying problem is to detect the presence of the
species Dikerogammarus villosus (also known as the “Killer Shrimp”) which causes environmental damage and is
invasive in Europe. The specific Kaggle challenge is to take data points on water salinity, temperature, depth, wave
exposure, and the presence of sand, and predict whether the Killer Shrimp will be present or not 41. We refer readers
to the article of Bumann et al. [17] for a full description of the challenge set-up and interactions between the domain
experts and challenge participants.

It is interesting to note that the DS problem of predicting the presence of Killer Shrimp was effectively turned into
a problem of predicting 1 or 0 in a particular column of a spreadsheet. Thus we classify this as a DS problem being
mapped into a ML problem due to the lack of DS concepts in the problem statement.

Solution Workflow Layer. In this report, we extract the (implicit) workflow from the publically-available second-place
solution [122]. The solution is available as a Jupyter notebook which aids in the reconstruction of the workflow.

Table 4 displays our extraction of the workflow in the solution. Note that similar to other workflows, we define the
loading and saving of CSV files as rather general steps. Most of the remaining steps are solely ML-focused. However,
the author of the notebook has also added two DS columns. The first added feature is water density which is calculated
from the temperature, salinity, and depth values. The second column is a classification of the wave exposure value to
record whether the point is extremely or very exposed to waves.

In summary, this workflow is mostly comprised of ML components. However, due to the presence of these added DS
features, we classify it as a blended workflow with a heavy focus towards the ML side.

41https://www.kaggle.com/c/killer-shrimp-invasion
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High-level Step Step Description Classification
Obtain Data Load files Load .csv files General

Clean data Fill in missing data with
sklearn.impute.IterativeImputer

ML

Feature Adding Add Density Calculate ocean density based on other columns DS
Classify Exposure Classify wave exposure into categories DS
Add Temperature
Feature

Add column based on trained polynomial of
temperature

ML

Add Outlier Feature Add column to determine if data point is outlier ML
Train Train Classifier Train a classifier ML
Predict Prediction Predict the presence ML
Analysis Write out Write output CSV file General

Plot Feature Plot the importance of features ML
Table 4. Workflow components in a Jupyter notebook for the Killer Shrimp Challenge [122].

Implementation Layer. The Jupyter notebook solution contains Python code and imports the expected data science/ML
libraries (numpy, pandas, matplotlib, sklearn, xgboost). As the workflow is blended (though tilted towards ML), the
implementation can be said to be blended as well.

Remarks. It was surprising to see features added to the data which were DS. Our expectation was that this sort of DS
knowledge would not be as present in Kaggle solutions, based on the expertise focuses of the challenge organisers and
the ML experts. For example, we wish to highlight this quote from the analysis of Gordeev and Singer on their winning
entry for the football challenge [56]:

Don’t worry about having domain knowledge to attempt a specific problem. The main thing we learned
in this competition is that you don’t necessarily need domain knowledge or industry [sic] to successfully
tackle the data science challenge. Sometimes it even can be an advantage, as you go in blindly without
many prior assumptions that might wrongly steer your exploratory analyses.

Thus, providing a transformation from the DS problem to a ML representation may have to be balanced between
prior DS knowledge and ML analyses.

6.3 Hybrid and Explicit Workflow Studies

The remaining studies presented here are those which explicitly represent the workflow (or a sub-workflow) in one
of the standards or tools from Section 2.4. As discussed in Section 7, an explicit workflow aids with reproducibility,
modularisation, collaboration, re-use, etc.

We also note that the explicit workflows tend to have a strong focus on enabling plugins or extensions for domains.
This means that users are able to customise the workflows for their domains easily.

6.3.1 ES4-nipype. Practitioners may use workflow management systems such as nipype to develop reproducible
workflows focusing on particular domain processing tasks. For example, Celestine et al. present a Python module42

for performing pre-processing workflows such as DS file conversion and skull stripping for small mammal MRI brain
data [21].

42https://github.com/sammba-mri/sammba-mri
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High-level Step Step Description Classification
Pre-Process Data Load data Load data into Python General

Convert format Convert into BIDS format DS
fMRIPrep fMRIPrep workflow for

alignment/timing correction
DS

FSL FEAT Smoothing/filtering steps DS
Defining Features Data Preparation “Background removement, normalise,

resize, & cube definition”
DS

Prep. Initial Features Correlate cubes DS
Feature Selection Rank correlations with stat. tests ML

Classification Classification Run classifiers on data ML
Table 5. Workflow components for predicting depression from MRI images (Mousavian et al.) [93]

These pre-processing tasks are essential for transforming the data such that it can be treated with ML. In this study,
we analyse a workflow which uses fMRIPrep as a sub-workflow to process MRI data before it is used to predict whether
the person in question has depression [93]. As mentioned in Section 2.4.1, this fMRIPrep automated workflow is built on
top of nipype to perform pre-processing of fMRI data [39, 40]. As such, the fMRIPrep tool itself is an explicitly defined
workflow. However, the authors of Mousavian et al. have defined an implicit workflow in Python to orchestrate the
usage of the fMRIPrep tool. Thus this is an interesting hybrid workflow which utilises an explicit tool sub-workflow.

Problem Layer. The specified problem of Mousavian et al. is to classify MRI images on whether the subject has Major
Depression Disorder (MDD) or not. There are three major challenges addressed in the article. The first is to investigate
different correlation measures of the voxels (essentially three-dimensional pixels) of the MRI data. These correlation
measures relate different areas of the brain together, and are used as features for the ML classification task. The second
challenge is to handle imbalanced data sets where many subjects within the set do not have depression, as this can
cause issues with classification. The third major challenge is to determine which of 14 ML classifiers performs best on
the dataset.

From the problem and these specified challenges, it is clear that this is a blended problem which combines DS and ML
concepts. Specifically, the correlation challenge is DS, while the imbalanced datasets and choice of classifier challenges
are ML-specific.

Solution Workflow Layer. The study implicitly defines a workflow through its use of Python scripts43. However,
Mousavian et al. represent the workflow as explicit blocks in the article [93]. Therefore it is straightforward to classify
each task in the workflow as DS or ML as done for the other example studies. Table 5 shows the workflow as defined in
the article of Mousavian et al.. The steps present in the article clearly identify that the majority of the workflow is DS.
In particular, only the feature selection and actual classification steps are ML.

Implementation Layer. As the workflow of this study is mostly DS, it follows that the implementation is also very
DS. In particular, heavy use of DS libraries and tools are used such as dcm2niix for format conversion, PyDeface for
removing facial structure from the images, and the fMRIPrep implementation itself44.

43https://github.com/moosavianmz/DetectingDepression
44https://github.com/nipreps/fmriprep
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6.3.2 ES5-Orange. The example study for the Orange tool focuses on data mining analysis for Internet traffic from a
smart school [1].

Problem Layer. The article from Adekitan et al. is an exploratory analysis on using machine learning techniques
for prediction of Internet traffic at an educational institution. The specific problem is to predict a classification for
both download traffic and upload traffic among low, slight, moderate, and heavy data traffic. The input information is a
numerical day, week, and month, along with the previous day’s traffic and an average of the previous two days.

Multiple ML classifiers are used and compared in this analysis from both the Orange and KNIME tools mentioned in
Section 2.4.2. As the intention was to compare ML classifiers of two different workflow tools on the data, we classify
this problem as a machine learning problem.

Solution Workflow Layer. Figure 12 shows the workflow of Adekitan et al. in the Orange tool, while the workflow
for KNIME is found in their article [1]. The three general components at the bottom (File, Data Table, and Box Plot)
are used to load the data and visualise it. The Test & Score component takes the five ML learners and the loaded data,
and performs the ML classification task. The results are then passed to the four evaluation components on the right.
We classify the Test & Score component, the learners, and the evaluation components as all ML components. There
are no DS components in this workflow, however the feature engineering described in the article means that domain
knowledge concerning the academic calendar of the institution has been encoded into the source data. Therefore, this
workflow can be classified as mostly ML-based with a DS feature engineering step.

Fig. 12. Solution workflow in the Orange tool. Adapted from [1].

Implementation Layer. The execution for the Orange tool can be performed within the editor itself, or by calling the
underlying Python code defined for each component45. In Orange, the code for the components used is built upon the
scipy and scikit-learn modules. Therefore we classify this implementation as mostly ML-based.

Remarks. This example study represents an exploratory usage of ML techniques within a workflow, where the authors
performed some DS feature extraction on the data and then applied different classifiers to determine the performance.

45Orange is currently unable to generate orchestration Python code from a workflow. See https://github.com/biolab/orange3/issues/1341
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Num. General Num. DS Num. DS % DS Classification
Comps. Comps. Comps.

Workflow Name (non-ML) (ML)
WF1: Co-registration and ROI Extraction 22 6 0 21 Mod. DS
WF2: Data Handling and Preprocessing 10 22 0 69 DS
WF3: Classification tumor vs. stroma 17 2 3 23 Mod. DS
WF4: Classification Infiltrating vs.
Non-infiltrating

15 3 4 32 Mod. DS

WF5: Visualization 11 13 0 54 DS
WF6: Annotating Potential Identities 11 0 0 0 General

Table 6. Classification of Galaxy workflows for analysing urothelial cancer (Föll et al.) [47]

The classification performance found was quite low (55 to 63% accuracy), indicating that further DS feature extraction
may be required to improve classification performance.

6.3.3 ES6-Galaxy. The last example study details a workflow for the Galaxy framework. The article of Föll et al. tackles
supervised classification of urothelial (bladder) cancer using mass spectrometry imaging (MSI) [47].

Problem Layer. The input data studied by Föll et al. is obtained using MSI. This imaging technique is performed on a
slice of tissue. For each region in the sample, the instrument provides a spectrum of the masses of present biomolecules.
That is, for each “pixel” of the sample image a one-dimensional spectrum is created where peaks correspond to a
particular biocompound. This can be used to visualise and classify regions of the sample where a particular biomolecule
is present.

In the problem of Föll et al., this MSI data is manually labelled by an expert as containing either tumor tissue or
stroma (connecting tissue). Tumor tissue is then further classified into invasive or non-invasive. Therefore the problem
statement is to develop a classification workflow which can pre-process and classify this unique spectral data. This
problem can be said to be DS as it does not refer to the classification techniques used.

SolutionWorkflow Layer. An extract from the Galaxy workflow of Föll et al. is seen in Figure 3 on page 11. In particular,
these components are in the workflow which classifies tissue as a tumor or stroma. The MSI classification component
on the right-hand side of Figure 3 takes the MSI data and parameters and outputs a classification.

Similar to the other example studies, we present a broad analysis of the study workflows46 in Table 6. For each
workflow created by the study authors, we classify each component within as general, domain-specific without ML

concepts, or domain-specific with ML concepts47. A percentage of the components which are DS is reported in a column
on the right-hand side of Table 6 along with a classification of the workflow.

Table 6 indicates that the workflows for this study range from moderately DS to strongly DS. General components
are used for dataset loading and manipulation while the DS components perform the non-trivial work. There are
no non-domain-specific ML components in these workflows, and the component MSI Classification performs the
domain-specific classification computations. Thus it is clear that this is a DS workflow.

46https://github.com/foellmelanie/Bladder_MSI_Manuscript_Galaxy_links
47Note that file reading and writing were counted as general components, which somewhat inflates their number. As well, in WF3 and WF4 repeated
components for splitting a dataset ten times were counted only once to avoid over-representation.
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Implementation Layer. Workflows are run by Galaxy through the web-based tool on either a public or private server.
The individual components are defined through XML wrappers which define how to run the underlying tool.

For these particular workflows, the majority of the DS components are specific to MSI as they have been created by
the authors in a previous work [46]. These components are wrappers around the Cardinal tool, which is a R language
module specifically for analysing mass spectrometry-based imaging [8]. Thus the implementation of this workflow is
mostly DS.

7 DISCUSSION

This section provides discussion for the main research topic of this article: what are the ways in which domain experts

can use workflow-based tools and techniques to to solve their domain-specific problems using machine learning. For
this discussion, we first present the benefits and drawbacks for structuring this research topic using our three-layer
framework organised into two dimensions. Then we examine each of the challenge questions introduced in Section 1
and present what we see to be remaining research and integration challenges for the software engineering community.
Finally, we present an illustrative example study where domain experts would employ a tool offering the transformations
presented in our framework to easily obtain a machine learning-based solution to their problem.

7.1 Benefits and Drawbacks of the Three-Layer Framework

This section discusses some benefits and drawbacks of organising this research topic as a three-layer framework with
inter- and intra-layer transformations.

7.1.1 Benefits.

Separation of Concerns. The main benefit of our framework is the separation of concerns into the three layers: problem,
workflow, and implementation. Similar to domain-specific languages, this ensures that the domain expert first addresses
the problem space which they are familiar with, rather than dealing with the accidental complexity of the workflow and
implementation spaces. The framework defines transformations between these layers, offering the domain expert a
structured way of progressing their solution.

This separation of concerns is also present in the workflow literature. For example, Lamprecht et al. [78] define six
stages of workflows over time: question or hypothesis, conceptual workflow, abstract workflow (sequences of tools but not
fully configured), concrete workflow (ready to run), production workflow (ready for reuse), and scientific results. The first
two stages of question/hypothesis and conceptual workflow thus map onto our notion of domain-specific problem.

Implicit versus Explicit Workflows. Explicit workflows are both conceptually (and literally) at the centre of our
framework. This is because we see numerous benefits with this formalism for domain experts to use in combination
with ML.

First, it is obvious that there is compatibility between the use of scientific workflows and ML pipelines. They share
the same underlying formalism due to the same concept of control and data flow, as well as concerns about modularity
and reuse. A workflow-based approach also seems to be very amenable to visualisation and manipulation in graphical
tools, allowing non-experts to quickly build a workflow for their problem.

Second, these standalone components are a useful abstraction over the technical details and complexity of ML
approaches. The domain expert does not have to become familiar with the ML libraries or in some cases even a
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programming language to orchestrate the workflow. Again, this is in concordance with the principles of domain-specific
engineering where the domain expert should focus on manipulating concepts within their domain.

Third, providing explicit components to the domain expert allows for enhanced traceability, reuse, scientific replication.
As seen with the Galaxy tool, input and output history can be kept for every component in a workflow, along with
explicit versioning and supporting information.

Fourth, a standardised workflow system can offer enhanced benefits for deployment on cloud or high-performance
systems. For example, Lehmann et al. discuss the scalability benefits gained when porting an implicit workflow
orchestrated with the Bash shell language to the Nextflow workflow system [83].

In some domains, the use of explicit workflows is a best practice. For example, Poldrack et al. discuss the use of
nipype for reproducible and scalable workflows in neuroscience [104], while Reiter et al. provide a detailed article of
techniques for biology experts to get started with workflows[106]. However, other fields may not have such a strong
culture of workflows and still recommend coding for problem solving. As an illustrative example, Wang et al. recently
suggest for material scientists to use PyTorch in Python for ML purposes [128].

Focus on Transformations. Another benefit of our framework is the focus on transformations between regions
of layers, as well as between the layers themselves. These transformations can be phrased as challenge questions
which are relevant to both software engineers and the domain experts who must use these transformations. This
provides a clear intent for each transformation and allows for analysis and identification of current approaches and
new techniques. In contrast, the frameworks of Lamprecht et al. [78] and Gil et al. [53] do not define transformations
along the dimensions such as domain-specificity and ML complexity, which could improve the ability of domain experts
to build these workflows. Instead, those works only discuss the transformations between the layers of our framework.

Explicit Domain-Specific and Machine Learning Complexity Dimensions. Section 3.1 describes how our framework
relies on the two DS and ML dimensions to both a) categorize the problems, workflows, and implementations of domain
experts, and b) offer spectrums whereby transformations can move these artefacts along a dimension to better suit the
domain expert.

This explicit nature of the dimensions is in contrast to similar frameworks. For example, Combemale et al. describe the
models and data (MODA) conceptual framework for organizing the processes of integrating model-driven engineering
with data-centric systems which can involve ML approaches [24]. Within the MODA framework, domain knowledge is
represented as “external knowledge” which is processed into the descriptive, predictive, and/or prescriptive models. For
the machine learning aspect, ML techniques and algorithms can be present in these models.

The MODA framework focuses on decomposing model-driven engineering processes into these conceptual models.
Thus, the dimensions of domain-specificity and complexity of machine learning are not present, preventing the use
of transformations which move artefacts along these transformations and the organization of tools which provide
these transformations. The MODA framework also does not have an explicit problem layer which the starting point for
a domain expert who wishes to employ ML on their problem. Scientific workflows are mentioned by Combemale et
al. [24], however their creation is through a “composition phase”, and implementation through a “deployment phase”
where no further information is provided. In contrast, our framework indicates the potential transformations which are
available to create these workflows.

7.1.2 Drawbacks. There are a number of drawbacks to our organisation of the research problem onto this three-layer
framework. The first is that the two dimensions selected of domain-specific and complexity of machine learning are not
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orthogonal as mentioned in Section 3.1. The divisions of these dimensions into regions is also fuzzy as we currently do
not provide specific metrics to divide problems, workflows, or implementations due to the qualitative nature of these
dimensions. In particular, the classifications of the problem, workflows, and implementations for the example studies in
Section 6 are ad-hoc. In the future, we are addressing this limitation by developing additional measurable characteristics
for each dimension as discussed in Section 7.5. These metrics will focus on task specificity [10].

Second, restricting these complex systems onto three layers is a gross simplification. In particular, we acknowledge
that the implementation layer is most likely made up of numerous layers of domain-specific or general programming
languages. We have classified implementation code in some example studies as domain-specific when this is just the top
layer of what may be machine learning or general code at the lowest layer.

Our framework also does not represent many of the qualities which are required for a domain experts to make
efficient use of tools which conform to this framework. For example, effective tools should be able to provide intelligence
assistance to the domain expert and consider the feedback received [95], or optimize workflows based on static
analysis [78]. This would aid the domain expert in applying the transformations discussed here. We have omitted these
considerations as we focus on the transformations themselves and how they act on the artefacts of the domain expert.
Future work will consider how the domain expert will interact with each transformation in the tool environment.

Lastly, we also acknowledge the incompleteness of this article to cover the research topic. It is impossible to fairly
cover all domains or to give an impression of how prevalent the usage of any tool or technique is within a domain. This
lack of comprehensiveness may render our framework less applicable when applied to a particular domain.

7.2 Considering Tool Support and Future Research for Challenges

In this section, we again present the challenge questions from the introduction in Section 1. For each question we then
present our thoughts on how the challenge has been addressed by the tools and example studies seen in this article. We
then present the potential research directions for each question.

Table 7 offers a general analysis on whether the tools discussed in this section addressed the challenge questions. For
each question, a summary of the techniques from Sections 4 and 5 is presented. Symbols then provide an indication
whether the challenge is not, partially, or more fully addressed by the tools. The last column then highlights the best
examples which address each challenge.

From Table 7 it is clear that there are a number of challenge questions which are not addressed in current workflow
tools or their ecosystems. We also identify that while most tools offer support for constructing workflows from problems,
this is not yet an automated process. Thus there are ample opportunities for improving the experience of domain
experts to create solution workflows as discussed in the next sections.

7.2.1 Mapping a DS problem to a form suitable for ML. The first challenge we have selected focuses on the problem
layer. That is, how to assist the domain expert to choose the machine learning techniques which may assist them.
Our analysis in Table 7 indicates that none of the workflow frameworks discussed in this article tackle this challenge.
This may be expected as the workflow management systems focus on the workflow and implementation layers of our
framework. However, further integration of problem specification and mapping into these tools may assist domain
experts.

For example, most of the example studies examined in Section 6 directly define a ML or blended problem. This could
indicate that domain experts are having to gain sufficient machine learning knowledge to begin their study, instead of

Manuscript submitted to ACM



36 Bentley James Oakes, Michalis Famelis, and Houari Sahraoui

Tool Best Supporting
Challenge Techniques Support Tool(s)
Mapping DS →ML Expert mapping [6, 17, 61, 64, 118] None

Ontological reasoning [78, 117] None
Data-driven approaches None

Problem→Workflow Domain-specific examples [58, 120] Galaxy, nipype
Workflow repositories [34, 42, 49, 99] Galaxy, KNIME, Nextflow,

Orange
Automatic reasoning [51, 52, 69, 78] APE, WINGS

Incr. workflow ML Suggestions [60, 74] Galaxy, KNIME
Experimentation KNIME, Orange

Incr. workflow DS DS component plugins [123] Node-RED, Orange, WINGS
Suggestions [74, 89] Galaxy, KNIME
DS sub-workflows [39, 57, 88] automate, Galaxy, nipype

Workflow →
Implementation

Deployment to DS platform [65, 70, 104] automate, Compi, Galaxy,
Node-RED

Run in tool [85] KNIME, Orange
Implementation→ Language integration [77] Nipype
Workflow Code mining [20] None

Table 7. Broad analysis of techniques and tool support for answering challenge questions.
means that these tools do not support the transformation, is partial support, and means the transformation is well-supported.

leaving the problem as a DS problem. In particular, the study of Kaggle (Section 6.2.3) shows that domain experts will
go to great lengths to obtain ML expertise on their problem.

One potential research direction to address this challenge involves bringing together semantic information from the
DS and ML domains. In particular, ontological information could be used to match problems in a particular domain
with a ML specification [78]. An alternative approach is to rely on data-driven approaches including deep learning. For
example, if a suitable Large Language Model (LLM) is trained and integrated into a tool, a domain expert could directly
ask for a suitable ML representation of their problem and obtain the mapping.

7.2.2 Providing a solution workflow for a DS and/or ML problem. This challenge is the core focus of these workflow
management systems as they provide the domain expert with the formalisms and assistance to build up the workflow.
However, it is clear that tools have different ways of assisting the user, as described in Section 5.1. This includes assisted
workflow composition, domain-specific examples, component libraries, and workflow repositories.

Many frameworks use a repository approach to improve the discoverability of workflows. That is, they provide
a website for domain experts to search for a workflow which suits their needs 48. We also point to the impressive
Collective Knowledge framework [48] for a repository focusing on AI, ML, and system research49.

However there still remains a challenge to connect the workflow solutions present in the repository with the problem
faced by the domain expert [49]. The literature discusses manual and automatic semantic extraction techniques which
can assist domain experts in finding workflows [35, 103]. However, enabling this at-scale across multiple domains and
tools will continue to be a challenge.

48Examples include https://workflowhub.eu/, httpsL//hub.knime.com, and https://nf-co.re.
49https://cknowledge.io
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As an example of the rich information to extract from workflows, we point to the work of Lamprecht et al. who
discuss automatic discovery and the static analysis of workflows [78]. This includes technical parameters (versioning,
FAIRness metrics, usage, etc.), domain-specific considerations (relevance of components to a domain, similarity to
existing workflows, type and format of results, etc.), and community influence (citations, comments, ratings, etc.).

Automated workflow composition can also assist domain experts in building their workflows. A promising approach is
to combine the techniques of AutoML [60] with domain knowledge about required domain-specific components [51, 69].
Large Language Models (LLMs) may also be a fruitful area of research to provide recommendations for workflow
construction, as they could be tuned towards a particular domain [19, 134].

Whether a workflow is found or not, the domain expert is likely to want to add their own components. Thus
another sub-challenge is to improve the suggestion possibilities for domain experts. Recommendations are found in the
KNIME, Galaxy, and low-code tools [3, 74], but we see further potential in this research area. For example, suggesting
larger pieces of workflows, improved semantic reasoning such that components relate directly to the domain [89], and
employing machine learning techniques themselves to suggest components [100].

7.2.3 Allowing the domain expert to experiment with appropriate ML components. This challenge relates to the ease of
which a domain expert can modify their workflow to include ML components. We believe that these domain experts
should be encouraged and assisted to experiment with ML techniques within a workflow by the tooling. For example,
the Orange tool (Section 6.3.2) makes it simple to add ML components to a workflow and visualise the results. This
sort of visual experimentation fits perfectly with the component-based nature of workflows and ties in well with
the challenge of improving the automatic recommendation systems. This experimentation step can also be partially
automated by integrating AutoML techniques [60] or recommender systems [74] into the workflow tool to dynamically
react to workflow changes.

7.2.4 Adding DS knowledge. The domain expert should be assisted in integrating their domain knowledge into the
workflow, to lower the cognitive burden and to employ domain-specific libraries and algorithms. Here, the plug-in
approach of providing domain-specific components is common among the tools examined here. Sub-workflows such as
nipype (Section 6.3.1) can also assist the domain expert in reusing previously-built workflows.

Another research challenge is how to utilise the DS knowledge of a domain expert to directly improve the performance
of ML techniques. This is seen in some example studies (such as in Section 6.2.3 and Section 6.3.1) where the features
themselves were modified to take into domain knowledge. As with other challenges described here, one approach
may be to combine domain knowledge represented in an ontology with suggestions for features to extract, such as
provided by unsupervised feature extraction [116] or ontology embeddings [73]. Only the WINGS tool was seen to
improve the performance of ML techniques by utilising DS knowledge. This is possible due to semantic reasoning
of domain knowledge which is used to select appropriate components and parameters. More ML-specific techniques
such as feature extraction are possible but there does not seem to be integrated support for this challenge in the tools
examined here.

7.2.5 Producing an implementation from a workflow which is well-suited for a domain expert. Once a domain expert
has created their workflow they must be able to run it in a scalable manner. This is addressed in multiple tools
from Section 2.4. In particular, Galaxy offers powerful computational resources in a web-based platform. This allows
bioinformatics experts to run their workflows on specialised platforms. However, there will always be additional
challenges and opportunities to ensure that a domain expert can deploy their solution on the correct infrastructure. For
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example, code could be generated or parameterised based on the domain-specific tasks or data operated on, such as
image- or voxel-based datasets [30]. The rise of containerisation also opens up many challenges to ensure that these
containers are distributed for optimal scalability and security [104].

7.2.6 Extracting a workflow from an existing implementation (code or notebook). The final challenge we highlight in our
article is to convert the existing implementations a domain expert may have into workflows. Amongst other benefits,
this would improve the modularisation and dissemination of these solutions [20]. For example, Jupyter notebooks 50

are a well-known paradigm for storage, dissemination, and reproduction of experimental results [101]. Each cell in a
notebook contains text or executable code, where the results of code are shown directly underneath. This format thus
provides a narrative to provide context for the code, which is useful for disseminating results or tutorials on a topic.

Rule et al. suggest that scientists spend time to make Jupyter notebooks themselves form part of a workflow [108]. An
interesting line of research is therefore to develop tooling and techniques to automate this process, such that the legacy
notebooks of domain experts or machine learning experts51 can be automatically promoted to explicit workflows [20].

None of the tools offer support for extracting workflows from existing code. However, the light-weight nature of the
Python module-based tools (such as luigi or nipype from Section 2.4) could be seen as an easy way to “lift” existing
code into an explicit workflow.

7.3 External Challenges

Beyond the challenges related to the framework itself, we also identify two other challenges which are important to
increase the impact of addressing the problems specified in this article. These challenges are: a) strengthening the
workflow community as a whole, and b) proposing tools and techniques to guide a domain expert in solving their
problems.

7.3.1 Strengthening the Workflow Community. For domain experts to be able to effectively use workflows to solve their
problems using ML, there must be a strong cross-domain workflow community. This community will then be able to
pool knowledge and resources to best solve domain problems.

The excellent article of da Silva et al. suggests current challenges and proposed activities in a workflow community
context [27]. The challenges they see are: FAIR computational workflows, AI workflows, exascale challenges and beyond,
APIs, reuse, interoperability and standards, training and education, and building a workflows community.

We also see other avenues to strengthen the workflow community. In particular, we note the recent research and
commercial interest of low-code platforms which are in some cases workflow management tools [14, 62]. It may be
possible to leverage this interest into further developing workflow management systems by providing support for
commercial domains. For example, the KNIME tool (Section 2.4.2) started development for solving pharmaceutical
applications, but has now evolved to offer a commercial solution.

Crowdsourcing knowledge is also another possibility to build up the workflow community. For example, Paul-
Gilloteaux et al. suggest the organisation of regular “taggathons” to annotate tools, workflows, components, databases,
and training materials with terms from an ontology [103].

We also point towards Kaggle (Section 6.2.3) as an interesting community of domain and ML experts. Despite the
issues with crowdsourcing [17, 119], it may be possible to further utilise this pool of knowledge. In particular, we

50https://jupyter.org/
51See Quaranta et al. for a dataset of Kaggle notebooks [105].
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suggest that offering incentives for competition participants to include explicit workflows and reusable components in
their solution may assist with reuse of their efforts.

Bringing in further expertise from software engineering sub-fields could also bring benefits to the workflow com-
munity. In particular, we draw from our own expertise in model-driven engineering to suggest that there are many
research avenues to explore.

For instance, the multi- view/formalism/level of abstraction approach of multi-paradigm modelling may assist in
reducing the cognitive complexity of domain experts [50]. A concrete example is providing views on a workflow such
that the domain expert can focus on different aspects of the workflow as needed.

Another research avenue would be integration of model management approaches such as modelling variability
and uncertainty techniques into workflow management tools [44]. The last research avenue we propose would be
the integration of verification and validity techniques such as recording performance metrics [29], enhancing type
safety [41], and checking for formal properties such as reachability [43].

7.3.2 Guiding the Domain Expert. The last challenge we mention in this article is how to guide the domain expert in
both finding the best practices and tools for their domain, as well as their path in the framework.

Recently there have been articles in multiple domains walking a domain expert through the best tools and techniques
available to employ ML [61, 75, 87, 107, 128]. For example, Nakhle and Harfouche provide four detailed Jupyter
notebooks52 walking domain experts in phenomics (plant sciences) through four steps of a ML task [97].

These four steps ([image] dataset selection, data preprocessing, data analysis, and performance analysis and explanation)
are representative of most ML workflows. Therefore we suggest that similar dissemination efforts in different domains
may assist domain experts. In particular, collaborative knowledge bases for a domain expert to navigate the tools and
resources available in their domain may be useful.

Another tooling effort could be to dynamically assist the domain expert in producing template workflows based on
their domain-specific problem [81, 98]. However, this raises the question of how to assist the domain expert through
the regions of our framework in Section 3.

For example, consider three approaches to take a DS problem and arrive at a blended workflow. The first approach is
on the problem level, where the domain expert is provided with basic ML knowledge to assist them in refining the DS
problem to include ML concepts. The second approach is to immediately build a workflow, and then use AutoML [60]
techniques, assist the user in experimentation (as in the Orange tool), or use ontological recommendations [89] to
complete the workflow. The last approach is to follow principles from human-guided machine learning to iteratively
build out the workflow [38, 51, 111]. In these three approaches, more or less automation may be appropriate depending
on the task and user [129].

A further consideration is whether to hide or expose the ML concepts and components based on the ML knowledge
of the domain expert. This could allow a user to work with a mostly DS workflow, and over time adjust the workflow
towards a blended workflow as they gain insight and familiarity with the ML components.

7.4 Illustrative Use of the Framework

This section discusses how the conceptual framework presented in this article can be made actionable to guide domain
experts from their domain problem to obtain a workflow utilizing ML. That is, if the transformations presented in this
article were implemented in an available tool, we illustrate how a domain expert could use that tool. Thus this section

52Available here: https://github.com/HarfoucheLab/Ready-Steady-Go-AI
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provides an illustrative ‘user story’ for researchers and tool builders to develop useful tools and techniques for domain
experts which are aligned with our conceptual framework.

Domain Problem. The domain problem selected for this illustrative use is melanoma classification. That is, given
an image of a skin lesion, can these images be classified as malignant (cancerous) or benign [135]. As skin cancer is a
dangerous and prevalent disease, it is important to address any technical issues that these domain experts may have in
understanding the problem and providing solutions.

In the literature, automatic melanoma classification has been examined for years using vision techniques [112].
Recently, ML approaches have also been applied [135], bolstered by the availability of high-quality datasets from the
International Skin Imaging Collaboration (ISIC)53.

The domain expert in this case is thus a dermatology researcher, who wishes to explore how ML techniques can be
used to classify skin lesion images. In particular, we imagine they are concerned with examining different ML techniques
and parameters to determine which solution provides the highest accuracy.

Problem Transformations. On the problem layer, a tool aligned with our framework would be able to accept this
problem statement as text or using a modelled language. The mapping from the classification to the ML techniques
would then be provided through techniques such as stored expert knowledge, ontological mappings, or querying a
Large Language Model. For example, as the problem concerns image classification, then a convolutional neural network
(CNN) approach is a good suggestion, while a decision tree is a poor suggestion, based on the form of the input data.
Subtler suggestions may also be presented, such as suggesting different CNN architectures such as ResNet or DenseNet,
based on what performs better for medical images [138].

As the domain expert may not be experienced enough to appreciate this difference between different architectures,
this information may need to be hidden to avoid confusion. As discussed in Section 7.3.2, the tool should react to the
ML expertise of the user to only reveal a digestible amount of complexity.

From these transformations, the domain expert may arrive at different formulations of the melanoma classification
problem, such as: a) how do I classify melanoma images using ML?, b) how do I classify melanoma images using CNNs?, or
c) what is the best architecture for CNNs for classifying melanoma images?. These formulations progressively escalate the
complexity within the ML dimension.

Domain-specific knowledge may also factor into the problem. For example, dermatologists may use the ABCD(E)
rule for assessing lesions, focusing on the lesion’s asymmetry, border, colour, diameter, and evolution (over time) [96].
The domain question could then become: how useful is the notion of the lesion diameter to CNN approaches?.

Therefore the future tool would walk the user through specifying their domain problem, and indicating which ML
techniques are appropriate to address that problem.

Obtaining the Workflow. From the problem, the tool should then provide the domain expert with the workflow
components to address that problem. As mentioned in Table 7, this could be the tool providing a workflow repository
to search for other workflows which address melanoma classification, offering a component library for image analysis,
or by integrating ontological techniques to automatically suggest relevant components.

For example, as skin images often include body hair, it is likely that the domain expert will require a component to
remove these artefacts from the images [82]. This component can then be suggested whenever the problem includes

53https://www.isic-archive.com/
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medical images. Lee and Chin also discuss the performance of various types of image augmentation, which can be
suggested as other components to include in the workflow whenever a CNN technique is used [82].

Thus the tool should be able to provide workflows or workflow components to the user, based on the specified
problem. Another transformation is for the tool to load a user’s Jupyter notebook as an initial workflow. This would
allow for the below transformations to take place.

Suggestions for the Workflow. Once an initial or partial workflow has been produced for the user, the tool should use
the transformations listed in Table 7 to tailor the workflow to the domain expert and the problem. For example, the
domain expert should be provided with a guided environment to experiment with the ML components, where instant
feedback and level-appropriate documentation is provided, as in the Orange tool (Section 2.4.2).

Suggestions can also be provided, such as recommending components or sub-workflows which appear in other
workflows which address melanoma classification. For example, domain-specific visualization components could be
suggested to indicate how the diameter and colour of a skin lesion corresponds to the classification of lesions. In this
way, the workflow can be transformed to be more domain-specific or have more complex ML as the user desires.

Executing the Workflow. Once the workflow for classifying melanoma has been built, the domain expert will wish to
execute it. Depending on the technical architecture, the size of the dataset, and the user’s wishes, there are options
including: a) running the components within the tool, b) deployment to a computational platform, and/or c) exporting
to the user’s preferred scripting/workflow language, such as Python. For example, the melanoma classification workflow
could be deployed on a mobile device for user studies [126].

Any results should then be presented to the user within the tool, such that they may continue to experiment with and
refine the workflow. For the dermatologist expert, these results should be presented in a domain-specific visualization
if possible, explaining how the classification was performed. For example, this could be a heat-map to demonstrate
whether the size markers around the lesion have been used (incorrectly) as features for classification [132].

7.5 Evaluation Metrics

Following the illustrative framework use in the last section, we present here potential quantitative and qualitative
evaluation metrics for evaluating an application of the framework on a domain expert’s problem. These metrics are
intended to capture how the domain expert spends time and cognitive effort during the construction and modification
of their workflow, such that the underlying tools and transformations can be measured, compared, and improved over
time. The metrics we have selected are a mix of objective and subjective, as we also wish to take into account some
human aspects of how the domain expert interacts with the framework and underlying tool [10].

Here, we provide a sample of metrics divided into four different categories reflecting aspects of our conceptual
framework. There are metrics related to: a) how the built artefacts (problem, workflow, and implementation) fit into the
framework regions, b) the usage of the tool implementing this framework, c) the recommendations or guidance provided
by the tool, and d) the workflow itself produced by the tool.

7.5.1 Framework Metrics. As demonstrated in Section 6, we also define some metrics and guidelines for how the case
study artefacts fit within our framework. We perform a quantitative count of labelled components as either domain-specific

or involving machine learning. These counts are then used for a coarse division of each artefact into the regions of our
framework.

Manuscript submitted to ACM



42 Bentley James Oakes, Michalis Famelis, and Houari Sahraoui

We are developing further quantitative and qualitative metrics to better define the domain-specificity and ML

complexity of each artefact. For the domain-specific dimension, it may be possible to provide a spectrum based on
whether the involved components are data-format specific, domain-specific, or field-specific. For the ML complexity
dimension, we are considering measures for the level of expertise or pre-requisite topics needed to understand the
components, and measures for the configuration space implied by the components. For example, these measures
could involve the number of ML algorithms used, the presence of deep learning, and a measure of the decomposition
(black-box nature, layers, parameters) of each algorithm.

7.5.2 Tool Usage Metrics. Our conceptual framework will need to be realized by a tool for a domain expert to utilize it
to create domain-specific ML workflows. Thus, these human-computer interaction metrics can be used to evaluate the
implementation(s) of this framework.

Quantitative Metrics. The effort of the domain expert using the tool can be estimated using human-computer
interaction metrics such as time taken to complete tasks, number of mouse clicks, or the distance of mouse movement

(Fitt’s Law) [86]. There are also bio-feedback approaches to measure the cognitive load of the user, such as using skin
sensors (electrodermal activity) [55], eye tracking (areas of interest, fixations, scanpaths), or measuring brain activity
(neuronal blood flow) [114]. Biehl et al. quantified the decrease in the number of decisions required by users when
utilizing a tool [12], which could be considered a measure of reduced cognitive effort.

Qualitative Metrics. Domain expert interviews and surveys can be utilized to measure the subjective experience of
their use of the tool. For example, the System Usability Scale (SUS) provides Likert scales to record the user’s response
to statements such as “I think that I could use the product without the support of the technical person”, and “I could
use the product without having to learn anything new” [16, 72]. The User Experience Questionnaire (UEQ)54 provides
26 7-point Likert scales for recording products along the dimensions of Attractiveness, Perspicuity (easy to become
familiar), Efficiency (lack of unnecessary effort), Dependability (predictability), Stimulation (exciting and motivating),
and Novelty (creative and interesting) [79].

7.5.3 Recommendations and Guidance Metrics. With the rise of intelligent modelling guidance approaches, it is expected
that tools which align with our conceptual framework will be able to assist the domain expert in specifying their
problem and building their workflow. For example, as mentioned in Section 7.4, the tool should be able to suggest
relevant components based on the problem domain and/or the components already existing in the workflow. Here, we
suggest relevant metrics to measure how useful these suggestions are.

Quantitative Metrics. When the tool presents suggestions to the user, the user may accept them. Thus, the acceptance
rate can be measured to determine the suggestion usefulness, or how diverse the resulting artefacts are [9]. If a ground
truth is provided, metrics such as precision and recall can provide an indication of the success of recommendations [33].
The efficiency (time and resources taken) for this guidance process is also important to ensure that suggestions are
provided in a timely manner [94].

Qualitative Metrics. Mussbacher et al. have defined various metrics for evaluating intelligent modelling assistants [94].
These metrics include qualitative aspects such as: the quality of the results, autonomy for the assistant to gather
information, relevance of the results (defined as usefulness for each user), confidence of how sure the assistant is about

54https://www.ueq-online.org/
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the suggestion, how much trust the user has in the assistance, and explainability for whether the user understands the
suggestions.

7.5.4 Workflow Metrics. As the domain expert is building a workflow using our conceptual framework and the tool, it
is possible to define metrics about the workflow itself. These metrics can be used to compare workflows built using
different tools, or after the workflows undergo the transformations as we have defined them in our framework.

Quantitative Metrics. The component count of the workflow may be an estimate of how much effort is used to create
and understand it. D’Aloisio et al. define other measurements of ML workflows such as computational complexity

(space and time requirements), the prediction correctness (precision, recall, etc.), and fairness (avoiding prejudice or
favouritism) [28].

Qualitative Metrics. D’Aloisio et al. also define inter-related privacy and interpretability qualitative metrics for ML
workflows [28]. Privacy refers to the hiding of sensitive information in the dataset, while interpretability focuses on
how the user can understand the results produced by the workflow.

8 CONCLUSION

This article presents a conceptual framework to structure the decisions, transformations, and tools whereby domain
experts can utilise machine learning to solve their problems. In particular, we focus on the computational workflow
representation of solutions where executable components are connected by control and data flow edges. Examining
the state-of-the-practice, we identify six key challenges that a domain expert may face in developing an executable
workflow:

• Map a DS problem to a form suitable for ML
• Obtain a solution workflow for a DS and/or ML problem
• Experiment with ML tools and techniques within a workflow
• Add DS knowledge to improve ML performance (e.g., feature engineering)
• Produce an implementation from a workflow which is well-suited for a domain expert (in terms of scalability, DS
tooling, etc.)

• Extract a workflow from an existing implementation (code, Jupyter notebook)

These challenges are represented by transformation within regions of our conceptual framework. This framework
has three layers, consisting of the problem layer, workflow solution layer, and implementation layer. Each layer is further
structured with two dimensions representing the domain specificity and complexity of machine learning of the artefacts
on that layer.

This conceptual framework structures our investigation of the state-of-the-practice for how domain experts are
employing machine learning. In particular, a selection of textual and graphical workflow tools are briefly presented
to illustrate tool support for the challenges and transformations we have identified. Example studies selected from
recent works in various domains further explore how the problems, workflows, and implementations created by domain
experts are heterogeneous in terms of the amount of domain specificity and machine learning complexity. We also
provide a short discussion on each challenge to indicate possible research directions, and a thought experiment of
efficient workflow development in a tool which conforms to our framework.

This article thus forms a basis for further discussion and software engineering research into assisting domain
experts with developing workflow solutions which employ machine learning. Integrating best practices from software
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engineering and across tools will reduce the friction for domain experts to utilise these powerful techniques and
unlock new possibilities in their application to pressing scientific issues. In particular, we present this framework as a
way of structuring the transformations to be integrated into future tool architectures, such that users can use these
transformations to easily obtain and customize their workflow.

Our current and future research focuses on the implementation of a tool conforming to this framework which is
able to guide a domain expert from a problem to a solution. Following the illustrative case described in Section 7.4,
we are currently collaborating with domain experts to develop tooling suitable to create a workflow for melanoma
classification. We will then evaluate our tool using quantitative and qualitative methods in user-facing experiments to
estimate the time and cognitive effort saved by the tool support (Section 7.5). In the future, this tooling framework will
then serve as a research platform to investigate how to better assist domain experts in creating ML workflows.

ACKNOWLEDGMENTS

This work was performed when the first author was a post-doctoral researcher in DIRO at the Université de Montréal.
The authors would like to sincerely thank their colleagues Dr. Istvan David (McMaster University) and Dr. Jessie Galasso
(McGill University) for their insightful discussions on this article.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES
[1] Aderibigbe Israel Adekitan, Jeremiah Abolade, and Olamilekan Shobayo. 2019. Data mining approach for predicting the daily Internet data traffic

of a smart university. Journal of Big Data 6, 1 (2019), 1–23. Figure adapted under the Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/.

[2] Azza E Ahmed, Joshua M Allen, Tajesvi Bhat, Prakruthi Burra, Christina E Fliege, Steven N Hart, Jacob R Heldenbrand, Matthew E Hudson,
Dave Deandre Istanto, Michael T Kalmbach, et al. 2021. Design considerations for workflow management systems use in production genomics
research and the clinic. Scientific reports 11, 1 (2021), 1–18.

[3] Lissette Almonte, Iván Cantador, Esther Guerra, and Juan de Lara. 2020. Towards automating the construction of recommender systems for
low-code development platforms. In Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings. 1–10.

[4] Ethem Alpaydin. 2020. Introduction to machine learning. MIT press.
[5] Peter Amstutz, Maxim Mikheev, Michael R. Crusoe, Nebojša Tijanić, Samuel Lampa, et al. 2021. Existing Workflow systems. Common Workflow

Language wiki, GitHub. https://s.apache.org/existing-workflow-systems Updated 2021-12-14, accessed 2022-01-06.
[6] Sanjay Aneja, Enoch Chang, and Antonio Omuro. 2019. Applications of artificial intelligence in neuro-oncology. Current opinion in neurology 32, 6

(2019), 850–856.
[7] Syeeda Nilofer Banoo. 2020. Flow-based Programming for Machine Learning. Master’s thesis. Technical University of Munich.
[8] Kyle D Bemis, April Harry, Livia S Eberlin, Christina Ferreira, Stephanie M van de Ven, Parag Mallick, Mark Stolowitz, and Olga Vitek. 2015.

Cardinal: an R package for statistical analysis of mass spectrometry-based imaging experiments. Bioinformatics 31, 14 (2015), 2418–2420.
[9] Meriem Ben Chaaben. 2023. Few-Shot Prompt Learning for Automating Model Completion. Master’s thesis. Université de Montréal.
[10] Oussama Ben Sghaier, Jean-Sebastien Boudrias, and Houari Sahraoui. 2023. Toward Optimal Psychological Functioning in AI-driven Software

Engineering Tasks: The SEWELL-CARE Assessment Framework. arXiv:arXiv:2311.07410
[11] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias Kötter, Thorsten Meinl, Peter Ohl, Christoph Sieb, Kilian Thiel, and

Bernd Wiswedel. 2008. KNIME: The Konstanz Information Miner. In Data Analysis, Machine Learning and Applications, Christine Preisach, Hans
Burkhardt, Lars Schmidt-Thieme, and Reinhold Decker (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 319–326.

[12] Matthias Biehl, Jad El-Khoury, Frédéric Loiret, and Martin Törngren. 2014. On the modeling and generation of service-oriented tool chains.
Software & Systems Modeling 13 (2014), 461–480.

[13] Sumon Biswas, Mohammad Wardat, and Hridesh Rajan. 2022. The art and practice of data science pipelines: A comprehensive study of data science
pipelines in theory, in-the-small, and in-the-large. In Proceedings of the 44th International Conference on Software Engineering. 2091–2103.

Manuscript submitted to ACM

http://creativecommons.org/licenses/by/4.0/
https://s.apache.org/existing-workflow-systems
https://arxiv.org/abs/arXiv:2311.07410


Building Domain-Specific Machine Learning Workflows 45

[14] Alexander C Bock and Ulrich Frank. 2021. In search of the essence of low-code: an exploratory study of seven development platforms. In 2021
ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). IEEE, 57–66.

[15] Andrea Borghesi, Federico Baldo, and Michela Milano. 2020. Improving deep learning models via constraint-based domain knowledge: a brief
survey. arXiv preprint arXiv:2005.10691 (2020).

[16] John Brooke. 1996. SUS: a “quick and dirty” usability scale. Usability evaluation in industry 189, 3 (1996), 189–194.
[17] Adrian Bumann and Robin Teigland. 2021. The Challenges of Knowledge Combination in ML-based Crowdsourcing–The ODF Killer Shrimp

Challenge using ML and Kaggle. In Proceedings of the 54th Hawaii International Conference on System Sciences. 4930.
[18] Jordi Cabot. 2020. Positioning of the low-code movement within the field of model-driven engineering. In Proceedings of the 23rd ACM/IEEE

International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings. 1–3.
[19] Yuzhe Cai, Shaoguang Mao, Wenshan Wu, Zehua Wang, Yaobo Liang, Tao Ge, Chenfei Wu, Wang You, Ting Song, Yan Xia, et al. 2023. Low-code

LLM: Visual Programming over LLMs. arXiv preprint arXiv:2304.08103 (2023).
[20] Lucas AMC Carvalho, Regina Wang, Yolanda Gil, and Daniel Garijo. 2017. NiW: Converting Notebooks into Workflows to Capture Dataflow and

Provenance.. In K-CAP Workshops.
[21] Marina Celestine, Nachiket A Nadkarni, Clément M Garin, Salma Bougacha, and Marc Dhenain. 2020. Sammba-MRI: A library for processing

SmAll-MaMmal BrAin MRI data in Python. Frontiers in neuroinformatics 14 (2020), 24.
[22] Moharram Challenger, Ken Vanherpen, Joachim Denil, and Hans Vangheluwe. 2020. FTG+PM: Describing Engineering Processes in Multi-Paradigm

Modelling. In Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems. Springer, Cham, 259–271.
[23] Michele Chinosi and Alberto Trombetta. 2012. BPMN: An introduction to the standard. Computer Standards & Interfaces 34, 1 (2012), 124–134.
[24] Benoit Combemale, Jorg Kienzle, Gunter Mussbacher, Hyacinth Ali, Daniel Amyot, Mojtaba Bagherzadeh, Edouard Batot, Nelly Bencomo, Benjamin

Benni, Jean-Michel Bruel, et al. 2020. A Hitchhiker’s Guide to Model-Driven Engineering for Data-Centric Systems. IEEE Software 38, 4 (2020),
71–84.

[25] OpenJS Foundation & Contributors. [n. d.]. Node-RED. https://nodered.org.
[26] Michael R Crusoe, Sanne Abeln, Alexandru Iosup, Peter Amstutz, John Chilton, Nebojša Tijanić, Hervé Ménager, Stian Soiland-Reyes, Bogdan

Gavrilovic, and Carole Goble. 2021. Methods included: Standardizing computational reuse and portability with the common workflow language.
arXiv preprint arXiv:2105.07028 (2021).

[27] Rafael Ferreira da Silva, Henri Casanova, Kyle Chard, Ilkay Altintas, Rosa M Badia, Bartosz Balis, Tainã Coleman, Frederik Coppens, Frank Di Natale,
Bjoern Enders, et al. 2021. A community roadmap for scientific workflows research and development. In 2021 IEEE Workshop on Workflows in
Support of Large-Scale Science (WORKS). IEEE, 81–90.

[28] Giordano d’Aloisio, Antinisca Di Marco, and Giovanni Stilo. 2022. Modeling Quality and Machine Learning Pipelines through Extended Feature
Models. arXiv preprint arXiv:2207.07528 (2022).

[29] István Dávid, Hans Vangheluwe, and Yentl Van Tendeloo. 2018. Translating engineering workflow models to DEVS for performance evaluation. In
2018 Winter Simulation Conference (WSC). IEEE, 616–627.

[30] Ewa Deelman, Anirban Mandal, Ming Jiang, and Rizos Sakellariou. 2019. The role of machine learning in scientific workflows. The International
Journal of High Performance Computing Applications 33, 6 (2019), 1128–1139.

[31] Janez Demšar, Tomaž Curk, Aleš Erjavec, Črt Gorup, Tomaž Hočevar, Mitar Milutinovič, Martin Možina, Matija Polajnar, Marko Toplak, Anže
Starič, et al. 2013. Orange: data mining toolbox in Python. the Journal of machine Learning research 14, 1 (2013), 2349–2353.

[32] Janez Demšar and Blaz Zupan. 2005. From experimental machine learning to interactive data mining. White Paper (www. ailab. si/orange), Faculty
of Computer and Information science, University of Ljubljana (2005).

[33] Claudio Di Sipio, Juri Di Rocco, Davide Di Ruscio, and Phuong T Nguyen. 2023. MORGAN: a modeling recommender system based on graph
kernel. Software and Systems Modeling (2023), 1–23.

[34] Paolo Di Tommaso, Maria Chatzou, EvanW Floden, Pablo Prieto Barja, Emilio Palumbo, and Cedric Notredame. 2017. Nextflow enables reproducible
computational workflows. Nature biotechnology 35, 4 (2017), 316–319.

[35] Juan Sebastian Beleno Diaz and Claudia Bauzer Medeiros. 2017. WorkflowHunt: combining keyword and semantic search in scientific workflow
repositories. In 2017 IEEE 13th International Conference on e-Science (e-Science). IEEE, 138–147.

[36] William Digan, Aurélie Névéol, Antoine Neuraz, Maxime Wack, David Baudoin, Anita Burgun, and Bastien Rance. 2021. Can reproducibility be
improved in clinical natural language processing? A study of 7 clinical NLP suites. Journal of the American Medical Informatics Association 28, 3
(2021), 504–515.

[37] Alexander Dunn, Qi Wang, Alex Ganose, Daniel Dopp, and Anubhav Jain. 2020. Benchmarking materials property prediction methods: the
Matbench test set and Automatminer reference algorithm. npj Computational Materials 6, 1 (2020), 1–10.

[38] Vito D’Orazio, James Honaker, Raman Prasady, and Michael Shoemate. 2019. Modeling and forecasting armed conflict: AutoML with human-guided
machine learning. In 2019 IEEE International Conference on Big Data (Big Data). IEEE, 4714–4723.

[39] Oscar Esteban, Rastko Ciric, Karolina Finc, Ross W Blair, Christopher J Markiewicz, Craig A Moodie, James D Kent, Mathias Goncalves, Elizabeth
DuPre, Daniel EP Gomez, et al. 2020. Analysis of task-based functional MRI data preprocessed with fMRIPrep. Nature protocols 15, 7 (2020),
2186–2202.

[40] Oscar Esteban, Christopher J Markiewicz, Ross W Blair, Craig A Moodie, A Ilkay Isik, Asier Erramuzpe, James D Kent, Mathias Goncalves, Elizabeth
DuPre, Madeleine Snyder, et al. 2019. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nature methods 16, 1 (2019), 111–116.

Manuscript submitted to ACM

https://nodered.org


46 Bentley James Oakes, Michalis Famelis, and Houari Sahraoui

[41] Riley Evans, Samantha Frohlich, and Meng Wang. 2022. CircuitFlow: A Domain Specific Language for Dataflow Programming. In International
Symposium on Practical Aspects of Declarative Languages. Springer, 79–98.

[42] Philip A Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso, and
Sven Nahnsen. 2020. The nf-core framework for community-curated bioinformatics pipelines. Nature biotechnology 38, 3 (2020), 276–278.

[43] Javier Fabra, María José Ibáñez, Joaquín Ezpeleta, et al. 2018. Behavioral analysis of scientific workflows with semantic information. IEEE Access 6
(2018), 66030–66046.

[44] Michalis Famelis and Marsha Chechik. 2019. Managing design-time uncertainty. Software & Systems Modeling 18, 2 (2019), 1249–1284.
[45] Yuanrui Fan, Xin Xia, David Lo, and Ahmed E Hassan. 2018. Chaff from the wheat: Characterizing and determining valid bug reports. IEEE

transactions on software engineering 46, 5 (2018), 495–525.
[46] Melanie Christine Föll, Lennart Moritz, Thomas Wollmann, Maren Nicole Stillger, Niklas Vockert, Martin Werner, Peter Bronsert, Karl Rohr,

Björn Andreas Grüning, and Oliver Schilling. 2019. Accessible and reproducible mass spectrometry imaging data analysis in Galaxy. GigaScience 8,
12 (2019), giz143.

[47] Melanie Christine Föll, Veronika Volkmann, Kathrin Enderle-Ammour, Konrad Wilhelm, Dan Guo, Olga Vitek, Peter Götz Christian Bronsert, and
Oliver Schilling. 2021. Moving translational mass spectrometry imaging towards transparent and reproducible data analyses: A case study of an
urothelial cancer cohort analyzed in the Galaxy framework. bioRxiv (2021).

[48] Grigori Fursin. 2021. Collective knowledge: organizing research projects as a database of reusable components and portable workflows with
common interfaces. Philosophical Transactions of the Royal Society A 379, 2197 (2021), 20200211.

[49] Daniel Garijo, Yolanda Gil, and Oscar Corcho. 2017. Abstract, link, publish, exploit: An end to end framework for workflow sharing. Future
Generation Computer Systems 75 (2017), 271–283.

[50] Holger Giese, Tihamér Levendovszky, and Hans Vangheluwe. 2006. Summary of the workshop on multi-paradigm modeling: Concepts and tools.
In International Conference on Model Driven Engineering Languages and Systems. Springer, 252–262.

[51] Yolanda Gil, James Honaker, Shikhar Gupta, Yibo Ma, Vito D’Orazio, Daniel Garijo, Shruti Gadewar, Qifan Yang, and Neda Jahanshad. 2019.
Towards human-guided machine learning. In Proceedings of the 24th International Conference on Intelligent User Interfaces. 614–624.

[52] Yolanda Gil, Varun Ratnakar, and Christian Fritz. 2010. Assisting scientists with complex data analysis tasks through semantic workflows. In 2010
AAAI Fall Symposium Series.

[53] Yolanda Gil, Varun Ratnakar, Jihie Kim, Pedro Gonzalez-Calero, Paul Groth, Joshua Moody, and Ewa Deelman. 2010. Wings: Intelligent workflow-
based design of computational experiments. IEEE Intelligent Systems 26, 1 (2010), 62–72.

[54] Primož Godec, Matjaž Pančur, Nejc Ilenič, Andrej Čopar, Martin Stražar, Aleš Erjavec, Ajda Pretnar, Janez Demšar, Anže Starič, Marko Toplak,
et al. 2019. Democratized image analytics by visual programming through integration of deep models and small-scale machine learning. Nature
communications 10, 1 (2019), 1–7.

[55] Lucian José Gonçales, Kleinner Farias, and Bruno C da Silva. 2021. Measuring the cognitive load of software developers: An extended Systematic
Mapping Study. Information and Software Technology 136 (2021), 106563.

[56] Dmitry Gordeev and Philipp Singer. 2020. From Football Newbies to NFL (data) Champions: A Winner’s Interview with The Zoo. https:
//medium.com/kaggle-blog/from-football-newbies-to-nfl-data-champions-a-winners-interview-with-the-zoo-391793168714

[57] Krzysztof Gorgolewski, Christopher D Burns, Cindee Madison, Dav Clark, Yaroslav O Halchenko, Michael L Waskom, and Satrajit S Ghosh. 2011.
Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in neuroinformatics 5 (2011), 13.

[58] Qiang Gu, Anup Kumar, Simon Bray, Allison Creason, Alireza Khanteymoori, Vahid Jalili, Björn Grüning, and Jeremy Goecks. 2021. Galaxy-ML:
An accessible, reproducible, and scalable machine learning toolkit for biomedicine. PLOS Computational Biology 17, 6 (2021), e1009014.

[59] D Hasterok, Matthew Gard, CMB Bishop, and David Kelsey. 2019. Chemical identification of metamorphic protoliths using machine learning
methods. Computers & Geosciences 132 (2019), 56–68.

[60] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A Survey of the State-of-the-Art. Knowledge-Based Systems 212 (2021), 106622.
[61] Kexin Huang, Cao Xiao, Lucas M Glass, Cathy W Critchlow, Greg Gibson, and Jimeng Sun. 2021. Machine learning applications for therapeutic

tasks with genomics data. Patterns 2, 10 (2021), 100328. https://doi.org/10.1016/j.patter.2021.100328
[62] Felicien Ihirwe, Davide Di Ruscio, Silvia Mazzini, Pierluigi Pierini, and Alfonso Pierantonio. 2020. Low-code Engineering for Internet of Things: A

state of research. In Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings. 1–8.

[63] Peter Ivie and Douglas Thain. 2018. Reproducibility in scientific computing. ACM Computing Surveys (CSUR) 51, 3 (2018), 1–36.
[64] Kevin Maik Jablonka, Daniele Ongari, Seyed Mohamad Moosavi, and Berend Smit. 2020. Big-data science in porous materials: materials genomics

and machine learning. Chemical reviews 120, 16 (2020), 8066–8129.
[65] Anubhav Jain, Shyue Ping Ong, Wei Chen, Bharat Medasani, Xiaohui Qu, Michael Kocher, Miriam Brafman, Guido Petretto, Gian-Marco Rignanese,

Geoffroy Hautier, et al. 2015. FireWorks: A dynamic workflow system designed for high-throughput applications. Concurrency and Computation:
Practice and Experience 27, 17 (2015), 5037–5059.

[66] Vahid Jalili, Enis Afgan, Qiang Gu, Dave Clements, Daniel Blankenberg, Jeremy Goecks, James Taylor, and Anton Nekrutenko. 2020. The Galaxy
platform for accessible, reproducible and collaborative biomedical analyses: 2020 update. Nucleic acids research 48, W1 (2020), W395–W402.

[67] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin
Žídek, Anna Potapenko, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596, 7873 (2021), 583–589.

Manuscript submitted to ACM

https://medium.com/kaggle-blog/from-football-newbies-to-nfl-data-champions-a-winners-interview-with-the-zoo-391793168714
https://medium.com/kaggle-blog/from-football-newbies-to-nfl-data-champions-a-winners-interview-with-the-zoo-391793168714
https://doi.org/10.1016/j.patter.2021.100328


Building Domain-Specific Machine Learning Workflows 47

[68] Juha Kärnä, Juha-Pekka Tolvanen, and Steven Kelly. 2009. Evaluating the use of domain-specific modeling in practice. In Proceedings of the
Object-Oriented Programming, Systems, Languages and Applications workshop on Domain-Specific Modeling.

[69] Vedran Kasalica and Anna-Lena Lamprecht. 2020. APE: A command-line tool and API for automated workflow composition. In International
Conference on Computational Science. Springer, 464–476.

[70] Athanassios M Kintsakis, Fotis E Psomopoulos, Andreas L Symeonidis, and Pericles A Mitkas. 2017. Hermes: Seamless delivery of containerized
bioinformatics workflows in hybrid cloud (HTC) environments. SoftwareX 6 (2017), 217–224.

[71] Panu Kortelainen. 2021. Manage Your Workflows: A Classification Framework and Technology Review of Workflow Management Systems. Ph. D.
Dissertation. Tampere University.

[72] Philip Kortum, Claudia Ziegler Acemyan, and Frederick L Oswald. 2021. Is it time to go positive? Assessing the positively worded system usability
scale (SUS). Human factors 63, 6 (2021), 987–998.

[73] Maxat Kulmanov, Fatima Zohra Smaili, Xin Gao, and Robert Hoehndorf. 2021. Semantic similarity and machine learning with ontologies. Briefings
in bioinformatics 22, 4 (2021), 1–18.

[74] Anup Kumar, Helena Rasche, Björn Grüning, and Rolf Backofen. 2021. Tool recommender system in Galaxy using deep learning. GigaScience 10, 1
(2021), giaa152. Figure adapted under the Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/.

[75] Deborah Lafuente, Brenda Cohen, Guillermo Fiorini, Agustín Alejo García, Mauro Bringas, Ezequiel Morzan, and Diego Onna. 2021. A Gentle
Introduction to Machine Learning for Chemists: An Undergraduate Workshop Using Python Notebooks for Visualization, Data Processing, Analysis,
and Modeling. Journal of Chemical Education 98, 9 (2021), 2892–2898.

[76] Samuel Lampa, Jonathan Alvarsson, and Ola Spjuth. 2016. Towards agile large-scale predictive modelling in drug discovery with flow-based
programming design principles. Journal of cheminformatics 8, 1 (2016), 1–12.

[77] Samuel Lampa, Martin Dahlö, Jonathan Alvarsson, and Ola Spjuth. 2019. SciPipe: A workflow library for agile development of complex and
dynamic bioinformatics pipelines. GigaScience 8, 5 (2019), giz044.

[78] Anna-Lena Lamprecht, Magnus Palmblad, Jon Ison, Veit Schwämmle, Mohammad Sadnan Al Manir, Ilkay Altintas, Christopher JO Baker, Ammar
Ben Hadj Amor, Salvador Capella-Gutierrez, Paulos Charonyktakis, et al. 2021. Perspectives on automated composition of workflows in the life
sciences. F1000Research 10 (2021).

[79] Bettina Laugwitz, Theo Held, and Martin Schrepp. 2008. Construction and evaluation of a user experience questionnaire. In HCI and Usability for
Education and Work: 4th Symposium of the Workgroup Human-Computer Interaction and Usability Engineering of the Austrian Computer Society,
USAB 2008, Graz, Austria, November 20-21, 2008. Proceedings 4. Springer, 63–76.

[80] Rodger Lea. [n. d.]. Node-RED Programming Guide. http://noderedguide.com/. Accessed January 2022..
[81] Doris Jung-Lin Lee and Stephen Macke. 2020. A Human-in-the-loop Perspective on AutoML: Milestones and the Road Ahead. IEEE Data Engineering

Bulletin (2020).
[82] Kin Wai Lee and Renee Ka Yin Chin. 2020. The effectiveness of data augmentation for melanoma skin cancer prediction using convolutional neural

networks. In 2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET). IEEE, 1–6.
[83] Fabian Lehmann, David Frantz, Sören Becker, Ulf Leser, and Patrick Hostert. 2021. FORCE on Nextflow: Scalable analysis of earth observation data

on commodity clusters. In Int. Workshop on Complex Data Challenges in Earth Observation.
[84] Jeremy Leipzig. 2017. A review of bioinformatic pipeline frameworks. Briefings in bioinformatics 18, 3 (2017), 530–536.
[85] Hugo López-Fernández, Osvaldo Graña-Castro, Alba Nogueira-Rodríguez, Miguel Reboiro-Jato, and Daniel Glez-Peña. 2021. Compi: a framework

for portable and reproducible pipelines. PeerJ Computer Science 7 (2021), e593.
[86] I Scott MacKenzie. 1992. Fitts’ law as a research and design tool in human-computer interaction. Human-computer interaction 7, 1 (1992), 91–139.
[87] Vivien Marx. 2020. When computational pipelines go ‘clank’. Nature Methods 17, 7 (2020), 659–662.
[88] Kiran Mathew, Joseph H Montoya, Alireza Faghaninia, Shyam Dwarakanath, Muratahan Aykol, Hanmei Tang, Iek-heng Chu, Tess Smidt, Brandon

Bocklund, Matthew Horton, et al. 2017. Atomate: A high-level interface to generate, execute, and analyze computational materials science
workflows. Computational Materials Science 139 (2017), 140–152.

[89] Russell P McIver. 2015. A knowledge-based approach to scientific workflow composition. Ph. D. Dissertation. Cardiff University.
[90] Arsenty D Melnikov, Yuri P Tsentalovich, and Vadim V Yanshole. 2019. Deep learning for the precise peak detection in high-resolution LC–MS

data. Analytical chemistry 92, 1 (2019), 588–592.
[91] Marçal Mora-Cantallops, Salvador Sánchez-Alonso, Elena García-Barriocanal, and Miguel-Angel Sicilia. 2021. Traceability for Trustworthy AI: A

Review of Models and Tools. Big Data and Cognitive Computing 5, 2 (2021), 20.
[92] J Paul Morrison. 1994. Flow-based programming. In Proc. 1st International Workshop on Software Engineering for Parallel and Distributed Systems.

25–29.
[93] Marzieh Mousavian, Jianhua Chen, Zachary Traylor, and Steven Greening. 2021. Depression detection from sMRI and rs-fMRI images using

machine learning. Journal of Intelligent Information Systems 57, 2 (2021), 395–418.
[94] Gunter Mussbacher, Benoit Combemale, Silvia Abrahão, Nelly Bencomo, Loli Burgueño, Gregor Engels, Jörg Kienzle, Thomas Kühn, Sébastien

Mosser, Houari Sahraoui, et al. 2020. Towards an assessment grid for intelligent modeling assistance. In Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings. 1–10.

[95] Gunter Mussbacher, Benoit Combemale, Jörg Kienzle, Silvia Abrahão, Hyacinth Ali, Nelly Bencomo, Márton Búr, Loli Burgueño, Gregor Engels,
Pierre Jeanjean, et al. 2020. Opportunities in intelligent modeling assistance. Software and Systems Modeling 19, 5 (2020), 1045–1053.

Manuscript submitted to ACM

http://creativecommons.org/licenses/by/4.0/
http://noderedguide.com/


48 Bentley James Oakes, Michalis Famelis, and Houari Sahraoui

[96] Franz Nachbar, Wilhelm Stolz, Tanja Merkle, Armand B Cognetta, Thomas Vogt, Michael Landthaler, Peter Bilek, Otto Braun-Falco, and Gerd
Plewig. 1994. TheABCD rule of dermatoscopy: high prospective value in the diagnosis of doubtful melanocytic skin lesions. Journal of the American
Academy of Dermatology 30, 4 (1994), 551–559.

[97] Farid Nakhle and Antoine L. Harfouche. 2021. Ready, Steady, Go AI: A practical tutorial on fundamentals of artificial intelligence and its applications
in phenomics image analysis. Patterns 2, 9 (2021), 100323. https://doi.org/10.1016/j.patter.2021.100323

[98] Soroosh Nalchigar. 2020. From business goals to analytics and machine learning solutions: a conceptual modeling framework. Ph. D. Dissertation.
University of Toronto (Canada).

[99] Alba Nogueira-Rodríguez, Hugo López-Fernández, Osvaldo Graña-Castro, Miguel Reboiro-Jato, and Daniel Glez-Peña. 2020. Compi hub: a
public repository for sharing and discovering compi pipelines. In International Conference on Practical Applications of Computational Biology &
Bioinformatics. Springer, 51–59.

[100] Azita Nouri, Philip E Davis, Pradeep Subedi, and Manish Parashar. 2021. Exploring the Role of Machine Learning in Scientific Workflows:
Opportunities and Challenges. arXiv preprint arXiv:2110.13999 (2021).

[101] Bentley James Oakes, Romain Franceschini, Simon Van Mierlo, and Hans Vangheluwe. 2019. The Computational Notebook Paradigm for Multi-
paradigm Modeling. In 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C).
449–454. https://doi.org/10.1109/MODELS-C.2019.00072

[102] Data Mining Fruitful & Fun Orange. [n. d.]. Orange Website. https://orange.biolab.si/.
[103] Perrine Paul-Gilloteaux, Sébastien Tosi, Jean-Karim Hériché, Alban Gaignard, Hervé Ménager, Raphaël Marée, Volker Baecker, Anna Klemm, Matúš

Kalaš, Chong Zhang, et al. 2021. Bioimage analysis workflows: community resources to navigate through a complex ecosystem. F1000Research 10
(2021).

[104] Russell A Poldrack, Krzysztof J Gorgolewski, and Gael Varoquaux. 2018. Computational and informatics advances for reproducible data analysis in
neuroimaging. arXiv preprint arXiv:1809.10024 (2018).

[105] Luigi Quaranta, Fabio Calefato, and Filippo Lanubile. 2021. KGTorrent: A dataset of Python Jupyter Notebooks from Kaggle. In 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR). IEEE, 550–554.

[106] Taylor Reiter, Phillip T Brooks, Luiz Irber, Shannon EK Joslin, Charles M Reid, Camille Scott, C Titus Brown, and N Tessa Pierce-Ward. 2021.
Streamlining data-intensive biology with workflow systems. GigaScience 10, 1 (2021), giaa140.

[107] Philipp Ruf, Manav Madan, Christoph Reich, and Djaffar Ould-Abdeslam. 2021. Demystifying MLOps and Presenting a Recipe for the Selection of
Open-Source Tools. Applied Sciences 11, 19 (2021), 8861.

[108] Adam Rule, Amanda Birmingham, Cristal Zuniga, Ilkay Altintas, Shih-Cheng Huang, Rob Knight, Niema Moshiri, Mai H Nguyen, Sara Brin
Rosenthal, Fernando Pérez, et al. 2019. Ten simple rules for writing and sharing computational analyses in Jupyter Notebooks. , e1007007 pages.

[109] Vinícius W Salazar, João Vitor Ferreira Cavalcante, Daniel de Oliveira, Fabiano Thompson, and Marta Mattoso. 2021. BioProv-A provenance library
for bioinformatics workflows. Journal of Open Source Software 6, 67 (2021), 3622.

[110] Khodakaram Salimifard and Mike Wright. 2001. Petri Net-based modelling of workflow systems: An overview. European journal of operational
research 134, 3 (2001), 664–676.

[111] Aécio Santos, Sonia Castelo, Cristian Felix, Jorge Piazentin Ono, Bowen Yu, Sungsoo Ray Hong, Cláudio T Silva, Enrico Bertini, and Juliana
Freire. 2019. Visus: An interactive system for automatic machine learning model building and curation. In Proceedings of the Workshop on
Human-In-the-Loop Data Analytics. 1–7.

[112] Jacob Scharcanski and M Emre Celebi. 2013. Computer vision techniques for the diagnosis of skin cancer. Springer.
[113] S. Sendall and W. Kozaczynski. 2003. Model Transformation: The Heart And Soul Of Model-driven Software Development. IEEE Software 20, 5

(2003), 42–45. https://doi.org/10.1109/MS.2003.1231150
[114] Zohreh Sharafi, Yu Huang, Kevin Leach, and Westley Weimer. 2021. Toward an objective measure of developers’ cognitive activities. ACM

Transactions on Software Engineering and Methodology (TOSEM) 30, 3 (2021), 1–40.
[115] Rina Singh, Jeffrey A Graves, Valentine Anantharaj, and Sreenivas R Sukumar. 2019. Evaluating Scientific Workflow Engines for Data and Compute

Intensive Discoveries. In 2019 IEEE International Conference on Big Data (Big Data). IEEE, 4553–4560.
[116] Saúl Solorio-Fernández, J Ariel Carrasco-Ochoa, and José Fco Martínez-Trinidad. 2020. A review of unsupervised feature selection methods.

Artificial Intelligence Review 53, 2 (2020), 907–948.
[117] Patricia Centeno Soto, Nour Ramzy, Felix Ocker, and Birgit Vogel-Heuser. 2021. An ontology-based approach for preprocessing in machine learning.

In 2021 IEEE 25th International Conference on Intelligent Engineering Systems (INES). IEEE, 000133–000138.
[118] Christopher Sutton, Luca M Ghiringhelli, Takenori Yamamoto, Yury Lysogorskiy, Lars Blumenthal, Thomas Hammerschmidt, Jacek R Golebiowski,

Xiangyue Liu, Angelo Ziletti, and Matthias Scheffler. 2019. Crowd-sourcing materials-science challenges with the NOMAD 2018 Kaggle competition.
npj Computational Materials 5, 1 (2019), 1–11.

[119] Christoph Tauchert, Peter Buxmann, and Jannis Lambinus. 2020. Crowdsourcing Data Science: A Qualitative Analysis of Organizations’ Usage of
Kaggle Competitions. In Proceedings of the 53rd Hawaii international conference on system sciences.

[120] Mehmet Tekman, Bérénice Batut, Alexander Ostrovsky, Christophe Antoniewski, Dave Clements, Fidel Ramirez, Graham J Etherington, Hans-Rudolf
Hotz, Jelle Scholtalbers, Jonathan R Manning, et al. 2020. A single-cell RNA-seq Training and Analysis Suite using the Galaxy Framework. bioRxiv
(2020).

Manuscript submitted to ACM

https://doi.org/10.1016/j.patter.2021.100323
https://doi.org/10.1109/MODELS-C.2019.00072
https://orange.biolab.si/
https://doi.org/10.1109/MS.2003.1231150


Building Domain-Specific Machine Learning Workflows 49

[121] Guillaume Theaud, Jean-Christophe Houde, Arnaud Boré, François Rheault, Felix Morency, and Maxime Descoteaux. 2020. TractoFlow: A robust,
efficient and reproducible diffusion MRI pipeline leveraging Nextflow & Singularity. NeuroImage 218 (2020), 116889.

[122] Curtis Thompson. 2020. Killer Shrimp 2nd Place Solution. https://www.kaggle.com/cwthompson/killer-shrimp-2nd-place-solution.
[123] Marko Toplak, Stuart T Read, Christophe Sandt, and Ferenc Borondics. 2021. Quasar: Easy Machine Learning for Biospectroscopy. Cells 10, 9

(2021), 2300.
[124] Wil MP Van Der Aalst and Arthur HM Ter Hofstede. 2005. YAWL: yet another workflow language. Information systems 30, 4 (2005), 245–275.
[125] Yves Vandenbrouck, David Christiany, Florence Combes, Valentin Loux, and Virginie Brun. 2019. Bioinformatics tools and workflow to select

blood biomarkers for early cancer diagnosis: an application to pancreatic cancer. Proteomics 19, 21-22 (2019), 1800489.
[126] Jessica Velasco, Cherry Pascion, JeanWilmar Alberio, Jonathan Apuang, John Stephen Cruz, Mark Angelo Gomez, BenjaminMolina Jr, Lyndon Tuala,

August Thio-ac, and Romeo Jorda Jr. 2019. A smartphone-based skin disease classification using mobilenet cnn. arXiv preprint arXiv:1911.07929
(2019).

[127] Markus Voelter, Bernd Kolb, Klaus Birken, Federico Tomassetti, Patrick Alff, Laurent Wiart, Andreas Wortmann, and Arne Nordmann. 2019.
Using language workbenches and domain-specific languages for safety-critical software development. Software & Systems Modeling 18, 4 (2019),
2507–2530.

[128] Anthony Yu-Tung Wang, Ryan J. Murdock, Steven K. Kauwe, Anton O. Oliynyk, Aleksander Gurlo, Jakoah Brgoch, Kristin A. Persson, and Taylor D.
Sparks. 2020. Machine Learning for Materials Scientists: An Introductory Guide toward Best Practices. Chemistry of Materials 32, 12 (2020),
4954–4965. https://doi.org/10.1021/acs.chemmater.0c01907

[129] Dakuo Wang, Q Vera Liao, Yunfeng Zhang, Udayan Khurana, Horst Samulowitz, Soya Park, Michael Muller, and Lisa Amini. 2021. How much
automation does a data scientist want? arXiv preprint arXiv:2101.03970 (2021).

[130] Yiping Wen, Junjie Hou, Zhen Yuan, and Dong Zhou. 2020. Heterogeneous information network-based scientific workflow recommendation for
complex applications. Complexity 2020 (2020).

[131] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten,
Luiz Bonino da Silva Santos, Philip E Bourne, et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Scientific
data 3, 1 (2016), 1–9.

[132] Julia K Winkler, Christine Fink, Ferdinand Toberer, Alexander Enk, Teresa Deinlein, Rainer Hofmann-Wellenhof, Luc Thomas, Aimilios Lallas,
Andreas Blum, Wilhelm Stolz, et al. 2019. Association between surgical skin markings in dermoscopic images and diagnostic performance of a
deep learning convolutional neural network for melanoma recognition. JAMA dermatology 155, 10 (2019), 1135–1141.

[133] Laura Wratten, Andreas Wilm, and Jonathan Göke. 2021. Reproducible, scalable, and shareable analysis pipelines with bioinformatics workflow
managers. Nature methods 18, 10 (2021), 1161–1168.

[134] Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen Zhu, Hengshu Zhu, Qi Liu, et al. 2023. A Survey
on Large Language Models for Recommendation. arXiv preprint arXiv:2305.19860 (2023).

[135] Yinhao Wu, Bin Chen, An Zeng, Dan Pan, Ruixuan Wang, and Shen Zhao. 2022. Skin Cancer Classification With Deep Learning: A Systematic
Review. Frontiers in Oncology 12 (2022).

[136] Moe Thandar Wynn, HMWVerbeek, Wil MP van der Aalst, Arthur HM ter Hofstede, and David Edmond. 2009. Business process verification–finally
a reality! Business Process Management Journal (2009).

[137] Yuanshun Yao, Zhujun Xiao, Bolun Wang, Bimal Viswanath, Haitao Zheng, and Ben Y Zhao. 2017. Complexity vs. performance: empirical analysis
of machine learning as a service. In Proceedings of the 2017 Internet Measurement Conference. 384–397.

[138] Chaoning Zhang, Philipp Benz, Dawit Mureja Argaw, Seokju Lee, Junsik Kim, Francois Rameau, Jean-Charles Bazin, and In So Kweon. 2021. ResNet
or DenseNet? introducing dense shortcuts to ResNet. In Proceedings of the IEEE/CVF winter conference on applications of computer vision. 3550–3559.

[139] Guoqing Zhou, Ben Nebgen, Nicholas Lubbers, Walter Malone, Anders MNNiklasson, and Sergei Tretiak. 2020. Graphics processing unit-accelerated
semiempirical Born Oppenheimer molecular dynamics using PyTorch. Journal of Chemical Theory and Computation 16, 8 (2020), 4951–4962.

Manuscript submitted to ACM

https://www.kaggle.com/cwthompson/killer-shrimp-2nd-place-solution
https://doi.org/10.1021/acs.chemmater.0c01907

	Abstract
	1 Introduction
	2 Background
	2.1 Domain-Specificity
	2.2 Machine Learning
	2.3 Computational Workflows
	2.4 Workflow Tools and Management Systems

	3 Overview of Our Framework
	3.1 Dimensions of the Space
	3.2 Relation to Challenge Questions

	4 Layers and Intra-Layer Transformations
	4.1 Problem Space
	4.2 Solution Workflow Space
	4.3 Implementation Space

	5 Inter-layer Transformations
	5.1 Problem Space to Solution Workflow Space Transformations
	5.2 Solution Workflow Space to Implementation Space Transformations

	6 Example Studies
	6.1 Example Study Overview
	6.2 Implicit Workflow Studies
	6.3 Hybrid and Explicit Workflow Studies

	7 Discussion
	7.1 Benefits and Drawbacks of the Three-Layer Framework
	7.2 Considering Tool Support and Future Research for Challenges
	7.3 External Challenges
	7.4 Illustrative Use of the Framework
	7.5 Evaluation Metrics

	8 Conclusion
	Acknowledgments
	References

