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ABSTRACT: Adsorption is a promising technique for the
removal of persistent contaminants, since it is a relatively cheap
process with low energy requirements and does not produce
secondary contamination. However, the large-scale implementa-
tion of an adsorption process usually involves a dual column
process for either pressure swing or temperature swing operations.
Therefore, the reusability of adsorbents is a key characteristic to
consider and evaluate but is often overlooked during the
development of new materials. To be reused, the adsorbent
should successfully release the contaminant by a desorption or
regeneration step without compromising the chemical and physical
stability of the matrix. The efficiency of desorption/regeneration
methods depends greatly on the chemical characteristics of the
contaminants, the nature of the adsorbents, and the adsorption mechanisms responsible for the adsorbent−adsorbate interactions.
This review focuses on the desorption strategies that have been used for the regeneration of biobased hydrogels and hydrogel
composites, materials that have been successfully applied in the adsorption of wastewater contaminants. The strategies can be
divided into chemical and physical methods. The chemical methods include the use of desorption agents, photocatalytic oxidation,
and CO2 bubbling; and the physical methods include thermal and ultrasonic treatments. These regeneration strategies have shown
different efficiencies as well as specific advantages and drawbacks that need to be considered to select the most suitable method for a
specific application.
KEYWORDS: biopolymers, hydrogel composites, reusability, regeneration strategies, desorption, wastewater contaminants,
desorption mechanism, chemical regeneration, physical regeneration

1. INTRODUCTION
Water is a vital resource for mankind; however, anthropogenic
activity has significantly affected its quality and availability.
According to the WHO, around 829 000 people die every year
from illness or infections related to drinking unsafe water.1 To
mitigate water stress, it is necessary to develop effective
strategies to improve water quality, removing contaminants
that have detrimental effects on humans, animals, and plants.
Different types of contaminants have been found in

wastewater depending on the origin. Domestic/municipal
wastewater usually contains contaminants, such as paper,
household cleaners, detergents, garbage, and a high biological
load. On the other hand, industrial, agricultural, and hospital/
pharmaceutical wastewaters usually contain a wide variety of
highly toxic organic and inorganic contaminants, for instance
heavy metals, dyes, salts, pharmaceuticals, and agrochemicals,
including various nitrogen and phosphorus species like nitrates

and phosphates, to name a few.2 These contaminants are of
great concern due to their high persistence in the environment,
their toxicity, and their ability to bioaccumulate in plants and
fish. Exposure to these pollutants is normally associated with
severe health problems, including metabolic syndromes,
different types of cancers, and reproductive disorders in
humans and animals.3−6

Wastewater pollutants have different chemical structures,
functional groups, charge, solubility, hydrophilicity, thermal
properties, and photostability; hence, their presence and
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persistency vary. Many of these chemical contaminants are
persistent molecules with a low degradability. Therefore,
different treatments are used in wastewater treatment plants for
their elimination. Secondary and tertiary treatments are applied
to either remove or degrade toxic chemicals with different
efficiencies.2 Many conventional methods like chemical
precipitation, coagulation, electrocoagulation, and membranes
are meant to remove contaminants; however, it has been
observed that conventional wastewater treatments do not
efficiently recover a great variety of emerging persistent
pollutants.7 Therefore, in the past decades, more sophisticated
methods have been developed and adapted to efficiently
degrade pollutants, methods like biological treatments and
advanced oxidation processes (AOP) have been used,
including strategies like Fenton reactions, gamma irradiation,
photocatalysis, ozonation or cavitation methods, like ultra-
sound, and hydrodynamic cavitation.8,9 Yet, another drawback
might be associated with novel destructive methods. Biological
treatments or Fenton reactions, for example, might generate
secondary contamination by toxic sludge, and it has been
reported that some AOP, like photocatalysis, generate toxic
intermediate products that are often equally or more toxic than
the parent compound.10 Moreover, advanced destructive
methods might require more sophisticated facilities and a
higher investment. These problems are exacerbated in low and
middle-income countries, where the lack of instrumentation
and facilities impedes the application of proper implementation
of advanced procedures.11 However, some methods, such as
hydrodynamic cavitation, are relatively simple in design and
technological requirements, in addition to having low energy
requirements. Hydrodynamic cavitation seems to be very
effective for the degradation of toxic organic contaminants with
minimal generation of secondary pollution. It is considered a
very promising technique but is still not implemented at the
commercial level or in larger scale applications, and its use is
still limited. Despite its advantages, there is an entire
hydrodynamic theory and physicochemical effects behind the
foundations of said method that must be understood before its
implementation and that are essential for its design, scale-up,
and optimization.9 Therefore, a lot of effort is still put into the
improvement of well-known, conventional methods that are
already well characterized, understood, and widely used at
different scales for the removal of persistent contaminants.
Adsorption is a relatively cheap process, simple in theory,

design and operation and with low energy requirements.2

Adsorption involves the accumulation of molecules from a
liquid or gas phase on the surface of a solid substrate, normally
a porous matrix, following a mass transfer process. The
molecules that interact and attach to the solid surface are called
adsorbates, while the solid matrix is called adsorbent.12

Selection of the adsorbent material is key to the applicability
of the process. Commercial activated carbons (AC) are widely
used adsorbents; however, AC has generally low selectivity and
efficiency toward nonconventional contaminants, or pollutants
at trace levels.13 Therefore, a great deal of research has focused
on the synthesis of novel, efficient, and inexpensive adsorbents.
These novel adsorbents often rely on strategies such as waste
and biomass valorization for obtaining inexpensive materi-
als.14−17 Biobased materials, such as biobased hydrogels and
hydrogel composites, have gained attention in recent years for
their versatility and their relatively high adsorption efficiencies.
Moreover, their chemical structures result in high affinity

toward many different water contaminants, making them ideal
adsorbents.18

However, when these novel adsorbents become saturated
after being used for the removal of wastewater contaminants,
the removal efficiency becomes negligible in subsequent
adsorption cycles, and the material can no longer be used.19

This means that new material must be available for each
adsorption process and the saturated adsorbent must be
discarded. The continuous generation and disposal of saturated
adsorbents may even become a source of contamination.20

Therefore, the adsorbent materials should not only have high
adsorption capacity and high specificity toward targeted
contaminants but also be reusable. It has been observed that
reusing the adsorbent may improve the long-term economical
feasibility of adsorption treatments. For example, Mariño-
Peacok et al.21 performed an economic evaluation of granular
activated carbon (GAC) adsorption treatment for a projected
time of 11 years. It was reported that reusing the material may
decrease up to 74% of the original cost of the process.
Additionally, the projection showed a reduction of about 6
tons of spent GAC disposed as landfill after that period of time,
which means that secondary contamination might be
significantly reduced.21

Reusability depends on a desorption or regeneration step
that should successfully break the adsorbent−adsorbate
interaction, while the adsorbent structure remains intact for
successive adsorption steps. Reusability is directly affected by
the nature of the adsorbent material, the nature of the
contaminant, and the interaction between them.
Despite the importance of reusability for the evaluation of

long-term viability, many papers addressing the synthesis of
new adsorbent materials do not assess this parameter.
Therefore, this review focuses on regeneration strategies
applied to hydrogels or composite hydrogels synthesized
with one or more biobased components, including biopol-
ymers and semisynthetic derivatives. This also includes
materials in copolymerization with synthetic polymers or
composites with matrices of different nature. A brief
description of the different adsorbent materials is included
along with an overview of the wastewater contaminants that
have been successfully removed by these materials. Lastly, the
different desorption and regeneration strategies for biopoly-
meric materials are explored, as well as their corresponding
efficiencies for desorption of various water contaminants.
Finally, some future perspectives on this topic are addressed.

2. ADSORBENT MATERIALS
In current times, there is a wide variety of adsorbent materials
that have been successfully used for the removal of
conventional contaminants. These adsorbents may include,
for example, activated carbons,22 zeolites,23 agro-waste like
citrus peels,24 etc. However, for the removal of more specific,
complex emerging contaminants, these adsorbents may have
some limitations such as relatively low affinity and low
reusability or progressive loss of removal capacity. To
overcome these drawbacks, new adsorbents have been
developed, with hydrogels being a viable option.
2.1. Hydrogels

Hydrogels are 3D polymeric structures with a hydrophilic
nature, which are able to swell and retain large volumes of
water. The high swelling capacity is given by the functional
groups in the polymeric structure, with groups such as
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hydroxyl (−OH), carboxyl (−COOH), amidic (−CO + NH2),
for example, contributing significantly to this property. Thanks
to their high swelling capacity, hydrogels have huge potential
in separation technology and water remediation.25 Hydrogels
have been shown to successfully remove water-soluble
contaminants, acting as adsorbents. Their chemical structures
allow them to interact with contaminants, attaching them to
the surface of the hydrogel. They can be synthesized with
either natural or synthetic sources, requiring monomer(s),
initiator(s), and cross-linker(s).25 Synthetic hydrogels are
usually stable and possess relatively high adsorption capacities
and a good mechanical strength. For example, poly(vinyl
alcohol) gels and acrylamide/acrylate/acrylic acid−based gels
are commonly found in literature.26−29 On the other hand,
natural hydrogels are composed of biopolymers, including
polysaccharides or proteic structures that, unlike their synthetic
counterparts, tend to have greater biodegradability and lower
toxicity, allowing them to fit a range of agricultural, medical
and environmental applications.25,30,31 Most common biopol-
ymers include carbohydrates, such as starches,32 cellulose,33,34

chitin/chitosan,35 carrageenan,33 and alginate;36 as well as
proteins, such as collagen, keratin, zein, and gelatin, to name a
few.33,37,38 There is also a wide variety of hydrogels produced
with semisynthetic derivatives of these biological materials.
They still represent a greener alternative than using synthetic
polymers and also a strategy for the valorization of biological
and/or agricultural waste. All these natural or semisynthetic
polymeric materials can be used alone in homopolymers, in
combination to form copolymers, or with other different
phases and matrices to form composites.
2.2. Hydrogel Composites

Composites are broadly defined as engineered multiphase
materials. They are composed of two or more phases, a
primary continuous matrix phase, and at least one dispersed
discontinuous phase (also referred to as filler). The dispersed
phase is physically and chemically distinct to the matrix,
conferring new mechanical or functional properties to the
composite material.39,40 Hydrogel composites have been
reported in literature with the addition of different
discontinuous phases like carbonaceous materials, clay
minerals, some fibers and metals or metal oxides.41 The
addition of these fillers tends to increase the adsorption
capacities and results also in firmer structures, more resistant to
deformation and degradation.42

2.2.1. Carbon-Based Composite Hydrogels. Carbon-
based materials may have high porosity and large surface areas,
which make them very effective for the adsorption of water
pollutants.22 Carbonaceous materials that are normally
included in hydrogel composites may include petrochemical-
based AC and charcoal, as well as more environmentally
friendly alternatives, such as biochar, that has shown potential
for the removal of various water contaminants, including
dyes43 and heavy metals like Pb2+.44 More advanced
engineered materials include carbon nanotubes or two-
dimensional graphene, with or without surface group
modifications.45 Most carbon-based composite hydrogels
adsorbents are used for organic contaminant removal, such
as pharmaceuticals,19,46 dyes,47,48 plastic additives,49 and
pesticides.50

2.2.2. Clays and Mineral-Based Hydrogel Composites.
Clay is a naturally forming fine-grained soil that contains a
range of hydrous aluminosilicates, often with various metals
dispersed throughout.51 They are an extremely broad category
of adsorbent materials for wastewater treatment due to the
wide range of minerals, chemical modifications, and pretreat-
ments.52 One of the most common clay materials is
montmorillonite, which has an anisotropic nature, multiple
Al−OH groups, small size, and high surface energy that favors
its dispersion in heterogeneous systems such as composites.53

In most of the cases, montmorillonite is used in the production
of nanoparticles, either with biopolymers or synthetic
polymers, mainly for the removal of dyes and heavy
metals.53−55

Minerals have also been used in hydrogel preparation; one of
the examples is hydroxyapatite (HAP). This mineral is the
main nonorganic component of hard tissue, like bones and
teeth. HAP is rich in Ca2+ and OH− groups that contribute to a
high adsorption capacity, particularly toward divalent metal
ions. When incorporated into hydrogel composites, it has
shown to increase the removal capacity and to improve
mechanical properties of the polymeric adsorbent material.56

HAP has been successfully incorporated into adsorbents with
biopolymers like xanthan gum and chitosan for the removal of
dyes like methylene blue (MB)57 or congo red (CR),56

respectively.
2.2.3. Natural Fiber-Based Composite Hydrogels. A

large range of natural fibers including edible, nonedible, agro-
wastes, and chemically modified derivatives of fibers, have all
been tested for pollutant adsorption due to their environ-

Figure 1. Adsorption mechanisms for the removal of contaminants.

ACS Engineering Au pubs.acs.org/engineeringau Review

https://doi.org/10.1021/acsengineeringau.3c00022
ACS Eng. Au 2023, 3, 443−460

445

https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00022?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00022?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00022?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00022?fig=fig1&ref=pdf
pubs.acs.org/engineeringau?ref=pdf
https://doi.org/10.1021/acsengineeringau.3c00022?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


mental friendliness and economic viability.58,59 Some examples
are straws, grasses, peels, coconut and corn husks, sawdust and
other wood waste, and wool-based products.59 However, the
removal efficiency of these materials tends to be significantly
lower than other engineered adsorbent materials or more
complex composites, reaching maximum adsorption capacities
of <100 mg/g,60 when other complex materials may go up to
few hundreds.60,61 However, natural fibers can also be
incorporated into composite hydrogels. For example, Ma et
al.62 incorporated agarwood fruit husks into sodium alginate
(SA) and chitosan hydrogels, to improve the mechanical
properties and removal capacity of dyes. According to authors,
the composite material not only showed better mechanical
properties but also exhibited higher adsorption capacities than
the husks, SA, and chitosan adsorbents individually.62 Similarly
Zhou et al.42 synthesized a porous double network jute/
poly(acrylic acid) (Jute/PAA) gel for the adsorption of Cd2+
and Pb2+. This hydrogel showed a high adsorption capacity,
removing up to 401.7 mg/g for Cd2+ and 542.9 mg/g for Pb2+.
This material exhibited high stability and good mechanical
strength.

3. DESORPTION METHODS/REGENERATION
STRATEGIES

The selection of a desorption method will depend on different
factors, such as the material’s chemical characteristics and
strength, the chemical nature of the adsorbate, and mainly the
adsorption mechanism that governs the adsorbate−adsorbent
interaction. Water pollutants may be adsorbed by different
mechanisms, and the adsorbate−adsorbent interaction may be
driven by a combination of several mechanisms (Figure 1).
Electrostatic interactions and ion exchange, which consist in
the attraction between two oppositely charged species, are key
in the adsorption of ionic molecules, such as heavy metals,
phosphates, nitrates, and ionic dyes to name a few.63 Heavy
metals may also be adsorbed by other mechanisms like
complexation, which is the capacity of heavy metals to form
multiatomic structures when they interact with metal−ligands
or chelating agents, normally oxygen-containing functional
groups in the adsorbent material.64 Some other hydrogen-,
nitrogen-, oxygen-, and fluorine-containing contaminants may
be successfully adsorbed by hydrogen bonding. However, H-
bonding is considered a weak interaction as compared to ionic
bonds.65 The adsorption of organic molecules, such as PACs,
dyes, and agrochemicals, may take place by π−π interactions,
thanks to their aromatic rings containing π bonds. This
mechanism has been observed especially when carbonaceous
materials are used.66 On the other hand, for contaminants with
neutral, unpolarized, and unmagnetized atoms, van der Waals
forces may be responsible for their adsorption. For these
mechanisms, increasing the distance between the two species
diminishes the interaction.67

Another adsorption mechanism that can be observed in
materials, particularly porous ones is pore filling. This
mechanism is commonly found in carbonaceous materials
like biochar. Materials with micro and mesoporous structures
(<2 nm and 2−50 nm pores, respectively) can physically trap
molecules into their pores. Therefore, adsorption is highly
dependent on the size of both the pores and the targeted
molecules.68 All of these mechanisms and interactions vary in
terms of strength and reversibility, affecting the efficiency of
the regeneration. Therefore, different chemical and physical

methods have been developed for efficient adsorbent
regeneration.
One of the most common regeneration methods for

conventional adsorbents, like AC or zeolite, is the application
of high temperature in the range of 150 to 850 °C.69−71
However, hydrogels have relatively sensitive structures that can
be damaged with aggressive conditions such as temperature,
agitation, or pH. Therefore, desorption strategies with mild
conditions may have better outcomes in hydrogels’ regener-
ation. Besides, the environmental and economical implications
of the desorption step cannot be ignored, which means that
eco-friendly and cost-effective methods are ideal.72 Different
chemical and physical regeneration methods have been
evaluated in biopolymeric adsorbents and hydrogel composites
with good results. The most common chemical methods are
the use of desorption agents,73 photochemical regeneration,74

and CO2 bubbling,
75 while physical methods include ultra-

sonication76 and thermal regeneration.77

The performance of desorption and regeneration strategies
is difficult to analyze and compare since it has been evaluated
from different approaches in literature. The first approach is to
evaluate the desorption from the solid matrix, meaning that the
concentration of the adsorbate attached to the adsorbent is
measured before and after the desorption step, and the
percentage that was removed is reported (eq 1).

= ×C C
C

contaminant desorption (%) 100i0

0 (1)

where C0 is the concentration of the contaminant attached to
the adsorbent material and Ci is the concentration after
desorption step.73

On the other hand, the desorption process may be evaluated
considering the reusability of the adsorbent, defined as
regeneration capacity or regeneration efficiency. In other
words, it evaluates to what extent the functionality of the
adsorbent is affected by the desorption strategy. Regeneration
capacity (RE) is given by the difference between the
adsorption capacity of an adsorbent material after the
desorption cycles, compared to its original adsorption capacity,
calculated according to eq 2.78

= ×
q

q
RE (%) 100r

0 (2)

where qr is the adsorption capacity of a given adsorbent after a
regeneration process and q0 is its original adsorption
capacity.79

The utilization of different approaches impedes comparison
among the methods and strategies. However, both approaches
may be necessary for a better understanding of the process and
a clearer overview of the performance of a given regeneration
strategy: first, to define how well the desorption process
removes the contaminant from the adsorbent surface and,
second, to determine if the regeneration compromises the
adsorption capacity of the adsorbent for the following cycles.
Nonetheless, both approaches are rarely applied together in
hydrogels and biopolymeric materials. Therefore, it may be
difficult to select the best fitting regeneration strategy for a
given adsorbent−adsorbate system.
3.1. Chemical Methods
Chemical regenerations involve some kind of chemical reagent
to either destabilize the adsorbate−adsorbent interaction,
modify the characteristics of the adsorbent’s surface, or
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Table 1. Regeneration of Biopolymeric Adsorbents and Hydrogel Composites Using Acidic Eluents

Adsorbent Contaminant
Adsorption
mechanism Desorption strategy Cycles

Desorption
efficiency

Regeneration
efficiency Ref

Alginate/carbon films Diclofenac van der Waals forces Acetic acid 50% v/v 5 - 66.70% 19
H bonding
Electrostatic
interaction

Chitosan/poly(acrylic acid) hydrogel Ciprofloxacin
enrofloxacin

Electrostatic
interaction

0.1 M HCl 120 rpm
2 h 30 °C

5 - ∼100% CIP 89
∼85% ENR

Chitosan-coated sand Cu(II) Chemisorption HCl (pH 1) 50 rpm 1 93% - 85
Pb(II) 88%

Carboxymethylated chitosan beads Cu(II) Chemisorption HCl (pH < 2) 6 >99.9% - 90
continuous stirring

Polyaniline grafted cross-linked chitosan Cd(II) Chemisorption 0.5 M HCl 3 h 5 98.95% - 91
Pb(II) (covalent bonding) 97.50%

Bentonite/sodium alginate/dextrin cross-linked
poly(acrylic acid) hydrogel

Paraquat (PQ) Electrostatic
interaction

0.01 N HCl 2 h 6 - 73.70% 92

Poly(methacrylic acid)-grafted chitosan
microspheres

Cd(II) Electrostatic
interaction

1 M HNO3 25 °C
150 rpm 1 h

5 >95% 96.89% 93

Complexation
Ionic exchange

Triethylenetetramine-modified cross-linked
chitosan beads

Ni(II) Complexation 1 M H2SO4 4 - 95% 94
stirring for 24 h

Molybdate-impregnated chitosan beads As(III) Complexation 1 M H2SO4 20 95% - 95
As(V) Electrostatic

interaction, ion
exchange

99%

Chitosan/itaconic acid (Ch-g-IA) Cu(II) Electrostatic
interaction

1 M HNO3 4 - ∼50% 96
Chitosan/crotonic acid (Ch-g-CA) 150 rpm 48 h
Chitosan Cr(IV) - 0.1 M H2SO4 1 88% - 73

0.01 N HCl 80%
0.01 M acetic acid 45%
0.01 M citric acid 47%

Sodium alginate/polyethylenimine SA/PEI MB Chelation 0.1 M HNO3 in
ethanol

4 79.40% 63.20% 97

LS-g-AA hydrogels MB Electrostatic
interaction

HCl (pH 4) 1 51% - 98

Ion exchange 0.1 M HCl (pH 1) 1 65% -
4 - 79%

PAA/XG/HAP MB H bonds 0.01 M HCl 2 h 10 - 86% 99
Electrostatic
interaction

Polyanionic xanthan gum-based hydrogels MB Electrostatic
interaction

0.1 M HCl 20 - 95% 100
90 min

Ethylenediamine-modified calcium alginate
aerogel (ECAA)

Pb(II) Ion exchange 0.1 M HCl 10 - ∼90% 101
Cu(II) Chelation

Chitosan/ethyl acrylate (CEA) Pb(II) Physisorption 0.6 M HCl 1 98% - 102
Cd(II)
Zn

Methylcellulose/tannic acid complex coated on
alginate/poly(acrylic acid)

MB H bonding 0.1 M HCl (MB) 3 - ∼75% 103
Quinoline
(QUI)

Electrostatic
interaction

10% acetic acid
(QUI) in
methanol

π−π interaction
Graphene Oxide/alginate hydrogel membranes Cr(III) Electrostatic

interaction
1 M HCl 5 - 56% 104

Pb(II) Ion exchange 0.3 M HCl - 93%
Chelation

Starch-based hydrogel Cu(II) Electrostatic
interaction

0.1 N HCl 3 92.70% 91.80% 105
Ni(II) 90.80% 95.20%
Pb(II) 89.40% 78%

Polyaspartic acid/carboxymethyl Salix
psammophila powder (PASP/CMS) hydrogel

Pb(II) Electrostatic
interaction

0.08 M HNO3 1 35% - 106
Cd(II) 60 °C 90 min 53.11%

Xanthan gum/poly(acrylic acid) /hydroxyapatite
(XG/PAA/HAP)

MB H bonding 0.01 M HCl 2 h 10 - 86% 107
Electrostatic
interaction
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degrade the contaminant. They include the use of desorption
agents, advanced oxidation methods, and a promising eco-
friendly technique based on CO2 regeneration.
3.1.1. Desorption Agents. This method consists of

immersing the saturated adsorbent in an eluent (an aqueous
solution or desorption agent) to recover the contaminants in
the liquid phase. The efficiency of the eluent is influenced by
many factors, including the nature of the adsorbent and
adsorbate, the adsorbate−adsorbent interaction, and the
desorbing agent that is used. Some of the most common
desorption agents include acids, alkalis, salts, chelating agents,
and solvents.78

Acids and Alkalis. pH is a critical factor for adsorption
mechanisms and adsorbent efficiency toward many contami-
nants, especially when the bonding depends on the anionic,
cationic, or zwitterionic nature of the molecules involved in the
process.80 The pH of the medium directly affects the charge
and ionization of the adsorbents and adsorbates by protonation
or deprotonation of the chemical structures.
The acid or alkali regeneration of adsorbents is the most

common method in the literature for hydrogels and polymeric
adsorbents. It is generally performed with strong acids and
alkalis at low concentrations. In acidic eluents, the cations H+
and H3O+ will be present in excess, whereas basic eluents will
have OH− anions in high concentration. The excess ions may
protonate or deprotonate the active sites of the solid phase, so
the contaminants might be released into the medium.81 This
means that acidic and alkaline eluents are particularly effective
when the adsorbate−adsorbent interaction is mainly driven by
electrostatic forces. As described in Table 1, acidic eluents have
multiple applications, being particularly effective in the
desorption of heavy metals and cationic dyes, such as MB.
In contrast, as shown in Table 3, alkalis are effective in the
desorption of anionic species like phosphates,82 perchlorate,83

or anionic dyes.84

The most common acid desorbing agents in the literature
are hydrochloric acid (HCl), sulfuric acid (H2SO4), and nitric
acid (HNO3). HCl has shown particularly good results for
desorption of various heavy metals. Wan et al.85 studied the
desorption efficiency of Cu2+ and Pb2+ with HCl solutions (pH

1 and 3) from chitosan-coated sand. In their experiment, the
desorption efficiency was over 93% for Cu and 88% for Pb at
pH 1. In contrast, the authors reported lower desorption values
with higher pH and very low removal at neutral conditions (5%
and 30% for Cu and Pb, respectively). This effect is explained
by the point of zero charge (PZC): the pH value at which a
given material has a neutral charge. When the pH < PZC, the
adsorbent is protonated and has a positive charge. In contrast,
when the pH > PZC, the adsorbent becomes deprotonated.86

However, in many cases, the PZC is not considered during
desorption experiments. In the case of the chitosan-coated
sand adsorbent, the PZC was not reported, but the high
desorption efficiency at low pH confirms that the material got
protonated, in other words, pH< PZC.85 Conversely the low
desorption toward neutral pH indicates that the material
remained deprotonated (pH > PZC) and the electrostatic
interaction between the metal ions and the adsorbent was
maintained; therefore, the contaminant was not released.85

In most of the cases, as described in Tables 1−2, the
desorption step is performed at a fixed acid or alkali
concentration, instead of considering a pH range or the
PZC. As it can be observed, the concentration varies normally
from 0.01 to 1 M, having different results on the desorption
efficiency and number of cycles that can be successfully
performed. But considering the PZC may be more specific for
the material and less damaging for the adsorbent’s structure.
Organic acids have also been evaluated for adsorbent

regeneration. Acetic acid, for example, has been used for
diclofenac desorption from alginate/carbon films.19 The
performance was evaluated in terms of adsorption efficiency,
having an average of 83% diclofenac removal from the first to
the fourth cycle. After the fifth cycle, the adsorption decreased
to 66.7%. According to the authors, the acid treatment may
have caused chemical and textural modifications that reduced
the adsorption capacity of the material. However, as the
desorption efficiency was not reported, it should not be
assumed that the decrease in the adsorption efficiency was only
a consequence of the material’s degradation. Diclofenac may
have accumulated in the adsorbent’s surface through successive
adsorption−desorption cycles.19 In some cases, it has been

Table 1. continued

Adsorbent Contaminant
Adsorption
mechanism Desorption strategy Cycles

Desorption
efficiency

Regeneration
efficiency Ref

CMC/PAA/GO MB π−π interaction 0.01 M HCl 2 h 9 - 90% 108
H bonding
Electrostatic
interaction

Starch/Polyacrylic acid MB H bonding 0.1 M HCl 5 85% ∼72% 109
Electrostatic
interaction

π−π interaction
Sugar cane cellulose (SBC)/sodium
carboxymethylcellulose with carbon nitride (g-
C3N4)

MB Electrostatic
interaction

6 M HCl 30 min 7 ∼90% - 110

H bonding
π−π interaction

Husk of agarwood fruit (HAF)/sodium alginate
(SA)

Crystal violet
(CV)

Electrostatic
interaction

4.4 M acetic acid
10 min

5 - 98.31% 62

H bonding
Molybdate impregnated chitosan beads (MICB) As (V) Complexation 0.01 M citric acid

(pH 2.06)
1 100% - 111

0.01 M tartaric acid
(pH 2.55)

80%

0.1 M H3PO4 3 87%
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observed that organic acids may not be as efficient as other
strong inorganic agents. For Cr6+ desorption from saturated
chitosan, acetic and citric acid had a desorption efficiency of
45% and 47%, respectively, whereas H2SO4 and HCl showed
88% and 80% Cr6+ desorption, respectively. However, as the
adsorption capacity was not evaluated, there is no information
regarding the integrity of the adsorbent after successive
cycles.73

For the alkaline eluents, some common agents are NaOH,
ammonia, and KOH, as shown in Table 2. NaOH has shown
good results, for example, on indigo carmine (IC) and sunset
yellow (SY) from chitosan-based hydrogels.84 Salzano de luna
et al.84 evaluated the performance of the method in terms of
regeneration capacity. The material could maintain more than
95% of the original adsorption capacity after 3 adsorption−
desorption cycles for both dyes. Those results may indicate
that the material did not undergo major changes during the
desorption process.

Occasionally, the desorption process may result in the
denaturation of the adsorbent; thus, regeneration would
require one or more than one extra step to restore the
structure of the material or prevent denaturation. A common
strategy is to use a combination of desorption agents in
successive treatments. For example, Hu et al.87 reported the
regeneration of a chitosan lactate (CL) hydrogel cross-linked
to salecan (an anionic polysaccharide produced by Agro-
bacterium sp.) saturated with Ni2+. This material was
regenerated with 0.1 M NaOH solution followed by 0.1 M
HCl solution and finally washed with deionized water until
neutrality. After 5 regeneration cycles, the hydrogel maintained
an adsorption capacity of 95.3% when compared to its initial
value, indicating that neutralization successfully prevented the
denaturation of the material.87 In another example reported by
Natarajan et al.,88 the removal of acetaminophen from chitosan
encapsulated magnetic nanoparticles coated with rhamnolipids
(Rh-cMNP) was evaluated. It was observed that acidic
desorption conditions (pH 3) caused dissociation of the

Table 2. Regeneration of Biopolymeric Adsorbents and Hydrogel Composites Using Alkaline Eluents

Adsorbent Contaminant
Adsorption
mechanism Desorption strategy Cycles

Desorption
efficiency

Regeneration
efficiency Ref

Chitosan/biochar hydrogel beads (CBHB) Ciprofloxacin π−π interaction 1 N NaOH 6 - >64% 46
H bonding
Hydrophobic
interaction

Poly(vinyl alcohol)-g-poly(acrylic acid)/cassava
starch-gpoly(acrylic acid) hydrogel

MB H bonding 0.5 M NaOH 24 h and
washing 24 h

5 - >70% 112
Electrostatic
interaction

Amine Functionalized Egg albumin hydrogel
(ALB/PEI)

Diclofenac Electrostatic
interaction

0.5 M NaOH 4 72.40% 34% 113

H bonding 1 h
π−π interaction

Chitosan lanthanum (CS/La) hydrogel beads Phosphorus
(P)

Electrostatic
interaction

3.5 M NaOH 60 °C 2
00 rpm 24 h

5 80%a 90%a 114

Ion exchange
Graphene oxide/locust bean gum (GO/LBG)
aerogels

Rhodamine-B
(RhB)

π−π interaction 0.1 M NaOH 10 - 70.8−92.4% 115
H bonding
Electrostatic
interaction

Polyvinyl alcohol-copper alginate (PVA-CA) gel
beads

Tetracycline
(TC)

H bonding 0.01 M NaOH 4 - 76.41% 116
π−π interaction 3 h (posterior Cu cross-

linking)
Chitosan/zeolite composite aerogels Indigo carmine

(IC)
Electrostatic
interactions

0.1 M NaOH 3 - ∼100% 117

H bonding
Chitosan/hyper-cross-linked polymer (CS/HCP)
hydrogel

IC - 0.1 M NaOH 3 - >95% 84
Sunset yellow
(SY)

Zr(IV)-cross-linked carboxymethyl cellulose/
carboxymethyl chitosan hydrogel

P Electrostatic
interactions

0.8% NaOH (w/v) 6 - ∼90% 82

Ligand
exchange
Ion exchange

Cu−Fe embedded cross-linked 3D cellulose
hydrogel

Cr(VI) Reduction 0.1 M NaOH 2 h 5 88% 86.60% 118
Complexation

Epichlorohydrin cross-linked chitosan hydrogel
beads

Perchlorate Electrostatic
interaction

0.1 M NaOH 16 h 12 ∼100% - 83

HAF/Chitosan (CS) Reactive blue 4
(RB4)

Electrostatic
interaction

4.4 M ammonia
solution 10 min

5 - ∼80% 62

H bonding
Alginate/carboxymethylcellulose/aluminum
hydrogel beads

P Electrostatic
interaction

KOH (pH 9.5) 1 60% - 119

Ion exchange
aPercentage calculated based on previous cycle instead of initial value.
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magnetic nanoparticles. Therefore, they were subjected to
basic conditions to perform the reencapsulation before starting
a new adsorption step. Regardless of the denaturation, the
material had an adsorption capacity of around 75% after 8
regeneration cycles.
Chelating Agents. Chelating agents are molecules ligands

that interact with metal ions to form a complex. These
molecules can donate electron pairs to form two or more
covalent bonds with a central metal ion. For their capacity to
sequester metallic species, chelators may be used for the
regeneration of adsorbents loaded with heavy metals. To
successfully use a chelator as desorbing agent, an important
factor to consider is the formation constant (log K) of the
agent toward the metallic ion to desorb. As shown in Table 3,
the most widely known chelating agent is ethylenediaminete-
traacetic acid (EDTA), and it is widely used in industry to
improve the stability of products by the sequestration of trace
metals to prevent catalytic reactions. It is also used in
agriculture to enhance the availability and transport of metal
nutrients.120 EDTA has been used to recover Hg+ ions from
spent aminated chitosan beads, reaching a desorption ratio of
around 95%.121 According to the authors, EDTA was more
efficient for Hg recovery compared to acidic eluents such as
HCl and HNO3, widely used in the desorption of heavy metals.
Moreover, the beads maintained their adsorption capacity at
around 90% after 5 consecutive adsorption−desorption cycles.
EDTA had also been used for the desorption of Pb ions from
spent carboxylated alginic acid with a desorption efficiency of
75%.122 Other chelating agents have been tested, with positive
results. In the same study, nitrilotriacetic acid (NTA) was
tested for the regeneration of the exhausted carboxylated
alginic acid with a removal efficiency of around 80%.
Another molecule with great potential to be used as a

desorbing agent is [S,S]-ethylenediaminedisuccinic acid
(EDDS). EDDS has been considered as an acceptable
biodegradable replacement of EDTA for certain environmental
applications.123 This chelating agent has been reported to
extract heavy metal ions (Cu2+, Pb2+, Zn2+, and Cd2+) from
contaminated soil as a decontamination strategy, removing up
to 66% of Cu from the soil matrix. Those results indicate that it
could also be a good option to desorb heavy metals from spent
adsorbents.124

However, one of the disadvantages of chelators is that in
general, they may be more expensive than other desorbing
agents and the cost of the processes might increase. Even
though these chelators were evaluated in single use, chelating
agents have the potential to be reused, which may decrease the
cost of this desorbing method. EDTA, for example, has shown
reusability for the chelation of heavy metals after being treated
with Na2S/Ca(OH)2

125 or electrochemical separation.126

Salts. The use of salts has also been investigated for their
potential as desorbing agents. Saturated salt solutions
destabilize the adsorbate−adsorption interactions and favor
the release of the contaminants toward the liquid phase due to
ionic exchange. Salts may affect the adsorbent−adsorbate
interaction governed by electrostatic interaction since salts in
solution affect the ionic strength of the system.
NaCl is one of the main salts used as regenerating agent

(Table 3); it has been used, for example, for the regeneration
of spent cellulose-derived adsorbents with metal ions (Pb2+
and Cd2+).127 According to the authors, saturation of Na ions
leads to the exchange between Na ions and metals. In this
study, the regenerated materials with NaCl presented high

regeneration efficiency, maintaining the adsorption capacity of
the material intact after 2 regeneration cycles. However, it
decreased to 80% of its original value after the third cycle.
NaCl was also used for regeneration of a cellulose-based
adsorbent with 75% of Cd desorption.8 In the same study,
NaNO3 and CH3COONa were also evaluated, yielding around
85% and 65% desorption of Cd respectively after one
adsorption−desorption cycle. Compared to other eluents like
HCl, salts are generally considered mild agents that
compromise the integrity of the adsorbent in a lesser extent.8

However, it is important to highlight that the salts were not
tested for multiple regeneration cycles; thus, the effects on the
adsorption capacity and the integrity of the material were not
assessed in many cases. Additionally, according to Anirudhan
et al.8 salts may show relatively low efficiencies (≤85%) when
compared to acidic eluents (98% efficiency) after only one
cycle. However, salts seem to be particularly effective to desorb
ionic contaminants from ion-exchange resins not only in batch
systems but also in columns.128 Ion-exchange resins are very
efficient in the removal of contaminants like heavy metals and
dyes, and they are very useful for the demineralization of hard
water. And even though they are not widely exploited in
combination with biopolymeric materials, and biobased
hydrogels, they have a lot of potential to be included in
composites for their ease of regeneration and their multi ion
adsorption capacity.128

Solvents. The use of organic solvents as regeneration agents
has been reported. Organic solvents do displace contaminants
from the surface of the adsorbent as the solvent penetrates the
material. This regeneration strategy strongly depends on the
porosity of the adsorbent and the nature of the organic solvent.
Small solvent molecules have better penetration into the
micropores of the adsorbent matrix. Another important factor
is the solubility of the adsorbate in the solvent to be
successfully extracted into the liquid phase.129

Different solvents have been used, in conventional materials
including acetone,130 methanol,131 ethanol,132 and benzene.129

In an example with activated carbon saturated with
chlorophenols, it has been observed that ethanol extracted
around 38% of the adsorbate, being the highest percentage
among the above-mentioned solvents, while the less efficient
agent was benzene.129 In another example, Wang et al.133

reported the use of methanol to desorb perfluorooctanesulfo-
nate (PFOS) from a spent hydrogel made of carbon-dots
(nanosized photoluminescent carbon material), removing
more than 90% of the adsorbate from the adsorbent
material.133 The authors reported that after 5 adsorption−
desorption cycles, the adsorption capacity of the material did
not experience significant changes.
Solvents have also shown to be excellent desorbing agents

for organic contaminants, namely, for dyes and organic phenols
(Table 4). Gul et al.130 performed regeneration steps for a
magnetic chitosan-graphene oxide composite after the
adsorption of an anionic (Alizarin Yellow, AY) and a cationic
dye (methyl violet, MV). The authors compared the
performance of acetonitrile, acetone, and ethanol as eluents;
however, values for acetonitrile and ethanol were not reported.
According to Gul et al., acetone was the best agent for the
desorption of dyes. The adsorption capacity of MV remained
unchanged after 4 cycles, while the adsorption of AY slightly
decreased.130 As previously mentioned, the solubility of the
adsorbate influences the efficiency of the agent during
desorption, with MV being more soluble in acetone than AY.
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In this case, a lower desorption efficiency could have been
obtained with AY, which may help to explain the decrease in
adsorption capacity.
Adsorption of MB has been widely studied in the last years,

and ethanol has been used as a desorbing agent for hydrogels
and polymeric adsorbents. Ethanol was used for the
regeneration of carboxymethyl cellulose/poly(acrylic acid)
hydrogel saturated with MB. The adsorption capacity of the
material was not significantly reduced after the first 2 cycles
and it maintained about 96% of its initial capacity after 4
adsorption−desorption cycles.134 In a different study, a
xanthan gum/hydroxyapatite (XG/HAP) derivative saturated
with MB was treated with 95% ethanol. After 5 successive
cycles, the material maintained 81% of the original adsorption
capacity.57 In both cases, the desorption efficiency of ethanol
was not reported; therefore, it is not clear if the materials
reduced their adsorption capacity due to the accumulation of
irreversible adsorbate−adsorbent bonds or because of the
modifications of the adsorbent’s surface. However, according
to Chen et al.,57 the adsorption mechanism of MB on the
surface of XG/HAP may be mainly driven by electrostatic
interaction in relatively weak bonds; therefore, the formation
of irreversible interactions seems less likely.
Compared to other desorption agents, the major drawback

of using organic solvents is that they are less eco-friendly and
could be potentially toxic, like in the case of methanol or
benzene. The adsorption process is generally perceived as a
green method for water remediation, and researchers are
pushing forward the use of biodegradable and biobased
adsorbent materials. Therefore, the use of solvents that may
have environmental repercussions may not be congruent. An
alternative that has not been explored in this type of adsorbent
is the use of green solvents. The term “green solvents” may
include biosolvents (also called biorenewable solvents) such as
bioethanol and supercritical fluids like CO2 as the main
examples. Also, solvents with better environmental, health, and
safety properties are considered green solvents.135 In these

cases, the replacement of organic and potentially toxic reagents
with greener options may reduce the environmental impact of
these desorbing agents.
The use of eluents is usually the most common method in

the literature for the regeneration of biobased hydrogels, their
semisynthetic derivatives, and hydrogel composites. Compared
to other strategies that will be explained in later sections,
eluent use has simple technological requirements and is usually
very easy to adapt and scale up for batch and column
processes, having relatively high desorption and regeneration
efficiencies.
As can be observed in Tables 1−4, the performance of the

different desorption agents varies greatly. This variability can
be attributed to different factors; first, and as it was mentioned
before, the desorption efficiency is directly affected by the
nature of the contaminant, the adsorbent, and the type of
interaction between them. In general, acid eluents are highly
efficient in the desorption of cationic species adsorbed mainly
by electrostatic interactions. Alkalis tend to be efficient in the
desorption of contaminants that are negatively charged. Salts
and chelators are particularly effective to remove heavy metals,
considering that chelators unlike acid eluents, can desorb metal
ions adsorbed by complexation. And finally, solvents have
shown to be very effective in the desorption of organic
contaminants such as dyes.
However, other factors related to the desorption step, such

as the concentration of the agent, contact time, and agitation,
affect the results as well. In many cases, those processing
conditions were considered and reported, but this is not always
the case. Additionally, one factor has been frequently omitted
by the authors, the solid to liquid ratio (adsorbent:eluent). The
solid to liquid ratio affects the kinetics of the desorption and
the equilibrium of the system.80 If the ratio is high, the eluent
may be rapidly saturated, leading to incomplete desorption. On
the other hand, a low solid to liquid ratio may be more efficient
to remove the contaminants; however, it may be inconvenient
and costly to deal with larger processing volumes.

Table 3. Regeneration of Biopolymeric Adsorbents and Hydrogel Composites with Chelating Agents and Salts

Adsorbent Contaminant
Adsorption
mechanism Desorption strategy Cycles

Desorption
efficiency

Regeneration
efficiency Ref

Chitosan Cr(IV) - 0.1 M EDTA 1 78% - 73
Amino-functionalized nanocellulose aerogel Cu(II) Ion Exchange 0.05 M EDTA−2Na

3 h
4 ∼95% - 137

Complexation
Aminated chitosan beads Mg(II) Biosorption 0.1 M EDTA 5 95% 90% 121
Chitosan cross-linked with epichlorohydrin−
triphosphate

Cu(II) Electrostatic
interactions

0.01 M EDTA
200 rpm 3 h

1 84.99%
Cu(II)

- 138

Cd(II) 88% Cd(II)
0.1 M EDTA
200 rpm 3 h

-

1 87.6%
Cu(II)
88.2%
Cd(II)

Wood-inspired nanocellulose aerogel Pb(II) Complexation 0.05 M EDTA−2Na
3 h

5 - 90% 139

2-Mercaptobenzamide modified itaconic acid-grafted-
magnetite nanocellulose composite

Cd (II) Precipitation 0.1 M NaCl 1 75.30% - 8
Electrostatic
interaction

0.1 M NaNO3 69.40% -

0.1 M CH3COONa 65.50% -
Chitosan/zeolite composite aerogels MB H bonding 1 M NaCl 3 - >60% 117

Electrostatic
interaction

Cross-linked chitosan beads P Electrostatic
interaction

50 mM NaCl 4 - ∼100% 140

ACS Engineering Au pubs.acs.org/engineeringau Review

https://doi.org/10.1021/acsengineeringau.3c00022
ACS Eng. Au 2023, 3, 443−460

451

pubs.acs.org/engineeringau?ref=pdf
https://doi.org/10.1021/acsengineeringau.3c00022?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


One major issue that is rarely addressed in the literature is
the management and disposal of the final eluent. Once the
contaminants are released from the adsorbent, they are
resuspended in the eluent, which means they have returned
to an aqueous medium that now must be managed and
disposed of with care, or it might become an environmental
risk itself. In some specific cases, the contaminant might be
recovered and reused for other industrial or agricultural
applications. For example, Joźẃiak et al.136 reported the
recovery of P in a basic eluent (NaOH, pH 12−13), that was
evaporated to obtain a sediment rich in water-soluble
phosphate salts. This sediment has the potential to be used
in agricultural industry.136 However, not all contaminants can
be easily recovered from the eluents, so other strategies are
needed for better management and disposal.
3.1.2. Oxidation/Degradation of Contaminants. Oxi-

dation/degradation methods have been used for the
elimination of water contaminants for a long time. For their
capacity to successfully degrade molecules, these chemical
methods have also been tested in saturated adsorbents for the
regeneration of the materials. Fenton reaction, electro-

oxidation-H2O2, and an electro-Fenton reaction, for examples,
have been used in adsorbent carbonaceous materials, like
biochar, for the removal of sulfamethoxazole and methylpar-
aben with positive results.147 However, in materials such as
biopolymeric adsorbents, hydrogels, and hydrogel composites,
a degradation method that has exhibited positive results is
photocatalytic oxidation. It involves the oxidation and
reduction of photocatalysts and photosensitizers after the
application of light, generating free radicals (OH• and O2•−).
The free radicals degrade the pollutants attached to the surface
of the adsorbent to regenerate the material. In general,
photocatalytic regeneration may be performed in different
ways, depending on how the material comes into contact with
the photocatalyst. First, the adsorbents can be impregnated
with photocatalysts before being in contact with the targeted
contaminant; they can be submerged in a photocatalyst
suspension while illuminated once they are saturated (Figure
2); or the adsorbents can be synthesized with cross-linked
photocatalysts.74,148,149 The saturated material may be exposed
to light, UV light, or sunlight depending on the photocatalyst.
The system can be operated at room temperature, as the

Table 4. Regeneration of Biopolymeric Adsorbents and Hydrogel Composites Using Solvents

Adsorbent Contaminant
Adsorption
mechanism Desorption strategy Cycles

Desorption
efficiency

Regeneration
efficiency Ref

Chitosan−halloysite nanotubes hydrogel beads MB Chemisorption 0.5 M NaOH and
acetone

1 >92% (MB) 141
MG <55% (MG)
(Malachite
green)

Xanthan gum/hydroxyapatite derivative MB Electrostatic
interaction

95% ethanol 5 - 81% 57

H bonding
Sodium alginate/polyethylenimine SA/PEI MB Chelation 0.1 M HNO3 in

ethanol
4 79.40% 63.20% 97

Methylcellulose/tannic acid complex coated on
alginate/poly(acrylic acid)

H bonding 10% Acetic Acid in
methanol

3 - 75% 103
Quinoline
(QUI)

π−π interaction

Agar/κ-carrageenan hydrogel MB H bonding Ethanol 5 ∼45% - 142
Electrostatic
interaction

Deionized water 1 <5%

N,N-
dimethylformamide

1 ∼59%

48 h 150 rpm
Alanine functionalized/graphene oxide Cu-Aln/GO Organic

phenols
Hydrophobic 75% ethanol 6 h

30 °C
4 97% - 143

Alanine functionalized/graphene oxide/alginate
hydrogel Cu-Aln/GO@Alg

Interaction -
π−π interaction 82.53%

Magnetic chitosan/graphene oxide (Fe3O4©GO) Methyl violet
(MV)

Electrostatic
interaction

Acetone 4 - ∼95% 130

Alizarin yellow
(AY)

π−π interaction ∼84%

Magnetic β-cyclodextrin−chitosan/graphene oxide MB Electrostatic
interaction

Ethanol 72 h 5 - >65% 132

FeCl3-activated seaweed carbon/MCM-41/alginate
hydrogel

Basic blue (BB) H bonding Ethanol 5 - 72% 49
Bisphenol A
(BPA)

83.33%

Cellulose nanocrystal−alginate hydrogel MB H bonding 1 M HCl in 98%
ethanol

5 - ∼97% 144
van der Waals
forces

Chitosan/hyper-cross-linked polymer (CS/HCP) Rhodamine
(RH)

- Ethanol 3 - >95% 84

Chitosan-polyaniline/zirconium biopolymer Fluoride Electrostatic
interaction

Distilled water 5 - ∼40% 145

Magnetic chitosan grafted graphene oxide
nanocomposite (MCGO)

Ciprofloxacin
(CIP)

Electrostatic
interaction

Ultrapure water−
methanol

4 - 72% 131

π−π interaction
Cyclodextrin-functionalized graphene oxide/poly(N-
isopropylacrylamide) nanocomposite hydrogel

Phenolic
compounds

H bonding 1:1 ammonia and
methanol

5 - 74% 146
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reactions are driven by photonic activation.148 In the literature,
a common photocatalyst is TiO2, which has been successfully
used for the regeneration of many different matrices, including
activated carbon,148 modified agro-wastes,150 and biobased
polymers,74 to name some.
According to Myint et al.,149 this regeneration strategy is

particularly useful for hydrogel materials, since their cross-
linking capacity allows to incorporate photocatalyst in their
structure. For a commercial starch-based hydrogel saturated
with MB, TiO2/UV photocatalysis was shown to be the best
regeneration method, maintaining around 90% of its initial
adsorption capacity when compared to regeneration by
desorption agents, like HCl, dipropylamine, and EDTA.
Similarly, TiO2 was incorporated in carboxymethyl cellulose-
chitosan-montmorillonite nanosheets composite hydrogel. In
this study, MB was eliminated at 97% from the hydrogel’s
surface, maintaining more than 95% of its original adsorption
capacity after 5 regeneration cycles of 20 h.53 Photocatalytic
regeneration seems to be particularly well-suited for dyes,
which become colorless after the irradiation process.74

There is limited information on photocatalytic regeneration
in biobased hydrogels or their semisynthetic derivatives loaded
with contaminants other than dyes. However, photochemical
oxidation has shown a good regeneration efficiency toward
other organic contaminants such as PAC’s151 or bisphenol A152

in synthetic hydrogels. Therefore, this method could be
successfully applied for the regeneration of biobased hydrogels
and composites. Nonetheless, it is important to consider the
photostability of a given material before the application of this
regeneration strategy. It has been observed that the method
might be aggressive for the adsorbent material, oxidating not
only the contaminant but also the polymeric structure.
According to Arayaphan et al.112 biopolymers seem to be
more susceptible to photodegradation than their synthetic
counterparts.
Additionally, a major drawback of this method is that it

requires specific equipment and set up that may represent a
significant investment compared to simpler chemical desorp-
tion strategies. Considering only the photocatalyst, the cost of
chemical reagents is significantly higher compared to
desorption agents. The cost per tonne of two of the most
widely used agents, hydrochloric acid and sodium hydroxide,
can be around the hundreds of dollars,153 whereas the most
used photocatalyst, titanium dioxide, can reach prices up to a
few thousands of dollars per tonne.154 Apart from the
photocatalyst, the reactor design, the light intensity, and the
irradiation times influence greatly the total cost of the
photocatalytic process at a laboratory scale.155,156 Additionally,

the set ups may require auxiliary equipment for continuous
monitoring, maintenance and recalibration of the light source,
since the performance of the photoreactor may be affected by
irregular light emission of lamps.157 Therefore, careful
economical analysis of these factors must be done before
scaling-up. Plaza et al.155 recommend evaluating the prospect
of using solar radiation instead of synthetic light in large scale
applications.155 Nonetheless, the average sunlight intensity of
the location should be considered. For example, Muthukumar
et al.158 positively evaluated the feasibility of photodegradation
of 4-nitrophenol under natural sunlight. However, this
experiment took place in the United Arab Emirates where
the annual average sunlight intensity is 90−120 klx for around
10 h per day. The authors highlighted that unexpected
circumstances that may affect the sunlight availability may limit
the process.158 Therefore, this process configuration may not
be as effective in geographical locations with lower sunlight
intensity.
3.1.3. CO2 Regeneration. This regeneration method

consists of the injection of CO2 into a system where the
spent adsorbent is suspended in aqueous solution. The gas
dissolves in water producing carbonic acid. This process
requires CO2-responsive polymers that react when protonated,
producing carbamate or bicarbonates. This interaction may
change the charge of the material, affecting self-assembly and
hydrophilicity, releasing the contaminant (Figure 3). The
protonation may be reversed by the injection of another gas,
like N2 purging, or simply by mild heating (∼60 °C), processes
that may push the CO2 out of the solution.

75,159

Responsive materials must have nitrogen and oxygen rich
functional groups to interact with the CO2 including amino,
carboxylic, amidine, and guanidine, having a particularly good
response to tertiary amino groups (−N−(CH3)2).75,160
Therefore, some polymers and hydrogel materials have a
CO2 responsive properties. One example is poly(2-dimethyla-
mino-ethyl methacrylate) (PDMAEMA) that reacts to form
ammonium bicarbonates via protonation of the amino
groups.161 Fan et al.75 developed a CO2 responsive hydrogel
by cross-linking PDMAEMA with poly(acrylic acid) and
chitosan. This material was used for Cu2+ adsorption and its
regeneration capacity by CO2 bubbling was evaluated over 6
consecutive cycles of 6 h. The hydrogel desorbed 85.1% of
Cu2+ after the first regeneration step, decreasing to around 75%
after the sixth cycle. Similarly, the adsorption capacity of the
gel showed a slight reduction, reaching 70% of its initial
capacity after 6 cycles. According to the authors, the gel may
have formed strong adsorbent−adsorbate interactions, leading
to an incomplete desorption and progressive reduction of the

Figure 2. Photocatalytic regeneration of adsorbents with TiO2 as
photocatalyst.

Figure 3. Regeneration of adsorbent materials via CO2 injection.
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adsorption capacity.75 However, the material still maintained a
relatively high percentage of its initial removal efficiency.
Compared to other chemical methods, CO2 regeneration

may be considered a relatively eco-friendly method that does
not require additional inorganic and/or toxic chemicals as
desorbing agents. The method is relatively simple to apply
compared to photocatalysis, but it has higher technological
requirements than desorbing agents since CO2 regeneration
requires a gas injection method and a heating system for later
degassing.
The disposal and management of the eluent solution have

not been addressed by the regeneration experiments. There-
fore, further steps will be required for the treatment of the
eluent, or it might become an environmental risk.
3.2. Physical Methods

3.2.1. Thermal Regeneration. As temperature directly
affects the molecular interactions and alters the active sites on
the surface of the adsorbents, in some cases, the temperature
increases the mobility of the contaminants and weakens the
adsorbent−adsorbate interactions.36 Thermal regeneration is
suitable for adsorbent materials that resist high temperatures,
such as activated carbon, zeolites, etc. In these cases, the
process is performed at a range between 150 and 800 °C,
temperatures that may oxidize, denature, or carbonize the
pollutants. However, mild temperature conditions can also be
efficient for regeneration of more delicate materials, like
hydrogels. It has been reported that the use of thermal
regeneration a thermo-magneto-responsive poly(N-isopropyla-
crylamide)-co-acrylic acid composite loaded with Cr3+ reached
complete desorption at 50 °C.77 According to the authors,
desorption in this composite system was largely attributed to
the enthalpy-driven dissociation of hydrated Cr3+ from the
hydrogel surface once the medium cooled to room temper-
ature. As explained by Chen et al.,77 the increase in
temperature not only affected the stability of the adsorbent−
adsorbate interaction but also the arrangement of the
composite network. As the temperature increased, the hydrogel
presented more stable inner H bonds, which increased the
rigidity of the polymeric network. Moreover, at higher
temperature, repulsion between the metal ions and the acrylic
acid carboxylates increased.77

The application of this strategy is still limited for biobased
hydrogels and composite hydrogels with biopolymeric
components or semisynthetic derivatives, but some examples
can be found in literature. Wang et al.162 synthesized a
thermoresponsive cyclodextrin-encapsulated-Mxene composite
hydrogel for the adsorption of phenolic compounds, including
pentachlorophenol and 4-nonylphenol.162,163 This material
maintained an adsorption capacity of around 82% of its initial
value after 5 cycles at 35 °C for 200 h. According to the
authors, the hydrogel showed changes in its adsorption
capacity and physicochemical characteristics upon exposure
to temperatures beyond 35 °C. This response may be a major
drawback for possible in situ application, considering that
contaminant removal will not take place at high temperatures;
the hydrogel may not be suitable for warm, tropical, and
subtropical environments.
These results indicate that temperature regeneration may

have potential for desorption of pollutants as long as the
adsorbent material resists mild temperatures with no significant
modification. The great advantage of this strategy is that
reagents are not needed for desorption, making it a greener

option than chemical methods. However, the energy require-
ment for heating large processing volumes may be a major
drawback that needs to be carefully evaluated, considering that
the desorption may require long processing times.
3.2.2. Ultrasonic Regeneration. Ultrasound is an

oscillating sound pressure wave that operates at frequencies
from 20 kHz to several GHz, which is beyond the human
hearing range. Ultrasound is divided into low and high
intensity. High-intensity ultrasound (from 20 to 40 kHz) is
generally used for altering properties of materials.164 The
waves produce compression and expansion alternations,
forming bubbles that collapse asymmetrically with the solid
surface (Figure 4). The process generates surface sonication

that may break the boundary layer and affect the properties of
the material. Surface sonication is the main principle that
drives ultrasonic regeneration, the compression−expansion
alternation may break the adsorbent−adsorbate interac-
tion.76,165 Additionally, the sound waves increase the
turbulence, reducing the laminar sublayer, and the acoustic
energy dissipation increases the bulk temperature.164 With the
mechanical and thermal effects generated by the cavitation, the
contaminants may be not only released, but also degraded.10

Ultrasonic regeneration may be efficient when physisorption is
involved in the adsorption (van der Waals forces and H
bonding).
This technique efficiently regenerated nanocomposite

hydrogels based on polymers of intrinsic microporosity,
cellulose acetate and graphene oxide (CA/PIM-1/GO) used
for adsorption of neonicotinoids.76 A treatment at 80 kHz and
20 W power in bath sonication was applied for 1.5 min to the
spent adsorbent. According to Alammar et al.,76 the adsorption
capacity of the material remained constant for over 10
adsorption−desorption cycles. The authors compared the
ultrasonic regeneration of CA/PIM-1/GO with two desorption
methods: ethanol as desorption agent and thermal regener-
ation (40 °C). The three desorption treatments maintained
more than 96% of the original adsorption capacity, with
process efficiency being ranked as ethanol < temperature <
ultrasound in ascending order. However, the processing time
of ultrasound treatment was significantly shorter. Ethanol
washing and temperature regeneration took place for 8 h, while
ultrasound required 1.5 min. According to the authors, these
results may represent an advantage for ultrasound application
from the practical point of view.76 However, it is important to
consider that processing times, frequency, and power of
ultrasound treatments should be carefully considered and
optimized, since surface sonication may alter the structure of
the adsorbent. In the same experiment, the authors reported
that the morphology of (CA/PIM-1/GO) may be changed

Figure 4. Ultrasonic regeneration of adsorbents.
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from bead-like to fiber-like structure with relatively long
processing times; therefore, the adsorption capacity of the
adsorbent may be affected.76 This aligns with recent
suggestions made by Girard et al.,166 indicating that for
ultrasound processes experimental details must be reported
more precisely. It is ideal to report not only the power
normalized to the mass of the material but also the volume of
solution to account for geometric effects and acoustics.
Like other methods that require a particular set up,

ultrasound regeneration may represent a challenge to adapt
and scale up for real life applications. Moreover, the
degradation that ultrasonic cavitation generates may release
toxic byproducts. Therefore, its used is still limited to
laboratory scale.10 However, this method is highly promising,
considering the efficiency it has in terms of processing time,
having high desorption efficiencies after a few minutes, whereas
the other chemical and physical desorption strategies often
require between 2 and 24 h.

4. CONCLUSIONS AND FUTURE PERSPECTIVES
The methods covered in this review show variable perform-
ances in terms of efficiency, time, and number of cycles for
biopolymeric adsorbents and semisynthetic derivatives in
hydrogel and hydrogel composites. Despite the abundance of
information regarding desorption, the way it has been reported
over the years has hindered the evaluation and comparison of
different strategies. First and foremost, it is important to
consider the approach used to evaluate the desorption and
regeneration efficiencies. Both approaches provide different
information that can complement each other for better
evaluation of the performance of a given method.
In general, some methods tend to be more effective on

specific contaminants or toward certain adsorption mecha-
nisms. For example, electrostatic interactions are efficiently
interrupted using desorbing agents, with HCl being the most
widely used eluent. Different regeneration strategies may
successfully desorb the same contaminant, regardless of the
matrices. For example, MB may be efficiently removed by
desorbing agents including acids, alkalis, and solvents and by
photocatalytic regeneration. However, desorption performance
and number of cycles that a material can undergo varies.
Parameters such as eco-friendliness and simplicity will also

impact the overall evaluation of a given method; in other
words, desorption efficiency should not be considered on its
own. In many cases, the evaluation of a desorption strategy
does not consider the processing times or technological
requirements, aspects that may significantly increase the overall
cost of application. As previously mentioned, the economical
feasibility of acid regeneration of GAC has been evaluated.
According to the projections of 11 years of adsorption
treatment, reusing the adsorbent materials can reduce the
costs by up to 74%, when compared to purchasing new
materials for the same period of time.21 These results are based
on the price of the adsorbent and the efficiency and cost of the
regeneration method. GAC is a common commercial
adsorbent material which has a low to medium cost, ranging
between 0.67 to 75 USD per kg. However, it is important to
highlight that this sort of evaluation has not been performed
for the types of materials covered in this review. According to
Gkika et al.,167 polymeric adsorbents might also have a low to
medium cost, but the incorporation of other matrices like
graphene oxides, carbon nanotubes, minerals like hydroxyapa-
tite or cross-linkers might significantly increase the cost, to

several hundred USD per kg.167 Therefore, the evaluation of
the economical feasibility of the adsorption process as water
treatment for more sophisticated materials becomes critical,
and cost-efficient regeneration methods are an essential need.
However, there are no sufficient studies addressing the
economical aspect of regeneration methods. Thus, studies of
the implementation and maintenance costs as well as long-term
projections are still needed for assessing real life application.
There is limited information related to optimization and the

desorption kinetics of the different regeneration methods.
There are a few studies that have assessed the kinetics of
chemical regeneration by desorbing agents of various biobased
adsorbents. However, the desorption kinetics of biopolymeric
matrices, semisynthetic derivatives, biobased hydrogels, and
composites are rarely followed or reported appropriately. The
most widely used kinetic models are pseudo-first-order (PFO)
and pseudo-second-order (PSO), being PSO, in many cases
the best fitting model for some dye-saturated biobased
adsorbents, like jujube shells or golden thistle stalks.167

However, there are limited studies regarding other nonconven-
tional adsorbent−adsorbate combinations and virtually no
studies regarding the desorption kinetics of the different
methods covered in this review for the selected type of
adsorbents. The lack of information about desorption kinetics
represents a significant gap and a key opportunity to improve
the evaluation and understanding of regeneration methods.
Also, kinetics is an essential tool for the optimization of
processing times and projecting maximum desorption
capacities, which are important parameters for the evaluation
of real-life application.
Moreover, there is limited information regarding how and to

what extent a particular method affects these types of materials.
Through mechanisms of desorption or regeneration, the effects
may sometimes be easily observed or inferred such as the use
of strong desorption agents or the application of an
ultrasonication treatment. However, in many cases, there are
no studies to confirm the integrity of the regenerated
adsorbent at the chemical, morphological, or textural level.
Therefore, a recharacterization of the materials should be
considered to better predict long-term performance.
Integrating all of these factors and considerations during

regeneration studies will help to produce useful information
related to the efficiencies, effects, and the real applicability of
the regeneration strategies. Hence it will be easier to evaluate
and select the best fitting method for a given adsorption
system.
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