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Abstract: Assessing the impact of climate change on water systems often requires employing a
hydrological model to estimate streamflow. However, the choice of hydrological model, process
representation, input data resolution, and catchment discretization can potentially influence such
analyses. This study aims to evaluate the sensitivity of climate change impact assessments to various
hydrological modeling configurations in a snow-dominated headwater system in Alberta, Canada.
The HBV-MTL and GR4J models, coupled with the Degree-Day and CemaNeige snowmelt modules,
were utilized and calibrated using point- and grid-based climate data on lumped and semi-distributed
catchment discretization. The hydrological models, in conjunction with a water allocation model,
were supplied with climate model outputs to project changes in the basin. While all models revealed
a unanimous increase in peak flow, the difference between their estimations could be as substantial
as 42%. In contrast, their divergence was minimal in projecting median flow. Furthermore, most
models projected an aggravated water supply deficit between 16% and 40%. Overall, the quantified
climate change impacts were the most sensitive to the choice of snow routine module, followed by
the model type, catchment discretization, and data resolution in this snow-dominant basin. Therefore,
particular attention should be given to the proper representation of snowmelt processes.

Keywords: climate change; cold regions; catchment discretization; hydrological model; multi-model
impact assessment; snowmelt representation; water resources management

1. Introduction

Changes in climate have altered the characteristics of water cycle components [1,2].
Notably, regional water availability has significantly changed, especially in snow-dominant
regions [3,4]. These changes have mainly stemmed from shifts in precipitation charac-
teristics such as the snow-to-rain ratio and alterations in the magnitude and timing of
glacier- and snowmelt, causing variations in streamflow volume and peak timing [5–7]. For
instance, in certain regions in Canada, more frequent and intense floods in early spring and
reduced water availability during summer have been observed [8–10]. Such changes in
hydroclimatic conditions can affect water management strategies, including the timing and
volume of stored and released water from reservoirs to meet water demand [11]. Therefore,
gaining a better understanding of future water availability conditions is crucial to updating
regional water management plans.

Global circulation models (GCMs) serve as the most credible tools for projecting fu-
ture climates, as they mathematically represent geophysical processes in each sphere and
their interactions [12]. However, their projections are subject to uncertainties stemming
from diverse sources, such as processe simplification, scenario definitions, and climate
noise [13–15]. Furthermore, downscaling their outputs for regional interpretability, espe-
cially for watershed management purposes, amplifies the inherent uncertainty in their
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projections [16,17]. Therefore, it is recommended to employ an ensemble of climate projec-
tions instead of relying on a single climate model [18,19]. The outputs of climate models
can be utilized in hydrological models to estimate future streamflow conditions [20].

The choice of employed hydrological models can, however, influence the estimated
changes in a streamflow regime, including peak flow magnitude [21–23]. Even within
the same hydrological model, alternative representations of a process, such as evapo-
transpiration, can impact the flow estimation [24–26]. Furthermore, different catchment
discretization, such as lumped vs. semi-distributed approaches, can potentially lead to
diverging results [27–29]. Another source of difference can arise from the resolution of the
climate data used for model calibration [30]. For instance, the usage of ground data in the
form of point or grid-based data can cause discrepancies between simulated flows [31].
Despite the significance of the uncertainty arising from hydrologic process representation,
catchment discretization, and utilized input data resolution, their combined impact on
the analysis of water resource management in a changing climate remains understudied.
Moreover, it is unclear how sensitive assessments are to each individual factor and their
combinations. For example, in snow-dominant regions, it remains unclear whether it
is more effective to employ multiple hydrological models, all using the same method
for snowmelt representation (as commonly done in the literature), or to utilize the same
hydrological model with multiple snow routines.

The objective of this study was to understand the sensitivity of water allocation
analysis to the choice of hydrological modeling configuration, with the overarching goal
of evaluating the impact of climate change on the snow-dominant Oldman River Basin
in Canada. For this purpose, 16 hydrological modeling configurations were considered
that involve the combination of two hydrological models, coupled with two snow routine
modules, the consideration of two distinct catchment discretization approaches, and the
incorporation of ground-based climate data at two different resolutions. These hydrological
models were integrated with a water allocation model and supplied with climate model
projections to estimate future changes in the study area. It is important to note that this
research builds upon the work of Sharifinejad et al. [31]. The prior study focused on
impact assessment within the same basin, albeit limited to only four configurations relevant
to catchment discretization and climate data resolution. In contrast, the current study
significantly broadens this scope by encompassing a more extensive array of modeling
configurations to achieve a more comprehensive understanding of the potential impacts of
climate change on this water system. This type of analysis is critical to water management
and has not been conducted before in cold region basins. The following sections introduce
the Oldman River Basin and the employed impact assessment framework. Moreover, the
performance of hydrological models and projected water system behavior are discussed,
and concluding remarks are provided.

2. Case Study

The Oldman River Basin covers approximately 27,500 km2 in Alberta, Canada, as
shown in Figure 1. The multi-purpose Oldman Reservoir, with a capacity of 490 million m3,
is the largest dam in this region. It supports water for municipal uses, hydropower
generation, and agricultural production, and plays a crucial role in flood management
in the Prairies [32]. The Oldman Reservoir is primarily fed by three major river inflows:
the Castle, Crowsnest, and Oldman Rivers, originating from the Rocky Mountains. Their
approximate long-term annual mean discharge during 1961–1990 is respectively 472, 153,
and 383 million m3. The drainage area at the reservoir closure is about 4380 km2. In
this study, the reservoir drainage area is split into four sub-watersheds (tributaries): the
regions upstream of the hydrometric stations on the noted three main inflows, and an area
below these stations reaching the Oldman Reservoir, hereafter referred to as Near Reservoir
sub-watershed (NR), shown in Figure 1. The drainage areas and streamflow discharge in
each sub-watershed are presented in Table A1 in Appendix A.
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Figure 1. The Oldman River Basin in Alberta, Canada, with the Castle (bottom-left), Crowsnest (mid-
dle-left), Oldman (top-left), and Near Reservoir sub-watersheds upstream of the Oldman Reservoir. 
Climate and hydrometric stations in each sub-watershed, as well as the grids of the Alberta Town-
ship system, are presented. 

Since a large number of users in the Prairies rely on the water released from the Old-
man Reservoir, any changes in this dam’s water availability can put unprecedented pres-
sure on the socioeconomic activities within the entire water system [33]. Over the 20th 
century, an increase of 2–4 °C in the mean annual temperature and no significant trend in 
mean annual precipitation in the region have been observed [34–36]. The rising tempera-
ture has led to alterations in the snow-over-rain ratio and an increased rate of snowmelt 
processes, thereby impacting the streamflow characteristics and posing water manage-
ment challenges, particularly in flood control [37–40]. Moreover, in addition to climate 
variability and change, increased human activities, such as the expansion of agricultural 
areas, have altered the historical water availability in this region [41,42]. 

Regarding future projections, Tanzeeba and Gan [43] estimated flows with about two 
weeks earlier peak timing and lower intensities during the summer in the outlet of the 
Oldman River Basin using a physically based hydrological model. In the Crowsnest River 
sub-watershed, significant increases in flow during winter by a maximum of 200% and a 
decrease in flow during summer by a maximum of 63% have been projected for the future, 
compared to the period from 1965 to 1997 [44]. These changes in flow volume and peak 
timing pose challenges for reservoir operations to control flooding and meet water de-
mand, particularly in satisfying irrigation water demand [45–47]. Sharifinejad et al. [31] 
used the HBV-MTL hydrological model to simulate the flow reaching the Oldman Reser-
voir and found that the estimated streamflow regime is sensitive to the choice of catch-
ment discretization and input data resolution. Moreover, they projected increased flow 
intensity, along with an earlier peak timing, leading to severe water shortages during the 
summer in the basin. As previously noted, in our study, we extend this work by consid-
ering GR4J, another hydrological model, and two different snowmelt representations as 
well, increasing the number of model configurations from four to sixteen, as explained in 

Figure 1. The Oldman River Basin in Alberta, Canada, with the Castle (bottom-left), Crowsnest
(middle-left), Oldman (top-left), and Near Reservoir sub-watersheds upstream of the Oldman Reser-
voir. Climate and hydrometric stations in each sub-watershed, as well as the grids of the Alberta
Township system, are presented.

Since a large number of users in the Prairies rely on the water released from the Oldman
Reservoir, any changes in this dam’s water availability can put unprecedented pressure
on the socioeconomic activities within the entire water system [33]. Over the 20th century,
an increase of 2–4 ◦C in the mean annual temperature and no significant trend in mean
annual precipitation in the region have been observed [34–36]. The rising temperature has
led to alterations in the snow-over-rain ratio and an increased rate of snowmelt processes,
thereby impacting the streamflow characteristics and posing water management challenges,
particularly in flood control [37–40]. Moreover, in addition to climate variability and change,
increased human activities, such as the expansion of agricultural areas, have altered the
historical water availability in this region [41,42].

Regarding future projections, Tanzeeba and Gan [43] estimated flows with about two
weeks earlier peak timing and lower intensities during the summer in the outlet of the
Oldman River Basin using a physically based hydrological model. In the Crowsnest River
sub-watershed, significant increases in flow during winter by a maximum of 200% and a
decrease in flow during summer by a maximum of 63% have been projected for the future,
compared to the period from 1965 to 1997 [44]. These changes in flow volume and peak
timing pose challenges for reservoir operations to control flooding and meet water demand,
particularly in satisfying irrigation water demand [45–47]. Sharifinejad et al. [31] used
the HBV-MTL hydrological model to simulate the flow reaching the Oldman Reservoir
and found that the estimated streamflow regime is sensitive to the choice of catchment
discretization and input data resolution. Moreover, they projected increased flow intensity,
along with an earlier peak timing, leading to severe water shortages during the summer
in the basin. As previously noted, in our study, we extend this work by considering GR4J,
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another hydrological model, and two different snowmelt representations as well, increasing
the number of model configurations from four to sixteen, as explained in the following
section. This is to investigate different sources of uncertainty in the assessment of climate
change impacts.

3. Materials and Methods

The historical and future periods considered in this study were 1961–1990 and 2021–2099,
respectively. In the following sections, the previously noted hydrological configurations are
explained. Moreover, the utilized objective function and calibration methods are described.
In addition, the employed reservoir water allocation model, future climate projections, and
measures used for impact assessment are elaborated upon.

3.1. Catchment Discretization

Under the semi-distributed approach, individual hydrological models were developed
for the Castle, Crowsnest, Oldman River, and NR sub-watersheds, and their results were
aggregated to estimate the inflow reaching the Oldman Reservoir. Streamflow data for these
sub-watersheds were collected for 1961–1990 and are freely available from the Government
of Canada [48]. In contrast, the lumped approach treated the entire upstream area of
the Oldman Reservoir as one entity, and a single hydrological model was developed for
this region.

3.2. Observed Climate Data

Observed-station-based temperature and precipitation data, or point-based data corre-
sponding to the previously mentioned sub-watersheds, were collected from Environment
Canada and Climate Change Canada [49] for the 1961–1990 period (see Table A2). The loca-
tions of these stations are shown in Figure 1. Moreover, a grid-based climate dataset for this
region was collected from the Alberta Climate Information Service [50] for each watershed,
as shown in Figure 1. These data were based on the Alberta Township System with a grid
size of 9.7 × 9.7 km2. This database was developed via transferring the climate station data
into the centers of the grids using an inverse distance weighting method. The recorded
average long-term precipitation and minimum and maximum temperatures based on these
grid-based data during 1961–1990 are provided in Table A2. For the semi-distributed
approach, the point- and grid-based climate data corresponding to each sub-watershed
were used for model development. In the lumped approach, the entire dataset was used.
When point-scale climate data were utilized, the target area was divided into the zones of
Thiessen polygons, with each climate station at the center of a polygon, and then weighted
average climate data were found. Similarly, if the grid-based data were utilized, the target
area was discretized into zones corresponding to the grids of the Alberta Township System,
and weighted average climate data were used for modeling purposes.

3.3. Hydrological Models

HBV is a commonly used conceptual hydrological model known for its simplicity, ease
of application, and good performance in estimating streamflow [51–53]. In this study, a mod-
ified version of the HBV model, called HBV-MTL and developed by Sharifinejad et al. [31],
was used. This model requires daily precipitation and potential evapotranspiration as
inputs, with the latter being estimated using temperature data. Based on the daily tempera-
ture values, precipitation is classified as rainfall, snowfall, or a mixture of rain and snow.
Snowfall contributes to the snowpack state variable, which eventually melts when the tem-
perature rises. Liquid water, whether from rainfall or snowmelt, infiltrates the soil or turns
into runoff, depending on the soil moisture and temperature. In this model, infiltration
into the frozen and thaw soil is estimated based on the modified SCS method used in the
SWAT model [54]. A portion of infiltrated water is retained by soil particles to form the soil
moisture state variable. Some of the soil moisture is consumed through evapotranspiration
processes, estimated using the method of Hargreaves and Samani [55] and minimum and
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maximum temperature data. The remaining infiltrated water contributes to groundwater.
In this model, groundwater is conceptualized with two state variables, representing shallow
and deep soil layers’ water content. The shallow groundwater slowly seeps into the deeper
reservoir. Meanwhile, the accumulated water in both these groundwater reservoirs is
released progressively to form intermediate flow and baseflow. The combined flows, along
with runoff, are routed through a triangle delay function to calculate the flow at the basin’s
outlet. For more information on the equations, parameters, and their range used, please
refer to [31].

GR4J is a conceptual hydrological model that requires precipitation and potential
evapotranspiration as input data to estimate flow [56]. Evapotranspiration is estimated
using temperature data. Its simplicity and limited data requirements make GR4J a suitable
option for examining the impacts of climate change on streamflow [57,58]. In this model,
net precipitation (obtained through subtracting potential evapotranspiration from precipi-
tation) is partitioned into two segments through a parabolic equation. A portion of the net
precipitation is stored in “production storage”, where the stored water gradually percolates.
Furthermore, vegetation utilizes the stored water in production storage for evapotranspira-
tion. The remaining portion of the net precipitation joins with the percolated water from
production storage, and together, they enter the routing phase. In the routing phase, 10%
of the available water is directed to the outlet using a two-sided unit hydrograph, while
the remaining 90% of water is routed using a one-sided unit hydrograph and subsequently
retained in routing storage, where it is released gradually over time. This routing storage is
similar to the groundwater buckets in the HBV-MTL model. However, there is a difference
in how GR4J manages the inflow to the routing storage, while HBV-MTL assumes instant
inflow to the groundwater reservoirs and routes their outflow. For a more comprehensive
understanding of the GR4J model’s structure and equations, please refer to Perrin et al. [59].

3.4. Snow Process Representations

The Degree-Day or temperature index method [52] is commonly used to estimate
snowmelt due to its simplicity and minimum data requirement [60,61]. In this module,
it is supposed that the snow accumulates homogenously over the basin or target zones.
The Snowpack melt (Smt ) occurs when the daily average temperature (Tave,t) is higher
than the snowmelt threshold temperature (Tm,thres), as shown in Equation (1), where the
Degree-Day coefficient (DD) represents the linear relationship between air temperature
and available energy for snowmelt and often depends on the altitude and geographical
characteristics of the basin [62]. Consequently, the Snowpack state variable (SPt) at time T
can be found considering the difference between the Snowfall (S f t) and Snowmelt (Smt ) and
initial Snowpack value SPt=t0

, see Equation (2). Despite its popularity, it is acknowledged
that this module may not properly represent the snowmelt variability caused by elevation
variations in the basin [52].

Smt=T = DD ∗ max(0, Tave,t=T − Tm,thres) (1)

SPt=T = SPt=t0
+
∫ T

t0

(
S f t=s − Smt=s

)
ds (2)

CemaNeige [63] is a modified Degree-Day approach that provides a way to represent
snow processes within a watershed across different elevation ranges. In this approach,
the basin is divided into five elevation zones, each with equal areas. This division has
demonstrated a reasonable performance and was adopted in this study [64]. To implement
this approach, the observed precipitation and temperature values in the basin are adjusted
to each band’s elevation. This adjustment is proportional to the difference between the
average elevation of the bands and that of the entire basin via the employment of an
elevation gradient factor [65]. As a result, snow processes are simulated independently for
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each elevation band. This means that CemaNeige needs information about how elevation
varies across the entire basin.

CemaNeige not only monitors the accumulation of snow particles but also keeps track
of the temperature within the snowpack. To achieve this, it estimates the snowpack’s
temperature in each timestep (eTGt=T), as shown in Equation (3). This estimation is based
on a weighted average of the air temperature in that specific timestep ( Tmeant=T ) and the
snowpack’s temperature in the previous timestep (eTGt=T−1

)
. The weighting is determined

via a calibration parameter ( θG2). If the snowpack’s temperature is below zero degrees
Celsius, any positive ambient temperature does not lead to the melting of the snow. In
other words, snowmelt does not occur as long as the temperature within the snowpack
remains below freezing. When the snow temperature reaches zero degrees Celsius and the
mean temperature (Tmeant=T ) is positive, the “potential” snowmelt ( PSmt=T ) is calculated
using a Degree-Day coefficient ( θG1), as shown in Equation (4). Accordingly, the actual
snowmelt is determined via adjusting the potential snowmelt value based on the snow
coverage factor, see Equation (5). This factor is the ratio of accumulated snow (S_Pt=T−1

)
and snowfall (S f t=T) over the long-term mean annual snowfall ( Spthres

)
.

eTGt=T = (1 − θG2)× Tmeant=T+θG2 × eTGt=T−1 (3)

If (eTGt=T = 0) & (Tmeant=T > 0) : PSmt=T = θG1 × Tmeant=T (4)

Smt=T = min
(

1,
SPt=T−1 + S f t=T

Spthres

)
× PSmt=T (5)

In the final step of the process, the snowpack accumulation is updated via accounting
for snowfall and estimated snowmelt (as described in Equation (2)). For more comprehen-
sive information regarding the CemaNeige module, please refer to [63].

3.5. Hydrological Model Calibration

In the context of this study, the historical data from 1961–1990 were divided into
burn-out (warm-up), calibration, and control (validation) periods. The first six years of data
were used in the warm-up period to reach acceptable initial conditions [66]. Two-thirds
of the remaining data were used for model calibration, and one-third was used for model
evaluation. Moreover, we utilized Kling–Gupta efficiency (KGE) in the objective function
for model calibration due to its effectiveness and ability to capture different aspects of
model performance, including variability, bias, and correlation [67]. In brief, KGE, as
shown in Equation (6), has three components: notably, the ratio of simulated over observed
standard deviations (α); the ratio of simulated over observed mean values (β); and the
Pearson correlation (r), which investigates the linear relationship between simulated and
observed values. In Equations (7)–(9), σs and σo are the standard deviations of simulated
and observed flows, S and O are the long-term average simulated and observed flows, and
St and Ot are simulated and observed flows, respectively.

KGE = 1 −
√
(1 − α)2 + (1 − β)2 + (1 − r)2 (6)

α =
σs

σo
(7)

β =
S

O
(8)
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r =
∑t

(
Ot − O

)(
St − S

)
√(

∑t

(
Ot − O

)2
)(

∑t

(
St − S

)2
) (9)

The objective function used to find calibration parameters integrated KGE values
derived from both daily and annual streamflow data, as both temporal resolutions are
critical for water management applications. The Euclidean distance between the pair of
annual and daily KGE measures and the point (1, 1) was used to compute the objective
function, as demonstrated in Equation (10).

Objective f unction = Min

√(
1 − KGEdaily

)2
+ (1 − KGEannual)

2 (10)

The Shuffled Complex Evolution algorithm [68] was utilized in this study to find the
best or “optimal parameter set” based on the provided objective function. This algorithm
works by randomly generating 50 parameter sets, which are then divided into five batches.
Each batch is locally evolved via generating new parameter sets using parents within the
same batch. After a few iterations, the superior parameter sets in all batches are transferred
into a new batch, while the rest of the parameter sets are replaced with newly generated
random parameters. This process of local evolution and batch transfer is repeated for
100 iterations. Finally, the parameter set that yields the minimum value of the objective
function and the best match between simulated and observed flows is identified as the
optimal parameter set.

As part of our investigation, we aimed to tackle the uncertainties linked with the
process of parameter selection in each hydrological model configuration. Consequently,
our goal was not only to find the noted optimal parameter values but also to identify
an ensemble of parameter sets that we called the “acceptable parameter set”, which can
simulate streamflow with a performance of KGE > 0.5 at both daily and annual scales,
derived from a uniform probability function. For this, we employed the Generalized
Likelihood Uncertainty Estimation (GLUE) method [69] to find acceptable parameters. Each
hydrological model configuration generated multiple streamflow series corresponding to
these acceptable parameter sets.

3.6. Water Allocation Model

An existing water allocation model, known as the Water Resources Management Model
(WRMM), was utilized to simulate the Oldman Reservoir operation. This model was ini-
tially developed by Alberta Environment [70] and later emulated by Sharifinejad et al. [31].
The WRMM requires several input data, including weekly upstream inflow, precipitation,
evaporation, reservoir physical properties such as maximum and minimum storage levels,
weekly water demand values for different sectors, and water allocation priorities and rule
curves. To optimize the allocation of water to various competing demands, the model
divides each system component, including reservoir and water sectors, into multiple zones
based on rule curves. Each zone is assigned specific cost values, and the model employs
linear programming to allocate water, minimizing the cost or deviation from the ideal
zone/level. The WRMM follows the Alberta Water Act to prioritize water demand and
optimize the balance between social, economic, and environmental benefits [71]. The water
demand in the model is categorized into local and regional demand, similar to [72]. The
water balance in the reservoir is presented in Equation (11).

RS(t) =
∫ tn

t0

[IN(t) + PR(t)− EV(t)− SP(t)− LD(t)− RD(t)]dt + RS(t0) (11)

In this equation, t is the time between t0 and tn, RS is reservoir storage, IN is the
inflows to the reservoir, PR is precipitation, EV is evaporation, and SP is the spill from
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the reservoir spillway. LD and RD represent local and regional withdrawals, respectively.
The regional demand encompasses water needs for various inter- and intra-provincial
activities, especially irrigating 216 km2 of agricultural fields. The local water demand
mainly includes support for local irrigated agriculture covering an area of 67 km2. For
more detailed information about the water allocation model, please refer to [31]. The
performance of the WRMM model has been verified in other studies as well [73]. Here, we
used local water demand as an indicator of a water deficit in the area, while regional water
allocation primarily controlled reservoir volume dynamics.

3.7. Climate Projections

Precipitation and temperature data from 19 climate models, based on the NASA Earth
Exchange Global Daily Downscaled Projections under Coupled Model Intercomparison
Project 5 (CMIP5), were utilized to represent the future climate [74]. This dataset was
bias-corrected and spatially downscaled using bias-correction spatial disaggregation [75].
The data with a spatial grid resolution of 25 × 25 km2 were obtained for 1961–1990 and
from 2021 to 2099. The projections are available under two representative concentration
pathways (RCPs), 4.5 and 8.5, representing the intermediate and high radiative forcing
scenarios by the end of the 21st century, respectively. These data have been successfully
used in Canada [76–78]. For this study area, a more in-depth analysis of the projections, as
discussed by Sharifinejad et al. [31], revealed that there will be an increase in temperature
of up to 200% and an increase in precipitation of up to 72% in the future when compared to
the reference period of 1961–1990.

3.8. Measures to Assess Water System Behavior

We compared the projected and observed expected hydrographs for the inflow reach-
ing the Oldman Reservoir in the future with a focus on peak flow magnitude, timing, and
average flow volume, as these characteristics are critical for reservoir operation. Moreover,
we quantified various flow statistics during both historical and future periods that are
relevant to water management. In brief, we determined quantiles for low (Q10), median
(Q50), and extreme high flow (Q99), as well as the timing of the peak flow reaching the
Oldman Reservoir. To obtain these flow statistics, we used flow–duration curves. Fur-
thermore, we estimated changes in the Oldman Reservoir water storage and local water
deficit during both historical and future periods. The annual water deficit was calculated
as the relative difference between the total local water demand and supplied water each
year. It should be noted that the long-term value of the annual water deficit (averaged over
30 years) during 1961–1990 was 15%, indicating that local demand was not fully met even
during this period.

4. Results
4.1. Inflow Reaching the Oldman Reservoir during the Historical Period

As previously noted, the HBV-MTL and GR4J models, coupled with the Degree-Day
and CemaNeige modules, were calibrated based on lumped and semi-distributed catchment
discretization and using lumped and grid-based climate data. The optimal parameter sets
for these models were found using the Shuffled Complex Evolution algorithm and are
shown in Tables A3–A6. Here, the performance of these models during the calibration and
control periods, based on the KGE measure, is presented in Table 1. The KGE values during
the calibration period ranged from 0.87 to 0.93, indicating that all models exhibited strong
statistical agreement between the simulated and observed daily inflow values. Furthermore,
the divergence in their KGE values was minimal. During the control period, the KGE values
were smaller than in the calibration period, ranging from 0.64 to 0.84. Despite the slight
decrease, these KGE values were still relatively high, demonstrating the overall good
performance of the models. Hence, we retained all 16 hydrological model configurations
for further assessments.
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Table 1. Performance of 16 hydrological model configurations in estimating the daily inflow to the
Oldman Reservoir, evaluated based on the KGE measure.

Configurations Degree-Day CemaNeige
Calibration Control Calibration Control

HBV-MTL

Lumped-point data (LP) 0.90 0.76 0.89 0.84
Lumped-grid data (LG) 0.89 0.65 0.87 0.64

Semi-distributed-point data (SP) 0.93 0.81 0.91 0.83
Semi-distributed-grid data (SG) 0.92 0.67 0.90 0.66

GR4J

Lumped-point data (LP) 0.88 0.82 0.88 0.86
Lumped-grid data (LG) 0.88 0.72 0.87 0.72

Semi-distributed-point data (SP) 0.92 0.83 0.90 0.84
Semi-distributed-grid data (SG) 0.89 0.65 0.89 0.68

In addition to considering the KGE values, we also compared the simulated and
observed inflow hydrographs for the entire historical period from 1961 to 1990 to examine
how well the models reproduced the shape of the observed hydrograph. To achieve this,
we calculated the expected (average) annual hydrographs for all 16 models over the 30-year
period using the optimal and acceptable parameter sets identified using the GLUE method.
The comparison results are visualized in Figure 2, where the x-axis represents the 52 weeks
in a year. The top and bottom rows of Figure 2 display the hydrographs based on the
HBV-MTL and GR4J models, respectively. The left and right columns display the results of
these models, coupled with the Degree-Day and CemaNeige modules, respectively. Each
panel shows the inflow hydrographs for the models, calibrated using the lumped approach
and point-based (LP) and grid-based (LG) data, as well as the semi-distributed approach
with point-based (SP) and grid-based (SG) data. The solid lines and shades represent the
inflow based on the models with optimal and acceptable parameter sets, respectively.

The analyses based on the optimal parameter sets revealed that all models adequately
simulated the peak flow timing, with a maximum two-week difference between the sim-
ulated and observed peak flows. However, there were variations in the simulated peak
flow intensity among the models. The GR4J models with the Degree-Day snow module
demonstrated a better match with the observed peak flow, with differences ranging from 2%
to 6%. Among these, the semi-distributed configurations calibrated with point-based data
showed the smallest error in peak flow simulation. Analyzing the shape of the hydrographs
on the falling limb slope showed that the models with CemaNeige performed better in
capturing the second peak flow compared to the Degree-Day approach. This improve-
ment was attributed to CemaNeige’s ability to preserve snow in high-elevation areas for
longer durations than the Degree-Day module. Furthermore, the analysis highlighted that
the choice of snow routing module had a more significant impact on the simulated flow
compared to the other configurations, such as the type of hydrological model.

4.2. Inflow Reaching the Oldman Reservoir during the Future Period

Since the performance of the hydrological models was reasonable and our strategy was
to study uncertainties in water allocation stemming from modeling choices, all 16 models
were used to project the streamflow reaching the Oldman Reservoir during 2021 and
2099. The annual inflow hydrographs in the future under RCPs 4.5 and 8.5 are shown in
Figures 3 and 4, respectively. In each figure, while the top and bottom rows present the
flow for the HBV-MTL and GR4J models, the left and right columns show the results of
these models using the Degree-Day and CemaNeige snow modules, respectively. In each
panel, the envelopes of future inflow hydrographs are shown, considering the hydrological
models with acceptable parameter sets for the lumped approach with point-based (LP)
and grid-based (LG) data and the semi-distributed models with point-based (SP) and
grid-based (SG) data. The medians of the envelopes are shown with solid lines. Under
both future scenarios, all models unanimously projected more intense peak flows reaching
the Oldman Reservoir in the future relative to the historical period. This could be due
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to projected increases in precipitation in the future, as noted previously. Overall, the
snow module played a more prominent role than the other configurations in estimating
future streamflow conditions, especially the peak flow timing and magnitude. While the
hydrological models with the Degree-Day module projected intense and earlier peak flow
timing, the CemaNeige module projected either similar or later peak flow timing, which
could be due to the different modules’ formulated snowmelt processes. Moreover, it seems
that the influence of catchment discretization and data resolution became more important
using the Degree-Day module than the CemaNeige module. Indeed, the difference between
the median projections using HBV-MTL and GR4J was relatively small; e.g., the difference
for their peak projection was between 4–13%. The difference between the median peak flow
projections of all 16 configurations could be as large as 42%. This illustrated the importance
of using a multi-model approach for impact assessment.
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Figure 2. Observed and simulated inflow hydrographs during 1961–1990 using HBV-MTL with
(a) Degree-Day and (b) CemaNeige modules and GR4J with (c) Degree-Day and (d) CemaNeige
modules, each calibrated using a lumped approach with point-based data (LP) and grid-based data
(LG) and a semi-distributed approach with point-based (SP) and grid-based data (SG). The results are
shown for the models with optimal and acceptable calibration parameter sets.
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Figure 3. Observed and future inflow hydrographs under RCP 4.5 during 2021–2099 using HBV-MTL
with (a) Degree-Day and (b) CemaNeige modules and GR4J with (c) Degree-Day and (d) CemaNeige
modules, each calibrated using a lumped approach with point-based (LP) and grid-based data (LG)
and using a semi-distributed approach with point-based (SP) and grid-based data (SG).

Here, we compare the historical and future Q99, Q50, Q10, and peak flow timing
reaching the Oldman Reservoir in Figure 5. For each flow signature, the observed values are
displayed with a dashed line. The simulated (and future) values are shown using the models
with acceptable parameter sets: HBV-MTL with the (a) Degree-Day and (b) CemaNeige
modules and GR4J with the (c) Degree-Day and (d) CemaNeige modules. The models were
calibrated using a lumped approach with point-based (LP; red) and grid-based data (LG;
yellow) and a semi-distributed approach with point-based (SP; blue) and grid-based data
(SG; violet). The projections based on RCPs 4.5 and 8.5 are shown with blue and red box
outlines, respectively. During the historical period, while the smallest difference among
the models was for Q50, the largest divergence was more evident for the estimation of
peak flow timing, in particular between the CemaNeige and Degree-Day modules. This
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was somewhat obvious due to these modules’ differences in snowmelt representation, e.g.,
with and without considering snowpack temperature, as discussed in Section 3.4. Another
important difference among the models was related to the estimation of low flows, for
which the impact of HBV-MLT versus GR4J was more dominant than the other factors.

Water 2023, 15, x FOR PEER REVIEW 13 of 29 
 

 

 
Figure 4. Observed and future inflow hydrographs under RCP 8.5 during 2021–2099 using HBV-
MTL with (a) Degree-Day and (b) CemaNeige modules and GR4J with (c) Degree-Day and (d) 
CemaNeige modules, each calibrated using a lumped approach with point-based (LP) and grid-
based data (LG) and using semi-distributed approach with point-based (SP) and grid-based data 
(SG). 

Here, we compare the historical and future Q99, Q50, Q10, and peak flow timing 
reaching the Oldman Reservoir in Figure 5. For each flow signature, the observed values 
are displayed with a dashed line. The simulated (and future) values are shown using the 
models with acceptable parameter sets: HBV-MTL with the (a) Degree-Day and (b) 
CemaNeige modules and GR4J with the (c) Degree-Day and (d) CemaNeige modules. The 
models were calibrated using a lumped approach with point-based (LP; red) and grid-
based data (LG; yellow) and a semi-distributed approach with point-based (SP; blue) and 
grid-based data (SG; violet). The projections based on RCPs 4.5 and 8.5 are shown with 
blue and red box outlines, respectively. During the historical period, while the smallest 
difference among the models was for Q50, the largest divergence was more evident for 
the estimation of peak flow timing, in particular between the CemaNeige and Degree-Day 
modules. This was somewhat obvious due to these modules’ differences in snowmelt rep-
resentation, e.g., with and without considering snowpack temperature, as discussed in 
Section 3.4. Another important difference among the models was related to the estimation 

Figure 4. Observed and future inflow hydrographs under RCP 8.5 during 2021–2099 using HBV-MTL
with (a) Degree-Day and (b) CemaNeige modules and GR4J with (c) Degree-Day and (d) CemaNeige
modules, each calibrated using a lumped approach with point-based (LP) and grid-based data (LG)
and using semi-distributed approach with point-based (SP) and grid-based data (SG).

During 2021–2099, all hydrological models projected a rise in extremely high flow.
Similar to the historical period, HBV-MTL presented slightly higher Q99 values than GR4J.
Furthermore, the models with the Degree-Day module projected generally higher Q99
values in comparison to the CemaNeige module. For a given snow module, the role of
catchment discretization in Q99 projection was larger than the data resolution. Considering
the median values for Q50, the differences among the models were small, and all model
configurations projected an increase in Q50 intensity in the future. Regarding the Q10
values, the projections became more sensitive to the choice of hydrological model than the
choice of snow routine, followed by the choice of catchment discretization. Moreover, Q10
was larger under RCP 8.5 than under 4.5.
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Figure 5. Inflow signatures during the historical and future periods. Observed values are shown
with a dashed line. Simulated values are shown using the models with acceptable parameter sets:
HBV-MTL with the (a) Degree-Day and (b) CemaNeige modules and GR4J with the (c) Degree-
Day and (d) CemaNeige modules, calibrated using a lumped approach with point-based (LP; red)
and grid-based data (LG; yellow) and a semi-distributed approach with point-based (SP; blue) and
grid-based data (SG; violet). Projections based on RCPs 4.5 and 8.5 are shown with blue and red
box outlines.
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4.3. Reservoir Water Allocation during the Historical Period

Here, we first examined the disparity between the observed and simulated water
volume in the Oldman Reservoir during 1961–1990, which was obtained via feeding the
estimated inflow based on the 16 hydrological model configurations into the Oldman water
allocation model. The KGE values for this comparison are shown in Figure 6, and they
ranged between 0.69 and 0.85, demonstrating a good performance from the models. More-
over, although the difference between KGE values among the models was small, it seems
that the models with the CemaNeige module, when using semi-distributed discretization
and when calibrated with point-base data, outperformed the other configurations in esti-
mating reservoir volume. To gain a better insight into the intra-annual performance of the
models, the mean difference (dam3) between the observed and simulated reservoir volume,
averaged over a 30-year period for all models, based on optimal and acceptable parameter
sets, is shown in Figure 6. As can be seen, the performance of the models depended on the
season. For instance, the HBV-MTL models better represented the historical values during
the winter. Meanwhile, during early summer, when the water level is relatively high, the
models with the CemaNeige module better reproduced the historical reservoir volume, and
the models with the Degree-Day module performed slightly better during late summer.
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Figure 6. Difference between the observed and simulated reservoir volume during 1961–1990
for models with acceptable and optimal parameter sets: HBV-MTL with the (a) Degree-Day and
(b) CemaNeige modules, as well as GR4J with the (c) Degree-Day and (d) CemaNeige modules. The
models were calibrated using lumped point (LP) and grid-based (LG) data and semi-distributed with
point- (SP) and grid-based (SG) data. The KGE values for each configuration are shown in boxes.

Figure 7 compares the observed and simulated local water deficits of the 16 hydro-
logical models using the acceptable and optimal parameter sets. While the influence of
a snowmelt routine in estimating the water deficit was the most important factor, the
choice of hydrological model was the least important one among the 16 configurations.
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The uncertainty boundaries of the simulations revealed that the models coupled with the
Degree-Day module captured the historical conditions between the 25th and 75th per-
centiles. Considering the values found using the optimal parameter set, the HBV-MTL with
Degree-Day module could capture the historical deficit well, and the difference between
the considered catchment discretization and data conditions was small, as shown in the
left panel.
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Figure 7. Simulated versus observed water deficit in meeting local water demand during the historical
period using HBV-MTL with the (a) Degree-Day and (b) CemaNeige modules, as well as GR4J (c) with
the Degree-Day and (d) CemaNeige modules, calibrated considering a lumped approach with point-
(LP) and grid-based (LG) data and semi-distributed with point- (SP) and grid-based (SG) data using
acceptable and optimal parameter sets.

4.4. Reservoir Water Allocation during the Future Period

The volume of the Oldman reservoir in the future was estimated using the projections
of 19 GCMs under RCPs 4.5 and 8.5, which were fed into the considered 16 hydrological
models. The projected and historical reservoir storage was compared in Figure 8. Similar
to the previous observations, the role of snowmelt representation stood out among all
configurations in projecting this storage; compare the median maximum storage values
and their timing in the figure. Despite the divergences among the models, all of them
unanimously projected increases with earlier shifts in the timing of the maximum volume
in the future. Such changes were more obvious in the models with the Degree-Day snow
module. These alterations in reservoir volume are important, indicating that business-as-
usual operations should be revised to avoid dam overtopping a few weeks earlier than
before in spring. These challenges for reservoir water management were more obvious
under RCP 8.5, as larger water volume earlier in spring and lower values in summer were
projected when a large irrigation supply was needed.

Here, we analyzed the evolution of the annual water deficit in the future and compared
it with the average historical deficit of 15%. Figure 9 presents the five-year moving average
of the projected water deficit using the coupled models under RCPs 4.5 and 8.5. The models
with the Degree-Day module project considerably larger water deficits throughout the
century than those with the CemaNeige module, which was consistent with their behavior
during the historical period. Moreover, the GR4J models suggested a slightly greater
water deficit in the future than the HBV-MTL models. Using the same hydrological model
and snow routine, the impact of catchment discretization was more significant than data
conditions. The difference between projections was evident in the forcing scenario. While
most models projected an increasing positive trend (p-values < 0.05) in the water deficit by
a maximum of 40% under RCP 8.5, the estimations under RCP 4 were are smaller and could
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be below the historical level by the end of the century. This is because, under RCP 8.5, the
area’s temperature is expected to rise twice as much as under RCP 4.5 [31]. Hence, meeting
the local water demand could be challenging under the high concentration scenario.
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Figure 8. Observed, as well as median and ensemble of, projected reservoir volume under RCPs
4.5 and 8.5 using HBV-MTL with the (a) Degree-Day and (b) CemaNeige modules, as well as GR4J
with the (c) Degree-Day and (d) CemaNeige modules, calibrated via lumping with point- (LP) and
grid-based (LG) data and semi-distributed with point- (SP) and grid-based (SG) data.
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Figure 9. Five-year moving average of projected water deficit (%) under RCPs 4.5 and 8.5 using the
outputs of 19 GCMs fed into HBV-MTL with the (a) Degree-Day and (b) CemaNeige modules, as
well as GR4J with the (c) Degree-Day and (d) CemaNeige modules, developed based on a lumped
approach with point- (LP) and grid-based data (LG) and a semi-distributed approach with point-(LP)
and grid-based (LG) data.

5. Discussion

Our analysis demonstrated the importance of hydrological model configurations
when examining water allocation under changing climate conditions. Moreover, it was
found that the models employing semi-distributed catchment discretization and point-
based data outperformed the lumped models calibrated with grid-based data, as noted
by Sharifinejad et al. [31]. Moreover, based on KGE values the performance of the HBV-
MTL and GR4J models was almost similar, and the models with CemaNeige exhibited
slightly superior performance than the Degree-Day snow module during the validation
period. Nonetheless, considering other flow statistics, such as extremely low or high
values or peak flow timing, the divergence between the models could become large. For
instance, the models equipped with the CemaNeige module excelled at simulating peak
flow timing, whereas those utilizing the Degree-Day module showed better performance
in estimating the peak flow volume. Thus, we employed all models in climate change
impact assessment due to the comprehensive nature of this study, in which all mentioned
flow characteristics are vital for water management. Similarly, we showed how alternative
hydrological configurations can influence the estimation of water system behavior in the
future; especially the critical role of snowmelt representation was highlighted. Despite the
differences between the models, all consistently projected higher peak flows during the
snowmelt season and lower water availability during the summer, similar to Tanzeeba and
Gan [43] and Mahat and Anderson [44].

There were a series of limitations in this study that should be improved upon in future
works. For instance, we calibrated hydrological models based on historical observations
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and used them for impact assessment. However, it is important to acknowledge that
these models may respond differently when forced by future climate projections [79] and
may not represent extreme flow values in the future [80,81]. Moreover, in addition to the
considered hydrological configurations, it is crucial to account for the accurate representa-
tion of initial conditions, including the state of the snowpack at the beginning of the melt
season and antecedent soil moisture conditions. These factors can significantly influence
both the volume and timing of streamflow, potentially impacting the modeling of flood
conditions [82]. In addition to snowmelt, it is important to understand the sensitivity of
assessments to represent other processes as well, such as evapotranspiration or infiltration.
Moreover, we utilized CMIP5 projections under RCPs 4.5 and 8.5 for impact assessment.
However, a recent study by Bourdeau-Goulet and Hassanzadeh [8] has revealed a more
significant increase in temperature and extreme precipitation under Shared Socioeconomic
Pathways 2 and 5 for this region. Therefore, it is suggested to extend these analyses using
these recently available CMIP6 projections for a more comprehensive assessment, similar
to [83]. Moreover, our analysis assumed no change in regional water demand during the
2021–2099 period compared to the historical period. Future studies should incorporate
potential changes in water demand, in particular for irrigated agriculture, by taking into
account changes in temperature and precipitation. This will enable a more reasonable
evaluation of reservoir water management under changing water availability and demand
conditions [84].

6. Conclusions

The changing climate is placing unprecedented pressure on water resources. The im-
pact of climate change on water systems can be assessed utilizing climate model projections
and incorporating them into hydrological and water allocation models. This study aimed
to understand the roles of various hydrological model configurations in estimating water
system behavior under a changing climate. For this purpose, we considered 16 hydrologi-
cal model configurations. Two distinct hydrological models, HBV-MTL and GR4J, were
utilized, each with two snowmelt estimation modules: Degree-Day and CemaNeige. These
models were calibrated using both lumped and semi-distributed catchment discretization
approaches, incorporating point- and grid-based climate data. The models were employed
to evaluate water allocation in the headwater Oldman River Basin in Alberta, Canada.

While all hydrological models exhibited relatively high KGE values during both the
calibration and control periods, the differences between them become apparent when focus-
ing on specific streamflow characteristics. Among all configurations, the snowmelt routine
was found to play a crucial role, followed by the type of hydrological model, catchment
discretization, and data resolution in most cases. This pattern consistently emerged in esti-
mating reservoir storage, outflow, and the annual water deficit. However, the divergence
between the models was more pronounced when estimating low and peak flow intensity
and timing. The integrated models were then fed with the outputs of 19 climate models
under RCPs 4.5 and 8.5 for impact assessment. While all models unanimously projected
a significant increase in the intensity of inflow to the Oldman Reservoir, the magnitude
of this increase depended on the chosen hydrological configuration. In particular, the
projected shifts in peak flow timing were greatly influenced by the choice of snow models.
In contrast, the projected intensity of low flow in the future was mainly controlled using
the choice of hydrological model, as HBV-MTL provided lower values than GR4J.

Similar to the historical period, snowmelt modules exerted the primary influence on
the simulated future reservoir dynamics. For instance, the models with the Degree-Day
module projected a smaller reservoir water volume than those with the CemaNeige snow
routine. This transition in the reservoir volume was clearly reflected in an estimated water
deficit in which the models with the Degree-Day module suggested a considerably larger
water shortage than those with the CemaNeige module. Moreover, an ascending trend
in the water deficit was found, based on most models under RCP 8.5. Considering the
alterations in inflow conditions, particularly the timing and magnitude of peak flow, and
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the challenges of meeting water demand, it becomes imperative to update the Oldman
Reservoir operational plans to effectively mitigate the adverse impacts of climate change.

Overall, our study reveals that alternative configurations in hydrological modeling
can significantly influence the projected climate change impacts on water systems. In our
study area, the representation of snowmelt was found to be more crucial than other factors,
such as the choice of hydrological model, catchment discretization, or data resolution.
This highlights the importance of not only using a multi-model approach, as suggested
in the literature, but also carefully considering multiple process representations for indi-
vidual processes. The choice should be based on their significance in the context of the
hydroclimatic conditions of watersheds. The study’s findings can be further validated and
generalized via applying the same modeling approach in other study areas.
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Appendix A

Table A1. Hydrometric stations and average annual flow during 1961–1990 in each sub-watershed of
the headwater Oldman River Basin.

Sub-Watershed Station Average Annual
Flow (106 m3) Drainage Area (km2)

Castle 05AA022 472 821

Crowsnest 05AA008 153 403

Oldman 05AA035 383 1450

NR 05AA024 1200 1706

https://www.canada.ca/en/environment-climate-change.html
https://www.canada.ca/en/environment-climate-change.html
https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp
https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp
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Table A2. Average precipitation and temperature data during 1961–1990 in each sub-watershed of the headwater Oldman River Basin, obtained from point-based
(climate stations) and grid-based data of the Alberta Township System.

Sub-
Watershed

Point-Based Data Grid-Based Data

Station
Mean

Annual
Precipitation (mm)

Average
Minimum

Temperature (◦C)

Average
Maximum

Temperature (◦C)

Number
of

Townships

Mean
Annual

Precipitation (mm)

Average
Minimum

Temperature (◦C)

Average
Maximum

Temperature (◦C)

Castle Ironstone
Castle 721 −3 8 9 742 −2 9.5

Crowsnest Coleman 544 −2.5 9 5 570 −2.5 9

Oldman
Sugarloaf Lo

Livingstone Lo
Hailstone Butte Lo

536 −5 4 19 605 −3.5 8

NR Beaver Mines
Cowley Olin Creek 380 −1 6.5 22 537 −2 10

Table A3. Optimal calibration parameters obtained for HBV-MLT model with Degree-Day snow routine during the historical period. The values are presented for
(1) lumped models, calibrated using point- (LP) and grid-based data (LG), as well as (2) semi-distributed models with point- (SP) and grid-based (SG) data, for each
sub-watershed.

Parameters LP LG SP-Castle SP-Crowsnest SP-Oldman SP-NR SG-Castle SG-Crowsnest SG-Oldman SG-NR

HBV-MTL
Degree-Day

Degree-day coefficient 2.06 1.03 1.43 1.03 1.78 1.60 1.20 1.71 1.27 1.67

Potential ET coefficient 0.99 1.00 0.66 0.30 0.59 1.00 0.46 0.46 0.81 1.00

Low soil moisture coefficient 0.50 0.30 0.20 0.33 0.24 0.20 0.20 0.50 0.20 0.20

Snow capacity to retain water 0.00 0.00 0.00 0.16 0.00 0.00 0.20 0.17 0.20 0.13

Topmost outlet’s coefficient 0.01 0.14 0.15 0.09 0.04 0.23 0.19 0.03 0.06 0.30

Intermediate outlet’s coefficient 0.05 0.05 0.05 0.04 0.05 0.03 0.05 0.02 0.05 0.05

Bottom outlet’s coefficient 0.05 0.03 0.04 0.05 0.03 0.02 0.05 0.05 0.05 0.04

Percolation coefficient 0.04 0.05 0.05 0.04 0.01 0.04 0.05 0.05 0.05 0.02

Topmost outlet’s trigger 4.95 16.32 37.35 35.35 0.02 0.05 49.69 43.69 12.27 29.20
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Table A3. Cont.

Parameters LP LG SP-Castle SP-Crowsnest SP-Oldman SP-NR SG-Castle SG-Crowsnest SG-Oldman SG-NR

HBV-MTL
Degree-Day

Soil moisture capacity 192 106 78 138 191 193 51 260 80 195

Base of triangle delay function 3.37 1.03 2.33 1.02 1.01 1.02 2.58 3.57 1.04 1.04

Soil’s water
absorption coefficient 1.28 1.21 4.53 1.95 3.81 4.99 3.17 3.68 1.14 4.96

Soil’s curve number 85.1 54.5 67.3 31.0 33.5 32.0 69.7 72.5 47.3 50.1

Frozen soil coefficient 3.29 3.54 4.98 4.93 3.82 4.97 3.63 4.46 3.32 2.20

Soil frost temperature threshold 0.28 −0.77 −1.96 −0.92 0.28 −0.03 −1.85 −0.12 0.32 −0.63

Melting temperature threshold 1.56 1.85 0.55 2.00 −0.26 2.00 2.00 1.99 2.00 2.00

Snow correction factor 1.00 1.05 1.20 1.20 0.69 0.82 1.20 1.20 0.77 0.89

Unit hydrograph delay time for
Castle inflow N/A N/A N/A N/A N/A 2.76 N/A N/A N/A 2.41

Unit hydrograph delay time for
Crowsnest inflow N/A N/A N/A N/A N/A 1.83 N/A N/A N/A 2.99

Unit hydrograph delay time for
Oldman inflow N/A N/A N/A N/A N/A 2.19 N/A N/A N/A 2.54

Table A4. Optimal calibration parameters obtained for HBV-MLT model with CemaNeige snow routine during the historical period. The values are presented for
(1) lumped models, calibrated using point- (LP) and grid-based data (LG), as well as (2) semi-distributed models with point- (SP) and grid-based (SG) data, for each
sub-watershed.

Parameters LP LG SP-Castle SP-Crowsnest SP-Oldman SP-NR SG-Castle SG-Crowsnest SG-Oldman SG-NR

HBV-
MTL

CemaNeige

Degree-day coefficient 6.00 5.98 3.83 2.72 5.98 5.94 3.37 4.02 4.95 5.74

Potential ET coefficient 1.00 1.00 1.00 0.45 0.99 1.00 0.75 0.65 1.00 1.00

Low soil
moisture coefficient 0.27 0.27 0.22 0.50 0.26 0.20 0.21 0.40 0.40 0.20
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Table A4. Cont.

Parameters LP LG SP-Castle SP-Crowsnest SP-Oldman SP-NR SG-Castle SG-Crowsnest SG-Oldman SG-NR

HBV-
MTL

CemaNeige

Snow capacity to
retain water 0.10 0.14 0.04 0.06 0.04 0.18 0.04 0.00 0.08 0.20

Topmost outlet’s coefficient 0.14 0.18 0.14 0.10 0.07 0.22 0.18 0.09 0.11 0.24

Intermediate
outlet’s coefficient 0.02 0.02 0.03 0.02 0.05 0.04 0.02 0.03 0.04 0.03

Bottom outlet’s coefficient 0.00 0.05 0.05 0.05 0.00 0.04 0.04 0.05 0.05 0.04

Percolation coefficient 0.00 0.00 0.01 0.00 0.01 0.03 0.00 0.00 0.00 0.03

Topmost outlet’s trigger 35 39 30 48 13 0.2 0.9 48 27 5.2

Soil moisture capacity 87 124 71 61 67 228 67 396 108 196

Base of triangle
delay function 1.01 1.12 2.27 1.07 1.06 1.08 2.59 1.05 1.02 1.03

Soil’s water
absorption coefficient 1.04 1.00 2.20 1.01 1.02 2.82 1.40 2.77 1.08 2.82

Soil’s curve number 58.4 62.5 79.6 54.2 37.1 49.5 85.6 38.4 50.6 52.7

Frozen soil coefficient 4.96 1.97 4.98 4.25 3.33 3.39 2.67 4.23 4.90 3.50

Soil frost
temperature threshold −1.46 −0.55 −1.86 −1.45 −1.51 −0.89 −1.33 −1.68 −1.90 0.14

Thermal inertia factor 0.47 0.88 0.66 0.94 0.14 0.62 0.96 0.92 0.93 0.74

Snow correction factor 0.77 0.79 1.18 1.12 0.77 0.60 1.20 1.18 0.73 0.60

Unit hydrograph delay time
for Castle inflow N/A N/A N/A N/A N/A 1.30 N/A N/A N/A 3.35

Unit hydrograph delay time
for Crowsnest inflow N/A N/A N/A N/A N/A 3.78 N/A N/A N/A 2.16

Unit hydrograph delay time
for Oldman inflow N/A N/A N/A N/A N/A 3.68 N/A N/A N/A 2.50
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Table A5. Optimal calibration parameters obtained for GR4J model with Degree-Day snow routine during the historical period. The values are presented for
(1) lumped models, calibrated using point- (LP) and grid-based data (LG), as well as (2) semi-distributed models with point- (SP) and grid-based (SG) data, for each
sub-watershed.

Parameters LP LG SP-Castle SP-Crowsnest SP-Oldman SP-NR SG-Castle SG-Crowsnest SG-Oldman SG-NR

GR4J-
Degree-Day

Degree-day coefficient 1.47 1.19 1.07 1.33 1.95 1.66 1.09 1.49 1.26 1.67

Melting
temperature threshold 0.50 1.65 -0.35 2.00 −0.90 2.00 2.00 1.82 1.42 2.00

Snow capacity to
retain water 0.00 0.00 0.00 0.20 0.03 0.00 0.11 0.12 0.03 0.03

Potential ET coefficient 0.99 1.00 1.00 0.54 1.00 1.00 1.00 1.00 0.95 1.00

Maximum
production storage 54 73 103 45 24 285 20 28 44 291

Water exchange coefficient −4.5 −3.6 1.6 2.6 −3.1 −1.6 2.4 3.7 −4.4 −1.2

Routing storage capacity 442 353 155 399 406 2 225 478 327 1

Unit hydrograph delay time 0.51 0.50 0.75 1.07 0.54 0.92 0.56 0.87 0.50 0.88

Snow correction factor 1.12 1.20 1.20 1.17 0.92 1.20 1.20 1.20 1.03 1.20

Unit hydrograph delay time
for Castle inflow N/A N/A N/A N/A N/A 2.59 N/A N/A N/A 2.17

Unit hydrograph delay time
for Crowsnest inflow N/A N/A N/A N/A N/A 1.56 N/A N/A N/A 2.16

Unit hydrograph delay time
for Oldman inflow N/A N/A N/A N/A N/A 0.63 N/A N/A N/A 0.67
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Table A6. Optimal calibration parameters obtained for GR4J model with CemaNeige snow routine during the historical period. The values are presented for
(1) lumped models, calibrated using point- (LP) and grid-based data (LG), as well as (2) semi-distributed models with point- (SP) and grid-based (SG) data, for each
sub-watershed.

Parameters LP LG SP-Castle SP-Crowsnest SP-Oldman SP-NR SG-Castle SG-Crowsnest SG-Oldman SG-NR

GR4J-
CemaNeige

Degree-day coefficient 5.99 6.00 3.94 2.48 6.00 6.00 3.74 3.60 2.94 6.0

Melting
temperature threshold 0.43 0.92 0.58 0.93 0.14 0.76 0.95 0.91 0.95 0.8

Snow capacity to
retain water 0.09 0.00 0.05 0.07 0.00 1 × 10−1 0.05 0.04 0.02 0.1

Potential ET coefficient 0.87 0.88 1.00 0.43 0.87 1.00 0.98 0.66 1.00 1.0

Maximum
production storage 61.1 68.1 73.6 10.0 10.0 216.6 42.5 16.5 10.0 218

Water exchange coefficient −9.9 −9.6 −0.35 −1.50 −9.98 −8.98 1.09 −1.84 −10.00 −7.9

Routing storage capacity 310 331 194 284 331 65 191 379 280 46

Unit hydrograph delay time 0.5 0.52 0.74 1.10 0.70 0.50 0.56 1.11 0.80 0.5

Snow correction factor 1.08 1.09 1.20 1.20 1.00 1.13 1.20 1.20 1.12 1.2

Unit hydrograph delay time
for Castle inflow N/A N/A N/A N/A N/A 1.54 N/A N/A N/A 1.96

Unit hydrograph delay time
for Crowsnest inflow N/A N/A N/A N/A N/A 3.98 N/A N/A N/A 1.29

Unit hydrograph delay time
for Oldman inflow N/A N/A N/A N/A N/A 2.68 N/A N/A N/A 2.11
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