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Abstract 

Over the past few years, electric vehicles (EVs) have become a popular mode of individual transportation due to their significant 
benefits over internal combustion engine vehicles, resulting in significant growth in their penetration rate. However, the current 
flat electricity charging pricing and rapid diffusion of EVs may impose challenges to both transportation systems and power 
grids. It is well-accepted that the implementation of charging pricing schemes is a promising solution for changing and 
controlling EV users’ charging behavior. Nevertheless, in most research studies that have examined pricing schemes, the 
charging logic is defined in a way that agents will charge their vehicles while performing their daily activities. This will make the 
application of pricing schemes unfeasible, as agents will not have the freedom to unplug their EVs whenever they want, to reduce 
their billing costs. Accordingly, this paper provides an agent and activity-based framework for charging pricing schemes by 
decoupling activity and charging start and end times. Following this, three different charging pricing schemes have been 
introduced, including time of use (TOU), non-linear and zonal pricing and tested on the Montreal scenario.  
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1. Introduction 

Fossil fuels are considered one of the main sources of energy, especially for the transport sector. The Canadian 
transportation sector’s contribution to energy consumption is even higher than the world average, 30% compared to 
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27% (1). However, this dependence needs to be broken due to environmental, economic, and political concerns, 
which can be done with the help of electric vehicles (EVs). Large penetration of EVs, however, will raise the 
electricity demand and generate an extra load on the existing power grids (2; 3), as the current power grids are not 
designed for these to some extent unpredictable loads. From the transportation point of view, it may create long 
queues at charging stations (4; 5), and parking problems (6). Here is where Demand Side Control Action (DSCA) 
comes in handy (7).  

The charging pricing scheme for EVs is an example of DSCA's effort to control, shift and coordinate EV charging 
demand by offering flexible prices (8). Over the past few years, electricity pricing schemes for EVs have been 
extensively examined, to resolve power grid issues (9; 10). One of the most evaluated pricing policies is the Time of 
Use (TOU) scheme, in which electricity price is raised during peak hours to reduce peak load demand (11). 
However, from the transportation perspective, it does not contribute to the reduction of queues at charging stations, 
and it is unable to account for the charging demand's spatial variations. 

In transportation, agent-based simulations have become a standard tool for policy and infrastructure planning, due 
to their strengths in detailed behavioral modeling, and analysis of the interconnection between agents and their 
physical environment (12). As subtypes of transportation simulations, electromobility simulations also benefit from 
agent-based simulation techniques. These models allow an analysis of microscopic aspects such as individual State 
of Charge (SOC) and charging patterns as well as global factors such as charger utilization by considering 
heterogeneous vehicle fleets, a variety of infrastructure types, charging behaviors, and charger accessibility of the 
simulated population (13). As an example, MATSim and its EV-Contrib frameworks have been a key element in the 
development of the UrbanEV, since they have been validated, widely used, and well-established in transport and 
infrastructure planning (12). Using microscopic agent-based simulations, studies have modeled different aspects of 
EVs either by focusing on the charging behavior or the charging location choice of EV users (12; 14-23).  

In the current litreature, the charging logic is defined in a way that agents will charge their vehicles while 
performing their daily activities, such as shopping, working, etc. The charging ending time is usually based on 
simplified assumptions that agents will stop charging their EVs when the battery charge reaches a fixed threshold 
(usually 80%) (19; 22), or when the activity time is finished (19; 22). As a result of these approaches, agents would 
not be able to terminate their charging activities whenever they wish, to reduce their billing costs. This would force 
them to charge their EVs during the entire activity period, regardless of how costly this charging could be. However, 
developing a framework that allows agents to decouple their charging activities from their daily activities will lead to 
more realistic simulations of EVs, and more accurate results. To fill this gap, this paper will contribute to the current 
state of the art as follows: a) a new charging logic has been developed which allows agents to decouple their 
charging activity from their daily activity pattern in a way that agents can pause their primary activities to plug in or 
unplug their EVs, b) to reduce the queue at charging stations, and control the spatial variation of charging, two new 
pricing schemes namely non-linear, and zonal-based pricing have been developed in addition to the well-known 
TOU pricing. In non-linear pricing, the price of electricity is raised non-linearly according to the amount or duration 
of electricity usage. In the zonal-based approach, the charging prices would vary from zone to zone in such a way 
that prices can be set to lower values in areas with lower charging demands, and vice versa. 

2. Methodology 

2.1. General Framework for the Micro-Simulation 

In this study, an existing simulation platform, called MATSim (Multi-Agent Transport Simulation) is used. 
MATSim is an agent-based, activity-based, and open-source transport simulation implemented in JAVA (24). The 
logic behind the MATSim is to optimize individual agents’ choices such as route, departure time, activity location or 
duration, and the mode for a given plan, utilizing co-evolutionary techniques and microsimulation (25). A MATSim 
run contains a configurable number of iterations, represented by the loop shown in Fig. 1. 

Every agent is loaded in MATSim with its initial activity plan. These activity plans contain precise information 
on the activity chains, each activity's location, and duration, opening and closing times, as well as the trips between 
activities, including trips’ mode and route. The initial daily plan of trips and activities is executed by mobility 
simulation (mobsim). The utility function is used to calculate the score for each plan based on the simulation results. 
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From iteration to iteration, a configurable share of agents is allowed to change some of their daily decisions such as 
routes, working hours, travel modes, departure times, locations visited, etc., by adapting the previous one to search 
for a plan with a higher utility. This step is called replanning. After a certain number of iterations, the average 
population score stabilizes, meaning the plans score no longer improves. This is interpreted as a situation, which is 
close to User Equilibrium (EU). Every agent's plan at equilibrium is supposed to approximate their actual behavior 
in the real world, so at this point, results can be analyzed. Additional information on the framework itself and 
existing scientific applications can be found in (24). 

 

Fig. 1. Co-evolutionary algorithm of MATSim 

2.2. EV’s Framework in MATSim 

MATSim has a modular design, meaning that it is structured with a core of classes that are providing all basic 
functionalities and with plug-in extensions that provide additional functionalities. MATSim has an extension that 
allows modeling EVs called EV-Contrib. A special vehicle type that consumes electric energy based on an energy 
consumption model is introduced and charging stations are coded with a defined power level that charges EVs based 
on a non-linear charging model. In the default MATSim EV logic, charging events are introduced as separate, 
additional activities in agents' daily plans, which can be triggered based on a certain SOC threshold level or charging 
behavior. This means that charging events cannot be integrated with other primary activities in agents’ daily plans. 
Although this modeling approach can be justifiable for long-distance trips, in which EVs typically stop for the mere 
purpose of recharging (26), this is in contrast to the behavior expected in urban EV scenarios. However, two recent 
efforts have developed charging behavior for urban EV scenarios in which charging events have been integrated 
with primary activities (12; 27).  

In the urban EV framework, EV users estimate their consumption for all their EV trips between activities (legs) 
upfront. In other words, while improving their plan set in the replanning step, before starting the plan, agents go 
through their chosen plan to simulate discharging of their EVs. As soon as they find at which leg the SOC drops 
below the critical level, activities before this leg are considered for charging. A set of criteria such as activity type 
and duration are used to select the activity from these candidate activities for charging the EV. Priority is given to 
the nearest activity to the critical leg unless the activity does not meet the predefined criteria. In the case that agents 
have enough SOC to come back to their first activity location (mostly home) at the end of their daily plans, and they 
have a home charger, agents will charge their EVs at home, regardless of their available SOC. 

2.3. Modeling Approach 

In the existing urban EV framework, EVs are assumed to be charged throughout the entire activity time or until 
the time that the battery is fully charged (or when the battery charge reaches a fixed value, usually 80%), regardless 
of the pricing. This means that one cannot model the effect of pricing schemes with that approach. In the model we 
are proposing here, the charging behavior logic has been developed in a way that agents can pause their primary 
activities to plug in or unplug their EVs. Fig. 2. shows the flowchart of the proposed charging modeling approach. 

2.4. Accounting for Activity and Charging Time Decoupling  

Here's an example of how the new replanning approach works. We assume a critical SOC (when the EV needs to 
be charged) of 30% and a primary SOC of 75%. The initial daily plan of an agent follows the following pattern: 
Home, Work, Leisure, Shopping, and finally returning Home. This plan is outlined before the simulation, and the 
SOC is emulated in each leg. Thus, the available SOC reached 25% at the start of the shopping activity, which is 
less than the critical SOC. It is now necessary to find an activity suitable to plug in the EV before this leg, and 
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leisure would therefore be an appropriate choice (assuming it meets the criteria). 
 

 
Fig. 2. Modelling approach flowchart 

In this case, a configurable share of agents will be able to pause their primary activities, the leisure activity. All 
other agents will charge their EVs according to the exsisting UrbanEV charging behavior. There are two options 
available for activity pause. Agents would be able to charge their EVs either at the beginning or at the end of the 
leisure activity. Among those who pause their activities, a configurable share will charge their EVs at the beginning 
and the rest at the end. Whenever agents charge their EVs at the beginning, they will drive directly to the charging 
station with their EVs and then walk to their primary activity. Once the charging time is over, agents will walk to the 
charging station, unplug their EVs, and drive to the location of their primary activity, e.g., leisure (Fig. 3., left).  

 
Fig. 3. New Urban EV charging behavior logic, left) Charging at the beginning of the activity, right) Charging at the end of the activity 

In the case that agents charge their EVs at the end of the activity, they will directly head to the leisure activity and 
then will pause their activity to take their EVs to the charging station. Once the primary activity is finished, agents 
will walk to charging stations to unplug their EVs and will directly head to the next activity in their plan, in this 
case, shopping (Fig. 3., right). In either case, when a vehicle arrives at a charging station, it is plugged in and 
charged in accordance with its charging profile, as well as the charging capacity of the station. Ideally, the distance 
from the charging station to the activity should be as short as possible so that the total travel time, including the 
deviation from the original plan to the charger station, is as minimum as possible. 

2.5. Accounting for the Charging Duration Time 

In either case (charging at the beginning or the end of an activity), the time that agents need to pause their 
activities to plug in or unplug their EVs is calculated based on the charging duration. In our model, the charging 
duration is calculated using Equations 1, 2, and 3: 

 
                     (1) 
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(2) 

 
                                                                                                                                               (3) 

 
Where for each person i, the Cc, is the amount of energy that agents’ vehicles should be charged for, based on the 

remaining activity or battery capacity. Cr is the required amount of charge that agents need to reach their remaining 
activities, which is calculated by the sum of the energy needed that each of the remaining trips to be performed, 
multiplied by a safety factor S.F. Ccap is the amount of charge that the battery requires to be fully charged.  

We let the agents charge a random amount of charge based on a normal distribution with mean Cc, and variance 
COV*Cc, used to model randomness in agents’ choices in the charging amount. The time necessary to transfer Ct 
amount of energy to agents’ EVs based on the charging power of charging stations is the charging duration tt. Based 
on this calculated time, if charging occurs at the beginning of an activity, agents will take a pause at (activity start 
time + tt), and if the charging occurs at the end of an activity, agents will pause (activity end time - tt). The safety 
factor is being applied to make sure that agents will be able to finish their daily plans without running out of battery, 
in case of any unpredictable events like traffic congestion. This factor can also model the agents’ risk-taking 
tendency (For a high risk-aversion behavior, the S.F can be set to a higher value).  

2.6. Scoring Modifications 

The utility of a plan in MATSim is measured by summing up the activity utilities and the travel (dis)utilities for 
the activities and trips in that plan, as presented in Equation 4 (24), 

                                                                                                                                       (4) 

Where A is the number of total activities and Tr is the total number of trips in the plan. Uact,i and Utravel,i are the 
utility of activity and trip respectively. Uact,i is calculated by considering the type and duration of performing the 
activity, and the disutility of undesired events related to the performing of the activity (waiting for a shop to open, 
arriving late at work, etc.). Utravel,i, however, is calculated by considering a mode-specific constant, travel time 
between activity locations, fares, the travel distance between activity locations, transfers (for public transit trips), 
etc. When it comes to travel distance, the dis(utility) of a given trip for each agent, in its basic form, is calculated by 
Equation 5 (24): 

                                                                                                                                          (5) 

Where βd is the distance’s marginal utility, βm is the marginal utility of money, and γm is the mode-specific 
monetary distance rate, and d is the traveled distance between two successive activity locations. The marginal utility 
of distance accounts for the money that agents must pay for the unit distance of travel while traveling with each 
mode of transportation, such as gasoline price for internal combustion engine vehicles (ICEVs). The marginal utility 
of distance should be modified for EVs as they do not consume gasoline. In this study, the scoring function is 
changed in such a way that it can separate EVs and ICVs, (mode-specific). Afterward, the distance-based disutility 
will be applied for ICEVs, while the electricity price will be applied for EV charging. Therefore, Equation 5, would 
be in the form of Equation 6 for EVs. 

                                                                                                                                                               (6) 

2.7. Pricing Schemes 

When the new framework is ready, different pricing policies can be applied and analyzed. As mentioned earlier, 
in this study, in addition to TOU pricing, two new pricing schemes have been introduced as follows: i) Time of Use 
(TOU) pricing: According to this scheme, electricity prices will be raised during peak hours compared to off-peak 
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hours. Electricity operators will be able to manage peak-hour electricity supply constraints with this scheme. The 
assumption is that this scheme will be able to reduce the electricity peak usage demand. ii) Nonlinear pricing: In this 
scheme, the electricity price can be raised during different time steps, e.g., 0 to 30 minutes, 31 to 60 minutes, and 
higher than 60 minutes. As a result of this scheme, electricity operators will be able to manage queues at charging 
stations. With the implementation of this policy, it is anticipated that more EVs will be served at charging stations, 
while fewer EVs will be waiting in queues. iii) Zonal-based pricing: In this scheme, charging pricing is spatially 
defined, which means that the study area can be divided into different zones with different electricity price 
multipliers. As a result of this scheme, electricity operators will be able to manage spatial constraints in electricity 
supply. Following the implementation of this policy, electricity usage is expected to be dispersed between lower-
priced zones. 

EVs' charging pricing framework has been proposed and implemented for EV users by introducing a charging 
pricing vector profile. Pricing vectors are introduced as Equation 7, 

                                                                                                                                                       (7) 

where for 24 different times of day, t, the pricing vectors are various to reflect the TOU scheme for each charger 
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The first analysis compares the TOU scheme to the base scenario. Fig. 4., shows the total energy consumed by 
EVs over the various periods. As can be seen, for the TOU scheme, the peak electricity demand during the evening 
peak period (14 to 18), when the electricity price is 100% higher, has been significantly reduced and shifted towards 
the off-peak hours (19 to 21). Moreover, the maximum peak consumption in the base scenario (approximately 330 
kWh), has been reduced to 242 kWh in the TOU scheme. This indicates that the TOU scheme has effectively 
reduced peak consumption. This finding is in line with most of the studies considered the TOU scheme such as (28). 
During the morning peak hours, electricity usage is not at a level that can be interpreted. The SOC of EVs at the 
beginning of the day is likely higher than the critical SOC to enable agents to charge their EVs, as based on our 
study, all EV users are assumed to have a home charger, and they will charge their EVs upon returning home after 
completing their daily activities. The next analysis compares the non-linear scheme to the base scenario. Fig. 5. 
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hours. Electricity operators will be able to manage peak-hour electricity supply constraints with this scheme. The 
assumption is that this scheme will be able to reduce the electricity peak usage demand. ii) Nonlinear pricing: In this 
scheme, the electricity price can be raised during different time steps, e.g., 0 to 30 minutes, 31 to 60 minutes, and 
higher than 60 minutes. As a result of this scheme, electricity operators will be able to manage queues at charging 
stations. With the implementation of this policy, it is anticipated that more EVs will be served at charging stations, 
while fewer EVs will be waiting in queues. iii) Zonal-based pricing: In this scheme, charging pricing is spatially 
defined, which means that the study area can be divided into different zones with different electricity price 
multipliers. As a result of this scheme, electricity operators will be able to manage spatial constraints in electricity 
supply. Following the implementation of this policy, electricity usage is expected to be dispersed between lower-
priced zones. 

EVs' charging pricing framework has been proposed and implemented for EV users by introducing a charging 
pricing vector profile. Pricing vectors are introduced as Equation 7, 
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depicts the total number of EVs that have been charged, and the total number of EVs that have been queued at 
charging stations. Queueing happens when the agents arrive at charging stations, while all the plugs are already 
occupied by other agents. As can be seen, the total number of plugged EVs in non-linear schemes has increased, 
while the total number of EVs queued at charging stations is declined. This means that more agents have charged 
their EVs, but for shorter periods (as much as they need rather than a full charge), thus more charging plugs are 
available for other users. 

 
Fig. 5. Total Number of Plugged EVs at public Charging Stations (home chargers are excluded) and Total Number of Queued EVs at public 

Charging Stations 

The results of the zonal pricing scheme are compared to the TOU scheme, as previously mentioned. For 
assigning the zonal pricing multipliers, the number of EVs which are plugged in for charging in each of the six 
zones in the TOU scenario was counted. Accordingly, the charging prices in the three zones (zones 1, 5, and 6) with 
the highest number of plugins were increased by 50%, while the electricity prices in the remaining three zones were 
diminished by 50%. Fig. 6. shows the number of plugins for each of the six zones under both zonal and TOU pricing 
schemes. As expected, the number of plugins in zones 5 and 6 in the zonal scheme has been reduced compared to 
the TOU scheme, while the number of plugins in zones 2, 3, and 4 has been increased. Zone 1 is the only exception, 
where the number of plugins has risen contrary to expectation. As zone 1 is the only zone located on the other side 
of the St. Lawrence River, a river passing from the middle of the Montreal, most EV owners would likely find it 
inconvenient in terms of travel time and cost to travel to the other side of the river to charge their vehicles. 

 
Fig. 6. Number of plugins in each zone under ToU and Zonal pricing schemes 

4. Conclusion 

As a part of this paper, the development of a simulation tool is described that will allow us to account for EV 
charging pricing schemes and evaluate the efficacy of different charging schemes. A key motivation for this project 
is the need to overcome the challenges associated with the rapid proliferation of EVs in urban transportation and 
power grid systems. This necessitates the need for models with a high level of detail to evaluate different EV 
charging pricing schemes. The proposed methodology is based on an existing open-source, dynamic, activity, and 
agent-based microsimulation framework, called MATSim. This paper describes an implementation focusing on two 
of the most important aspects of EVs: charging behavior and charging pricing schemes. EV users are known to be 
impacted by these two factors, and a model that aims to predict what EV users are under various charging pricing 
schemes needs to consider these factors. The model presented has been tested in the Montreal scenario and shown to 
be able to give plausible results in terms of overall EV usage and concerning the applied pricing schemes. The 
results demonstrated that the ability of EV users to pause their primary activities to perform plug-in/out activities 
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works well in improving charging pricing schemes application, a fact that has been overlooked in previous research. 
Furthermore, all three charging pricing schemes presented in this study, were effective in shaping and controlling 
EV charging behavior and achieving the anticipated goals.  

Acknowledgments 
This research is supported by Hydro-Québec Research Institute (IREQ). The authors would like to thank Ali 

Moeini and Ali Hajebrahimi for their continuous support and valuable exchange of ideas. 

References 
[1] IEA. World energy balances. International Energy Agency. IEA World Energy Statistics and Balances (database). 2012. 
[2] Chen, J., J. Yang, J. Zhu, X. Li, S. Zeng, Y. Li, X. Wang, and Y. Tang. An optimal regional time-of-use charging price model for electric 

vehicles.In 2017 IEEE Power & Energy Society General Meeting, IEEE, 2017. pp. 1-5. 
[3] Waraich, R. A., M. D. Galus, C. Dobler, M. Balmer, G. Andersson, and K. W. Axhausen. Plug-in hybrid electric vehicles and smart grids: 

Investigations based on a microsimulation. Transportation Research Part C: Emerging Technologies, Vol. 28, 2013, pp. 74-86. 
[4] Moghaddam, Z., I. Ahmad, D. Habibi, and Q. V. Phung. Smart charging strategy for electric vehicle charging stations. Vol. 4, No. 1, 2017, pp. 

76-88. 
[5] Speidel, S., T. J. R. Bräunl, and S. E. Reviews. Driving and charging patterns of electric vehicles for energy usage. Vol. 40, 2014, pp. 97-110. 
[6] Kumar, R., A. Jha, A. Damodaran, D. Bangwal, and A. Dwivedi. Addressing the challenges to electric vehicle adoption via sharing economy: 

An Indian perspective. 2020. 
[7] Amin, A., W. U. K. Tareen, M. Usman, H. Ali, I. Bari, B. Horan, S. Mekhilef, M. Asif, S. Ahmed, and A. J. S. Mahmood. A review of 

optimal charging strategy for electric vehicles under dynamic pricing schemes in the distribution charging network. Vol. 12, No. 23, 2020, p. 
10160. 

[8] Outlook, IEA Nordic EV. "Insights from Leaders in Electric Mobility." IEA: Paris, France (2018). 
[9] Hu, Z., K. Zhan, H. Zhang, and Y. J. A. E. Song. Pricing mechanisms design for guiding electric vehicle charging to fill load valley. Vol. 178, 

2016, pp. 155-163. 
[10] Limmer, S., T. Rodemann, and E. Systems. Peak load reduction through dynamic pricing for electric vehicle charging. Vol. 113, 2019, pp. 

117-128. 
[11] Szinai, J. K., C. J. Sheppard, N. Abhyankar, and A. R. Gopal. Reduced grid operating costs and renewable energy curtailment with electric 

vehicle charge management. Vol. 136, 2020, p. 111051. 
[12] Adenaw, L., and M. Lienkamp. Multi-Criteria, Co-Evolutionary Charging Behavior: An Agent-Based Simulation of Urban Electromobility. 

Vol. 12, No. 1, 2021, p. 18. 
[13] ElBanhawy, E. Y., R. Dalton, and C. Anumba. The agent based modeling of e-mobility.In 2014 IEEE Transportation Electrification 

Conference and Expo (ITEC), IEEE, 2014. pp. 1-6. 
[14] Sweda, T., and D. Klabjan. An agent-based decision support system for electric vehicle charging infrastructure deployment.In 2011 IEEE 

Vehicle Power and Propulsion Conference, IEEE, 2011. pp. 1-5. 
[15] Pagani, M., W. Korosec, N. Chokani, and R. S. Abhari. User behaviour and electric vehicle charging infrastructure: An agent-based model 

assessment. Vol. 254, 2019, p. 113680. 
[16] Chaudhari, K., N. K. Kandasamy, A. Krishnan, A. Ukil, and H. B. Gooi. Agent-based aggregated behavior modeling for electric vehicle 

charging load. Vol. 15, No. 2, 2018, pp. 856-868. 
[17] Jäger, B., F. M. M. Agua, and M. Lienkamp. Agent-based simulation of a shared, autonomous and electric on-demand mobility solution.In 

2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), IEEE, 2017. pp. 250-255. 
[18] Jäger, B., M. Wittmann, and M. Lienkamp. Agent-based modeling and simulation of electric taxi fleets. The 6th Conference on Future 

Automotive Technology, 2017. 
[19] Bischoff, J., and M. Maciejewski. Agent-based simulation of electric taxicab fleets. Vol. 4, 2014, pp. 191-198. 
[20] Zhang, H., C. J. Sheppard, T. E. Lipman, T. Zeng, S. J. Moura, and Environment. Charging infrastructure demands of shared-use 

autonomous electric vehicles in urban areas. Vol. 78, 2020, p. 102210. 
[21] Jäger, B., C. Hahn, and M. Lienkamp. An evolutionary algorithm for an agent-based fleet simulation focused on electric vehicles.In 2016 

International Conference on Collaboration Technologies and Systems (CTS), IEEE, 2016. pp. 457-464. 
[22] Bi, R., J. Xiao, V. Viswanathan, and A. Knoll. Influence of charging behaviour given charging station placement at existing petrol stations 

and residential car park locations in Singapore. Vol. 80, 2016, pp. 335-344. 
[23] Bi, R., J. Xiao, D. Pelzer, D. Ciechanowicz, D. Eckhoff, and A. Knoll. A simulation-based heuristic for city-scale electric vehicle charging 

station placement.In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), IEEE, 2017. pp. 1-7. 
[24] W Axhausen, K., A. Horni, and K. Nagel. The multi-agent transport simulation MATSim. Ubiquity Press, 2016. 
[25] Gao, W., M. Balmer, and E. J. Miller. Comparison of MATSim and EMME/2 on greater Toronto and Hamilton area network, Canada. Vol. 

2197, No. 1, 2010, pp. 118-128. 
[26] Bischoff, J., F. J. Márquez-Fernández, G. Domingues-Olavarría, M. Maciejewski, and K. Nagel. Impacts of vehicle fleet electrification in 

Sweden–a simulation-based assessment of long-distance trips. The 6th International Conference on Models and Technologies for Intelligent 
Transportation Systems (MT-ITS), IEEE, 2019. pp. 1-7. 

[27] Jonas Hübner, K. N., Tilmann Schlenther. Investigation of the charging behavior of users and the design of the charging infrastructure in the 
case of a complete electrification of private vehicles in Berlin. M.Sc. Thesis, 2021. 

[28] Waraich, R. A., M. D. Galus, C. Dobler, M. Balmer, G. Andersson, and K. W. Axhausen. Plug-in hybrid electric vehicles and smart grids: 
Investigations based on a microsimulation. Vol. 28, 2013, pp. 74-86. 


