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ABSTRACT Recent advances in 5G and beyond have further expanded the potential of IoT applications,
bringing unprecedented levels of connectivity, speed, and low latency. However, these advances come
with significant security threats that can cause widespread damage. An effective approach to addressing
these issues involves the integration of cutting-edge technologies like machine learning (ML), particularly
deep reinforcement learning (DRL). DRL is a specialized area of ML that integrates the concepts of
deep learning and reinforcement learning to create effective solutions for various tasks. In particular,
DRL can facilitate the creation of intelligent security systems that can adapt to dynamic and intricate
IoT applications connected to 5G and beyond networks. However, effectively implementing DRL-based
intrusion detection frameworks in IoT applications connected to 5G networks poses significant challenges
due to bandwidth utilization and device behavior. The data generated by IoT devices is often limited, and
malicious behavior may be infrequent, making it difficult to accurately identify and train the algorithm to
detect such behavior. Moreover, DRL algorithms pose a significant challenge for IoT devices constrained
by limited bandwidth, as communicating large amounts of data required by DRL algorithms can cause
network congestion and delay critical communications. In this article, we introduce a novel approach to
improving the security of IoT applications in the 5G and beyond era by developing an intrusion detection
system that employs DRL algorithms. Our approach involves a distributed Q-learning algorithm that
observes the behavior of connected devices and predicts anomalous actions. Additionally, to overcome the
challenges associated with bandwidth utilization and device behavior, we introduce a bandwidth allocation
problem based on a reputation mechanism that allocates bandwidth to only trustworthy devices. Finally,
we evaluate our proposed intrusion detection system on the selected indicators. The numerical results
demonstrate that our proposed approach outperforms the referenced solutions on the selected indicators.

INDEX TERMS 5G and beyond, intrusion detection system (IDS), deep reinforcement learning (DRL),
Internet of Things (IoT).

I. INTRODUCTION

THE EMERGENCE of 5G and beyond networks has
accelerated the growth of IoT technology, facilitating

the connection of an even greater number of devices to the
Internet. According to estimates, billions of these devices
will be connected by the end of 2025, taking advantage
of the high speed, low latency, and wide connectivity pro-
vided by 5G networks [1]. However, the deployment of
IoT networks is a complex process that can increase the
risk of security vulnerabilities and give rise to sophisticated
and complex security threats [2], [3]. These threats have
the capacity to inflict substantial harm and jeopardize the

reliability of IoT networks. Additionally, due to the vast inter-
connectivity and abundance of devices within these networks,
they are particularly susceptible to security breaches. Device
interconnectivity can create significant vulnerabilities, as a
single malicious device can infect the entire network, causing
battery drainage or denial of service-of-service attacks [4].
Maintaining the integrity of IoT services depends on the

capability to detect and mitigate security attacks. To achieve
this, it is crucial to develop advanced security mechanisms
capable of effectively addressing the challenges presented by
5G and beyond networks. This ensures the secure and reli-
able operation of IoT systems. A commonly used approach
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to secure IoT networks involves implementing an Intrusion
Detection System (IDS) that utilizes machine learning (ML)
models to identify and respond to such threats [5]. For exam-
ple, an IDS can create a profile that includes the behavior of
various components, including IoT devices, servers, network
traffic, and other relevant parameters. By analyzing IoT activ-
ity, events can be categorized as intrusions or anomalies
using binary classification methods, akin to traditional clas-
sification problems. This approach enables the recognition of
potential security breaches and anomalous behavior in IoT
systems. Classical ML models employed in IDS for intrusion
detection in IoT networks might have limitations in detecting
new threats and zero-day attacks, as they rely on predefined
rules and patterns. Consequently, these models might lack the
flexibility to adapt to emerging security threats in real-time,
emphasizing the necessity for more adaptive and dynamic
approaches like reinforcement learning.
Reinforcement learning (RL) has the potential to be an

effective ML technique for detecting and classifying secu-
rity attacks. By interacting with the environment, receiving
feedback, and employing a reward strategy, RL agents
can enhance their decision-making processes. In contrast
to classical learning methods like supervised and unsuper-
vised learning, RL doesn’t require expert knowledge and
has shown potential in identifying security threats within
IoT networks. Recently, several intrusion detection methods
based on RL have emerged, providing an efficient solu-
tion for recognizing security threats in IoT networks [6],
[7], [8], [9]. However, designing an effective reward func-
tion can prove to be a challenging and time-consuming task.
Furthermore, traditional RL algorithms may not be equipped
to handle the intricacies and high dimensionality of the
intrusion detection problem.
To address the limitations of traditional intrusion detec-

tion systems, deep reinforcement learning (DRL) methods
have emerged as a viable solution. These techniques offer
the capability to effectively handle complex features and
significantly enhance the overall accuracy of intrusion detec-
tion [10]. DRL harnesses the power of deep neural networks
(DNNs) to adeptly tackle the challenges associated with
detecting intrusions in intricate and dynamic IoT networks.
This approach provides a robust means to analyze and com-
prehend the intricate patterns and features present in such
environments, leading to improved accuracy and resilience
in intrusion detection. Furthermore, DRL excels at managing
the vast and unmanageable state spaces often encountered in
IoT networks. It achieves this by employing deep Q-learning
(DQL) and other function approximation techniques that
leverage deep neural networks. By utilizing DRL, the issue
of state explosion, which classic RL approaches encounter,
can be overcome. Moreover, DRL has the capacity to learn
from both labeled and unlabeled data, rendering it well-suited
for identifying novel threats and zero-day attacks.
Establishing trust between RL agents and the devices

engaged in the learning process, encompassing intrusion
detection, remains a challenge. The establishment of trust is

fundamental for cultivating a resilient and efficient detection
mechanism, which assumes a pivotal role in guaranteeing the
security of upcoming networks. Therefore, the incorporation
of a distributed reputation mechanism into intrusion detec-
tion systems rooted in DRL becomes indispensable. This
integration not only heightens the precision of the intru-
sion detection system but also bolsters the comprehensive
security and dependability of the IoT network by fostering
trustworthiness.
In the intricate landscape of IoT interconnections, where

devices span a spectrum of trustworthiness, evaluating device
reputation becomes a pivotal factor for robust intrusion detec-
tion. DRL-based intrusion detection systems are based on
the collective contribution of various devices to refine their
detection capabilities. Nevertheless, some devices might fall
victim to compromise or harbor nefarious intentions, thus
introducing skewed or deceptive data into the system. By
assessing the reputation of each participant in the learning
process, the system can assign greater significance to data
from proven sources while discounting input from dubious
origins. The integration of a distributed reputation mecha-
nism into DRL-based intrusion detection systems marks a
pivotal stride towards fortifying the prospects of future IoT
networks. This integration not only amplifies the precision
of intrusion detection but also increases the overall security
and dependability of the IoT network.
The higher levels of connectivity, speed, and low latency

provided by 5G networks have not only facilitated a variety
of novel IoT applications, but have also introduced fresh
security threats, capable of rapid propagation and substan-
tial damage. Ensuring secure communication among myriad
devices within the IoT ecosystem requires optimization
of resource utilization while addressing specific challenges
inherent to the IoT, such as restricted bandwidth and device
reliability. Consequently, the judicious selection of appropri-
ate devices and the efficient allocation of resources become
pivotal factors in realizing holistic security solutions for IoT
systems.
This paper introduces a novel approach to detecting intru-

sions in IoT networks based on a DQL algorithm. The core
of our approach involves the construction of a simulated
environment, augmented by a record sampling function. This
function empowers agents to continuously refine their capac-
ity to observe and predict abnormal behavior within IoT
networks. Using this methodology, we can facilitate more
effective and efficient intrusion detection in IoT networks.
This approach permits the creation of a self-learning system
that can adapt and evolve over time, leading to more precise
and efficient detection of anomalies within IoT networks.
Moreover, we propose a reputation assessment mechanism
aimed at identifying and neutralizing malicious devices
displaying erratic behavior that could trigger intrusions.
Additionally, we present a scheduling method that metic-
ulously assigns the required bandwidth to chosen reliable
devices, ensuring optimal resource allocation. This algorithm
strives to minimize communication among DRL agents while
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prioritizing devices with trustworthy behavior, thus fostering
expedited and dependable communication between devices
and agents. This paper presents several notable contributions,
which can be summarized as follows:
• We design a novel IDS for IoT applications connected
to 5G and beyond networks. The proposed IDS uti-
lizes DRL algorithms and capitalizes on the advanced
features of 5G networks. Our approach uses a decen-
tralized Q-learning algorithm to observe and anticipate
abnormal actions exhibited by IoT devices.

• We present a reputation management approach that eval-
uates the trustworthiness of IoT devices by analyzing
their interactions and behavior.

• We propose a resource allocation algorithm that con-
siders the trustworthiness of devices to optimize band-
width utilization in IoT networks. By employing these
approaches, we can enhance the efficiency and security
of IoT systems.

• We evaluate our proposed framework in terms of accu-
racy, F1-score, precision, and detection rate. The NSL-
KDD dataset, which encompasses well-known attacks,
was utilized to conduct comprehensive experiments
aimed at evaluating the effectiveness and reliability of
our system in thoroughly detecting these threats.

The remainder of this paper is organized as follows.
In Section II, we provide an overview of related works.
Section III establishes the foundational background for the
reinforcement learning (RL) approach, while Section IV out-
lines the system model that we examine. Our proposed
approach for assessing device reputations is presented in
Section V, along with a bandwidth allocation problem that
we formulate and solve. The numerical results of our exper-
iments are presented in Section VI. Finally, we conclude the
paper in Section VII.

II. RELATED WORK
In this section, we provide a summary of the pertinent litera-
ture concerning IDS and explore the application of machine
learning to create an intelligent IDS.
Within the realm of safeguarding IoT systems from

sophisticated security threats, IDS plays an essential role
in furnishing an added layer of protection. Detecting
threats in IoT systems can prove challenging and time-
consuming, underscoring the significance of devising a
resilient IDS [11]. Numerous research studies have explored
various ML techniques for intrusion detection, including
support vector machines (SVM) and self-organizing maps
(SOM) [12], [13]. In a distinct investigation, Yin et al. [14]
introduced recurrent neural networks (RNNs) as a deep learn-
ing approach for intrusion detection. They evaluated the
efficacy of RNNs in both binary and multiclass classifi-
cation scenarios, leveraging their findings to frame intrusion
detection as a classification problem.
To detect and mitigate network threats, Hossain et al. [15]

proposed an IDS based on Long Short-Term Memory
(LSTM). Similarly, for identifying intrusion attempts,

Javed et al. [16] suggested integrating a Convolutional Neural
Network (CNN) with an attention-based Gated Recurrent
Unit (GRU) model. Marteau [17] recommended employing
the Random Partitioning Forest (RF) for collective anomaly
detection in IDS. Additionally, Lan et al. [18] introduced
a supervised machine learning approach that incorporates
the CNN-Bidirectional LSTM (CNN-BiLSTM) algorithm
alongside a threshold adjustment mechanism. Furthermore,
Heartfield et al. [19] evaluated the application of unsuper-
vised learning and Reinforcement Learning (RL) techniques
for system anomaly detection in IoT devices. The proposed
approach centers on monitoring shifts in device behav-
ior to tailor the decision function of underlying anomaly
categorization models. However, the authors did not con-
sider how model hyperparameters and Q parameters would
evolve as the learner advanced within the proposed method.
Particularly in the context of large-scale IoT, the Q parameter
could be employed to tackle the challenge of state explosion.
To enhance the performance of IDS, RL approaches have

been employed across multiple systems. These method-
ologies are well-suited for the IoT environment, as they
empower systems to adjust their actions based on continu-
ous feedback to maximize rewards. Several studies employ
Deep Reinforcement Learning (DRL) algorithms to conduct
intrusion detection in either real or simulated environ-
ments [14], [20], [21]. Iannucci et al. [14] introduced an
intrusion response DRL approach rooted in a stateful Markov
Decision Process, which redefines the landscape in terms of
system scale and attack scope. Alavizadeh et al. [22] explored
the utilization of DQL, a fusion of RL and a deep forward
neural network, for network intrusion detection. Their strat-
egy harnesses automated trial and error and ongoing learning
to effectively detect diverse intrusion types, thus bolstering
detection capabilities. However, while RL has demonstrated
its effectiveness in detecting intrusions within IoT networks,
prior research has tended to overlook the potential impact of
malicious devices and agent reliability on intrusion detec-
tion accuracy. The presence of a malicious RL agent within
a network can result in network saturation or the creation
of a single point of failure, potentially compromising the
reliability and precision of intrusion detection.

III. PRELIMINARIES
This section briefly covers the fundamentals of DRL.
Subsequently, we provide a comprehensive overview of the
dataset employed in our study.

A. OVERVIEW OF REINFORCEMENT LEARNING
A Markov Decision Process (MDP) serves as a mathematical
framework employed to model decision-making processes
within scenarios encompassing both partial randomness and
agent-controlled factors. This framework involves discrete-
time stochastic control, where an agent engages with its
environment by selecting a viable action, accounting for the
initial state of the environment. Subsequently, the environ-
ment undergoes state transitions according to a probability
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distribution, and the agent receives a reward contingent upon
the effectiveness of its chosen action.
RL constitutes a subfield of ML that employs the MDP

framework to acquire optimal decision-making policies
through iterative interactions with the environment. In situa-
tions where rewards or transition probabilities are uncertain,
RL leverages the MDP to characterize the environment. The
primary objective of an RL agent is to uncover an optimal
policy that establishes a mapping from states to actions,
thereby enabling it to select the most suitable action based
on its present state.
RL algorithms employ iterative processes to enhance the

decision-making aptitude of the agent over time. The agent
engages in exploratory actions within the environment, gar-
nering feedback in the form of rewards, and employs this
input to refine its policy. Via repetitive interactions, the agent
progressively discerns actions that are prone to yield substan-
tial rewards, ultimately converging towards an optimal policy
that maximizes its anticipated cumulative reward across time.
A Markov Decision Process (MDP) constitutes a math-

ematical model defined by a tuple (S,A,P, r), in which
S signifies the set of possible states, A represents the set
of potential actions, P symbolizes the transition probability
function, and r embodies the reward function. In contrast, a
Markov chain refers to a probabilistic model capturing the
sequence of events or states, wherein the transition probabil-
ity between states relies solely on the current state and does
not consider previous states. This is referred to as the Markov
property, signifying that future states are contingent solely
upon the present state and not the past ones. The probability
of transitioning from state st to state st+1, given the state
sequence s1, s2, . . . , st, can be denoted as P(st+1|s1, . . . , st).
Alternatively, this probability can be expressed as the like-
lihood of state st+1 being equal to j, given that the current
state st is equal to i, represented as P(st+1 = j|st = i).
This conditional probability is denoted by pi,j, where pi,j
signifies the probability of transitioning from state i to
state j.
The transition probability matrix T is employed to depict

the probabilities associated with all feasible transitions
among states. The transition probability pi,j adheres to the
condition that the total probabilities for all potential transi-
tions from state i sum up to 1. The transition matrix T takes
the form of a square matrix with dimensions n × n, where
each entry Ti,j signifies the probability of transitioning from
state i to state j. The matrix rows correspond to the cur-
rent state, while the columns pertain to potential subsequent
states. The probability of transitioning from state i to state
j is represented by Ti,j = pi,j. The stipulation that the sum
of probabilities for all conceivable transitions from state i
equates to 1 can be expressed as:

T =

⎡
⎢⎢⎢⎣

p1,1 p1,2 · · · p1,n

p2,1 p2,2 · · · p2,n
...

...
. . .

...

pn,1 pn,2 · · · pn,n

⎤
⎥⎥⎥⎦ (1)

Within the realm of RL, the association between states (s)
and actions (a) is forged through the application of a policy
function denoted as π . This policy function holds the respon-
sibility of establishing the connection between states and
actions, thus steering the decision-making process of an
RL agent. Fundamentally, the policy function π functions
as a mechanism that maps each state s to an associated
action, thereby governing the behavior of the agent within
a specific state:

π(s|a) = P[At = a|St = s], (2)

Similarly, when an agent encounters a specific state s, it
evaluates the efficacy of its chosen action a by employing
a function referred to as the state value function. Denoted
as νπ (s), the state value function quantifies the expected
cumulative reward attainable to the agent over a temporal
span, originating from state s and adhering to its policy π :

νπ (s) = Eπ

[ ∞∑
k=0

αkRt+k+1|St = s

]
,∀s ∈ S, (3)

In equation (3), Rt+k+1 symbolizes the reward value at a
future instance, specifically at time t+ k+ 1. These rewards
are discounted utilizing a factor denoted as 0 < α < 1. The
discount factor γ holds significant importance in steering
the decision-making process of the RL agent. It plays a cru-
cial role in aiding the agent to make informed decisions and
determine the most favorable course of action. Its role is to
strike a balance between the significance of future rewards
and the immediate rewards gained from the current state s. In
the domain of RL, the agent strives to maximize its cumu-
lative reward across time. However, given the uncertainty
of future rewards, the agent must factor in the potential-
ity of receiving lower or higher rewards in the future, as
illustrated below:

G = max
π

E

[ ∞∑
t=0

αtRt|St = s

]
, (4)

Q-learning stands as a widely adopted RL technique,
focusing on a function called the Q-function to gauge the
merits of a state-action pair. The chief objective of Q-learning
involves ascertaining the optimal policy within a provided
MDP by learning the optimal Q-function. This achievement
is realized through the use of value iteration updates and the
Bellman equation. The Q-function is instrumental in cal-
culating the anticipated cumulative reward attainable to an
agent through the execution of a specific action a in a given
state s, followed by adherence to the prevailing policy. With
each iteration, the Q-function undergoes updating to approx-
imate the optimal Q-function with greater precision. This, in
turn, leads to better decision-making on the part of the agent:

Q(s, a) =
∑
s′
Pa

[
s, s′

](
R
(
s, s′, a

)+ αν
(
s′
))

, (5)

In Q-learning, the Q function is updated through the uti-
lization of value iteration updates, which take into account
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several components. These include the transition probability
Pa[s, s′] from state s to state s′, the reward R(s, s′, a) acquired
from the transition, and the prevailing value function of state
s′, indicated as ν(s). The equation encapsulating the value
iteration update employed in Q-learning can be formulated
as follows:

Qnew(st, at)← Q(st, at)

+ α

(
Rt + γ max

a
Q(st+1, a)− Q(st, at)

)
, (6)

In this equation, the updated value Qnew(st, at) for the
state-action pair (st, at) is obtained by adding the learning
rate α multiplied by the temporal difference error. The tem-
poral difference error is computed as the disparity between
the immediate reward Rt and the discounted maximum
expected future reward γ maxa Q(st+1, a), subtracted from
the present value Q(st, at). The discount factor γ determines
the significance of future rewards compared to immediate
ones.
For evaluating the anticipated reward concerning a spe-

cific state-action pair, the Q-learning algorithm employs a
Q-table housing Q-values. Nonetheless, this strategy proves
unsuitable for IoT contexts, where numerous agents might be
engaged, given the substantial memory demands associated
with Q-table storage.
In tackling this challenge, the realm of DRL has emerged

as a powerful methodology. It leverages function approxima-
tion and representation learning to glean valuable insights
from compressed, lower-dimensional data. This technique
empowers agents to glean knowledge and generalize pro-
ficiently within intricate, high-dimensional environments,
without imposing an excessive burden on memory resources.

B. OVERVIEW OF DEEP REINFORCEMENT LEARNING
Conversely, DRL can overcome the constraints of Q-learning
by harnessing deep neural networks to approximate the
Q-function, thereby enabling adept management of high-
dimensional state spaces. This methodology is recognized
as Deep Q-Networks (DQN), seamlessly melding Q-learning
with deep neural networks to empower agents in acquir-
ing knowledge from sensory inputs characterized by high
dimensions.
Additionally, DRL algorithms like DQN can also incorpo-

rate alternative exploration policies, such as softmax action
selection or bootstrapped ensembles, to navigate the environ-
ment with heightened efficiency, all the while maintaining a
delicate equilibrium between exploration and exploitation.
This capacity accelerates the agent learning process and
enhances his performance within IoT applications.
In Q-learning, a table housing state-action pairs is crafted

to ascertain the optimal action corresponding to a given state.
To navigate the realm of potential rewards, Q-learning com-
monly employs the ε-greedy approach as an exploration
policy. This involves randomly selecting an action with a
probability of ε. However, constructing a Q-table and pin-
pointing the optimal policy can be computationally taxing,

and the state space may not be exhaustively explored, leading
to infrequent visits to certain states.
Deep Q-learning (DQL) represents a ML technique that

advances upon the Q-learning approach by employing neural
networks to approximate the Q-function in lieu of a Q-table.
This methodology proves particularly efficacious for resolv-
ing problems characterized by high-dimensional state spaces
and action spaces, in situations where maintaining a table
for every conceivable state-action pair becomes impractical.
Within the framework of DQL, the neural network takes
the state as input and generates the estimated Q-values for
each action. Subsequently, the agent selects the action asso-
ciated with the highest Q-value, an action anticipated to yield
the maximum cumulative reward. Through neural networks,
DQL imbibes the ability to learn from an abundance of
state-action pairs and generalize to unfamiliar scenarios. This
quality makes it a potent technique for addressing intricate
reinforcement learning conundrums.

C. NSL-KDD DATASET DESCRIPTION
This NSL-KDD dataset encompasses 41 attributes, denoted
as states, categorized as either reliable or linked to specific
attack types (classes) [23]. To render the NSL-KDD dataset
compatible with DRL, which only operates with numerical or
floating-point values, we implemented the one-hot encoding
technique for dataset pre-processing. The NSL-KDD dataset
encompasses four attack types: Denial of Service (DoS),
Probe, Root to Local (R2L), and Unauthorized to Root
(U2R). The binary attributes were converted into numerical
values via the one-hot encoding technique, which enabled
their utilization within the DRL algorithm.

IV. SYSTEM MODEL
In the context of cutting-edge wireless communication
technologies like 5G and beyond, we investigate an IoT
environment comprising devices capable of both honest and
malicious behavior. Our system model is designed to detect
intrusions in 5G and subsequent wireless networks (see
Fig. 1). Within this model, wireless devices establish connec-
tions with the network edge either through edge servers or
base stations, both of which function as DRL agents. These
agents gather data and employ the DRL model detailed in
subsequent sections to formulate decisions. A DRL agent,
a subtype of RL agent, can train the model to anticipate
forthcoming rewards and recognize potential intrusions or
attacks. The IoT node, functioning as an agent—such as a
base station or server equipped with adequate computational
capabilities—interacts with its surroundings by observing
and making decisions through actions.
The process of intrusion detection involves two levels.

Firstly, a distributed trust management system is established
to meticulously select trustworthy devices for network com-
munication. The trustworthiness of each device is assessed
through reputation evaluation. Dedicated nodes, like servers
or base stations, gather transmitted data and make deter-
minations using the subsequently developed DRL model.
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FIGURE 1. System model demonstrating DQN’s Q-value output and action calculation via argmax Q for current state in a DRL intrusion detection system employed in 5G and
Beyond IoT Applications.

An RL agent, referred to as a DRL agent, can train the
model to anticipate forthcoming rewards and identify poten-
tial intrusions or attacks. The DRL agents exclusively engage
in communication with the most trustworthy devices that
satisfy the necessary bandwidth requirements.
Secondly, we propose the adoption of a DRL approach to

detect intrusions in the network. During the training phase,
the agent actively explores the available action space by
employing an exploration policy, such as the ε-greedy strat-
egy. This policy empowers the agent to make decisions:
either choosing a random action with a probability of ε or
selecting the action with the highest value function using the
greedy approach with a probability of 1−ε. The DQN algo-
rithm, which extends traditional RL techniques, estimates the
Q-value by considering a generalized state-action pair with
the function Q(s, a). In our system, the DQN agent employs
a DNN approximation to calculate the Q-value, utilizing both
the environment’s states and actions, with a specific empha-
sis on leveraging the NSL-KDD dataset. Given the dataset’s
extensive array of features and the batch size employed dur-
ing the DQN process, storing Q-values for every state-action
pair in a Q-table becomes impractical. Therefore, we pro-
pose the adoption of the DQL process for intrusion detection,
which employs neural networks to approximate the Q-value
of each state-action pair. Further elaboration on our proposed
DQL methodology can be found in Section V-C.

V. DEEP REINFORCEMENT LEARNING FOR SECURING
IOT NETWORKS IN THE 5G AND BEYOND ERA
In this section, we will delve into the details of our
proposed IDS designed to enhance the security of 5G and
beyond networks. The implementation of our IDS involves
a multistep process. We begin by outlining a decentralized
approach to establishing trust among IoT devices. Secondly,
we employ resource allocation strategies to make informed
decisions regarding IoT device selection.

A. DEVICE REPUTATION EVALUATION
We propose a method for evaluating a device’s Reputation
Score (RS) based on its previous interactions with other
devices, which offers several advantages. Firstly, it incen-
tivizes desirable device behavior by establishing a trust
management system that rewards normal behavior (NB)
while penalizing abnormal behavior (AB). Secondly, it mit-
igates the influence of malicious devices by allocating
bandwidth resources exclusively to trustworthy devices with
high RS. The RS is initially assigned a positive value to
each device, which can increase or decrease based on its
behavior. This score is used to assess the device’s trustwor-
thiness and determine its eligibility for resource allocation.
To calculate the average reputation, the RS of all devices is
summed and divided by the total number of devices. This
calculation provides a measure of the overall trustworthiness
of the devices in the network, as shown below:

RSavg =
∑n

j=1 ROjk

n
, (7)

where RO represents the reputation of a device j as perceived
by a device k based on their past interactions. The RS can
therefore be defined for each device as follows, in accordance
with the type of behavior it exhibits:

RS =
∑n

k=1 ROjk
(
1− |RSavg − ROjk|

)
∑m

k=1 1− |RSavg − ROjk| , (8)

The evaluation process assesses the reliability of a rec-
ommendation made by a device k regarding a device j by
measuring the deviation from the average recommendation
value. In response to their atypical behavior, devices demon-
strating abnormal actions experienced a reduction in their
reputation scores, resulting in the following update equation:

RSnew = β

(
1− ND

NT

)
Rold, (9)
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where β falls within the range of [0,1]. The weight assigned
to each device’s reputation score depends on the context of
the IoT environment and is calculated using the frequency
of device connections (ND) and the total number of device
interactions (NT) over a given period.

B. RESOURCE ALLOCATION PROBLEM
In response to the resource constraints often faced in IoT con-
texts, our approach revolves around the targeted allocation
of bandwidth exclusively to devices with proven trustworthi-
ness and reliability. This strategy not only optimizes learning
outcomes but also minimizes potential delays. To illustrate,
let’s consider a scenario where there exists a total bandwidth
of B Hz within an Orthogonal Frequency Division Multiple
Access (OFDMA) system. In this setup, each individual
device, denoted as k, is allotted a specific share of the overall
available bandwidth, denoted as αk ∈ [0, 1]. This division of
bandwidth influences the achievable rate of communication
for device k when interacting with the base station (BS). The
relationship between the device and the BS is characterized
by the channel gain, represented as gk.

Given the paramount importance of meticulous crite-
rion selection and the inherent challenges stemming from
communication limitations, we formulate the following
problem:

minimize
x,α

m∑
k=1

xkRSk (10a)

subject to
∑
i

αi ≤ 1 (10b)

0 ≤ αk ≤ 1, ∀k ∈ [1, n] (10c)

xi,jtj ≤ T (10d)
n∑
j=1

RSj ≥ Rmin, ∀k ∈ [1, n] (10e)

xk ∈ {0, 1}, ∀k ∈ [1, n]. (10f)

The objective of the problem (10a) is to allocate bandwidth
solely to devices exhibiting high reputation scores, indicative
of their reliability. Constraints (10b) and (10c) enforce that
the allocated bandwidth fractions remain within the interval
of 0 to 1, with their cumulative sum abiding by the total
bandwidth budget. Constraint (10d) ensures that the chosen
devices successfully complete their model training and data
uploading within the designated blockchain deadline of T .
Constraints (10e) guarantee that the selected reliable devices
for bandwidth allocation meet or exceed the specified min-
imum requirement of Rmin. Lastly, constraints (10f) define
the optimization variables.
The solution to problem (10a) presents a challenge due

to its equivalence to the NP-hard knapsack problem. The
problem’s objective is to maximize the count of trustwor-
thy devices while adhering to bandwidth limitations, where
device trustworthiness is determined by reputation scores.
The constraints ensure that the chosen devices accomplish
their tasks within the deadline and that the total sum

Algorithm 1 Bandwidth Allocation Algorithm
Input: A queue of K IoT devices waiting for bandwidth
allocation B;
Output: Array α, Allocated bandwidth for the devices x =
[x1, . . . , xK ];

1: Order devices according to their reputation parameter (R)
decreasingly and index them from 1 to K;

2: for k = 1, . . . ,K do
3: xk ← 0;
4: end for
5: A← B;
6: k← 1;
7: while A ≥ 0 and k ≤ K do
8: if A− αkB ≥ 0 then
9: xk ← 1;

10: A← A− αkB;
11: αk ← αk;
12: k← k + 1;
13: else
14: αk ← A/B;
15: A← 0;
16: xk ← 1;
17: end if
18: end while return x and α

of allocated bandwidth fractions remains within the band-
width budget. To surmount this complexity, we introduce
Algorithm 1, a classical greedy knapsack algorithm, as a
proposed solution.

C. DRL FORMULATION
We frame the intrusion detection problem as an MDP and
leverage DRL techniques to tackle it within the IoT context.
The MDP is structured around three primary components,
outlined as follows:

1) The state space serves as the information source for
the agent to base its decisions upon. In the context
of intrusion detection, we make use of the NSL-KDD
dataset, where each column represents a distinct fea-
ture. As a result, we define the state si for our DNN
as Fi, where Fi corresponds to a feature within the
dataset F.

2) The collection of choices available to an agent, deter-
mined by the information provided by the environment,
is referred to as the action space. In the pursuit of
identifying potential intrusions or attacks, the agent
compiles a roster of plausible actions within a defined
time window. Actions are chosen by the agent by
considering a predetermined-sized mini-batch, and the
output of the DNN is juxtaposed with the Q-value to
ascertain the occurrence of an attack.

3) The reward function embodies the input from the
environment concerning the action executed by the
agent. Its design is geared towards motivating the agent
to accurately identify attacks, assigning a reward of
+1 for correct detection and −1 for misjudgment.
The reward value is additionally refined using the
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classifier’s prediction probability and the acquired Q-
values, all in pursuit of enhancing the overall classifier
performance.

The system model employed for training the DQN in the
context of intrusion detection encompasses several key com-
ponents and sequential stages. Its objective is to construct a
dependable model with the competence to accurately identify
intrusions within a given environment.
The primary step involves generating essential parameters

for the DNN, encompassing the network architecture, behav-
iors of IoT devices, and packet sizes. These parameters are
instrumental in shaping the DQN’s capacity for learning and
making informed decisions.
The training procedure unfolds across numerous episodes,

each delineating a series of interactions between the agent
and its environment. At the inception of each episode, the
initial state is updated to establish the foundational context
for the agent’s engagement with the surroundings.
Within each episode, the training algorithm enters an

internal loop comprising individual steps. This algorithm
operates with two distinct strategies for action selection:
exploitation and exploration. Exploitation is favored with a
likelihood of (1 − ε), wherein the algorithm predicts the
current state and calculates the corresponding action vector
based on the acquired policy. Exploration is employed with
a likelihood of ε, enabling the algorithm to select a batch
size and determine an action vector that fosters exploration
within the environment.
Following action selection, the algorithm proceeds to com-

pute the target Q-value, which encapsulates the projection
of future rewards. Subsequently, the reward function is com-
puted based on the prevailing state and the chosen action.
In tandem, the algorithm evaluates the discrepancy between
the predicted Q-value and the target Q-value, facilitating
the DQN’s assimilation of these differences to enhance its
predictive prowess.
The agent’s parameters, encompassing the weights and

biases of the DNN, undergo updates via backpropagation, a
mechanism that employs the computed loss. This iterative
refinement process aims to elevate the DQN’s performance
and bolster its efficacy in detecting intrusions.

VI. PERFORMANCE EVALUATION
In this section, we present a comprehensive overview of
the numerical results obtained through our simulations. We
begin by outlining the simulation setup and its correspond-
ing configuration. Subsequently, we proceed to assess the
performance of our proposed system model and contrast it
with prior research outcomes. Lastly, we delve into an anal-
ysis of the influence of malicious behavior on the overall
performance of the system.

A. EXPERIMENT SETUP
To conduct our simulations, we utilized the NSL-KDD
datasets and employed a min-max normalization technique

to normalize both the training and test datasets within the
range of [0, 1].
Our proposed approach for intrusion detection in IoT

devices is based on a four-layer DRL architecture utilizing
relu activation. The input layer, situated at the top, com-
prises neurons capturing environmental variables. The final
layer, which represents the Q-values for each category of
intrusion/attack, constitutes the output. The two intermediary
layers serve as hidden layers that contribute to the training
process.
For our network simulation, we considered a 500-square-

meter area centered around a base station. This network
simulation resembled both mobile and cellular networks,
accommodating a total of m devices uniformly distributed
across the square. Such network configurations are com-
monly encountered in applications within smart cities where
wireless connectivity is established.
Furthermore, we employed two fundamental metrics to

gauge the model’s performance: detection accuracy and
F1 score. Detection accuracy quantifies the percentage of
accurately identified attacks, while the F1-score provides a
balanced measure by combining precision and recall.
The following formulas are applied to calculate the detec-

tion accuracy and F1 score, where TP represents “true
positives” (intrusions correctly identified as intrusions), FN
denotes “false negatives” (intrusions misclassified as reli-
able device behaviors), FP signifies “false positives” (reliable
device behaviors incorrectly labeled as intrusions), and TN
corresponds to “true negatives” (reliable device behaviors
correctly identified as such).

B. EVALUATION RESULTS
The confusion matrices for our DQL model after 25 and
50 training epochs are illustrated in Fig. 2(a) and Fig. 2(b),
respectively. These matrices provide insights into the model’s
performance by depicting its ability to distinguish between
intrusions and consistent device behaviors accurately.
Following 25 training iterations, our DQL model exhib-

ited a commendable intrusion detection rate of 11, 281,
effectively identifying instances of unauthorized access.
Furthermore, it displayed a high precision of 13, 170 in cor-
rectly identifying the behavior of the regular and reliable
devices. However, there were occurrences of 348 instances
where reliable device behaviors were incorrectly classified
as intrusions and 4, 905 instances where intrusions were
incorrectly labeled as reliable device behaviors.
Fig. 3(a) and Fig. 3(b) display the Receiver Operating

Characteristic (ROC) curves of our DQL model. These
curves visually represent the trade-off between the true
positive rate (sensitivity) and the false positive rate. The
area under the ROC curve offers valuable insight into the
effectiveness of our DQL model in distinguishing between
dependable and undependable device behaviors.
For the 25-epoch training, our DQL model achieves an

AUC of 0.87, affirming its competence in accurately cat-
egorizing device behaviors. Similarly, with the 50-epoch
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FIGURE 2. Confusion matrices on NSL − KDDTest+ for: (a) 25 epochs case; and (b) 50 epochs case.

FIGURE 3. ROC curves on NSL − KDDTest+ for: (a) 25 epochs case; and (b) 50 epochs case.

FIGURE 4. Model loss on NSL − KDDTest+ for: (a) 25 epochs case; and (b) 50 epochs case.

training, the AUC further increases to 0.88, underscoring
the enhanced performance of the model in distinguishing
between dependable and undependable behaviors.
In Fig. 4(a) and Fig. 4(b) we showcase the model loss

of our DQL model over 25 and 50 epochs, respectively.
The trend is evident—loss values consistently decrease as
epochs advance, eventually converging to nearly zero dur-
ing the 50-epoch training duration. This trend signifies
the model’s proficiency in effectively learning from its
environment.

Fig. 5(a) and Fig. 5(b) present the agent’s rewards. It is
particularly notable that the cumulative rewards achieved
by the agent exhibit a consistent increase with each epoch,
culminating in their peak towards the conclusion of the learn-
ing phase. This trend robustly underscores our DQL model’s
capacity for learning (referred to as the Agent), as it contin-
ually adapts to its surroundings and garners greater rewards
over time.
We compare our proposed system model with state-of-

the-art. The comparison study encompassed the following
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FIGURE 5. Agent reward on NSL − KDDTest+ for: (a) 25 epochs case; and (b) 50 epochs case.

FIGURE 6. Comparison of accuracy among various Machine Learning models using
NSL-KDD Dataset.

models: Random Forest (RF) and DQL models [22],
Self Organization Map (SOM) [13], Bidirectional LSTM
(BiLSTM) [24], Convolutional Neural Network (CNN) [16],
CNN-BiLSTM [18], and Support Vector Machines
(SVM) [12]. These models were evaluated to gauge
their performance and efficacy within the specified con-
text. Fig. 6 graphically represents the assessment of
model performance based on accuracy using the NSL-
KDD dataset, encompassing both the aforementioned
machine learning models and our proposed DQL model.
Additionally, Fig. 7 shows the evaluated models includ-
ing: Random Forest [17], DQL [22], Self Organization
Map [13], Bidirectional LSTM [24], CNN [16], CNN-
BiLSTM [18], Support Vector Machines [12], and our
proposed model. Fig. 7 offers valuable comparative insight
into the performance of various models, effectively deter-
mining the efficacy of our proposed model in relation
to contemporary approaches. Notably, the DQL approach,
encompassing both our model and the one mentioned

FIGURE 7. Comparison of F1-scores for system and state-of-the-art models using
NSL-KDD database.

in [22], consistently outperforms other methodologies on the
NSL-KDD dataset. Impressively, these DQL-based models
achieved F1-scores of 80.84% and 94%, respectively.

VII. CONCLUSION
In this paper, we introduced a novel approach to detect
intrusions in IoT networks by leveraging a distributed Q-
learning algorithm. Our approach aimed to enable agents
to continually learn and enhance their ability to detect nor-
mal and anomalous IoT behaviors. To facilitate this, we
devised a pseudo-environment and record sampling mecha-
nism, culminating in the creation of a self-learning system
that could adapt and improve over time, leading to more
precise and efficient anomaly detection. Additionally, we
proposed a distributed reputation assessment mechanism to
effectively identify and neutralize malicious devices. To
optimize bandwidth utilization while considering device
reputation, we presented an iterative algorithm involving
device selection and subsequent bandwidth allocation. Lastly,
we empirically evaluated the effectiveness of our approach
through experimentation and rigorous comparison with exist-
ing methods. Our results demonstrated that our proposed
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approach surpassed state-of-the-art techniques in terms of
both accuracy and efficiency.
However, there are still numerous unresolved matters

that warrant thorough examination within this domain.
Primarily, one significant aspect involves exploring more
advanced Q-learning techniques that adapt to changing envi-
ronments and dynamic behaviors. This could involve the
incorporation of techniques like deep reinforcement learning.
Additionally, exploring the applicability of transfer learn-
ing techniques in the context of intrusion detection can
be a valuable avenue for future research. Transfer learning
allows models trained on one task or domain to be lever-
aged for improved performance on a related but different task
or domain.
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