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Abstract: The development of low-cost sensing devices with high compactness, flexibility, and
robustness is of significance for practical applications of optical gas sensing. In this work, we
propose a waveguide-based resonant gas sensor operating in the terahertz frequency band. It features
micro-encapsulated two-wire plasmonic waveguides and a phase-shifted waveguide Bragg grating
(WBG). The modular semi-sealed structure ensures the controllable and efficient interaction between
terahertz radiation and gaseous analytes of small quantities. WBG built by superimposing periodical
features on one wire shows high reflection and a low transmission coefficient within the grating
stopband. Phase-shifted grating is developed by inserting a Fabry–Perot cavity in the form of
a straight waveguide section inside the uniform gratings. Its spectral response is optimized for
sensing by tailoring the cavity length and the number of grating periods. Gas sensor operating
around 140 GHz, featuring a sensitivity of 144 GHz/RIU to the variation in the gas refractive index,
with resolution of 7 × 10−5 RIU, is developed. In proof-of-concept experiments, gas sensing was
demonstrated by monitoring the real-time spectral response of the phase-shifted grating to glycerol
vapor flowing through its sealed cavity. We believe that the phase-shifted grating-based terahertz
resonant gas sensor can open new opportunities in the monitoring of gaseous analytes.

Keywords: terahertz technology; gas sensing; plasmonic waveguide; phase-shifted grating; additive
manufacturing

1. Introduction

An increasing demand for the monitoring of air quality has promoted the develop-
ment of high-performance gas sensing devices operating on various chemical and physical
principles such as optical, calorimetric, chromatographic, acoustic, as well as electrochem-
ical [1–5]. Among those, optical sensors exhibit unique advantages by being immune to
electromagnetic interferences, free of external power supply, capable of operating in harsh
environments, and allowing multiplexed remote sensing [6–8]. Furthermore, for various
gaseous analytes (e.g., gases, vapors, aerosols), the terahertz band is abundant with spectral
fingerprints [9–12], thus opening new opportunities in optical gas sensing. As a comple-
mentary technique to the well-established infrared spectroscopy that probes electronic
transitions in molecules [13], THz spectroscopy rather probes molecular vibrations, which
are particularly pronounced in the gas phase [14]. Additionally, to handle the submillimeter
radiation, THz optics are usually much larger than infrared ones, thus enabling novel de-
signs (e.g., integrate with gas cell) and fabrication techniques (e.g., additive manufacturing)
of gas sensing devices. However, a significant challenge for gas sensing, particularly at
low analyte concentrations, is the weak signal, which prompts the use of long straight gas
cells [15,16] or circular multi-pass cells [17,18] to obtain the measurable absorption, thus
resulting in large and cumbersome gas sensor systems.
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It is, therefore, important to investigate the integrated resonant structures, particularly
in the THz band, capable of reducing the size of sensor systems, compared to the free-
space systems, without sacrificing sensitivity. One way to achieve this is by using hollow
core waveguides filled with gaseous analytes to perform broadband molecular vibration
absorption spectroscopy. Such waveguides operate using various guidance principles
(e.g., ARROW, bandgap, plasmonic) and offer high field–analyte overlap [19–22] while
occupying much smaller volumes (e.g., coiled hollow core fibers [23,24]) than free-space
gas cells. They are predominantly used to monitor the frequency-dependent imaginary part
(loss) of the analyte Refractive Index (RI). Therefore, for chemical species identification and
component differentiation, one usually resorts to the costly THz optical sources supporting
stable and broadband operation.

Alternatively, a THz waveguide-based sensor of relatively short length can be designed
using various resonant elements in their structures (e.g., Bragg gratings, asymmetric
directional couples, integrated Fabry–Perot resonant cavities, and coherent scattering
elements [25–31]). Due to the low bandwidth nature of resonant devices, one can then
monitor the gaseous analyte RI (mostly its real part) by tracking the spectral position of
various singularities using cost-effective THz sources (e.g., resonant tunneling diodes).

Although high sensitivities are readily achievable by both one-dimensional (e.g.,
photonic crystal cavity on silicon wafer [26]) and two-dimensional resonators (e.g., pillar
arrays [29]), it is noted that for most reported optical sensors, the gaseous analyte delivery
infrastructure comes as an afterthought. In contrast, in this work, this crucial component is
co-engineered with optical ones, thus ensuring the independent efficient operation of both
with minimal mutual intrusion for gas sensing. This subtly integrated structure outperforms
the conventional open-structured sensors in terms of compactness and performance stability.
Particularly, by removing the employment of external gas cells, the proposed sensor is
especially suitable for monitoring small quantities of gaseous analytes.

In this work, we propose a real-time resonant THz gas sensor based on phase-shifted
waveguide Bragg grating (WBG). At the core of this device is a broadband two-wire
plasmonic waveguide formed by metalizing polymer cylinders that are encapsulated
within a closed polymer cage. The gaseous analyte flows inside the cage and in the air
gap of a two-wire plasmonic waveguide. WBG is formed by a periodic conical pattern
imprinted onto one of the cylinders of a two-wire waveguide and is optimized to feature a
spectrally broad stopband. Finally, the phase-shifted grating is formed by inserting a Fabry–
Perot cavity in the form of a uniform waveguide section in the middle of WBG. The cavity
length and the number of grating periods should be chosen to support a single spectrally
narrow transmission peak within a broad WBG stopband. The THz spectral response
of phase-shifted gratings is then studied for different lengths of a cavity and different
refractive indices of gaseous analyte that are filling the semi-sealed cavity. By tracking
the position of the transmission peak, our sensor sensitivity near 0.14 THz is found to be
~14.5 GHz/mm for changes in the cavity length, and ~144 GHz/RIU for changes in the
analyte RI (real part). A theoretical sensing resolution of ~7 × 10−5 RIU is estimated from
the 10 MHz resolution of our spectrometer. Finally, using a continuous-wave (CW) THz
spectroscopy system, we experimentally demonstrate the real-time detection of glycerol
vapors from an electronic cigarette as an analyte. Namely, when replacing dry air with
glycerol vapor in the cavity of a phase-shifted grating module, a shift in the sensor resonant
frequency (transmission peak) of ~50 MHz reveals an RI difference of ~3.5 × 10−4 RIU.

Different from the most reported optical gas sensors whose delicate structures are
realized using costly infrastructures (e.g., femtosecond laser and deep reactive ion etchers),
the proposed gas sensor on a centimeter-scale THz waveguide can be rapidly manufactured
using the emerging 3D printing technology with precision and robustness. Owing to the
ubiquitous availability of hardware as well as the compact modular design that integrates
various crucial elements, we believe that this sensor confronts a lower threshold for entering
into production and less challenging engineering problems for operation in practical
applications.
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2. Two-Wire Waveguide Bragg Gratings

Unlike the conventional two-wire metallic waveguides [32,33], the two-wire waveg-
uides used in this work and detailed in [34] feature a modular design with the wires in
the form of metalized polymer cylinders encapsulated within a polymer enclosure (see
Figure 1a). Such a micro-encapsulated design circumvents the intrinsic engineering defect
of conventional one in alignment, and promises mechanical stable, cost-effective, and
highly reconfigurable THz optical circuits for various applications (the comparison of
transmission spectra is shown in Figure 2d in [34]). The waveguide cross-sectional design,
including the wire diameter, the air gap size, as well as the topography of the enclosure,
were carefully tailored to ensure the featureless transmission spectra with low insertion
loss for a several-centimeter-long waveguide around 140 GHz. Such a design eliminates
the presence of spectral ripples and enables distinct measured transmission spectra using
THz spectroscopy, thus facilitating the signal identification for gas sensing.
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Figure 1. Micro-encapsulated two-wire waveguide and WBG fabricated using stereolithography and
wet chemistry deposition. (a) Schematic of an encapsulated two-wire waveguide. (b) The two-wire
WBG features a sequence of end-to-end connected truncated cones written on one of the two wires.
(c) Transmission and reflection spectra of WBGs featuring a different number of periods, Λ = 1.03 mm.
(d) Numerical transmission spectra of WBGs for different period lengths, NWBG = 14. Inset: The
center frequency of a WBG stopband as a function of its period length.

Additionally, the integration of the plasmonic terahertz waveguide and semi-sealed
cavity promises the controllable interaction between the supported THz surface plasmon
polariton wave and the gaseous analyte flowing through. However, as refractive indices
(real part) for most gases are close to one, it is challenging to detect the difference between
them, thus necessitating the use of long interaction distances (long gas cells) to accumulate
sufficient phase differential between different analytes. In contrast, by using resonant
devices like a Fabry–Perot cavity (in this work: realized in the form of a phase-shifted
WBG), we can fold the optical path to realize much smaller devices.

Experimentally, we find that the two-wire WBGs featuring a sequence of end-to-end
connected truncated cones on one wire was an optimal design that can be printed reliably
with high precision and without supports, using a tabletop stereolithography 3D printer
(see Appendix A for details in fabrication). In principle, one can further increase the
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grating strength (stopband bandwidth) by using other geometries such as deep rectangular
grooves on both wires. However, it is noted that realizing such designs is challenging due
to microstructure deformation induced by the intrinsic cure-through defect of 3D printing
and the difficulty of aligning such structures [35].

Specifically, the UV radiation in each exposure not only cures the resin within the top
printed layer, but also leaks through the cured layer and solidifies some resin on the other
side. Therefore, the resultant cumulative deformation has to be taken into consideration
for the grating structure design, as it becomes explicit for prints where geometry changes
rapidly from one layer to another. Additionally, the two-wire waveguide components were
manually assembled from two complementary 3D-printed parts. When subwavelength
features are superimposed on both parts, the postprocessing facet-polishing step can easily
lead to their misalignments in practice. Furthermore, the optimal truncated ridge height
was found to be ~0.2 mm, enabling a large bandwidth of the stopband, manageable loss
in the passband, as well as the reproducible optical performance of printed WBGs (see
Figure 1b).

For a stopband center frequency of ~140 GHz, the period of WBGs is found to be
Λ = 1.03 mm. The transmission and reflection spectra for the 2.5 cm long WBGs containing
NWBG = 10, 14, 18 periods are shown in Figure 1c, with numerical transmission and
reflection coefficients in the vicinity of the stopband center frequency reaching <0.1 and
>0.75 values, respectively, when the number of periods is over 14. The linear dependence of
the stopband center frequency on the grating period Λ is shown in Figure 1d for a 14-period
structure, with a slope of 131 GHz/mm. Experimentally, the transmission measurements
were conducted using a CW-THz spectroscopy system (see Appendix A for details in
characterization), and the spectral response of the 3D printed THz WBGs within the
grating stopband agrees well with numerical simulation, as seen in Figure 1c. A minimal
transmission coefficient of ~0.08 was found for the ~16 GHz wide grating stopband of a
14-period WBG.

Next, we realize a narrow transmission window within the WBG stopband by incor-
porating a Fabry–Perot cavity, which is a two-wire waveguide section with a length of
LF-P = 2.75 mm, between two WBG reflectors. The resonance in the Fabry–Perot cavity
results in the presence of transmission peaks within the WBG stopband. Experimentally,
we find that a 14-period phase-shifted WBG shown in Figure 2a results in a superior
performance in terms of the transmission spectra for gas sensing. It is worth noting that
the elongation of the grating leads to a narrower transmission peak (~2 GHz bandwidth
for a phase-shifted WBG containing 18 periods), but comes at the cost of deteriorated
transmission peak intensity (~0.1 transmission coefficient difference between the resonant
frequency and other frequencies within the grating stopband), thus posing challenges in
identifying the desired transmission peak. Additionally, in a numerical simulation, the
bandwidth of the exclusive transmission peak decreases from ~4.7 GHz to ~3.6 GHz when
the waveguide length increases from ~0.5Λ to ~2.5Λ. Further reduction in bandwidth by
extending the waveguide section is infeasible due to the appearance of multiple spectral
singularities within the grating stopband, while the spectral position of the transmission
peak with a basically unaffected bandwidth moves toward a lower frequency when the F-P
cavity length slightly increases (see Figure 3a).

Because of the standing waves formed inside of the photomixer silicon lenses and
free-space cavities of the CW-THz spectroscopy setup, parasite ripples are superimposed on
measured transmission spectra [36], posing challenges in identifying the transmission peak
of phase-shifted WBGs from the experimental data. To simplify the task, we identify the
resonant peak position by subtracting the transmission spectrum of a uniform WBG from
the spectra of the phase-shifted WBGs (see Figure 3b). A good correspondence between
experiment and theory is found for the spectral position of a transmission peak as a function
of the cavity length, with an exception of a small systematic frequency shift of ~2 GHz as
seen in Figure 3c. We believe that this consistent discrepancy is mainly attributed to the
structural nonuniformity of experimental gratings, which results in the longer equivalent
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F-P cavity compared with that of the ideal numerical model. Both in theory and experiment,
the dependence is linear, with a slope of ~14.5 GHz/mm.
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3. Two-Wire Waveguide-Based Resonant Gas Sensor

Finally, we demonstrate real-time THz gas sensing based on our thus-designed
phase-shifted WBG. A 2.5 cm long phase-shifted grating module containing a cavity of
LF-P = 2.75 mm in the middle of 14-period gratings with Λ = 1.03 mm was sealed on both
ends with polyethylene film (α < 0.01 cm−1 for a lower-terahertz band) with a thickness
of tens of micrometers. In experiments, the addition of such a THz transparent material
led to negligible changes in the transmission spectra of this module. To couple with the
free-space THz beam for characterization, this module was placed between two 3 cm
long featureless two-wire waveguide sections which support broadband operation. The
assembled waveguide component was then fitted with conical horn antenna and placed
inside the THz spectroscopy setup (see Figure 4). It is noted that three through holes were
drilled on the side wall of the enclosure of the phase-shifted grating module for gaseous
analyte delivery.
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Figure 4. Schematic of the experimental setup to fill the cavity hosting two metalized wires with
glycerol vapor.

Glycerol is one of the main ingredients of vaping liquid, to which nicotine and flavors
are added. The gas mixture generated by electronic cigarettes is notoriously harmful to
human health. Specifically, glycerol aerosol alone has been shown to have an impact on the
liver and energy metabolism [37]. Therefore, detecting glycerol vapor in air is of practical
significance in health management, which was demonstrated by the proposed sensor in this
work. In experiments, glycerol vapor generated by an electronic cigarette was introduced
into the 0.6 mL volume flow cell through the inlet in the middle of a cell with a constant
flow rate of ~20 mL/s, while the waste vapor was removed from the two ends of a flow
cell through the outlets for waste treatment. The well-designed location of inlet and outlet
openings as well as the short voiding time allow the cavity to completely replace its filled
gas in sub seconds, enabling the real-time monitoring of gas RI changes.

The numerical simulations of the independent phase-shifted grating module predict
that the spectral position of a transmission peak is linear with the gaseous analyte RI
with the corresponding sensitivity of 144 GHz/RIU (see Figure 5a). Given the 10 MHz
resolution of our CW-THz spectrometer, the theoretical resolution of our sensor is then
estimated to be 7 × 10−5 RIU, which is as much as an order of magnitude lower than the RI
difference between most common gases (e.g., the difference is on the level of 10−3 to 10−4

RIU) [38]. In experiments, the transmission spectra of a phase-shifted WBG with an empty
cavity, the cavity with dry airflow, and the cavity with glycerol vapor flow were measured
subsequently. In dynamic measurements covering the spectral range of a transmission
peak, the scanning time for a single data point was ~10 s to alleviate the impact of the
inherent latency of a CW spectroscopy system using lock-in acquisition, and to ensure fine
spectra with 10 MHz resolution. The center position of a transmission peak was found by
first fitting a data cloud of the normalized phase-shifted WBG transmission spectra within
the grating stopband using smooth Lorentzian lineshapes,

TNorm(υ, υcenter, ∆υ, A, T0) = T0 + A
∆υ

4(υ − υcenter)
2 + ∆υ2

(1)

and then finding the spectral position of the fit maximum υcenter, similarly to what is shown
in Figure 3b.

A typical sensor readout is presented in Figure 5b from which we see that the spectral
position of the transmission peak is relatively stable in continuously recorded transmission
spectra of the same analyte. Additionally, for an empty cell or a cell with a flow of
dry air, the position of the transmission maximum also remains practically unchanged,
indicating the immunity of the proposed sensor to changes in gas flow rate. At the same
time, when introducing the glycerol vapor, the transmission peak shifts by ~50 MHz,
which corresponds to the RI change of ~3.5 × 10−4 compared to that of dry air. Highly
consistent experimental results were obtained in each measurement of this sensor. Owing
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to its compact integrated structure and insensitivity to the environment change, this two-
wire waveguide-based sensor can find its practical applications in gas sensing by simply
replacing the external infrastructure for gas delivery (see the setup out of the black dotted
region in Figure 4). For instance, one can detect the concentration of explosive or toxic gas
flowing in pipelines or dispersed in the air remotely in petrochemical industry.
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Figure 5. The spectral response of a phase-shifted WBG with gaseous analytes of different RIs in the
cavity. (a) Numerical transmission spectrum of a phase-shifted WBG in the vicinity of a resonant
peak for different values of gaseous analyte RI. Inset: The spectral position of the transmission peak
as a function of the analyte RI. A slope of ~144 GHz/RIU can be found in the linear fit (red line).
(b) Experimental time dependence of the spectral position of the transmission peak. Its variation can
be found in the red dotted line.

4. Discussion

In this work, we propose micro-encapsulated two-wire plasmonic waveguide-based
phase-shifted Bragg gratings and demonstrate their applications in real-time THz gas
sensing. End-to-end connected truncated cones with a ridge height of ~0.2 mm superposed
on one of the two wires were chosen as an optimal WBG design. Low transmission and high
reflection coefficients were found within the ~16 GHz wide stopband of such WBGs. Phase-
shifted WBG featuring a Fabry–Perot cavity was then developed by placing a uniform
waveguide section in the center of a WBG. A single narrow transmission peak of ~3.6 GHz
(HFWM) bandwidth in the middle of a WBG stopband was realized by using a ~2.75 mm
long cavity flanked on both sides by two seven-period WBGs with a Q-factor of ~39. The
theoretical sensitivity of the peak spectral position to changes in the RI of gaseous analytes
inside the 2.5 cm long phase-shifted WBG is estimated to be 144 GHz/RIU. The response
of our sensor to glycerol vapor flow at low concentrations was then verified in a proof-of-
concept time-resolved experiment, which reliably detected the displacement of dry air by
glycerol vapor with a resultant RI change of ~3.5 × 10−4 RIU.

For future work, we note that higher sensitivity sensor designs are readily achiev-
able by moving the sensor operational frequency to higher frequencies [39], while also
increasing the number of periods in the WBG to reduce the spectral width of a transmis-
sion peak. The long-term stability of the proposed sensor also needs to be characterized
and further optimized for practical applications. Additionally, considering the modular
and reconfigurable design of micro-encapsulated two-wire waveguide components, the
sensing of selectivity is readily available via collaboration with THz waveguide-based
spectroscopy [19] for various monitoring applications of gaseous analytes such as trace gas
analysis and detection [40].
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Appendix A

The proposed micro-encapsulated two-wire plasmonic waveguide components were
split into two complementary parts, which exhibit one metalized wire attached to a half di-
electric cage. We fabricated the dielectric support of such designed structures using an SLA
3D printer (Asiga Freeform PRO2) with the waveguide direction corresponding to its Z-axis.
To suppress deformations associated with the cure-through-resin effect, the parts having
periodical subwavelength features superimposed on wires were printed along the single
direction from the cone smaller base toward its larger base using the finest layer thickness
(10 µm). After 3D printing, we protected the cage’s inner surface and then deposited a
silver layer onto the uncovered wire support through wet chemistry deposition. Finally,
two selectively metalized parts were assembled into a two-wire waveguide component by
matching the V-shaped groove and ridge on each cage.

The proposed THz two-wire waveguide-based components, including uniform and
phase-shifted WBGs, were characterized using a free-space CW-THz spectroscopy system
(Toptica Photonics TeraScan 1550). Tunable THz radiation corresponding to the beat
frequency between two C-band distributed feedback lasers was generated in the emitter
photomixer. Transmitted through waveguide components, the amplitude of the THz
signal was recorded by the receiver photomixer using lock-in detection. In experiments,
WBG modules were placed between two two-wire waveguide sections fitted with WR6.5
conical horn antennas (Virginia Diodes). Their transmission coefficients were calculated
by comparing the measured transmission spectra of this assembly with the reference
corresponding to a two-wire waveguide assembly of the same length.
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