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Abstract: The strategic planning of open pit operations defines the best strategy for extraction of the
mineral deposit to maximize the net present value. The process of strategic planning must deal with
several sources of uncertainty; therefore, many authors have proposed models to incorporate it at each
of its stages: Computation of the ultimate pit, optimization of pushbacks, and production scheduling.
However, most works address it at each level independently, with few aiming at the whole process.
In this work, we propose a methodology based on new mathematical optimization models and the
application of conditional simulation of the deposit for addressing the geological uncertainty at all
stages. We test the method in a real case study and evaluate whether incorporating uncertainty
increases the quality of the solutions. Moreover, we benefit from our integrated framework to evaluate
the relative impact of uncertainty at each stage. This could be used by decision-makers as a guide for
detecting risks and focusing efforts.

Keywords: geological uncertainty; geostatistics; open-pit mine production planning; surface mining;
stochastic mixed-integer linear programming; uncertainty assessment

MSC: 90B50

1. Introduction

Open-pit mining is a method of exploiting ore deposits by digging from the surface.
The method is suitable when the mineralized body is relatively close to the surface; however,
it requires the removal of waste material that has no economic value to access the profitable
parts. Therefore, the order in which the extraction is carried out has a great impact on the
final value of the business.

Maximizing the net present value (NPV) of the mine operation corresponds to finding
an extraction sequence subject to several constraints that ensure the feasibility of the oper-
ation. These constraints include ensuring the pit wall’s stability, complying with mining
capacity, controlling the quantity and/or quality of the processed material, establishing
minimum working spaces to allow the operation of the equipment, and sinking rate, among
others. This process is known as production planning and is key to the success of the mining
business [1].

Before the planning process begins, the deposit is sampled by drilling at different
locations, and with this information, categorical attributes such as rock types and numerical
attributes such as element concentrations or mineral grades are sampled. The sample
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information is then interpolated using geostatistical techniques [2] to inform the attributes
of the blocks. This representation of the deposit is known as the block model and is the main
input for the planning process, which is traditionally performed in a top-down multi-stage
approach with different levels of detail required in each stage [3].

• Economic evaluation. For each block, an economic evaluation representing the net eco-
nomic value of mining it (and potentially processing it) is calculated. This evaluation
depends on the block’s mineral content, the price of the ore, and the associated costs
of mining and processing the block. Thus, an economic block model is obtained.

• Final pit. With this main input, in addition to a series of technical parameters, the
region of the mine where the exploitation will be carried out is defined; this is known as
the final pit (first stage). This key step in the planning process provides an estimation
of the economic value and tonnage of the mining project in its early stages.

• Pushback optimization. Within the final pit, many incremental nested pits are gen-
erated using the Lerchs and Grossmann methodology [4]. Among these nested pits,
some are chosen to define the mining phases (second stage), and the volumes between
consecutive phases are called pushbacks. The selection of the phases (equivalently,
the pushbacks) is performed based on selected criteria, such as the minimum opera-
tional width that must be maintained to ensure an operative design and similar ore
tonnage [5–8].

• Production scheduling. Within each phase, the ore production is scheduled over time
(third stage), committing during the life of the mine to the quantity and quality of
material to be extracted and processed, generating the promise of value that maximizes
the NPV of the mining business [9–11].

Figure 1 shows a schematic diagram of the traditional production planning process of
an open pit mine, from the final pit computation to the production scheduling.
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Figure 1. Traditional methodology for long-term open-pit mine planning [12].

The above stages seek to ensure an open pit mine that maximizes the net present
value but, at the same time, is operationally feasible. However, a critical drawback of the
standard planning workflow is the assumption of perfect knowledge. For example, the
process assumes a known and stable performance of the mining equipment for each time
period. However, the complexity of mining operations and the uncertainty associated with
shovels and trucks—which is usually known as operational uncertainty—can impact the
fulfillment of production forecasts in the long term [13]. Moreover, fluctuations in prices
or costs—known as market uncertainty—can also be detrimental to the fulfillment of the
expected net present value of the mining project [14].

In this work, we focus on geological uncertainty, which represents the degree of
ignorance in the mineralogical characterization of the geological resource and relates
mainly to the uncertainty associated with the estimation of grades.

Ignoring uncertainty can have consequences on different scales. In the final pit defi-
nition, where uncertainty is higher, it increases the risk of economic losses and strongly
constrains the next stages; in the definition of phases, it prevents identifying risky sectors
within the final pit, which can present deviations in the final production scheduling stage.
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In the traditional methodology, all three stages are solved using some strategic mine
planning software. According to [9], most commercial software packages use the nested pits
method or similar implementations. Consequently, they may result in production plans that
are difficult to fulfill in practice because they do not consider geological uncertainty [15,16].

Because of the above, many research studies have shown that the incorporation of
geostatistical simulations, each representing a probable grade distribution of the same
deposit, has shown better results in the assessment of the value of the business since they
reproduce the real spatial variability of the variables. In particular, the use of conditional
simulations [17–19] has allowed the inclusion of this type of uncertainty into the production
planning process.

Some efforts have been made to develop approaches that incorporate geological
uncertainty. In the final pit definition stage, early works have assessed the impact of
uncertainty in calculating final pits for several scenarios [20] and based on the expected
value of each block [21]. Risk-averse and robust approaches have also been studied [22–24]
alongside efficient-frontier analysis for a defined set of risk levels [25,26]. However, most
of the research in this area omits the subsequent stages to assess the impact of the final pit
definition under uncertainty.

Pushback optimization is important in the traditional mine planning workflow since
it integrates operational constraints, such as a minimum mining width, into the mine
schedule. However, the inclusion of uncertainty at this stage has been mostly omitted in
the literature. Early works evaluated the impact of including grade uncertainty at this
stage [27]. Reducing the economic value of blocks with high-grade variability has been
proposed to obtain nested pits with high value and low risk [28]. Selecting nested pits based
on minimizing deviations from production targets has also been implemented [29]. These
approaches have not been integrated into the production scheduling stage to evaluate the
impact of the pushback definition.

Production scheduling under uncertainty has been the most widely studied stage
in the planning workflow for open-pit mines. Early works quantified the potential of
including uncertainty in production scheduling [30–32], and several approaches have been
proposed. One of the most widely used approaches is the minimization of deviation
from production targets, which generates schedules that maximize NPV and minimize
penalties for not fulfilling tonnage, grade, or quality goals [33–39]. Two-stage stochastic
programs have also been implemented to include recourse actions when new information
arrives [40–42]. Robust optimization has also been used to make resilient stochastic sched-
ules under grade uncertainty [43]. Most stochastic production scheduling models pose a
significant computational challenge. For this reason, a wide range of algorithms, heuristics,
and metaheuristics have been implemented to offer reasonable computation times for this
problem [44–49]. In this stage, most works use a deterministic final pit as a base and then
implement a stochastic production scheduling model within the pit limits, i.e., they omit
the pushback optimization. As a result, the obtained stochastic solutions are difficult to
implement in the operation, and the economic values of the solutions are not realistic.

A few efforts have been made to integrate some of the three stages of strategic planning.
For instance, a stochastic network-flow algorithm was proposed to include uncertainty in
the traditional parametrization of the nested pit problem [50,51] to integrate stages 1 and 2.
Risk-averse models using the conditional value-at-risk have also been studied to define
the final pit and the phase design [52,53]. In terms of the integration of the final pit limit
and production scheduling, the reliability of the final pit under grade uncertainty, and the
minimization of deviations in the mine schedule were evaluated [12]. Finally, the effect of
selecting nested pits and generating a stochastic schedule under geological uncertainty was
also explored in [54].

A complete review of models and algorithms that have been performed in the last two
decades to address the integration of uncertainty in mine planning can be found at [55–58].
Figure 2 shows a diagram of the major research that has been done to address each of
the different stages of the production planning process under geological uncertainty. As
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shown in the figure, our field of study lies at the intersection of all stages. To the best
of our knowledge, there are no studies that evaluate the inclusion of uncertainty in all
three stages.
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This paper proposes a multi-stage methodology to define the final pit, pushback
optimization, and production scheduling. We use models based on mixed integer linear
programming that incorporate geological uncertainty in each of the stages to maximize the
expected NPV and, at the same time, minimize the risk of losses associated with this source
of uncertainty. Specifically, this paper contributes:

• A mathematical model to optimize the final pit considering the geological uncertainty.
The model optimizes the pit value minus the conditional value at risk (CVaR).

• A mathematical model for pushback optimization in an uncertainty setting. In the
application in this paper, the model selects pushbacks from nested pits such that the
total tonnages are similar, but it can be modified to accommodate other criteria.

• A mixed-integer program to schedule bench phases under uncertainty to minimize
deviations from production targets based on an existing set of pushbacks.

• The integration of the previous contributions as a multi-stage strategic optimization
approach and its application in a real case study.

Besides the novelty of the models and the methodology, it is worth noting that our
work is the first to address the three stages simultaneously, which allowed us to analyze
the effect of uncertainty at the different stages, which can be used to help engineers focus
their efforts for modeling over the different stages of the planning process. Finally, it is
worth mentioning that even though we present our approach in the context of geological
uncertainty, the models could also be used for market uncertainty.

2. Materials and Methods

This section introduces the mathematical notation and optimization models we pro-
pose for each planning stage. For the final pit definition, we propose a model that maximizes
expected NPV and minimizes a risk metric. For the pushback optimization, we extend
a methodology that selects nested pits to form pushbacks presented in [6], but with the
integration of a stochastic NPV for each block inside the final pit from stage 1. Finally,
for the production scheduling, we propose a novel optimization model that maximizes
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expected NPV and minimizes deviations from production targets using the pushbacks
from stage 2.

2.1. General Notation

First, B represents the block model. The blocks are denoted with the letter b, identified
by their centroid (x, y, z) ∈ R3. Multiple realizations (conditional simulations) of the
mineral resource model are considered to incorporate the geological uncertainty, and
they are indexed by S = {1, . . . , S}. If the random variable representing the element
concentration of block b is gb, then {gbs}s∈S represents a set of realizations or samples of gb.

Due to stability requirements, slope constraints are given by one or several slope
angles that define the maximum slopes that are possible in the pit walls. The standard
way to model these slope constraints is to use arcs of precedence as follows: For any given
block b, there exists a set PRECb ⊂ B− {b} of other blocks (called predecessors) that must
be mined before to gain access to block b and keep the pit walls stable. Figure 3 shows a
simple configuration based on a 45◦ slope angle and one level of precedence. In the figure,
to extract block 6, the first five blocks (1, 2, 3, 4, and 5) must be removed. In this case,
PREC6 = {1, 2, 3, 4, 5} (left). On the other hand, the 2D view shows in blue arrows the
arcs of precedence induced for a given slope angle (right).
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To generate the economic block model, we consider the simplest case for extracted
blocks: (i) They are classified as ore blocks (revenues > costs) and therefore can be sent for
processing, or (ii) they are classified as waste blocks, in which case these blocks are sent
to waste dumps. Under scenario s ∈ S, the economic value of a block that is mined and
processed is given by:

valproc
bs = tonb(price · rec · gbs −mcost− pcost) (USD) (1)

If a block is treated as waste, its economic value is given by:

valdump
b = −mcost · tonb (USD) (2)

The net economic value of a block is therefore calculated as:

vbs = max
{

valproc
bs , valdump

b

}
(USD) (3)

In the previous equations, price is the metal price [USD/ton], rec is the average
metallurgical recovery (in percent), gbs is the concentration of the metal of interest (grade,
as a fraction) in block b when geological scenario s is considered, mcost and pcost are
mining and processing costs [USD/ton], and tonb is the tonnage of block b.

Note that the grade gbs of block b and scenario s is replaced by gb for the deterministic
case, i.e., when no uncertainty is considered. In this case, the net value of a block b is
expressed as vb.
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2.2. Stage 1: Final Pit Limit Problem

In this section, we propose an optimization model that maximizes the expected net
undiscounted value and simultaneously minimizes the risk of losses, expressed in terms
of the value at risk (VaR) and the conditional value at risk (CVaR) [59]. We use a discrete

approximation of VaR and CVaR [60], noted
∼

VaR and
∼

CVaR, respectively, which allows
using a sample from the probability distribution of g, given by scenarios generated by
conditional simulation.

The decision variables are defined as

xb =

{
1, if block b belongs to the final pit limit,

0, otherwise
(4)

zs = Contribution o f scenario s to
∼

CVaR (5)

We propose the following mixed integer linear programming model that maximizes

the difference between the expected total value and
∼

CVaR:

(P1) max 1
S

 ∑
b∈B,s∈S

vbs · xb

− ∼
CVaR (6)

s.t. xb ≤ xb′
∀b ∈ B, b′ ∈ PRECb (7)

zs ≥ f (x, gs)−
∼

VaR ∀s ∈ S (8)

f (x, gs) = ∑
b∈B

(vb − vbs)xb
∀s ∈ S (9)

∼
CVaR =

∼
VaR + 1

S(1−δ) ∑
s∈S

zs
∀s ∈ S (10)

zs ≥ 0 ∀s ∈ S (11)

xb ∈ {0, 1} ∀b ∈ B (12)

Equation (6) represents the objective function. Equation (7) corresponds to the prece-
dence constraints given by the slope angle. Equations (8)–(10) establish the conditions
for a well-defined discrete CVaR (in this context, loss function f represents the monetary
loss obtained in scenario s w.r.t. the base/deterministic case), with δ ∈ (0, 1) the con-
fidence level, and Equations (11) and (12) state the nature of variables, continuous and
binary, respectively.

An optimal solution of (P1) determines which blocks belong to the final pit limit so
that the expected value is maximized throughout all simulations while minimizing the risk
of losses measured by the discrete approximation of CVaR. The deterministic version of
this problem can be found in [61].

2.3. Stage 2: Pushback Optimization

In the above subsection, a stochastic final pit was determined. Now, a procedure for
pushback optimization (stage 2) is presented. The procedure accounts for the geological un-
certainty within the final pit and extends the ideas presented in [6], where the deterministic
case is studied. This extension considers multiple realizations of the orebody and consists
of two parts: computation of stochastic nested pits and pushback selection. We describe
them now.

2.3.1. Computation of Stochastic Nested Pits

Let B′ ⊆ B be the ultimate pit limit obtained from Section 2.1. Applying the method-
ology of Lerchs and Grossmann [4] and scaling the metal price by a series of n revenue
factors 0 < λ1 < · · · < λn, we have a value vi

bs for each block b, each realization s and each
revenue factor λk given by:

valproc
bs = tonb(λk · price · rec · gbs −mcost− pcost) (USD) (13)
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Averaging block values over all realizations, we have an expected value of each block
b associated with the revenue factor λi given by:

vi
b = S−1∑s∈S vi

bs (USD) (14)

To obtain the stochastic nested pits, we solve n final pit limit problems, one for each
λk, according to [21], obtaining ∅ = P0 ⊆ P1 ⊆ · · · ⊆ Pn nested pits, where Pn = B′.

2.3.2. Pushback Selection from the Stochastic Nested Pits

From the potentially many pits generated in the previous stage, we are going to
select some of them as mining phases. The pushbacks correspond to the volume between
consecutively selected pits; thus, selecting pits or pushbacks is equivalent.

To select pushbacks from the set of stochastic nested pits, we use the formulation
proposed in [6], where an optimization model chooses the best pushback candidates
based on minimizing the gap problem [5] so that the resulting phases have the mini-
mum difference among them in ore and waste tonnages. For this, we define a pushback
Pushjk = Pj r Pk as the set of blocks contained between nested pits Pj and Pk, where
1 ≤ k < j ≤ n. Given pushback Pushjk we extend block attributes such as ore tonnage

( otonjk

)
or rock tonnage

(
rtonjk

)
by adding individual values. To partition B′ into push-

backs, it is necessary to define the set of preceding pushbacks (Equation (15)) and the set of
succeeding pushbacks (Equation (16)) of Pushjk.

PRECjk =
{

Pushjk′ : k′ ∈ 0, k− 1
}

∀j ∈ 2, n, k ∈ 1, j− 1 (15)

SUCjk =
{

Pushj′k : j′ ∈ j + 1, n
}

∀j ∈ 1, n− 1, k ∈ 0, j− 1 (16)

From the above, the decision variables are defined as

xjk =

{
1 if Pushjk is chosen as a mining phase
0 otherwise

(17)

In our model, we will assume that we are interested in minimizing differences be-
tween phase tonnages (other goals/constraints can be considered similarly). For this, we
use the mean absolute deviation (MAD), where the tonnages are compared to a reference
value rtonN0/no, when no phases are desired. Then, the integer linear programming model
that minimizes MAD is

(P2)

min 1
no ∑

j∈1,n
k∈0,j−1

∣∣∣rtonjk − rtonn0
no

∣∣∣ · xjk

(18)

s.t.
∑

j∈1,n
k∈0,j−1

xjk = no
(19)

∑
j∈1,n

xj0 = 1
(20)

∑
k∈0,n−1

xnk = 1 (21)

xjk ≤ ∑
Pushj′k′∈PRECjk

xj′k′
∀j ∈ 2, n, k ∈ 1, j− 1 (22)
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xjk ≤ ∑
Pushj′k′∈SUCjk

xj′k′
∀j ∈ 1, n− 1, k ∈
0, j− 1

(23)

∑
Pushj′k′∈PRECjk

xj′k′ ≤ 1 ∀j ∈ 2, n, k ∈ 1, j− 1 (24)

∑
Pushj′k′∈SUCjk

xj′k′ ≤ 1
∀j ∈ 1, n− 1, k ∈
0, j− 1

(25)

xjk ∈ {0, 1} ∀j ∈ 1, n, k ∈ 0, j− 1 (26)

Equation (18) represents the objective function. Equation (19) sets the number of
desired phases. Equations (20)–(25) determine the partitioning of the final pit into phases,
specifically: Equations (20) and (21) impose the selection of an initial pit P0 and an ultimate
pit Pn, respectively; Equations (22) and (24) enforce that to select a pushback, one and only
one preceding pushback must be selected. Similarly, Equations (23) and (25) establish that
to select a given pushback, one and only one succeeding pushback is selected. Finally,
Equation (26) states the binary nature of variables.

2.4. Stage 3: Production Scheduling

Once the final pit limit and the pushbacks have been defined, mine production
must be scheduled over time (third stage). In this section, we develop the methodol-
ogy for generating a production schedule based on the set of pushbacks defined in the
previous stage.

In the last few years, some authors have presented different models that aim to
maximize NPV and minimize the negative effects of uncertainty [12,36,39,44,62–64]. A
common approach to these models is based on the incorporation of penalties that re-
duce the expected NPV when production or quality targets are not met. These penalties
are usually defined by the magnitude of the deviation from the required target and a
deviation cost.

In this case, we consider that due to geological uncertainty, production schedules may
suffer deviations in practice, generating issues of under-production or over-production,
whether from ore to process or ore quality (blending) that is not in the range of ac-
ceptance. The following notation is considered: the unitary costs per ore (metal) ton-
nage of over- and under-production at period t on scenario s are represented as cp+ts
and cp−ts (cg+ts and cg−ts

)
, respectively.

Since the deposit was partitioned into a set of n0 pushbacks, to have control over the
extraction geometry and organize the equipment, the pth pushback is denoted as Bp, with
B′ =

⋃n0
p=1 Bp. Furthermore, benches are defined as the set of all blocks having the same

z-coordinate. The intersection of a phase and a bench is called a bench phase or panel,
which will be denoted by

Bj
p =

{
(x, y, z) ∈ Bp : z = z(j)

}
∀j ∈ 1, Jp (27)

where Jp represents the number of benches inside phase p. We assume the relation
z(1) > z(2) > · · · > z

(
Jp
)
, so that we can identify each bench phase using an

index j.
We consider a time horizon T ∈ N and denote individual time periods with

t = 1, 2, ..., T. The set of time periods is denoted by T = 1, T. There is also a set of
destinations D = P∪W composed of a set of processing plants P and a set of waste dumps
W. For example, d ∈ P can be considered as a processing plant in Equation (1), or d ∈W
the waste dump in Equation (2). The discounted value for a block b ∈ B in geological
scenario s ∈ S when sent to destination d ∈ D in period t ∈ T is given by

vbdts = ρtvbds (USD) (28)
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where ρ is a discount rate representing the opportunity cost. The stochastic value vbdt is
obtained by averaging over all geological scenarios.

For each block, we identify two sets of attributes: (i) Those related to the quantity
of material and control of the available operational resource, such as ore and waste ton-
nages; and (ii) those related to the concentration of a given element, such as ore grades or
pollutants. In particular, we define rtonb as the total tonnage (ore + waste) of block b. To
account for grade uncertainty, gbs and otonbs are defined as the ore grade and ore tonnage,
respectively, of each block b in scenario s. These definitions will be useful to control devia-
tions from the production targets. The upper and lower limits are denoted, respectively, by
(i) mining capacity in period t, MC+

t and MC−t ; (ii) processing capacity for d ∈ P in period
t, PC+

dt and PC−dt; and (iii) blending or quality of ore grade for d ∈ P in period t, BC+
dt

and BC−dt.
The formulation considers the extraction and processing decisions separately, using

binary variables for the first one and continuous variables for the second one, making
it a mixed integer program. The objective function is the usual maximization of NPV
while simultaneously minimizing the total discounted cost associated with deviations from
production targets.

The decision variable is defined for b ∈ B′, t ∈ T:

xbt =

{
1, if block b is extracted by period t,

0, otherwise
(29)

The interpretation of variable xbt is by period, that is xbt = 1 if and only if block b has
been extracted at some period s ∈ 1, t. The advantages of this formulation are discussed
in [65]. To simplify the notation, it is useful to introduce the following auxiliary variables
for b ∈ B: ∆xb1 = xb1, and ∆xbt = xbt − xb,t−1 for t = 2, T. We have xbt = ∑s≤t xbs and
∆xbt = 1 if, and only if, the block b is extracted exactly at period t.

The second set of variables are defined for b ∈ B, d ∈ D, and t ∈ T:

ybdt = fraction of block b sent to destination d at period t (30)

A third set of binary variables controls the progress of bench-phases in the operation,
defined for phase p ∈ 1, no, bench j ∈ 1, Jp, and period t ∈ T:

zpjt =

{
1, if bench-phase Bj

p is completely extracted by period t
0, otherwise.

(31)

Finally, we define continuous variables to represent the deviations from the ore pro-
duction target and average metal requirement. For each, we define both under and over
deviations, for t ∈ T and s ∈ S in Equations (32)–(35).

u−ts = deficit of extracted ore tons at period t and scenario s. (32)

u+
ts = superavit of extracted ore tons at period t and scenario s. (33)

v−ts = deficit of metal production tons at period t and scenario s. (34)

v+ts = superavit of metal production tons at period t and scenario s. (35)

Then, the mixed integer linear programming model to generate a production schedule,
following a balanced order of phases, and not allowing a depth greater than a certain
threshold Φ ∈ N between consecutive phases, is given by Equations (36)–(52).
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(P3) max 1
S

 ∑
b∈B, t∈T
d∈D, s∈S

vbdts · ybdt − ∑
t∈T,s∈S

cp+ts u+
ts + cp−ts u−ts + cg+ts v+ts + cg−ts v−ts

 (36)

s. t. ∆xbt ≥ 0 ∀b ∈ B′, t ∈ T (37)

∆xbt = ∑
d∈D

ybdt
∀b ∈ B′, t ∈ T (38)

zp(j−1)t ≤ xbt
∀b ∈ Bj−1

p , t ∈ T, p ∈ 1, no, j ∈
2, Jp

(39)

xbt ≤ zp(j−1)t

∀b ∈ Bj
p, t ∈ T, p ∈ 1, no, j ∈

2, Jp
(40)

xbt ≤ zp(j−Φ)t

∀b ∈ Bj
p−1, t ∈ T, p ∈ 2, no, j ∈

Φ + 1, Jp−1
(41)

xbt ≤ z(p−1)jt

∀b ∈ Bj−Φ+1
p , t ∈ T, p ∈

2, no, j ∈ Φ, Jp−1
(42)

∑
b∈B

rtonb · ∆xbt ≤ MC+
t

∀t ∈ T (43)

∑
b∈B

rtonb · ∆xbt ≥ MC−t
∀t ∈ T (44)

∑
b∈B

otonbs · ybdt − u+
ts ≤ PC+

dt
∀t ∈ T, s ∈ S, d ∈ P (45)

∑
b∈B

otonbs · ybdt + u−ts ≥ PC−dt
∀t ∈ T, s ∈ S, d ∈ P (46)

∑
b∈B

(
gbs − BC+

dt
)
· otonbs · ybdt ≤ v+ts

∀s ∈ S, t ∈ T, d ∈ P (47)

∑
b∈B

(
BC−dt − gbs

)
· otonbs · ybdt ≤ v−ts

∀s ∈ S, t ∈ T, d ∈ P (48)

xbt ∈ {0, 1} ∀b ∈ B′, t ∈ T (49)

zpjt ∈ {0, 1} ∀p ∈ 1, no, j ∈ 1, Jp, t ∈ T (50)

ybdt ∈ [0, 1] ∀b ∈ B′, d ∈ D, t ∈ T (51)

u+
ts , u−ts , v+ts , v−ts ≥ 0 ∀t ∈ T, s ∈ S (52)

Equation (36) presents the objective function, which is the maximum expected NPV of
the mine schedule minus the cost of uncertainty, i.e., the total cost associated with devi-
ations from the production targets. Equation (37) restricts each block to being extracted
only once, and Equation (38) requires the values of the extraction and processing vari-
ables to be consistent, i.e., if a block is extracted, then it must be distributed among the
possible destinations. In turn, Equations (39) and (40) correspond to the vertical prece-
dence constraints between mining benches, and Equations (41) and (42) impose an order in
the balanced sequence of extraction between benches from different phases. In addition,
Equations (43) and (44) limit the consumption of mining (hauling) resources in each period,
which affects ore and waste material. In turn, Equations (45) and (46) limit the consumption
of processing resources in each period t and scenario s, which constrains the amount of ore
treated at the plant. Similarly, Equations (47) and (48) represent the blending constraints
over the average ore grade at destination d for each scenario s and period t. Finally, Equa-
tion (49) establishes that extraction variables are binary. Equation (50) represents the binary
variables that control the precedence between consecutive benches. Equation (51) indicates
that the processing variables are continuous, and Equation (52) represents the deviations in
the production objectives.
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2.5. Case Study

The block model is a porphyry copper deposit from northern Chile, for which
50 conditional simulations are available. This model consists of 407,179 blocks of
10 m × 10 m × 10 m. The average grade among 50 scenarios is used as a determinis-
tic representation of the copper grade variable. For confidentiality reasons, other specific
aspects of the block model, such as owner and location, among others, are not disclosed.

Figure 4a presents the histogram, including error bars along simulations, and Figure 4b
shows grade–tonnage curves to quantify the recoverable resources at different cut-off
grades. Both figures represent error bars with the 5th and 95th percentiles per interval,
showing low uncertainty in copper grades and ore tonnages.
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The parameters to generate economic block values are presented in Table 1. The
methodology is applied by considering the following parameters. For the final pit limit,
a confidence level of δ = 95%. For the pushback optimization, the revenue factors are
λk =

k
90 , with k ∈ 1, 90. The parameters for production scheduling are presented in Table 2.

Table 1. Economic and technical parameters to evaluate the 2D model.

Parameter Symbol Value

Copper price (USD/ton) Price 5511.55
Metallurgical recovery Rec 0.85
Mining cost (USD/ton) Mcost 3.2

Processing cost (USD/ton) Pcost 9.0

Table 2. Economic and technical parameters for production scheduling.

Parameter Symbol Value

Max. mining capacity (Mton) MC+
t 13.0

Min. mining capacity (Mton) MC−t 0.0
Max. processing capacity (Mton) PC+

t 7.0
Min. processing capacity (Mton) PC−t 6.0

Max. average grade (%) BC+
dt +∞

Min. average grade (%) BC−dt 0.8–0.5
Maximum depth (benches) Φ 8
Horizon planning (years) T 22
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Table 2. Cont.

Parameter Symbol Value

Discount rate ρ 1/(1 + 10%)
Number of destinations D 2

Number of scenarios S 50
Cost over-production ore (USD/ton) cp+s0 18.5

Cost under-production ore
(USD/ton) cp−s0 18.5

Cost over-production metal
(USD/ton) cg+s0 0

Cost under-production metal
(USD/ton) cg−s0 39.0

3. Results

This section presents and analyzes the results obtained corresponding to each stage of
the proposed methodology for the case study. Optimization models were coded in Python
(PuLP library, version 2.5.1) [66] with GUROBI 8.1.1 [67] and executed on a 64-bit Windows
OS (version 10 Pro) workstation with a CPU Intel Xeon E5 2660 v3 with 128 Gb RAM.

3.1. Final Pit

Table 3 shows a summary of the numerical results: Risk measures VaR and CVaR,
expected undiscounted value, optimality gap, and CPU processing time, by considering
a confidence level of 95%. The results show an expected undiscounted value equal to
2078.06 MUSD, with a 95% probability, the loss does not exceed VaR = 144.99 MUSD and
the average of the 5% highest losses will not exceed CVaR = 166.00 MUSD. The expected
ore tonnage is 137.52 [Mton] and the expected rock tonnage is 273.19 [Mton]. The shape of
the resulting final pit is presented in Figure 5. The stochastic final pit limit problem was
solved in about 4 h.

Table 3. Numerical results for a final pit limit by considering CVaR as a risk measure with a confidence
level δ = 95%.

VaR
[MUSD]

CVaR
[MUSD]

Exptd. Value
[MUSD]

Opt. Gap
(%)

Time
[s]

144.99 166.00 2078.06 0.1 14,881
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3.2. Pushback Optimization

Ninety nested pits P1 ⊆ P2 ⊆ · · · ⊆ P90 were generated (Figure 6): The first non-
empty pit is λ = 17

90 ; therefore, the first 16 pits are empty. Figure 7 shows the “pit by
pit” graph, including error bars (P95-P5 band) for both ore tonnage as well as expected
economic values for each pit.
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Note that both the expected tonnage of waste and ore are strictly increasing, but the
first one has a higher growth rate than the second one, which in general indicates that the
pushbacks will present an increasing stripping ratio (the amount of waste material that
must be removed to release a given ore quantity). In fact, the first pit will present a low
stripping ratio, an ideal scenario to ensure a production scheduling that maximizes the
cumulative discounted expected value, subject to operational constraints.

Model (P2) is then used to select 4 pushbacks to reduce the differences in ore and
waste tonnages among the resulting phases. The model has (n− 3)(n− 2)(n− 1)/6 = 113,
564 ways to perform the partition of the final pit. Figure 8 shows the 4 phases (plan and
section views), and Figure 9 shows the tonnages of ore and waste and average grade per
phase, including the associated error bars (P5 and P95) according to the grade variability.
We highlight that there are decreasing ore tonnage and average grades along the phases.
The total CPU time was 300 [s] for the computation of stochastic nested pits and 15 [s] for
solving the phase selection model (P2).

3.3. Production Scheduling

Different constraints were applied to limit the upper and lower mining capacities as
well as the processing capacities. In addition, we ensure sufficient quality ore for mill feed
by imposing a lower limit on the average grade per period, which is decreasing, as seen in
Stage 2: we applied a lower limit of 0.8% for the first 7 periods and 0.7%, 0.6%, and 0.5%
for each of the following 3 five-year periods, respectively.
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Figure 10 shows the bench phases scheduled: The extraction fulfills the maximum
lead constraint of eight benches between contiguous phases. This requirement is common
in traditional long-term planning workflows and ensures that the resulting schedule is
operationally feasible. Ignoring this requirement could lead to potentially higher NPV
solutions that are difficult to implement in the operation. This constraint was imposed
over all phases, but it is possible to restrict this choice to a smaller number of phases and
to change the depth, all according to the evaluator’s requirements. Figure 11 shows the
production plan, including ore and waste tonnages per period, along with the average
grade of mill feed.

In this stage, the production scheduling model assigns the destination of each block
based on its value, production capacities, and deviations from targets. Depending on the
ore distribution in the deposit, the model can impose a different cut-off grade for each
period. This is usually noted as a dynamic cut-off grade policy. In contrast, in stage 1, the
block destination is an input for the final pit problem and is based solely on the block’s
value. This is usually denoted as a fixed cut-off grade policy. To compare the effects of both
strategies, Table 4 shows the expected tonnages for each policy: There are 5.8 [Mton] of
rejected ore, as in the final pit, 137.5 [Mton] of ore were reported, but in the scheduling,
only 131.7 [Mton] were sent to the processing plant. The rock tonnages matched, showing
that the final pit was fully scheduled. Figure 12 shows the cumulative discounted expected
value of the project, reaching a total of 916.5 [MUSD], with a P95-P5 range of 197 [MUSD].
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Table 4. A comparison of expected ore, waste, and rock tonnages by considering fixed and dynamic
cutoff grades.

Expected
Tonnage [Mton]

Cutoff Grade Difference
[Ton]

Relative
Variation %Fixed Dynamic

Ore 137.52 131.72 5.80 4.4
Waste 135.67 141.47 −5.80 −4.1

Total (rock) 273.19 273.19 0.00 0.0

3.4. Impact of Grade Uncertainty at Each of the Planning Stages

In this section, we present the effect of incorporating grade uncertainty at different
stages of the proposed methodology. For this purpose, four cases are evaluated, depending
on whether a stochastic approach (S) or deterministic approach (D) is considered:

• Fully deterministic, “(D, D, D)”: In this case, the multi-stage methodology is applied
without considering grade uncertainty, i.e., under a deterministic approach. This is
considered the “base case”.

• Stochastic 3rd stage, “(D, D, S)”: This case aims to evaluate the effect of incorpo-
rating grade uncertainty in production scheduling only. For this, we consider grade
uncertainty only in stage 3, deterministic final pit, and pushback optimization.

• Deterministic 1st stage, “(D, S, S)”: In this case, the final pit limit is chosen under
a deterministic approach, but pushback optimization and production scheduling
are stochastic.
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• Fully stochastic, “(S, S, S)”: In this case, the multi-stage methodology is applied,
considering grade uncertainty at all stages. This case aims to evaluate the contribution
of Stage 1 under grade uncertainty when compared with (D, S, S). Additionally, this
case shows the added value of the complete proposed methodology.
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Table 5 presents, for each case, the expected net present value (ENPV), the expected
total cost of uncertainty (ETCU), and their relative variations (in percentage) with respect
to the base case. In this case study, the ENPV may increase by up to 2.1%, and the ETCU
associated with deviations from production targets can be reduced by up to 69%, which
illustrates how the proposed methodology can control the risk of economic losses.

Table 5. Results of multi-stage methodology incorporating grade uncertainty in different stages.

Case ENPV
[MUSD]

Relative
Variation of

ENPV
(%)

ETCU
[MUSD]

Relative
Variation of

ETCU
(%)

(D, D, D) 904.7 - 86.5 -
(D, D, S) 915.4 0.9 41.8 −51.7
(D, S, S) 917.8 1.1 34.2 −60.5
(S, S, S) 923.8 2.1 26.7 −69.1

We observe that the total value of information is ENPVS,S,S − ENPVD,D,D = 19.1
[MUSD], where stage 1 (final pit limit) contributes 31.4%, stage 2 (pushback optimization)
contributes 12.6%, and stage 3 (production scheduling) contributes 56%. This is very
interesting because it means that the impact of the selection of the final pit is very significant
(almost 1/3) and that more than half of the value is related to scheduling. It is also
interesting to note that pushback optimization does not play a significant role. However,
these conclusions depend on the case study and the proposed methodology; thus, they
can be different in other deposits or if the models used to address each of the stages
are different.

On a more general note, this shows how the multi-stage sequential approach could be
applied to determine the relative impact of different stages and, therefore, where to invest
the most effort to improve the value and reduce the potential cost of uncertainty.
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4. Conclusions

This paper addressed the problem of the long-term open-pit mine production planning
process under grade uncertainty, using a multi-stage sequential approach that generalizes
the current practice of computing a final pit, then selecting mining phases, and, finally,
scheduling production over time. The objective was to investigate the negative effects
of geological uncertainty at different stages of the planning process. Robust models that
incorporate this representation of uncertainty in mine planning were proposed and assessed.
Results show that incorporating uncertainty helps reduce the risk of losses due to failure
to meet production goals as compared with the fully deterministic case. However, the
uncertainty does not affect all stages equally, so it is particularly interesting to deepen these
experiments through more case studies and new models and algorithms that incorporate
geological uncertainty at different stages.

In future work, we propose to consider rock type uncertainty in addition to grade
uncertainty. It is necessary to research new algorithms to find near-optimal solutions
quickly, especially in stages 1 and 3. Finally, we propose to incorporate more prac-
tical mining constraints, such as minimum mining widths, into the proposed models
(stages 2 and 3).
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