
Titre:
Title:

Performance of a multicast packet switch for Broadband ISDN

Auteur:
Author:

Richard Breault

Date: 1989

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Breault, R. (1989). Performance of a multicast packet switch for Broadband ISDN
[Master's thesis, École Polytechnique de Montréal]. PolyPublie.
https://publications.polymtl.ca/56717/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/56717/

Directeurs de
recherche:

Advisors:
Jeremiah F. Hayes, & Jean-Louis Houle

Programme:
Program:

Génie électrique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/56717/
https://publications.polymtl.ca/56717/

Crl^rO

UNIVERSITE DE MONTREAL

PERFORMANCE OF A MULTICAST PACKET SWITCH

FOR BROADBAND ISDN

par

Richard Breault

DEPARTEMENT DE GENIE ELECTRIQUE

ECOLE POLYTECHNIQUE

MEMOIRE PRESENTE EN VUE DE L'OBTENTION

DU GRADE DE MAITRE EN INGENIERIE (M. Ing.)

MARS 1989

Richard Breault 1989

National Library
of Canada

Bibliotheque nationale
du Canada

Canadian Theses Service Service des theses canadiennes

Ottawa, Canada
K1 A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in any
form or format, making this thesis available to in-
terested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor substan-
tial extracts from it may be printed or otherwise
reproduced without his/her permission.

L'auteur a accorde une licence irrevocable et

non exclusive permettant a la Bibliotheque na-
tionale du Canada de reproduire, prater, dis-
tribuer ou vendre des copies de sa these de
quelque maniere et sous quelque forme que ce
soit pour mettre des exemplaires de cette these
a la disposition des personnes interessees.

L'auteur conserve la propriete du droit d'auteur
qui protege sa these. Ni la these ni des extraits
substantiels de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son autorisation.

ISBN 0-315-50185-5

Canad'a

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE

Ce memoire intitule:

PERFORMANCE OF A MULTICAST PACKET SWITCH

FOR BROADBAND ISDN

presente par: Richard Breault

en vue de 1'obtention du grade de: MAITRE EN INGENIERIE (M. Ing

a ete dument accepte par Ie jury d'examen constitue de:

Mme Catherine Rosenberg, Ph. D., presidente

M. Jeremiah F. Hayes, Ph. D.

M. Jean-Louis Houle, Ph. D.

M. Marc Comeau, Ph. D.

SOMMAIRE

L'objectif du d6veloppement d'un reseau numerique a

integration de services (RNIS) ^ large bande est d'offrir

un support universel et transparent pour Ie transport de

1'information. A cause de I7 incertitude quant a la quantite

et la nature des services qui devront etre supportes, la

solution adoptee devra etre evolutive au moindre cout.

La commutation temporelle asynchrone ("ATM") semble

etre la solution la plus prometteuse pour satisfaire les

exigences mentionn6es. L'"ATM" requiert cependant

1'utilisation de commutateurs ultra-rapides permettant la

multiplication de paquets. Ce type de commutateur est

necessaire pour supporter les services de diffusion et de

multiconnexion en plus des services point-a-point

standards.

Le but de ce memoire est revaluation de performance

d'un commutateur a diffusion et a diffusion restreinte de

paquets.

Le chapitre 2. 0 presente une liste sommaire des

services envisages pour Ie RNIS a large bande et enumere

les concepts fondamentaux associes a la commutation

temporelle asynchrone (ATM). L'architecture d'un

v

commutateur de paquets pour Ie RNIS a large bande est

ensuite decrit brievement.

Le chapitre 3. 0 propose une analyse mathematique bas6e

sur la theorie des files d'attente 6u chaque port d'entree

du commutateur est represent^ par une queue du type M/G/1.

Cette analyse permet d'6valuer Ie delai moyen encouru par

un paquet traversant Ie commutateur ainsi que Ie debit

maximum supporte. Le commutateur modelis6 possede N1 ports

d'entree et NO ports de sortie et son fonctionnement est 1c

suivant:

Un paquet arrivant en tete de queue a un port df entree

genere un nombre aleatoire de copies qui sont distribuees

vers les ports de sortie. Les conflits d'acces aux ports de

sortie, engendres par plusieurs copies provenant de ports

d/entree differents, sont resolus en choisissant une copie

au hasard parmi les copies en conflit. Les copies n'ayant

pas obtenu l'acc6s aux ports de sortie sont retransmies

durant Ie prochain intervalle de temps. En consequence Ie

temps de service d'un paquet traversant Ie commutateur est

defini comme etant Ie temps necessaire pour que 1'ensemble

des copies generees obtiennent 1'acces a leur port de

sortie respectif. Le delai moyen d'un paquet est obtenu a

partir du temps moyen de service a 1'aide de la formule de

Pollaczek-Khinchin.

vi

Trois modeles de diffusion de paquets sont analyses.

Dans Ie premier modele, chaque paquet distribue ses copies

en faisant des essais de Bernouilli independants avec

probability P pour chaque port de sortie. Le nombre de

copies ainsi g6n6r6es suit une loi binSmiale de parametres

NO et P. Pour Ie deuxieme modele, chaque paquet gen^re un

nombre de copies suivant une distribution binomiale

modifi6e de parametres NO et P. Les copies provenant de

chaque port d'entree sont ensuite regroupees et distribuees

aux ports de sortie suivant une distribution multinomiale.

Le troisi^me modele differe du deuxieme non pas par la

methode de diffusion des copies mais plutot par la methode

d/evaluation du niveau de congestion aux ports de sortie du

commutateur. Ce modele considere la distribution du nombre

de copies residuelles plutot que la distribution du nombre

de copies gener6es pour determiner Ie nombre de copies en

conflit. Enfin la derniere section du chapitre d'analyse

propose une approximation pour un commutateur ayant

plusieurs lignes de transmission a chaque port de sortie.

Le chapitre 4. 0 traite de 1'aspect simulation du

commutateur. Le modele propose est du type Monte Carlo a

intervalle de temps discret 6u 1'arrivee des paquets, la

diffusion des copies et la resolution des conflits aux

ports de sortie sont modelises par differentes fonctions de

Vll

probability. Comme pour 1'analyse mathematique, la

simulation permet d'6valuer Ie delai moyen d'un paquet

traversant Ie commutateur.

La validite du module est assuree en adaptant celui-ci

de fa<.:on ^ simuler un commutateur point-a-point pour lequel

certains r6sultats analytiques sont connus. Un intervalle

de confiance est calculi pour determiner Ie nombre de

simulations ainsi que Ie nombre d'echantillons necessaires

pour obtenir Ie niveau de precision requis.

Les resultats sont analyses et compares au chapitre

5. 0 pour des commutateurs de dimensions et configurations

differentes. Ces resultats prouvent la validite du modele

analytique avec distribution de copies residuelles. Ce

modele analytique permet d'obtenir une limite inferieur au

delai moyen d'un paquet traversant Ie commutateur. Cette

limite s'approche des resultats de simulation lorsque les

dimensions du commutateur augmentent.

ABSTRACT

The major goal of Broadband ISDN is to support a wide

range of communication services over a common transport

network. To satisfy this goal, an integrated packet network

based on statistical multiplexing has been proposed. One

key component of such a network is the multicast switch

capable of packet replication. This type of switch is

needed to support multipoint as well as point-to-point

communication services.

The main objective of this thesis is to evaluate the

performance of a multicast packet switch. We first propose

a queuing analysis where each input port is modeled as an

M/G/1 queue. Performance estimates in terms of throughput

and average packet delay are obtained for different packet

replication techniques and for different traffic loading

consideration.

A simulation model of the multicast packet switch is

developed in chapter 4. 0. We use a discrete time

self-driven simulation where packet arrivals, packet

replication, and conflicts resolution at output ports are

modeled by probability distributions. The simulation model

is validated by comparison to some published performance

results.

ix

Analytical and simulation results are obtained and

compared in chapter 5. 0 for various switch configurations

and sizes.

ACKNOWLEDGEMENTS

I would like to thank Dr. J. F. Hayes for giving me

the opportunity to work on this research subject and for

his help and guidance during these two years. I also

recognize the contribution of Dr. M. K. Mehmet-Ali who's

suggestions were very helpful.

Thanks are also due to Dr. J. L. Houle for making this

co supervision possible and to the CRIM organization for

giving me the opportunity to use their computing

facilities.

Finally I would like to mention the patience and

support of my wife Helene during long evenings of work.

TABLE OF CONTENTS

PAGE

SOMMAIREiv

ABSTRACT vill

ACKNOWLEDGEMENTSx

TABLE OF CONTENTS xi

LIST OF FIGURES xiv

LIST OF TABLES xvi

1. Introduction1

2. Information transport in Broadband ISDN3

2. 1 Asynchronous Transfer Mode (ATM) concept6

2. 2 Broadband ISDN packet switch architecture9

2. 2. 1 Switching fabric for multicasting 11

3. Analysis of a multicast packet switch 15

3. 1 Queuing model 16

3. 2 Basic assumptions 18

3 3 Bernouilli trials traffic distribution model .. 19

3. 3. 1 Mathematical analysis 19

3. 4 Multinomial traffic distribution model 27

3. 4. 1 Mathematical analysis 28

3. 5 Multinomial traffic distribution model with

residual service time 35

3. 5. 1 Mathematical analysis 37

3. 6 Multinomial traffic distribution model with

residual service time and multiple output ports 43

3. 6. 1 Mathematical analysis 43

xii

3. 7 Numerical computation 49

Simulation of a multicast packet switch 50

4. 1 Simulation model 50

4. 1. 1 Random variables generation 52

4. 1. 1. 1 Packet arrivals 53

4. 1. 1. 2 Copies generation and

distribution............... 54

4. 1. 1. 3 Conflicts resolution at outputs . 55

4. 1. 2 Data structures 57

4. 1. 2. 1 Input queues 57

4. 1. 2. 2 Output queues 58

4. 1. 2. 3 Performance statistics 59

4. 2 Validation and verification 61

4. 2. 1 A 1x1 switch (M/D/1 queue) 61

4. 2. 2 A NxN Unicast packet switch 62

4. 3 Simulation output analysis 64

4. 3. 1 Confidence interval estimation 65

4. 4 Implementation 68

Results .. 69

5. 1 Analytical results 69

5. 2 Simulation results 72

5. 2. 1 Model validation 72

5. 2. 2 Determining the sample size 72

5. 2. 3 Performance results 73

5. 3 Comparison of analytical and simulation

results......................... 74

xiii

6. Conclusion 91

REFERENCES 93

APPENDIX A P. G. F. of the modified binomial

distribution 96

APPENDIX B Integration of the P. G. F. of the

multinomial distribution 97

APPENDIX C P. G. F. of the residual of a discrete

random variable 100

APPENDIX D Analysis programs 103

APPENDIX E Simulation programs 143

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

LIST OF FIGURES

PAGE

An ATM multi-rate interface8

A broadband packet switch model 10

A Batcher-Banyan network 13

A multicast switch :a copy network and a

point-to-point switch 13

A (NIxNO) non-blocking switch 15

A multicast switch queuing model 18

Service time and residual time 37

Probability of winning contention 45

Simulation model 52

Input queue format 58

Output queue format 59

Performance statistics data structure 60

Analysis results for a 4x4 switch 77

Analysis results for a 8x8 switch 78

Analysis results for a 16x16 switch 79

Simulation results:model validation 80

Simulation results for a 4x4 switch 81

Simulation results for a 8x8 switch 82

Simulation results for a 16x16 switch 83

Analysis/simulation results for a 4x4

switch 84

XV

Figure 5. 9 Analysis/simulation results for a 8x8

switch 85

Figure 5. 10 Analysis/simulation results for a 16x16

switch 86

Figure 5. 11 Analysis/simulation results for a 4x8

switch 87

Figure 5. 12 Analysis/simulation results for a 8x16

switch 88

Figure 5. 13 Analysis/simulation results for a 8x(8x2)

switch 89

Figure 5. 14 Analysis/simulation results for a 16x(16x2)

switch 90

LIST OF TABLES

PAGE

Table 2. 1 Various services characteristics5

Table 4. 1 Saturated throughput for point-to-point

switches with input queuing 63

1. Introduction

This thesis presents the performance evaluation of a

Multicast Packet Switch for Broadband ISDN (BISDN).1

Switches capable of packet replication are needed for

supporting multi-point services in a broadband packet

switch network. To obtain some performance estimates for

this type of switch, we propose an analysis based on a

theoric model of the system.

The main body of the thesis begins in chapter two,

where we first introduce the BISDN concepts and enumerate

some services that are expected to be supported. We then

describe the transport technique that has been proposed for

supporting these services and the architecture of a typical

Broadband Packet Switch with multicast capability.

A performance analysis is developed in chapter 3.0

where maximum throughput and average packet delay are

evaluated. Different approaches for modeling the

replicating technique and the service discipline are

1 This work was started by one of the co supervisor of the

thesis. Dr. J. F. Hayes, while he was at Bell Communication

Research, Morristown, NJ, during the summer of 1987.

treated. In all cases, a queuing model is used where each

input port is modeled as an M/G/1 queue.

Chapter four deals with the simulation of the

multicast packet switch. We describe the simulation model

in terms of the random variables generation and the data

structures used. The simulation model is validated by

comparison to some published performance results. The

confidence interval method is used to assure the results

accuracy.

Finally in chapter five we look at the different

results obtained from the analysis and we compare them with

the simulation results.

2. Information transport in Broadband ISDN

Recently, the I series recommendations for an

Integrated Services Digital Network (ISDN) has been

approved by the CCITT. This ISDN network should provide an

end-to-end digital connectivity to support voice and

non-voice services through a limited set of interfaces

(basic access and primary rate access) . While this first

version of ISDN is presently in field trials in several

countries, there is a wide agreement that the circuit

switched approach and the limited bandwidth of present ISDN

can not meet the long term requirements of multimedia and

multirate communications. To satisfy the future needs of

communication services. Broadband ISDN has been proposed.

The goal of Broadband ISDN (BISDN) is to provide an

integrated transport network for a wide range of services.

Each of these services may have very different traffic

characteristics in terms of bit rate and burstiness and may

require point-to-point or multi-point support. Estimates of

traffic characteristics for some services are given in

table 2. 1, where the burstiness of a traffic source is

defined as the ratio between the time during which

information is sent and the time for which the channel is

held.

The two key design issues for supporting this wide

range of services are bandwidth availability and

flexibility. To satisfy these requirements, one proposal

based on statistical multiplexing and fast cell (packet)

switching has emerged as the preferred transport technique

for Broadband ISDN (BISDN). This technique commonly

referred to as the Asynchronous Transfer Mode (ATM) within

the CCITT was originally proposed under different

appellations such as Fast Packet Switching (FPS) ,

Asynchronous Time-Division technique (ATD) or Dynamic

Time-Division Multiplexing (DTDM) [1]-[4].

Services Bit rate (bps) Burstiness Call duration(s)

Telephony 16k - 64k . 3 -- .6

Telemetry 10 - 10k . 01 - .1

Facsimile 1k - 100k 1

Videoconf. 1M - POM . 3 - 1

Videotex 1M - 70M . 1-1

Bulk Data 1M - 50M . 1 - .8

Interac. data 1k - 1M . 05 - .2

LAN Intercon. 10M - 100M . 3 - 1

Electro, mail 1k -- 100k . 2 - 1

TV 30M - 70M 1

HDTV 140M - 565M 1

10'

1

10

10:

10:

10

10:

10:

10

10:

10:

10-

10

10'

10'

10:

10-

10'

10'

10:

10'

10'

Table 2. 1 Various services characteristics

2. 1 Asynchronous Transfer Mode concept

The asynchronous transfer mode (ATM) is considered to

be the best transport (multiplexing and switching)

technique for BISDN [5]-[6]. It is expected to have both

the bandwidth flexibility of packet switching and the time

transparency of circuit switching. The ATM technique is

based upon the use of cells of fix length (packets) used to

carry all information within the network. These cells are

multiplexed in periodic time intervals called slots. For

synchronization purposes the time slots can be organized in

a pre-defined frame structure as in DTDM. If no framing is

used (ATD), synchronization cells must be inserted in

unused time slots.

ATM differs from Synchronous Time Division

Multiplexing (STDM) in that the time slots are assigned

dynamically rather than on a per call basis. This dynamic

bandwidth allocation implies that a particular connection

can no longer be identified by the position of the time

slot within a frame structure but by a label contained in

the header field of each cell as in packet switching. The

header field can also be used for media access control,

error control and for cell priority if necessary.

In order to maintain high throughput and low delay, no

link-to-link flow control is involved and error detection

and correction are handled from end-to-end by higher

protocol layers. This migration of protocols complexity

from network to terminal has been proven feasible by virtue

of the increased network reliability provided by the

optical and VLSI technology. Routing within the network is

performed by high speed packet switches and is based on the

virtual circuit label contained in the header field of each

cell. These switches use a massively parallel architecture

to obtain a throughput of millions of packets per second

with switching delay of a few milliseconds.

The CCITT is now proposing ATM interfaces operating at

150 Mbits/sec. and 600 Mbits/sec. for Broadband ISDN. These

proposed interfaces should provide the necessary bandwidth

for supporting present and future services as they become

available. A number of issues still remain to be solved

before a final agreement is reached on Broadband ISDN. The

major ones are related to cell format and size, voice delay

impact, cell lost, signaling, header organization and

network monitoring. Figure 2. 1 depict an example of a

multi-rate ATM interface.

VIDEO TIT'

VOICE

DATA

!
LABEL

Free slot

J._L^J

I

I^ILLIL_LSL±IL±I11^ im i

150 Mbps (288k slots/sec.)

65 bytes/slot

Figure 2. 1 An ATM multi-rate interface

2. 2 Broadband ISDN packet switch architecture

The utilization of optical fiber as a transmission

media for BISDN has moved the bandwidth problem from

transmission to processing within the switches. As a

consequence of this, a new switching architecture called

Broadband Packet Switch (BPS) has been developed. BPS will

provide switching capacity in the range of megapackets per

second. These switches are expected to be available by the

mid-1990s. Figure 2. 2 shows a Broadband Packet Switch (BPS)

model.

LI Ul

LI 112

LI U 1

LI U 2

LI U 1

LI U 2

,/
/
./

'\

,/
/
/

'\

,/
/
,/

IPCi

IPC2

IPCn

ng
CP

sw

LIU :Line Interface Unit
IPC -Input Port Controler
OPC :Output Port Controler

10

4_ OPCi
/'

\
\

\.

-{ OPC2
/'

\

. FL IU1

['LI U 2

[~L I U n

T""i
TL IU2

\
\,

rL IUl

/'
QPCn 1.-[^Y^2

\

\-N_[^

SW :Switching fabric
CP :Control Processor

Figure 2. 2 A broadband packet switch model

The Line Interface Unit (LIU) performs the interfacing

functions to high speed optical lines. It contains optical

transmitters and receivers.

The Input Port Controller (IPC) and Output Port

Controller (OPC) provide the queuing necessary at each

port. The IPC also controls the routing through the switch

by identifying the virtual circuit label of each cell. The

IPC and OPC can also perform some link level protocol

functions if necessary.

11

The Switching fabric (SW) is a space-division packet

switch that can be constructed from any type of

interconnection topology (crossbar, multiple bus,.. etc).

However, current design approaches employ a series of

self-routing multistage interconnection networks (MIN) that

perform the packet routing from any IPC to any OPC without

blocking. The Switching fabric can also support multicast

services by duplicating packets as they go through the

switch. The regular organization and the self-routina

property of this type of network make possible the

construction of large switches without control bottlenecks

and permit a cost-effective VLSI implementation.

The Control Processor (CP) handles call processing and

supplies the IPCs and OPCs with routing information. The CP

also performs maintenance and administrative functions.

2. 2. 1 Switching fabric for multicasting

The proposed point-to-point switch are usually

constructed from MIN networks consisting of a combination

of a Batcher network followed by a Banyan network as shown

in figure 2. 3 [7]-[8]. The Batcher network compacts and

sorts the packets according to their destination address

and the Banyan network routes the packet to the proper

output port. It can be shown [9]-[10] that this arrangement

guarantees that the packets will not block within the

12

Banyan network (internal blocking) if the requested

destination addresses are all distinct. The Batcher-Banyan

interconnection thus eliminates the need of internal

buffering and a constant latency switch can be obtained.

A multicast packet switch can be constructed by adding

a copy network in front of a routing network

(point-to-point switch) as shown in figure 2. 4. The

function of the copy network is to replicate input packets

according to the requested number of copies. The routing

network then performs the final routing. The copy network

can in turn be made from a combination of multistage

interconnection networks (MIN) with packet replication

capability.

To respect the non-blocking conditions of MIN based

switches, a certain control over the traffic entering the

switch is needed. This control implies the utilisation of

input buffers and algorithms to deal with the following two

problems:

1) Overflow of the copy network when the total number of

copy requests exceeds the number of output ports.

2) Output port conflicts in the routing network when

multiple packets request the same output port.

13

:ll
'1C

10

i00 00

r'i

0"

11 -

w,

10'

11

Figure 2. 3 A Batcher-Ban an network

COPY NETWORK POINT-TO-POINT SWITCH

Figure 2. 4 A multicast switch :a co network and a

point-to-point switch

14

Some multicast packet switch design proposals have

emerged from research laboratories during the past few

years [10]-[12]. These systems use a series of copy-routing

network with some specialized hardware and algorithms to

deal with copy overflow and output ports contention. In

both of these cases, a retransmission process is

implemented for the overflowed copies and for the copies

loosing contention for access to output ports. According to

this, we can affirm that in a general way the analysis of

the next section can be applied to these switch

architectures in order to obtain some performance

evaluation, independent of implementation.

3. Analysis

This section presents the analysis of a multicast

packet switch. Four different cases are developed and

analyzed. In all cases the switch is viewed as a black box

and no detail of internal functionality is given. The

analysis is general enough to be valid for any switch with

no internal blocking. This type of switch can be

constructed using a crossbar structure or multistage

interconnection networks as discussed in the previous

section. Figure 3. 1 shows the sketch of such a switch.

1 -

2 -

N I -

Multicast

packet

switch

1

2

NO

Figure 3. 1 A (NIxNO) non-blocking switch

The switch has N1 input ports and NO output ports.

These output ports can be bundled into NT trunks consisting

of S ports where NO = NTxS. We first consider the case

where S = 1 and then we propose an approximation for the

case where S > 1. The multicast switch model works as

follow:

A packet reaching the head of an input port queue

16

generates a random number of copies which are switched to

output ports (trunks). Only one copy of a packet is

distributed to each output port (trunk). The system

operates in discrete time intervals called slots. A slot

corresponds to the minimum time needed to receive a packet

on an input trunk. It is also assumed that a slot is the

time required to switch a packet from input to output;

accordingly, the durations of events in the analysis are

measured in slot times. As mentioned above, the switch is

assumed to be non blocking.

The property of the switch which poses the key

obstacle to analysis is interference among queues; two or

more input ports seek to put copies on the same output port

(trunk) during the same time slot. The model assumes that

conflicts are resolved by random selection, i. e., if M

copies are in conflict, one of them is chosen with

probability 1/M. In the case of multiple ports per output

trunk , M copies are chosen with probability 1 if MsS or

S copies are chosen with probability S/M if M > S.

3. 1 Queuing Model

Input queuing as opposed to output queuing was adopted

for the switch analysis. This choice reflects more closely

the multicast switch architectures proposed for broadband

ISDN. As mentionned in section 2. 2. 1, input buffering is

17

needed to control traffic and to avoid packet loss in a

multicast MIN based switch. Accordingly, the performance

analysis is based on queuing theory where each input port

is modeled as an M/G/1 queue. Figure 3. 2 shows the queuing

model adopted.

Since we are dealing with M/G/1 queues, the main

aspect of the analysis is the derivation of the probability

distribution of the service time. The service time of a

packet going through the switch is defined as the number of

slots necessary so that all of the copies generated by that

packet have gained access to an output port. As mentioned

previously, this implies that each of the generated copies

has won contention at their respective output port (trunk).

The measures of performance which are the goals of the

analysis are packet delay and throughput. The delay is the

time elapsing between the packet arrival at an input queue

and the time when all the copies that it has generated have

gained access to an output port. The delay is comprised of

the service time and the queuing time. The queuing time is

the time that the packet resides in the queue before its

service begin. The throughput is the maximum rate of packet

arrivals while maintaining system stability, i. e., finite

queues. The throughput is bound closely to the average

service time of a packet.

18

INPUT PORT 1

INPUT PORT 2

M /G / 1

IEHH^-
M/ G / 1

HHIED-

M/G / 1

2<

.
71

N1 xNO

1:11 MULTICAST

PACKET

SWITCH

OUTPUT PORT 1

OUTPUT PORT 2

INPUT PORT N1
/'

OUTPUT PORT NO

Figure 3. 2 A multicast switch queuing model

3. 2 Basic Assumptions

We can review the basic assumptions that we adopted

for the proposed analysis:

The switch has N1 input ports and NO (NTxS) output ports.

Packets arrive at input ports according to a Poisson

distribution with average rate \.

We assume that the event of an input port being occupied is

independent from port to port and has probability p.

Packets arriving are handled first come first serve (FCFS).

We assume random selection of packets in conflict at the

output ports (trunks).

We assume a non-blocking switch with constant latency.

A work conserving discipline, for the evaluation of the

service duration, was adopted.

We assume a uniform traffic distribution through the

switch.

19

3. 3 Bernouilli trials traffic distribution model

In this section we find the service time and delay of

a packet going through the switch. The replication model

that is assumed is that of Bernouilli trials; a packet at

an input port is copied to each of the output ports

independently with probability P. The simplicity of the

model is evident in that there is a nonzero probability

that a packet at an input port will generate no copy. We

are interested in the case where this probability is small.

In the sequel, we consider models for which the anomaly

does not occur.

3. 3. 1 Mathematical analysis

We begin the analysis by first focusing our attention

on a particular input port. We want to find an expression

for the number of copies, coming from the other N1-1 input

ports, which interfere with that input port. Let i. denote

the random variable representing the number of interfering

copies in output port j; j = 1, 2,... NO. Clearly i. can take

values ranging from 0 to N1-1. Now let's consider a single

interfering input port conditioned on it having a packet

(active). The joint probability generating function for

i^, i^,..., i^ due to that interfering input is given by

20

NO 1

I(z^z^,..., z^ I active) ^ E[^ z J | active
NO

J=l
;3. 1)

NO

n (pz^ + I-P)

The independent trials are reflected by the product form of

that equation. We can now average over the event of the

interfering input port being active to obtain

NO

I(Z1/Z2/'--ZNO) p[n (pz^ + I-P)] + i-p
J=l

(3. 2:

If we have N1-1 interfering input ports, each active

independently, then the joint probability generating

function for the total number of interfering copies is

N1-1

T(z^, z^, .
NO

.. ZNO) =|p [. n(pzj + l-p)] + (l-p)| (3-3)

Now suppose that a packet at the input port which is

the focus of our attention generates K copies with K ^ NO.

We would like to calculate the probability that L of these

K copies (L s K) are chosen by the output port contention

process. We begin with the assumption that these L

successful copies are on a particular set of output ports.

Since the process is symmetric, this set can be any set.

For simplicity of exposition, we choose the first L output

ports. Since the interfering copies at the output ports are

21

designated as i, i ,..., ! the probability that the first

L or more are chosen (L ^ K) given i,, i^,..., i, is

Prob (first L or more | i ,.., i , K) = yj I/ (i + 1) (3. 4;
J=l

The equation (3. 4) reflects the fact that choices are made

independently among output ports. By averaging over

i , i ,.... i we get

Prob (first L or more | K) =

£ £ ... £ n]-/(i. + D Probd^i,, ..., iJ ;
3

(3. 5;

L £ K

ii s ^ j=l

Notice that the conditioning on K is manifested only

through the condition L s K . Now we go back to the joint

probability generating function of the interfering copies.

From its definition we have

T(Z1'Z2'--ZNO) " (3. 6)

NO 1

E E ... E n ZjJ Prob (i^i^,.., i^)
i- i- i-_ J=l

1 -2 -NO

If we set z^^= z,, ^= . = z^_= 1 and we integrate the

expression over z,, z^,..., z. we obtain

r1 , r1 , r1
dz^ | dz, ... | dz^ T(z^, z,, . . ., z^ , 1, . . ., 1) =

'0 1 J0 2 J0 L . 1' 2- . L'

22

(3. 7:

L i . + 1

E E ... £ n z, 3 /(i, + i) Prob(i^i,, ..., i,)
D 3

il i2 iL j=l

Thus from equations (3. 7) and (3. 5) and (3. 3) we get

Prob (first L or more | K) =

. 1 pl pl r _ L
dz^ | dz, .. I dz^ | p [n (Pz^+ 1-P)]+ (1-p) | ;L ^

0 J0 J0 {- j=l -'

(3. 8;

N1-1

K

We can integrate equation (3. 8) by first applying the

binomial expansion and by taking advantage of the linearity

of the summation and integration operator.

Prob (first L or more | K) =

N1-1 f ^^ ^ ^ __ _ . L "!

Xl ["-l]p"-l-p)NI-l-niJ;-(pz. +l

(3. 9)

-P)" ;L ^ K

Prob (first L or more | K) =

N1-1

(3. 10)

n + 1 -, LNI-11 ^ <i--.)NI-l-n r l-(l:pr+l v ;
^, t n JP {1-P) [(n+l)p J ; L s K

At this point we have found the probability that the

copies from our particular input port have won contentions

at least at the first L output ports. From the symmetry of

the model, this probability is the same for any other set

of L or more output ports (L £ K) . Thus equation (3. 10)

23

gives the probability that any particular set of L or more

of the K copies have been chosen at output ports. Notice

that these sets are not disjoint; however they can be

expressed as the union of disjoint sets. Suppose that our

input port has generated K copies. We define M,(x> as the

event that a particular set X of L or more of the K copies

get through. We also define O.(x) as the event that only a

particular set X of L copies get through. Since the input

port that we are focusing on has generated K s NO copies we

have

M. (X) 0 (X)

, (x) (X)M_'" = 0'
-K-1 *K-1

u o (X)

M.. (X)
'K-2

0,
<x)

'K-2
u 0(.x) U O.ty)) U 0.

K-l ~ *K-1 / - ~:
(X)

(3. 11a)

(3. lib)

(3. 110

Notice that in equation (3. lie) a set y may intersect with

the set x. In general we get the following expression

M
r(Z)
K-n

n

u

J°o

(1)
i=l

0 (i)

K-n+j
(3. lid)

Since the sets on the right hand side of equation (3. lid)

represent disjoint events, we can write the related

probabilities. Notice that all of the sets of the same size

have equal probability, we can then express the equation

for any particular set by dropping the superscripts and by

24

replacing (K-n) by L.

K-L (v-^
Prob(M^ |K) = ^ | ^^ | Prob(0^ | K) (3. 12)

By inverting this equation we can get the probability of

any particular set of L copies getting through.

K-L f y-T. 1
Prob(0^ | K) = E ["^ | <-1)1 Prob(M | K) (3. 13)

Up to this point we have been dealing exclusively with

a particular set of L output ports chosen from K. We can

find the probability for any of the possible sets of L of K

copies. Let us define this probability to be Prob(L] K).

Since there are | ^ | possible combinations of L copies on

a total of K copies, we get the following expression.

Prob(L |K) = ^ Prob(0 | K) (3. 14)

A work conserving discipline implies that if L copies

get through in the first slot, an attempt is made to get

the remaining K-L copies through in the next slot. This

process continues until all of the copies have been

successfully transmitted. Let Q(n | K) denote the

25

probability that n slots are required to transmit the K

copies generated by a packet. We then have the following

equations:

Q(1 |K) = Prob (K | K) (3. 15a)

Q(n I K) = ^ Prob(L | K) Q(n-1 | K-L) (3. 15b)
L=0

Q(n) can then be evaluate by averaging over K, the number

of copies generated by our input port. For the Bernouilli

trials traffic distribution model, the random variable K is

binomially distributed with parameters NO and P.

NO

Q(n) = ^Prob (K=j) Q(n| j)
j=0

:3. 16;

Prob(K= j) = w] pj (l-p)NO-j (3. 17)

The average service time and the second moment are given by

co

S= 2:nQ(n) (3. 18a) S2 = ^ n2 Q (n) (3. 18b)
n=0 n=0

Our derivation of the service time distribution

assumes a particular value of p, the probability that an

input port is busy. A packet that comes to a busy input

port waits in the queue until its service begins. In this

26

case, the probability that an input port is busy is p = \

S where A is the packet arrival rate. We can evaluate the

average delay with the Pollaczek-Khinchin formula [13].

D = S + AS'/ 2(1-p) (3. 19)

The results presented in chapter 5. 0 are found for

different values of A by solving

A = p/ S (3. 20;

27

3. 4 Multinomial traffic distribution model

This section presents the analysis of the multinomial

traffic distribution model. The analysis follows closely

that of the Bernouilli traffic distribution model presented

in the previous section. The main difference from the

previous analysis resides in the way the traffic is

distributed from the input ports to the output ports. A

packet reaching the head of an input port queue generates a

random number of copies. This random variable can follow an

arbitrary distribution. To avoid the drawback associated

with the binomial distribution we choose a modified

binomial distribution. The modified binomial distribution

has the advantage that at least 1 copy is always generated

for every packet.

The copies generated by each input port are then

pooled together and distributed to the output ports

according to a multinomial distribution where each output

port has equal probability of being chosen. The choice of

the multinomial distribution in the context of this

analysis has one drawback in that there is a non zero

probability of two or more copies from the same input port

going to the same output port. For relatively large

switches we can assume that this probability is very

small.

28

3. 4. 1 Mathematical anal sis

We again focus our attention on a particular input

port. We define the random variable M as the number of

copies generated by one of the N1-1 interfering input

ports. We want to find the probability distribution and

probability generating function of this random variable by

conditioning on the input port being active. The

probability that i copies are generated (M = i) is given by

equation (3. 21) where i can take values ranging from 1 to

NO.

Prob(M-iI active) = ? p (1-P) NO-i

(1-P) NO
;1 s i £NO (3. 21)

The probability generating function of the modified

binomial distribution is given by equation (3. 22). This

expression is developed in Appendix A.

N 0

M(z | active) = (pz + (l-p)) - <l-p)
NO

(3. 22;
1 - (1-p NO

Notice that (Pz + (1-P))NO is the probability generating

function of the binomial distribution with parameters P and

NO. If p is the probability of an input port being active,

we can average over that event.

29

M(z) = p

NO

(Pz + (1-P))

1 - (1-P)

(1-P)
NO

NO

+ (1-p) (3. 23)

There are N1-1 input ports generating copies independently.

The total number of conflicting copies is then the sum of

all the copies generated by these input ports. The

probability generating function of the total number of

conflicting copies seen by our selected input port is then

M^(z) = p
NO

N1-1

(Pz + (1-P))

1 - (1-P)

- (1-P)
NO

NO

1+d-p) (3. 24)

We consider now our selected input port which has

generated K copies. Each of these copies will suffer

interference from the N1-1 other input ports. We denote

these interfering copies in each of these K output ports as

i^, i^, . . ., i^. We want to find the probability distribution

of these interfering copies by conditioning on the N1-1

ports generating M^ copies. Notice that i contains all

the copies of non conflicting output ports. Clearly the

number of ways in which the M interfering copies can be
divided into K+l groups of which the first port contains

i^, the second port contains i , etc, is

M_ !
T

1. !"' . . 1-. 1_. - '
'1 ~2' ' ' ~K' ^K+l '

(3. 25)

30

So (i^^i^, . . . , i^) follows a multinomial distribution where

1/NO is the probability of choosing an output port.

Prob (i^i^..., i^ | M^) = (3. 26a)

(M,) ! | (1/NO) x (1/NO) 2 .. (1/NO) K (1-k/NO)-K+l
(11)- <S)- <1K)! (1K^)'

where i , = I M - 7 i
-K+i L "r ^-^-j

(3. 26b)

-. th
As mentioned, the j'" of the K copies generated by our

input port is conflicting with i^ interfering copies. We

can find the probability of getting L or more of these K

copies (L £ K) through a particular set of output ports. As

in the previous analysis we can take this set to be the

first L, for example.

Prob (first L or more | i . i ,.... i , K) = (3. 2^)

n I/ (i, + 1) ;L < K
J='l ' 3

By averaging over Prob (i^, i^,..., i | M) we get

Prob (first L or more | M , K)

31

(3. 28;

£ £... £ n i/(i, + D Prob (i^i^,..., i^ | MJ ;L ^ K
S S ZL j=l

Notice again that Prob (first L or more | M , K) is the

same for any values of K (K ^ NO) and that the conditioning

on K is due to the fact that L must be smaller or equal to

K (L £ K). We can get the marginal probability mass

function of (i^, i^,..., i) from equation (3. 26a) by summing
over all possible values of iL+i'iL+2'. . . r IK and usin9 the

binomial formula.

Prob (i^i^ . . ., i^ | M^) =

i.

(3. 29a)

, [(1/NO) ' (1/NO) 2 ... (1 - L/NO)-L+1
'T/: L (^)- (s)' <1...)1

where i , = I M - 7 i
-L+l ^ "T ^^-j

(3. 29b)

Let T(z^, z^,..., z^ | M) be the joint probability
generating function of this multinomial distribution

conditioned on the total number of interfering copies being

equal to M_.
T

T(\'Z2'--'\ \ M^ = \ I
J^l

L Z

"NÔ + (1 - N̂O

M^

)]"' (3. 30)

32

We can now combine equations (3. 28) and (3. 2 a) to obtain

Prob (first L or more | M , K) =

E £ ... £ M ! | n (1/NO) j
il S -L j=i d, + D !

(3. 31;

(1- L/NO) L+l ;L < K
(\. ^'

From the definition of the probability generating function

T(z^z^,..., z^ | M^) A
Li. i. i

E £ ... E M^! n z^j (I/NO) j (1- L/NO) L+l
T 31:1 j '(13)! '(1L. 1)!-

(3. 32)
\ ' 3-1

We can integrate equation (3. 32) over z,, z^,..., z_ to
L

obtain

J,dzl J^dz2 ... J^dzL T<^^^... /^ I M^) = (3. 33;

£ Z ... E (M,)!
rl 72 TL T

L

n
J=l

(1/NO)

d + D !
(1- L/NO)
(1.. 1)!

L+l

Thus from equations (3. 30), (3. 31) and (3. 33) we get

Prob (first L or more | M , K) =

J^ J^...^[^^. (l--^)]

(3. 34;

M

J^l

The detailed calculations of the integration are presented

in Appendix B. The result is shown in equation (3. 35).

33

Prob (first L or more | M , K) =

L L

L ,.<NO)':, I f^l <-"1 [1-i/NO]
n (M^+ j) iLo ^ i

J=l

M_+ L
T

(3. 35;

;L s K

Up to now we have been dealing with probabilities that are

conditioned on the event that a total of M^ copies were

generated by the N1-1 conflicting input ports. We can

average over that event to get

Prob (first L or more | K) = (3. 36;

NO (N1 -1)

^ Prob (M = j) Prob (first L or more | M , K)
j = 0 T

The individual probabilities of M^ can be compute from the

probability generating function M (z) given in equation

(3. 24), or by convolving the probability mass function of M

with itself N1-1 times.

NO (N1 - 1)

M^(z) ^ ^ P rob (M^ = j) zj
j=0

(3. 37)

(N1 -1) *

^ j) = .{ Prob (M = i) [where ^ = j (3. 38)Prob (M - j) ^ ^ Prob (M =

At this point we have developed an expression for the

probability of getting L out of K copies through the first

34

L output ports. Again since the traffic is symmetric, this

probability is the same for any other set of L output

ports. The remaining steps of this analysis are identical

to the ones presented in the Bernouilli trials traffic

distribution model. That is we first find Prob (L | K),

the probability of getting any set of L of K copies

through. We then derive Q(n | K), the probability that n

slots are required to transmit the K copies. Finally we

average over K and find the average service time and

average delay. The reader is invited to refer to equation

0. 11a) through (3. 20) for more details.

35

3. 5 Multinomial traffic distribution with residual

service time

As mentioned previously, a packet reaching the head of

an input port queue generates a random number of copies

which are distributed to the output ports. The service time

of this packet begins when the copies are generated and

terminates when each of these copies has gained access to

an output port.

In the previous two models it was assumed that the

service initiations at the input ports were synchronized;

the interfering traffic encountered by one input port was

assumed to be equal to the number of copies generated by

the other input ports. In others words, a packet arriving

at the head of an input queue, always saw the other

conflicting packets at the beginning of their service time.

This, more refined, third analysis takes a more

realistic approach toward the evaluation of the interfering

traffic, by allowing packets at different input ports to

initiate their service times independently. To support this

approach, the model needs to take into account the residual

service time of all the interfering packets from the N1-1

conflicting input ports. Since the service duration is

proportional to the number of copies generated, we consider

the residual number of copies. Discussions on residual

36

waiting time can be found in [13] and [14].

We can illustrate this by considering the trivial case

of only one input port B in conflict with input port A as

shown in figure 3. 3. Let T^ and T denote the beginning and
the end of service of a packet at input port B. The

service time of that packet is then equal to (T. - T.). Now

consider a random point in time, say t, when a packet from

port A reaches the head of the input queue and begins

service. This packet from port A can encounter an empty

queue at port B or an interfering packet at port B.

In the case where input queue B is empty, no conflict

occurs for this slot. Since p is the probability of an

input port being occupied, this event happens with

probability (1-p). For the case where input port B is busy,

the packet from port A encounters a number of interfering

copies from port B. Clearly this number of interfering

copies seen by the packet at input port A, is not the total

number of copies generated at port B, but the remaining

number of copies that have not gained access to an output

port at time t. We can also show that the service time of

the interfering packet, that input port A has selected,

does not have the same distribution as a typical service

time; a longer service time is more likely to be chosen.

This approach for evaluating the interfering traffic can be

37

applied to the previous model by modifying the computation

of the total number of interfering copies M_. This third

analysis is mainly concerned with this evaluation of the

interfering traffic.

> I empty |<
queue

service time of_packet
from port B ^

T
-+-[

Packet from port
A begins service

(case 1)
Packet from port
A begins service

(case 2)

<- residual service-^
time of packet

rom port B

Figure 3. 3 Service time and residual time

3. 5. 1 Mathematical analysis

We again consider one particular input port and N1-1

interfering input ports. Let M denote the the number of

copies generated by one interfering input port. As

mentioned previously, this random variable follows a

modified binomial distribution with parameters NO and P.

Since, to a typical service time duration, there

corresponds a modified binomial number of copies, we want

to find the probability mass function of the number of

copies corresponding to the service time duration

encountered by our input port. We define the random

variables S and R representing respectively the number of

copies of this selected interval and the residual number of

38

copies in conflict at time t. Renewal theory shows that the

probability mass function of a selected interval is

proportional to the length of that interval and its

frequency of occurrence. Again we first condition on the

event that the interfering input port is active.

Prob(S = i|active) = i prob(M = ilactive)
M

(3. 39)

i = 1, . . ., N0

where M is the mean of the modified binomial distribution

Now we would like to find the probability mass function of

the residual number of copies conditioned on S, the number

of copies of the selected service time. Since R is

uniformly distributed over the selected interval, we have

Prob (R=j | S=i) = for j = 1, 2, .. ., i (3. 40:
i < NO

Prob(S = i, R = jjactive) = (3. 41;

Prob(R = j [S = i) Prob (S = i|active)

Prob(M = i|active)

M
;i s NO
;J ^ i

The marginal probability mass function of R can be compute

by averaging over all values of i.

Prob(R = j(active) =

39

(3. 42)
NO

^ Prob (M = i|active) ; i £ NO
M i=j ' , ,

;J ^ i

The probability generating function R(z|active) can also be

evaluated.

co

R(zjactive) ^ ^ z3 Prob (R - j|active) (3. 43)
J=l

co . NO

^ zj ^ Prob(M = i(active)
M j"i i = J

The reader can refer to Appendix C for the development of

the probability generating function (P. G. F.) R(z). The

resulting expression is

R(z)active) = ^ p ^_^ [1 -[Pz + (1-P)]NO] (3. 44)

We can average over the event of the interfering input port

being active and get

R(z) ' p[NO Pz(l-z) (1 -[P^ + d-P)]NO)]+(1-P) (3 45)

Equation (3. 45) gives an expression for the P. G. F. of

the residual number of conflicting copies coming from one

40

interfering input port. These copies were generated

independently at each input port at the beginning of their

service time, however in the process of contending for

output ports, a certain coupling was created. Nevertheless

we assume independence between input ports to keep the

complexity manageable. The P. G. F. for the total number of

conflicting copies is then given by equation (3. 46).

R^(z)= NO P (1-z) (1-[PZ + (l-P)]NO)]+(l-p)
N1-1

(3. 46)

We can now replace Prob (M^= j) by Prob(R^=: j) in equation

(3. 36) to obtain the probability of getting a particular

set of L or more copies through the first L output ports.

Prob (first L or more | K) ==
NO (N1 -1)

^ Prob(R =) Prob (first L or more | R,, K) (3. 47)
j=0 T T

Because of its relative complexity, it appears

difficult to isolate the individual probabilities from

equation (3. 46). Instead, we can work in the time domain to

obtain the desired probabilities. Since the total number of

residual copies is the sum of residual copies of the

individual input ports, the probability mass function of R.

is equal to the (N1-1)-fold convolution of the probability

mass function of R with itself.

41

(N1-1)

Prob (R = k) = ^ Prob (R =Prob (R = j) [where £ = k (3. 48)
j

Equation (3. 48) was evaluated with a simple program

routine that performs the convolution. The individual

probabilities were then used in equation (3. 47) to take out

the condition on R . One other alternative that could have

been used for evaluating the probabilities of R_, is to

approximate its probability mass function by a Gaussian

density function using the Central Limit theorem. For the

Gaussian distribution we only need the average and variance

of R which can be computed from the probability generating

function R(z). The results are given by equations (3. 49)

and (3. 50).

R = 5 R(z)
8z z=l

NOP + 2 - P
2

(3. 49)

Var R = S' R(z)
Qz2

+

z = 1

9 R(z)
9z

2 ^

3 R(z)
. 1 "t ^ [..,

(N0-5) (N0-1) P' , (N0-1) P
1 (3. 50)

Since we assume that R^ is the sum of independent
identically distributed random variables with mean and

variance given by equations (3. 49) and (3. 50), the

probability mass function of R is given by

42

Prob (R_ = k) = Prob k-a < R < k+a
T

(3. 51)

= Prob
(k-a)-(NI-l)R

(NI-l)Var R

R_- (NI-l)R

(NI-l)Var R

(k+a)-(NI-l)R
(NI-l)Var R"

If we define

^ (k-a)-(NI-DR
(N1-1)Var R"

and v =
(k+a)-(NI-l)R

(NI-l)Var R"
(3. 52)

we then have

Prob (R =k) =| $ (v) - $ (u) ;3. 53)

where $(a) is the standard normal distribution given by

$(a) = -^- f e~x/2 5x (3. 54)
; 71 -00

Since R^ is a discrete random variable taking integer

values, we choose a =. 5 to get a good approximation from

the normal distribution. Having evaluated Prob(first L or

more | K), we can now proceed with the remaining steps , as

described in section 3. 3. 1, to find the average service

time and average delay.

43

3. 6 Multinomial traffic distribution with residual

service time and multiple output orts

This analysis considers the case where output ports

are replaced by output trunks containing multiple ports.

This type of switch arrangement is necessary for multicast

applications because of the increase of traffic intensity

at output ports. By having multiple lines at each output

trunk, the congestion is reduced and the switch throughput

is increased. For this case we propose an approximation

that provides a lower bound on packet delay. This bound is

expected to be tight for heavy'loading and for relatively

small values of S when compared to the size of the switch.

3. 6. 1 Mathematical analysis

In the foregoing it was assumed that each output trunk

contained a single output port; that is NO = NTxS with

S = 1. This constraint limits the performance of the switch

especially if one considers that more traffic is created by

the multicast switch. We now consider the case where output

ports are bundled into trunks consisting of S > 1 ports. As

in the previous cases, packets at the input ports generate

multiple copies. We now assume that these copies are

generated for output trunks instead of output ports.

The joint probability generating function of the

number of interfering copies is still given by equation

44

(3. 30) where NO and M^ are replaced by NT and R . The

difference lies in the adjudication process at output

trunks. If there are i interfering copies at an output

trunk having S output ports, the probability that our copy

gets through is

Prob (success) =
1 ifi. s (S - 1)

S/ (i + 1) if i > (s - l)
(3. 55)

This can be written in terms of unit step functions

Prob (success) = [1 - U(i - (S - 1)]

+ S/(i^+ 1) [U(i^- (S - I)]

(3. 56;

where U(j) =
0 ifj < 0 1

1 if j 2: 0
(3. 57;

45

S/(i_+ 1)

.
(S/NI)

S - 1 N1-1

Interfering copies (1

Figure 3. 4 Probability of winning contention

The probability of winning contention at one output

trunk is plotted in figure 3. 4. The shape of this

probability function makes it difficult to develop an exact

expression for Prob(L or more |K) by using the method used

in the previous sections. By looking at the probability

function of figure 3. 4, we observe that for values of i

greater than (S-l) the probability of success is given by

S/(i, + 1). Since the value of i^ is determined by the

intensity of traffic at output trunk j, we can assume that

under medium to heavy loading the contention resolution

process would operate in the region for which (i. > S-l) .

This assumption is further reinforced if the number of

output ports at each trunk is small compared to the the

number of input ports.

46

If we now assume that Prob (success) = S/(i. + l) for

all values of i^, we obtain an upper bound on the actual
probability function. The approximation is illustrated by

the dotted line in figure 3. 4. This assumption would give

erroneous results for low traffic intensity because we have

Prob(success) >1 if i^< (S-l). We can now proceed and
replaced equation (3. 55) by equation (3. 58).

Prob (success) ^S/(i^+l) ;i= 0, 1, . . ., N1-1 (3. 58)

The probability that L or more copies get through in a

single slot can be bounded by substituting equation (3. 58)

for l/(i^+ 1) in equation (3. 28) and replacinq M bv R
T ^ - ~T

Prob (first L or more | R , K) ^ (3. 59)

E £... £ n s/(i^+ 1) Prob (i^i^..., !^ | RJ ;L s K
i. i, i-l=l J !<' L'Til S ZL j=l

From its definition, the joint probability generating
function for the number of interfering copies at each of

the L output trunks is given by

T(\'z2f-"\ I R^ ^ (3. 60)

z z . .z
L

n

1L j=l
Z^j Prob (i^i,,. '\ I R^

47

where the joint probability generating function of the

multinomial distribution is given by

T(z^z^,.... z, | R,) = [J^+ (1 -^r)] (3. 61)

Thus from equations (3. 59), (3. 60), (3. 61) we obtain

Prob (first L or more | R , K) s

p^

SLJ^I/Z. ... J^[j^+(l--w)]

(3. 62)

The result of the integration is given in equation (3. 63)

Prob (first L or more | R^y K) ^

L ,!L. NT,L I f^l <-Dl[l-i/"T]
n (R^ J) iL° l '

(3. 63)

R_+ L
T

;L ^ K

J=l

We have now found an upper bound for the probability

of winning contention at least at the first L output

trunks. The analysis goes through by first taking out the

condition on R^ as in section 3. 5. 1 and then by computing

Prob (L|k), Q (n|k), Q(n), S' and D as described in section

3. 3. 1. There is a problem however with proceeding from this

point. The expression in equation (3. 13) is a summation

with alternating signs; consequently, the upper bound is

48

still valid only if the approximation is very tight

Caution must then be taken when looking at the results

obtained from this analysis.

49

3. 6 Numerical computation

The expressions that have been derived were evaluated

on a VAX 8650 at Le Centre de Recherche Informatique de

Montreal. The programs were implemented in the C language.

One limitation related to the C language is the maximum

precision and range of floating-point variables; that is, C

supports only single and double precision variables. We

used G type double precision which gives a range of

. 56xl0-308 to . 899xl0308 with 15 decimal digits of

precision. This permits us to perform the computation for a

maximum switch size of 16x16.

Performance evaluation of larger switches can be

obtained by translating the program from C to Pascal which

supports quadruple-precision variables. These H type

quadruple-precision variables have a range of . 84xl0~4932

to . 59x10"""' with 33 decimal digits. This extended range

and precision should permit us to evaluate the performance

of switch of size up to 64x64. The C programs are included

in Appendix D.

4. Simulation of a multicast packet switch

To verify the analytical model, an N1 input ports and

NO output ports multicast switch was simulated. The output

ports can be bundled into NT trunks of S ports where

NO = NTxS. The level of simulation adopted, represents the

entire process of packets going through the switch. To

achieve this, a self-driven simulation was developed where

packet arrivals, copies distribution and conflicts

resolution at output ports (trunks) are represented by

probability distributions.

As mentioned in the analysis section, time is

segmented into fixed size slots, and a slot is the minimum

duration of any event. Because of this, synchronous timing

was adopted and the clock increment was set to 1 slot

duration. For verification of the analysis, the simulation

is mainly concerned with estimating the mean service time

and mean delay of packets going through the switch.

4. 1 Simulation model

Two variations of the simulation model were developed.

In the first case, a random number of copies is generated

for each new head-of-queue packet and these copies are

distributed to output ports. The method used for this

distribution of traffic is explained in section 4. 1. 1. 2.

51

The second variation modifies the distribution of

copies to output ports for simulating a unicast switch. In

this case, a packet at the head of an input queue generates

1 copy by choosing 1 output port with probability 1/NO.

This variation is implemented for verification purposes;

results from this model can be compared with published

results on the unicast packet switch [15].

The simulation model is shown in figure 4. 1. First,

packet arrivals at each input port are generated according

to a Poisson distribution with average rate A. Then for

each new head-of-queue packet, copies are distributed to

output ports (trunks). Multiples copies or a single copy

can be sent to output ports depending on the two traffic

distributions described previously. The third step takes

care of conflict resolution at each output port (trunk). If

there are M packets in conflict, one is chosen with

probability 1/M. In the case of multiple output ports per

trunk, S copies are chosen with probability S/M if S < Mor

M are chosen with probability 1 if S £M.

Following this, the clock is advanced by one slot

duration. At this point each head-of-queue packet is

checked for service completion and the statistical data is

updated accordingly. These 5 steps are repeated for the

desired duration of the simulation run. To achieve better

52

accuracy multiple runs are executed by varying the original

seeds. At the end, the performance parameters are computed

from the accumulated statistical data.

SPECIFIED PROBABILITY

DISTRIBUTIONS

START-

^

INPUT TRAFFIC

GENERATION

TRAFFIC

DISTRIBUTION

t

RANDOM-NUMBERS

GENERATION

// RUN
<^ COMPLETED

UPDATE

STATISTICS

yes

'\

y/ ANY \^
SERVICES

COMPLETED
,/\

\ /

yes

END <-

Figure 4. 1 Simulation model

4.

CONFLICT

RESOLUTION

UPDATE

CLOCK

4. 1. 1 Random variables eneration

With self-driven simulation^ probability distributions

on random variables are needed to generate the required

stimulus to the system. The different probability

distributions can be constructed from a sequence of random

53

numbers. Our simulation model relies on a built-in system

routine to get the random numbers. This routine use the

mixed congruential generator with the following recurrence

relation.

Seed^ = (69069 * Seed^^) + 1 modulo 2 32
(4. 1:

The seed is automatically updated for the next call.

The routine returns a Uniformly distributed random number

by converting the high order 24 bits of the seed to a

floating point number between 0 and 1. Different random

sequences can be obtain by initializing the seed to a

different value on separate runs.

4. 1. 1. 1 Packet arrivals

The switch model assume that packets arrivals are

generated independently at each input p rt according to a

Poisson distribution with mean \. Since Poisson processes

have exponentially distributed interarrival times, the

method used to generate Poisson arrivals is based on

results obtained from exponential random variables. This

method is developed in [16] and contains the following

steps:

Generate independent uniformly distributed (0, 1) random

variables U^, U^... stopping at

N + 1 = min n : D U < e-A
i =1

54

(4. 2)

The random variable N has a Poisson distribution with

mean \, which can be seen by noting that

n

N = max ^ n :) -log U. < A (4. 3)

From the inverse transformation method we have that

-log U is exponential with mean 1. If -log U.,

i = l, 2,..., n, are the interarrival times of a Poisson

process with rate 1, then N is equal to the number of

arrivals by time A. Then N is Poisson with mean arrival

rate \.

4. 1. 1. 2 Copies generation and distribution

We mentioned previously that each packet reaching the

head of an input port queue generates a random number of

copies. The generation and distribution of copies is done

by performing independent Bernouilli trials with parameter

P for each output port (trunk) . If no copy is generated

after NO (NT) trials, the copy generation process is

restarted. This process is repeated until at least one copy

is generated. We then obtain a number of copies that

follows a modified binomial distribution. The method used

is the following:

55

Generate a uniformly distributed random number U and

define the Bernouilli random variable B

associated with output port (trunk) i. We then have

B. =
1

success

failure

if U < P
otherwise

(4. 4)

For the unicast switch case where 1 output port is

chosen from the NO output ports with probability 1/NO, we

use the following method:

Split the [0, 1] interval into NO sub-intervals I of
3

equal size. Generate a uniform random number U between

0 and 1. The chosen output port j is the one for which

U e I..

4. 1. 1. 3 Conflicts resolution at output ports (trunks)

To resolve conflicts due to multiple copies trying to

get access to the same output port (trunk) the following

method was adopted.

Get the number of conflicting copies and split the

[0, 1] interval accordingly. In the case of 1 output

port per trunk, generate 1 uniform random number u and

find the matching interval . For multiple output ports

56

per trunk, we repeat this step S times if S < M where

M is the number of conflicting copies. Clearly if

S a M all the conflicting copies win access to an

output port.

57

4. 1. 2 Data structures

In order to keep track of all events during the

simulation and to facilitate the manipulation data, we use

well defined data structures. These data structures take

the form of tables and queues. Our simulation model

contains 3 main data structures: input queues, output

queues, and tables for recording performance statistics.

4. 1. 2. 1 Infjut queues

Each input queue is a circular FIFO buffer where an

entry corresponds to a packet -waiting to be served. Each

entry is subdivided into 5 fields containing the necessary

information regarding the packet stay's in the switch. The

queue has a finite length which determines the maximum

number of waiting packets. A mechanism for detecting

overflow of the input port queue is implemented. The

packets arrivals and departures from the queue are

controlled by a head pointer and a tail pointer.

58

Number of entries

Head pointer

Tail pointer

Arrival time

Beginning of service

Entry 0 End of service

Number of pending copies

Primary output

Arrival time

Beginning of service

Entry 1 End of service

Number of pending copies

Primary output

Arrival time

Beginning of service

Entry N End of service

Number of pending copies

Primary output

Figure 4. 2 Input queue format

4. 1. 2. 2 Output ueues

Each output port (trunk) has an output queue that

contains for each input port a field indicating a

conflicting copy. The output queue also contains

information about the number of copies in conflict and the

queue occupancy. We should mention that the output queue is

just a programming device used to keep track of the

59

interfering copies and that packets waiting for service

completion are actually queued at the input port.

Number of conflicting
copies

Occupation frequency

Copy indicator from
input port 1

Copy indicator from
input port 2

Copy indicator from
input port N1

Figure 4. 3 Output ueue format

4. 1. 2. 3 Performance statistics

The performance statistics data structure includes all

the necessary measurements for performance evaluation of

the multicast switch. It contains the statistical data from

each individual run which are used to compute the total

average results. The output traffic distribution statistics

allow the evaluation of the total packet distribution at

output ports (trunks). This is used for comparing the

traffic distribution observed during simulation with the

ones a sumed in the analysis.

60

Total average
results

Results from
run 1

Results from
run N

average service time

average delay

system load (p)

output traffic
distribution

number of packets served

cumulative service time

cumulative delay

average service time

average delay

output traffic
distribution

number of packets served

cumulative service time

cumulative delay

average service time

average delay

output traffic
distribution

Figure 4. 4 Performance statitics data structure

61

4. 2 Validation and verification

We now turn our attention to verifying the correctness

of the simulation program and the simulation model. In the

first step, we do a comparative "walkthrough" of the

simulation program and the model description. This permits

the detection of obvious differences between the model and

the program.

In the second step, the validation and verification is

done by collecting comparative performance measures of

existing systems. Since there is no available performance

data of a similar system, we have to adapt the simulation

program to a particular architecture or run it under

special conditions for which an exact analytical solution

is known. We should mentioned that this adaptation to a

particular system does not guarantee 100 percent

correctness of the program under the desired conditions.

There are two special cases for which the simulation

results can be compared to analytical results. The first

one is a 1x1 switch which simplifies to an M/D/1 queue. The

second case is a NxN unicast packet switches for which

asymptotic saturation throughput is known.

4. 2. 1 A 1x1 switch (M/D/1 Queue)

When the number of input and output ports are equal to

62

1, the service time becomes deterministic and the switch

behaves like an M/D/1 queue with average delay given by

equation 4. 5.

D = S' + P S
(1-p) (4. 5)

In our case, the service time is always equal to 1 slot so

the average delay becomes

D = 1 +
(1-A) (4. 6)

To verify this equation, we take the second variation of

our model where 1 copy is generated with probability 1. The

statistical method of section 4. 3 is used to assure

accuracy.

4. 2. 2 A NxN unicast acket switch

We can also verify the program by simulating a NxN

unicast switch for small values of N. This type of switch

has been studied extensively in the context of

processors-memories interconnection for multiprocessor

systems. For saturated input queues and N -> co, the maximum

throughput is equal to (2 - V~T) = 0. 5858. For small

values of N, results have been obtain from Markov chain

analysis. These results are included in table 4. 1 and

presented in more detail in [15] .

63

N] Saturation Throughput

1 1. 0000

2 0. 7500

4 0. 6553

8 0. 6184

co 0. 5858

Table 4. 1 Saturated Throughput for point-to point
switches with in ut queuing

64

4. 3 Simulation results anal sis

This section is concerned with estimating and

controlling the simulation results accuracy. In depth

treatment of simulation results analysis can be found' in

[17]. Since we are evaluating the expected values of random

variables, i. e, service time and delay, the accuracy is a

measure of how close the sample mean is to the actual mean.

To best evaluate these random variables, our simulation

uses the replication method which consist of making K

independent runs of M samples using a different random

number stream for each run. A confidence interval is

computed to determine the values of K and M satisfying the

desired level of accuracy.

One other aspect related to results analysis is the

evaluation of the transient period. The transient period is

the time elapsing between the simulation starting point to

the point beyond which the system is considered to be in

equilibrium. To best estimate the service time and delay

for steady-state operation, we have to ignore the

observations during this transient period. Our approach is

to make the run lengths long enough to eliminate all warmup

effects. However, a deletion amount of 5 percent was chosen

to be on the safe side.

65

4. 3. 1 Confidence interval estimation

As mentioned, the replication method implies that we

make K runs with each run generating M sample values

(M packets) of the variables to be measured. These

variables are the service time and the waiting of a packet

going through the switch. The waiting time is the time that

a packet spends in an input port queue, waiting for

service. The evaluation of delay is done by adding waiting

time and service time.

Let S'^, S'^,..., S'^ and W^, W^,~..., w be the mean service
times and the mean waiting times for each of the k runs. We

then have the following relations:

, -. [.s. =
i^'1 -M-

where S is the service time of (4. 7)
packet (i) in run (j)

w
. '.I w.

1

l ~M~
where W is the waiting time of (4. 8)
packet (i) in run (j)

The sample means of service time (S') , waiting time (W) and

delay (D) are given by

S-J.
^ s.

FT
(4. 9) " - z ^

j^i ^T
(4. 1)

D= W + S

66

(4. 11)

We want to evaluate the accuracy of our estimate of S'

and W. Since we don't know the actual variances of S' and
3

W , we have to approximate them with the sample variances.
These sample variances are given by equations (4. 12) and

(4. 13) .

Var (S -S)2
,
)- T <5r,

^ (K-l
(4. 12)

Var (W.) =- i
j=l

(W. - W)2

(K-l)
(4. 13)

For a confidence coefficient of (1-a) / we can

construct confidence intervals for the mean service time

and the mean waiting time. The confidence intervals are

given by

S ± H^ where H^ - {t^. ^J Aar (S
~K

j'
(4. 14)

W ± H
w where H^= (t^^J Aar (W^ (4. 15)

v^~K-

67

The expression t^^ _^ is the upper a/2 quantile of the t
distribution with K-l degrees of freedom. We can choose the

confidence coefficient (1-a) = . 95. We are then 95 percent

confident that the true mean service time and waiting time

are within these intervals.

We now have to determine the values of M and K and the

desired level of accuracy. As a rule of thumb, it is best

to keep K relatively small, (< 10) and M relatively large

(s 5000). An accuracy of 10 percent for a 95 percent

confidence level also seems reasonable. Since our

simulation model evaluates the run length in terms of time

slots instead of samples (packets), we need a relation

between the number of samples (M) and the number of slots

in a run. For an N1 input ports switch with average Poisson

arrival rate of A we have the following relation.

M=NI * ^ * Run length (slots) (4. 16)

The exact values of M and K are determined by

experiment, starting with K = 8 and M = 2000 and increasing

M until the following equations are satisfied

H. < . 1'S and H. < . 1W
w

(4. 17)

68

4. 4 Implementation

The simulation program was implemented in the C

language on a VAX 8650 running VMS version 4. 7. The

facilities were provided by Le Centre de Recherche

Informatique de Montreal in collaboration with

Concordia University. The program can simulate switches of

any size and the only limitation is related to the amount

of computation time necessary. The listings of the

simulation programs are included in the Appendix E.

5. Results

This section presents the results computed from the

analysis and the simulation programs. These results were

obtained for switches of different configurations and

sizes. In all cases the performance results are presented

by plotting the average packet delay (D) as a function of

the packet arrival rate A (Traffic intensity). Multiple

curves are obtained for different values of P (multicast

probability). The value of P, together with the traffic

intensity A, determine the loading of the multicast switch.

Simulation and analysis results are compared in section

5. 3.

5. 1 Analytical results

Results for three analytical models are compared.

These models were developed in section 3. 3, 3. 4, and 3. 5. We

can review these three models.

Bernouilli model (B_model): Each packet chooses its

output ports from independent Bernouilli trials with

probability P. The number of copies generated at each

input port is then binomially distributed with

parameters NO and P.

Multinomial model (MM_model) : Each packet generates a

modified binomial number of copies with parameters NO

70

and P. The copies from each input port are pooled

together and distributed to output ports according to

a multinomial distribution.

Multinomial-Residual model (MR_model): Each packet

generates a modified binomial number of copies with

parameters NO and P. The copies from each input port

are pooled together and distributed to output ports

according to a multinomial distribution. The

evaluation of the interfering traffic from each input

port is done by considering the residual number of

copies of the modified binomial distribution.

Results for these three models, (B, MM, MR) , are

plotted in figures 5. 1, 5. 2 and 5. 3, respectively, for

switches of sizes 4x4, 8x8 and 16x16. By comparing results

from the three models, we can make the following remarks:

1) For small values of P, the B_model gives inaccurate

results because the probability of a packet generating

zero copy is not negligible. This was expected and

mentioned in section 3. 3.

2) For larger values of P, the B model and the

MM_model give comparable results especially for the

16x16 switch. This tends to show that for relatively

71

large switches, the multicast traffic distribution is

not a critical factor as long as the average number of

copies generated by each packet is the same.

3) The MR_model gives optimistic results when compared

to the other two models. This is evident because the

evaluation of the number of interfering copies was

obtained by considering the residual number of copies

instead of the total number of copies generated. We

will compare this approach with the simulation in

section 5. 3.

72

5. 2 Simulation results

Simulation results were obtained from the models

described in section 4. 0. Results from simulation of

non-square switches (NO > N1) and for switches with

multiple ports per trunk will be presented in section 5.3

with the respective analytical results.

5. 2. 1 Model validation

As mentioned in section 4. 2, the model can be

validated by adapting it to particular systems for which

performance results are known. Since this adaptation

requires that only a very small percentage of the program

code (=1 %) be modified, we can be confident about our

model behavior under the desired conditions. In figure 5. 4,

the results obtained for a 1x1, 2x2, 4x4, 8x8 unicast

switch are compared to the M/D/1 delay curve and to the

saturation throughputs given in table 4. 1.

We can see that the 1x1 delay curve matches almost

perfectly the M/D/1 curve and that the saturation

throughputs of the 2x2, 4x4, 8x8 switches are approaching

the values given in table 4. 1. This tends to support the

validity of our simulation model.

5. 2. 2 Determining the sample size

We want to determine the number of samples (packets)

73

that are necessary in each run to achieve the level of

accuracy given by equation (4. 17). The sample size as a

function of the run length (slots) is given by equation

(4. 16). The required run length was determined by

experiment for A = . 1 and N1=4 which are the smallest

values for which the simulation was run. The desired

accuracy was obtained for a run length greater than 4000

slots with the number of runs (K) equal to 8.

5. 2. 3 Performance results

Average packet delay as a function of the arrival rate

\ for a 4x4, an 8x8 and a 16x16 switch are plotted in

figures 5. 5, 5. 6 and 5. 7. Again these curves were obtained

for different multicast probabilities (P) . These results,

with others, will be compared to analytical results in the

next section.

74

5. 3 Corn arisen of anal tical and simulation results

We now compare analytical and simulation results. The

analytical model selected for comparison is the MR_model,

which considers the residual distribution of the generated

copies for evaluating the interfering traffic. This

approach is more realistic and gives more accurate results

when compared to simulation.

Besides the square switch configuration (N1 = NO) we

consider two other types of switches that are well suited

for multicast applications. -The first type is the

distribution switch (NO > N1) and the second type is the

grouped output ports switch where NO =NT x S with S > 1

(section 3. 6). The analytical and simulation results for

the different switch configurations and sizes are plotted

in figures 5. 8 to 5. 14.

We first concentrate on the square and distribution

switches for which analytical and simulation results can be

compared directly (Figure 5. 8 to 5. 12). From these curves

we can see that the analytical results are very close to

the simulation results, especially when the switch size and

the multicast probability (P) increase. The more optimistic

results obtained from the analysis can possibly be

attributed to the assumption that was made concerning the

independence between input ports for the evaluation of the

75

interfering traffic. This was assumed in section 3. 5. 1 to

simplify the development of the expression for the

probability generating function R_(z).

We now look at results obtained for the grouped output

switch configuration. An approximate analysis giving a

lower bound on delay was developed in section 3. 6. We found

that the approximate results from this analysis were very

poor and that there was no point in comparing them with

simulation results. We also tried other approximation

method like the Chernoff bound without getting better

results. The reason for this is probably the alternating

sign summation given in equation 3. 13 which makes difficult

the computation of any bound.

We propose another method to obtain an approximation

to the performance of switches with grouped output ports.

If we take for example a 8x16 distribution switch and we

limit the number of copies generated at each input port so

that it follows a modified binomial distribution with

parameters 8 and P, we obtain an approximation for a

8x(8x2 switch. This method of limiting the number of

copies generated at each input port gives an upper bound on

the delay of grouped output ports switches. This is due to

the fact that distributing the same number of copies to 16

single port outputs instead of 8 double port output trunks

76

results in having more output ports remaining idle. This

approximation is compared with simulation results for an

8x(8x2) and a 16x(16x2) switch in figures 5. 13 and 5. 14.

The results show that the proposed analytical model

gives a good approximation of delay for grouped output port

switches and that the upper bound obtained gets tighter as

the switch size and the multicast probability P increase.

We expect that for larger switches, (64x64), the analytical

results would be almost identical to simulation results.

ANALYSIS RESULTS

DELAY FOR A 4x4 SWITCH

77

40

tO
^->
0

>.
ro

U)
T1

(U
^
u

(0
CL

cu
CT
fD
c_
cu
>
<

30

20

10

B:P=.3

-4- MM:P=.3

-^- MR: P=.3

-X B:P=.5

-&- MM: P=.5

MR:P=.5

-^ B:P=.G

-X- MM:P=.6

'-^ MR: P=. 6 '

TJ

¥

X <^|
^

tl
"I

^
fTi

I,
h
fl

's i^ 'l[

T

ii

H

Î
t
/

0 0. 2 0. 4 0.6

Traffic intensity "lamt3da : (packet/slot)

0.8

Fiaure 5.1

ANALYSIS RESULTS

DELAY FOR A 8x8 SWITCH

78

40

cn
-1-1
0

1-<
m

>>
ro

1-1
d)
-a

-1-1
01
-^
u
ro
a.

cu
cn
IT;
c_
0)
>
<c

30

20

10

B:P=.2

MM:P=.2

-f- MR:P=.2

-^ B:P=.3

^- MM: P=.3

MR:P=.3

-^- B:P=. 5 '

-^- MM: P=. 5.

-^ MR: P=. '5:

.T

i'\
!^
II
Ti

I
^

,f
u
*i
*!
.}

.

^'

T
.I

.

?.
<{>
^

^

.*
!;'.
h
^
^
.^

iy'
^y.^^
4^^̂ ^-

f

it.
-^ ./
Jl
y

0. 1 0. 2 0. 3 0.4

Traffic intensity 'lambda': (packet/slot)

0.5

Fiaure 5.2

ANALYSIS RESULTS

DELAY FOR A 16x16 SWITCH

79

40

cn
+-1
0

>.
10
I-I

cu
.a

^-1
(U

-a;

ro
a.

cu
01
ro
c-
cu
>
<:

30

20

10

TB:P= 1 T ^
. '¥

.-I- MM: P=. 1 .|j

^- MR: P=. l .1

-^ B:P=.2

.-e- MM: P=. 2 . '!

MR: P=. 2 :^

'-^- B: P= . 3 :,;

:-^- MM: P=. 3 ^j
'^

-^ MR: P='. 3 ':[?

f

*

I i

^

It̂
i f

A

'. ^

.

<?
/

. . +

/

^

¥

0. 1 0. 2 03 04

Traffic intensity 'lambda': (packet/slot)

0.5

Fiaure 5.3

SIMULATION RESULTS

MODEL VALIDATION

80

50

sn
-(->
0

.-I
t0

>.
(0

aj
T3

a>
^
u
ro
CL

cu
cn
m

c-
cu
>

<:

40

30

20

1x1 SWITCH

M/D/1 QUEUE

-^- 2x2 SWITCH

-^ 4x4 SWITCH

.-^- 8x8 SWITCH

656

.. ^ -75
61.8 ; T

4

10

-»-"*-

//.
A/ .

^. ^' J^
--.3< ^---^
^-.'

0. 2 0. 4 0. 6 0.8

Traffic intensity "lambda': (packet/slot)

Fiaure 5 4

SIMULATION RESULTS

DELAY FOR A 4x4 SWITCH

81

40

30

S:P=.3

S:P=.5

. -^- S:P=.6

^ S:. P=.7

f

cn
+-1
0
1-I

cn

>.
(0

0)
T3

0)
^
u

01
a.

0)
D)
co
c-
(U
>
<

20

10

.

^ ./
/A

.

^ ^"...
-X .^'"i^¥
.'^.^-^;

0. 1 02 0, 3 0.4

Traffic intensity "lambda": (packet/slot)

0.5

Fiaure 5.5

82

lf>
-t->
0

w

>~
ID

a>
T3

a>
^
CJ
ro
a.

<D
cn
(0
c_
Oi
>
<

40

30

20

SIMULATION RESULTS

DELAY FOR A 8x8 SWITCH

S:P=.2

S: P= 3

-^- S: P=. 5

-^ S; P=. 6
:t

10

^>
^.^

/ /
^+

^

0. 1 02 0. 3 0.4

Traffic intensity 'lambda': (packet/slot;

0.5

Fiaure 5 6

83

40

SIMULATION RESULTS

DELAY FOR A 16x16 SWITCH

~f -T'~T

S:P=.l

-+- S:P=.2

-^- S:P=.3

f
+

30

m
-1-1
0
I-I

[0

>.
10
I-I
(U
-0

4-'
(U
-^
0

(0
a.

CD
cn
(0
c-
w
>
<:

20

10 7
^

/ /
^^'

0. 1 0. 2 0. 3 0.4

Traffic intensity 'lambda': (packet/slot)

0.5

Fiaure 5.7

ANALYSIS/SIMULATION RESULTS

DELAY FOR A 4x4 SWITCH

84

40 ,

in
-1-J
0
I-f

tO

^
(0

a>
-a

30

MR: P=.3

S: P=.3

-<(- MR: P=: 5

-^ S:P=.5

. -&- MR: P=; 6

S:P=.6

20
(U

_^:
u

co
Q.

(U ;-
cn

1 I
a) ^
>
<i

10

x 1

.^'^

0. 1 0. 2 0. 3 0. 4 0.5

Traffic Intensity 'lambda': (packet/slct)

Fiaure 5.8

0.6

85

in
+->
0
(-I

co

>^
tO

0)
T3

d)
-^
u

(0
CL

0)
cn
ro
c_
cu
>
<I

n"
40

MR: P= 2

S:P=.2
i .

F -^- MR: P=. 3

. -^ S:P=.3

30 h

20

10

ANALYSIS/SIMULATION RESULTS

DELAY FOR A 8x8 SWITCH

~~\ -T--r

t

>:]

-, 'i

,
'J

Li
0. 1 0 2 0. 3 0.4

Traffic intensity lambda': (packet/slot)

0.5

Fiaure 5 9

86

ANALYSIS/SIMULATION RESULTS

40 r-

cn
+-'
0

>~
re

03
T3

cu
^
LJ
ro
Q-

(U
cn
(D
c_
cu
>
<

MR:P=.l

5:P=. l :

. ^- MR: P=. 2

. -x S: P=. 2 .

30
. ^- MR: P=. 3

S:P=.3

20

.°r'

^

t!

4

f

t
:/T-
:^
:/^
^

^ ^

/

^
^

0 0. 1 02 03 04

Traffic intensity 'lambda': (packet/s.lot.)

0.5

Fiaure 5 10

87

co
-1-1
0
I-I

cn

>.
CD

w
-0

0)
.^
u
(D
a-

d)
cn
ro
c_
01
>
<

ANALYSIS/SIMULATION RESULTS

DELAY FOR A 4x8 SWITCH

40

30

20

MR: P= 2

S: P=..2

-^- MR:P=.4

-^. S:P=-.4

-^- MR:Pis.6

S: P='.6

t

^

10

^ ^'
^
/

^

0. 1 0. 2 0. 3 0. 4 0. 5 0.6

Traffic intensity 'lambda': (packet/slot)

0.7

Fiaure 5. 11

88

ANALYSIS/SIMULATION RESULTS

cn
-1-1
0

>^
ro

(U
-a

cu
^
CJ
co
a.

cu
cn
co
c-
0)
>
<:

40

30

20 L

10

MR:P=.l

S:P=.l

. -*- MR:P=;3

-^ S:P=.3

^- MR:P=:5

S:P=.5

If

f.

^
^

^

01 02 0. 3 0. 4 0.5

Traffic intensity 'lambda': (packet/slot)

0 6

Fiqure 5. 12

89

co
-1-1
0
I-I

co

>.
ro

a>
-0

cu
^
u

ro
a.

cu
cn
TO
L

cu
>
<

40

30

20

ANALYSIS/SIMULATION RESULTS

DELAY FOR A 8x (8x2) SWITCH

S: P=.3

MR: P=; 3

-^- S:P=.5

. ^< MR: P=;5

-^- S:P=.7

MR:P=.7

x

10

.7
/-+:'

T^-

/ . Y
^ ^'

0. 1 0. 2 0. 3 0. 4 0.5

Traffic intensity 'lambda': (packet/slot)

0 6

Fiaure 5. 13

90

ANALYSIS/SIMULATION RESULTS

DELAY FOR A 16x (16x2) SWITCH

40

in
-.-.
0

>^
ro

0)
.a

cu
.^
LJ
(a
CL

0)
cn
(0
c_
(D
>
<c

30

S:P=.2

MR: P=

-<fr- S:P=.3

. -^- b: H= . i3

MR:P=;5

10

:->

^
+

/ /

<-->

t ;<!> ^

,<_->

+ 1

/;
f i /

/:

^/^> ^^
/

0 0. 1 0. 2 0 3 0. 4 0.5

Traffic intensity 'lambda': (packet/slot)

0.6

Fiaure 5. 14

6. Conclusion

This thesis has studied a model which has permitted us

to evaluate the performance of Broadband Packet Switch

(BPS) in a multicast environment. These performance results

were obtained from analysis and simulation. The analysis

was developed for different multicast models with

increasing degrees of refinement. The analytical results of

the more refined model were then compared to simulation

results. An approximation was also proposed for multicast

switches containing multiple output ports at each output

trunk.

The results obtained for square and distribution

switches seem to show that the analysis gives a lower bound

on packet delay. This lower bound, which is probably due to

the independence assumption between input ports . that was

adopted in the analysis, becomes very tight as the switch

size is increased. The approximation method for grouped

output port switches that was proposed in section 5. 3 gives

an upper bound on packet delay. Again this upper bound is

expected to become very tight as the switch size is

increased.

Future research on multicast packet switches should

include consideration of traffic classes such as reserved

and unreserved packets. Reserved packets can be used to

92

emulate circuit switching for services that cannot tolerate

the queuing delay of unreserved packets. One should also

consider translating the analysis program from C to Pascal

in order to get results for larger switches.

REFERENCES

[1] J. J. Kulzer, W. A. Montgomery, "Statistical switching

architecture for future services, " Proceeding of the

International Switching Symposium (ISS), Florence, May

1984.

[2] J. S. Turner, "New directions in communications

(or which way to the information age), " IEEE Commun.

Mag., vol 24, Oct. 1986, pp. 8-15.

[3] P. Gonet, P. Adams, J. P. Goudreuse, "Asynchronous time

division switching: The way to flexible broadband

communication networks, " IEEE 1986 Proceeding of the

International Zurich Seminar on Digital Commun

Zurich, Mar. 1986, pp. 141-148.

[4] L. T. Wu, S. H. Lee, T. T. Lee, "Dynamic TDM - A packet

approach to broadband networking, " Proc. IEEE ICC ''87

, Seattle, WA, June 1987.

[5] B. Schaffer, "Synchronous and asynchronous transfer

modes in the future broadband ISDN, " Proc. IEEE

Globecom '88, Fort Lauderdale, FL., Nov. 1988, pp.

1552-1558.

94

[6] B. Eklundh, I. Gard, G. Leijonhufvud, "A layered

architecture for ATM networks, " Proc. IEEE Globecom

'88, Fort Lauderdale, FL., Nov. 1988, pp. 409-414.

[7] J. Y. Hui, E. Arthurs, "A broadband packet switch for

integrated transport, " IEEE J. Select. Areas Commun.,

vol. SAC-5, No. 8, Oct. 1987, pp. 1264-1273.

[8] A. Huang, S. Knauer, "Starlite: A wideband digital

switch, " Proc. IEEE Globecom /84, pp. 121-125.

[9] K. E. Batcher, "Sorting networks and their

applications, " AFIPS Proc. Spring Joint Comput. Conf.,

1968, pp. 307-314.

[10] T. T. Lee, "Nonblocking copy networks for multicast

packet switching, " IEEE J. Select. Areas Commun., vol.

6, No. 9, Dec. 1988, pp. 1455-1467.

[11] T. T. Lee, R. Boorstyn, E. Arthurs/ "The architecture

of a multicast broadband packet switch, " Proc. IEEE

Infocom '88, New Orleans, LA., pp. 1-8.

[12] J. S. Turner, "Design of a broadcast packet switching

network, " Proc. IEEE Infocom '66, pp. 667-675.

95

[13] J. F. Hayes, "Modeling and Analysis of Computer

Communication Networks, " Plenum Press, 1984.

[14] L. Kleinrock, "Queuing Systems Volume 1 : Theory,"

New York: Wiley-Interscience, 1975.

[15] M. J. Karol, M. G. Hluchyj, S. P. Morgan, "Input vs.

output queuing on a space-division packet switch,"

IEEE Trans. Commun., vol. COM-35, Dec. 1987, pp.

1347-1356.

[16] S. M. Ross, "Introduction to probability models, " 3rd

edition. Academic Press, 1985.

[17] H. Kobayashi, "Modeling and Analysis: An introduction

to system performance evaluation methodology, " Addison

Wesley, 1978.

APPENDIX A

P. G. F. of the modified binomial distribution

For a random variable M following a modified binomial

distribution with parameters NO and P, we have the

following probability mass function

Prob(M = i) = NO 1 P1(1-P)
" J 1 - (1-

NO-i

(1-P)
NO

;i = 1,..., N0 (A. 1)

The P. G. F. of M is define as

NO

E
i=l

M(z) ^E[ZM] = ^ zi Prob(M = i) (A. 2)

We then have

M(z) =
, _^,, o ^(?o]p-. la-p)>0-1 .. 3)

M(2) =-, _^,, o[|(?o]^<-)"°-l-<-)"°]<A. <)

M(z) =
1 - (1-P)

NO

NO

, NO
Pz + (1-P)I - (l-p) NO

(A. 5)

where [Pz + (1-P)]"" is the probability generating function

of the binomial distribution.

APPENDIX B

Integration of the P. G. F. of the multinomial distribution

We want to integrate the following expression

Prob (first L or more | M , K) =

J.dz. ^ ... J^ [^4o-+(^-^)]

(B. l)

M

By first integrating over z from 0 to 1 we get

M

J; [, I,^oz, +(l-^o)] I^

(M.
No_ r ? -L, z + r i -^

, + 1) [Z. -NO zj + t 1 ~^0
M_+ 1 1

(B. 2)

NO

(M, + D
y-i^ z + n - <L:1)
Z, -NO zj + t x ~ -TOr

M, + 1
T

(B. 3)

- [J^z, + (1 --TO)]
M_+ 1

T

We can repeat the previous step for z
L-l

98

(M,
N0_ I J f Y^ z + f 1- (L:1)

, + 1) I \ [Z. -NO zj + t 1 - -W

-[J;^zl+ (l--ro)]
M_+ 1 ,

T

dz_
-L-1

(M. ,
N02,, , j rLv2 ^Lz + r i - (L:2)

+ 1) (M^, +) <[[^^Ozj + t 1 ~ -ior
M_+ 2

T

(B. 4)

2[X^-+(l-<Sol))j
M, + 2

+ [^4oz, +(l-T5)j
M_+ 2 ,

T

For z we can guess the resulting term

NO"
(M_+ 1) (M_+) (M_+) 1

M_+ 3

[;C^o -^^-^L) }^ 5)

3 r V-l, z + fl - <L:2)
^^-N0zj + I 1 - -NO-

3 \ Y-. Z + r i - (L-1)
L-NOZj + t 1 ~ 'NO'

M_+ 3
T

M_+ 3
T

[^z, + (l-^o)]
M_+ 3

T

After n < L steps we have

99

n ,.<NO) °, [f; 1 <-r'
n (M^+ j) A ^ z

(B. 6)

J-l
L- n

^ ^0 z,mz. + (1 - (L-n+i)
NO

M, + n

We then get the final result after L steps

Prob (first L or more | M , K) =

L_ wo.}^ I {Li\ <-r1 [1
n (M^+ j) i^o ^ 1

(B. 7)

M_+ L
i/NO] T ;L ^ K

J=l

APPENDIX C

P. G. F. of the residual of a discrete random variable

The residual probability mass function of any discrete

random variable X is given by equation (C. l)

NO

Prob(R = j) = - J:Prob (X = i) ;j=l,.., NO (C. l)
X i=j

;i £ J

The probability generating function R(z) is then given by

00

R(z) ^ ^ z3 Prob(R = j)
J=l

(C. 2)

We can develop an expression for it

CO . NO

R(z) = -!- V zj ^ Prob(X - i)
X j^i i^j

(C. 3)

M

-^ [zj
X j^i

NO j-1
J: Prob(X = i) - £ Prob(X = i)

i=0 i=0
(C. 4)

From the total probability law we have

R(z) =
co w . j-1

zj - YZ J 'F Prob(X = i)
X I ^1 ^ i^Q

(C. 5)

101

w .. . ro . - J-l

zVzj-1 - zVzj-1 Y Prob(X = i)
X [fti jL-i i^o

(C. 6)

If we define k = j-1 we have

R(z) =
03 . k

[z - z ^ zk ^ Prob(X = i)
k=0 k^O i=0

(C. 7)

From the properties of the z-Transform we get

R(z) =
x

z

(1-z)
z X(z)

(1-z) (C. 8)

x

1 - X(z)
(1-z) (C. 9;

where X(z) is the P. G. F. of the random variable X. If X

follows a modified binomial distribution with parameter NO

and P, we get the following expressions for R(z)

NO.
R(z) = z. -[l-(l:p)"^

NO P (1-z)
N 0

1 - [Pz + (1-P)""] - (1-P)

[1 - d-p)NO]

NO

(C. 10)

NO P (1_" [l -[PZ + (1-P)]"°] (C. 11)

where

x = NO P

[1- d-p)NO]

102

(C. 12)

It is easy to show that for a binomial random variable

Y, we obtain the same result. That is, the residual of a

modified binomial distribution is equal to the residual of

a binomial distribution.

APPENDIX D

Analysis ro rams

This appendix contains the following programs and

"header" files.

MULTI1.C : Analysis program for the Bernouilli traffic

distribution model (B_model) developed in

section 3. 3.

MULTI3. C : Analysis program for the multinomial traffic

distribution model (MM_model) developed in

section 3. 4.

MULTI4. C : Analysis program for the mutinomial traffic

distribution model with residual service time

(MR_model) developed in section 3. 5. It also

supports the grouped output ports model

(section 3. 6).

SIZE. H : "Header" file include in each program to define

the switch parameters.

104

/'
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/**'

MULTI1.C

******/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Program to compute the probabilities related to the
MULTICAST SWITCH analysis. The switch has N1 inputs
and NO outputs. Packets arrive at the inputs at'a
rate = L packets per second. Each packet generates a
random number of copies according to a BINOMIAL
distribution with parameters PEE"and NO. */
The choosing of a particular output port is a BERNOUILLI*/
trial with parameter PEE. Time is sliced in slots and
the service time corespond to the number of slots
required to transmit all the copies generated .
Conflicts at outputs are resolved by random selection.
Copies that have not gain acces to an output port have
to be retransmit.

*/
*/
*/
*/
*/
*/
*/
r/

^include <size. h>

main ()

{

/* VARIABLES */

double rho, pee;
short i, j;

/*************/
/* CORE */
/*************/

pee = PEEMIN;
while (pee <= PEEMAX)

{
rho = RHOMIN;
while (rho <= RHOMAX)

{
compu(rho, pee);
if (rho < . 95)

{

rho = rho + RHOINC;
}

else
{
rho = rho + (RHOINC/5. 0);

/*
/*
/*
/*

105

pee == pee + PEEING;
}

[/
compu. c */

*/
Fonction to compute the service time and delay of the */
multicast switch. - */

*****/

compu(rho, pee)

/*************/
/* PARAMETERS*/

double rho, pee;

{

/* variables */
/A************/

short
short
double
double
double
double
static
static
static

i, l, j, k, n;
expo;

para_lng, delay, ser square, lamda;
rho_f'act, pro_fact, i'er time;
power () /product () , bino^mi () , odd_par, even_par;
bin_fact, even sum, odd sum, sum;'
double p_l_mo[KMAX+iy, p_o_l[KMAX+1][KMAX+1] ;
double P_l_k[KMAX+1][KMAXTl], q_n_k[NMAX+1][KMAX+1];
double p_k, q_n[NMAX+1] , tq_n, tp~l-k;

***********/
/* Print the context information of te calculation */

****/

printf("\n\n N1= %2d N0= %2d KMAX= %2d NMAX= %2d RHO= %e PEE= %e",

prlntfl. Wn., ; Nr, NO, KM^, NM^<, rho. pee);.

106

/* compute for all vales of "1"
/* PROB [first 1 or more throught]

********/
*/
*/

**/

for (1=0; 1 <= KMAX; 1++)
{
p 1 mo[l] = 0. 0;

/* compute the summation */

for (i =0; i<= N1-1; i++)
{

/* get the binomial factor */

bin_fact = binomi(i, bin fact, N1-1);

/* compute the "RHO" products */

para Ing = rho;
rho_fact = power(para Ing, i);
para Ing = 1. 0 - rho;
expo = (N1 - l)-i;
rho_fact = rho_fact * power(para_lng, expo);

/* compute the product factor */

para_lng = 1. 0 - pee;
expo = i+1;
para_lng = power(para_lng, expo);
para_lng = (1. 0-para_lng)/(expo*pee);
pro_fact = power(para_lng, l);

/* add to the summation */

P_l_mo[l] = pl mo[l] +
(bin_fact *rho_fact * pro fact);

/*
printf ("\n\n 1 = %2d P[first 1 or more] = %e",

l, p_l_mo[l]);
printf("\n\n"); ~- ~
*/
}

/* compute PROB [first "1" throughttk]
**/
*/

107

for (k=0; k <= KMAX; k++)
{

for (1=0; 1 <= k; 1++)
{
/* compute the summation

sum = 0. 0;
even sum = 0. 0;
odd sum = 0. 0;
for (j=0; j <= k-1; j++)

/* get the binomial factor */

bin_fact = binomi(j, bin fact, k-1);

/* compute the even/odd summations */

if (j %2==0)
{

even_sum = even sum + (bin_fact * p_l_mo[1+j]);
sum = sum + (bin_fact * p^l_mo [l+jT)7

else
{

odd_sum = odd sum + (bin_fact * p_l_mo [1+j]) ;
sum = sum - (bin_fact * p_l_mo [l+j'jV;

P_o_l[l] [k] = even_sum - odd sum;

/*
printf ("\n\n 1 = %2d k = %2d sum = %25. 15e p[first l|k] = %25. 15e",

printf("\n\n"); l. k, sum, p_o_l[1][k] ̂ .
}

/* compute PROB [1 (all possible sets) |k]
'**/

*/

tp 1 k= 0. 0;
for (1=0; K=k; 1++)

{

108

/* get the binomial factor */

bin_fact = binomi(l, bin fact, k);

P_l_k[l][k] = bin_fact * p o 1[1] [k];

tp_l_k = tp_l_k + p_l___k[l] [k];

/*
printf ("\n\n 1 = %2d k = %2d p[l all sets Ik] = %e",

l, k, p_l_k[l] [k]);
printf("\n\n"); '- -

}
^/

/*
printf ("\n\n k = %d tp_l_k = %e", k, tp 1 k);
*/

/* Compute the probability of the number of slots */
/* required to transmit the k packets condition on k */

for (n = 0; n <= NMAX; n++)
{

for (k = 0; k <= KMAX; k++)
{

if (k==0 && n==0)
{

q_n_k[n][k] = 1. 0;
}~

else if (n==0 && k>0 | | k==0 && n>0)

q_n_k[n][k] = 0. 0;

else if (n== i)

q_n_k[n][k] = p_l k[k][k];

else
{

q_n_k[n][k] = 0. 0;
for (1= 0; 1<= k; 1++)

{

q_n_k[n][k] =q_n_k[n][k] +
(P_l_k[l] [k] * q_n_k[n-l] [k-1]) ;

}
}

109

/*
printf("\n\n n = %2d k = %2d q_n_k = %e",

n, k, q_n_k[n] [k]);

}
/*
printf("\n\n");
*/
}

/*
/*
/*

*******************^
Compute the number of slots required by avera- */

ging over all possible values of "k" the number */
copies generated

/*****

tq_n = 0. 0;
for (n= 0; n<= NMAX; n++)

q_n[n] = 0. 0;
for (k = 0; k <= KMAX; k++)

{

/* Compute the prob. of k copies generated

bin_fact = binomi(k, bin fact, NO);
para_lng = pee;
pro_fact = power(para_lng, k);
para_lng = 1. 0 - para-lng;
pro_fact = pro_fact *-power (para lng, NO-k);
p_k = bin_fact-* pro fact; - ~

/* Compute the prob. of n slots required

q_n[n] = q_n[n] + (p_k * q_n_k [n] [k]) ;

tq_n = tq_n + q n[n];

printf ("\n\n n = %2d q_n = %e", n, q_n[n]);
}

/*
printf ("\n\n tc^_n = %e", tc[_n);
*/

*/

*/

/* Compute the average service time and the
/* delay

ser time = 0. 0;
ser square = 0. 0;

**/
*/
*/

r**/

110

for (n= 0; n<= NMAX; n++)

/*

ser_time = ser_time + ((double)n * q_n[n]);
ser_square = ser_square + ((double) (n * n) * q_n[n]);

printf ("\n\n average service time = %e", ser time);
printf ("\n\n"); ""~ ----- --'- - , ^^_^^^, ,
printf ("\n\n average (service time)**2 = %e", ser sauare);
printf ("\n\n"); ' -' ~ '" '---"^--"
*/
lamda = (rho / ser time);
/*

printf ("\n\n lamda = %e msg/slot", lamda);
printf ("\n\n");
*/
delay = ser_time + ((lamda*ser_square)/(2. 0*(1. 0-rho)));

printf ("\n\n^lamda =%e serv =%e deTay =%e", lamda/ser time, delay);
printf("\n\n") ; ' . ----, ---_--.. -, >-^^j,,,
printf ("\n\n");
}

Ill

/*
/*
/*
/*
/*
/*

Fonction power() qui calcule Ie resultat du parametre
fact eleve a la puissance 1.

PARAMETRES: fact parametre a elever a la puiss,
1 exposant

c/
*/
*/
*/
*/
*/
*/

double power (fact, 1)

/**************^

double fact;
short 1;

/* VARIABLES */

double
short

result;
i;

/* CORPS */
/***********/

result = 1. 0;
if (1 !=0)

{

for (i=l; i<=l; i++)

result = result * fact;

}
/*
printf ("\n\n entry = %e power/result
*/
return (result);
}

= %e", fact, result);

/*
/*
/*
/*

Fonction^product() utilisee pour calculer un produit
avec variable allant d'une valeur minimal a une valeur
maximal.

*/
*/
*/
*/

112

/*
/*
/*
/*
/*

PARAMETRES: fact

1

double product (fact, 1)

/* PARAMETKES */

double
short

fact;
1;

{

/**************y
/* VARIABLES */

facteur a multiplier

indice maximal du produit

*/
*/
*/
*/
*/

double
short

result;
i;

/* CORPS */
/*************/

result = 1. 0;
for (i= 1; i<= 1; i++)

{

result = result * (fact + i);
}

/*
printf ("\n\n product/result = %e", result);
*/
return (result);
}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Fonction binomi() utilisee pour calculer un coeficient
binomial quelconque .

PARAMETRES: ind_act = indice actuel du coeficient
pre_fact= coeficient calculer precedem

ment avec 1'indice (ind act-
ind max = indice maximal

***/
*/
*/
*/
*/
*/
*/
*/

D*/
*/
*/

113

double binomi (ind_act, pre fact, ind max)

/* PARAMETRES */

short
double
short

ind act;
pre fact;
ind max;

/**************/

double bin fact;

/*************/
/* CORPS */

/* compute the binomial factor

if (ind act == 0)

bin fact = 1. 0;

else
{

bin_fact = pre_fact * ((double)ind_max - (double)ind act +1. 0)
/(double)ind act;

/*
printf("\n\n bin_fact == %e", bin fact);
*/
return (bin fact);
}

114

/******
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

MULTI3. C :

Program to compute the probabilities related to the
MULTICAST SWITCH analysis. The switch has N1 inputs
and_NO outputs. Packets arrive at the inputs at"a
POISSON rate = L packets per second. Each packet
generates a MODIFIED-BINOMIAL number of copies. The
copies from all input ports are pooled together and
distributed to the output ports according'to a
MULTINOMIAL distribution.
Time is sliced in slots and the service time corespond
to the number of slots required to transmit all the
copies generated .
Conflicts at outputs are resolved by random selection.
Copies that have not gain access to an output port have
to be retransmit.
The program computes the probabilities for different
values of PEE = prob. of sending a copy to an output
port and for different values of RHO =~load to the
system.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

r********

finclude <size.h>

static double conv[2][MTMAX+1];
static double fonct[MTMAX+1];

/* convolution array

static double
static double
static double

conv ave;
conv var;

conv tot;

/

double
short

rho, pee;
i/J;

/*************/
/* CORE */
/*************/

pee = PEEMIN;
while (pee <= PEEMAX)

{

115

rho = RHOMIN;
while (rho <= RHOMAX)

{

compu(rho, pee);
if (rho < . 95)

{
rho = rho + RHOINC;
}

else
{

rho = rho + (RHOINC/5.0);
}

}
pee = pee + PEEING;
}

}

/*******

/*
/* Fonction to compute the service time and delay of the
/* multicast switch.
/A**********************

compu(rho, pee)

r/
*/
*/
*/

***/

/' r/
/* PARAMETERS*/

double rho, pee;

{

/*************/
/* variables */
/*************/

short
double
double
double
double
double
double
double
double

i, 1, j, k, n, mt, expo, ind res;
para_lng, delay, ser_square, lamda, sum2 fact;
rho_f act, pro_f aether time, bi[NO+l];~
power(), product () , bin^omi (), sum fact, bin2 fact;
bin_fact, even_sum, odd_sum, glojfact ,prob Tact;
p_l_mo [KMAX+1 F, p_o_l [KMAX+1] [KMAX+1]; -
p_l_k [KMAX+1] [KMAX+1], q_n_k [NMAX+1][KMAX+ 1] ;
P_k, q_n[NMAX+1], pl_mo_mt[KMAX+l][MTMAX+1];
bi_ave, bi var, bi to^t;

/*************/
/* corps */

116

/* Print the context information of te calculation */

printf("\n\n N1= %2d N0= %2d NMAX= %2d RHO= %e PEE= %e",
NI, NO, NMAX, rho, pee);

printf("\n\n");

/* compute for all possible values of "mt" */
/* PROB [first 1 through! or more Imt] */

A*******************

for (mt = 0; mt <= MTMAX; mt++)
{

for (1=0; 1 <= KMAX; 1++)
{

pl mo mt[l][mt] = 0. 0;

/* compute the global factor ;/

glo_fact = power ((double)NO, 1);
glo_fact = glo_fact / product (mt, l);

/* compute the summation */

expo = mt + 1;
even sum = 0. 0;
odd sum = 0. 0;

for (i= 0; i<= 1; i++)

{

/* compute the binomial factor */

bin_fact = binomi(i, bin fact, 1);

/* compute one of the partial summation with
/* the coresponding probability factor

if (i%2==0)
{
/* even summation r/

*/
*/

else

prob_fact = 1. 0 - ((double)i/(double)NO);
prob_fact = power (prob_fact, expo);
even_sum = even_sum + (bin_fact * prob fact);

117

{
/* odd summation k/

}

prob_fact = 1. 0 - ((double)i/(double)NO);
prob_fact = power (prob_fact, expo);
odd_sum = odd_sum + (bin^fact * prob fact);

pl_mo_mt[l][mt] = glo_fact * (even_sum - odd sum);

/*
printf ("\n\n 1 = %2d mt = %2d P(l or more Imt) = %e",

l, mt, pl_mo mt[l][mt]);
printf ("\n\n"); - ~ -
*/
}

/********** ***************^^^^^^^^^^^^^^^^. ^^^^. ^^^^. ^^^^^^^^^^^^
/* compute the PROB [first 1 or more] by averaging over */
/* all^possible values of "mt" the number'of interfering" */
/* copies from the N1-1 other input ports -------3 ^,

/* Compute the MODIFIED BINOMIAL number of copies generated */
/* by one input. * - ^--------- ^,

bi[0] =0. 0 + (1. 0 - rho) ;
bi ave = 0. 0;
bi-tot = 0. 0;
bi var = 0. 0;
bin fact = 1. 0;
for (i= 1; i<= NO; i ++)

{

bin_fact = binomi (i, bin fact, (short)NO);
pro_fact = poi/er (pee, i)7
pro_fact = pro_fact / (1. 0 - power(1. 0-pee, (short)NO));
para_lng = 1. 0 - pee;

b.i[lL= bin_fact. *. pro_fact * power (para_lng, (short)NO-i) ;
bi[i] = rho * bi[i]; - ~ ~ -
bi_ave = bi_ave + bi[i] * (double)i;
bi_var = bi_var + bi[i] * (double)(i*i);
bi_tot = bi_tot + bi[i];
}

bi_var = bi_var - (bi ave * bi ave) ;

fifdef TEST

/* print the results

118

for (i= 0; i<= NO; i++)
{

printf ("\n\n bi(%d) = %e", i, bi[i]);

printf ("\n\n bi_ave = %e bi_var = %e bi tot = %e",
bi_ave, bi var, bi tot);

#endif

/* Compute the convolution to get the distribution of the total*/
/* number of conflicting copies from N1-1 input-ports. ~"~ '"~~-*/

convo (N0, &bi[0], N1-1);
ind_res = (N1) %2; /* indicates which array holds results*/

#ifdef TEST

/* print the results */

for (i = 0; i <- MTMAX; i++)
{

printf ("\n\n conv(%d) = %e", i, conv[ind res][i]);

printf ("\n\n conv_ave = %e conv_var = %e conv tot = %e",
conv_ave, conv_var, conv tot) ;

#endif

/* compute the PROB [first 1 or more]

for (1= 0; 1<= KMAX; 1++)
{

p_l_mo[l] = 0. 0;
for (mt= 0; mt <= MTMAX; mt++)

p_l_mo[l] = p 1 mo[l] +
pT_mo_mt[l][mt] * conv[ind_res][mt];

/:
}

printf("\n\n 1 = %2dk = %2d p[first 1 or more] = %e",
l, p_l_mo[l]);

printf ("\n\n); "~ -
*/
}

/* compute PROB [first "1" throught|k]

for (k= 0; k<= KMAX; k++)

119

{

for (1=0; 1 <= k; 1++)
{

/* compute the summation

even sum = 0. 0;
odd sum = 0. 0;
for (j=0; j <= k-1; j++)

/* get the binomial factor

bin_fact = binomi(j, bin fact, k-1);

/* compute the even/odd summations

if (j %2==0)
{

else

even sum = even sum +

(bin_fact * p_l_mo[1+j]) ;

^

{
odd sum = odd sum +

(bin_fact * p_l_mo[1+j]) ;
} - -- -

}

P_o_l[l][k] = even sum - odd sum;
/*

printf ("\n\n 1 = %2d k = %2d p[first l|k] = %e",
l, k, p_o_l[l] [k]);

printf("\n\n"); '- -
*/
}

/* compute PROB [1 (all possible sets) |k]

for (1=0; K=k; 1++)
{

/* get the binomial factor */

bin_fact = binomi(l, bin fact, k);

P_l_k[l][k] = bin_fact * po 1[1][k];
f*~ ~ ~~ ~

printf ("\n\n 1 = %2d k = %2d p[l all sets|k] = %e",

120

}

*/
}

l, k, p_l_k[l][k]);

/*
printf("\n\n");
*/

/* Compute the probability of the number of slots */
/* required to transmit the k packets condition'on k *',

****/

for (n = 0; n <= NMAX; n++)
{

for (k = 0; k <= KMAX; k++)
{

if (k== 0 &&n==0)
{

q_n_k[n][k] = 1. 0;

else if (n==0 && k>0 | | k==0 && n>0)

q_n_k[n][k] = 0. 0;

else if (n== i)
{

q_n_k[n][k] = p_l k[k][k];

else
{

q_n_k[n][k] = 0. 0;
for (1=0; 1 <= k; 1++)

{

q_n_k[n][k] =qL_n_k[n][k] +
(P_l_k[l] [k] * q_n_k[n-l] [k-1]) ;

}
}

/*
printf("\n\n n = %2d k = %2d q_n_k = %e",

n, k, q_n_k[nl[k]);
*,
}

/*
printf("\n\n");
*/
}

121

/* Compute the number of slots required by avera-
/* ging over all possible values of "k" the number'
/* copies generated by our target input port. This
/* number of copies follows a MODIFIED-BINOMIAL dist.

*/
*/
*/
*/

q_n[0] = 0. 0;
for (n= 1; n<= NMAX; n++)

{

q_n[n] = 0. 0;
for (k = 1; k <= KMAX; k++)

/* compute the prob of k copies generated "/

bin_fact = binomi(k, bin fact, NO);
pro_fact = power(pee, k)7
pro_fact = pro_fact / (1. 0 - power ((1. 0-pee), N0))
pro_fact = pro_fact * power ((1. 0-pee), NO-k); .
p_k = bin_fact-* pro fact;

/* compute the prob of n slots required

q_n[n] = q_n[n] + (p_k * q_n_k [n] [k]) ;

^/

printf ("\n\n n = %2d q_n = %e", n, q_n[n])
*/
}

/* Compute the average service time and the average */
/* delay "" */

ser time = 0. 0;
ser square = 0. 0;
for (n = 0; n <= NMAX; n++)

{

ser_time = ser_time + (n * q n[n]);
ser_square = ser_square + ((n * n) * q_n[n]);

/*
printf ("\n\n average service time = %e", ser time);
printf ("\n\n"); ^~ ---- -- - , -_. ^^,,
Pnntf ("\n\n average (service time) **2 = %e", ser square);
printf ("\n\n"); ' -. - -- , _-_^^^^^, ,
*/
lamda = (rho / ser time);
/*
printf ("\n\n lamda = %e msg/slot", lamda);
printf ("\n\n");
*/

122

delay = ser_ti. me + ((lamda*ser_square) / (2. O* (1. 0-rho))) ;
printf ("\n\n^lamda-=%e service =%e delay =%e", lamda/ser time, delay);

printf("\n\n") ; ' ' , ---, --_--. -, ̂ ^^^,,,
}

123

/*
/*
/*
/*
/*
/*

Fonction power() qui calcule Ie resultat du parametre */
fact eleve a la puissance 1. ~ */

*/
fact parametre a elever a la puiss. */
1 exposant */

**********/

PARAMETRES:

double power (fact, 1)

/* PARAMETRES */

double fact;
short 1;

{

/**************/

double result;
short i;

/***********/
/* CORPS */
/***********/

result = 1. 0;
if (1 !=0)

{

for (i=l; i<=l; i++)
{

}

result = result * fact;
}

/*
printf ("\n\n entry = %e power/result = %e", fact, result);
*/
return (result);
}

/*******
/*
/* Fonction product() utilisee pour calculer un produit
/* avec variable allant d'une valeur minimal a une valeur
/* maximal.

*/
*/
*/
*/

124

/*
/*
/*
/*
/*

PARAMETRES: fact

1

facteur a multiplier

indice maximal du produit

*/
*/
*/
*/
*/

double product (fact, 1)

/**************/
/* PARAMETRES */

short
short

fact;
1;

/* VARIABLES */

double
short

result;
i;

/* CORPS */
/*************^

result = 1. 0;
for (i = 1; i <= 1; i++)

{

result = result * (fact + i);
}

/*
printf ("\n\n product/result = %e", result);
*/
return (result);
}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Fonction binomiO utilisee pour calculer un coeficient
binomial quelconque .

PARAMETRES: ind_act indice actuel du coeficient
pre_fact= coeficient calculer precedem-

ment avec 1'indice (ind act-1)
ind max = indice maximal

'*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

125

double binomi (ind_act, pre fact, ind max)

/**************/
/* PARAMETRES */

short
double
short

ind act;
pre fact;
ind "max;

{

/**************/
/* VARIABLES */

double bin fact;

/* compute the binomial factor

if (ind act == 0)
{
bin fact = 1. 0;

else

bin_fact = pre_fact * ((double)ind_max - (double)ind act +1. 0)
/(double)ind act;

return (bin fact);
}

/*
/*
/*
/*

Fonction convoO used for computing the n-fold
convolution of a fonction

convo (ind max, adrfct, degree)

/**************/
/* PARAMETRES */

**/
*/
*/
*/
*/

**/

short ind max;
double *adr fct;
short degree;

126

short i, j, k, pre_ind, ind_act, ind_pre;

/*************/
/* CORPS */
/*************/

/* Get a working copy of the fonction and initialise the
/* convolution first array to the function values

for (j = 0; j <= (ind max*degree); j++)

if (j <= ind max)
{

conv[0][j] = *adr fct;
fonct[j] = *adr fc't;
adr fct += 1;
}

*/
*/

else
{

conv[0][j] = 0. 0;
fonct[j] = 0. 0;
}

/* Compute the n-fold convolution where n = degree

conv ave == 0. 0;
conv tot = 0. 0;
conv var = 0. 0;

for (i= 1; i<= (degree-1); i++)

ind act = i % 2;
ind_pre = (i+1) % 2;
for (j =0; j<= (ind_max*degree) ; j++)

conv[ind act][j] = 0. 0;
for (k=0; k<= j; k++)

{

127

return;
}

conv[ind_act][j] = conv[ind_act][j] +
(conv[ind_pre][k] *-fonct[j-k]) ;

if (i == (degree-1))
{

conv_ave = conv_ave + (conv[ind_act][j] * (double)j);
conv_var = conv_var + (conv[ind_actl[j] * (double) (j*j)-);

c^onv__tot = c'onv tot + conv[Tnd_act] [j];

}

conv_var = conv_var - (conv ave * conv ave) ;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/'

#include

MULTI4.C

128

****/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Program to compute the probabilities related to the
MULTICAST SWITCH analysis. The switch has N1 inputs
and NO outputs. Packets arrive at the inputs at*a
POISSON rate = L packets per second. Each packet
generates a MODIFIED-BINOMIAL number of copies. The
copies from all input ports are pooled together and
distributed to the output ports according to a
MULTINOMIAL distribution. The evaluation'of the traffic */
interfering with our targeted input port is done by */
computing the distribution of the residual number of
copies coming from each interfering input port and
then^by performing the N1-1 fold convolution to get the */
total conflicting traffic.
Time is sliced in slots and the service time corespond
to the number of slots required to transmit all the
copies generated .
Conflicts at outputs are resolved by random selection'.
Copies that have not gain access to an output port have */
to be retransmit. We also compute the cases where mul- */
tiple output ports are grouped at one output trunk.
The program computes the probabilities for different
values of PEE = prob. of sending a copy to an output
port and for different values of RHO =-load to the
system.

<size. h>

static double conv[2][MTMAX+l];
static double fonct[MTMAX+1];

/* convolution array

static double
static double
static double

conv ave;
conv var;
conv tot;

*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

double rho, pee;
short i, j;

y*************^

129

CORE

pee = PEEMIN;
while (pee <= PEEMAX)

{

rho = RHOMIN;
while (rho <= RHOMAX)

{

compu(rho, pee);
if (rho < . 95)

}

/'
/*
/*
/*

else

}

{

rho = rho + RHOINC;
}

2

{

rho = rho + (RHOINC/5. 0);
}

pee = pee + PEEING;
}

Fonction to compute the service time and delay of the
multicast switch.

r/
*/
*/
*/

compu(rho, pee)

/*************/
/* PARAMETERS*/
/*************/

double rho, pee;

{

/*************^1
/* variables */
/*************/

short
double
double
double
double
double
double
double

i, l, j, k, n, rt, expo, ind res;
para_lng, delay, ser_square, lamda, sum2 fact;
rho_fact, pro_fact, s'er_time, bi[KMAX+lT, re[KMAX+l];
power(), product (), bindmi(), sum_fact, bin2 fact;
bin_fact, even_sum, odd_sum, glo_?act, prob "fact;
p_l_mo [KMAX+ IT, p_o_l [KMAX+ 1] [KMAX+1-] ; -
p_l_k [KMAX+1] [KMAX+1] , q_n_k[NMAX+1][KMAX+1] ;
p_k, q_n[NMAX+1], pl_mo_rt[KMAX+l][MTMAX+1];

130

double bi_ave, bi_var, bi tot, re ave, re var, re tot;

/* corps */
/*************/

**********/
/* Print the context information of te calculation */

printf("\n\n NI=%2d N0=%2d KMAX=%2d NMAX=%2d RHO=%e PEE=%e",
N1, NO, KMAX, NMAX, rho, pee);

printf("\n\n");

* * */
*/

/****

/* compute for all possible values of "rf
/* PROB [first 1 throught or more Irt] */

for (rt =0; rt <= MTMAX; rt++)
{

for (1=0; 1 <= KMAX; 1++)
{

pl_mo_rt[l][rt] = 0. 0;

/* compute the global factor */

glo_fact = (double)S * (double)NO;
glo_fact = power (glo fact, 1);
glo_fact = glo_fact /"product (rt, l);

/* compute the summation */

expo = rt + 1;
even sum = 0. 0;
odd sum = 0. 0;

for (i = 0; i <= 1; i++)

{

/* compute the binomial factor */

bin_fact = binomi(i, bin fact, 1);

/* compute one of the partial summation with
/* the coresponding probability factor

if (i %2==0)
{

*/
*/

131

/* even summation r/

else

prob_fact = 1. 0 - ((double)i/(double)NO);
prob_fact = power (prob_fact, expo);
even_sum = even_sum + (bTn_fact * prob fact);

{
/* odd summation r/

prob_fact = 1. 0 - ((double)i/(double)NO);
prob_fact = power (prob_fact, expo);
odd_sum = odd__sum + (bin^fact * prob fact);
} - ~ ' ~

}

pl_mo_rt[l][rt] = glo_fact * (even sum - odd sum);

/*
printf ("\n\n 1 = %2d rt = %2d P(l or more[rt) = %e",

l, rt, pl_mo_rt[l][rt]);
printf ("\n\n"); -, --..--_.-_--. -. ^., ,,
*/
}

/* compute the PROB [first 1 or more] by averaging over
/* all possible values of "rt" the number'of interfering'
/* copies from the N1-1 other input

*/
*/
*/

. */

/* Compute the BINOMIAL distribution of the number of copies */
/* generated_by one input. We use the BINOMIAL distribution" */
/* instead of the MODIFIED-BINOMIAL since the"RESIDUAL"LIFE */
/* of bo.th distribution is the same. ----- --- ^,

bi ave = 0. 0;
bCtot = 0. 0;
bi var = 0. 0;
for (i =0; i <= KMAX; i++)

{

bin_fact = binomi (i, bin fact, (short)KMAX);
pro_fact = power (pee, i)7
para_lng = 1. 0 - pee;
bi[i] = bin_fact * pro_fact * power (para_lng, (short)KMAX-i);
bi_ave = bi^aye + bi[iT * (double)i; " -
bi_var = bi_var + bi[i] * (double)(i*i);
bi_tot = bi-tot + bi[i];

bi_var = bi_var - (bi ave * bi ave) ;

132

#ifdef TEST

/* print the results */

for (i= 0; i<= KMAX; i++)
{

printf ("\n\n bi(%d) = %e", i, bi[i]);

printf ("\n\n bi_ave = %e bi_var = %e bi tot = %e",
bi_ave, bi var, bi tot);

#endif

/* Compute the residual number of conflicting copies from an */
/* interfering input port as seen by our target input port-" */

re[0] = 0. 0 + (1. 0 - rho);
re ave = 0. 0;
re tot = 0. 0;
re var = 0. 0;

for (i= 1; i<= KMAX; i++)
{
re[i] = 0. 0;
for (j =0; j<= i-1; j++)

re[i] = re[i] + bi[j];

re [i] = rho * (1. 0 - re [i]) / ((double)KMAX * pee);
re_ave = re_ave + re[i] * (double)i;
re_var = re_var + re [i] * (double)(i*i);
re_tot = re tot + re [i];
} -

re_var = re_var - (re ave * re ave) ;

#ifdef TEST

/* print the results */

for (i= 0; i<= KMAX; i++)
{

printf ("\n\n re(%d) = %e", i, re[i]);

printf ("\n\n re_ave = %e re_var = %e re tot = %e",
re_ave, re var, re tot);

#endif

/* Compute the convolution to get the distribution of the total*/
/* number of conflicting copies from N1-1 input ports. */

convo (KMAX, &re[0], NI-l);

133

/* indicates which array holds results*/ind res = (N1) % 2;

#ifdef TEST

/* print the results *

for (i = 0; i <= MTMAX; i++)
{

printf ("\n\n conv(%d) = %e", i, conv[ind res][i]);

printf ("\n\n conv_ave = %e conv var = %e conv tot = %e",
conv_ave, conv var, conv tot);

#endif

/* compute the PROB [first 1 or more] */

for (1=0; 1 <= KMAX; 1++)
{

pl mo[1] = 0. 0;
for (rt= 0; rt <= MTMAX; rt++)

{

P_l_mo [1] = p 1 mo[l] +
pl_mo_rt[l][rt] * conv[ind res][rt];

/*
printf("\n\n 1 = %2d k = %2d p[first 1 or more] = %e",

l, p_l_mo[l]);
printf ("\n\n); ~ ~
*/
}

/* compute PROB [first "1" throught|k] */

for < k= 0; k<= KMAX; k++)
(
for (1=0; 1 <= k; 1++)

{

/* compute the summation */

even sum = 0. 0;
odd sum = 0. 0;
for (j=0; j <= k-1; j++)

/* get the binomial factor */

bin_fact = binomi(j, bin fact, k-1);

134

/* compute the even/odd summations

if (j%2==0)
{

else

even sum = even sum +

(bin_fact * p_l_mo [1+j]) ;

2

{
odd sum = odd sum +

(bin_fact * pl mo[l+j]);

}

P_o_l[l][k] = even sum - odd sum;
/*- -
printf ("\n\n 1 = %2d k = %2d p[first l|k] = %e",

l, k, p_o_l[l][k]);
printf("\n\n"); -- ~
*/
}

/* compute PROB [1 (all possible sets) |k] */

for (1=0; K=k; 1++)
{

/* get the binomial factor */

bin_fact = binomi(l, bin fact, k);

P_l_k[l][k] = bin_fact * p o 1[1] [k];
/*

printf ("\n\n 1 = %2d k = %2d p[l all sets Ik] = %e",
l, k, p_l_k[l] [k]);

}
}

/*
printf("\n\n");
*/

/* Compute the probability of the number of slots */
/* required to transmit the k packets condition on k */

for (n= 0; n<= NMAX; n++)

135

{

for (k= 0; k<= KMAX; k++)
{
if (k==0 &&n==0)

{

q_n_k[n][k] = 1. 0;

else if (n== 0 && k>0 | | k==0 &&n> 0)

q_n_k[n][k] = 0. 0;

else if (n== 1)
{

else

q_n_k[n] [k] = p_l_k[k] [k] ;
}-- ~--

i

{

q_n_k[n][k] = 0. 0;
for (1= 0; 1<= k; 1++)

{

q_n_k[n][k] =q_n_k[n][k] +
(P_l_k[l] [k] * q_n_k[n-l] [k-1])

/'
}

}

printf("\n\h n = %2d k = %2d q_n_k = %e",
n, k, q_n_k[nl[k]);

*/
}

/*
printf("\n\n");
*/
}

/*
/*
/*
/*
/-

*****/
Compute the number of slots required by avera- */

ging over all possible values of "k" the number */
copies generated by our target input port. This */

number of copies follows a MODIFIED-BINOMIAL dist.

q_n[0] = 0. 0;
for (n= 1; n<= NMAX; n++)

{

q_n[n] = 0. 0;
for (k = 1; k <= KMAX; k++)

{

/* compute the prob of k copies generated

bin_fact = binomi(k, bin fact, KMAX);

y/

136

pro_fact = power(pee, k);
pro_fact = pro_fact / (1. 0 - power ((1. 0-pee), KMAX));
pro_fact = pro_fact * power((1. 0-pee), KMAX-k);
p_k . = bin_fact * pro fact;

/* compute the prob of n slots required

q_n[n] = q_n[n] + (p_k * q_n_k [n] [k]) ;

printf ("\n\n n = %2d q_n = %e", n, q n[n]);
*/

/*
pr:

}

c/

/* Compute the average service time and the average */
/* delay */

ser time = 0. 0;
ser square = 0. 0;
for (n= 0; n<= NMAX; n++)

{

ser_time = ser_time + (n * q_n[n]);
ser_square = ser_square + ((n * n) * q_n[n]);

/*
printf ("\n\n average service time = %e", ser time);
printf ("\n\n"); ~
printf ("\n\n average (service time)**2 = %e", ser square);
printf ("\n\n"); -
*/
lamda = (rho / ser time);
/*
printf ("\n\n lamda = %e msg/slot", lamda);
printf ("\n\n");
*/
delay = ser_time + ((lamda*ser_square)/(2. 0*(1. 0-rho)));

printf ("\n\n lamda-=%e service =%e delay =%e", lamda, ser time, delay);
printf("\n\n"); -
}

137

/*
/*
/*
/*
/*
/*

***/
*/

Fonction power() qui calcule Ie resultat du parametre */
fact eleve a la puissance 1.

PARAMETRES: fact parametre a elever a la puiss.
1 exposant

*/
*/
*/
*/

double power (fact, 1)

/**************/

/**************/

double
short

fact;
1;

{

/**************/
/* VARIABLES */

double result;
short i;

/***********
/* CORPS */
/***********/

result = 1. 0;
if (1 !=0)

{

for (i=l; i<=l; i++)
{

result = result * fact;

}
}

/*
printf ("\n\n entry = %e power/result
*/
return (result);
}

= %e", fact, result);

/*
/*
/*
/*

*/
Fonction product() utilisee pour calculer un produit */
avec variable allant d'une valeur minimal a une valeur */
maximal. */

138

/*
/*
/*
/*
/*

PARAMETRES: fact facteur a multiplier

1 indice maximal du produit

*/
*/
*/
*/
*/

double product (fact, 1)

/**************/
/* PARAMETRES */
/**************/

short
short

fact;
1;

{

/ **

/* VARIABLES
/-

double
short

c/
*/
r/

result;
i;

result = 1. 0;
for (i= 1; i<= 1; i++)

{

result = result * (fact + i);
}

/*
printf ("\n\n product/result = %e", result);
*/
return (result);
}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Fonction binomi() utilisee pour calculer un coe'ficierit
binomial quelconque .

PARAMETRES: ind act = indice actuel du coeficient
pre_fact= coeficient calculer precedem-

ment avec 1'indice (ind act-1)
ind max = indice maximal

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

139

double binomi (ind_act, pre fact, ind max)

/**************/
/* PARAMETRES */

short
double
short

ind act;
pre fact;
ind max;

{

/**************/

double bin fact;

/* compute the binomial factor

if (ind act == 0)
{

else

bin fact = 1. 0;
}

{

bin_fact = pre_fact * ((double)ind max - (double) ind act +
/(double)ind act7

return (bin fact);

/*
/* Fonction convo() used for computing the n-fold
/* convolution of a fonction
/*
/'
convo (ind_max, adr_fct, degree)

*/
*/
*/
*/

/* PARAMETRES */

/**************/

short ind max;
double *adr fct;
short degree;

140

short i, j, k, pre_ind, ind_act, ind_pre;

c/
/* CORPS */
/*************/

/* Get a working copy of the fonction and initialise the
/* convolution first array to the function values

for (j = 0; j <= (ind_max*degree); j++)

if (j <= ind max)
{
conv[0][j] = *adr fct;
fonct[j] = *adr fct;
adr fct += 1;

*/
*/

else
}

2

{

conv[0][j] = 0. 0;
fonct[j] = 0. 0;
}

/* Compute the n-fold convolution where n = degree

conv ave = 0. 0;
conv tot = 0. 0;
conv var = 0. 0;

for (i= 1; i<= (degree-1); i++)
{
ind act = i . % 2;
ind_pre = (i+1) % 2;
for (j = 0; j <= (ind_max*degree) ; j++)

conv[ind_act][j] = 0. 0;
for (k= 0; k<=j; k++)

141

{

conv[ind_act][j] = conv[ind act][j] +
(conv [ind_j>re] [k] *-fonct[j-k]);

if (i == (degree-1))
{

conv_ave = conv_ave + (conv[ind_act][j] * (double)j);
conv_var = conv_var + (conv[ind_act][j] * (double) (j*j));

conv_tot = conv_tot + conv[Tnd_act] [j];

}
}

conv_var = conv var - (conv ave * conv ave);
} -

return;
}

142

/* SIZE.H
/* Fichier entete specifiant les parametres qui definissent
/* la grandeur du commutateur
/*
/*

/*
#define
*/
#define
#define
#define
^define
^define
#define
^define
#define
#define
#define
#define
#define

TEST

N1
NO
s

KMAX
NMAX
MTMAX
RHOMAX
PEEMAX
RHOMIN
PEEMIN
RHOINC
PEEINC

16
16
2

16
256
(N1-1)*NO
1.0
1.0
0.1
0.1
0. 05
0.1

*/
*/
*/
*/
*/

**/

APPENDIX E

Simulation ro rams

This appendix contains the following programs and

"header" files.

SIM1. C : Simulation program of the unicast switch. This

program is used for validation purposes.

SIM1. H : "Header" file containing the data structures

definitions for SIM1.C.

SIMS. C : Simulation program for the multicast packet

switch. It also implememts the grouped output

ports.

SIMS.H : "Header" file containing the data structures

definitions for SIMS. C.

SIZE.H : "Header" file defining the switch parameters.

144

/^
/*
/*
/*
/*
/*
/*

siml. c:

:*/
*/
*/
*/

Simulation programme for the evaluation of performance of */
a multicast switch */

*/

^include
^include

"size.h"
"siml. h"

/* Tableau contenant les queues pour chaque port d'entree */

static short tran lim = IN SIZE - 1;
static struct IN_QUEU tab_inqueu[NI] = 0;

/* Tableau contenant les queues imaginaires pour chaque port de */
/* sorties. - ~ */

static struct OU_QUEU tab_ouqueu[NO] =0;

/* Tableaux contenant les "SEEDS" pour la generation des nombres */
/* aleatoires */

static unsigned in seed[NI] = 0;
static unsigned ou seed[NO] = 0;

/* Horloge qui tient Ie temps en nombre de slot */

static long int sys clock = OL;

/* Performance data report */

static struct PERF_BOX perf_box;

/* Error counter */

static short err cnt = 0;

145

*/
*/
*/
*/

/* main:
/*
/* Main program that calls the simulation routine for
/* different values of "lambda" and "pee". Each head-of-queue
/* packet generates a random number of copies by first choosing
/* its primary output port according to a uniform distribution'and*/
/* the other output ports by performing independent Bernouilli */
/* trials with probability P. A unicast switch is simulated by */
/* setting P = 0 ~ */

main ()

{

/* variables */
/****************/

short
long int
double

/******

/* program
/^

run ind, num run, !;
max time;
pee, lambda, rho;

'/
*/
r/

rho = 0. 0;
max time = SIM TIME;
pee = PEEMIN;
while (pee <= PEEMAX)

{
lambda = LAMBMIN;
while (lambda <= LAMBMAX)

{
if (rho >= MAX LOAD)

{
break;
}

/* Print the simulation parameters r/

printf ("\n\n");
printf ("\n\n simulation para :max time == %d lambda = %e pee = %e",

max_time, lambda, pee);

A********************

/* Call the simulator routine for all batch run and ... */
/* print the results */

146

for (run_ind = 0; run ind <= NUM RUN - 1; run ind++)
{ - ~ ~

simuli (max_time, run_ind, lambda, pee);
/*

printf ("\n\n batch = %d ser_time = %e delay = %e",
run_ind, perf_box. batch[run ind]. ave serv,
perf_box. batch[run_ind]. ave delay);-

*/
num run = run ind + 1;
}

/* get the average result of all batch run */

sim_stat (FCT_RES, num run, lambda, 0);
printf ("\n\n Average results:-service = %e delay = %e rho = %e",

perf_box. service, perf_box. delay, perf box. rho);

#ifdef SIM TEST
for (i = 0; i <= MAX PAQ -1; i += 4)

{

printf ("\n\n distribution: D(%d)=%e D(%d)=%e D(%d)=%e D(%d)=%e",
i, perf_box. dist[i], i+l, perf box. dist[i+l], i+2,
perf_box. dist[i+2], i+3, perf-box. dist[i+3]);
} - ~

printf ("\n\n distribution: D(%d)=%e", i, perf box. dist[i]) ;

#endif

printf ("\n\n distr. average = %e total prob. = %e",
perf_box. dis_ave, perf_box. tot_prob);

rho = perf box. rho;
if (rho > . 85)

{

lambda = lambda + (LAMBINC/5. 0);
}

else
{
lambda = lambda + LAMBINC;

}
}

pee = pee + PEEING;
rho = 0. 0;
}

147

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*

.
/'

simuli:

Simulation routine called by the main program. It simulate
the multicast switch for a specific value of:

max_time = the lenght of the simulation (slots)
run ind = the run number
lambda = average packet arrival rate
pee = the multicast probability

INPUT PARAMETERS:

long int
short
double
double

OUTPUT VALUE:

max time
run ind
lambda
pee

simuli (max_time, run_ind, lambda, pee)

/A***************/
/* parameter */

long int
short
double
double

{

max time;
run ind;
lambda;
pee;

/****************/
/* variables */

short
short
short
float

i, j, k, ind in, ind ou;
num arr, err code;
poissonO, enter_queu(), exit queu();
mth$random(), ran_num, prob_int, cum_prob;

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

program *,
/****************/

*******/

148

/* Initialise the clock and the seeds for R?^NDOM NUMBERS . . . */
/*.. . generation, the statitics and the input and output queues*/

err cnt = 0;
ran num = 0. 0;

sim_stat (FCT_INI, run ind, 0. 0, 0);

for (i = 0; i <= N1-1; i++)
{

in_seed[i] = (unsigned)(seedl[run ind]*(i+l));
tab_inqueu[i]. pt_in = &tab_inqueuTi]. li tran[0];
tab_inqueu[i]. pt_ou = Stab^inqueu[i]. li~tran[0];
tab_inqueu[i]. num tran = 07
}

for (j = 0; j <= N0-1; j++)

ou_seed[j] = (unsigned)(seed2[run ind]*(j+1));
tab_ouqueu[j]. num_cop = 0;
tab_ouqueu[j]. busy cnt = 0;
for (k= 0; k<= N1-1; k++)

{

tab_ouqueu[j]. ind_cop[k] = 0;

/* Initialise the clock and simulate for the desired number of*/
/* slots

sys clock = OL;
while (sys clock <= max time)

{ ~

/* Generate packets arrivals at input port (POISSON)

for (ind_in = 0; ind_in <= N1-1; ind in++)

num_arr = poisson(&in seedtind in], lambda);
if (num arr > 0)

{

/* packet arrival(s) at input port -> update queue*/

for (i = 1; i <= num arr; i++)
{

149

err_code = enter queu(ind in);
if (err code != SUCCES)

{
/* queu is full -> consider as an error

sim err (err code);
break;
}

/* Generate traffic distribution if new HOL(head of line) */
/* packet ' */

for (ind_in = 0; ind_in <= N1-1; ind in++)

if (tab_inqueu[ind_in]. pt ou->num cop == -1 &&
tab_inqueu[ind in]. num tran > 0)

/* New HOL packet -> update input queue information*/
/* ... and generate the copies */

#ifdef SIM DEBUG

printf ("\n\n in_queu = %d tran num = %d serv_beg = %d", ind in,
tab_inqueu[ind_in]. pt ou, sys^ clock);

#endif

tab_inqueu[ind_in].pt_ou->ser_beg = sys clock;
tab_inqueu[ind_in]. pt^ou->num-cop = 0;

/* Choose the primary output port */

ran_num = mth$random(&in_seed[ind in]);
prob int = 1. 0 / (float)-NO;
cum_j)rob = prob_int;

for (ind_ou = 0; ind_ou <= N0-1; ind ou++)

if (ran_num < cum^prob)

/* copy generated for that output -> update*/
/* ... output and input queues */

tab_inqueu[ind_in]. pt_ou->pri out = ind ou;
tab_inqueu[ind_in] . pt^ou->num~~cop += 1;'
tab_ouqueu [ind_ou] . num_cop +=-l;

150

else

tab_ouqueu[ind_ou]. ind_cop[ind in] = 1;
break;
}

{

/* Try the next output port -> change
/* interval

cum_prob = cum prob + prob_int;

*/
*/

/* Choose the secondary output ports */

for (ind_ou = 0; ind_ou <= N0-1; ind ou++)

ran_num = mth$random(&in_seed[ind in]);
if (ran_num < pee &&

tab_inqueu[ind_in]. pt_ou->pri out != ind ou)

/* copy generated for that output -> update*/
/* ... output and input queues

tab_inqueu[ind_in]. pt_ou->num_cop += 1;
tab_ouqueu[ind_ou]. num_cop +=-1;
tab_ouqueu[ind_ou]. ind cop[ind in] = 1;

(/

#ifdef SIM DEBUG

printf ("\n\n in_queu = %d tran_num = %d num_cop = %d", ind in,
tab_inqueu[ind_in] . pt_ou, tab_inqueuTind_in] . pt_ou'::>num cop) ;

#endif ~ ~ -

}

/* Contention resolution at all output ports

/* MODIF: Evaluate traffic distribution at output */

sim_stat (FCT DIS, run ind, lambda, 0);

/* END MODIF */

for (ind_ou = 0; ind ou <= N0-1; ind ou++)

/* determine the probability intervalles size depending*/
/* ... on the number of copies in contention and obtain*/

151

/' a random number

if (tab_ouqueu[ind_ou]. num_cop != 0)

/* Output queue not empty */

prob_int = l. O/(double)tab_ouqueu[ind_ou]. num cop;
ran_num = mth$random(&ou seed[ind ou]T;
cum_prob = prob_int;
tab_ouqueu[ind ou]. busy cnt +=l;

/* Scan for copies from particular input port */

for (ind_in = 0; ind_in <= N1-1; ind in++)
{ -
if (tab_ouqueu[ind_ou]. ind cop[ind in] == 1)

/* Found a copy from input port "ind in" */

if (ran_num < cum prob)

/* This copy is chosen "lucky" ->update*/
/* ... output and input queues and exit */

tab_ouqueu[ind_ou]. ind cop[ind in] = 0;
tab_ouqueu[ind^ou]. num-cop -=l7
tab_inqueu[ind_in] . pt_o^u->num_cop -=1;
break;

else

/* update the probability valid interval. */
/*... and look again for the lucky input port*/

cum_prob = cum_prob + prob_int;

#ifdef SIM DEBUG

printf ("\n\n ou_queu = %d num_cop = %d",
ind_ou, tab_ouqueu[ind_ou] . num cop) ;

ftendif

/* Update system clock */
******/

152

sys clock += 1;

/* Test for service completion at input queues and cumulate*/
/* ... the statistics if nececessary. */

for (ind_in = 0; ind_in <= N1-1; ind in++)
{ -
if (tab inqueu[ind in]. num tran > 0 &&

tab_inqueu[ind_in]. pt_ou->num cop == 0)

/* service completed -> update input queue, cumulate ... */
/* the statistics and update transaction output pointer */

exit queu(ind in, run ind);
} ~ ~ ~

/
/* Output the simulation results for the received values of .. */
/* ... "lambda" and "pee" */

sim_stat (FCT_REP, run ind, lambda, 0);
return;
}

153

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

poisson:

Routine that generates packet arrivals according to
a POISSON distribution. The method use is derived
from the Von-Neumann algorithm. The algorithm assum

an arrival rate equal to 1 and a time interval equal
to "lambda". But fortunately this is the same as'having
a time interval equal to 1 and an average arrival rate
equal to "lambda".

INPUT PARAMETERS:

- address of the seed to supply to the random number
generator.

- average packet arrival rate (lambda)

RETURN VALUE:

- number of packet arrivals

short poisson (adr seed, lambda)

/****************/
/* parameters */
/****************y

*/
*/
*/
*/
*/
*/
*/.
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*********/

unsigned int
double

{

*adr seed;
lambda;

/****************/
/* variables */

short i, num arr;
float mth$random(), mth$exp(), ran_num, expo;
double pro num, mlambda;

/****************/
/* program */

*****/
/* Get the exponential (prob of no arrival) for the received . */
/ value of lambda k/

154

mlambda = -lambda;
expo = mth$exp(Smlambda);

/****************
/* Determine the number of arrivals

pro_num = 1. 0;
for (i = 1; i <= MAX ARR; i++)

{
ran num = mth$random(adr seed);
pro_num = pro num * ran num;
if (pro num < expo)

{
/* number of arrivals is determine

*/
***/

}

num arr = i-1;
break;
}

return(num arr);
}

/*****
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

enter_queu:

Routine that takes care of managing the queue for
packets arrivals.

INPUT PARAMETERS:

- input queu indicator

* * *

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

short enter queu(ind in)

/ **************** /

/* parameters */
/****************/

short ind in;

{

/****************/
/* variables */
/****************/

short err code;

155

/****************^
/* program */
/A***************/

if (tab_inqueu[ind_in]. num tran == IN SIZE)

/* Input queue is full

else

err code = QUEU FULL;
} ~

3

{

/* Input queue not full -> save entry info.
/* ... and update queue

*/
*/

#ifdef SIM_DEBUG

printf ("\n\n in_queu = %d tran_num = %d arr_time = %d", ind in,
tab_inqueu[ind_in].pt_in, sys ^lock);

fendif ~ ----. -_

tab_inqueu[ind_in]. pt_in->arr_time = sys clock;
tab_inqueu[ind_in]. pt^in->num-cop = -1; ~/* New HOL */
tab_inqueu[ind_in].pt^in->pri-out = -1;
if (tab_inqueu[ind in]. pt in++ ==

&tab_inqueu[ind_in]. li tran[tran lim])

tab_inqueu[ind_in]. pt_in = &tab_inqueu[ind_in]. li tran[0];

tab_inqueu[ind in]. num tran += 1;
err code = SUCCES;
}

return(err code);
}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

exit queu:

^/
*/
*/
*/

Routine that takes care of input queu when packets*/
exit. - */

INPUT PARAMETER:

- input queu indicator
- batch indicator

short exit queu(ind in, run ind)

*/
*/
*/
*/
*/
*/

*********/

/* parameters */

156

short ind in;
short run ind;

{

li
/* variables

k/
*/

short err code;

/****************/
/* program */
/****************y

tab_inqueu[ind_in]. pt_ou->ser_end = sys clock;

#ifdef SIM DEBUG

printf ("\n\n in_queu = %d tran_num = %d ser end = %d", ind in,
tab_inqueu[ind_in] . pt_ou, tab_inqueu[Tnd in] . pt ou->'ser end);

#endif ~ ~~ ~

sim_stat (FCT_CUM, run_ind, 0, 0, tab_inqueu[ind_in]. pt ou);

if (tab_inqueu[ind in]. pt ou++ ==
&tab_Tnqueu[ind_in]. li tran[tran lim])

{ - - - _
tab_inqueu[ind_in]. pt_ou = &tab_inqueu[ind in]. li tran[0];

tab_inqueu[ind in]. num tran -= 1;
err code = SUCCES;
return(err code);
}

sim stat:

Routine that manage all the performance statistics of
the simulation.

INPUT PARAMETERS:

- function code
- pointer to an input transaction structure

157

/*

sim_stat (fct_code, run ind, lambda, adr tran)

/************** * */
/* parameters */
/A***************/

short fct code;
short run ind;
double lambda;
struct IN TR?^N *adr tran;

{

/****************/
/* variables */

float num run;
short i, j, num_cop;

/****************/
/* program */
/A***************/

switch (fct code)

{
case 0: /* Initialisation */

perf_box. batch[run_ind]. num_paq = 0;
perf_box. batch[run ind]. cum-serv = 0;
perf_box. batch[run_ind]. cum^delay = 0;
for (i = 0; i <= MAX PAQ; i++)

{

perf_box. batch [run_ind] . paqdis[i] = 0. 0;

break;

case 1: /* cumm. the statistics

if (sys clock > WARM UP)
{ ~
perf_box. batch[run_ind]. num paq +=l;
perf_box. batch[run ind]. cum~serv =

perf box.batch[run ind]. cum serv +
(adr_tran->ser_end - adr_tran->ser_beg) ;

perf_box. batch[run_ind]. cum_delay = - -
perf_box.batch[run_ind]. cum delay +

(adr_tran->ser_end - adr tran->arr time) ;

158

}
break;

case 2: /* report statistics k/

perf box. batch[run ind]. ave serv =
(double)per?_box. batch[run ind]. cum serv /
(double)perf box.batch[run_ind]. num-paq;

perf_box.batch[run ind]. ave_delay =
(double)per f_box. batch[run_ind]. cum_delay /
(double)perf_box. batch[run-ind] . num~paq;

for (i =? 0; i <= MAX PAQ; iT+) ~
{

perf_box. batch[run_ind]. paq dis[i] =
perf_box. batch[run_ind].paq-dis[i] /

(double)(SIM TIME - WARM UP) ;
}

break;

case 3: /* compute the final result by averaging over
/* all batch results

/* convert to floatnum run = run ind;
perf box. service = 0. 0;
perf_box. delay = 0. 0;
perf box. rho = 0. 0;
perf box. dis ave = 0. 0;
perf_box. tot_prob. = 0. 0;
for (i = 0;-i <= MAX PAQ; i++)

*/
*/

*/

{
perf box. dist[i]
}

0. 0;

for (i =0; i<= NUM RUN - 1; i++)
{

perf_box. service = perf_box. service + perf box. batch[i]. ave serv;
perf_box^delay = perf box. delay + perf_bo'x. batch [i] . ave_delay;

for (j=0; j <= MAX_PAQ; j++-) ~

perf_box. dist[j] = perf_box. dist[j] +
perf_box.batch[i].paq_dis[j];

}
}

perf_box. service = perf box. service / num run;
perfjoox. delay = perf_box. delay / num runT
perf_box. rho = lambda-* perf box. servTce;
for (i = 0; i <= MAX PAQ; iT+)

{

perf_box. dist[i] = perf box. dist[i] / num run;
perf_box. dis_ave = perfjbox. dis_ave + per'f box.dist[i] *

(double)i;

159

break;
}

return;
}

*/
*/

perf_box. tot_prob = perf_box. tot_prob + perf_box.dist[i];

break;

case 4: /* get data for evaluation of distribution of
/* number of packets in conflict

if (sys clock > WARM UP)
{ ~ -
num cop = 0;
for (i = 0; i <= NO - 1; i++)

{

num_cop = num_cop + tab_ouqueu[i]. num_cop;

perf_box. batch[run_ind].paq_dis[num_cop] += 1. 0;

/*
/*
/*
/*
/*
/*
/*
/*
/*

sim err:

Error handling routine

INPUT PARAMETERS:

- Error identification code

sim err (err code)

/****************/
/* parameters */

short err code;

{

/* variables */
/A***************/

, */
*/
*/
*/
*/
*/
*/
*/
*/
*/

/****************^
/* program

160

err cnt += l;
if (err cnt <= MAX ERR)

{ -
printf ("\n\n error code
}

return;
}

= %d", err code);

161

/*
/*
/*
/*
/*
/*
/*

siml. h:

Fichier contenant les variables associees au commutateur
simmule ainsi que les structures de donnees

******/
*/
*/
*/
*/
*/

Constant definition

/*
#define
#define
*/
#define
#define
#define

#define

SIM TEST
SIM DEBUG

MAX ERR
MAX-RUN
MAX ARR

MAX PAQ

1

1

10 /* Maximum number of batch run */
16 /* Maximum number of arrival

/* ... in a slot time
NI*NO /* max # packets at output

*/
*/
/

/* Function codes

#define
#define
#define
#define
#define

/**
/* Error codes

FCT INI 0
FCT~CUM 1
FCT REP 2
FCT RES 3
FCT-DIS 4

/* Initialisation */
/* Cummulation of statistics */
/* Compute, print perf. report*/
/* Compute final results ~ */
/* data for evaluation of # */
/* packet in conflict */

*********/
*/

^define
#define

SUCCES
QUEU FULL

1

-1

/* Structures definitions

struct IN 1RKN

{
long int

long int

/* transaction pour chaque paquet aux ports */
/* d'entree ~ */

arr_time; /* arrival time */

ser_beg; /* beginning of service time */

162

long int
short
short
};

ser end; /* end of service time
num_cop; /* # copies generated
pri_out; /* primary output port

*/
*/
*/

struct IN QUEU

{
short
struct
struct
struct
};

/* queue circulaire de transactions a chaque
/* port d'entree

num tran;
IN_TRAN *pt in;
IN_TRAN *pt_OU;
IN_TRAN li tran[IN SIZE];

*/
*/

struct OU QUEU

{
short
short
short

};

struct STAT DATA

{
long int
long int
long int
double
double
double

};

/* queue de sortie (imaginaire) a chaque
/* port de sortie

num_cop; /* # copies in contention
busy_cnt;, /* busy count of the queue
ind_cop[NI]; /* ind. de copies provenant

/* de chaque entree

/* Performance statistics of the system for
/* each batch run

num paq;
cum serv;
cum_delay;
ave serv;
ave delay;
paq_dis[MAX_

/* number of packets served
/* cummulative service time
/* cummulative delay
/* average service time
/* average delay

PAQ+1];/* Distrib.of # packets */
/* ... at output ports */

*/
*/

*/
*/
*/
*/

*/
*/

*/
*/
*/
*/
*/

Struct PERF BOX
{

struct STAT_DATA batch [MAX RUN] ;
double service;
double delay;
double rho;
double dist[MAX PAQ+1];
double dis ave;
double tot_prob;
};

/* Mail box for performance results passing*/

unsigned seedl[MAX RUN] ={
1735467, 1671, 97631, 41, 745,

163

unsigned

89655987, 506463, 7, 2871, 47512809
};

seed2[MAX RUN] ={
217, 41097839, 1459361, 6543, 67,
932, 46172583, 9, 523987, 90651
};

164

/*
/*
/*
/*
/*
/*
/*
/*

*/
*/

sim3. c:

Simulation programme for the evaluation of performance of */
a multicast switch. Each HOL packet generates a modified */
binomial number of copies. The switch can have multiple */
output ports at each output trunk - */

*/

#include "size. h"
^include "sim3. h"

/* Tableau contenant les queues pour chaque port d'entree */

static short tran lim = IN SIZE - 1;
static struct IN_QUEU tab_inqueu[NI] = 0;

/* Tableau contenant les queues imaginaires pour chaque port de
/* sortie

static struct OU_QUEU tab_ouqueu[NT] = 0;

/* Tableaux contenant les "SEEDS" pour la generation des nombres */
/* aleatoires ~ ~ */

static unsigned in seed[NI] = 0;
static unsigned ou-seed[NT] = 0;

/* Horloge qui tient Ie temps en nombre de slot */

static long int sys clock = OL;

/* Performance data report */

static struct PERF BOX perf box;

/* Error counter */

static short err cnt = 0;

165

/*
/*
/*
/*
/*
/*
/*

main ()

{

main:

Main program that calls the simulation routine for
different values of "lambda" and "pee"

/A***************/
/* variables */

short run_ind, num run, i;
long int max"time;
double pee, lambda, rho;

/A***************/
/* program */
/****************/

rho = 0. 0;
max time = SIM TIME;
pee = PEEMIN;
while (pee <= PEEMAX)

{
lambda = LAMBMIN;
while (lambda <= LAMBMAX)

{
if (rho >= MAX LOAD)

{
break;
}

/* Print the simulation parameters

*****/

*/
*/
*/
*/
*/
*/
*/

*/
'**/

printf ("\n\n");
printf ("\n\n simulation para :max_time = %d lambda = %e pee = %e",

max_time, lambda, pee);

/* Call the simulator routine for all batch run and . */
/* print the results */

166

for (run_ind = 0; run_ind <= NUM_RUN - 1; run ind++)

simuli (max_time, run_ind, lambda, pee) ;

printf ("\n\n batch = %d ser_time = %e delay = %e",
run_ind, perf_box. batch[run_ind]. ave serv,

perf_box. batch[run_ind]. ave delayT;

num run
}

run ind + 1;

printf

#ifdef

printf

#endif

/* get the average result of all batch run

sim_stat (FCT_RES, num run, lambda, 0);
("\n\n Average results: seTvice = %e delay = %e rho = %e",

perf_box. service, perf_box. delay, perf box. rho);

SIM TEST
for (i = 0; i <= MAX PAQ -1; i +=4)

{

("\n\n distribution: D(%d)=%e D(%d)=%e D(%d)=%e D(%d)==%e'
i, perf_box. dist[i], i+l, perf_box. dist[i+1], i+2,
perf_box. dist[i+2], i+3, perf-box.dist[i+3]);

printf ("\n\n distribution: D(%d)=%e", i, perf box. dist[i]);

printf ("\n\n distr. average = %e total prob. = %e",
perf_box. dis_ave, perf_box. tot_prob);

rho = perf box. rho;
if (rho > . 7)

{

else

lambda = lambda + (LAMBINC/2. 0);
}

i

{
lambda = lambda + LAMBINC;
}

}
pee = pee + PEEINC;
rho = 0. 0;
}

167

/**
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

simuli:

Simulation routine called by the main program. It simulate*
the multicast switch for a specific value of: *

*

max_time = the lenght of the simulation (slots) *
lambda = average packet arrival rate *
pee = the multicast probability *

*

INPUT PARAMETERS: *
*

long int max time *
short run ind
double lambda
double pee

OUTPUT VALUE:

simuli (max_time, run_ind, lambda, pee)

/* parameter */
/****************^

long int
short
double
double

{

max time;
run ind;
lambda;
pee;

/* variables */

short
short
short
float

i, j, k, ind in, ind ou;
num arr, err code;
poissonO, enter_queu(), exit queu();
mth$random(), ran_num, prob_int, cum_j>rob;

*******/
/* Initialise the clock and the seeds for RANDOM NUMBERS ... */

168

/* .. generation, the statitics and the input and output queues */

err cnt = 0;
ran num = 0. 0;

sim_stat (FCT_INI, run ind, 0. 0, 0);

for (i = 0; i <= N1-1; i++)
{

in_seed[i] = (unsigned)(seedl[run ind]*(i+1));
tab_inqueu[i]. pt_in = &tab_inqueuTi]. li tran[0];
tab_inqueu[i]. pt_^ou = &tab^inqueu[i], li~tran[0];
tab_inqueu[i]. num tran = 07 -
}

for (j = 0; j <= NT-1; j++)

ou_seed[j] = (unsigned)(seed2[run_ind]* (j+1));
tab_ouqueu[j]. num cop = 0;
tab_ouqueu[j] . busy cnt =0;
for (k= 0; k<= N1-1; k++)

{

tab_ouqueu[j]. ind_cop[k] = 0;

}

/* Initialise the clock and simulate for the desired number */
/* of slots ----- ^^

sys clock = OL;
while (sys_clock <= max time)

/* Generate packets arrivals at input port(POISSON)

for (ind_in =0; ind_in <= N1-1; ind in++)

num_arr = poisson(&in_seed[ind in], lambda);
if (num arr > 0)

{

/* packet arrival(s) at input port -> update queue*/

for (i = 1; i <= num arr; i++)

err_code = enter queu(ind in);
if (err_code i= S^UCCES) -

169

/* queu is full -> consider as an error

sim err (err code);
break;
}

}

/* Generate traffic distribution if new HOL(head of line) */
/* packet " *'/

*****/

for (ind_in = 0; ind_in <= N1-1; ind in++)

if (tab_inqueu[ind_in]. pt_ou->num_cop == -1 &&
tab_inqueu[ind_in]. num tran > 0)

/* New HOL packet ->update input queue information*/
/* ... and generate the copies ~ */

#ifdef SIM DEBUG

printf ("\n\n in_queu = %d tran_num = %d serv_beg = %d", ind in,
tab_inqueu[ind_in]. pt_ou, sys clock) ;

#endif ~ ~ ----. --

tab_inqueu[ind_in]. pt_ou->ser_beg = sys clock;
tab_inqueu[ind_in]. pt^ou->num-cop = 0;

labell;

/* Choose the output ports */

for (ind_ou =0; ind_ou <= NT-1; ind ou++)

ran_num = mth$random(sin seed[ind in]);
if (ran_num < pee)

/* copy generated for that output ->update*/
/* ... output and input queues */

tab_inqueu[ind_in]. pt_ou->num cop += l;
tab_ouqueu[ind_ou]. num_cop +=-l;
tab_ouqueu[ind_ou]. ind^cop[ind in] = 1;

#ifdef SIM DEBUG

170

printf ("\n\n in_queu = %d tran_num = %d num_cop = %d", ind in,
tab_inqueu[ind_in] . pt_ou7tab_inqueu[ind_in] . pt ou->n'um_cop) ;

#endif - - - -- --- -

/* Takes care of the cases when no copie is
/* generated

*/
*/

if (tab_inqueu[ind_in]. pt_ou->num cop == 0)

/* packet has generated 0 copy ->try again with*/
/* the same packet (modified binomial)~ */

goto labell;
}

/* Contention resolution at all output ports

/* MODIF: Evaluate traffic distribution at output

sim_stat (FCT DIS, run ind, lambda, 0);

/* END MOD IF '/

for (ind_ou = 0; ind ou <= NT-1; ind ou++)
{

/* For each output trunk, select the winning copies by first */
/* finding the probability intervalles size depending ... */
/* ... on the number of copies in contention and obtaining */
/* ... a random number ' */

for (i= 1; i<= NP; i++)
{

if (tab_ouqueu[ind_ou]. num_cop != 0)

/* Output queue not empty */

prob_int = l. O/(double)tab_ouqueu[ind_ou]. num_cop;
ran_num = mth$ random (sou seed [ind o'u]) ;
cum_prob = prob_int;
tab_ouqueu[indo^u] . busy cnt +=l;

/* Scan for copies from particular input port */

for (ind_in = 0; ind in <= N1-1; ind in++)
{ -
if (tab_ouqueu[ind_ou]. ind_cop[ind in] == 1)

171

/* Found a copy from input port "ind in" */

if (ran_num < cum_j3rob)

/* This copy is chosen "lucky" -> */
/* update output and input queues */
/* and exit */

tab_ouqueu[ind_ou]. ind cop[ind in] = 0;
tab_ouqueu[ind_ou]. num_cop -=1;

tab_inqueu[ind_in], pt_ou^>num cop -=1;
break;
}

else
{

/* update the probability valid ... */
/* interval and look again for the */
/* lucky input port */

cum_prob = cum_prob + prob_int;

}

}
#ifdef SIM DEBUG

printf ("\n\n ou_queu

#endif

%d num cop = %d",
ind_ou, tab_ouqueu[ind_ou]. num cop);

/* Update system clock

sys clock += 1;

/* Test for service completion at input queues and
/* cumulate the statistics if nececessary.

[**/
*/

for (ind_in = 0; ind in <= N1-1; ind in++)

if (tab inqueu[ind in]. num tran > 0 &&
tabinqueu [ind in] . pt_ou->num cop == 0)

172

/* service completed -> update input queue, */
/* cumulate the statistics and update "transaction */
/* output pointer " */

exit_queu(ind in, run ind);
} ~ ~ ~

/* Output the simulation results for the received values of .. */
/* ... "lambda" and "pee" */

sim_stat (FCT REP, run ind, lambda, 0);
return;
}

173

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

poisson:

Routine that generates packet arrivals according to
a POISSON distribution. The method use is derived
from the Von-Neumann algorithm. The algorithm assume
an arrival rate equal to 1 and a time interval equal
to "lambda". But fortunately this is the same as having
a time interval equal to 1 and an average arrival rate
equal to "lambda".

INPUT PARAMETERS:

- address of the seed to supply to the random number
generator.

- average packet arrival rate (lambda)

RETURN VALUE:

- number of packet arrivals

short poisson (adr seed, lambda)

/'
/*
/'

parameters

unsigned int
double

{

^/
*/
r/

*adr seed;
lambda;

/* variables */
/A***************/

short i, num arr;
float mth$random(), mth$exp(), ran_num, expo;
double pro num, mlambda;

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

** */

'/c'kit'/v'ic'fc'ic'fc'/f

/* Get the exponential (prob of no arrival) for the received .. */
/*... value of lambda - ''*/

174

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

mlambda == -lambda;
expo = mth$exp(&mlambda);

/* Determine the number of arrivals

pro num = 1. 0;
for (i = 1; i <= MAX ARR; i++)

{

ran_num = mth$random(adr seed);
pro_num = pro num * ran num;
if (pro num < expo)

{

/* number of arrivals is determine

r/
*/

***/

}

num arr = i-1,
break;
}

return(num arr) ;
}

enter queu:

Routine that takes care of managing the queue for
packets arrivals.

INPUT PARAMETERS:

- input queu indicator

r*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

short enter queu(ind in)

/****************/
/* parameters */

short ind in;

{

/* variables */
/A***************/

short err code;

175

/****************/
/* program */

if (tab_inqueu[ind_in]. num tran == IN SIZE)

/* Input queue is full

err code = QUEU FULL;
} ~

else
{

/* Input queue not full -> save entry info.
/* ... and update queue

else

*/
*/

#ifdef SIM DEBUG

printf ("\n\n in_queu = %d tran_num = %d arr_time = %d", ind in,
tab_inqueu[ind_Tn]. pt_in, sys cTock);

#endif - - -------

tab_inqueu[ind_in]. pt_in->arr_time = sys_clock;
tab_inqueu[ind_in]. pt^in->num-cop = -1; ~/* New HOL */
tab_inqueu[ind_in].pt^in->pri-out = -1;
if (tab_inqueu[ind in] . pt in'++ ==

&tab_inqueu[ind_in]. li tran[tran lim])

tab_inqueu[ind_in].pt_in = &tab_inqueu[ind in]. li tran[0];

tab_inqueu[ind_in]. num tran += 1;
err code = SUCCES;
} ~

return(err code);
}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

******/
*/

exit_queu: */
*/

Routine that takes care of input queu when packets*/
exit. ~ ' */

*/
INPUT PARAMETER: */

*/
- input queu indicator */
- batch indicator */

*/

short exit queu(ind in, run ind)

176

/****************/
/* parameters */

short ind in;
short run ind;

{

/* variables */

short

/-
/* program

err code;

^/
*/
k/

tab_inqueu[ind_in]. pt_ou->ser_end = sys clock;

#ifdef SIM DEBUG

printf ("\n\n in_queu = %d tran_num = %d ser_end = %d", ind in,
tab_inqueu[ind_in] . pt_ou, tab_inqueu [iHd_in] . pt ou->'ser end) ;

ftendif ~ - -

sim_stat (FCT_CUM, run_ind, 0. 0, tab_inqueu[ind in]. pt ou);

if (tab_inqueu[ind_in]. pt ou++ ==
&tab_inqueu[ind_in]. li tran[tran lim])

{ - - - - -
tab_inqueu[ind_in]. pt_ou = &tab_inqueu[ind in]. li tran[0];
} - ~ -

tab_inqueu[ind in]. num tran -= 1;
err code = SUCCES;
return(err code);
}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

*******/
*/

sim_stat: */
*/

Routine that manage all the performance statistics
of the simulation.

*/
INPUT PARAMETERS:

function code

- pointer to an input transaction structure

*/
*/

*/
*/
*/
*/

177

/*

sim_stat (fct_code, run_ind, lambda, adr tran)

/****************/
/* parameters */
/****************/

short fct code;
short run ind;
double lambda;
struct IN TRAN *adr tran;

{

/A***************/
/* variables */

float num run;
short i, j, num cop;

*/
;*/

switch (fct code)

{
case 0: /* Initialisation

. batch [run_ind] . numpaq = 0;

. batch[run ind]. cum-serv = 0;

. batch[run_ind]. cum_delay = 0;
= 0; i <= MAX PAQ; T++)

perf box.:
perf box.:
perf box.:
for T i

{

perf_box. batch[run_ind]. paq_dis[i] = 0. 0;

break;

case 1:

if (sys

perf
perf

perf

/* cumm. the statistics

clock > WARM UP)

_box. batch[run_ind]. num paq +=1;
box. batch[run ind]. cum-serv =

perf box. batch[run ind]. cum serv +
(adr_tran->ser_end - adr_trran->ser_beg) ;

_box. batch[run_ind]. cum-delay =
perfjbox.batch[run ind]. cum delay +

(adr_tran->ser_end - adr tFan->arr time) ;

178

}
break;

case 2: /* report statistics '/

perf_box.batch[run ind]. ave serv =
(double)per? box.batch[run ind]. cum serv /
(double)perf box. batch[run_ind]. num~paq;

perf_box. batch[run_ind]. ave delay =
(double)perf_box.batch[run_ind]. cum_delay /
(double)perf_box. batch[run-ind].num-paq;

for (i = 0; i <= MAX PAQ; iT+) ~
{

perf_box. batch[run_ind].paq dis[i] =
perf_box. batch[run_ind].paq^dis[i] /

(double)(SIM_TIME - WARM UP) ;

break;

case 3: /* compute the final result by averaging over */
/* all batch results - - * */

/num_run = run_ind; / convert to float
perf box. servTce = 0. 0;
perf_box. delay = 0. 0;
perf box. rho = 0. 0;
perf box. dis ave = 0. 0;
perf_box. tot prob = 0. 0;
for (i = 0; i <= MAX PAQ; i++)

{
perf box.dist[i] = 0. 0;
} ~

for (i = 0; i <= NUM RUN - 1; i++)
{

perf_box. service = perf_box. service + perf_box.batch[i]. ave serv;
perf_box. delay = perf_b^x. delay + perf_box7batch[i]. ave deify;

for (j =0; J<= MAX_PAQ;~j++~) ' ' ~

perf_box. dist[j] = perf_box. dist[j] +
perfjbox.batch[i].paq_dis[j];

}

perf_box. service = perf_box. service / num run;
perf_box. delay = perf_box. delay / num run7
perf_box. rho = lambda-* perf box. servTce;
for (i = 0; i <= MAX PAQ; iT+)

{

perf_box.dist[i] = perf box.dist[i] / num run;
perf__box. dis_ave = perf_box. dis ave + per'f_box. dist [i] *

(double)i;

179

break;

case 4:

perf_box. tot_prob = perf_box. tot_prob + perf_box. dist[i];

/* get data for evaluation of distribution of */
/* number of packets in conflict

if (sys clock > WARM UP)
{ ~
num_cop = 0;
for (i = 0; i <= NT - 1; i++)

{
num

}
i_cop = num_cop + tab_ouqueu[i]. num_cop;

perf_box. batch [run_ind] . paqdis [num_cop] += 1. 0;

break;
}

return;
}

r/

/*
/*
/*
/*
/*
/*
/*
/*
/*

sim err:

Error handling routine

INPUT PARAMETERS:

- Error identification code

sim err (err code)

/A***************/
/* parameters */

short err code;

{

/****************/
/* variables */

*/
*/
*/
*/
*/
*/
*/
*/
*/

/****************/
/* program */

180

err cnt += 1;
if (err cnt <= MAX ERR)

{

printf ("\n\n error code
}

return;

}

= %d", err code);

181

/^
/*
/*
/*
/*
/*
/*

sim3. h:

Fichier contenant les variables associees au commutateur
simmule ainsi que les structures de donnees

*/
*/
*/
*/
*/
*/

Constant definition

/*
#define
#define
*/
#define
#define
#define

#define

SIM TEST
SIM DEBUG

MAX ERR
MAX RUN
MAX AKR

MAX PAQ

1

1

4

10
16

/* Maximum number of batch run*/
/* Maximum number of arrival . */
/* ... in a slot time */

*/NI*NT /* max # packets at output

/* Function codes

#define
#define
#define
fdefine
#define

FCT INI 0
FCT-CUM 1
FCT-REP 2
FCT-RES 3
FCT D I S 4

/* Initialisation */
/* Cummulation of statist! */

/* Compute, print perf. report */
/* Compute final results */
/* data for evaluation of # */
/* packet in conflict */

#define
#define

SUCCES
QUEU FULL

1

-1

/* Structures definitions
*****/

*/

struct IN TRAN

{
long int

long int
long int
short

/* transaction pour chaque paquet aux ports */
/* d'entree */

arr time; /* arrival time

ser_beg; /* beginning of service time
ser end; /* end of service time
num_cop; /* # copies generated

*/

*/
*/
*/

182

short

};

pri_out; /* active flag that indicates */
/* if no output ports are chosen */

struct IN QUEU

{
short
struct
struct
struct
};

/* queue circulaire de transactions a
/* port d'entree

num tran;
IN_TRAN *pt in;
IN_TRAN *pt OU;
IN_TRAN li tran[IN SIZE];

chaque */
*/

struct OU QUEU

{
short
short
short

};

struct S TAT DATA

{

long int
long int
long int
double
double
double

};

/* queue de sortie (imaginaire) a chaque
/* port de sortie

*/
*/

num cop;
busy cnt;
ind cop[NI];

/* # copies in contention */
/* busy count of the queue*/

/* ind. de copies provenant*/
/* de chaque entree */

/* Performance statistics of the system
/* for each batch run

num_paq; /* number of packets served
cum serv; /* cummulative service time
cum_delay; /* cummulative delay
ave_serv; /* average service time
ave_delay; /* average delay
paq_dis[MAX_PAQ+l];/* Distribution of #

/* packet at output ports

*/
*/

*/
*/
*/
*/
*/
*/
*/

struct PERF BOX
{ ~
struct S TAT DATA batch [MAX RUN] ;
double service;
double delay;
double rho;
double dist[MAX PAQ+l];
double dis ave;
double tot_prob;
};

/* Mail box for performance results passing */

unsigned seedl[MAX RUN] ={
1735467, 1671, 97631, 41, 745,
89655987, 506463, 7, 8651, 4789031

183

};

unsigned seed2[MAX RUN] ={
217, 41097839, 1459361, 6543, 67,
932, 76172583, 9, 4327/345565
};

184

/*
/*
/*
/*
/*
/*

size.h:

Fichier contenant les variables associees au commutateur
simmule.

r*/
*/
*/
*/
*/
*/
*/

/* Constant definition

ftdefine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
fdefine

N1
NT
NP
NO
PEEMIN
PEEMAX
LAMBMIN
LAMBMAX
LAMB INC
FEEING
NUM RUN
SIM-TIME
WARM UP
MAX LOAD
IN SIZE

16
16
2

NT*NP
0.2
1.0
. 04
1.0
. 02
.1
8

8000
400
1.0
256

/* number of input port
/* number of output trunk
/* number of port per trunk
/* number of output port

*/
*/
*/

/* number of batch run desired */
/* simulation duration in slots */
/* warm up duration in slots */
/* maximum load to the systeme */
/* input queue size */

I Bl

	SKM_C550i23092914200
	SKM_C550i23092914210
	SKM_C550i23092914230
	SKM_C550i23092914240

