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Abstract

Determining a set of nested pits to support the design of an open pit mine that leads to high economic value
is crucial for the strategic planning of these operations; thus, practitioners rely on optimization methods
for finding high-value solutions. However, current approaches are not sufficient as they lack at least one of
the following features: fast computations of optimal solutions, good geometric properties, and nestedness of
the pits. In this work, we propose an optimization model to address the problem of determining multiple
nested pits by introducing a cost-based penalty for not meeting precedence constraints linked to a minimum
bottom width. Using penalties instead of constraints is novel and turns out to have several advantages. First,
the constraint matrix is totally unimodular; thus, the problem can be solved efficiently. Second, the model can
be parameterized to generate nested pits. Therefore, our model is the first published model that is efficient, can
be solved to optimality, preserves the nestedness of the solutions, and produces geometries more amenable
for mine design, without the need for heuristics. Finally, we devise an iterative method that profits from the
nestedness of the solutions to speed up the resolution and test the model in three different data sets, with
different geometrical and cost parameters for a total of 135 different instances. The results show that the
geometry of the bottom pits is indeed improved and that we can solve the problems up to optimality up to
80% faster than an off-the-shelf solver.

Keywords: linear programming; open pit mine planning; ultimate pit

1. Introduction

Two critical steps in the strategic planning of open-pit mines are determining the ultimate pit
problem, “UPIT,” and producing a sequence of nested pits. The ultimate pit determines the
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economic envelope of the mine; thus, providing a first approximation of the total economic value
and tonnage of the ore reserves. The nested pits serve as a basis for defining the mining sequence
and the design of mining phases which partition the deposit into operational volumes that include
space and access ramps for the mining equipment.

The input of UPIT is given by a discretization of the deposit into a three-dimensional array of
blocks, B. Each block i ∈ B is associated with an economic value pi that depends on its geological
attributes (particularly its grade and tonnage) and economic and operational parameters such as
ore price, costs, and metallurgical recovery. The set of blocks, together with its relevant attributes
(for instance, grades and tonnages), is known as the block model and is constructed from ground
samples and the aid of geostatistical methods.

The excavation of the pit must comply with slope angles to ensure the stability of the walls. At
the strategic level of the ultimate pit, this is controlled by overall slope angles. These angles are
modeled as precedence constraints stating that to extract a certain block, others located above that
block must be extracted before. For this, a set P ⊆ B × B of precedence arcs is used, with (i, j) ∈ P,
indicating that block j must be extracted if i is extracted.

UPIT can be expressed as the binary linear program (1)–(3) below, where variable xi = 1 if and
only if block i ∈ B is extracted.

UPIT(p, B, P) max
∑

i∈B

pixi, (1)

xi ≤ xj ∀(i, j) ∈ P, (2)

xi ∈ {0, 1} ∀i ∈ B. (3)

Vector p is referred to as the value vector because, as indicated before, pi is the net profit obtained
from block i ∈ B. Whenever it is clear, we omit the parameters of UPIT(p, B, P) and write for
example UPIT(p) or even UPIT to refer to the problem defined by (1)–(3).

Solving UPIT corresponds to finding a set of blocks such that the addition of their economic
values is the highest possible and complies with the precedence constraints (2). Even though the
word pit literally means “a large hole in the ground,” it is customary that the term refers to the
material that was extracted to create the excavation, or in the case of the ultimate pit, the blocks
i ∈ B such that xi = 1. We adhere to this practice.

It is known that the integrality constraints (3) can be relaxed, and UPIT can be solved up to
optimality using the Lerchs and Grossmann algorithm (Lerchs and Grossmann, 1965). Moreover,
UPIT can be reduced to a graph closure problem in the directed graph G = (B, P) (Picard, 1976),
which in turn corresponds to a minimum cut problem for which pseudoflow algorithms and others
apply (Hochbaum and Chen, 2000; Hochbaum, 2008). These results are relevant from the practical
point of view, as realistic block models range from several thousand to millions of blocks. Thus,
having efficient algorithms to compute the pits is critical.

Another interesting property of UPIT is that it is monotonic with regard to p (Lerchs and Gross-
mann, 1965). That is, if x, x′ are the optimal solutions for value vectors p ≤ p′ (respectively), then
x ≤ x′.

The practical relevance of nested pits is illustrated in Fig. 1, which presents a section of a
conceptual two-dimensional (2D) deposit, with the surface represented by a segmented line, waste
as white area, and ore (profitable material) in gray. The bold lines represent pit contours, with
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Fig. 1. Conceptual design of an ultimate pit and a nested pit. The gray area represents profitable material and the bold
lines pit profiles. Left: The ultimate pit. Center: Ultimate pit partitioned into benches. Right: Nested pit and one inner

pit partitioned into benches.

the ultimate pit being the greatest one and a second, smaller pit on the right side of the figure.
Extraction starts at the surface and is done bench by bench (some labeled with letters (a) to (g) in
the figure). It follows from the picture that mining the ultimate pit directly (center) requires to mine
large amounts of waste (benches (a) and (b)) before reaching profitable (gray area) parts, which
has a negative financial impact. Conversely, mining a smaller pit first (right) requires mining less
waste at the beginning (benches (d) and (e)) thus advancing the extraction of ore and delaying, for
example, the waste in bench (g), all of which improves the net present value. The decision problem
to optimize the extraction order is called the production scheduling, but its study is outside the
scope of this work. For instance, in this conceptual example, the optimal schedule may involve
mining benches (f) and (g) at the same time.

In practice, engineers rely on the nestedness property for generating a sequence of many (po-
tentially hundreds) nested pits. This is achieved by considering a sequence of value vectors pk, k =
1, . . . , K such that pk ≤ pk+1, ∀k = 1, . . . , K − 1 and by solving UPIT(pk) for each k = 1, . . . , K;
thus, generating potentially K nested pits.

After the pits are generated, some pits are selected. This stage is named pushback selection as the
volume (as blocks) between consecutive selected pits is called pushback. Pushbacks serve as the basis
for designing mining phases, which are actual volumes to be mined (Jelvez et al., 2020). Phases are
fundamental for the design of an open pit mine as they can be mined with relative independence,
and each phase has its own layout in terms of walls and access roads (Read and Stacey, 2009;
Thomson et al., 2020). In this paper, we focus on the generation of the nested pits and not later
stages like pushback selection, phase design, or production scheduling. For detailed descriptions
and methods for these problems, we refer the reader to Jelvez et al. (2020), Morales et al. (2023),
and Espinoza et al. (2013), respectively.

Even though nested and ultimate pits are used as a design guide for mining phases, it is apparent
from its formulation that UPIT in fact does not consider relevant operational constraints related
to the geometry of the resulting pits; thus, some researchers have investigated methods to address
this limitation. We discuss some of these geometrical aspects and relevant associated efforts in the
following sections.

1.1. Slope angles and precedence arcs

The ultimate pit considers only overall slope angles; however, the design of the pit walls is a
much more complex task which must consider several design parameters (Read and Stacey, 2009;

© 2023 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13390 by E

cole Polytech D
e M

ontreal, W
iley O

nline L
ibrary on [09/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 N. Morales et al. / Intl. Trans. in Op. Res. 0 (2023) 1–22

Hustrulid et al., 2013). Because of this, some authors have focused on modeling complex slope
angles using precedence arcs. For example, Khalokakaie et al. (2000) extend the Lerchs and Gross-
mann algorithm to consider multiple slope definitions across the mine. They consider one angle
for each cardinal direction and use linear interpolation for the angles in between. Shishvan and
Sattarvand (2012) and Gilani and Sattarvand (2015) improve the methodology by using nonlinear
interpolation, which they show to work better. These works address the modeling of slope angles
in terms of precedence arcs, that is, their methods are complementary to other models discussed in
this work, including the proposed model.

1.2. Operational space at the bottom of the pit

The removal of material from the mine surface is performed by large pieces of machinery that re-
quire space for movement and operation; however, the planning methodology proposed by Lerchs
and Grossmann omits this requirement. This limitation of the approach is known both by com-
mercial solutions and the research community. For example, Wharton and Whittle (1997) indicate
that the ultimate pit was never meant to produce operational pit shapes and, therefore, the method
generates geometries with irregular floors, sharp corners, etc. Because of this, they propose a post-
processing algorithm for improving the geometry after the optimization process has ended. Their
approach uses squared “templates” for smoothing the solutions of UPIT. This approach is the one
implemented in Whittle, a leading planning software (Whittle, 2018).

Several authors have proposed methods that account for the geometrical limitations of the
method and aim to generate volumes that comply with considerations such as minimum space
requirements at the bottom of the pit or shapes that are more amenable for designing mining
phases afterwards.

Bai et al. (2018) propose a method based on mathematical programming and the iterative appli-
cation of some operators to generate pits that comply with geometric properties such as minimum
space at the bottom, smoothness, and continuity. Using a block-by-block schedule and discount
rate, they apply their method in two case studies. Using a simple approximation of the net present
value (NPV), they report that the decrease of the NPV between the initial pushbacks and the prac-
ticable ones ranges from 0.5% to 7%.

Tabesh et al. (2014) develop a multistep pushback design algorithm based on mathematical pro-
gramming and clustering for generating pushbacks composed of mining “polygons.” To find solu-
tions for the model, they devise and implement a greedy heuristic approach and local search in such
a way that the pushbacks satisfy capacity constraints. Finally, a refinement procedure is provided
to improve the geometry.

Nancel-Penard and Morales (2022) introduce a mathematical optimization model that deter-
mines one pit subject to geometrical constraints related to connectivity, minimum space and
widths at the bottom, and minimum and maximum tonnages. They utilize a preprocessing method
for speeding up the computation process, apply their formulation in three publicly available
instances from MineLib (Espinoza et al., 2013) to generate several nested pits and use the NPV
approximation proposed by Tabesh et al. (2014). Their work shows significant improvements in the
geometry of the pits with a decrease in value between 1.5% and 5.6% when compared to traditional
nested pits.

© 2023 The Authors.
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Another work that is worth mentioning is Cullenbine et al. (2011). This model is oriented to
solve the production scheduling problem, that is, it considers the slope constraints and capacity
constraints that are typical for production scheduling. However, it also contains an additional con-
straint forcing that each extracted block must have at least one of its four adjacent neighbors also
extracted. The resulting model is computationally hard to solve; thus, the authors proposed a slid-
ing time window heuristic to solve it.

1.3. Access ramps

Another important element of pit design is the access roads (ramps) needed for the equipment to
move between different levels in the mine. The design of ramps transforms the nested pits into a real
operational design of the mine. Ramp design relies heavily on computer-aided design and mining
software, but it is mostly manual and highly dependent on the user.

Morales et al. (2017) and Nancel-Penard et al. (2019) propose an optimization model for com-
puting a pit with enough space to accommodate the access ramps. The methodology starts with a
reference pit (e.g., the ultimate pit) and computes one that is “close” to it but maximizes the eco-
nomic value and has space for the ramps. The approach is tested on several instances to show that
it generates good results, that can be used as a guide for the design of the mining phases by an
engineer, and that the final designs are better than those that directly use the ultimate pit as a guide.

Yarmuch et al. (2020) address the problem of finding the best ramp within the pit and optimizing
the road network outside. For the in-pit ramp, they propose a binary linear model that aims to
minimize construction of the ramp. The model is hard to solve, and, therefore, the authors have to
develop a heuristic.

Finally, except for papers that address modeling using precedence arcs, all previous works pro-
pose methodologies that take blocks as an input and report blocks in the output; therefore, they
require a manual stage to draw the final design. Because of this, Morales et al. (2023) propose
an algorithm that automates the latter stage and shows that the fully automated procedure gener-
ates designs that are better than those drawn by an engineer on 15 instances based on three block
models—two publicly available in MineLib.

1.4. Contribution of this paper

Most of the works presented in previous sections formulate mathematical models in which the pit
must satisfy geometrical constraints. In some cases, the resulting formulations are complex and
hard to be solved; hence, the authors resort to some heuristic procedures for finding approximate
solutions. In other cases, the geometrical constraints are not modeled in the optimization model
but addressed by procedural methods in a postprocessing stage. In this case, there is no mathemat-
ical formulation for evaluating the quality of the solutions objectively. Another important issue is
that several works aim to optimize a single pit; hence, the generation of nested pits must be done
iteratively, outside the mathematical model. Unfortunately, in this case, these methods cannot
ensure that the pits will be nested or force the property procedurally, which may lead to suboptimal
results and that can impact the subsequent phase design stage.

© 2023 The Authors.
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In this paper, we aim to address some of the drawbacks described before. Specifically, we focus on
the challenges described in Section 1.2, that is, having enough space at the bottom of the pit. Our
motivation comes from two sources. First, the computational complexity of previous efforts that
addressed geometrical constraints, which has required developing heuristic approaches for finding
good solutions. Second, in reality, even mines that use large loading machines also utilize smaller
equipment, for example, for creating the initial space for large shovels. Indeed, shovels may require
space between 50 to 100 m for operation (e.g., the Komatsu P&H 4100XPC shovel, measures 15×15
m and has a cut radius of 24 m (Nancel-Penard and Morales, 2022); thus, smaller equipment which
is less productive and more expensive to operate is needed for initial excavation. Therefore, narrow
pit bottoms are not infeasible, just more expensive to be mined. In fact, smaller equipment is less
productive and has higher operating costs. Therefore, narrow pit bottoms are not unfeasible but
more expensive.

The later observation motivates us to incorporate the space requirements not as a constraint of
the problem but as a penalty that models the additional cost of using smaller equipment for digging
in narrow areas. As it turns out, using this approach results in an optimization model that has a
favorable structure and good theoretical properties:

1. We prove that our model can be solved efficiently using continuous linear programming and, as
in the case of UPIT. This implies that solutions can be found in polynomial time (Karmarkar,
1984). Indeed, apart from UPIT, our model is the only published one that is proven to be solvable
up to optimality using efficient algorithms.

2. We show that, as it happens with the ultimate pit, our model is monotonic with regard to the
value vectors of the blocks, that is, it generates nested pits when the value vectors increase. That
is, our model extends UPIT by adding considerations related to bottom space but without losing
the nestedness property.

3. We devise an iterative approach to take advantage of the nestedness of the solutions to speed
up the computation time for solving the optimization model. This method is exact, that is, not a
heuristic.

Finally, to validate the results mentioned in the previous list, we apply the proposed model in
three block models. The results show that the incremental approach is shown to reduce the compu-
tation time by an average of 26% and up to 80% in some cases, from a practical standpoint. More-
over, comparing the economic value and tonnage of solutions of the ultimate pit and our proposed
model reveals that the pits obtained using our model are significantly different from the traditional
ultimate pit and nested pits, which may imply that, in some cases, the traditional approach may not
provide the best guide for designing mining phases.

2. Mathematical modeling and theoretical results

In this section, we introduce the optimization model (which is a binary linear program) and present
theoretical results related to its solutions. A summary of the notation can be found in Table 1.

To present the mathematical model, we extend the notation of the ultimate pit; thus, as in that
model, we consider that B is the set of blocks, p is the value vector, and P ⊆ B × B is the set of
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Table 1
Summary of the notation.

Symbol Description

i, j ∈ B Blocks and set of blocks.
(i, j) ∈ P ⊂ B Arcs and set of strong precedence arcs.
(i, j) ∈ Q ⊂ B Weak arcs and a set of weak precedence arcs.
pi, i ∈ B Economic value of block i.
ci j, (i, j) ∈ Reduction in cost of excavating block i if block j has been excavated.
xi Binary variable that is 1 if block i is excavated and 0 otherwise.
yi j Binary variable that is 1 if block i is excavated but its weak predecessor block j has not, and 0 otherwise.

precedence arcs. In the context of our extension, we will refer to the precedence arcs in P as strong
arcs and say that j is a strong predecessor of i if (i, j) ∈ P. As with UPIT, these arcs model the
overall slope angle to ensure the stability of the pit walls and remain part of the model, that is, the
pit resulting must comply with the same overall slope angles that UPIT.

To model the penalties, we consider Q ⊆ B × B, another set of precedence arcs such that Q ∩ P =
∅ and for (i, j) ∈ Q we assume a cost ci j > 0. With these new elements, we introduce the following
extension of UPIT:

UPIT+(p, B, P, Q) max
∑

i∈B

pixi −
∑

(i, j)∈Q

ci jyi j, (4)

xi ≤ xj ∀(i, j) ∈ P, (5)

xi − xj ≤ yi j ∀(i, j) ∈ Q, (6)

xi ∈ {0, 1} ∀i ∈ B, (7)

yi j ∈ {0, 1} ∀(i, j) ∈ Q. (8)

Because the set Q also defines precedence arcs, but that can be violated if a cost ci j is paid when
the precedence constraint associated with arc (i, j) is violated, we refer to these arcs as weak prece-
dence arcs and say that j is a weak predecessor of i if (i, j) ∈ Q. As before, whenever possible, we
drop input parameters in the notation and write, for example, UPIT+(p, B) or UPIT+(p) for the
optimization problem (4)–(8).

Figure 2 illustrates the concept of strong and weak predecessors in a small 2D example: (a) Arcs
(10, 3), (10, 4), (10, 5) ∈ P, which means that extracting block 10 requires extracting all three blocks
(3, 4, and 5) before mining block 10. (b, c) Arcs (10, 2), (10, 6) ∈ Q, which means that blocks 2 and
6 are weak predecessors of block 10. Therefore, they are not required to be extracted if block 10
is mined, but doing so decreases the cost of mining block 10. (d) The strong predecessors of block
13 are blocks 1–5 and 8–10. These blocks must be mined if block 13 is extracted. (e) Block 11 is a
weak predecessor of 13. If block 11 is mined, then extracting block 13 becomes less expensive by a
value of c13,11. (f) As block 7 is a weak predecessor of block 11, mining it reduces the cost of mining
block 11 by c11,7.

© 2023 The Authors.
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8 N. Morales et al. / Intl. Trans. in Op. Res. 0 (2023) 1–22

Fig. 2. Examples of weak and strong predecessors. Yellow blocks 3–5 are strong predecessors of block 10. Green blocks
2 and 6 are weak predecessors of block 10. Block 13 has strong predecessors 1–5, and 8–10 and weak predecessor 11.

We will now prove two theoretical results related to properties of UPIT+. First, we will show that
the constraint matrix is unimodular and, therefore, the integrality constraints (8) can be relaxed.
Second, we show that solutions of UPIT+ are nested, that is, the set of extracted blocks grows if the
value vector increases.

Proposition 1 (Unimodularity of UPIT+). The constraint matrix of UPIT+(p, B, P, Q) is totally uni-
modular.

Proof. Let AP be the |P| × |B| matrix where for each (i, j) ∈ P, the corresponding row of AP has
a 1 in the ith column and a −1 in the jth column. Similarly, let AQ be the |Q| × |B| matrix, which
is defined analogously for Q, and let I be the identity matrix of size |Q|. Then, the constraints of

(U PIT +) can be written as [
AP 0
AQ −I ] [

x
y] ≤ 0

Now [
AP
AQ

] is the matrix corresponding to precedence arcs P ∪ Q; hence, it is a totally unimod-

ular (TU) matrix (Hoffman and Kruskal, 2010). Moreover, [
AP 0
AQ −I ] is also a TU. To prove this,

consider any TU matrix M and let u be a column vector such that uk = 0 if k �= � and uk = −1
if k = � (for some fixed row �). We have that matrix M′ = [M, u] is TU. Indeed, any submatrix N
of M′ either: (i) does not intersect u, in which case det(N ) ∈ {−1, 0, 1} or (ii) is such that its jth
column consists of some rows of u. We can compute det(N ) using this column. Then, either all
entries are zero (in which case det(N ) = 0) or the only non-zero entry corresponds to u� = −1 and
det(N ) = (−1)σ det(N�) for some integer σ and N� a submatrix of M that does not intersect u, thus
det(N�) ∈ {−1, 0, 1}. In any case, we obtain that det(N ) ∈ {−1, 0, 1} and the result follows. �

Following Proposition 1, we observe that the integrality constraints can be relaxed for UPIT+,
meaning that it can be solved directly using the simplex method, as the solutions will always be
integral. In particular, the problem can be solved in polynomial time (Karmarkar, 1984).

As indicated before, a critical property of the ultimate pit is that the solutions are nested with
regard to the economic value. Now we show that UPIT+satisfies the same property. More precisely,
for the definition of UPIT adopted in this paper, there is no guarantee that the solution is unique;
thus, the nestedness property of UPIT states that if p ≤ p′ then there exists a solution of UPIT(p′)
such that it contains any solution of UPIT(p). Notice that this is only a theoretical issue, as it is
easy to adapt algorithms to ensure that the solutions are maximal with regard to the inclusion.

© 2023 The Authors.
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N. Morales et al. / Intl. Trans. in Op. Res. 0 (2023) 1–22 9

Fig. 3. Conceptual drawing of a section of two optimal pits A (for block values p) and Ā (for block values p̄, and
partition of A ∪ Ā into subsets X,Y , and Z.

Proposition 2 (Nestedness). Let p ≤ p̄ be two value vectors and assume that x, x̄ are the optimal
solutions of UPIT+(p) and UPIT+(p̄), respectively. Then, the solution defined as x′ = max{x, x̄} is
also optimal for UPIT+(p̄).

Proof. First, we observe that if i0 ∈ B is such that increases its value, that is, p̄i0 > pi0 and xi0 = 1,
then x̄i0 = 1. To check this, with some abuse in the notation, let c, y be vectors representing the costs
and penalization variables yi j . Thus, the objective function can be shortly written as

pT x − cT y =
∑

i∈B

pixi −
∑

(i, j)∈Q

ci jyi j .

Then

p̄T x̄ − cT ȳ = pT x̄ − cT ȳ ≤ pT x − cT y = p̄T x − e − cT y ≤ p̄T x̄ − cT ȳ − e.

The first equality is because xi0 = 0, and the first inequality comes from the optimality of (x, y).
The second equality is because p̄i0 = pi0 + e and xi0 = 1, and the second inequality follows from
the optimality of (x̄, ȳ). We obtain that e ≤ 0, which is a contradiction. It follows that the set {i ∈
B : p̄i > pi ∧ xi > x̄i} is empty.

For the second part of the proof, it will be convenient to consider the sets A = {i ∈ B : xi = 1},
Ā = {i ∈ B : x̄i = 1} and from them to define X = A \ Ā,Y = A ∩ Ā, and Z = Ā \ A (see
Fig. 3 for a conceptual drawing of these sets). Moreover, to simplify the notation, we
define for any sets U,V ⊆ B the values p(U ) = ∑

i∈U pi, c(U,V ) = ∑
(i, j)∈Q∩U×V ci j , and

β(U ) = p(U ) − c(U, B \ U ). p(U ) is the income of blocks in U considering block values p
and p̄, respectively; c(U,V ) is the cost of violated weak precedence constraints between U and V ;
and β(U ) is the value of the objective function if U is a pit, for the corresponding block values p
and p̄. Further on, we consider analogous definitions for p̄(U ) and β̄(U ).

Notice that, from these definitions and the first part of the proof, we have that X does not contain
any block i such that pi < p̄i and therefore p(X ) = p̄(X ).

The optimality of A implies that

β(A) − β(Y ) = p(X ) − c(X, (A ∪ Ā)c) − c(X, Z) + c(Y, X ) ≥ 0.

© 2023 The Authors.
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10 N. Morales et al. / Intl. Trans. in Op. Res. 0 (2023) 1–22

Similarly, from the optimality of Ā,

β̄(Ā ∪ A) − β̄(A) = p̄(X ) − c(X, (A ∪ Ā)c) + c(Z, X ) + c(Y, X ) ≤ 0.

However, p(X ) = p̄(X ) and so −c(X, Z) ≥ c(Z, X ), that is, c(X, Z) = c(Z, X ) = 0. We conclude
that β̄(A ∪ Ā) − β̄(Ā) = β(A) − β(Y ) ≥ 0, that is, the set A ∪ Ā which corresponds to the solution
x′, x′

i = max{xi, x̄i} for i ∈ B is optimal for UPIT+(p̄). �

3. Algorithmic approaches

Because UPIT+ is equivalent to a continuous linear program, it can be solved using an off-the-shelf
solver directly. However, we propose two alternative methods for solving UPIT+.

Using lazy constraints. Considering the application to open pit mining, it is reasonable to expect
that only blocks located at the pit’s borders may violate weak precedence constraints. These blocks
represent a relatively small part of the whole block model; thus, the weak precedence constraints
would not be necessary for most of the blocks. Therefore, we declare all constraints related to weak
precedence arcs as lazy, letting the solver add them as necessary.

Iterative method based on the nestedness of the pits. Because of the nestedness property, given
two value vectors p′ ≤ p, the optimal solution of UPIT+(p′) can be used to potentially speed up
solving the problem for UPIT+(p) because blocks extracted in the solution for p′ can be removed
and the optimization for p can be performed considering the remaining blocks only.

As mentioned before, in practice either computing the ultimate pit or a sequence of nested pits
has a practical interest; thus, we can consider that value vectors are 0 < p1 ≤ p2 ≤ · · · ≤ pK . The
algorithm to solve UPIT+(pK , B, P, Q) is straightforward:

1. Let S1 be the set of blocks extracted by an optimal solution of UPIT+(p1, B, P, Q). Let also
B1 = S1.

2. For k = 2, . . . , K
(a) Solve UPIT+(pk, B \ Bk−1, P, Q), and let Sk be the blocks extracted in its optimal solution.
(b) Let Bk = Sk ∪ Bk−1.

3. Return x, xi = 1 ⇔ i ∈ BK as the solution.

It is worth emphasizing that both methods are exact, that is, they find the optimal solution of
UPIT+.

4. Numerical experiments

In this section, we consider three block models of different sizes: “KD,” “Marvin,” and “Model3.”
We are unable to undisclose Model3, but KD and Marvin are publicly available in MineLib
(Espinoza et al., 2013).

© 2023 The Authors.
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N. Morales et al. / Intl. Trans. in Op. Res. 0 (2023) 1–22 11

Table 2
Summary of block models dimensions and number of arcs for different values of �.

# Blocks dx × dy × dz # Strong arcs � # Weak arcs

KD 50,472 20 × 20 × 15 3,736,279 80 3,472,864
100 5,110,205
120 7,016,412

Marvin 53,271 30 × 30 × 30 6,425,028 60 946,293
90 2,048,874
120 3,480,709

Model3 58,240 20 × 20 × 15 2,949,826 80 3,864,140
100 5,726,490
120 7,920,066

We will consider a sequence of value vectors parameterized by a revenue factor. Therefore, the
economic value of each block is computed as pi = max{αλgiti − (γm + γp)ti, −γmti}, where α is the
net income per ton of mineral, gi is the ore grade of the block, ti is the corresponding tonnage,
γm is the cost of mining one tonne, γp is the cost of processing one tonne, and λ ∈ (0, 1] is the
revenue factor, that is, the value λ = 1 corresponds to the ultimate pit. The maximum is computed
over two possible destinations for the block: processing and selling it, which yields a net profit of
αλgiti − (γm + γp)ti, or storing it in a waste dump, which has a negative profit equal to −γmti.

We assume that the costs of violating weak precedence arcs are given in dollars per ton, that is,
ci j = cti, and consider three scenarios: c = 0.5, 1.0, and 1.5 ($/t). These values are realistic and can
be regarded as “low,” “medium,” and “high” cost scenarios.

Blocks in each block model have all the same size, and we denote dx, dy, and dz as the dimensions
of blocks in each axis, respectively. An overall slope angle of 45◦ is used to generate the strong
precedence arcs. The weak predecessors of a block with coordinates (rx, ry, rz) are those that are
not strong predecessors of the block and have coordinates (r′

x, r′
y, rz + dz) such that (rx − r′

x)2 +
(ry − r′

y)2 ≤ �2, that is, they are located at the level immediately above and within a given radius
�. We consider three different values for � for each block model. They are summarized in Table 2,
together with the number of strong and weak precedence arcs for each block model. Given all
possible values of � and c, we analyze a total of nine scenarios per block model, that is, 27 instances
in total for each revenue factor.

All experiments were run on an AMD Ryzen 5 3600 CPU with 20 GB of RAM executing
Windows 10. The optimization models were implemented in JuMP (Dunning et al., 2017) and Julia
1.7 (Bezanson et al., 2017). Gurobi 9.1 (Gurobi Optimization, 2023) was used to find the optimal
solutions to the optimization problems.

4.1. Nested pits without bottom space penalization

This section summarizes the results for the classic UPIT problem. Table 3 presents, for each of the
instances, the economic value and tonnage obtained for revenue factors λ = 0.2, 0.4, 0.6, 0.8, and
1.0. Computing each of these pits required a few seconds using an implementation of the pseudo-
flow algorithm available in Pyramp (Morales et al., 2021). These values are relevant because any

© 2023 The Authors.
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12 N. Morales et al. / Intl. Trans. in Op. Res. 0 (2023) 1–22

Table 3
Economic value and tonnage of optimal solutions of UPIT depending on the data set and λ.

Instance KD Marvin Model3

λ

UPIT UPIT UPIT UPIT UPIT UPIT
(MM$) (MMt) (MM$) (MMt) (MM$) (MMt)

0.2 6.60 0.18 0.00 0.00 129.74 2.19
0.4 1,642.96 93.46 0.00 0.00 2,074.58 58.47
0.6 2,287.62 178.45 3,163.19 376.19 2,348.57 80.81
0.8 2,313.80 188.99 3,495.02 494.87 2,596.12 126.88
1.0 2,315.69 192.80 3,538.80 562.33 2,699.11 195.85

Table 4
Comparison of ultimate pit economic values and tonnages, KD case.

� c
Penalized UPIT UPIT+ UPIT+ Diff. Diff. Solver
UPIT value value tonnage in value in tonnage runtime

(m) ($/t) (MM$) loss (%) (MM$) (MMt) (%) (%) (s)

80 0.5 1,547.37 −33 1,810.12 305.34 15 37 1,771.5
1.0 779.42 −66 1,695.65 441.64 54 56 4,843.8
1.5 11.46 −99 1,670.41 473.47 99 59 5,837.9

100 0.5 817.36 −64 1,653.48 454.98 51 58 8,802.7
1.0 −680.62 −129 1,609.05 501.89 142 62 10,122.8
1.5 −2,178.59 −194 1,597.31 501.97 236 62 9,569.6

120 0.5 −254.14 −110 1,579.90 503.27 116 62 23,878.4
1.0 −2,823.61 −221 1,561.79 517.92 281 63 14,553.3
1.5 −5,393.09 −332 1,556.33 524.78 447 63 11,312.2

solution x of UPIT is feasible for UPIT+. Indeed, if the value of x regarded as a solution of UPIT
is pT x, then its value regarded as a solution of UPIT+ is pT x − C(x), where C(x) is the cost of
violated weak precedence arcs.

4.2. Comparison of ultimate pits (λ = 1)

Tables 4, 5, and 6 summarize the results for each of the three block models, respectively. Each table
presents all the scenarios of � and c and the columns described below.

• The “Penalized UPIT” column contains the economic value of the solution of UPIT if regarded
as a solution of UPIT+, that is, it shows the value pT x − C(x), where x is the solution correspond-
ing to row λ = 1 in Table 2 and C(x) is the cost due to violated weak precedence arcs incurred by
that solution.

• Column “UPIT value loss” presents the difference between the economic value of the ultimate
pit in Table 2 and column “Value of UPIT,” as a percentage, that is, 100 · C(x)/pT x.

• “UPIT+ value” and “UPIT+ tonnage pit” contain the value of the optimal solution of UPIT+

and its tonnage, respectively.

© 2023 The Authors.
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Table 5
Comparison of ultimate pit economic values and tonnages, Marvin case.

� c
Penalized UPIT UPIT+ UPIT+ Diff. Diff. Solver
UPIT value value tonnage in value in tonnage runtime

(m) ($/t) (MM$) loss (%) (MM$) (MMt) (%) (%) (s)

60 0.5 3,350.1 −5.0 3,368.2 545.3 1.0 −3.0 152.8
1 3,161.4 −11.0 3,224.3 557.6 2.0 −1.0 196.4
1.5 2,972.7 −16.0 3,098.4 572.8 4.0 2.0 181.4

90 0.5 2,810.1 −21.0 2,935.9 564.8 4.0 0.0 282.6
1 2,081.3 −41.0 2,492.9 613.9 17.0 9.0 374.8
1.5 1,352.6 −62.0 2,160.2 693.3 37.0 23.0 664.8

120 0.5 1,712.9 −52.0 2,189.9 618.1 22.0 10.0 569.7
1 −113.0 −103.0 1,478.7 814.5 108.0 45.0 1,401.7
1.5 −1,938.9 −155.0 1,222.6 1,082.2 259.0 92.0 3,725.7

Table 6
Comparison of ultimate pit economic values and tonnages, Model3 case.

� c
Penalized UPIT UPIT+ UPIT+ Diff. Diff. Solver
UPIT value value tonnage in value in tonnage runtime

(m) ($/t) (MM$) loss (%) (MM$) (MMt) (%) (%) (s)

80 0.5 2,480.1 −8.0 2,611.3 224.5 5.0 15.0 169.3
1 2,261.1 −16.0 2,586.0 240.6 13.0 23.0 163.3
1.5 2,042.1 −24.0 2,576.6 252.3 21.0 29.0 182.7

100 0.5 2,281.6 −15.0 2,572.2 243.4 11.0 24.0 240.1
1 1,864.1 −31.0 2,554.8 261.8 27.0 34.0 260.5
1.5 1,446.6 −46.0 2,548.5 265.4 43.0 36.0 307.8

120 0.5 1,994.8 −26.0 2,542.9 264.0 22.0 35.0 441.6
1 1,290.4 −52.0 2,529.9 275.8 49.0 41.0 461.2
1.5 586.1 −78.0 2,525.1 282.5 77.0 44.0 725.8

• Column “Diff. in value” is the difference between the “UPIT+ value” and “Penalized UPIT”
columns.

• “Diff. in tonnage” is the difference between the “UPIT+ tonnage” column and the tonnage of the
ultimate pit from Table 2.

• “Solver runtime” is the execution time necessary for solving the corresponding instance of UPIT+

using an off-the-shelf linear programming solver.

As expected, “Penalized UPIT” values decrease as the penalization cost c and the space require-
ment � increase. However, the magnitude of this variation is very significant. When comparing
the values obtained for the ultimate pits (Table 2, λ =1), the economic value falls between 33%
and 332% for KD, 5% and 155% (it becomes negative) for Marvin, and between 8% and 78% for
Model3. These differences in economic value, together with the results from the column “Differ-
ence in tonnage,” have important implications in practice, due to the current practice of using the
ultimate pit as a guide for the mine design which must incorporate geometric constraints such as
minimum bottom width. The results in Tables 4–6 indicate that using the ultimate pit as a reference
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14 N. Morales et al. / Intl. Trans. in Op. Res. 0 (2023) 1–22

for design may not be a good practice, which is consistent with theoretical examples in Nancel-
Penard and Morales (2022).

The increase in tonnages (column “UPIT+ tonnage”) for higher values of � and c is also ex-
pected, as higher penalties and more weak precedence arcs translate into larger pits to reduce the
cost due to violated weak precedence arcs. However, it is very interesting to observe that the re-
duction in economic values of solutions of UPIT+ is smaller than those of the ultimate pits. The
difference in economic values between the cases � = 80, c = 0.5, and � = 120, c = 1.5 are −14%
for KD, −64% for Marvin, and −4% for Model3.

Regarding the execution times, the instances become harder to solve when c, � increase, even
though in most cases the total time is only minutes. This contrasts with UPIT, which requires only
a few seconds to be solved.

While Tables 4–6 report the results only for the ultimate pits (λ = 1), consistent figures are ob-
tained if the analysis is done for all revenue factors. The appendix presents these comparisons for
all values of c, �, and λ and each of the block models.

The large difference in economic value and tonnage suggests that the ultimate pit does not pro-
vide a good guide for mine design. However, it is worth noting that all the results and differences
presented in this section depend on the parameters c and � but also on the definition of Q. We
briefly discuss this in Section 4.4.

4.3. Nested pits and running times

In this section, we provide some results related to the execution time for the ultimate pit and
nested pits.

We evaluate the performance of solving the monolithic version of UPIT+|referred to as the
“Direct method”|plus the two proposed approaches described in Section 3: “Lazy constraints”
and “Iterative method.” Figures 4–6 present the running times for all the instances, separated by
block model. The X axis contains the 45 combinations of �, c, λ sorted by the time required by the
off-the-shelf solver to find the optimal solution of UPIT+ (i.e., the direct method). Running times
are displayed using the primary axis while the right axis represents the “time difference” computed
as the execution time of the iterative method minus the fastest of the other two algorithms; thus, a
negative time gain means that the iterative method was not the best performing of the three. Notice
that the instances include nested pits corresponding to 1 ≤ k ≤ 5; and that the iterative method
uses results for smaller values of k. Thus, for this method, the graph reports the total time required
to solve all instances k′ = 1, . . . , k, including the time to process intermediate block sets.

As seen in Figs. 4–6, the iterative approach scales significantly better than the other methods;
however, there are cases in which the iterative method runs slower than the direct or the lazy con-
straints approach. We analyze both aspects in more detail next.

Table 7 presents runtimes for each of the block models. The table contains the average over the
nine instances obtained for each data set by varying c and �. The reported values are the following:
“Solver’s best” is the time in seconds of the fastest approach between using the solver directly or
adding lazy constraints. “Iter. method” is the time in seconds required by the iterative method to
solve the instances. “Time Diff (s)” and “Time Diff (%)” present the difference in time between the
solver’s best algorithm, in seconds and percent, respectively.

© 2023 The Authors.
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Fig. 4. KD data set: comparison of runtimes for the direct, lazy constraints, and iterative methods.

Table 7
Comparison of runtimes between off-the-shelf solver and the iterative method.

λ 0.2 0.4 0.6 0.8 1.0

KD Solver’s best (s) 36.9 148.5 1,957.4 5,394.7 10,076.9
Iter. method (s) 40.0 144.6 1,915.2 2,320.2 2,588.9
Time Diff (s) 4.5 −3.9 −42.3 −3,074.5 −7,488.1
Time Diff (%) 10.8 −2.0 −1.8 −55.1 −70.8

Marvin Solver’s best (s) 3.5 26.9 135.7 416.9 838.9
Iter. method (s) 25.2 65.3 136.0 427.5 496.0
Time Diff (s) 21.7 38.4 0.3 10.7 −342.9
Time Diff (%) 705.7 144.4 0.4 −4.7 −28.6

Model3 Solver’s best (s) 36.6 130 244.2 375.6 562.0
Iter. method (s) 38.8 126.7 214.9 276 328.0
Time Diff (s) 2.6 −3.4 −29.3 −99.5 −234.0
Time Diff (%) 6.2 −2.8 −9.8 −21.2 −33.1

The cells in boldface represent negative results in which the iterative method took longer than
the best solver’s approach. However, these few cases are limited to small values of λ, that is, they
correspond to small solutions (in a number of blocks). More importantly, even though the relative
difference may be large (705.7% for Marvin), these cases have small runtimes. In fact, when the
iterative method was slower, the gap was always less than three minutes. This contrasts with the
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16 N. Morales et al. / Intl. Trans. in Op. Res. 0 (2023) 1–22

Fig. 5. Marvin data set: comparison of runtimes for the direct, lazy constraints, and iterative methods.

cases in which the iterative method is better, which happens in most of the cases with long runtimes
and greater absolute gains in time. A full report of all runtimes for each λ, �, and c can be found
in the Appendix.

4.4. Comparison of geometries

To conclude the analysis of the approach, we compare the geometry obtained using UPIT and
UPIT+. Figure 7 shows several section views of solutions for the Marvin data set. From top to bot-
tom, the figure displays: the solution of UPIT and the solutions of UPIT+ for c = 0.5, � = 60 and
c = 0.5, � = 90. The left figures correspond to the XZ section Y = 19, and the right figures corre-
spond to the YZ section X = 28.

It is clear from these results that the model enforces more operational spaces at the bottom of the
pit, making the resulting geometries more amenable for large pieces of equipment. Indeed, a shovel
may require about 50 m of space for operation (for loading a truck at one side) to ideally 100 m or
more (for two-sized loading). For Marvin, this means that a one-block bottom is not viable for such
equipment, that a two-block bottom is feasible, but that at least three to four blocks are desirable
for maximum productivity. Therefore, as the figure shows, both UPIT solutions have bottoms that

© 2023 The Authors.
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Fig. 6. Model3 data set: comparison of runtimes for the direct, lazy constraints and iterative methods.

do not have enough space for a shovel (marked in purple); however, the bottoms obtained using
UPIT+ all are two or more blocks wide.

Finally, Fig. 7 also shows that there may be an impact on the overall slope angles, making them
gentler when compared with the solutions of the ultimate pit (first row in the figure). This impact
depends on the definition of Q and c. Practical use of UPIT+ may consider weak arcs starting
at a certain level or in parts of the ultimate pit that are too narrow. As this paper focuses on the
theoretical aspects of the model, a detailed study is outside of the scope of this work.

5. Conclusions

This paper presents a novel mathematical model for the problem of the optimal pit with minimum
operational bottom pit space in strategic mine planning, some algorithmic ideas to solve the prob-
lem, and their application in realistic data sets.

The novelty of the mathematical model is that instead of considering complex constraints for re-
quiring a minimum bottom space, it penalizes the narrow bottom of pits, which is compatible with
the operational option of using more expensive but smaller equipment for this task. The resulting
model is significantly simpler than previous efforts, but it also has interesting theoretical proper-
ties. First, the constraint matrix is unimodular; thus, the binary constraints of the variables can be
relaxed, and the problem can be solved in polynomial time. Second, the optimal solutions to the
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problem are monotonic with regard to the economic value vector, which is a critical characteristic
to be used in practical applications. A consequence of these results is that our model is the first that
considers geometrical constraints beyond overall slope angles, ensures the generation of nested pits,
and that is proven to be solvable in polynomial time.

The theoretical properties are used to propose a simple iterative method to speed up the compu-
tations, and the model is applied in three different data sets and several combinations of cost and
geometric penalty configurations.

In practical terms, the results show that traditional UPIT, which does not consider costs of nar-
row pit bottoms, may produce very low-quality pits, even with negative economic values, if these
costs are included in the economic evaluation. Conversely, the best solution for UPIT+, which takes
these costs into account in the formulation, can be over 400% higher in some cases. This validates
the proposed model as it suggests that solutions may change significantly if more detailed costs
are considered.

In terms of computation times, the nestedness property is used to solve the problem of UPIT+

incrementally, that is, solving smaller pits first and then using these solutions to reduce the set of
blocks. This technique is shown to reduce the computation time by about a 28% average on all
tested instances, and more than 70% in some specific cases when compared to runtimes of an off-
the-shelf solver.

From the theoretical point of view, future research should be oriented to improve the compu-
tation times because the speed-up obtained using the nestedness property is significant but com-
putation times for larger data sets may still be too long. From the practical point of view, be-
cause the set Q of weak precedence arcs may have a huge impact on the resulting geometries and
economic value, it is necessary to study what is the best approach for its definition and utiliza-
tion. For example, Q may contain arcs corresponding to the deepest parts of the block model
only.
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Appendix

This appendix provides detailed information about the numerical results for each of the 135 in-
stances when solved by the three methods (direct, lazy constraints, and incremental) and comments
on other potential algorithmic approaches.

As reported in the body of the paper, using the nestedness property reduced the running time
significantly. To further support these conclusions, detailed results obtained from applying this
method are presented in Table A1, which contains, for each block model and combination of the
parameters �, c, and revenue factor λ, the “Solver” time that is required to solve the instance of
UPIT+using the off-the-shelf solver, the “Lazy” time required to solve the instance using the Lazy
constraints approach, and the “Iter.” which is the time necessary for solving the instance iteratively
by profiting of the nestedness property. The “Diff.” column presents the percentage gain of using
the iterative method over the solver algorithm (i.e., 100 · (SolverT ime − IterT ime)/SolverT ime).
Notice that the values of � = 80, 100, 120 apply to KD and Model3 while for Marvin the corre-
sponding values are � = 60, 90, 120. Values in bold are the fastest algorithm for the corresponding
instance.

As seen in Table A1, the iterative method is the fastest for the vast majority of the cases. For small
values of λ, the direct approach can be faster than the iterative method, as the latter method re-
quires to work with the data (removing blocks) and setting up intermediate optimization instances.
This advantage over the direct method could be reduced, for example, by using more efficient data
structures. However, for greater values of λ, the iterative method can improve the execution time
significantly, above 80% in some cases.

When fixing the x variables in UPIT+ the optimal value of y is given by yi j = max{0, xi − xj} for
each (i, j) ∈ Q. Thus, it makes sense to apply Bender’s decomposition (Benders, 1962; Rahmaniani
et al., 2017) to solve the problem. However, this approach proved to be slower than others. Another
approach that can be suitable for the problem is similar to using lazy constraints but adding violated
weak arcs iteratively. Unfortunately, this approach also became too slow.
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Table A1
Comparison of execution times for KD, Marvin, and Model3 data sets. Values in bold correspond to the fastest algorithm
for the given instance.

KD Marvin Model3

� c λ Solver Lazy Iter. Diff. Solver Lazy Iter. Diff. Solver Lazy Iter. Diff.
(m) ($/t) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)

60/ 80 0.5 0.2 22 33 22 0.0 20 2 20 −710.7 24 24 24 0.0
0.4 63 367 62 1.0 42 24 51 −112.2 52 190 52 −0.6
0.6 654 2905 669 −2.4 75 104 87 −16.4 83 378 82 0.6
0.8 1417 5688 847 40.2 114 152 109 4.4 135 1029 127 5.4
1.0 1772 7288 884 50.1 153 200 134 12.5 179 1553 169 5.3

1.0 0.2 33 31 33 −5.8 20 2 20 −754.7 26 24 26 −7.2
0.4 97 288 101 −3.5 62 24 41 −72.9 62 381 50 20.3
0.6 1127 2379 1038 7.9 102 126 80 21.3 102 797 83 18.3
0.8 3131 7074 1267 59.5 152 209 111 26.8 160 1300 129 19.0
1.0 4844 8959 1291 73.3 196 267 140 28.7 223 1859 163 26.6

1.5 0.2 27 29 27 0.0 17 2 17 −635.9 25 24 25 −2.9
0.4 141 316 141 −0.2 42 24 43 −80.3 67 379 69 −3.2
0.6 1388 2309 1334 3.9 85 206 89 −5.1 114 961 106 6.7
0.8 3522 6775 1823 48.2 133 322 119 10.5 180 1481 149 17.1
1.0 5838 8652 1854 68.2 181 419 146 19.3 251 2121 183 27.1

90/100 0.5 0.2 36 35 36 −4.9 25 5 25 −362.3 39 36 39 −7.2
0.4 108 288 109 −1.2 56 31 52 −69.0 84 573 84 0.6
0.6 1865 4338 1869 −0.2 132 306 124 6.0 135 1344 132 2.4
0.8 5337 18454 2276 57.4 212 626 164 22.6 208 3279 192 8.0
1.0 8803 22382 2315 73.7 283 861 200 29.2 289 4922 240 16.9

1.0 0.2 36 35 36 −2.7 27 5 27 −401.9 34 36 34 0.0
0.4 128 249 121 6.2 69 31 68 −121.6 92 1550 98 −6.5
0.6 2186 3455 2064 5.5 158 544 153 2.8 167 3511 161 3.5
0.8 5763 12587 2423 58.0 264 1399 257 2.9 281 4880 215 23.5
1.0 10123 15628 2883 71.5 375 2022 301 19.7 431 6213 261 39.6

1.5 0.2 40 35 40 −14.8 22 5 22 −306.7 37 36 37 −4.5
0.4 185 245 186 −0.6 59 31 62 −98.1 138 1087 136 1.8
0.6 1841 2877 1824 0.9 134 306 141 −5.8 251 2636 213 15.1
0.8 5194 10302 2301 55.7 366 1162 401 −9.6 374 3937 257 31.2
1.0 9570 13323 2684 72.0 665 2117 462 30.5 542 5017 308 43.2

120 0.5 0.2 55 45 55 −21.3 32 3 32 −1069.7 61 50 61 −21.8
0.4 194 433 182 6.4 79 26 81 −206.7 171 2905 148 13.2
0.6 3849 7500 3561 7.5 163 510 158 3.1 289 7138 268 7.3
0.8 10035 22500 4111 59.0 341 2941 345 −1.1 435 10427 367 15.7
1.0 23878 28257 4721 80.2 570 4332 418 26.6 663 13886 442 33.4

1.0 0.2 51 44 51 −17.9 32 3 32 −1004.5 49 50 49 0.0
0.4 213 407 194 8.8 89 27 96 −254.4 205 2579 208 −1.8
0.6 2711 4566 2846 −5.0 182 276 190 −4.9 448 5363 330 26.4
0.8 8146 15998 3334 59.1 732 4402 766 −4.6 665 8028 400 39.9
1.0 14553 20905 3769 74.1 1402 7503 849 39.4 1082 10684 461 57.4

1.5 0.2 59 46 59 −29.8 34 3 34 −1105.0 56 49 56 −12.5
0.4 208 397 206 1.0 93 24 94 −284.2 301 1961 296 1.4
0.6 1997 3865 2033 −1.8 192 254 201 −4.6 610 4475 560 8.3
0.8 6008 14633 2500 58.4 1438 2776 1576 −9.7 943 6776 649 31.2
1.0 11312 18082 2899 74.4 3726 7017 1813 51.3 1399 8958 726 48.1
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