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RÉSUMÉ 

Le transport des eaux pluviales dans des conditions de surface libre est le but des systèmes d'eaux 

pluviales (SWS). La nature du remplissage rapide des SWS ou de la maintenance aux limites peut 

conduire à la propagation des ondes et à l’altération de l’écoulement à surface libre en un 

écoulement partiellement pressurisé et au piégeage des poches d’air qui peuvent alors conduire à 

de graves problèmes tels que des geysers, des dommages aux infrastructures publiques et privées, 

des explosions de regards de recouvrement, des débordements, des inondations de rues, des 

accidents de la circulation, de graves problèmes électriques, etc. Afin de prévoir avec précision 

ces types de problèmes et de prévenir de telles conséquences causées par des flux transitoires, les 

modèles mathématiques doivent être améliorés et la modélisation numérique est désormais 

devenue incontournable.  

L'objectif principal de ce projet est d'étudier des modèles numériques d'écoulements transitoires 

suivis du piégeage des poches d'air dans les SWS. L'étude de cas est la même tout au long du 

projet et il s'agit d'une conduite reliée à un réservoir à l'extrémité amont et en contact avec l'air 

atmosphérique à l'extrémité aval. Une partie amont du tuyau contient un écoulement sous 

pression et le reste contient un écoulement à surface libre. L'extrémité aval est fermée 

soudainement par une valve et la poche d'air est formée et piégée. 

Tout d'abord, afin d'analyser la contribution du terme de perte par frottement, les modèles 

populaires de la colonne rigide et de la méthode des caractéristiques, sont utilisés avec un 

coefficient de frottement en régime permanent d'une part et avec un coefficient de frottement 

additionnel d'autre part. Les résultats numériques ont été comparés à des données expérimentales 

issues des essais réalisés au laboratoire d'hydraulique de l'École Polytechnique de Montréal ou de 

la littérature. Les modèles de la colonne rigide et de la méthode des caractéristiques avec le 

facteur de frottement de Darcy-Weisbach en régime permanent surestiment les pics de pression et 

ne capturent pas l'atténuation de la pression avec précision. Ensuite, la calibration du coefficient 

de frottement additionnel, qui est ajouté au facteur de frottement en régime permanent est 

discutée et il sera montré que le facteur de frottement additionnel calibré permet d'améliorer les 

résultats numériques. 

Dans un second temps, l'approche d'amortissement, qui combine les équations du coup de bélier 

appliquées à l'écoulement sous pression et les équations de Saint-Venant appliquées à 
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l'écoulement à surface libre, est étudiée en simulation du même problème. L'approche 

d'amortissement avec l'application du facteur de frottement en régime permanent peut donner des 

résultats légèrement plus précis que ceux obtenus par les modèles de la colonne rigide et de la 

méthode des caractéristiques. Malheureusement, l'approche d'amortissement a une durée de 

simulation très longue, de sorte que la colonne rigide ou la méthode du modèle de 

caractéristiques est plus pratique pour modéliser le problème de piégeage des poches d'air. En 

outre, il a été constaté que les critères communs de pressurisation et de dépressurisation dans la 

méthode des volumes finis, qui sont basés sur la pression, provoquent une instabilité et peuvent 

conduire à un arrêt du programme. Au lieu de considérer des seuils de pression pour distinguer 

les parties à canal ouvert et sous pression de l'écoulement comme ce qui est fait dans la méthode 

des volumes finis proposée par León et al. (2010), l'approche d'amortissement proposée dans ce 

projet considère que le processus de pressurisation-dépressurisation est déterminé par la position 

de l'interface entre la surface libre et les écoulements sous pression. Ce critère basé sur le calcul 

de la position de l'interface évite un arrêt du programme et les instabilités survenues avec les 

critères communs basés sur des seuils. 

Enfin, les modèles de la colonne rigide et de la méthode des caractéristiques appliqués avec le 

facteur de frottement en régime stationnaire seront implémentés dans le logiciel bien connu 

SWMM (Storm Water Management Model) pour ajouter l'option de simulation de piégeage de 

poches d'air à la liste des caractéristiques de ce logiciel. En effet, ces modèles sont capables de 

prédire les caractéristiques générales du problème telles que la pression de la poche d'air et le 

refoulement dans la canalisation. L'intérêt d'ajouter des modèles de piégeage des poches d'air 

dans SWMM est de mettre à niveau le logiciel populaire, qui ne peut pas actuellement modéliser 

le phénomène de piégeage des poches d'air. 

Mots clés: Coups de bélier; Écoulements transitoires; Frottement non-permanent; Modèles 

numériques; Poche d’air emprisonnée. 
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ABSTRACT 

Conveying storm water under free-surface conditions is the purpose of Storm Water Systems 

(SWSs). The nature of rapid filling in SWSs or maintenance at boundaries can lead to surge 

propagation and alteration of the free-surface flow to a partially pressurized flow and forming air 

pocket entrapment which can then lead to severe problems such as geysers, damage of public and 

private infrastructures, blowing off of covering manholes, overflows, street inundations, traffic 

accidents, severe electrical problems, and so forth. In order to accurately predict these kinds of 

problems and prevent such consequences caused by transient flows, mathematical models need to 

be improved and numerical modelling has now become unavoidable.  

The main objective of this project is to study numerical models of transient flows followed by the 

air pocket entrapment in SWSs. The case study is the same all along the project and it is a pipe 

connected to a reservoir at the upstream end and has contact with the atmospheric air at the 

downstream end. An upstream part of the pipe contains a pressurized flow and the rest contains a 

free-surface flow. The downstream end is suddenly closed with a valve and the air pocket is 

formed and entrapped.  

Firstly, in order to analyze the contribution of friction loss term, the common rigid column model 

and the method of characteristics model, are used with a steady-state friction factor on one hand 

and with an additional friction factor on the other hand. The numerical results were compared 

with experimental data which come from the tests carried out at the Hydraulics Laboratory of 

“École Polytechnique de Montreal” or from the literature. Both the rigid column and the method 

of characteristics model with the steady-state Darcy-Weisbach friction factor overestimate the 

pressure peaks and do not capture the pressure attenuation accurately. Then, calibration of an 

additional friction factor, which is added to the steady-state friction factor, is discussed and it will 

be shown that the calibrated additional friction factor allows to improve the numerical results.  

Secondly, the shock-fitting approach, which combines the water hammer equations applied to the 

pressurized flow and Saint-Venant equations applied to the free-surface flow, is studied in 

simulation of the same problem. The shock-fitting approach with the application of the steady-

state friction factor can give slightly more accurate results than those obtained by the models, the 

rigid column model, and the method of characteristics. Unfortunately, the shock-fitting approach 

has very long simulation duration so that the rigid column or the method of characteristics model 
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is more practical for modelling air pocket entrapment problem. In addition, it was found that the 

common criteria for pressurization and depressurization in Finite Volume method, which is based 

on pressure, causes instability and can lead to program abortion. Instead of considering pressure 

thresholds to distinguish the open-channel and pressurized portions of the flow like what is done 

in the finite volume method proposed by León et al. (2010), the shock-fitting approach proposed 

in this project considers that the pressurization-depressurization process is determined by the 

position of the interface between the free-surface and the pressurized flows. This criteria based on 

the calculation of the position of the interface prevents program abortion and instabilities that 

occurred with the common criteria based on thresholds.  

Finally, the models, the rigid column and the method of characteristics models applied with the 

steady-state friction factor will be implemented in the well-known software SWMM (Storm 

Water Management Model) to add the air pocket entrapment simulation option to the list of 

features of this software. Indeed, these models are able to predict the general features of the 

problem such as the air pocket pressure and the discharge in the pipe. The interest in adding air 

pocket entrapment models in SWMM is to upgrade the popular software, which can currently not 

model the air pocket entrapment phenomenon. 

Keywords: Air pocket entrapment; Numerical models; Pressure surges; Transient flows; 

Unsteady friction. 
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CHAPTER 1 INTRODUCTION 

The purpose of Storm Water Systems (SWSs) is to convey storm water under free-surface conditions 

without surcharging the sewer. The nature of rapid filling in SWSs or maintenance at boundaries 

can lead to severe problems such as geysers, damage of public and private infrastructures, blowing 

off of covering manholes, overflows, street inundations, traffic accidents, sever electrical problems, 

loss of storage capacity … (Vasconcelos and Wright, 2011a and 2011b; Vasconcelos and Chosie, 

2013; Hatcher et al., 2015). Indeed, during intense rainfalls or operational maintenance, the free-

surface flow alters to a partially pressurized flow and flow behaviors become complex and the 

prediction of transient flows, including the pressurized and free-surface flows, and the transition zone, 

will be more complicated. Note that the flow is a transient flow (or unsteady flow) when the 

pressure and flow rate vary over time in pipelines. 

The pressure surges generated by entrapped air pockets during unsteady flows have been studied 

by Martin (1976) with his pioneer work on air-water interactions during compression-expansion 

cycles. Later on, this area has also been studied by different authors such as Zhou et al. (2002), 

De Martino et al. (2008), Vasconcelos and Leite (2012), Hatcher et al. (2015). During intense rain 

events, stormwaters systems may undergo rapid filling which can trigger the entrapment of air 

pockets within deep storage tunnel, trunk sewers, and more generally closed conduits. Rapid filling 

can cause geyser formation associated with the release of trapped air pockets through partially filled 

vertical shafts (Guo and Song, 1991; Wright et al., 2011). Release of large air pockets through water 

filled vertical shafts can cause geysering (Vasconcelos et al., 2011b). The article of Vasconcelos and 

Leite (2012) presents a photo of a geyser occurring in Chicago on June 23rd, 2010, and a photo of 

the geyser which happened in Montreal on Monday July 18th, 2011, at the location of a manhole 

located on Wolfe Street, between the streets René-Levesque and Sainte-Catherine. The car parked on 

the manhole metal cover was violently raised repeatedly. This geyser was due to the escape of the 

pressurized air that was blocked in the storm sewer, taking large amounts of storm water with it. 

This clearly demonstrates that the design of SWS must be improved because it is a matter of 

public health and public safety. Contaminated water can be released to the ground surface which 

can lead to flooding of roads, pollution and environmental issues. A better design of SWSs 

according to sustainable criteria is also expected to reduce the costs and save significant money.  
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Numerical modelling has now become unavoidable in order to prevent the eventual problems 

caused by transient flows. There exists commercial software such as SWMM (Storm Water 

Management Model) which has been used by clients and designers to numerically simulate a 

closed conduit transient flow. However, such existing numerical models for sewer drainage 

excessively simplify the problem. The current software and models need to be improved in order 

to accurately simulate the phenomenon for a better design of SWSs. 

The main objective of this project is to study the available numerical models of transient flows in 

stormwater systems and in particular the ones that cause air pocket entrapment in stormwater 

systems SWS and to address some improving solutions. The case study is reservoir-pipe system 

containing an entrapped air pocket. The upstream part of the pipe contains a pressurized flow 

whereas the downstream part contains a free-surface flow. The downstream end is suddenly 

closed with a valve and the air pocket is entrapped.  
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CHAPTER 2 CRITICAL LITERATURE REVIEW 

2.1 Literature review 

A literature review will be done in this Chapter 2 in order to be able to understand what has been 

done in the broad research topic that is the modelling of transient flows in stormwater systems. 

Bousso et al. (2013) have done a critical literature review on the numerical modelling of mixed 

flows in storm water systems. Mixed flows can be divided into four phases: Free-surface flow, 

transition open channel-pressurized flow, pressurized flow, and transitional pressurized-free 

surface flow (Bousso et al., 2014a). 

Similar to Bousso et al. (2013), Different numerical models such as the Priessmann slot method, 

the two-component pressure approach, the shock-fitting approach, the finite-volume method, the 

rigid column model, the method of characteristics model will also be presented in the literature 

review of this thesis because these models are important to present to have a global view of what 

has already been done in the numerical modelling of transient flows in stormwater systems. The 

literature review can provide ideas of what can be done to achieve the objective of improving the 

existing numerical models of transient flows causing air pocket entrapment or introducing 

different approaches.  

2.1.1 Priessmann Slot Method: 

Transient flows in pipes are governed by the Saint-Venant equations, referred as the continuity 

equation (2-1) and the momentum equation (2-2): 

𝜕𝐴

𝜕𝑡
+
𝜕𝑄

𝜕𝑥
= 0, (2-1) 

𝜕𝑄

𝜕𝑡
+
𝜕

𝜕𝑥
(
𝑄2

𝐴
+ 𝑔𝐴ℎ𝑐) + 𝑔𝐴(𝑆𝑓 − 𝑆0) = 0, (2-2) 

where 𝑄 is the flow rate, 𝐴 is the flow area, ℎ𝑐 is the distance between the free-surface and the 

centroid of the flow cross-sectional area, 𝑆0 is the pipe slope and 𝑆𝑓 is the friction slope. 

Equations (2-1), and (2-2) can also be written as equations (2-3), and (2-4), respectively: 
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𝜕𝑦

𝜕𝑡
+ 𝑉

𝜕𝑦

𝜕𝑥
+
𝐴

𝐵

𝜕𝑉

𝜕𝑥
= 0, (2-3) 

𝑔
𝜕𝑦

𝜕𝑥
+
𝜕𝑉

𝜕𝑡
+ 𝑉

𝜕𝑉

𝜕𝑥
= 𝑔(𝑆0 − 𝑆𝑓), (2-4) 

where 𝑉 is the velocity, 𝑦 is the flow depth, hydrostatic pressure, 𝐴 is the flow area, 𝐵 is the top 

water surface width, 𝑆0 is the channel bottom slope, 𝑆𝑓 is the slope of the energy grade line, 𝑥 is 

the distance along the channel length, 𝑡 is the time and 𝑔 is the gravitational acceleration, equal to 

9.81𝑚𝑠−2.  

As equations (2-3) and (2-4) give indefinite results when the depth of the water reaches the 

crown, Cunge and Wegner (1964) were the first to suggest a hypothetical slot, called Preissmann 

slot, on the crown to allow pipe pressurization. Indeed, when the depth of the water reaches the 

crown, the top water surface width 𝐵 is close to 0 and 
𝐴

𝐵
 tends to infinity. Assuming that the pipe 

does not have a limit at the top allows to use the same equations (2-3) and (2-4) for the free-

surface and the pressurized zones (see Figure 2.1) because this avoids the top water surface width 

to be close to 0. To allow using the same equations in the surcharged portions of the pipe and to 

obtain much faster speed of the pressure wave required in the those portions, the width of the 

Preissmann slot need to be selected accordingly (Vasconcelos et al., 2006c). 

𝑇𝑠𝑙𝑜𝑡 =
𝑔𝐴

𝑎²
, (2-5) 

where 𝑇𝑠𝑙𝑜𝑡 is the width of the Preissmann slot and 𝑎 is the speed of the pressure wave.  

The Preissmann slot method is considered as a shock-capturing model because it employs a 

single equation in both free-surface and pressurized flows so that the discontinuity at the interface 

is not solved explicitly and it is captured by solving the governing equations.The shock-capturing 

approach captures shocks in the solution automatically without tracking explicitly shocks (León 

et al., 2010) whereas the shock-fitting approach tracks explicitly the shock. 
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Figure 2.1  The Preissmann slot of combination of a free-surface, and a pressurized flows 

It is difficult to choose the right value of the Preissmann slot width 𝑇𝑠𝑙𝑜𝑡 because the acoustic 

wave speed 𝑎 in actual systems is hard to estimate since it depends on the air content of the 

water, which is itself unknown (Vasconcelos et al., 2006c). A sufficient narrow slot width will 

allow to minimize the volume of water stored in the slot’s cross section in order to obtain an 

adequate acoustic wave speed 𝑎 (Daynou, 2012). For example, a dynamic model based on the 

Preissmann slot approach is implemented in the software SWMM and uses “the Sjöberg equation 

(Jackson et al., 1986) to create a smooth transition from the pipe crown to the final slot width of 

1% of link diameter” (quote from Pachaly et al., 2020). The width slot cannot be too narrow 

because spurious numerical oscillations can appear in the solutions (Trajkovic, 1999; 

Vasconcelos et al., 2006c).  

The advantages of the Preissmann slot approach are its simplicity, homogeneity, and ability to 

simulate gradual transition between the free-surface and pressurized-flows, which may occur far 

from the wavefront. The disadvantages of this approach are the existence of spurious numerical 

oscillations when the flow transition coincides with the bore, the instabilities, the inability to 

simulate pressurized flows with a piezometric head below the pipe crown, and the inaccuracies of 

the solutions that could be caused by the choice of the slot width (Vasconcelos et al., 2006c; 

Bousso et al., 2013). 
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2.1.2 Two-Component Pressure approach (TPA) 

As mentioned, the main disadvantage of the Preissmann slot method is that when the piezometric 

head drops below the crown in the pressurized zone, the free-surface flow is regenerated. In order 

to handle pressurized flows with sub-atmospheric heads, Vasconcelos (2006c, 2006d) proposed 

the two-component pressure approach (TPA) as an alternative to the Preissmann slot approach. It 

considers two components in a modified version of the Saint-Venant equations: the hydrostatic 

pressure represented by the term ℎ𝑐 (inferior to 𝐷/2) and the overpressure represented by the 

term ℎ𝑠 (that can be either positive when the section is full or negative in depressurized flow, for 

example, in the case of a siphon). The TPA approach gives the following modified version of the 

Saint-Venant equations (2-6), and (2-7):  

𝜕𝐴

𝜕𝑡
+
𝜕𝑄

𝜕𝑥
= 0, (2-6) 

𝜕𝑄

𝜕𝑡
+
𝜕

𝜕𝑥
(
𝑄2

𝐴
+ 𝑔𝐴(ℎ𝑠 + ℎ𝑐)) + 𝑔𝐴(𝑆𝑓 − 𝑆0) = 0, (2-7) 

where ℎ𝑠 is the surcharge head.  

The TPA assumes the pipe elastic and uses equations (2-8), and (2-9) from Wylie and Streeter 

(1993) to calculate the acoustic wave speed 𝑎 and the over-pressurization term ℎ𝑠: 

𝑎 = √(
𝐴

𝜌
)(
∆𝑝

∆𝐴
), (2-8) 

ℎ𝑠 = (
𝑎2

𝑔
) (
∆𝐴

𝐴
), (2-9) 

where ∆𝐴 is the flow area variation, ∆𝑝 is the pressure variation and 𝑝 is the pressure. 

More details on the calculations of the TPA can be found in the articles of Vasconcelos (2007, 

2009, 2011b). The over-pressurization term ℎ𝑠 is equal to 0 when there is ventilation and is 

negative when there is no ventilation (Vasconcelos, 2006c). The flow area variation ∆𝐴 is 

positive in the case of a surcharge bore and is negative in low pressure regions. The TPA 

approach belongs to the category of single-equation models like the Preissmann slot method. 
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Vasconcelos et al. (2011b) used the rigid column model and the TPA approach to model the rapid 

filling of closed conduits with entrapped air. They found that the compression-expansion cycles 

of the air pocket were replicated with reasonable accuracy by both models. As seen in the article 

of Vasconcelos et al. (2011b), the results of the rigid column approach and the TPA with a 

steady-state friction factor 𝑓 are close.  

The TPA has the advantages of being simple but is subject to spurious numerical when the 

acoustic wave speed is high (Sanders and Bradford, 2011). Instabilities can appear when realistic 

values of the acoustic wave speed are calculated from geometric and elastic characteristics of the 

pipe (Vasconcelos 2011b; Bousso et al. 2013). Oscillations can occur near open-channel-

pressurized flow interfaces (León et al., 2010; Vasconcelos et al., 2006a). The modelling of the 

air pocket entrapment phenomenon with the TPA approach considering the steady-state friction 

factor 𝑓 only has been studied by Vasconcelos et al. (2011). An overestimation of pressure peaks 

was observed with the use of a steady-state friction factor. 

2.1.3 Rigid Column model 

Rigid column models belong to the family of two-model equations models and can incorporate 

air pressurization effects (Bousso et al., 2013). In the original rigid column approach proposed by 

McCorquodale and Hamam (1983), the air bubble formed during the transient flow is assumed 

stationary and goes through a compression and expansion process. An approach considering a 

rigid column was used by Liou and Hunt (1996) to model the filling of pipelines with undulating 

elevation profiles. 

An extension and refinement of the initial rigid column approach was proposed by Li and 

McCorquodale (1999) in order to simulate the air release transients. It accounts for the transport 

and the release of the trapped air bubble. Hatcher et al. (2015), Vasconcelos and Leite (2012), 

Vasconcelos et al. (2011b), and Zhou et al. (2002) are works that used the rigid column model.  

 

Figure 2.2  A sketch for air release pressure in rigid column model 
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Equation (2-10) by Martin (1976) is often used by authors like Zhou et al. (2002) as the 

governing equation for the air phase when there is air release: 

𝑑𝐻∗

𝑑𝑡
= −𝑘

𝐻∗

𝑉𝑎

𝑑𝑉𝑎
𝑑𝑡

− 𝑘
𝐻∗

𝑉𝑎
𝑄𝑎, (2-10) 

where 𝑄𝑎 is the discharge out of the orifice, 𝑘 is the polytropic coefficient, 𝑉𝑎 is the air volume, 𝑡 

is the time and 𝐻∗ is the absolute air pressure. 𝑄𝑎 is calculated using the following formula, 

𝑄𝑎 = 𝐶𝑑𝐴0𝑌√2𝑔
𝜌𝑤
𝜌𝑎
×
𝜌𝑎0
𝜌𝑎

(𝐻∗ − 𝐻𝑏
∗), (2-11) 

where 𝐻𝑏
∗ is the absolute initial air pocket pressure head, 𝐴0 is the cross-sectional area of the 

orifice, 𝐶𝑑 is the discharge coefficient, 𝑌 is the expansion factor, 𝜌𝑎 is the air density, 𝜌𝑤 is the 

water density. The expansion factor can be expressed as (Martin 1976), 

𝑌 = [
𝑘

𝑘 − 1
× (

𝐻𝑏
∗

𝐻∗
)
2/𝑘

×
1 − (𝐻𝑏

∗/𝐻∗)(𝑘−1)/𝑘

1 − 𝐻𝑏
∗/𝐻∗

]

1/2

. (2-12) 

If 𝐻∗/𝐻𝑏
∗ > 1.89, the orifice is choked (Martin 1976) and the discharge can be calculated as,  

𝑄𝑎 = 𝐶𝑑𝐴0𝑌√𝑔
𝜌𝑤
𝜌𝑎
𝐻∗√𝑘 (

2

𝑘 + 1
)
(𝑘+1)/(𝑘−1)

. (2-13) 

When the downstream end is closed, there is no air release, thus, 𝑄𝑎 is equal to zero and the last 

term on the right hand side of equation (2-10) is also zero. The governing equation for the air 

phase when there is no air release is as, 

𝑑𝐻∗

𝑑𝑡
= −𝑘 ×

𝐻∗

𝑉𝑎
×
𝑑𝑉𝑎
𝑑𝑡
. (2-14) 

This will be the case in the problem studied all along this project. The details of the rigid column 

model will be provided in next chapters. 
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The modelling of the air pocket entrapment phenomenon with the rigid column model 

considering the steady-state friction factor (𝑓) only has been studied by Hatcher et al. (2015) and 

Vasconcelos and Leite (2012). An overestimation of pressure peaks was observed with the use of 

a steady-state friction factor. 

2.1.4 Method of characteristics model  

It consists in solving the water hammer problem, which is the Saint-Venant equations, in which 

instead of gravity wave speed the acoustic wave speed is used. These equations can be used to 

solved the pressurized flow instead of rigid column model and similarly the entrapped air pocket 

can be simulated. These equations are solved using a numerical tool called method of 

characteristics, which is a very common technique used by many authors (Wylie and Streeter 

1993; Lohrasbi and Attarnejad 2008; Chaudhry 2014). Thus, in this thesis, the Saint-Venant 

equations are solved with the method of characteristics called MOC. This approach can take into 

account air pressurization effects. The method of characteristics will be used and detailed in 

future chapters. The modelling of the air pocket entrapment phenomenon with the method of 

characteristics considering the steady-state friction factor 𝑓 only has been studied by Hatcher et 

al. (2015). An overestimation of pressure peaks was observed with the use of a steady-state 

friction factor. 

2.1.5 Shock-fitting approach  

The shock-fitting approach belongs to the family of two-equation models, in which the interface 

between pressurized and free-surface flow is tracked explicitly. It is a dynamic model which 

consists in treating separately the pressurized and the free-surface portions of the flow. According 

to Bousso et al. (2013), there are usually three ways in which the shock-fitting approach is used: 

1. The MOC approach is used to solve the Saint-Venant equations applied to both 

pressurized and free-surface flows; 

2. The rigid column approach is used to model both flow regimes (pressurized and free-

surface); 

3. The rigid column approach is used to model the pressurized flow and the MOC approach 

is used to model the free-surface flow. 
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Wiggert (1972), Politano et al. (2007), Cardle (1984), Rokhzadi and Fuamba (2019, 2020b) are a 

list of authors who used an interface tracking model. Usually, the shock-fitting approaches 

consider only one surge front.  

2.1.6 Finite-Volume method 

The finite-volume model that will be discussed below is the model by León (2007). There is also 

the model of Bourdarias and Gerbi (2007) that is a finite-volume model but it will not be 

presented here. The Illinois transient model (ITM), which was initially developed in 2004 using a 

modified Preissmann slot, has been improved over the years and uses currently a multipurpose 

finite-volume shock-capturing model developed by León (2007) ranging from dry-bed flows to 

gravity flows, to partly gravity-partly surcharged flows (mixed flows) to fully pressurized flows 

(waterhammer flows) (León et al., 2011; 2015). The reason for the change from the modified 

Preissmann slot model to the finite-volume model in the ITM is the inability of the Preissmann 

slot model to simulate subatmospheric pressures in pressurized flow conditions contrary to the 

finite-volume model. 

According to León et al. (2007), to simplify the governing equations of two-phase flows (air and 

water) in closed conduits when the amount of gas in the conduit is small, both phases can be 

treated as a “single-equivalent fluid” with average properties (Wylie and Streeter 1993) by 

assuming that there is no relative motion or slip between the gas and the liquid. The “single-

equivalent fluid” is governed by the mass and momentum equations which can be expressed in 

their conservative form as follows (León et al., 2007; 2010): 

𝜕𝑈⃗⃗⃗

𝜕𝑡
+
𝜕𝐹⃗

𝜕𝑥
= 𝑆, (2-15) 

where 𝑈⃗⃗⃗ is the vector of variables, 𝐹⃗ is the flux vector and 𝑆 is the vector of source terms, and 𝑥 

is the spatial variable. 

For open-channel flows, 𝑈⃗⃗⃗, 𝐹⃗ and 𝑆 can be written as equations (2-16), (2-17), and (2-18) (León 

et al., 2007; 2010): 

𝑈⃗⃗⃗ = [
𝜌𝐴𝑓𝑙𝑜𝑤
𝜌𝑄

], (2-16) 
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𝐹⃗ = [

𝜌𝑄

𝜌
𝑄2

𝐴
+ 𝐴𝑓𝑙𝑜𝑤𝑝̅ + 𝜌𝑔𝐴𝐻𝑎𝑖𝑟

], 

(2-17) 

𝑆 = [
0

(𝑆0 − 𝑆𝑒)𝜌𝑔𝐴𝑓𝑙𝑜𝑤
]. 

(2-18) 

For compressible water hammer flows, 𝑈⃗⃗⃗, 𝐹⃗, and 𝑆 can be written as equations (2-19), (2-20), 

and (2-21) (León et al., 2007; 2010): 

𝑈 = [
𝜌𝑓𝐴

𝜌𝑓𝑄
], (2-19) 

𝐹 = [

𝜌𝑓𝑄

𝜌𝑓
𝑄²

𝐴𝑓
+ 𝐴𝑝

], 

(2-20) 

𝑆 = [
0

(𝑆0 − 𝑆𝑓)𝜌𝑓𝑔𝐴
], 

(2-21) 

where 𝑄 is the flow discharge, 𝐴𝑓𝑙𝑜𝑤 is the cross-sectional flow area, 𝐴 is the full cross-sectional 

area, 𝑝̅ is the average pressure of water-column over the cross-sectional area, , 𝐻𝑎𝑖𝑟 is the gauge 

air pressure head,. In compressible water hammer flows, 𝑝 is the pressure acting on gravity centre 

of 𝐴𝑓, 𝜌𝑓 is the fluid density for compressible water hammer flows (León et al. 2010) and 𝑝, 𝑝𝑟𝑒𝑓, 

𝑎, 𝜌𝑓 and 𝜌𝑟𝑒𝑓 are related with equation (2-22):  

𝑝 = 𝑝𝑟𝑒𝑓 + 𝑎
2(𝜌 − 𝜌𝑟𝑒𝑓), (2-22) 

where 𝜌𝑟𝑒𝑓 and 𝑝𝑟𝑒𝑓 are the reference density and reference pressure, respectively (León et al., 

2010).  

The finite-volume method of León et al. (2007) can realistically simulate the acoustic wave 

speed. The air phase pressure equation used in the finite-volume method is either equation (2-10) 

for air release or equation (2-14) for no air release.  
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The disadvantage of the finite-volume method is that it can require complex scheme and solvers. 

The finite-volume method can for example be formulated with Godunov-type scheme (León et al. 

2008; Bousso and Fuamba, 2013, Seck et al. 2017). 

The modelling of the air pocket entrapment phenomenon with and without air release with the 

finite-volume method considering only the steady-state friction factor 𝑓 has been studied by León 

et al. (2010). An overestimation of pressure peaks can be observed for the case of air pocket 

entrapment without air release. 

2.1.7 2D mathematical models 

The previous models presented are one-dimensional. However, it is legitimate to wonder whether 

2D models are more accurate than 1D models. This section discusses this point.   

Pezzinga (1999) proposed a quasi-2D mathematical model, based on the continuity and 

momentum equations written for an elastic pipe with circular cross section, for unsteady turbulent 

flow in pipe and pipe networks. The results of the study show that his quasi-2D model improves 

the prediction of high-frequency transients in simple pipes and pipe networks with respect to a 

classical 1D model. By taking into account the velocity profiles, the calculation of the wall shear 

stress helps improve the evaluation of resistances obtained by the quasi-2D model. However, the 

simulation duration of the quasi-2D model of Pezzinga (1999) is very long and is about three 

hours on an IBM RISC System/6000 340, which is about 35 times that needed for 1D models. 

The computational burden is one the main disadvantages of quasi-2D water hammer models 

(Jang et al. 2016). 

Brunone et al. (1995) also studied a quasi-2D model applied to a water-hammer phenomenon 

caused by a valve closing and found that two-dimensional models require a higher computational 

burden than the one, which is necessary in the simulation with a more traditional model. Other 

difficulties arise with the use of a two-dimensional model such as the definition of boundary 

conditions in complex pipe networks, in the case of cavitation phenomena.  

According to Pezzinga (1999), the more exact evaluation of pressure head oscillation by the 

quasi-2D model seldom justifies the higher computation time required by the quasi-2D model. 

This is the reason why, only 1D model will be studied in this Master thesis, namely the models 

based on the rigid column, the method of characteristics and the shock-fitting approaches.  
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2.1.8 Quasi-steady and unsteady friction factors 

The Darcy-Weisbach steady-state friction factor has usually been used to model the pipe friction 

during transient events. A literature review of the unsteady friction factor will also be done 

because the consideration of an additional friction factor in the numerical models is expected to 

improve the results.  

Adamkowski and Lewandowski (2004) compared different friction models to simulate a transient 

flow in a pipe using the method of characteristics. The frictions models were: frictionless, quasi-

steady, Zielke, Trikha, Vardy-Brown, Zarzycki, Brunone et al. (𝑘3 experimental), and Brunone et 

al. (𝑘3 analytical). Among those models, they found that the Zielke and Zarzycki models gave the 

most reliable results for both laminar and turbulent flows.  

The governing equations (continuity and momentum equations) of the unsteady flow in closed 

conduits are: 

𝜕𝐻

𝜕𝑡
+
𝑎2

𝑔
×
𝜕𝑉

𝜕𝑥
= 0, (2-23) 

𝜕𝑉

𝜕𝑡
+ 𝑔

𝜕𝐻

𝜕𝑥
+ 𝑔 × 𝐽 = 0, (2-24) 

where 𝐽, the head loss per length unit of pipe, represents the hydraulic resistance and can be 

expressed as follows (Adam and Lewandowski, 2004; 2006): 

𝐽 = 𝐽𝑞 + 𝐽𝑢, (2-25) 

where 𝐽𝑞 is the quasi-steady flow pipeline resistance (active resistance resulting from viscous 

friction at the pipe wall) and 𝐽𝑢 is the pipeline inertance (reactance accounting for liquid inertia). 

In most engineering applications, the slope term in the momentum equation is often small and 

can be neglected (Chaudhry, 2014).   

In the quasi-steady model, the pipeline inertance 𝐽𝑢 = 0 and the pipeline resistance 𝐽𝑞 is equal to: 

𝐽𝑞 =
𝑓𝑞−𝑙

𝑔𝐷
×
𝑉|𝑉|

2
, (2-26) 
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where 𝐷 is the diameter and 𝑓𝑞−𝑙 is the quasi-steady friction factor. 

According to Adam and Lewandowski (2004, 2006), the quasi-steady friction factor 𝑓𝑞−𝑙 (Darcy 

friction factor) is calculated with the Hagen-Poiseuille law for laminar flows, 𝑅𝑒 ≤ 𝑅𝑒𝑐−𝑠, in 

which 𝑅𝑒𝑐−𝑠 = 2320, and the Colebrook-White formula for turbulent flows (𝑅𝑒 > 𝑅𝑒𝑐−𝑠): 

{
 
 

 
 𝑓𝑞−𝑙 =

64

𝑅𝑒
                                                              𝑅𝑒 ≤ 𝑅𝑒𝑐−𝑠

1

√𝑓𝑞−𝑙
= −2 log(

2.51

𝑅𝑒√𝑓𝑞−𝑙
+

𝐾
𝐷
3.71

)               𝑅𝑒 > 𝑅𝑒𝑐−𝑠 
 

where 𝐾/𝐷 represents the pipe-wall roughness. Note that various unsteady frictions factors are 

presented in Table 2.1. 

Table 2.1  Various unsteady friction models 

Unsteady friction factors Description 

Zielke (1968) 

𝐽𝑢 =
16𝜐

𝑔𝐷²
∫
𝜕𝑉

𝜕𝑡
(𝑢).𝑊(𝑡 − 𝑢)𝑑𝑢

𝑡

0

, 

where  

𝑊(𝜏) =

{
 
 

 
 ∑𝐵𝑖 × 𝜏

(𝑖−2)/2

6

𝑖=1

         𝜏 < 0.02 

∑𝑒−𝐴𝑖×𝑖
6

𝑖=1

                     𝜏 ≥ 0.02 

 

𝐴𝑖 = {26.3744;  70.8493;  135.0198;  218.9216;  322.5544} 

𝐵𝑖  = {0.282095; −1.25;  1.057855;  0.9375;  0.396696; −0.351563} 

Trikha (1975) 

𝐽𝑢 =
16𝜐

𝑔𝐷2
(𝑦1 + 𝑦2 + 𝑦3), 

where  

𝑦𝑖(𝑡 + 𝛥𝑡) = 𝑦𝑖(𝑡) × 𝑒
−𝑛𝑖×

4𝜐.∆𝑡
𝐷² +𝑚𝑖[𝑉(𝑡 + ∆𝑡) − 𝑉(𝑡)] 

𝑊𝑎𝑝𝑝(𝜏) =∑𝑚𝑖

3

𝑖=1

𝑒−𝑛𝑖𝜏 

𝑚𝑖 = {40; 8.1; 1};   𝑛𝑖 = {8000; 200; 26.4};   𝜏 > 0.00005 



15 

 

Table 2.2  Various unsteady friction models (cont’d) 

Vardy-Brown (2003) 

For 𝑅𝑒 < 105 

𝑊(𝑡) ≈ 𝑊𝑎𝑝𝑝 = (
𝐴∗

√𝜏
)exp (−

𝜏

𝐶∗
) 

𝐴∗ =
1

2√𝜋
 

𝐶∗ =
7.41

log10(14.38/𝑅𝑒0.05)
 

Zarzycki (2000) 

For laminar flows (𝑅𝑒 ≤ 𝑅𝑒𝑐−𝑢): 

𝑊(𝑡) ≈ 𝑊𝑎𝑝𝑝 = 𝐶1𝜏
−0.5 + 𝐶2. 𝑒

−𝑚𝜏 

𝜏 =
4𝜐𝑡

𝐷²
;   𝐶1 = 0.2812;   𝐶2 = −1.5821;   𝑚 = 8.8553 

For turbulent flows (𝑅𝑒 > 𝑅𝑒𝑐−𝑢) 

𝑊(𝑡) ≈ 𝑊𝑎𝑝𝑝 = (
𝐶

√𝜏
. 𝑅𝑒𝑛) 

𝜏 =
4𝜐𝑡

𝐷²
;   𝐶 = 0.299635;   𝑛 = −0.005535 

The critical value of Reynolds number is given by:  

𝑅𝑐−𝑢 = 800√
𝜋𝐷²𝑎

8𝐿𝜐
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Table 2.3  Various unsteady friction models (cont’d 2) 

Brunone et al. 

(1991) 

𝑘3 found by 

trial-and-error 

𝐽𝑢 =
𝑘3
𝑔
(
𝜕𝑉

𝜕𝑡
− 𝑎

𝜕𝑉

𝜕𝑥
), 

where 𝑘3 is obtained by means of trial-and-error method by 

matching the computational and experimental results 

(Brunone et al., 1991; Bergant et al., 1994; Adam and 

Lewandowski, 2004)  

𝑘3 found 

analytically 

𝐽𝑢 =
𝑘3
𝑔
(
𝜕𝑉

𝜕𝑡
− 𝑎

𝜕𝑉

𝜕𝑥
) 

An empirical formula was proposed by Vardy and Brown 

(1996, 2003) to derive 𝑘3 analytically:  

𝑘3 =
√𝐶∗

2
 

where 𝐶∗ = 0.00476 for laminar flow and 𝐶∗ =

12.86

𝑅𝑒log10(15.29/𝑅𝑒
0.0567)

 for turbulent flow. 

 

 

More details of different unsteady friction models and their comparison can be found in the 

articles of Adam and Lewandowski (2004, 2006) and Bergant et al. (1994, 2001). 

There are many other unsteady friction factors models different than those presented in Table 2.1. 

Landry et al. (2012) developed a new unsteady model for viscoelastic damping in piping systems 

without cavitation implemented in the SIMSEN software Nicolet (2007).  

For the sake of simplicity (easier to implement and more practical), the additional friction term 

that will be used in the future chapter will have a form similar to the Darcy-Weisbach factor, i.e. 

proportional to 𝐿𝑉²/(2𝑔𝐷).  
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CHAPTER 3 PROCESS FOR THE RESEARCH PROJECT AS A 

WHOLE AND GENERAL ORGANIZATION OF THE DOCUMENT 

INDICATING THE COHERENCE OF THE ARTICLES IN RELATION 

TO THE RESEARCH GOALS 

First of all, a literature review was done in Chapter 2 in order to be able to understand what has 

been done in the broad research topic that is the modelling of transient flows in stormwater 

systems. Chapter 4, which constitutes the article, will deal with two well-known models: the rigid 

column model, which will be called RC model, and the method of characteristics model, which 

will be called MOC model. In both models a steady and an additional friction factors will be 

used. These models will be compared to relevant experimental data obtained in the Hydraulic 

laboratory of the University of Polytechnic Montreal. In Chapter 5, these models will be adapted 

to compare the numerical results with experimental data provided by Hatcher et al. (2015). In 

Chapter 6, the shock-fitting approach, which includes the water hammer equations equations 

applied to the pressurized flow, and the Saint-Venant equations, applied to the free-surface flow, 

is used to solve the air pocket entrapment problem. Finally, in Chapter 7 the implementation of 

the RC and MOC models using a steady friction factor in the well-known software SWMM 

(Storm Water Management Model) will be discussed. 

It is worth mentioning that all numerical codes, used in this project, which are the RC and MOC 

models, the shock-fitting approach, and the computational engine, and the GUI (Graphical User 

Interface) interface of the modified version of SWMM, are gathered in the following public link 

(google drive): 

https://drive.google.com/file/d/1hiRNDYFqVX6_Eyr7mYeEMUr863-bEJF4/view?usp=sharing 
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ABSTRACT 

In partially pressurized transient flows following air pocket entrapment, the frictional force 

similar to other variables can be affected by the unsteady behavior of the flow and by the air 

pocket size. Therefore, using a constant steady-state friction factor for the numerical simulation is 

a simplistic approximation. In this study, an additional friction factor, affected by the size of the 

air pocket, is introduced. This additional friction, which has the same form as the steady-state 

Darcy-Weisbach friction factor, has been analyzed and relevant formulas, which were calibrated 

by experimental data, will be presented. For further discussion, two well-known mathematical 

models, the rigid column and the method of characteristics models, have been used for the 

numerical simulation. It was found that, compared to a constant steady-state friction factor, the 

variable friction factor can significantly improve the numerical results, including the 

overestimation of the pressure peak values as well as predicting the attenuation behavior. 

https://www.polymtl.ca/expertises/en/recherche/expertises?f%5B0%5D=im_field_expertises_departement%3A19
https://www.polymtl.ca/expertises/en/recherche/expertises?f%5B0%5D=im_field_expertises_departement%3A19
https://www.polymtl.ca/expertises/en/recherche/expertises?f%5B0%5D=im_field_expertises_departement%3A19
https://www.polymtl.ca/expertises/en/recherche/expertises?f%5B0%5D=im_field_expertises_departement%3A19
https://www.polymtl.ca/expertises/en/recherche/expertises?f%5B0%5D=im_field_expertises_departement%3A19
https://www.polymtl.ca/expertises/en/recherche/expertises?f%5B0%5D=im_field_expertises_departement%3A19
https://www.polymtl.ca/expertises/en/recherche/expertises?f%5B0%5D=im_field_expertises_departement%3A19
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Besides, it was found that the magnitude of the additional friction factor is inversely affected by 

the size of the entrapped air pocket. It was shown that using the proposed friction factor 

calibrated for certain air pocket sizes can also yield good results for other problems with different 

air pocket sizes. 

Keywords: Air pocket entrapment; Numerical models; Laboratory experiments; Pressure surges; 

Unsteady friction 

4.1 INTRODUCTION 

Transient flows in Stormwater Systems (SWSs) may occur due to boundary condition 

disturbances. These disturbances generate wavefronts, which can move upstream or downstream, 

and cause several problems including geysering, manhole cover displacement, and damage to 

hydraulic infrastructures. As described by Li and McCorquodale (1999), these disturbances can 

be caused by rapid filling during intense rainfalls that exceed the network design capacity or by 

hydraulic equipment failures or by the presence of a drop inlet that suddenly changes flow 

conditions. The disturbances can cause the free-surface flow to change to a partially pressurized 

flow, in which the air can be entrapped (Vasconcelos and Wright, 2006a). Vasconcelos and 

Wright (2006b) experimentally observed five mechanisms for air pocket entrapment in rapidly 

filling pipelines including an inadequate amount of ventilation, geometrically misplaced 

ventilation, interface breakdown, shear flow instability, and gradual flow regime transition. They 

found that the system geometry and the inflow configuration are the key factors for the air pocket 

entrapment. The problems caused by air entrapment include deterioration of pipelines, joints or 

valves, oscillations, hydraulic jump, and reduction of the pipe cross-section (Pozos et al., 2010) 

or more serious operational problems such as severe geysering, loss of storage capacity, and 

infrastructure damage (Vasconcelos and Chosie, 2013). Geyser events were analyzed in several 

laboratory studies, exemplified by Vasconcelos and Wright (2005 & 2008). The observations 

suggest that geysers are formed from the expulsion of large entrapped air through vertical shafts. 

Wright et al. (2011) indicated that the “only plausible explanation for the geyser formation is the 

interaction of trapped air with water initially standing in the manhole shaft due to the existence of 

surcharge conditions”. They also concluded that trapped air within the tunnel system must be 

included in system design to avoid geyser formation.  
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The air pocket entrapment phenomenon has been extensively studied and analyzed theoretically 

and experimentally. Zhou and Hicks (2002) conducted experiments in a rapidly filling horizontal 

pipe containing trapped air. They indicated that the air entrapped in sewer networks can induce 

high pressure peaks. De Martino et al. (2008), by varying the driving pressure, the initial size of 

the air pocket, and the orifice diameter, studied the transient flow caused by the expulsion of a 

trapped air pocket through an orifice at the downstream end of a pipe. They found that when the 

upstream head and orifice size increase, the magnitude of peak pressure increases as well. Zhou 

et al. (2011) conducted experiments in which an air pocket is entrapped at the dead-end 

downstream of a filling undulating pipeline. They concluded from their tests that the first 

maximum pressure has an inverse relationship with the initial air volume.  

Vasconcelos and Leite (2012) experimentally studied partially pressurized transient flow in a 

reservoir-pipe system to assess the effects of the air pocket entrapment caused by closing a valve 

located at the downstream end of the pipe. They observed that when the valve is totally closed, 

high-pressure peaks are induced followed by damping oscillations. The partially closed valve 

results in reducing the magnitude of the pressure peaks and shorter pressure oscillation patterns, 

in fact, only one pressure peak was observed. Hatcher et al. (2015) conducted experiments of air 

pocket entrapment in a closed conduit transient partially pressurized flow. These tests were 

carried out in order to analyze the performances of the rigid column and the method of 

characteristics models. The pressure peak magnitudes were consistently overestimated by both 

numerical models for total valve closures. Vasconcelos and Leite (2012) acknowledged that the 

assumption of a constant friction factor limits the abilities of the mathematical models. In 

addition, by quoting Hatcher et al. (2015):  

“A number of relevant factors may play a role in defining the actual energy damping of 

these flows including frequency dependent friction (Wylie and Streeter, 1993), 

viscoelastic effects in plastic pipes (Soares et al., 2008) and thermofluid dynamics 

effects (Lee, 2005).”  

Hence, one objective of this article is to propose an additional friction factor that accounts for 

energy damping so that the performance of the mathematical models, used for simulating 

partially pressurized transient flows following air pocket entrapment, is improved. 

Many authors have developed expressions to describe damping energy caused by head losses in 

transient flows (Ghidaoui et al., 2005). The expressions are based on the idea that the wall shear 
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stress in pipes plays an important role in the loss of energy when the water hammer occurs. In 

these equations, the instantaneous wall shear stress is decomposed by the contribution of the wall 

shear stress in steady-state flow and the wall shear stress in unsteady-state flow. Some unsteady 

friction models were developed from both theoretical and laboratory experiments.. Wan et al. 

(2010) presents a compound mathematical model to simulate the attenuation of hydraulic 

transients in valve closing process, which considers the laminar and the turbulent friction 

resistance. It is worth mentioning that Wan et al did not take into account the effects of entrapped 

air pocket. The simulation of hydraulic transients of the valve closing process was expressed by 

the method of characteristics. The maximum and minimum transient pressures and the general 

attenuation behavior were accurately simulated by the compound mathematical model. Zhang et 

al. (2018) introduced a supplementary friction function to evaluate the effect of the air 

entrainment on transient pressure attenuation caused by the water hammer wave. In this 

methodology the additional friction function depends on a coefficient (C), which is necessary to 

calibrate experimentally. In addition to the steady-state friction factor, the supplementary friction 

function improves the approximation of the pressure attenuation of the water hammer wave. 

However, the study from Zhang et al. (2018) was done in the case of water hammer with 

continuous air entrainment. The air content was not measured directly but estimated from the 

measured value of the acoustic wave speed (𝑎). From Wylie and Streeter (1993), the air 

entrainment is determined assuming that the gas bubbles (air) are distributed uniformly 

throughout the liquid (water). In the present article, the effects of air pocket with different sizes 

are studied to further analyze the effects of an air pocket, which is separated from the liquid. 

Bousso and Fuamba (2013), using the Godunov finite volume method, numerically simulated 

transient flows caused by valve closing. They applied an unsteady friction factor, which is 

decomposed into static friction and unsteady friction components. The unsteady friction 

component was determined by considering local and convective instantaneous accelerations, 

which is similar to the model proposed by Brunone et al. (1995, 2000).  However, Bousso and 

Fuamba did not study the air pocket entrapment problem, while they integrated the presence of a 

low volume of air distributed in the water. In addition, the variable friction factor of Bousso and 

Fuamba (2013) is more difficult to calculate than the one presented in this article which has a 

similar form to the Darcy-Weisbach friction factor. The role of the supplementary unsteady 
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friction factor is to evaluate more accurately the loss in energy, compared to the steady-state 

friction factor alone. An unsteady friction factor is a friction factor that varies over time. 

The present paper discusses the effect of frictional force in simulating transient partially 

pressurized flows caused by air pocket entrapment within SWSs. In the literature, it is common to 

calculate the frictional force with a pressurized flow using a steady-state Darcy-Weisbach friction 

factor. However, as will be shown, a variable friction factor can significantly improve the 

behavior of the numerical solutions. In this regard, an additional friction factor, which depends on 

the flow parameter, will be introduced. By using experimental data, this friction factor is 

calibrated for two different initial air volumes. In addition, two well-known mathematical 

models, the rigid column model, and the method of characteristics model that solves the Saint-

Venant governing equations, are employed to numerically simulate some test cases for which the 

experimental data are available. It will be shown that the proposed variable friction factor can 

help to improve the numerical solutions, compared to the steady-state friction factor. 

4.2 Material and methods 

The rigid column and the method of characteristics models are used to solve a closed conduit 

transient partially pressurized flow following an air pocket entrapment. For the undertaken 

examples, experimental tests were carried out to produce the flow variables in the presence of 

different initial air pocket volumes. The numerical models were also tested on experimental data 

from the literature. The Buckingham π theorem of dimensional analysis is employed to derive a 

formula for the additional friction factor, in which the effects of different variables, including the 

ratio of the air to water masses and the acoustic wave speed, are taken into account. Following 

Zhang et al. (2018), by using the numerical results and the experimental data, an optimization 

algorithm is implemented to calibrate the additional friction factor for two different (small and 

large) initial air pocket volumes to show how the air pocket volume can affect the friction factor. 

The optimized additional friction factor corresponds to the value which minimizes the sum of 

differences between the experimental and numerical pressure peaks. Afterward, the proposed 

additional friction factor is used to solve other examples to discuss the effects of additional 

friction factor on the closed conduit transient flows as well as to show how this additional friction 

factor can help mathematical models to more accurately calculate numerical solutions.    
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4.2.1 Description of the Polytechnique Montréal experiments  

  The experimental tests were carried out in the hydraulics laboratory of Polytechnique Montréal. 

As shown in Figure 4.1, the assembly consists of a supply tank (R1), with the dimensions of 1.01 

m (length) × 1.01 m (width) × 1.04 m (height), an intermediate cylindrical tank (R3), with the 

dimeter of 0.355 m and height of 1.775 m, and a transparent PVC horizontal pipe (C1), which 

connects R1 and R3. The pipe sizes are schedule 40, diameter D = 100 mm, and length 𝐿𝑝𝑖𝑝𝑒 = 

5.06 m. After the flow passes the cylindrical tank, the water is transferred to another tank where it 

is pumped back to the supply tank. A valve (VA1) at the inlet of the supply tank was installed to 

control the water inflow. Also, at the downstream end of the pipe C1, a valve (V2) is installed by 

which the pipe’s end can be completely blocked.  

For measuring flow variables, six pressure sensors Omega are installed on the pipe C1, four of 

which are Omega type PX409-2.5G5V accuracy ±0.08% (C1P2, C1P3, C1P4, and C1P5), one is 

Hoskin type P9-1H1-DN1C0-3PSI-15V accuracy ±0.5% (C1P1), and the last one is type AB (P) 

15V (C1P6). In addition, two pressure sensors, Omega type PX-603-015G5V accuracy ±0.4 %, 

are installed on R1 and R3, called R1P1, and R3P1, respectively. An Arkon electromagnetic 

flowmeter (DME) type MAG910E with accuracy of 1.0% is installed to measure the water flow 

inlet to the tank R1 and a Hedland ultrasonic flowmeter (DMU) type HTTF with accuracy of 

1.0% is located on the pipe C1 at 0.783𝐿𝑝𝑖𝑝𝑒.  

The experiments were recorded by a SVSi StreamView LR High-Speed camera, 60 frames per 

second (FPS), 1280×1024 resolution and a conventional video camera Canon VIXIA HFS200 

HD. The pressure data from pressure sensors were collected in two data-acquisition cards by 

means of National Instruments' LabVIEW data acquisition software. The time to close the valve 

(𝑡𝑐) was in the range of 0.2−0.5 s, which was obtained by recording the valve closure by means 

of a camera of 30 FPS.  

The inlet to the tank R1, controlled by the valve VA1, was opened to the point of obtaining steady 

flow in the conduit C1, which contained a pressurized flow at upstream and a free-surface at 

downstream, and a stable cavity formed on top of the free-surface flow (Figure 4.2). The photos 

of the flow were used in AutoCAD software to draw the water profiles and to obtain the initial 

water and air volumes (Figure 4.2). The LabVIEW software was initialized to read the pressure in 

the initial conditions and to read the variation of the measured pressure with sensors placed in the 
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pipe and reservoirs, as described before. Then, the valve V2 downstream of pipe C1 was closed 

completely and the air pocket was entrapped. The valve VA1 was also closed to prevent 

increasing the water level in the supply tank. Thus, the water level in the reservoir R1 remained 

constant during the experiment. Consequently, the surge pressure was generated by which the air 

pocket was compressed and expanded. Note that the tests were carried out repeatedly for different 

flow rates in the pipe and for three different water levels in reservoir R1 and the most consistent 

test results were kept for further analyses. 

 

(a)  

 

 

(b)  

 

 

Figure 4.1  The laboratory setup; a) Plan view, and b) Section view 
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   (a)      (b) 

Figure 4.2  The profile obtained from the design software in initial conditions. (a) Isometric and 

(b) Section pipe view 

 

 

Figure 4.3  The initial steady flow conditions 

To calculate the constant Darcy-Weisbach friction factor, the steady-state partially pressurized 

flow with different flow rates were experimentally developed and the pressure head loss within 

the pipe, between the C1P1 and C1P5 sensors, which are located upstream and downstream, 

respectively, were measured (see  Figure 4.1). The Darcy-Weisbach formula using the steady-

state friction factor (𝑓), is:  

ℎ𝑓𝑖 = 𝑓
𝐿𝑝𝑖𝑝𝑒

𝐷

𝑉𝑖
2

2𝑔
 (4-1) 

where the subscript (𝑖) represents the number of experiments, 𝐷 is the pipe diameter, ℎ𝑓𝑖 is the 

head loss, 𝐿𝑝𝑖𝑝𝑒 is the length of the pipe, 𝑉𝑖 is the flow velocity, 𝑔 is the gravitational 

acceleration, which is set to 9.81 𝑚. 𝑠−2. By using the experimental setup dimensions, equation 

(4-1) can be simplified as: 
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where  𝐾𝑓 = 2.1448 × 𝑓. 

The least square method is used to minimize the summation of the squared differences between 

the pressure heads measured by experiments and the pressure heads calculated by equation (4-2), 

in which the experimental velocities are used. Therefore,  

𝑟𝑖
2(𝐾𝑓) =  [ℎ𝑓𝑖 −𝐾𝑓𝑉𝑖

2]
2
, (4-3) 

𝑆𝑟(𝐾𝑓) =∑𝑟𝑖
2(𝐾𝑓)

𝑛𝑢

𝑖=1

, (4-4) 

where 𝑛𝑢 is the number of experiments, 𝑟𝑖 is the residual and 𝑆𝑟 is the summation of residuals. 

Substituting the experimental data yields: 

𝑆𝑟(𝐾𝑓) = 0.055 − 0.1906𝐾𝑓 + 1.6515𝐾𝑓
2. (4-5) 

Note that the minimum value of 𝑆𝑟 can be found through setting the first derivative of equation 

(4-5), in terms of 𝐾𝑓, to zero. Thus, 𝐾𝑓 is around 0.0579 (see Figure 6.4), and substituting 𝐾𝑓 in 

equation (4-2) results in 𝑓 = 0.0269.   

 

ℎ𝑓𝑖 = 𝐾𝑓𝑉𝑖
2, (4-2) 
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Figure 4.4  The determination of the steady-state friction factor (𝑓) 

4.2.2 Other experiments from Zhou (2020) and Hatcher et al. (2015)  

Some experiments from Zhou (2000) and Hatcher et al. (2015) are similar to those done in the 

laboratory of Polytechnic Montréal. To not overload the paper with too many examples, only a 

few experimental data from these references will be taken for comparison. The characteristics of 

these experiments will be given in the results and discussions section. 

4.2.3 Numerical model and calculation 

4.2.3.1 Rigid column model 

The concept of the rigid column model is based on neglecting the water compressibility so that 

the velocity and pressure are space-invariant variables throughout the pressurized flow, which is 

assumed as a rigid water column.  

Following other references, exemplified by Hatcher et al. (2015), Vasconcelos and Leite (2012), 

Vasconcelos et al. (2011b), and Zhou et al. (2002), by using the rigid column model, the air-
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water interface is assumed to be vertical so that the free-surface flow zone is neglected. Thus, the 

governing equations include the momentum equation of the water column, equation (4-5), and 

the continuity equation, equation (4-6), and the time derivative of the polytropic process 

relationship of the ideal gas law, equation (4-7), applied to the air pocket.  

𝑑𝑄

𝑑𝑡
=
𝑔𝐴

𝐿
[𝐻𝑟𝑒𝑠 − (𝐻𝑎𝑖𝑟 − 𝐻𝑎𝑡𝑚) − ((𝑓

𝐿

𝐷
+ 𝐾𝑙𝑜𝑠𝑠)

𝑄|𝑄|

2𝑔𝐴2
)], (4-6) 

𝑑𝑉𝑎
𝑑𝑡

= −𝑄, (4-7) 

𝑑𝐻𝑎𝑖𝑟
𝑑𝑡

= −𝑘
𝐻𝑎𝑖𝑟
𝑉𝑎

×
𝑑𝑉𝑎
𝑑𝑡
, (4-8) 

where 𝑡 is the time variable, 𝑄 is the discharge, 𝑉𝑎 is the air pocket volume, 𝐻𝑎𝑖𝑟 is the air phase 

absolute pressure head, 𝐻𝑎𝑡𝑚 is the atmospheric absolute pressure head, which is set to 10.33 m, 

𝐿 is the equivalent water column length, which is explained later. In addition, 𝐷 is the pipe 

diameter, 𝐴 is the cross-sectional area of the pipe, 𝑓 is the Darcy-Weisbach steady-state friction 

factor, 𝐾𝑙𝑜𝑠𝑠 is the summation of local losses, and 𝑘 is the polytropic coefficient. Following Lee 

(2005), the polytropic coefficient 𝑘 is set equal to 𝑘 = 𝛾 = 1.4, in which 𝛾 represents the 

adiabatic constant of the air.  

Note that the equivalent water column length is calculated as:  

𝐿 =
𝐿𝑝𝑖𝑝𝑒𝐴 − 𝑉𝑎

𝐴
, (4-9) 

to compensate for the water volume of the free-surface flow, which is neglected in applying the 

rigid column model.  

The set of equations (4-6), (4-7), and (4-8) of the rigid column model is solved by using the 

classical 4th order Runge-Kutta method as described in other references (e.g. Rokhzadi and 

Fuamba 2020a; Press et al. 2007).  
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4.2.3.2 Method of characteristics model 

The governing equations for one-dimensional flow in closed conduits constitute a pair of partial 

differential equations (PDEs), which are the continuity and momentum equations, respectively, 

(Wylie and Streeter, 1993; Chaudhry. 2014): 

{
 

 
𝜕𝑉

𝜕𝑡
+ 𝑔

𝜕𝐻

𝜕𝑥
+
𝑓|𝑉|𝑉

2𝐷
= 0

𝜕𝐻

𝜕𝑡
+
𝑎²

𝑔

𝜕𝑉

𝜕𝑥
= 0               

, (4-10) 

where 𝑉 is the water velocity, 𝐻 is the piezometric head, 𝑎 is the acoustic wave speed, and 𝑥 is 

the spatial variable along the pipe axis with the positive direction from the upstream to the 

downstream.  

The method of characteristics is a numerical method with first order of accuracy, which has been 

commonly used to solve the water hammer equations. The method of characteristics allows to 

transform the pair of PDEs, equation (4-10), into two ODEs along two positive and negative 

characteristics as presented below. Note that further details of this method can be found in other 

references (e.g. Wylie and Streeter 1993). 

Boundary conditions: 

For the first node of the pressurized flow zone at the upstream (the one near the reservoir), only 

the negative characteristic 𝐶−, which originates somewhere between the first and second nodes, 

can be used for the calculation. Thus, for the first node, the energy equation between the reservoir 

and the first node of the pressurized zone is used instead of the equation along the positive 

characteristic: 

𝐻1
𝑛+1 = (𝐻𝑟𝑒𝑠 + 𝐻𝑎𝑡𝑚) − (1 + 𝐾𝑙𝑜𝑠𝑠) ×

𝑄1
𝑛|𝑄1

𝑛|

2𝑔𝐴2
, (4-11) 

where the subscript (1) denotes the first node of the pressurized flow zone.   

The unsteady term in the Bernoulli equation is neglected since the reservoir area is much larger 

than the pipe area (MIT OpenCourseWare 2013). 
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For the last node of the pressurized flow zone (the one near the air pocket), only the equation 

along the positive characteristic 𝐶+ can be used. Therefore, instead of the negative characteristic 

line, the energy equation between the last node of the pressurized zone and the air pocket is used:  

𝐻𝑁
𝑛+1 = 𝐻𝑎𝑖𝑟

𝑛+1 −
𝑄𝑁
𝑛+1|𝑄𝑁

𝑛+1|

2𝑔𝐴2
, (4-12) 

where 𝑁 represents the last node of the pressurized flow zone. 

The air pocket pressure was also calculated using the polytropic process relationship of the ideal 

gas law. 

4.2.3.3 Friction factor analysis 

In this paper, an extra friction factor will be proposed to properly calculate the energy dissipation, 

which cannot be predicted only by the steady friction factor. Thus, the friction term in the 

governing equations forms as:  

ℎ𝑓 = (𝑓 + 𝑓
′)
𝐿

𝐷

𝑉²

2𝑔
. (4-13) 

Following Lee (2005), the flow velocity (𝑉) is assumed to be a function of all effective 

parameters of a transient flow in a reservoir-pipe system with one end side blocked and followed 

by the air entrapment: 

𝑉 = 𝑉(𝑃𝑟𝑒𝑠,𝑃0,𝐿𝑎,𝐿,𝑎𝑎𝑖𝑟,𝑎,𝜌𝑎,𝜌, 𝜏𝑤, 𝐷) (4-14) 

where 𝑃𝑟𝑒𝑠 is the reservoir absolute pressure, 𝑃0 is the atmospheric absolute pressure, 𝐿𝑎 is the air 

pocket length, 𝐿 the water column length, 𝑎𝑎𝑖𝑟 and 𝑎 are the acoustic wave speeds in air and 

water phases, respectively. 𝜌𝑎 is the air density, 𝜌 is the water density, 𝜏𝑤 is the wall shear stress. 

The Buckingham π theorem of dimensional analysis can result in:    

𝜏𝑤
𝑃𝑟𝑒𝑠

= 𝐹(
𝐿𝑤
𝐿𝑎
,
𝜌𝑉2

𝑃𝑟𝑒𝑠
,
𝜌𝑎𝑉

2

𝑃𝑟𝑒𝑠
,
𝐷

𝐿𝑎
,
𝑎

𝑉
,
𝑎𝑎𝑖𝑟
𝑉
) (4-15) 

It is known that the friction factor (𝑓) is defined as: 
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𝑓 ∝
𝜏𝑤
1
2𝜌𝑉

2
 

(4-16) 

Thus, in this study, based on the dimensional analysis, it is assumed that the additional friction 

factor (𝑓′) is a function of the main parameters including 
𝑃𝑟𝑒𝑠

𝑃0
, 
𝜌𝑎

𝜌
, 
𝐿𝑎

𝐿
, 

𝑎

√𝑔𝐷
, and 

1

𝑉
 as: 

𝑓′ = 𝑓′ (
𝑃𝑟𝑒𝑠
𝑃0

,
𝜌𝑎
𝜌
,
𝐿𝑎
𝐿
,
𝑎

√𝑔𝐷
,
1

𝑉
), (4-17) 

In order to include the type of flow regime (laminar or turbulent flow), the term 
1

𝑉
 is replaced with 

𝜆, which is the steady-state friction factor and will be defined later. The formula for the 

additional friction factor (𝑓′) becomes: 

𝑓′ = 𝑓′ (
𝑃𝑟𝑒𝑠
𝑃0

,
𝜌𝑎
𝜌
,
𝐿𝑎
𝐿
,
𝑎

√𝑔𝐷
, 𝜆), (4-18) 

This leads to the following formula for the additional friction factor: 

𝑓′ = 𝐶′ ×
𝐻𝑟𝑒𝑠 +𝐻𝑎𝑡𝑚

𝐻𝑎𝑡𝑚
×
𝜌𝑎
𝜌
×
𝐿𝑎
𝐿
×

𝑎

√𝑔𝐷
× 𝜆, (4-19) 

where 𝐶′ is the calibration factor. Following Wan et al. (2010) and Zhang et al. (2018), 𝜆 can be 

described as 𝜆 =
64𝜈

𝑉𝐷
 for laminar flow regimes, in which 𝜈 represents the kinematic viscosity. In 

addition, for turbulent flow regimes 𝜆 =
8𝑔𝑛𝑀

2

√𝑅𝑝
3 , in which 𝑛𝑀 is the roughness coefficient and 𝑅𝑝 is 

the hydraulic radius. Therefore, a compound model can be used depending on the critical 

Reynolds number (𝑅𝑒𝑐) as:  

𝜆 =

{
 
 

 
 
64𝜈

𝑉𝐷
             𝑅𝑒 ≤ 𝑅𝑒𝑐  (Laminar) 

8𝑔(𝑛𝑀)²

√𝑅𝑝
3

     𝑅𝑒 > 𝑅𝑒𝑐 (Turbulent)
, (4-20) 
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where Rec is set to 2320 (Eckhardt, 2009) and Rp for circular pipe can be calculated as 𝐷 4⁄ . As 

can be seen in equation (4-20), the steady-state friction factor for turbulent flow is a function of 

the roughness parameter only.  

Note that during the simulation when V = 0, since the coefficient λ is not defined, the additional 

friction factor 𝑓′ is set to zero. 

In order to facilitate the optimization procedure, 𝐶′ is replaced with 𝐶 × 103 and the coefficient 

of 𝐶 is moved to the denominator of the ratio 
𝜌𝑎

𝜌
. Thus:  

𝑓′ = 𝐶 ×
𝐻𝑟𝑒𝑠+𝐻𝑎𝑡𝑚

𝐻𝑎𝑡𝑚
×

𝜌𝑎

10−3𝜌
×
𝐿𝑎

𝐿
×

𝑎

√𝑔𝐷
× 𝜆.  (4-21) 

The presence of the term 
𝐻𝑟𝑒𝑠+𝐻𝑎𝑡𝑚

𝐻𝑎𝑡𝑚
 in the formula of 𝑓′ is coherent with the result found by 

Rokhzadi and Fuamba (2021) that the damping is a function of the reservoir pressure ratio (
𝑃𝑟𝑒𝑠

𝑃0
=

𝐻𝑟𝑒𝑠+𝐻𝑎𝑡𝑚

𝐻𝑎𝑡𝑚
). 

Following Hatcher and Vasconcelos (2017) and Wylie and Streeter (1993), the acoustic wave 

speed in a conduit containing water and air is calculated as:   

 𝑎 = √
𝐾 𝜌⁄

1+𝐾𝐷/𝐸𝑒+𝑚𝑅𝑇(𝐾/𝑃0−1)/𝑃0
,  (4-22) 

where 𝑅 is the gas constant equal to 8.314 𝐽. 𝐾−1. 𝑚𝑜𝑙−1, 𝑇 is the absolute temperature set to 

293 °𝐾, 𝑚 is the air content, 𝐾 is the volume modulus equal to 2.15 𝐺𝑃𝑎, 𝑃0 is the atmospheric 

absolute pressure, calculated as 𝜌𝑔𝐻𝑎𝑡𝑚, 𝑒 is the thickness of the PVC pipe equal to 7 𝑚𝑚, 𝐸 is 

the elasticity modulus of the PVC pipe equal to 2.5 𝐺𝑃𝑎 and 𝜌 is the liquid density equal to 

998 𝑘𝑔/𝑚3.  

Equation (4-22) of the acoustic wave speed is normally used when air is assumed to be 

distributed as small discrete bubbles (Wylie and Streeter, 1993). Since, the precise value of the 

acoustic wave speed is not necessary in the models used in this article, the assumption is made 

that this equation can be used to approximate the acoustic wave speed in the case of air pockets. 

The authors acknowledge that calculating the acoustic wave speed in the pipe with the entrapped 

air pocket using Equation (4-22) leads to some slight errors, but only an approximation of the 
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acoustic wave speed is needed because the friction factor in Equation (4-22) is not sensitive to the 

acoustic wave speed.  

Note that to take into account the effect of the additional friction factor, in the governing 

equations provided in the previous subsections, 𝑓 is replaced with 𝑓 + 𝑓′. The optimum 𝐶 value, 

proposed for different ranges of air pocket size (small and large), is calculated as explained in the 

following paragraph.  

The governing equations are solved for different 𝐶 values and the pressure distributions 

calculated by both the rigid column and the method of characteristics models are compared to the 

relevant experimental data and the sum of squared residuals (𝑆), provided in Equation (4-23), is 

calculated. 

𝑆 =∑([ℎ𝑝𝑒(𝑖) − ℎ𝑝(𝑖)]
2
+ [ℎ𝑣𝑒(𝑖) − ℎ𝑣(𝑖)]

2) ,

𝑛𝑝

𝑖=1

 (4-23) 

where 𝑛𝑝 is the number of peak values, ℎ𝑝𝑒 , and ℎ𝑣𝑒 correspond to the experimental positive and 

negative peaks, respectively, and ℎ𝑝, and ℎ𝑣  correspond to the numerical positive and negative 

peaks, respectively. Finally, the value of the calibration factor (𝐶) that corresponds to the 

minimum 𝑆 value is considered to yield the optimized additional friction factor (𝑓′). Note that the 

results of this optimization will be presented in the next section. It is worth mentioning that the 

additional friction factor (𝑓′) is calculated in a similar way for both rigid column and the method 

of characteristics models.  

4.3 Results and discussions 

4.3.1 Polytechnique Montréal experimental data 

The summation of local losses 𝐾𝑙𝑜𝑠𝑠 is assumed equal to 0. Note that the discharge and air 

volume are introduced in non-dimensional forms as 𝑄∗ = 𝑄/√𝑔𝐷5 and 𝑉𝑎
∗ = 𝑉𝑎/𝐷

3. As 

mentioned in the previous section, the calibration factor was optimized for two different test 

cases representing problems with small and large air pocket volumes. After examining different 

test cases for which experimental data were available, for the first case, which is considered as a 

representative for problems with small air pocket size, the water level in the upstream reservoir is 
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𝐻𝑟𝑒𝑠 = 0.30 𝑚, the pipe diameter 𝐷 = 0.1 𝑚, and the initial values of air pocket volume (𝑉𝑎
∗0), 

and discharge (𝑄∗0) are 1.11 and 0.422, respectively. For this test case, the air pocket length is 

𝐿𝑎 = 0.14 𝑚, the water column length is 𝐿 = 4.92 𝑚 and the acoustic wave speed is 𝑎 =

408 𝑚/𝑠. In addition, the time for valve closure was measured as 𝑡𝑐 = 0.50 𝑠. As shown in 

Figure 4.5, the optimized calibration factor is calculated as 𝐶 = 13 and it was obtained by the 

compound model, which was presented in Equation (4-24). Therefore, the additional friction 

factor for small air pocket sizes can be calculated as: 

𝑓′ =

{
 
 

 
 13 ×

𝐻𝑟𝑒𝑠 + 𝐻𝑎𝑡𝑚
𝐻𝑎𝑡𝑚

×
𝜌𝑎

10−3𝜌
×
𝐿𝑎
𝐿
×

𝑎

√𝑔𝐷
(
64𝜈

𝑉𝐷
)         𝑅𝑒 ≤ 𝑅𝑒𝑐  (𝐿𝑎𝑚𝑖𝑛𝑎𝑟) 

13 ×
𝐻𝑟𝑒𝑠 + 𝐻𝑎𝑡𝑚

𝐻𝑎𝑡𝑚
×

𝜌𝑎
10−3𝜌

×
𝐿𝑎
𝐿
×

𝑎

√𝑔𝐷
(
8𝑔𝑛2

√𝑅𝑝
3

)      𝑅𝑒 > 𝑅𝑒𝑐 (𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡)

 (4-24) 

Similarly, for another example, which, based on the available experimental data, was found as an 

appropriate representative for the problem with large air pocket sizes, the water level in the reservoir is 

𝐻𝑟𝑒𝑠 = 0.11 𝑚, the pipe diameter is 𝐷 = 0.1 𝑚 and  𝑉𝑎
∗0, and 𝑄∗0 are 1.83 and 0.406, respectively. The air 

pocket length is 𝐿𝑎 = 0.233 𝑚, the water column length 𝐿 = 4.83 𝑚 and the acoustic wave speed 𝑎 =

401 𝑚/𝑠. For this example, the time of valve closure is 𝑡𝑐 = 0.33 𝑠. As can be seen in                              
(a)                                                                          (b) 

Figure 4.6, the optimized calibration factor is calculated as 𝐶 = 4. Therefore, for large air pocket 

sizes, the additional friction factor can be calculated as: 

𝑓′ =

{
 
 

 
 4 ×

𝐻𝑟𝑒𝑠 + 𝐻𝑎𝑡𝑚
𝐻𝑎𝑡𝑚

×
𝜌𝑎

10−3𝜌
×
𝐿𝑎
𝐿
(
64𝜈

𝑉𝐷
)      𝑅𝑒 ≤ 𝑅𝑒𝑐  (𝐿𝑎𝑚𝑖𝑛𝑎𝑟) 

4 ×
𝐻𝑟𝑒𝑠 + 𝐻𝑎𝑡𝑚

𝐻𝑎𝑡𝑚
×

𝜌𝑎
10−3𝜌

×
𝐿𝑎
𝐿
(
8𝑔𝑛2

√𝑅𝑝
3

)     𝑅𝑒 > 𝑅𝑒𝑐 (𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡)
 (4-25) 

Equations (4-24) and (4-25) will be used to further discuss the effects of additional friction factor 

on the transient flow following the air pocket entrapment. Note that comparing the coefficient 𝐶 

in Equations (4-24) and (4-25), for the problems described above, reveals that the additional 

friction factor for problems with smaller air pocket sizes is larger.  

It is worth mentioning that the acoustic wave speed (𝑎), calculated by Equation (4-22), is in the 

range of 400, while it does not have much influence on the results of both numerical models 

(rigid column and method of characteristics models) with or without the additional friction factor. 
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                              (a)                                                                          (b) 

Figure 4.5  a) The determination of the calibration factor (𝐶), and b) zoom in view with 

Polytechnic Montreal experimental data (𝑉𝑎
∗0 = 1.11, 𝑄∗

0
= 0.422, 𝑡𝑐 = 0.50 𝑠, 𝑘 = 1.4 and 

𝐻𝑟𝑒𝑠 = 0.30) 

                             (a)                                                                          (b) 

Figure 4.6  The determination of the calibration factor (𝐶), and b) zoom in view with Polytechnic 

Montreal experimental data (𝑉𝑎
∗0 = 1.83, 𝑄∗

0
= 0.406, 𝑡𝑐 = 0.33 𝑠, 𝑘 = 1.4 and 𝐻𝑟𝑒𝑠 = 0.11) 

In this paper, the effects of additional friction factor on the numerical solutions of a transient 

partially pressurized flow following air pocket entrapment have been studied by using the rigid 

column and the method of characteristics models. Hereafter, the results calculated by the rigid 

column model is called RC, and the results of the method of characteristics model, is called 

MOC. Figure 4.7 shows the pressure distribution for a test case, which was calculated by both 
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models using the constant steady-state (𝑓), and the friction factors (𝑓 + 𝑓′). In this test case, for 

which the calibration factor is optimized, the variables (𝑉𝑎
∗0, 𝑄∗0) are (1.11,0.422), and the 

water level in the upstream reservoir is 𝐻𝑟𝑒𝑠 = 0.30 𝑚. Note that the air pocket behavior is 

simulated using the polytropic process of an ideal gas in which the polytropic coefficient is  

𝑘 = 1.4.  

As can be seen in Figure 4.7, compared to the steady-state constant friction factor, the additional 

friction factor can significantly improve the quality of the numerical solutions calculated by both 

models. This improvement includes predicting the attenuation behavior of the pressure variation 

as well as calculating the peak values. Therefore, it can be claimed that the additional friction 

factor help simulate the energy dissipation more properly. It is worth mentioning that for this test 

case, which is a representative of examples with small air pocket sizes, the phase shift between 

the experimental data and the numerical results is almost insignificant. 

                                        (a)                                                                           (b) 

Figure 4.7  The pressure distribution of the air pocket against time for (a) RC, and (b) MOC with 

Polytechnic Montreal experimental data (𝑉𝑎
∗0 = 1.11, 𝑄∗0 = 0.422, 𝑡𝑐 = 0.50 𝑠, 𝑘 = 1.4, 

𝐻𝑟𝑒𝑠 = 0.30 𝑚 and 𝐶1 = 13) 

The effect of additional friction factor is further examined by solving two other test cases, in 

which Equation (4-24) is used for the friction factor. In these examples, the variables (𝑉𝑎
∗0, 𝑄∗0) 

are (1.05, 0.423), and (0.94, 0.437), respectively. The results of these two examples are 

illustrated in Figures 4.8 and 4.9, respectively. As can be seen, in these test cases, compared to 
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the constant friction factor, the additional friction factor can help improve calculating the peak 

values and predicting the attenuation behavior similar to the previous example. Thus, these 

results can confirm that the proposed additional friction factor also offers benefits to other test 

cases.   

                                       (a)                                                                           (b) 

Figure 4.8  The pressure distribution of the air pocket against time for (a) RC, and (b) MOC with 

Polytechnic Montreal experimental data (𝑉𝑎
∗0 = 1.05, 𝑄∗0 = 0.423, 𝑡𝑐 = 0.44 𝑠, 𝑘 = 1.4, 

𝐻𝑟𝑒𝑠 = 0.30 𝑚 and 𝐶1 = 13) 

 

 



38 

 

                                        (a)                                                                          (b) 

Figure 4.9  The pressure distribution of the air pocket against time for (a) RC, and (b) MOC with 

Polytechnic Montreal experimental data (𝑉𝑎
∗0 = 0.94, 𝑄∗0 = 0.437, 𝑡𝑐 = 0.40 𝑠, 𝑘 = 1.4, 𝐻𝑟𝑒𝑠 =

0.51 𝑚 𝐶1 = 13) 

Equation (4-25) proposes the optimized value of the additional friction factor for a test case with 

(𝑉𝑎
∗0, 𝑄∗0) equal to (1.83, 0.406). This test case is considered as a representative for examples 

with large air pocket sizes. The relevant numerical pressure variation calculated by both the rigid 

column and the method of characteristics models are shown in Figure 4.10. As can be seen, 

compared to the steady-state friction factor, the additional friction factor can help both models 

capture the experimental data more accurately.  

To show that the additional friction factor can improve the numerical solutions in other examples, 

Equation (4-25) is used to apply the additional friction factor to another example, in which the 

variables (𝑉𝑎
∗0, 𝑄∗0) are (1.68, 0.386). As shown in Figure 4.11, the additional friction factor 

effectively improves the numerical solutions of this example as well. Therefore, it can be claimed 

that the proposed formula for the additional friction factor can help in other examples as well. As 

can be seen, in these examples, in which the air pocket volume is larger, the phase shift between 

the numerical results and the experimental data is more significant than the test cases with 

smaller air pocket volume. The reason for this difference will be explained later. 



39 

 

                                        (a)                                                                          (b) 

Figure 4.10  The pressure distribution of the air pocket against time for (a) RC, and (b) MOC 

with Polytechnic Montreal experimental data (𝑉𝑎
∗0 = 1.83, 𝑄∗0 = 0.406, 𝑡𝑐 = 0.33 𝑠, 𝑘 = 1.4, 

𝐻𝑟𝑒𝑠 = 0.11 𝑚 and 𝐶2 = 4) 

                                       (a)                                                                          (b) 

Figure 4.11  The pressure distribution of the air pocket against time for (a) RC, and (b) MOC 

with Polytechnic Montreal experimental data (𝑉𝑎
∗0 = 1.68, 𝑄∗0 = 0.386, 𝑡𝑐 = 0.32 𝑠, 𝑘 = 1.4,  

𝐻𝑟𝑒𝑠 = 0.12 𝑚 and 𝐶2 = 4) 

In order to numerically evaluate the improvement provided by the additional friction factor, the 

percentage of the numerical error (𝜀) of each model was calculated as:  
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𝜀 = |
∑ (|ℎ𝑝(𝑖)| + |ℎ𝑣(𝑖)| − |ℎ𝑝𝑒(𝑖)| − |ℎ𝑣𝑒(𝑖)|)
𝑛𝑝
𝑖=1

∑ (|ℎ𝑝𝑒(𝑖)| + |ℎ𝑣𝑒(𝑖)|)
𝑛𝑝
𝑖=1

|. (4-26) 

As shown in Table 4.1, for each test case, which was previously presented, the relative error with 

the friction factor (𝑓 + 𝑓′) is inferior to the relative error with only a steady-state friction factor 

(𝑓) for both RC and MOC models. 

Table 4.1  The relative error (𝜀) of the RC and MOC models with the steady-state friction factor 

and the additional friction factor 

Test case 

Relative error RC Relative error MOC 

 (𝑓 + 𝑓′)  (𝑓) (𝑓 + 𝑓′)  (𝑓) 

𝑉𝑎
∗0 = 1.11, 𝑄∗0 = 0.422, 𝑡𝑐 = 0.50 𝑠,  

𝑘 = 1.4, 𝐻𝑟𝑒𝑠 = 0.30𝑚 and 𝐶1 = 13 (shown in 

Figure 4.7) 

4 % 307 % 8 % 314 % 

𝑉𝑎
∗0 = 1.05, 𝑄∗0 = 0.423, 𝑡𝑐 = 0.44 𝑠, 

𝑘 = 1.4, 𝐻𝑟𝑒𝑠 = 0.30 𝑚 and 𝐶1 = 13 (shown in 

Figure 4.8) 

25 % 405 % 20 % 413 % 

𝑉𝑎
∗0 = 0.94, 𝑄∗0 = 0.437, 𝑡𝑐 = 0.40 𝑠, 

𝑘 = 1.4, 𝐻𝑟𝑒𝑠 = 0.51 𝑚 𝐶1 = 13 (shown in 

Figure 4.9) 

1 % 288 % 2 % 295 % 

𝑉𝑎
∗0 = 1.83, 𝑄∗0 = 0.406, 𝑡𝑐 = 0.33 𝑠,  

𝑘 = 1.4, 𝐻𝑟𝑒𝑠 = 0.11 𝑚 and 𝐶2 = 4 (shown in 

Figure 4.10) 

4 % 219 % 5 % 224 % 

𝑉𝑎
∗0 = 1.68, 𝑄∗0 = 0.386, 𝑡𝑐 = 0.32 𝑠,  

𝑘 = 1.4,𝐻𝑟𝑒𝑠 = 0.12 𝑚 and 𝐶2 = 4 (shown in 

Figure 4.11) 

58 % 379 % 57 % 387 % 
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It should be noted that compared to the test cases with smaller air pocket sizes (Figures 4.7, 4.8, 

4.9), for the test cases with larger air pocket sizes (Figures 4.10 & 4.11), the phase shift between 

the numerical solutions and experimental data is more obvious. The reason for this phase shift is 

not clearly determined yet. It could be due to the time lapse, which the valve takes to completely 

obstruct the pipe end. However, as can be seen in previous figures, the time lapse for all 

examples are almost in the same range, while the phase shift is more obvious for cases with 

larger air pocket sizes. Also, it was observed that the additional friction factor only affects the 

amplitude of the pressure oscillations not the phase shift. In addition, Wan et al. (2010) found 

that the friction resistances did not have much influence on the frequency of the hydraulic 

transient wave. Thus, this phase shift is more likely to occur due to the polytropic coefficient 

because Lee (2005) indicated that the frequency of the pressure distribution is affected by the 

polytropic coefficient. To further clarify this issue, in the test case with 𝑉𝑎
∗0 = 1.83, and 𝑄∗0 =

0.406, the polytropic coefficient was changed manually so that the phase shift can be removed. 

The results are shown in Figure 4.12. As can be seen, with a larger polytropic coefficient (𝑘 =

1.9), the phase shift between experimental data and numerical results of both models can be 

removed. It is also worth mentioning that similar phase shift was reported in other studies (e.g. 

Rokhzadi and Fuamba, 2020b; Hatcher et al., 2015; Vasconcelos et al., 2011). Another reason 

could be due to neglecting the free-surface flow zone. Indeed, it can specifically be seen in 

Eq. (40) of Rokhzadi and Fuamba, 2020b, that the phase of the general solutions (terms under the 

root square), depends on the water column length (𝐿𝑢). Note that the water column length is 

equal to 𝐿𝑡 − 𝐿𝑎, in which 𝐿𝑎 is the air pocket length or, equivalently, free-surface flow length. 
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                                        (a)                                                                          (b) 

Figure 4.12  The pressure of the air pocket against time for (a) RC, and (b) MOC with 

Polytechnic Montreal experimental data (𝑉𝑎
∗0 = 1.83, 𝑄∗0 = 0.406, 𝑡𝑐 = 0.33 𝑠, 𝑘 = 1.9 and 

𝐻𝑟𝑒𝑠 = 0.11 𝑚) 

Since the experimental data of the discharge and air volume are not available, only the numerical 

results calculated by the rigid column model are plotted against the time and shown in Figure 

4.13 for the first test case (𝑉𝑎
∗0 = 1.11, 𝑄∗0 = 0.422, 𝑡𝑐 = 0.50 𝑠, 𝑘 = 1.4 and 𝐻𝑟𝑒𝑠 = 0.30 𝑚). 

In this figure, the positive effects of the additional friction factor on the discharge and the air 

volume can be seen. It can be noticed that the behavior of the air pocket volume is opposite of the 

air pressure, which can be explained by the polytropic equation. The graph of the air volume also 

shows that the air pocket undergoes cycles of compression and expansion. 
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                                        (a)                                                                           (b) 

Figure 4.13  (a) the discharge, and (b) the air volume against time, calculated by the rigid column 

model with Polytechnic Montreal experimental data (𝑉𝑎
∗0 = 1.11, 𝑄∗0 = 0.422, 𝑡𝑐 = 0.50 𝑠,  

𝑘 = 1.4 and 𝐻𝑟𝑒𝑠 = 0.30 𝑚) 

The method used in the article is based on the calibration of an additional friction factor f' which 

has a form similar to the Darcy-Weisbach friction factor. The calibration of the factor C allows to 

consider without distinction all types of energy loss: pipe friction, air-water interaction, 

turbulence, eventual heat transfer, viscoelastic effect, etc. Therefore, it seems to be more practical 

and easy to implement. 

It is worth mentioning that in the method used in this article, the optimal calibration factor was 

obtained by using the experimental data for specific examples, which are considered as 

representatives of other examples. However, in future studies, an analytical formula may be 

obtained for the optimal factor 𝐶 without having to calibrate it experimentally. 

4.3.2 Zhou (2000) experimental data 

Some experiments of Zhou (2000) are also similar to those done in the laboratory of Polytechnic 

Montréal, besides other cases, in which the air release problems and the effects of orifice size 𝑑 

were studied. Thus, two cases of Zhou (2000) will be analyzed in this article, in which the air 

pocket is entrapped, i.e. 𝑑 = 0.  
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The supply pressure tank is 120 cm high and 42 cm in diameter. The pipe is horizontal and 8.96 

m long and consisted of two galvanized steel sections and one Plexiglas pipe section. Initially, 

the water and air occupying upstream and downstream, respectively, are separated by a valve. In 

both experiments, the non-dimensional reservoir pressure is 𝐻0
∗/𝐻𝑏

∗ = 2.43, in which 𝐻0
∗ 

represents the absolute reservoir pressure head equal to 𝐻𝑟𝑒𝑠 + 𝐻𝑎𝑡𝑚 and 𝐻𝑏
∗ represents the 

absolute atmospheric pressure head equal to 𝐻𝑎𝑡𝑚. Zhou (2000) assumes a polytropic coefficient 

𝑘 = 1.4 so the same value will be assumed for numerical comparison with Zhou (2000) test 

cases. 

The first test case is characterized by a relative water column length of 𝜆0 = 𝐿 𝐿𝑡⁄ = 0.56 (or a 

water column length 𝐿 = 5 𝑚), an acoustic wave speed of 𝑎 = 200 𝑚/𝑠, a steady-state friction 

factor of 𝑓 = 0.035 and a local head loss coefficient as 𝐾𝑙𝑜𝑠𝑠 = 0.093. 

The second test case is characterized by a relative water column length of 𝜆0 = 0.89 (or a water 

column length 𝐿 = 8 𝑚), an acoustic wave speed of 𝑎 = 700 𝑚/𝑠, a steady-state friction factor 

of 𝑓 = 0.035 and 𝐾𝑙𝑜𝑠𝑠 = 0.093. 

As shown in Figures 4.14 and 4.15, the additional friction factor helps to better approximate the 

pressure attenuation. A slight phase shift is observed and the reason for that was already 

discussed in the previous section. 
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                 (a)                                             (b)                   

Figure 4.14  The pressure of the air pocket against time for (a) RC, and (b) MOC with Zhou 

(2000)  (𝑉𝑎
∗0 = 88.4, 𝑄∗0 = 0, 𝜆0 = 0.56, 𝑘 = 1.4, 𝑑/𝐷 = 0, 𝑦/𝐷 = 0 and 𝐻0

∗/𝐻𝑏
∗ = 2.43) 

 

                 (a)                                             (b)                

   Figure 4.15  The pressure of the air pocket against time for (a) RC, and (b) MOC with Zhou 

(2000) (𝑉𝑎
∗0 = 22.1, 𝑄∗0 = 0, 𝜆0 = 0.89, 𝑘 = 1.4, 𝑑/𝐷 = 0, 𝑦/𝐷 = 0 and 𝐻0

∗/𝐻𝑏
∗ = 2.43) 
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4.3.3 Hatcher et al. (2015) experimental data 

Some of experiments of Hatcher et al. (2015), for which the reservoir volume size is 0.66 𝑚3 

with a plan area of 0.50 𝑚2, are also analysed in this paper. The test case chosen for comparison 

was carried out with a clear PVC pipeline of length 𝐿𝑝𝑖𝑝𝑒 = 10.7 𝑚, diameter 𝐷 = 0.053 𝑚 and 

slope 𝑆0 = 0.02. The other characteristics of this experiment are local head loss coefficient 

𝐾𝑙𝑜𝑠𝑠 = 2.9, initial air pocket volume 𝑉𝑎
∗0 = 1.29, and initial flow discharge 𝑄∗0 = 0.21. 

Since the steady-state friction factor (𝑓), the water level in the reservoir (𝐻𝑟𝑒𝑠) and the acoustic 

wave speed were not found in the article of Hatcher et al. (2015), it was assumed that 𝑓 is equal 

to 0.025, the water level in the reservoir was determined by the energy equation as 𝐻𝑟𝑒𝑠 =

0.204 𝑚, and the acoustic wave speed was approximated by Equation (4-22). 

Hatcher et al. (2015) assumes a polytropic coefficient with 𝑘 = 1.2 and used the dimensionless 

time 𝑡∗ = 𝑡/𝑉𝑎
1/3
/√𝑔𝐷. Thus, the same parameters will be used for numerical comparison with 

Hatcher et al. (2015) test case. As can be seen in Figure 4.16, similar to other test cases, the 

additional friction factor is also effective on this test case as well.  

                                        (a)                                                                           (b) 

Figure 4.16  The pressure of the air pocket against time for (a) RC, and (b) MOC with Hatcher et 

al. (2015) (𝑉𝑎
∗0 = 1.29, 𝑄∗0 = 0.21 and 𝑘 = 1.2) 
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4.4 Conclusion 

In this paper, the transient partially pressurized flow following the air entrapment caused by valve 

obstruction in a closed conduit has been studied and the effects of friction loss have been 

analyzed. Since the flow is unsteady, using the steady-state Darcy-Weisbach friction factor to 

calculate the friction losses is too simplified approximation. Thus, a formula has been proposed, 

in which the additional friction factor is a function of influential variables including the density 

and the length of air and water phases, and the reservoir pressure. This formula, based on the 

Darcy-Weisbach formula, has been optimized for two different air pocket sizes to show the effect 

of air pocket size on the friction loss.  

The ability of the proposed additional friction factor has been examined by solving different 

examples with different air and water lengths, different pipe diameters, different acoustic wave 

speeds, and different reservoir pressures. Two well-known mathematical models have been used 

for numerical calculation, which the results have been compared to the corresponding 

experimental data. These models include the rigid column model solved by the classical 4th order 

Runge-Kutta scheme, called RC, and a modified version of the Saint-Venant equations solved by 

method of characteristics, called MOC.  

It was found that both models by using the steady-state friction factor overestimate the pressure 

peak values and they predict insufficient pressure attenuation. However, by using the additional 

friction factor, both models calculate the peak values more accurately and predict the attenuation 

behaviors of the pressure distribution more properly. Although the additional friction factor was 

optimized for two specific examples, it was proved that it can help in similar problems and 

different mathematical models to improve the quality of the numerical solutions. Also, it was 

found that the magnitude of the additional friction factor has an inverse relation with the size of 

the air pocket. It was shown that the additional friction factor only has effects on damping the 

extra energy so that it offers the aforementioned improvements. Therefore, the phase shift that is 

observed between the experimental and numerical results is not due to this parameter. This phase 

shift was only observed for test cases with large air pocket sizes. Thus, it could be caused by the 

simplified thermodynamic model applied to the air pocket. This fact has been proved using a 

different polytropic coefficient, by which the phase shift between experimental data and 

numerical result can be removed.  
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CHAPTER 5 OTHER APPLICATION CASES OF THE ADDITIONAL 

FRICTION FACTOR 

5.1 Introduction 

The problem studied in this chapter is similar to Chapter 4. Compared to the experiments carried 

out in Chapter 4 in the hydraulics laboratory of “École Polytechnique de Montreal”, Hatcher et al. 

(2015) considered different pipe diameters 𝐷 = 53 𝑚𝑚 and 102 𝑚𝑚 and total lengths  

𝐿𝑝𝑖𝑝𝑒 = 10.7 and 12 𝑚 and adverse slopes 𝑆 = 2 and 1.3 %, respectively. In Chapter 4, only pressure 

graphs were plotted whereas Hatcher et al. (2015) also plotted flow rate hydrographs. Thus, it is 

useful to compare numerical models with experimental data of Hatcher et al. (2015). 

 

Figure 5.1  Illustration of the entrapped air pocket experiments of Hatcher et al. (2015) 

By assuming a vertical interface between air and water phases, the problem shown with a closed 

valve in Figure 5.1 is equivalent to the one shown in Figure 5.2. An equivalent pressurized zone 

is represented by the length of the rigid column 𝐿. 

 

Figure 5.2  Illustration of the equivalent problem of  Figure 5.1 represented by the length of the 

rigid column 𝐿 
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5.2 Methodology 

Note that the same models, the rigid column model and the method of characteristics model, as 

Chapter 4 will be used in this chapter. Each models will be explained with more details in this 

section than in Chapter 4. The water level in the reservoir is not given in Hatcher et al. (2015). 

Therefore, it is approximated with the Bernoulli equation applied between a point in the reservoir 

and the last point of the pressurized zone:  

𝐻𝑟𝑒𝑠 = −𝐿𝑆0 + (
𝑓𝐿

𝐷
+ 𝐾𝑙𝑜𝑠𝑠) ×

𝑄2

2𝑔𝐴2
. (5-1) 

A little error in the approximation of 𝐻𝑟𝑒𝑠 does not affect the following results found in this 

chapter, it just slightly modifies the value of the calibration factor 𝐶. The value of 𝐻𝑟𝑒𝑠 is 

between 0.2 and 0.3 𝑚 using equation (5-1).  

Hatcher et al. (2015) used dimensionless parameters (𝑡∗, 𝑄∗ and 𝑉𝑎
∗) to plot the graphs of pressure 

against time and discharge against time. The parameters are: 

Dimensionless time parameter : 𝑡∗ = 𝑡/𝑉𝑎
1/3
/√𝑔𝐷 (5-2) 

Dimensionless flow rate : 𝑄∗ = 𝑄/√𝑔𝐷5 (5-3) 

Dimensionless volume of air : 𝑉𝑎
∗ = 𝑉𝑎/𝐷

3 (5-4) 

The same dimensionless parameters will be used in this chapter. 

From Vasconcelos and Leite (2012) and Hatcher et al. (2015), the steady friction factor (Darcy-

Weisbach) 𝑓 = 0.025, the polytropic coefficient 𝑘 = 1.2, and the summation of local losses 

𝐾𝑙𝑜𝑠𝑠 = 2.9 will be used in this chapter. 

5.2.1 Rigid column model 

The concept of the rigid column model is based on neglecting the water compressibility so that 

the velocity and pressure are space-invariant variables throughout the pressurized flow, which is 

assumed as a rigid water column.  
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Following other references, exemplified by Hatcher et al. (2015), Vasconcelos and Leite (2012), 

Vasconcelos et al. (2011b), and Zhou et al. (2002), by using the rigid column model, the air-

water interface is assumed to be vertical so that the free-surface flow zone is neglected. Thus, the 

governing equations include the momentum equation of the water column, equation (5-5), and 

the continuity equation, equation (5-6), and the time derivative of the polytropic process 

relationship of the ideal gas law, equation (5-7), applied to the air pocket.  

𝑑𝑄

𝑑𝑡
=
𝑔𝐴

𝐿
[𝐻𝑟𝑒𝑠 − (𝐻𝑎𝑖𝑟 − 𝐻𝑎𝑡𝑚) − ((𝑓

𝐿

𝐷
+ 𝐾𝑙𝑜𝑠𝑠)

𝑄|𝑄|

2𝑔𝐴2
)], (5-5) 

𝑑𝑉𝑎
𝑑𝑡

= −𝑄, (5-6) 

𝑑𝐻𝑎𝑖𝑟
𝑑𝑡

= −𝑘
𝐻𝑎𝑖𝑟
𝑉𝑎

×
𝑑𝑉𝑎
𝑑𝑡
, (5-7) 

where 𝑡 is the time variable, 𝑄 is the discharge, 𝑉𝑎 is the air pocket volume, 𝐻𝑎𝑖𝑟 is the air phase 

absolute pressure head, 𝐻𝑎𝑡𝑚 is the atmospheric absolute pressure head, which is set to 10.33 m, 

𝐿 is the equivalent water column length, which is explained later. In addition, 𝐷 is the pipe 

diameter, 𝐴 is the cross-sectional area of the pipe, 𝑓 is the Darcy-Weisbach steady-state friction 

factor, 𝐾𝑙𝑜𝑠𝑠 is the summation of local losses, and 𝑘 is the polytropic coefficient.  

Note that the equivalent water column length is calculated as:  

𝐿 =
𝐿𝑝𝑖𝑝𝑒𝐴 − 𝑉𝑎

𝐴
, (5-8) 

to compensate for the water volume of the free-surface flow, which is neglected in applying the 

rigid column model.  

The set of equations (5-5), (5-6), and (5-7) of the rigid column model is solved by using the 

classical 4th order Runge-Kutta method as described in other references (e.g. Rokhzadi and 

Fuamba 2020a; Press et al. 2007). Considering a general ordinary differential equation (ODE) 

problem as: 

𝑑𝜓

𝑑𝑡
= 𝐹(𝜓), 

(5-9) 
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where 𝜓 is any time dependent variable and 𝐹 is any continuous function of 𝜓. The classical 4th 

order Runge-Kutta scheme uses four internal stages in which the solution of equation (5-9), 

shown as 𝜓𝑖 (i = 1,⋯ , 4), are calculated. Then, this scheme steps forward to calculate the 

solution at the final stage which is the time step n + 1. These calculations can be presented as 

follows: 

𝜓1 = 𝜓𝑛, 

(5-10) 

𝜓2 = 𝜓𝑛 +
1

2
∆𝑡𝐹(𝜓1), 

𝜓3 = 𝜓𝑛 +
1

2
∆𝑡𝐹(𝜓2), 

𝜓4 = 𝜓𝑛 + ∆𝑡𝐹(𝜓3), 

𝜓𝑛+1 = 𝜓𝑛 + ∆𝑡 [
1

6
𝐹(𝜓1) +

1

3
𝐹(𝜓2) +

1

3
𝐹(𝜓3) +

1

6
𝐹(𝜓4)], 

where ∆𝑡 is the time step size and the superscript 𝑛 represents the current time step. Note that the 

initial conditions will be explained later. 

In addition, for further clarification, the calculation procedure of the rigid column model is shown 

in Figure 5.3. 

 



52 

 

 

Figure 5.3  The calculations procedure for the rigid column model 

5.2.2 Method of characteristics model 

The governing equations for one-dimensional flow in closed conduits constitute a pair of partial 

differential equations (PDEs), which are the continuity and momentum equations, respectively, 

(Wylie and Streeter, 1993; Chaudhry. 2014): 

{
 

 
𝜕𝑉

𝜕𝑡
+ 𝑔

𝜕𝐻

𝜕𝑥
+
𝑓|𝑉|𝑉

2𝐷
= 0

𝜕𝐻

𝜕𝑡
+
𝑎²

𝑔

𝜕𝑉

𝜕𝑥
= 0               

, (5-11) 
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where 𝑉 is the water velocity, 𝐻 is the piezometric head, 𝑎 is the acoustic wave speed, and 𝑥 is 

the spatial variable along the pipe axis with the positive direction from the upstream to the 

downstream.  

The method of characteristics is a numerical method with first order of accuracy, which has been 

commonly used to solve the water hammer equations. The method of characteristics allows to 

transform the pair of PDEs, equation (5-10), into two ODEs along two positive and negative 

characteristics as presented below. Note that further details of this method can be found in other 

references (e.g. Wylie and Streeter 1993). 

Positive characteristic 𝐶+ : 
𝑔

𝑎

𝑑𝐻

𝑑𝑡
+
𝑑𝑉

𝑑𝑡
+
𝑓𝑉|𝑉|

2𝐷
= 0. (5-12) 

Negative characteristic 𝐶− : −
𝑔

𝑎

𝑑𝐻

𝑑𝑡
+
𝑑𝑉

𝑑𝑡
+
𝑓𝑉|𝑉|

2𝐷
= 0. (5-13) 

Note that the positive and negative characteristic lines, corresponding to (5-12) and (5-13) can be 

determined, respectively, by equations (5-14) and (5-15). 

𝑑𝑥

𝑑𝑡
= +𝑎.  (5-14) 

𝑑𝑥

𝑑𝑡
= −𝑎.  (5-15) 

Equations. (5-12) and (5-13) are called the compatibility equations. As shown in Figure 5.4, the 

unknown variables at the time step (n + 1) for a grid point (P) can be calculated using the 

solutions at R and S, corresponding to the current time step (n). Therefore, the compatibility 

equations, equations (5-12) and (5-13), are integrated along the characteristic lines 𝐶+, and 𝐶−, 

respectively, as presented in equations (5-16) and (5-17).  

𝐶+:   𝐻𝑃 = 𝐻𝑅 −
𝑎

𝑔𝐴
× (𝑄𝑃 −𝑄𝑅) −

𝑓∆𝑥

2𝑔𝐷𝐴2
𝑄𝑅|𝑄𝑅|. (5-16) 

𝐶−:   𝐻𝑃 = 𝐻𝑆 +
𝑎

𝑔𝐴
× (𝑄𝑃 − 𝑄𝑆) +

𝑓∆𝑥

2𝑔𝐷𝐴2
𝑄𝑆|𝑄𝑆|. (5-17) 
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Figure 5.4  The characteristic lines in the space-time plane 

It is possible that the characteristic lines C+ and C− do not intersect the time line exactly at grid 

points. Therefore, the intersection points R, and S can be different from the grid points A, and B. 

Since the pressure head and discharge values (H, Q) at grid points A and B are known, the 

pressure head and discharge at R (HR, QR) and at S (HS, QS) can be obtained by linear 

interpolations, as presented in equations (5-18) and (5-19). 

{
𝐻𝑅 = 𝐻𝑀 + 𝐶𝐹𝐿(𝐻𝐴 − 𝐻𝑀)

𝑄𝑅 = 𝑄𝑀 + 𝐶𝐹𝐿(𝑄𝐴 −𝑄𝑀)
. (5-18) 

{
𝐻𝑆 = 𝐻𝑃 + 𝐶𝐹𝐿(𝐻𝐵 − 𝐻𝑃)

𝑄𝑆 = 𝑄𝑃 + 𝐶𝐹𝐿(𝑄𝐵 − 𝑄𝑃)
. (5-19) 

It is known that the time step (𝛥𝑡) is calculated with the Courant-Friedrichs-Lewy (CFL) 

condition:  

∆𝑡 = 𝐶𝐹𝐿
∆𝑥

|𝑎| + 𝑚𝑎𝑥 (|𝑉|)
, (5-20) 

where ∆𝑥 is the size of the grid network and 𝑚𝑎𝑥(|𝑉|) represents the maximum of the absolute 

values of the velocity in the pressurized zone. Note that in the present paper, CFL is set to 0.9. It 

is worth mentioning that the number of nodes used to discretize the pressurized flow zone is 20. 

However, finer grid network sizes were also examined to confirm that the numerical solutions do 

not depend on the number of discretization nodes. 
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Note that equation (5-6) is used to calculate the air pocket volumetric change. Thus, the air 

pocket volume at the new time step is calculated as: 

𝑉𝑎
𝑛+1 = 𝑉𝑎

𝑛 − ∆𝑡𝑄𝑁
𝑛 , (5-21) 

by which the air pocket pressure head at the new time step is calculated using the polytropic 

process equation as: 

𝐻𝑎𝑖𝑟
𝑛+1 = 𝐻𝑎𝑖𝑟

𝑛 (
𝑉𝑎
𝑛+1

𝑉𝑎
𝑛 )

𝑘

. (5-22) 

Boundary conditions: 

For the first node of the pressurized flow zone at the upstream (the one near the reservoir), only 

the negative characteristic 𝐶−, which originates somewhere between the first and second nodes, 

can be used for the calculation. Thus, for the first node, the energy equation between the reservoir 

and the first node of the pressurized zone is used instead of the equation along the positive 

characteristic: 

𝐻1
𝑛+1 = (𝐻𝑟𝑒𝑠 + 𝐻𝑎𝑡𝑚) − (1 + 𝐾𝑙𝑜𝑠𝑠) ×

𝑄1
𝑛|𝑄1

𝑛|

2𝑔𝐴2
, (5-23) 

where the subscript (1) denotes the first node of the pressurized flow zone.   

For the last node of the pressurized flow zone (the one near the air pocket), only the equation 

along the positive characteristic 𝐶+ can be used. Therefore, instead of the negative characteristic 

line, the energy equation between the last node of the pressurized zone and the air pocket is used:  

𝐻𝑁
𝑛+1 = 𝐻𝑎𝑖𝑟

𝑛+1 −
𝑄𝑁
𝑛+1|𝑄𝑁

𝑛+1|

2𝑔𝐴2
, (5-24) 

where 𝑁 represents the last node of the pressurized flow zone. 
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In addition, for further clarification, the calculation procedure of the method of characteristics 

model is shown in Figure 5.5. 

 

 

Figure 5.5  The calculations procedure for the method of characteristics model 
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5.3 Results 

The code written in MATLAB for the rigid column model with an additional friction factor and a 

calibration factor 𝐶 can be found in Appendix A and the one for the method of characteristics  

can be found in Appendix B. 

5.3.1 Steady friction factor and polytropic coefficient k=1.2 

Hatcher et al. (2015) already showed the pressure hydrographs and flow rate hydrographs 

(Figures 5 and 6 of their article) obtained with the rigid column and the method of characteristics 

models with a steady friction factor and a polytropic coefficient 𝑘 = 1.2 for several sizes of air 

pocket. The pressure and flow rate hydrographs of test cases of Hatcher et al. (2015) were 

produced again in  

Figure 5.6, Figure 5.7, Figure 5.8, Figure 5.9, Figure 5.10, and Figure 5.11 with the numerical 

codes used in this project because the results with a steady friction factor and with an additional 

friction factor will be compared. Since some information were not given by Hatcher et al. (2015) 

such as the water level in the reservoir (𝐻𝑟𝑒𝑠) or the speed of the pressure wave (𝑎), the pressure 

peaks and discharge can be slightly different but the general behavior is preserved. 

 

Figure 5.6  The dimensionless air pocket (left) and dimensionless discharge (right) against time 

with steady friction factor for 𝑉𝑎
∗0 = 3.70, 𝑄∗0 = 0.21, 𝐷 = 0.102 𝑚, 𝐿 = 12𝑚, 𝑆0 = 1.3%, 

𝑘 = 1.2, and the experimental data of Hatcher et al. (2015) 
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Figure 5.7  The dimensionless air pocket (left) and dimensionless discharge (right) against time 

with steady friction factor for 𝑉𝑎
∗0 = 2.63, 𝑄∗0 = 0.15, 𝐷 = 0.053 𝑚, 𝐿 = 10.7 𝑚, 𝑆0 = 2%, 

𝑘 = 1.2, and the experimental data of Hatcher et al. (2015) 

 

 

Figure 5.8  The dimensionless air pocket (left) and dimensionless discharge (right) against time 

with steady friction factor for 𝑉𝑎
∗0 = 1.29, 𝑄∗0 = 0.21, 𝐷 = 0.053 𝑚, 𝐿 = 10.7 𝑚, 𝑆0 = 2%, 

𝑘 = 1.2, and the experimental data of Hatcher et al. (2015) 
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Figure 5.9  The dimensionless air pocket (left) and dimensionless discharge (right) against time 

with steady friction factor for 𝑉𝑎
∗0 = 1.10, 𝑄∗0 = 0.32, 𝐷 = 0.102 𝑚, 𝐿 = 12 𝑚, 𝑆0 = 1.3%, 

𝑘 = 1.2, and the experimental data of Hatcher et al. (2015) 

 

 

Figure 5.10  The dimensionless air pocket (left) and dimensionless discharge (right) against time 

with steady friction factor for 𝑉𝑎
∗0 = 0.51, 𝑄∗0 = 0.45, 𝐷 = 0.102 𝑚, 𝐿 = 12 𝑚, 𝑆0 = 1.3%, 

𝑘 = 1.2, and the experimental data of Hatcher et al. (2015) 
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Figure 5.11  The dimensionless air pocket (left) and dimensionless discharge (right) against time 

with steady friction factor for 𝑉𝑎
∗0 = 0.32, 𝑄∗0 = 0.41, 𝐷 = 0.053 𝑚, 𝐿 = 10.7 𝑚, 𝑆0 = 2%, 

𝑘 = 1.2, and the experimental data of Hatcher et al. (2015) 

The numerical pressure and discharge peaks are clearly overestimated with the steady-state 

friction factor. This overestimation is even greater for small air pockets. Phase shift can also be 

observed for certain air pocket sizes which can be especially seen in Figure 5.9, Figure 5.10, and 

Figure 5.11. Note that the phase shift can also be reported by Hatcher et al. (2015). 

5.3.2 Additional friction factor and polytropic coefficient k=1.2 

The results of the rigid column model, and the method of characteristics model with the 

additional friction factor and a constant polytropic coefficient 𝑘 = 1.2 are given in Figure 5.12, 

Figure 5.13, Figure 5.14, Figure 5.15, Figure 5.16 and Figure 5.17. The optimal factor 𝐶 is 

calculated for each size of air pocket. 
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Figure 5.12  The dimensionless air pocket (left) and dimensionless discharge (right) against time 

with additional friction factor for 𝑉𝑎
∗0 = 3.70, 𝑄∗0 = 0.21, 𝐷 = 0.102 𝑚, 𝐿 = 12 𝑚, 𝑆0 = 1.3%, 

𝑘 = 1.2, and the experimental data of Hatcher et al. (2015) 

 

 

Figure 5.13  The dimensionless air pocket (left) and dimensionless discharge (right) against time 

with additional friction factor for 𝑉𝑎
∗0 = 2.63, 𝑄∗0 = 0.15, 𝐷 = 0.053 𝑚, 𝐿 = 10.7 𝑚, 𝑆0 = 2%, 

𝑘 = 1.2, and the experimental data of Hatcher et al. (2015) 
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Figure 5.14  The dimensionless air pocket (left) and dimensionless discharge (right) against time 

with additional friction factor for 𝑉𝑎
∗0 = 1.29, 𝑄∗0 = 0.21, 𝐷 = 0.053 𝑚, 𝐿 = 10.7 𝑚, 𝑆0 = 2%, 

𝑘 = 1.2, and the experimental data of Hatcher et al. (2015) 

 

 

Figure 5.15  The dimensionless air pocket (left) and dimensionless discharge (right) against time 

with additional friction factor for 𝑉𝑎
∗0 = 1.10, 𝑄∗0 = 0.32, 𝐷 = 0.102 𝑚, 𝐿 = 12 𝑚, 𝑆0 = 1.3%, 

𝑘 = 1.2, and the experimental data of Hatcher et al. (2015) 
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Figure 5.16  The dimensionless air pocket (left) and dimensionless discharge (right) against time 

with additional friction factor for 𝑉𝑎
∗0 = 0.51, 𝑄∗0 = 0.45, 𝐷 = 0.102 𝑚, 𝐿 = 12 𝑚, 𝑆0 = 1.3%, 

𝑘 = 1.2, and the experimental data of Hatcher et al. (2015) 

 

 

Figure 5.17  The dimensionless air pocket (left) and dimensionless discharge (right) against time 

with additional friction factor for 𝑉𝑎
∗0 = 0.32, 𝑄∗0 = 0.41, 𝐷 = 0.053 𝑚, 𝐿 = 10.7 𝑚, 𝑆0 = 2%, 

𝑘 = 1.2, and the experimental data of Hatcher et al. (2015) 
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Adding the additional friction factor allows to increase the attenuation of the pressure and 

discharge compared to the steady-state friction factor. The additional friction factor helps to 

improve the accuracy of the pressure graphs for large air pockets (𝑉𝑎
∗0 ≥ 1.29) as shown in 

Figure 5.12, Figure 5.13, Figure 5.14 and the phase shift is little. However, for small air pockets 

(𝑉𝑎
∗0 ≤ 1.10), the phase shift becomes very noticeable as shown in Figure 5.15, Figure 5.16 and 

Figure 5.17 and the numerical pressure peaks can also be very different from the experimental 

ones, particularly in the case of 𝑉𝑎
∗0 = 0.32 shown in Figure 5.17. The reason for the poor 

behavior in cases with small air pocket volumes for the rigid column and the method of 

characteristics is supposed to be due to the phase shift which is influenced by the value of 𝑘. 

Using a polytropic coefficient 𝑘 = 1.2 for small air pockets for both models leads to a phase shift 

between experimental and numerical results regardless if the friction factor used is the steady-

state friction factor (Figure 5.9, Figure 5.10, and Figure 5.11 or Hatcher et al. (2015)) or the 

additional friction factor (Figure 5.15, Figure 5.16 and Figure 5.17).    

It can be observed that with the additional friction factor, the numerical results (pressure and 

discharge) obtained with the rigid column model are very close to the ones obtained with the 

method of characteristics for every initial air pocket volume 𝑉𝑎
∗0 ∈ {0.94; 1.05; 1.11; 1.68; 1.83}. 

This is not the case with only the steady-state friction factor because the pressure and the 

discharge peaks simulated by the rigid column approach are greater in absolute value than the 

corresponding peaks of the method of characteristics, as shown in Figure 5.10 and Figure 5.11. 

5.3.3 Additional friction factor and polytropic coefficient k=1.2 

As seen in Chapter 4, the polytropic coefficient 𝑘 influences the phase of the numerical pressure 

graph. In order to obtain a similar phase between the numerical and experimental pressure peaks, 

the polytropic coefficient 𝑘 was changed by trial and error. The results are given in Figure 5.18, 

Figure 5.19, Figure 5.20, Figure 5.21, Figure 5.22, and Figure 5.23. 
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Figure 5.18  The dimensionless air pocket (left) and dimensionless discharge (right) against time 

with additional friction factor for 𝑉𝑎
∗0 = 3.70, 𝑄∗0 = 0.21, 𝐷 = 0.102 𝑚, 𝐿 = 12 𝑚, 𝑆0 = 1.3%, 

𝑘 = 1.1, and the experimental data of Hatcher et al. (2015) 

 

 

Figure 5.19  The dimensionless air pocket (left) and dimensionless discharge (right) against time 

with additional friction factor for 𝑉𝑎
∗0 = 2.63, 𝑄∗0 = 0.15, 𝐷 = 0.053 𝑚, 𝐿 = 10.7 𝑚, 𝑆0 = 2%, 

𝑘 = 1.3, and the experimental data of Hatcher et al. (2015) 
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Figure 5.20  The dimensionless air pocket (left) and dimensionless discharge (right) against time 

with additional friction factor for 𝑉𝑎
∗0 = 1.29, 𝑄∗0 = 0.21, 𝐷 = 0.053 𝑚, 𝐿 = 10.7 𝑚, 𝑆0 = 2%, 

𝑘 = 1.1, and the experimental data of Hatcher et al. (2015) 

 

 

Figure 5.21  The dimensionless air pocket (left) and dimensionless discharge (right) against time 

with additional friction factor for 𝑉𝑎
∗0 = 1.10, 𝑄∗0 = 0.32, 𝐷 = 0.102 𝑚, 𝐿 = 12 𝑚, 𝑆0 = 1.3%, 

𝑘 = 0.75, and the experimental data of Hatcher et al. (2015) 
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Figure 5.22  The dimensionless air pocket (left) and dimensionless discharge (right) against time 

with additional friction factor for 𝑉𝑎
∗0 = 0.51, 𝑄∗0 = 0.45, 𝐷 = 0.102 𝑚, 𝐿 = 12 𝑚, 𝑆0 = 1.3%, 

𝑘 = 0.6, and the experimental data of Hatcher et al. (2015) 

 

 

Figure 5.23  The dimensionless air pocket (left) and dimensionless discharge (right) against time 

with additional friction factor for 𝑉𝑎
∗0 = 0.32, 𝑄∗0 = 0.41, 𝐷 = 0.053 𝑚, 𝐿 = 10.7 𝑚, 𝑆0 = 2%, 

𝑘 = 0.57, and the experimental data of Hatcher et al. (2015) 
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The results given by adapting the value of 𝑘 show that the pressure attenuation and the pressure 

phase are better captured. The discharge 𝑄∗ approximation is also improved by adapting the 

value of 𝑘. From the literature, the value of the polytropic coefficient 𝑘 may influence the 

concordance between the numerical and experimental results (Bousso et al., 2013a and 2013b). 

The value of 𝑘 is generally chosen by authors in order to have the best concordance between 

numerical and experimental results. For a given diameter 𝐷, when the initial discharge 𝑄∗0 

increases, the initial volume of the air pocket 𝑉𝑎
∗0 decreases. Depending on the volume of the air 

pocket, the heat transfer may vary and therefore the polytropic coefficient 𝑘 may vary too.  

Martin (1976), Lee and Martin (1999), Zhou et al. (2002), León et al. (2008) and Chaudhry and 

Reddy (2011) used numerical models with a polytropic coefficient ranging from 1 to 1.4.  

However, Lee (2005) indicated that since the transient flow in SWSs is a fast process so that the 

adiabatic assumption (𝑘 = 1.4) is more relevant. In addition, Wan et al. (2010) studied transient 

flows in a rapidly filling horizontal pipe containing trapped air and simulated the problem with a 

numerical model based on the rigid column model. By comparing different values of 𝑘 (1.0001; 

1.2 and 1.4), they observed that the polytropic coefficient 𝑘 = 1.4 gave the closest numerical 

results to the experimental values. This value of 𝑘 = 1.4 was also the one chosen for the 

numerical simulation of Chapter 4 to compare with the results of the experiments carried out in 

the Hydraulics laboratory of  “École Polytechnique de Montréal”. It corresponds to an adiabatic 

process without heat transfer. However, Bousso and Fuamba (2013b) mentioned that ideal 

adiabatic (𝑘 = 1.4) or isothermal (𝑘 = 1) conditions are rarely verified in experiments. Assuming 

an identical 𝑘 value for each size of air pocket may be questionable. 

In addition, the phase shift does not seem to be exclusive to the rigid column and the method of 

characteristics. Vasconcelos et al. (2011) observed that for smaller air pockets the rigid column 

model and the Two-component approach (TPA) were less accurate and were unable to properly 

replicate the oscillation period. Thus, a phase shift was also observed for certain size of air pocket 

with TPA.  

By quoting Bousso et al. (2013):  

“It seems obvious that further investigation is needed to enable a better choice of 

coefficient 𝑘 that considers the air ratio, the air cavity size, the type of equations, and 

the test conditions”.   
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This statement is reinforced by the results obtained in Chapters 4 and 5.  

5.4 Conclusion 

It was shown that using the calibrated additional friction factor in the rigid column model and the 

method of characteristics could lead to more accurate results with a better energy dissipation. It 

was also observed that for some test cases of Hatcher et al. (2015), there was a great discrepancy 

between numerical and experimental results. The phase shift was corrected by adapting the value 

of 𝑘 by trial and error, but unfortunately this technique is not predictive.   
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CHAPTER 6 A SHOCK FITTING APPROACH APPLIED TO AIR 

POCKET ENTRAPMENT IN TRANSIENT FLOW 

6.1 Introduction 

In this chapter, similar to the previous chapters, a pipe segment is linked to a reservoir at 

upstream end and the air pocket is located at the downstream. The upstream flow is pressurized 

whereas the downstream flow is free-surface. The downstream end is suddenly closed with a 

valve and the air pocket is entrapped. However, in Chapters 4 and 5, the rigid column and the 

method of characteristics models were used by considering only the pressurized zone and the air 

pocket. The purpose of this chapter is to propose a model, which integrates this free-surface flow 

component in order to more accurately simulate the air pocket entrapment than the two previous 

models that neglect the free-surface flow. This new model proposed in this chapter considers the 

effect of the pressurized zone, the free-surface zone, and the air pocket. It uses the method of 

characteristics in a shock-fitting approach with a movable interface separating the pressurized 

flow and the free-surface flow. 

Some shock-fitting approaches were already suggested to simulate the air pocket problem such as 

the ones of Rokhzadi and Fuamba (2019, 2020b). These shock-fitting approaches use the rigid 

column model for the pressurized zone and the method of characteristics to solve the set of Saint-

Venant equations in the free-surface zone. In this present shock-fitting approach, the method of 

characteristics will be applied in both pressurized and free-surface regions. This new shock-

fitting approach is part of the family of the interface tracking models (Bousso et al. 2013). 

The code written in MATLAB for the shock-fitting approach developed in this chapter can be 

found in Appendix C.  
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Figure 6.1  The steps in applying the shock-fitting approach 

 

As shown in Figure 6.1, the shock-fitting approach is applied as 

1 → 2 → 3 → 4 → 5 → 6 but can also be 3 → 4 → 1 → 2 → 5 → 6 without changing the results. 

6.2 Shock-fitting approach 

The time step 𝛥𝑡′ of the pressurized zone is calculated with the Courant-Friedrichs-Lewy (CFL) 

condition (Rokhzadi and Fuamba, 2020b):  

∆𝑡′ = 𝐶𝐹𝐿
∆𝑥

|𝑎| + 𝑚𝑎𝑥 (|𝑉𝑢|)
 (6-1) 

where 𝑚𝑎𝑥 (|𝑉𝑢|) represents the maximum of the absolute values of the velocity in the 

pressurized zone. The Courant number is set equal to 𝐶𝐹𝐿 = 0.9. 

The time step 𝛥𝑡′′ of the free-surface zone is calculated with: 

∆𝑡′′ = 𝐶𝐹𝐿
∆𝑥

|𝑐| + 𝑚𝑎𝑥 (|𝑉|)
 (6-2) 
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where 𝑚𝑎𝑥 (|𝑉|) represents the maximum of the absolute values of the velocity in the free-

surface zone. The time step ∆𝑡 is set to the minimum of ∆𝑡′ and ∆𝑡′′:  

∆𝑡 = min(∆𝑡′, ∆𝑡′′). (6-3) 

To initialise the pressure values of the free-surface flow for the shock-fitting model, the steady 

state solution for the free-surface flow need to be known. The water depth in the free-surface 

region was studied by several authors. Montes (1997) studied the transition to a free-surface flow 

at the end of a circular horizontal conduit. He determined the cavity profile at the end of the pipe 

with the x-ψ method. The cavity profile found numerically was similar to the one found 

experimentally. The water depth of the free-surface flow at the end of the pipe is between 0.5𝐷 

and 0.6𝐷 with 𝐷 the diameter of the pipe. According to Benjamin (1968) and Alves et al. (1993), 

by neglecting surface tension, the free-surface depth in steady conditions is equal to 0.563𝐷 for a 

horizontal pipe. For the experimental data of Hatcher et al. (2015), the slope is low so the free-

surface depth in steady conditions is assumed to be around 0.563𝐷.     

The initial length of the pressurized zone 𝐿𝑢
0  is calculated with equation (6-4): 

𝐿𝑢
0 =

𝐿𝑝𝑖𝑝𝑒(𝐴 − 𝐴𝑡) − 𝑉𝑎
0

(𝐴 − 𝐴𝑡)
, (6-4) 

where 𝐴𝑡 is the cross-sectional area of the channel, 𝐴 is the cross-sectional area of the pipe, 𝐿𝑝𝑖𝑝𝑒 

is the length of the pipe and 𝑉𝑎
0 is the initial volume of air. 

6.2.1 Method of Characteristics – Free-surface flow equations  

The downstream free-surface flow is governed by the Saint-Venant equations, referred as the 

continuity equation  (6-5) and the momentum equation (6-6) (Chaudhry, 2007; 2014) : 

𝜕𝑦

𝜕𝑡
+ 𝑉

𝜕𝑦

𝜕𝑥
+
𝐴

𝐵

𝜕𝑉

𝜕𝑥
= 0, (6-5) 

𝑔
𝜕𝑦

𝜕𝑥
+
𝜕𝑉

𝜕𝑡
+ 𝑉

𝜕𝑉

𝜕𝑥
= 𝑔(𝑆0 − 𝑆𝑓), (6-6) 
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where 𝑉 is the velocity, 𝑦 is the flow depth, 𝐴 is the flow area, 𝐵 is the top water surface width, 

𝑆0 is the channel bottom slope, 𝑆𝑓 is the slope of the energy grade line, 𝑥 is the distance along the 

channel length, 𝑡 is the time and 𝑔 is the gravitational acceleration.  

From (Chaudhry 2007), the positive and negative characteristic lines correspond to the equations 

(6-7) and (6-8): 

𝑑𝑥

𝑑𝑡
= 𝑉 + 𝑐,  (6-7) 

𝑑𝑥

𝑑𝑡
= 𝑉 − 𝑐.  (6-8) 

By using the same notations as the Figure 5.4, the free-surface depth 𝑦 and velocity 𝑣 at the 

points 𝑅 (𝑦𝑅, 𝑣𝑅) and 𝑆 (𝑦𝑆, 𝑣𝑆) are obtained by linear interpolations:  

{
𝑦𝑅 = 𝑦𝑀 + 𝐶𝐹𝐿(𝑦𝐴 − 𝑦𝑀)

𝑣𝑅 = 𝑣𝑀 + 𝐶𝐹𝐿(𝑣𝐴 − 𝑣𝑀)
, (6-9) 

{
𝑦𝑆 = 𝑦𝑃 + 𝐶𝐹𝐿(𝑦𝐵 − 𝑦𝑃)

𝑣𝑆 = 𝑣𝑃 + 𝐶𝐹𝐿(𝑣𝐵 − 𝑣𝑃)
. (6-10) 

The two compatibility equations are written as the equations (6-11) and (6-12) : 

𝐶+:   𝑦𝑃 = 𝑦𝑅 − 𝑐𝑅 × (
𝑣𝑃 − 𝑣𝑅
𝑔

) − 𝑐𝑅(𝑆𝑓 − 𝑆0)𝑅 × ∆𝑡, (6-11) 

𝐶−:   𝑦𝑃 = 𝑦𝑆 + 𝑐𝑆 × (
𝑣𝑃 − 𝑣𝑆
𝑔

) + 𝑐𝑆(𝑆𝑓 − 𝑆0)𝑆 × ∆𝑡. (6-12) 

The system of equations constituted by the equations (6-11) and (6-12) yields to the following 

equations (6-13), (6-14), (6-15), and (6-16) which allow to calculate the pressure and the 

discharge at the point 𝑃 (𝑦𝑃, 𝑣𝑝): 

𝐷𝑞 = 𝑣𝑅 + (
𝑔

𝑐𝑅
)𝑦𝑅 + 𝑔(𝑆0 − 𝑆𝑓)𝑅 × ∆𝑡, (6-13) 

𝐷𝑛 = 𝑣𝑆 − (
𝑔

𝑐𝑆
) 𝑦𝑆 + 𝑔(𝑆0 − 𝑆𝑓)𝑆 × ∆𝑡, (6-14) 
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𝑦𝑃 = (𝐷𝑞 − 𝐷𝑛)/(
𝑔

𝑐𝑅
+
𝑔

𝑐𝑆
), (6-15) 

𝑣𝑃 = 𝐷𝑛 +
𝑔

𝑐𝑆
𝑦𝑃. (6-16) 

 

The slope of the energy grade 𝑆𝑓 is obtained by using the Manning equation (6-17):  

𝑆𝑓 =
𝑛² × 𝑣²

(𝑅ℎ)4/3
, (6-17) 

where 𝑛 is the Manning coefficient assumed equal to 𝑛 = 0.009 (Rokhzadi and Fuamba 2019), 𝑣 

the flow velocity in the free-surface zone and 𝑅ℎ the hydraulic radius. 

 

Figure 6.2  Definition of variables in the free-surface region 

From Figure 6.2, the angle 𝜃 is equal to: 

𝜃 = 2 × acos(

𝐷
2
− 𝑦

𝐷
2

). (6-18) 

The cross-sectional area 𝐴𝑡 of the channel is equal to:   

𝐴𝑡 = (
𝐷2

8
) × (𝜃 − sin(𝜃)). (6-19) 
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The celerity of the gravity wave 𝑐 is obtained with the following equation (6-20) (León, 2007):  

𝑐 = √
𝑔𝐴

𝐵
= √𝑔

𝐷

8 √
𝜃 − sin (𝜃)

sin (
𝜃
2)

. (6-20) 

When calculating the gravity wave speed of 𝑅 and 𝑆, the gravity wave speed 𝑐 can either be 

calculated with the equation (6-20) applied to 𝑅 and 𝑆, or be calculated with the interpolation 

equations (6-21) and (6-22) :  

𝑐𝑅 = 𝑐𝑀 + 𝐶𝐹𝐿(𝑐𝐴 − 𝑐𝑀), (6-21) 

𝑐𝑆 = 𝑐𝑃 + 𝐶𝐹𝐿(𝑐𝐵 − 𝑐𝑃). (6-22) 

6.2.2 Boundary condition; Outlet of the free-surface flow (closed downstream) 

The downstream end is closed so the velocity of the last node of the free-surface zone is 𝑣𝑛 = 0. 

The positive characteristic 𝐶+ equation (6-11) is used to find the depth 𝑦𝑛 of the last node of the 

free-surface zone: 

𝑦𝑛 = 𝑦𝑅 − 𝑐𝑅 × (
𝑣𝑛 − 𝑣𝑅
𝑔

) − 𝑐𝑅(𝑆𝑓 − 𝑆0)𝑅 × ∆𝑡. (6-23) 

6.2.3 Boundary condition; Inlet of the pressurized zone (near the reservoir) 

The energy equation (6-24) is used between the reservoir and the first node of the pressurized 

zone to determine the pressure of the first node of the pressurized zone 𝐻0: 

𝐻0 = 𝐻𝑟𝑒𝑠 − (1 + 𝐾𝑙𝑜𝑠𝑠) ×
𝑣0
2

2𝑔
. (6-24) 

The negative characteristic 𝐶− equation (6-25) is used to find the velocity of the first node of the 

pressurized zone 𝑣0: 

𝑣0 = 𝑣𝑆 − (
𝑔

𝑎
)𝐻𝑆 + 𝑔(𝑆0 − 𝑆𝑓)𝑆 × ∆𝑡 +

𝑔

𝑎
𝐻0. (6-25) 
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6.2.4 Method of characteristics; Pressurized flow 

The upstream pressurized flow is governed by the water hammer equations, referred as the 

continuity equation (6-26) and the momentum equation (6-27) (Chaudhry, 2014; Wylie and 

Streeter, 1993): 

𝜕𝐻

𝜕𝑡
+ 𝑉

𝜕𝐻

𝜕𝑥
+
𝑎²

𝑔

𝜕𝑉

𝜕𝑥
= 0, (6-26) 

𝑔
𝜕𝐻

𝜕𝑥
+
𝜕𝑉

𝜕𝑡
+ 𝑉

𝜕𝑉

𝜕𝑥
= 𝑔(𝑆0 − 𝑆𝑓), 

(6-27) 

where 𝑉 is the velocity, 𝐻 is the piezometric head, 𝑎 is the water hammer wave velocity, 𝑆0 is the 

channel bottom slope, 𝑆𝑓 is the slope of the energy grade line, 𝑥 is the distance along the channel 

length, 𝑡 is the time and 𝑔 is the gravitational acceleration.  

From Wylie and Streeter (1993), the positive and negative characteristic lines correspond to the 

equations (6-28) and (6-29): 

𝑑𝑥

𝑑𝑡
= 𝑉 + 𝑎,  (6-28) 

𝑑𝑥

𝑑𝑡
= 𝑉 − 𝑎.  (6-29) 

By using the same notations as Figure 5.4, the piezometric head 𝐻 and velocity 𝑣 at the points 𝑅 

(𝐻𝑅, 𝑣𝑅) and 𝑆 (𝐻𝑆, 𝑣𝑆) are obtained by linear interpolations:  

{
𝐻𝑅 = 𝐻𝑀 + 𝐶𝐹𝐿(𝐻𝐴 − 𝐻𝑀)

𝑣𝑅 = 𝑣𝑀 + 𝐶𝐹𝐿(𝑣𝐴 − 𝑣𝑀)
, (6-30) 

{
𝐻𝑆 = 𝐻𝑃 + 𝐶𝐹𝐿(𝐻𝐵 −𝐻𝑃)

𝑣𝑆 = 𝑣𝑃 + 𝐶𝐹𝐿(𝑣𝐵 − 𝑣𝑃)
. (6-31) 

The two compatibility equations are written as the equations (6-32) and (6-33): 

𝐶+:   𝐻𝑃 = 𝐻𝑅 − 𝑎 × (
𝑣𝑃 − 𝑣𝑅
𝑔

) − 𝑎(𝑆𝑓 − 𝑆0)𝑅 × ∆𝑡, (6-32) 
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𝐶−:   𝐻𝑃 = 𝐻𝑆 + 𝑎 × (
𝑣𝑃 − 𝑣𝑆
𝑔

) + 𝑎(𝑆𝑓 − 𝑆0)𝑆 × ∆𝑡. (6-33) 

The system of equations constituted by the equations (6-32) and (6-33) yields to the following 

equations (6-13), (6-14), (6-15), and (6-16) which allow to calculate the pressure and the 

discharge at the point 𝑃 (𝐻𝑃, 𝑣𝑝): 

𝐷𝑞 = 𝑣𝑅 + (
𝑔

𝑎
) 𝑦𝑅 + 𝑔(𝑆0 − 𝑆𝑓)𝑅 × ∆𝑡, (6-34) 

𝐷𝑛 = 𝑣𝑆 − (
𝑔

𝑎
)𝑦𝑆 + 𝑔(𝑆0 − 𝑆𝑓)𝑆 × ∆𝑡, (6-35) 

𝐻𝑃 =
𝐷𝑞 − 𝐷𝑛
2𝑔
𝑎

, (6-36) 

𝑣𝑃 = 𝐷𝑛 +
𝑔

𝑎
𝐻𝑃. (6-37) 

6.2.5 Air pocket equations 

The air pocket is modelled with the ideal gas law and the polytropic process represented by 

equation (6-38): 

𝑑𝐻𝑎𝑖𝑟
𝑑𝑇

= 𝑘
𝐻𝑎𝑖𝑟
𝑉𝑎

𝑑𝑉𝑎
𝑑𝑇
. (6-38) 

 

 

Figure 6.3  Calculation of the air pocket volume 
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As seen in Figure 6.3, the new air pocket volume 𝑉𝑎
𝑛+1 at time 𝑛 + 1 is calculated with the value 

𝑉𝑎
𝑛 at the previous time step: 

𝑉𝑎
𝑛+1 = 𝑉𝑎

𝑛 − ∆𝑡 × 𝐴 × 𝑣𝑢, (6-39) 

where 𝑣𝑢 represents the velocity of the last node of the pressurized zone. 

Equation (6-38) can be expressed as equation (6-40) to calculate the air pressure 𝐻𝑎𝑖𝑟
𝑛+1 at time 

𝑛 + 1 with the value 𝐻𝑎𝑖𝑟
𝑛  at the previous time step : 

𝐻𝑎𝑖𝑟
𝑛+1 = 𝐻𝑎𝑖𝑟

𝑛 × (
𝑉𝑎
𝑛

𝑉𝑎
𝑛+1)

𝑘. (6-40) 

6.2.6 Interface equations 

The shock-fitting approach used in this chapter assumes a unique surge front. To introduce the 

interface equations, some notions need to be introduced. The theory is based on the concepts of 

positive and negative interfaces as shown in Figure 6.4 in stationary coordinate system. The 

positive interface, also called advancing interface, is defined as an interface moving in direction 

of the open-channel flow, causing the pipe to pressurize or fill up. The negative interface, also 

called retreating interface, is defined as an interface moving in direction of the region of the 

pressurized flow which means that the pipe depressurizes.  

 

 

Figure 6.4  Negative interface moving from dowstream to upstream (left illustration) and positive 

interface moving from upstream to downstream (right illustration) in stationary coordinate 

system (inspired by Cardle, 1984; Song et al., 1983; Fuamba, 2002) 
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In order to express the equations of the positive and negative interfaces, the stationary coordinate 

system of Figure 6.4 need to be expressed in a moving coordinate as shown in Figure 6.5. 

 

Figure 6.5  Negative interface moving from dowstream to upstream (left illustration) and positive 

interface moving from upstream to downstream (right illustration) in stationary coordinates in a 

moving coordinate system (inspired by Cardle, 1984; Song et al., 1983; Fuamba, 2002) 

 

 

Figure 6.6  Typical x-t grid system near a negative interface (left illustration) and near a positive 

interface (right illustration) 

For the positive interface moving from upstream to downstream, the fluid in moving coordinate 

system moves from right to left across, from the supercritical to the subcritical condition (Cardle, 

1984). By denoting 𝐹𝑟1 as the Froude number in the pressurized zone and 𝐹𝑟2 as the Froude 

number in the free-surface zone, it yields to:      

𝐹𝑟1 < 1 < 𝐹𝑟2     ⇔     
(𝐹𝑙𝑜𝑤 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦)1 

(𝑊𝑎𝑣𝑒 𝑠𝑝𝑒𝑒𝑑)1
< 1 <

(𝐹𝑙𝑜𝑤 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦)2 

(𝑊𝑎𝑣𝑒 𝑠𝑝𝑒𝑒𝑑)2
 (6-41) 
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Therefore the following condition holds:  

𝑎 + 𝑣2 > 𝑊 > 𝑐 + 𝑣1. (6-42) 

The position of the interface is determined by the relation 
𝑑𝐿

𝑑𝑡
= 𝑊, in which 𝑊 represents the 

slope of the interface trajectory of the interface in the x-t plane shown in Figure 6.6. Because the 

slope of the positive 𝐶2
+ characteristic of the pressurized region is  

𝑑𝑥

𝑑𝑡
= (𝑎 + 𝑣2) and that of the 

positive 𝐶1
+ characteristic of the open-channel flow is 

𝑑𝑥

𝑑𝑡
= (𝑐 + 𝑣1), the inequality (6-42) 

guarantees that the characteristic equations 𝐶2
+, 𝐶1

+, and 𝐶1
− are applicable for the positive 

interface moving from upstream to downstream. 

A similar reasoning is done for the negative interface moving from the downstream to upstream 

to obtain that the characteristic equations 𝐶2
+ and 𝐶1

− are applicable in the case of negative 

interface moving (Cardle 1984). 

Positive interface moving downstream: 

Inspired by Cardle (1984), the equations for the positive interface advancing downstream are the 

following equations (6-43), (6-44), (6-45), (6-46), and (6-47): 

𝐶1
+ ∶ 𝑦𝑃1 − 𝑦𝑅1 +

𝑐𝑅1(𝑣𝑃1 − 𝑣𝑅1)

𝑔
+ 𝑐𝑅1(𝑆𝑓 − 𝑆0)𝛥𝑡 = 0, (6-43) 

𝐶1
− ∶  𝑦𝑃1 − 𝑦𝑆1 −

𝑐𝑆1(𝑣𝑃1 − 𝑣𝑆1)

𝑔
+ 𝑐𝑆1(𝑆𝑓 − 𝑆0)𝛥𝑡 = 0, (6-44) 

𝐶2
+  ∶  𝑦𝑃2 − 𝑦𝑅2 −

𝑐𝑆1(𝑣𝑃1 − 𝑣𝑆1)

𝑔
+ 𝑎(𝑆𝑓 − 𝑆0)𝛥𝑡 = 0, (6-45) 

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 ∶ (𝑣𝑃1 −𝑊)𝐴1 = (𝑣𝑃2 −𝑊)𝐴2, (6-46) 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 ∶ 𝜌𝑔(𝑦𝑃2 − 0.5𝐷)𝐴2 − 𝐹̅ − 𝜌𝑔𝐴𝐻𝑎𝑖𝑟 = 𝜌𝐴2(𝑣𝑃1 −𝑊)(𝑣𝑃1 − 𝑣𝑃2). (6-47) 

The average pressure of the water column over the cross-sectional area 𝑝̅ and the corresponding 

force 𝐹̅ are calculated with the following equation (6-48) (León, 2007):  
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𝐹̅ = 𝑝̅𝐴1 =
𝜌𝑔

12
[(3𝐷2 − 4𝐷𝑦 + 4𝑦2)√𝑦(𝐷 − 𝑦) − 3𝐷2(𝐷 − 2𝑦) arctan (

√𝑦

√𝑑 − 𝑦
)]. (6-48) 

Note that 𝐹̅ is equal to 𝜌𝑔𝑦1̅̅ ̅𝐴1, in which 𝑦1̅̅ ̅ is the distance from the water surface to the gravity 

center of cross-sectional area in the free-surface zone. The initial idea behind equation (6-48) 

instead of 𝐹̅ = 𝜌𝑔𝑦1̅̅ ̅𝐴1 is because assuming 𝐹̅ = 𝜌𝑔𝑦1̅̅ ̅𝐴1 means that the pressure is hydrostatic, 

which could be a questionable assumption since the flow is transient. However, it was observed 

that using 𝐹̅ = 𝜌𝑔𝑦1̅̅ ̅𝐴1 or formula (6-48) did not make much difference in the results. Thus, 

both formulas can be used. 

Only three equations are required to solve the system of equations for the positive interface 

moving downstream (León et al., 2010). The only three equations to solve are the equations 

(6-45), (6-46), and (6-47). The equations (6-43) and (6-44) are not necessary.  

Negative interface moving upstream: 

Inspired by Cardle (1984), the equations for the negative interface moving upstream are the 

following equations (6-50), (6-51), (6-52), (6-53), (6-54), (6-55), and (6-56): 

𝐶2
+  ∶  𝑦𝑃2 − 𝑦𝑅2 +

𝑎(𝑣𝑃2 − 𝑣𝑆2)

𝑔
+ 𝑎(𝑆𝑓 − 𝑆0)𝛥𝑡 = 0, (6-49) 

𝐶1
− ∶  𝑦𝑃1 − 𝑦𝑆1 −

𝑐𝑆1(𝑣𝑃1 − 𝑣𝑆1)

𝑔
− 𝑐𝑆1(𝑆𝑓 − 𝑆0)𝛥𝑡 = 0, (6-50) 

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 ∶ (𝑣𝑃1 −𝑊)𝐴1 = (𝑣𝑃2 −𝑊)𝐴2, (6-51) 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 ∶ 𝜌𝑔(𝑦𝑃2 − 0.5𝐷)𝐴2 − 𝐹̅ − 𝜌𝑔𝐴𝐻𝑎𝑖𝑟 = 𝜌𝐴2(𝑣𝑃2 −𝑊)(𝑣𝑃1 − 𝑣𝑃2), (6-52) 

𝑐𝑆1 = √𝑔
𝐷

8 √
𝜃 − sin (𝜃)

sin (
𝜃
2)

, (6-53) 

𝑦𝑃1 = (
𝐷

2
) × (1 − cos (

𝜃

2
)), (6-54) 
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𝐹̅ =
𝜌𝑔

12
[(3𝐷2 − 4𝐷𝑦 + 4𝑦2)√𝑦(𝐷 − 𝑦) − 3𝐷2(𝐷 − 2𝑦) arctan (

√𝑦

√𝑑 − 𝑦
)], (6-55) 

𝐴1 = (
𝐷2

8
) × (𝜃 − sin(𝜃)). (6-56) 

6.3 Results 

It is worth mentioning that if, for iterative approaches, the Newton-Raphson algorithm is used, 

the code can become unstable when there are large discontinuities because this algorithm can 

diverge. The instability is a common aspect with shock-fitting approaches using MOC where 

there is a major discontinuity (Bousso, 2010; Chaudhry, 2007). The Newton–Raphson method for 

nonlinear systems of equations can also diverge in other approaches for storm-water systems 

(León et al., 2010). 

To solve this instability issue, the idea was to solve the system of non-linear equations by using a 

combination of the Newton-Raphson algorithm and the Levenberg-Marquardt algorithm. The 

latter takes longer to converge but is more stable than the Newton-Raphson algorithm. Thus, the 

decision was made to always use the Newton-Raphson algorithm for each time step except when 

it is about to diverge and in this case the Levenberg-Marquardt algorithm is used.  

Another source of instability is the way the position of the interface is calculated. A common way 

to determine the interface is assuming that a grid point in the free-surface becomes pressurized if 

its depth 𝑦 is superior to 0.95𝐷 and that a grid point in the pressurized zone becomes free-surface 

if its pressure head 𝐻 is inferior to 0.84𝐷 and the air pocket relative pressure is positive. The 

reference value of 𝑦𝑟𝑒𝑓,1 = 0.95𝐷 which represents the phase change from free-surface to 

pressurized flow comes from León et al. (2010). The threshold value of 𝑦𝑟𝑒𝑓,2 = 0.84𝐷 that 

determines when the depressurization (pressurized to free-surface flow) occurs, comes from 

Yuan (1984), and León et al. (2010). However, with the shock-fitting approach of this chapter, 

the code becomes unstable as shown in Figure 6.7 for the test case 𝑉𝑎∗ = 2.63, 𝐷 = 0.053 𝑚, 

𝐿 = 10.7 𝑚, 𝑆0 = 2%, and 𝑘 = 1.2 of Hatcher et al. (2015).  
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Figure 6.7: Unstable pressure of the air pocket against time (left graph) and dimensionless 

discharge against time (right) with the threshold values 𝑦𝑟𝑒𝑓,1 and 𝑦𝑟𝑒𝑓,2 for 𝑉𝑎
∗0 = 2.63,  

𝑄∗0 = 0.15, 𝐷 = 0.053 𝑚, 𝐿 = 10.7 𝑚, 𝑆0 = 2% and 𝑘 = 1.2 (data experiments from Hatcher 

et al. (2015)) 

León et al. (2010) also encountered instability problems, when using a two-governing equation 

model that tries in particular to simulate pure free-surface flow that is about to pressurize. 

Threshold levels for piezometric head found by trial and error were used during pressurization to 

address the numerical instabilities of their finite volume model. To adress the instability of the 

shock-fitting approach shown in  Figure 6.7, another method was considered in this study. 

For the shock-fitting approach of this chapter, the second way to determine the interface will 

solve the remaining cause of instability. This second way considers that pressurization and 

depressurization are controlled by the equation (6-57):  

 𝐿𝑢(𝑡 + 𝑑𝑡) = 𝐿𝑢(𝑡) + 𝑤 × ∆𝑡 (6-57) 

Every grid point which has an abscissa inferior to the position of the interface 𝐿𝑢, calculated by 

equation (6-57), is considered located in the pressurized flow and every grid point which has an 

abscissa superior to 𝐿𝑢, is considered located in the free-surface flow. By using equation (6-57), 

the code becomes stable and there is no program abortion.  
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Figure 6.8  Stable pressure of the air pocket against time (left graph) and dimensionless discharge 

against time (right) with the calculation of the interface 𝐿𝑢 for 𝑉𝑎
∗0 = 2.63, 𝑄∗0 = 0.15,  

𝐷 = 0.053 𝑚, 𝐿 = 10.7 𝑚, 𝑆0 = 2% and 𝑘 = 1.2 (data experiments from Hatcher et al. (2015)) 

With a steady-state friction factor, the shock-fitting approach improves the pressure and 

discharge attenuation compared to the models, the rigid column model, and the method of 

characteristics model as seen in Figure 6.8, 𝑉𝑎
∗0 = 2.63, 𝑄∗0 = 0.15, 𝐷 = 0.102 𝑚, 𝐿 = 10.7 𝑚, 

𝑆0 = 2%. The phase shift between the experimental and numerical values is also better in the 

case of the shock-fitting approach.   

Unfortunately, the shock-fitting approach has a huge disadvantage. The duration of the 

simulation is very long which is quite common with this type of technique. In this case, the 

resolution of system of the non-linear equations of the model with algorithms like Newton-

Raphson and Levenberg-Marquardt is one factor to explain this long time of simulation. Another 

reason is the very small time step used in the pressurized zone to fulfill the CFL condition, which 

is smaller than the time step required in the free-surface zone. This leads to more calculations and 

a longer simulation duration.  

Moreover, the pressure and discharge are still overestimated by the shock-fitting method. The 

nature of the shock-fitting approach developed in this chapter can help explain the errors 

generated  and the discrepancy between the numerical model and the experimental data.     

There are different types of interpolations for the method of characteristics than the linear 

interpolation used in this chapter to obtain the velocity and pressure at 𝑅 and 𝑆. There is the 
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Space-Line interpolation, the Reach Out in Space interpolation, the Time-Line interpolation, the 

Reach-back-in-Time interpolation described by Ghidaoui and Karney (1994). Quadratic, cubic 

and spline interpolations for the method of characteristics were also studied by Sibetheros et al. 

(1991) for the water hammer analysis. 

The linear interpolations may lead to mass and momentum conservation problems according to 

Bousso and Fuamba (2014b), Politano et al. (2007) and León (2007). Moreover, the model of the 

negative interface used in this chapter may generate errors. By quoting León (2007): “ When 

using the model of Song et al. (1984), open-channel surges cannot be modeled and negative 

interfaces are not adequately addressed.” The model of the negative interface used in this chapter 

was inspired by Cardle (1984) which is similar to the one presented by Song et al. (1983). 

Furthermore, the hypothesis of only one surge front is questionable. Initiating multiple turbulent 

wave fronts may be necessary (Bousso et al. 2013).   

The additional friction factor 𝑓′ proposed in Chapter 4 can also be applied to the shock-fitting 

approach but the search for an optimal calibration factor 𝐶 is unpractical. Knowing that only one 

simulation could take an hour with a common computer, making more than 30 simulations for 

each flow regime (Laminar, Turbulent and Mixed) with the shock-fitting approach to search for 

the optimal calibration factor 𝐶 would not be worth it computationally wise. Indeed, the MOC 

and RC model combined with the additional friction factor 𝑓′ already give good results with a 

rapid simulation duration (several seconds).  

6.4 Conclusion  

A shock-fitting approach was proposed in this chapter with the intention to improve the air 

pocket entrapment modelling compared to the models, the rigid column model, and the method of 

characteristics model. The shock-fitting approach consists in separately modelling the free-

surface and the pressurized regions with the method of characteristics and in tracking the 

interface. If only the steady-state is applied, the results (air pocket pressure and discharge) given 

by the shock-fitting approach in this chapter are more accurate than the one given by the rigid 

colum and the method of characteristics models. Unfortunately, the simulation duration with the 

shock-fitting approach is too long and the slight improvement in accuracy is not worth it.  
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CHAPTER 7 IMPLEMENTATION OF THE RIGID COLUMN AND 

METHOD OF CHARACTERISTICS IN SWMM IN THE CASE OF THE 

AIR POCKET ENTRAPMENT IN STORMWATER SYSTEMS 

7.1 Introduction 

The Storm Water Management Model (SWMM) is an extended model used to simulate the flows 

from sewer systems, storm water runoff quantity and quality from primarily urban areas. 

The current version of the software SWMM, developed by the U.S. Environmental Protection 

Agency (EPA), has many advantages. It has a large number of users and a community supporting 

it. The source codes of the computational engine and the GUI interface are also open source, 

which make them editable by the community. The free software SWMM also contains water 

quality and LID (Low Impact Development) options which are useful for further analysis. The 

idea behind this chapter is to present the results of the implementation of the rigid column and the 

method of characteristics models in SWMM in the case of the air pocket entrapment in a single 

reservoir-pipe system. The current version of SWMM has three existing routine models (“Steady 

Flow”, “Kinematic Wave” and “Dynamic Wave”) for the numerical simulation.  

The calculation procedure of SWMM called “Dynamic Wave” has two algorithms of resolution, 

which are EXTRAN and SLOT. There are significant differences in solving between these two 

procedures but there is not much studies about the eventual differences yielded by these 

algorithms (Pachaly et al., 2020). The EXTRAN algorithm integrated in SWMM is explained in 

the official reports of the U.S. Environmental Protection Agency EPA (Rossman, 2006; 2010; 

2016) whereas the SLOT algorithm in SWMM does not have any documentation as of yet 

(Pachaly et al., 2020). The dynamic wave analysis based on the EXTRAN algorithm solves the 

complete form of the Saint-Venant equations, namely the conservation of mass (7-1) and 

momentum (7-2) equations, for unsteady free-surface flow: 

𝜕𝐴

𝜕𝑡
+
𝜕𝑄

𝜕𝑥
= 0, (7-1) 

𝜕𝑄

𝜕𝑡
+
𝜕(𝑄2/𝐴)

𝜕𝑥
+ 𝑔𝐴

𝜕𝐻

𝜕𝑥
+ 𝑔𝐴𝑆𝑓 = 0, (7-2) 
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where 𝑥 is the distance, 𝑡 is the time, 𝐴 is the cross-sectional area, 𝑄 is the flow rate, 𝐻 is the 

hydraulic head of water in conduit (𝑍 + 𝑌), 𝑍 is the conduit invert elevation, 𝑌 is the conduit 

water depth, 𝑆𝑓 is the friction slope and 𝑔 is the acceleration of gravity. 

By quoting Rossman (2017):  

The dynamic wave analysis “can account for channel storage, backwater effects, 

entrance/exit losses, flow reversal, and pressurized flow. Because it couples together the 

solution for both water levels at nodes and flow in conduits, it can be applied to any 

general network layout, even those containing multiple downstream diversions and 

loops”.  

Among the three routine models of SWMM, the dynamic wave model gives the most 

theoretically accurate results. The price of this method is that a small time step needs to be used 

to maintain numerical stability since the Saint-Venant equations are solved with an explicit 

method. 

The “Kinematic Wave” model solves the continuity equation along with a simplified form of the 

momentum equation in each conduit (Rossman, 2006; 2010; 2016; 2017). This model is less 

accurate than the “Dynamic Wave” model but can maintain numerical stability with much larger 

time steps. Pressurized flow, flow reversal, entrance/exit losses, and backwater effect cannot be 

simulated by the “Kinematic Wave” model. Conduits with a slope > 0.1% with shallow flow and 

high velocity generally constitute the best domain of application of this model. 

The least accurate routine model called “Steady Flow”, which assumes that the flow is uniform 

and steady within each computational time step which means that inflow hydrographs at the 

upstream end of a conduit is translated to its downstream end with no delay or change in shape. 

The “Steady Flow” option is only appropriate for rough preliminary analysis of long-term 

continuous simulations according to Rossman (2017). According to Song et al. (1983), the 

“Steady Flow” and “Kinematic Wave” models are not suitable for a sewer network used a 

storage-conveyance system. 

Details of the three routine models of SWMM can be found in the reports written by Rossman 

(2006; 2010; 2016; 2017). None of these models can simulate air pocket entrapment, hence, the role 

of this chapter is to implement air pocket entrapment models in SWMM to simulate the same problem 

that was studied all along this project without deleting the current available functionalities. 
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7.2 Methodology 

The rigid column and the method of characteristics models that were studied in Chapters 4 and 5 

will be added to the three existing routine models (“Steady Flow”, “Kinematic Wave”, and 

“Dynamic Wave”). The shock-fitting approach discussed in Chapter 6 has a too long simulation 

duration which makes it impractical, thus, it will not be implemented in the modified version of 

SWMM. 

 

Figure 7.1  Implementation of the rigid column and method of characteristics in the case in 

SWMM in the case of air pocket entrapment 
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The source code of the computational engine of SWMM version 5.1.013 was modified in order to 

implement the rigid column and the method of characteristics models applied for the simple air 

pocket entrapment problem. The calculation procedure for each model was already explained in 

Chapters 4 and 5, the only difference is that there is no additional friction (only the steady-state 

friction factor 𝑓). The source code of the GUI interface of the software was also modified 

accordingly (see Figure 7.1).  

7.3 Results 

As shown in Figure 7.2, the reservoir is drawn on the left and the entrapped air pocket on the 

right. The two objects on SWMM are linked by the conduit.  

Normally for the three original models of SWMM (“Steady Flow”, “Kinematic Wave”, and 

“Dynamic Wave”), the “junction node” represents a drainage system node, which can be a 

confluence of natural surface channels, manholes in a sewer system, or pipe connection fittings. 

However, with the rigid column and the method of characteristics models of this chapter, the 

“junction node” symbolizes the entrapped air pocket in Figure 7.2. This choice was made in order 

to keep a compatible version between the original version of SWMM and the modified one 

developed in this chapter. 

 

Figure 7.2  Illustration of the air pocket entrapment problem in SWMM 

 

Figure 7.3, Figure 7.4, and Figure 7.5 show how to enter the proprieties of the problem in the 

modified version of SWMM. The air pocket 𝑉𝑎
∗0 = 2.63 from Hatcher et al. (2015) is used as an 

example and the data of the problem are the following: 

𝐻𝑟𝑒𝑠 = 0.204 𝑚 ( 
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• Figure 7.3); 

• 𝐷 = 0.053 𝑚, 𝐿 = 10.7 𝑚, 𝑄0 = 0.0003 𝑚3/𝑠, 𝐾𝑙𝑜𝑠𝑠 = 2.9 (Figure 7.4);  

• 𝑆0 = 2 %, 𝑉0 = 0.00039, 𝑓 = 0.025, 𝑎 = 1000 𝑚/𝑠, 𝑘 = 1.2   (Figure 7.5). 

Note that metric units were used (even for the initial discharge and volume of air pocket).  

The speed of pressure wave 𝑎 can be fixed in the modified version of SWMM. It was assumed as 

1000 𝑚/𝑠 but it can also be approximated with Equation (4-22). Either way, the results do not 

vary much for the given example. The reasoning behind not enforcing the calculation of 𝑎 with   

Equation (4-22). in the modified version of SWMM is to let the user change the value of 𝑎 freely. 

 

Figure 7.3  Reservoir properties in the modified version of SWMM 
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Figure 7.4  Conduit properties in the modified version of SWMM 

 

 

Figure 7.5  Junction/air pocket properties in the modified version of SWMM 
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As seen in Figure 7.5, in the “Junction node” window, four new properties have been added, 

which have been called “Initial air pocket volume”, “Steady friction factor”, “Speed of pressure 

wave” and “Polytropic coefficient”, respectively. 

The models, the rigid column model, and the method of characteristics model were added in the 

routing model list as shown in Figure 7.6 with a red rectangle. Notice that there are three options 

for the rigid column model which represent the three different ways the rigid column equations 

(4-6), (4-7), and (4-8) are discretized and solved. The three options for the rigid column model 

are: The explicit Euler (also called forward Euler method), Implicit Euler (backward Euler 

method), and 4th order Runge-Kutta.  

In Chapters 4 and 5, the 4th order Runge-Kutta was used to solve the rigid column equations 

because this numerical method gives good stability and accuracy. The explicit Euler method was 

added in the modified version of SWMM because it was easier to implement but to capture the 

variation in pressure accurately and to avoid instability, the 4th order Runge-Kutta method is 

recommended. For this project, the implementation of the rigid column and the method of 

characteristics methods concerns only the single reservoir-pipe system.  

In the future, it would be interesting to simulate air pocket entrapment in a large network. An idea 

to simulate unsteady flows in a large network would be to combine the rigid column or the 

method of characteristics models (for the parts of the networks with an entrapped air pocket) and 

the “Dynamic Wave” routine model of SWMM such as EXTRAN or SLOT (for the parts of the 

networks without any entrapped air pocket).  

For the reporting step, a millisecond box was also added, as shown by another red rectangle. The 

reason for adding the millisecond box will be explained later. 
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Figure 7.6  Simulation options in the modified version of SWMM 

As shown in Figure 7.7, in order to plot the graph of the discharge against time, a “Time Series 

Plot” needs to be created with “Link” as the “Object Type”, “Conduit” as the “Object Name” and 

“Flow” as the “Variable”. 

In order to plot the graph of the pressure of the air pocket against time, a “Time Series Plot” 

needs to be created with “Node” as the “Object Type”, “Airpocket” as the “Object Name” and 

“Depth” as the “Variable”. 
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Figure 7.7  Windows of modified version of SWMM to plot the discharge against time (left) and 

the air pocket pressure against time (right) 

The reason for adding the millisecond box in Figure 7.6 will now be explained. - As shown in 

Figure 7.8, the graphs of the discharge against time and the pressure of the air pocket against time 

simulated with the method of characteristics give distorted results with a reporting step of one 

second and a time step of 0.001 second. Adding the millisecond box in Figure 7.6 allows the user 

of the modified version of SWMM to set the reporting step equal to 0.001 𝑠 which permits to 

find the desired behavior for the pressure and flow rate graphs (see Figure 7.9) like what was 

obtained in Chapters 4 and 5.   
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Figure 7.8  Discharge against time in liters per second (left graph) and pressure of the air pocket 

against time (right graph) simulated with the method of characteristics on SWMM for the 

Reporting_Step=1 s and Routing_Step=0.001 s 

 

 

Figure 7.9  Discharge against time in liters per second (left graph) and pressure of the air pocket 

against time (right graph) simulated with the method of characteristics on SWMM for the 

Reporting_Step=1 ms and Routing_Step=0.001 s 
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Table 7.1  Discharge against time in liters per second (left table), pressure of the air pocket 

against time (right table) and Copy Table Window on SWMM 

 

The pressure of the air pocket and the discharge against time can also be visualized in a table 

form in the modified version of SWMM (see Table 7.1). The time is represented by the column 

“Hr:Min:Sec.Msec” which decomposes in order of the hours, minutes, seconds, and milliseconds. 

The milliseconds in the columns were added because they were absent from the original version 

of SWMM with a minimum reporting step equal to one second. 

The columns can also be copied and pasted in an Excel file (the same way as the original 

SWMM) in order to make calculations on the desired values, change legend, compare multiple 

graphs, etc. The Excel formula to separate the different fields (hours, minutes, seconds and 

milliseconds) of the values in the column “Hr:Min:Sec.Msec” can be “STXT()” in the French 

version of Excel or “MID()” in the English version of Excel. By treating the values of Table 7.1, 

it is possible to plot the graphs of the pressure of the air pocket and the discharge against time in 

Excel (see Figure 7.10). To sum up, the pressure and flow rate graphs can either be plotted 

directly in SWMM (Figure 7.9) or plotted in Excel after transferring the corresponding data from 

the modified version of SWMM to Excel (Figure 7.10). 

 



97 

 

 

Figure 7.10  Discharge against time in liters per second (left graph) and pressure of the air pocket 

against time (right graph) simulated with the method of characteristics on Excel for the 

Reporting_Step=1 ms and Routing_Step=0.001 s 

7.4 Conclusion 

The models, the rigid column model, and the method of characteristics model used to simulate 

the transient flows causing air pocket entrapment in the single reservoir-pipe system problem 

studied in Chapters 4 and 5 have been implemented in the SWMM software. Only the steady-

state friction factor was used. The work is incomplete because the models for air pocket 

entrapment in this modified version of SWMM do not work for another application. Further 

investigation is needed to extend the numerical simulation to a larger network composed with 

pipes with or without entrapped air pocket. A way to do that could be to combine the ”Dynamic 

Wave” model of SWMM with an air pocket entrapment model such as the one studied in this 

project (rigid column, method of characteristics, etc.).    
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CHAPTER 8 GENERAL DISCUSSION 

The literature review of Chapters 2 and 4 show that there are numerous numerical models for 

transient flows in stormwater systems, but none of these models fully resolves the problem 

related to flow dynamics under the air pocket entrapment. The rigid column and the method of 

characteristics models are common models used in the literature to model the air pocket 

entrapment process in stormwater systems but these models overestimate the pressure peaks if 

only the Darcy-Weisbach steady-state friction factor is used. The purpose of the literature review 

of the unsteady friction factors in Chapter 2 was to find an additional friction factor that would 

lead to better simulated results.  

The main contributions of this master thesis, besides carrying a literature review, writing 

appropriate computer codes to numerically solve the equations, and running experiments to 

extract relevant experimental data, are: 

1. The results of the air pocket pressure and discharge simulated by the two well-known models, 

the rigid column model, and the method of characteristics model have been improved by 

introducing an additional friction factor calibrated as a function of the air pocket.  

2. It was found that the shock-fitting approach takes very long time to solve the transient flow, 

which is due to Courant-Friedrichs-Lewy (CFL) condition restricted by the acoustic wave speed 

and due to the resolution of a non-linear system of equations. In addition, it was found that the 

common pressurization/depressurization criteria used in the Finite Volume method, which is 

based on the pressure, causes instability in the shock-fitting approach based on the finite 

difference methods. To improve the instability, another criterion was proposed to obtain more 

stability This criterion is based on the explicit calculation of the position of the interface that 

separates the open-channel flow and the pressurized flow. 

3- The SWMM software was upgraded for the first time by implementing the rigid column model 

and the method of characteristics model in this software. Now, the SWMM software can solve 

the air pocket entrapment problem in transient flows occurring in a single reservoir-pipe system.  

In addition, the reporting step in the SWMM software is modified to milliseconds, which is 

needed to model transient flows following air pocket entrapment in stormwater systems. 
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CHAPTER 9 CONCLUSION AND RECOMMENDATIONS 

The goal of this project was to improve the numerical models used to simulate air pocket 

entrapment problems followed by partially pressurized transient flows in storm water systems. In 

Chapters 4 and 5, two well-known models, the rigid column model, and a modified version of the 

Saint-Venant equations (solved with MOC) were used with and without an additional friction 

factor and it was found that adding an additional friction factor could yield better numerical 

results. Those numerical results were compared with experimental data from the Hydraulics 

Laboratory of “École Polytechnique de Montréal” and the article of Hatcher et al. (2015). In 

addition, it was observed that if the same polytropic coefficient 𝑘 is used with both models 

experience a phase shift between the numerical solutions and experimental data depending on the 

size of the entrapped air pocket. It also was shown that the value of the polytropic coefficient 𝑘 

influenced the phase of the numerical reuslts. Thus, changing the value of 𝑘 can decrease the 

phase shift and give more accurate results. However, how to select the right value of 𝑘? This 

question has not been answered clearly, as the heat transfer mechanism between the air, water, 

and pipe wall is so complicated. Also, the literature is not unanimous about the value of 𝑘 to 

choose. In transient flow modelling (not necessarily air pocket entrapment), some authors select 

𝑘 = 1.2, others take 𝑘 = 1.4 (adiabatic) or another value. However, due to rapid nature of the 

transient flow in SWSs, the adiabatic process, 𝑘 = 1.4, has been more recommended. The value 

of 𝑘 is often chosen to have the more accurate numerical results. It is also possible that the phase 

shift is due other factors that are not included in mathematical models for their complexities, 

which make these models impractical such as turbulent shear stresses, or the dynamic of the air 

pocket.      

The additional friction factor in Chapter 4 was found for only some particular ranges of air 

pocket size. For further analysis, it would be interesting to continue the study of the additional 

friction factor on more examples and test cases as well as different air pocket sizes, pipe lengths, 

pipe diameter, pipe material, water levels in the upstream reservoir, etc. Another idea would be to 

avoid having to calibrate the coefficient 𝐶 of the additional friction factor with experimental data. 

This could be done by finding an explicit formula for this coefficient 𝐶 which would clearly be 

an improvement because in that case, no search for the optimal coefficient 𝐶 would be needed. 

For further research, it could be interesting to study the finite-volume method in the case of air 
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pocket entrapment and to combine it with the proposed additional friction factor. Indeed, the 

finite-volume approach does not use mathematical artifices to solve the mass and continuity 

equations like the method of characteristics, for example. 

In Chapter 6, the shock-fitting approach with the steady-state friction factor was developed and 

gave good numerical approximation of the pressure of the air pocket and the flow rate during the 

air pocket entrapment process, but the duration of the simulation is too long mainly due to the 

resolution of systems of non-linear equations. Unfortunately, the accuracy of the results obtained 

by the shock-fitting approach is not worth the computational burden. Thus, the rigid column 

model, and the method of characteristics model are recommended over this shock-fitting 

approach. 

Finally, in Chapter 7, the rigid column model, and the method of characteristics model applied to 

the air pocket entrapment process with a steady-state friction factor were implemented in the 

software SWMM in a single reservoir-pipe system. However, this is just the first step of the 

implementation of an air pocket entrapment model in SWMM. Further research need to be done 

to model air pocket entrapment in more complex situations with larger networks containing, 

converging, diverging pipes, multiple reservoirs, pipes, pumps, etc. A more complete model that 

takes into account the size of air pockets could then be added to SWMM to share it to all the 

research community.  
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APPENDIX A   RIGID COLUMN CODE 

 

1. Main code called : ‘RigidColumn_unsteady’ : 

 

clear all ; clc ; close all; 

  
%%%%%%%%%%%%%%%%%%%% Rigid Column – Unsteady/Additional friction factor 

%%%%%%%%%%%%%%%%%%%% 

  
delta_t=0.0001;   % Time step 
N=60000;          % Number of terms to calculate 
 

% Initial condition 
H_atm=10.33;        % Atmospheric pressure (m) 
D=0.10;             % Pipe diameter (m) 
Cd=0.4;             % Discharge coefficient  
A_orif=0;           % Area of the orifice (m^2) 
k=1.4;              % Polytropic coefficient 
S_0=0;              % Slope (m/m) 
A=pi*(D/2)^2;       % Cross-sectional area (m^2) 
L_pipe=4.73;        % Length of the pipe (m) 
g=9.81;             % Gravitational acceleration (m/(s^2)) 
f=0.0269;           % Darcy-Weisbach steady friction factor 
K_loss=0;           % Summation of local losses 

  
Q=zeros(N,1);      % Sequence Q_n 
Va=zeros(N,1);     % Sequence Va_n 
H_air=zeros(N,1);  % Sequence H_n 
L_tab=zeros(N,1);  % Sequence H_n 

  
Q_0=0.422*sqrt(g*D^5);     % Initial discharge (m^3/s) 
Va_0=1.11*D^3;             % Initial volume (m^3) 
%%% The previous formulas come from Hatcher et al. article  
% % % % Hatcher, T. M., Malekpour, A., Vasconcelos, J., & Karney, B. (2015). 

Comparing unsteady modeling approaches of surges caused by sudden air pocket 

compression. Journal of Water Management Modeling. 

 
H_res=0.30;                % Water level in the reservoir (m) 
Q(1)=Q_0; 
Va(1)=Va_0; 
H_air(1)=H_atm; 
L=(L_pipe*A-Va(1))/A;      % Length of the rigid column (m) 
L_tab(1)=L; 
La=L_pipe-L;     % Length of the air pocket (m) 

 
v_0=Q_0/A;                               % Initial velocity (m/s) 
rho=998;                                 % Water density (kg/(m^3)) 
dyn_viscosity=10^(-3);                   % Dynamic viscosity (N.s/(m^2)) 
kin_viscosity=dyn_viscosity/rho;         % Kinematic viscosity (m^2/s) 
Re=v_0*D/kin_viscosity;                  % Reynolds number 
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Re_c=2320;                               % Critical Reynolds number 
C=13;                                    % Calibration factor 
n=0.013;                                 % Manning coefficient          
rho_air=1.2;                             % Air density (kg/(m^3))   

  
E=2.5;e=0.007;Ta=273;Kw=2.5;R=8.314459848;rhoa=1.225;Ma=rhoa*Va_0; 
a=sqrt(abs(Kw*10^9/rho/(1+(Kw*D/E/e)+(Ma*R*Ta/g/rho/H_atm)*(Kw*10^9/g/rho/H_at

m)-1))); % Speed of pressure wave (m/s) 

 
Air_volume=Va_0/(D^3); 
Water_volume=A*L; 
Air_mass=Air_volume*rho_air; 
Water_mass=Water_volume*rho; 

  
m1=Air_volume/Water_volume;   m2=Air_mass/Water_mass; 
time(1)=0; 

  
for i=1:N-1 

 
    time(i+1)=time(i)+delta_t;   
    v_i=Q(i)/A;  
    Re=v_i*D/kin_viscosity; 

   
%%%%%%%%%%%%%%%%%%% Variable %%%%%%%%%%%%%%%%%%%   
    Air_volume=Va(i)/(D^3); 
    Water_volume=A*L_tab(i); 
    Water_mass=Water_volume*rho; 
    m1=Air_volume/Water_volume; 
    m2=Air_mass/Water_mass; 
%%%%%%%%%%%%%%%%%%% Variable %%%%%%%%%%%%%%%%%%%     

  
   % % % % unsteadyA : Mixed (Turbulent + Laminar) 
   % % % % unsteadyB : Turbulent     
   % % % % unsteadyC : Laminar 

  
    

unsteady_term=unsteadyA(Q(i),C,kin_viscosity,D,a,g,L,n,Re_c,Re,m1,m2,H_res,H_a

tm,rho,rhoa,La); 

 

     
    K1=g*A/L*(H_res-(H_air(i)-H_atm)+L*S_0-

((f*L/D+K_loss)*Q(i)*abs(Q(i))/(2*g*(A^2))))-unsteady_term; 
    K1_p=-Q(i)+Cd*A_orif*sqrt(2*g*(H_air(i)-H_atm)); 
    H1=H_air(i,1)*(Va(i,1)^k)/((Va(i,1)+K1_p*delta_t)^k); 
    L1=Q(i)/A;      
    

unsteady_term=unsteadyA(Q(i)+K1*delta_t/2,C,kin_viscosity,D,a,g,L,n,Re_c,Re,m1

,m2,H_res,H_atm,rho,rhoa,La); 

 

     
    K2=g*A/L*(H_res-(H1-H_atm)+L*S_0-

((f*L/D+K_loss)*(Q(i)+K1*delta_t/2)*abs(Q(i)+K1*delta_t/2)/(2*g*(A^2))))-

unsteady_term; 
    K2_p=-(Q(i)+K1*delta_t/2)+Cd*A_orif*sqrt(2*g*(H1-H_atm)); 
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    H2=H_air(i,1)*(Va(i,1)^k)/((Va(i,1)+K2_p*delta_t/2)^k); 
    L2=(Q(i)+L1*delta_t/2)/A; 
        

unsteady_term=unsteadyA(Q(i)+K2*delta_t/2,C,kin_viscosity,D,a,g,L,n,Re_c,Re,m1

,m2,H_res,H_atm,rho,rhoa,La); 

 

     
    K3=g*A/L*(H_res-(H2-H_atm)+L*S_0-

((f*L/D+K_loss)*(Q(i)+K2*delta_t/2)*abs(Q(i)+K2*delta_t/2)/(2*g*(A^2))))-

unsteady_term; 
    K3_p=-(Q(i)+K2*delta_t/2)+Cd*A_orif*sqrt(2*g*(H_air(i)-H_atm)); 
    H3=H_air(i,1)*(Va(i,1)^k)/((Va(i,1)+K3_p*delta_t/2)^k); 
    L3=(Q(i)+L2*delta_t/2)/A; 
       

unsteady_term=unsteadyA(Q(i)+K3*delta_t,C,kin_viscosity,D,a,g,L,n,Re_c,Re,m1,m

2,H_res,H_atm,rho,rhoa,La); 

 

     
    K4=g*A/L*(H_res-(H3-H_atm)+L*S_0-

((f*L/D+K_loss)*(Q(i)+K3*delta_t)*abs(Q(i)+K3*delta_t)/(2*g*(A^2))))-

unsteady_term; 
    K4_p=-(Q(i)+K3*delta_t)+Cd*A_orif*sqrt(2*g*(H_air(i)-H_atm)); 
    L4=(Q(i)+L3*delta_t)/A; 

    
    Q(i+1,1)=Q(i,1)+(delta_t/6)*(K1+2*K2+2*K3+K4); 
    Va(i+1,1)=Va(i,1)+(delta_t/6)*(K1_p+2*K2_p+2*K3_p+K4_p); 
    H_air(i+1,1)=H_air(i,1)*(Va(i,1)^k)/(Va(i+1,1)^k); 
    L_tab(i+1,1)=L+(delta_t/6)*(L1+2*L2+2*L3+L4); 

    
end 

  
t=(i-1)*delta_t; 
T=[0:delta_t:t+delta_t]; 
figure(2) 
plot(T,Q); 

 
xlabel('Time t (s)'); 
ylabel('Discharge Q (m^3/s)') ; 
title('Rigid Column - Runge-Kutta 4th order'); 
[Hp,Hv,index1]=Square_residuals((H_air-H_atm),N,H_res); 

  
figure(3) 
plot(T,(H_air-H_atm)); 
xlabel('Time t (s)') 
ylabel('Relative air pressure Hair (m)') 
title('Rigid Column - Runge-Kutta 4th order'); 

  
figure(4) 
plot(T,Va); 
xlabel('Time t (s)') 
ylabel('Va (m^3)') 
title('Rigid Column - Runge-Kutta 4th order'); 
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2. Function called : ‘unsteadyA’ (Mixed) : 
 

function 

unsteady_term=unsteadyA(Q,C,kin_viscosity,D,a,g,L,n,Re_c,Re,m1,m2,H_res,H_atm,

rho,rhoa,La) 
%%%%%%%%%%%% Mixed flow (Laminar+Turbulent) %%%%%%%%%%%%%% 

v = abs(Q/(pi*(D^2)/4)); 
Rp=D/4; 
A=pi*(D^2)/4; 
if v~=0 
       if Re>Re_c 

unsteady_term=abs(8*g*(n^2)/((Rp)^(1/3)))*(C*10^3)*((H_res+H_atm)/H_atm)*(rhoa

/rho)*(La/L)*(a/sqrt(g*D))*L/D*(g*A/L)*Q*abs(Q)/(2*g*(A^2)); 
       else 
unsteady_term=abs(64*(kin_viscosity)/(v*D))*(C*10^3)*((H_res+H_atm)/H_atm)*(rh

oa/rho)*(La/L)*(a/sqrt(g*D))*L/D*(g*A/L)*Q*abs(Q)/(2*g*(A^2));         
       end 

         
else 
    unsteady_term=0; 
end 
end 

 

3. Function called : ‘unsteadyB’ (Turbulent) : 
 

function 

unsteady_term=unsteadyB(Q,C,kin_viscosity,D,a,g,L,n,Re_c,Re,m1,m2,H_res,H_atm,

rho,rhoa,La) 
%%%%%%%%%%%% Turbulent %%%%%%%%%%%%%% 
v = abs(Q/(pi*(D^2)/4)); 
Rp=D/4; 
A=pi*(D^2)/4; 
if v~=0                 

unsteady_term=abs(8*g*(n^2)/((Rp)^(1/3)))*(C*10^3)*((H_res+H_atm)/H_atm)*(rhoa

/rho)*(La/L)*(a/sqrt(g*D))*L/D*(g*A/L)*Q*abs(Q)/(2*g*(A^2)); 
else 
    unsteady_term=0; 
end 
end 

 

4. Function called : ‘unsteadyC’ (Laminar) : 
 

function 

unsteady_term=unsteadyC(Q,C,kin_viscosity,D,a,g,L,n,Re_c,Re,m1,m2,H_res,H_atm,

rho,rhoa,La) 
%%%%%%%%%%%% Laminar %%%%%%%%%%%%%% 
v = abs(Q/(pi*(D^2)/4)); 
Rp=D/4; 
A=pi*(D^2)/4; 
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if v~=0          

unsteady_term=abs(64*(kin_viscosity)/(v*D))*(C*10^3)*((H_res+H_atm)/H_atm)*(rh

oa/rho)*(La/L)*(a/sqrt(g*D))*L/D*(g*A/L)*Q*abs(Q)/(2*g*(A^2));    
else 
    unsteady_term=0; 
end 
end 
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APPENDIX B   METHOD OF CHARACTERISTICS CODE (MATLAB) 

 

1. Main code called : ‘MOC_unsteady’ : 
 
clear all; clc; close all; 

 
imax=20;                    % Number of grid points 
nnmax=16000;                % Number of terms to calculate 
t(1)=0;              
CFL=0.4;                    % Courant number 
k=1.4;                      % Polytropic coefficient 
g=9.81;                     % Gravitational acceleration (m/s) 
nu=1e-6;                    % Kinematic viscosity (m^2/s) 
D=0.10;                     % Diameter of the pipe (m) 

A=pi/4*D^2;                 % Cross-sectional area of the pipe (m^2) 

 
Q_0=0.423*sqrt(g*D^5);      % Initial discharge (m^3/s) 
Va_0=1.05*D^3;              % Initial volume (m^3) 

 
Van=Va_0;Va=Va_0; 
Q=Q_0; 
Hatm=10.33;                 % Atmospheric pressure (m) 
ha=Hatm;han=ha; 
Kloss=0;                    % Summation of local losses 
f=0.0269;                   % Darcy-Weisbach steady friction factor  
S0=0;                       % Slope of the pipe (m/m) 
Lt=4.73;                    % Length of the pipe (m) 
Lu=(A*Lt-Va)/A;Lun=Lu;      % Length of the rigid column (m) 

La=Lt-Lu;            % Length of the air pocket (m)  
xmax=Lu;xmin=0; 
dx=(xmax-xmin)/(imax-1); 
Hres=0.30;                  % Water level in the reservoir (m) 

  
%%%%% Initial conditons %%%%% 
for i=1:imax 
v(i)=Q/A; 
h(i)=Hres+Hatm; 
end 
hn=h;vn=v; 

  

  
H=zeros(imax,nnmax);  V=zeros(imax,nnmax);  Q=zeros(imax,nnmax); 
H(:,1)=h;  V(:,1)=v;  Q(:,1)=V(:,1)*A; 

  
v_0=Q_0/A;                                     % Initial velocity (m/s) 
rhow=998;                                      % Water density (kg/(m^3)) 
dyn_viscosity=10^(-3);                         % Dynamic viscosity (N.s/(m^2)) 
kin_viscosity=dyn_viscosity/rhow;              % Kinematic viscosity (m^2/s) 
Re=v_0*D/kin_viscosity;                        % Reynolds number 
Re_c=2320;                                     % Critical Reynolds number 
C=13;                                          % Calibration factor 
n=0.013;                                       % Manning coefficient          
rho_air=1.2;                                   % Air density (kg/(m^3))   
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E=2.5;e=0.007;Ta=273;Kw=2.5;R=8.314459848;rhoa=1.225;Ma=rhoa*Va; 
a=sqrt(abs(Kw*10^9/rhow/(1+(Kw*D/E/e)+(Ma*R*Ta/g/rhow/ha)*(Kw*10^9/g/rhow/ha)-

1))); 

 
Air_volume=Va_0/(D^3); 
Water_volume=A*Lt; 
Air_mass=Air_volume*rhoa; 
Water_mass=Water_volume*rhow; 

 
m1=Air_volume/Water_volume;  m2=Air_mass/Water_mass; 

  
for nn=2:nnmax 

  
   % % % % unsteadyA : Mixed (Turbulent + Laminar) 
   % % % % unsteadyB : Turbulent     
   % % % % unsteadyC : Laminar     

     
dt=CFL*dx/(abs(a)+max(abs(vn))); 

  
t(nn)=t(nn-1)+dt; 

  
hn(1)=(Hres+Hatm)-(1+Kloss)*vn(1)*abs(vn(1))/2/g; 

  
vs=v(1)+CFL*(v(2)-v(1)); 
hs=h(1)+CFL*(h(2)-h(1)); 

  
v_i=vs;  
Re=v_i*D/kin_viscosity; 

  
f_prime=unsteadyA(v_i,C,kin_viscosity,D,a,g,Lt,n,Re_c,Re,m1,m2,Hres,Hatm,rhow,

rhoa,La); 

 
Sfs=(f+f_prime)/(2*D*g)*vs*abs(vs); 
Dn=vs-g/a*hs+g*(S0-Sfs)*dt; 
vn(1)=g*hn(1)/a+Dn; 

  
H(1,nn)=hn(1); 
V(1,nn)=vn(1); 
Q(1,nn)=V(1,nn)*A; 

  
for i=2:imax-1     

    
vs=v(i)+CFL*(v(i+1)-v(i)); 
hs=h(i)+CFL*(h(i+1)-h(i)); 

  
v_i=vs;  
Re=v_i*D/kin_viscosity; 

  
f_prime=unsteadyA(v_i,C,kin_viscosity,D,a,g,Lt,n,Re_c,Re,m1,m2) 

,Hres,Hatm,rhow,rhoa,La); 

 
Sfs=(f+f_prime)/(2*D*g)*vs*abs(vs); 
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Dn=vs-g/a*hs+g*(S0-Sfs)*dt; 

  
vr=v(i)+CFL*(v(i-1)-v(i)); 
hr=h(i)+CFL*(h(i-1)-h(i)); 

  
v_i=vr;  
Re=v_i*D/kin_viscosity; 

  
f_prime=unsteadyA(v_i,C,kin_viscosity,D,a,g,Lt,n,Re_c,Re,m1,m2,Hres,Hatm,rhow,

rhoa,La); 

 
Sfr=(f+f_prime)/(2*D*g)*vr*abs(vr); 
Dq=vr+g/a*hr+g*(S0-Sfr)*dt; 

 
hn(i)=(Dq-Dn)/(2*g/a);  
vn(i)=Dn+g/a*hn(i); 
H(i,nn)=hn(i);   V(i,nn)=vn(i);   Q(i,nn)=V(i,nn)*A; 

  
end 

  
vr=v(imax)+CFL*(v(imax-1)-v(imax)); 
hr=h(imax)+CFL*(h(imax-1)-h(imax)); 

  
v_i=vr;  
Re=v_i*D/kin_viscosity; 

  
f_prime=unsteadyA(v_i,C,kin_viscosity,D,a,g,Lt,n,Re_c,Re,m1,m2,Hres,Hatm,rhow,

rhoa,La); 

 
Sfr=(f+f_prime)/(2*D*g)*vr*abs(vr); 
Dq=vr+g/a*hr+g*(S0-Sfr)*dt; 

 
vn(imax)=Dq-g/a*hn(imax); 
Van=Va+dt*(-A*v(imax)); 
han=ha*(abs(Va))^k*(abs(Van))^-k; 
hn(imax)=han-vn(imax)*abs(vn(imax))/2/g; 
Lun=Lu+dt*(vn(imax)); 

  
H(imax,nn)=han;     V(imax,nn)=vn(imax);    Q(imax,nn)=V(imax,nn)*A; 
ha=han; Va=Van; h=hn; v=vn; Lu=Lun; 

 
end 

  
for j=1:nnmax 
    H_relative(:,j)=H(:,j)-Hatm; 
end 

  
figure(5) 
plot(t,Q(imax,:)); 
xlabel('Time t (s)') 
ylabel('Discharge Q (m3/s)') 
title('Water hammer equations MOC') 

 
figure(6) 
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plot(t, H_relative(imax,:)); 
xlabel('Time t (s)') 
ylabel('Relative air pressure (Hair-Hatm) (m)') 
title('Water hammer equations MOC') 

  

  

2. Function called : ‘unsteadyA’ (Mixed) : 

 
function 

f_prime=unsteadyA(v,C,kin_viscosity,D,a,g,L,n,Re_c,Re,m1,m2,Hres,Hatm,rhow,rho

a,La) 

 
%%%%%%%%% Mixed flow (Turbulent+Laminar)%%%%%%%%% 
Rp=D/4; 
A=pi*(D^2)/4; 
if v~=0 
       if Re>Re_c 
          lambda=abs(8*g*(n^2)/((Rp)^(1/3))); 
       else 
          lambda=abs(64*(kin_viscosity)/(v*D));            
       end 
 f_prime=(C*10^3)*((Hres+Hatm)/Hatm)*(rhoa/rhow)*(La/L)*(a/sqrt(g*D))*lambda; 

 
else 
    f_prime=0; 
end 
end 

  

 

3. Function called : ‘unsteadyB’ (Turbulent) : 

 
Function 

f_prime=unsteadyB(v,C,kin_viscosity,D,a,g,L,n,Re_c,Re,m1,m2,Hres,Hatm,rhow,rho

a,La) 

 
%%%%%%%%% Turbulent %%%%%%%%% 
Rp=D/4; 
A=pi*(D^2)/4; 
if v~=0 
      lambda=abs(8*g*(n^2)/((Rp)^(1/3))); 
 f_prime=(C*10^3)*((Hres+Hatm)/Hatm)*(rhoa/rhow)*(La/L)*(a/sqrt(g*D))*lambda; 

 
else 
    f_prime=0; 
end 
end 
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4. Function called : ‘unsteadyC’ (Laminar) : 

 

function 

f_prime=unsteadyC(v,C,kin_viscosity,D,a,g,L,n,Re_c,Re,m1,m2,Hres,Hatm,rhow,rho

a,La) 

 
%%%%%%%%% Laminar %%%%%%%%% 
Rp=D/4; 
A=pi*(D^2)/4; 
if v~=0 
      lambda=abs(64*(kin_viscosity)/(v*D));              

f_prime=(C*10^3)*((Hres+Hatm)/Hatm)*(rhoa/rhow)*(La/L)*(a/sqrt(g*D))*lambda; 

 
else 
    f_prime=0; 
end 
end 
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APPENDIX C   SHOCK-FITTING CODE (MATLAB) 

 

1. Main code called : ‘Main’ : 

 
 
clear all; clc; close all; 

 
global D g A S0 f n 

  
Hatm=10.33;                    % Atmospheric pressure  
Hres=0.204;                    % Relative pressure at the upstream reservoir 
D=0.053;                       % Diameter 
k=1.2;                         % Polytropic coefficient 
S0=-0.02;                      % Slope 
A=pi*(D/2)^2;                  % Pipe area 
Lt=10.7;                       % Length of the pipe 
g=9.81;                        % Gravitational acceleration 
f=0.025;                       % Darcy-Weisbach friction factor 
n=0.009;                       % Manning coefficient 
Kloss=2.9;                     % Coefficient of singular head loss 
a=1200;                        % Elastic wave speed 
rho=998;                       % Density 

  
delta=1e-16; 

  
% Initial conditions 
Q_0=0.15*sqrt(g*D^5);         % Initial discharge from Hatcher article 
Va_0=2.63*D^3;                % Initial air pocket volume from Hatcher article 

  
v_0=Q_0/A;                    % Initial velocity 
ha=0;                         % Initial air pocket pressure 
 

y_0=0.5628*D;                 % Initial height of the free surface region 
teta=2.0*acos((D/2-y_0)/(D/2)); 
At=((D^2)/8)*(abs(teta)-sin(abs(teta))); 
Lu=(Lt*(A-At)-Va_0)/(A-At);         % Length of the pressurized zone 

  

  
% Free surface flow (at the right of the interface) 
imax=20;   xmin=Lu;   xmax=Lt;   dx=(xmax-xmin)/(imax-1); 
x(1)=xmin+(1/2)*dx;   x(imax)=xmax; 

  
for i=2:imax-1 
x(i)=x(i-1)+dx;     
end 

  
for i=1:imax 
y(i)=0.5628*D; 
teta=2*acos((D/2-y(i))/(D/2));   
AF(i)=((D^2)/8)*(abs(teta)-sin(abs(teta))); 
c(i)=sqrt(g*D/8)*sqrt((abs(teta)-sin(abs(teta)))/sin(abs(teta)/2)); 
v(i)=Q_0/AF(i); 
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end 

  
% Pressurized flow (at the left of the interface) 
xxmin=0;   xxmax=Lu;   dxx=dx;   iimax=1+round((xxmax-xxmin)/dxx); 
xx(1)=xxmin;   xx(iimax)=xxmax-(1/2)*dxx; 

  
for i=2:iimax-1 
xx(i)=xx(i-1)+dxx;     
end 

  
for i=1:iimax 
hu(i)=Hres-(1+Kloss)*v_0*abs(v_0)/2/g;  
vu(i)=Q_0/A; 
end 

  
Q33(1)=vu(iimax)*A; 
vp1=v(1);   yp1=y(1);   cp1=c(1);   vp2=vu(iimax);   hp2=hu(iimax);   wu=0; 

 
hu0=Hres-(1+Kloss)*v_0*abs(v_0)/2/g;    
Va=Va_0;   hap(1)=ha;   Vap(1)=Va_0;   wup(1)=0;   hup(1)=hu(iimax); 

  
nnmax=300000;  CFL=0.9;   t(1)=0; 

 
for nn=2:nnmax 

 
    nn    
    dt1=CFL*dxx/(max(abs(vu))+a); 
    dt2=CFL*dx/(max(abs(v))+max(c)); 

      
    dt1=min(dt1,dt2); 
    dt0=dx/abs(wu); 

     
    dtP=min(dt0,dt1); 
    dtF=dtP; 

  
    t(nn)=t(nn-1)+dtP; 

   
    vr=v(1)+CFL*(vp1-v(1));        
    yr=y(1)+CFL*(yp1-y(1));        
    cr=c(1)+CFL*(cp1-c(1)); 

  
    teta=2*acos((D/2-yr)/(D/2));   
    At=((D^2)/8)*abs((abs(teta)-sin(abs(teta)))); 
    Pt=abs(teta)*(D/2);                 

  

     
    Rr=abs(At/(abs(Pt)+delta));  
    Sfr=abs(((n^2)*(vr^2))/(Rr^(4/3)));  
    Dq=vr+(g/cr)*yr+g*(S0-Sfr)*dtF; 

      
    vs=v(1)+CFL*(v(2)-v(1)); 
    ys=y(1)+CFL*(y(2)-y(1)); 
    cs=c(1)+CFL*(c(2)-c(1)); 
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    teta=2*acos((D/2-ys)/(D/2));    
    At=((D^2)/8)*(abs(teta)-sin(abs(teta))); 
    Pt=abs(teta)*(D/2);  

     
    Rs=abs(At/(abs(Pt)+delta));  
    Sfs=abs(((n^2)*(vs^2))/(Rs^(4/3))); 
    Dn=vs-(g/cs)*ys+g*(S0-Sfs)*dtF; 

     
    yn(1)=(Dq-Dn)/(g/cr+g/cs); 
    vn(1)=Dn+g/cs*yn(1); 

     

     
    for i=2:imax-1   
        vr=v(i)+CFL*(v(i-1)-v(i)); 
        yr=y(i)+CFL*(y(i-1)-y(i)); 
        cr=c(i)+CFL*(c(i-1)-c(i)); 

  
        teta=2*acos((D/2-yr)/(D/2));   
        At=((D^2)/8)*(abs(teta)-sin(abs(teta))); 
        Pt=abs(teta)*(D/2);                                    

  
        Rr=abs(At/(abs(Pt)+delta)); 
        Sfr=abs(((n^2)*(vr^2))/(Rr^(4/3)));  
        Dq=vr+(g/cr)*yr+g*(S0-Sfr)*dtF;     

  
        vs=v(i)+CFL*(v(i+1)-v(i)); 
        ys=y(i)+CFL*(y(i+1)-y(i)); 
        cs=c(i)+CFL*(c(i+1)-c(i)); 

         
        teta=2*acos((D/2-ys)/(D/2)); 
        At=((D^2)/8)*(abs(teta)-sin(abs(teta))); 
        Pt=abs(teta)*(D/2);  

  
        Rs=abs(At/(abs(Pt)+delta));  
        Sfs=abs(((n^2)*(vs^2))/(Rs^(4/3))); 
        Dn=vs-(g/cs)*ys+g*(S0-Sfs)*dtF; 

  
        yn(i)=(Dq-Dn)/(g/cr+g/cs); 
        vn(i)=Dn+g/cs*yn(i);      
    end 

     
    vr=v(imax)+CFL*(v(imax-1)-v(imax)); 
    yr=y(imax)+CFL*(y(imax-1)-y(imax)); 
    cr=c(imax)+CFL*(c(imax-1)-c(imax));  

     
    teta=2*acos((D/2-yr)/(D/2));   
    At=((D^2)/8)*(abs(teta)-sin(abs(teta))); 
    Pt=abs(teta)*(D/2);                                    

     
    Rr=abs(At/(abs(Pt)+delta));  
    Sfr=abs(((n^2)*(vr^2))/(Rr^(4/3)));  
    Dq=vr+(g/cr)*yr+g*(S0-Sfr)*dtF;     
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    vn(imax)=0;  
    yn(imax)=(Dq-vn(imax))/(g/cr); 

     
    % Pressurized region 
    vs=vu(1)+CFL*(vu(2)-vu(1));        
    hs=hu(1)+CFL*(hu(2)-hu(1));        

     
    Sfs=f/(2*D)*vs*abs(vs); 
    Dn=vs-(g/a)*ys+g*(S0-Sfs)*dtP; 
    hun(1)=hu0-vu(1)^2/2/g-Kloss*abs(vu(1))*vu(1)/2/g; 
    vun(1)=(g/a)*hun(1)+Dn; 

     
    for i=2:iimax-1  
        vr=vu(i)+CFL*(vu(i-1)-vu(i)); 
        hr=hu(i)+CFL*(hu(i-1)-hu(i)); 
        Sfr=f/2/D*vr*abs(vr); 
        Dq=vr+(g/a)*hr+g*(S0-Sfr)*dtP;     

  
        vs=vu(i)+CFL*(vu(i+1)-vu(i)); 
        hs=hu(i)+CFL*(hu(i+1)-hu(i)); 
        Sfs=f/2/D*vs*abs(vs); 
        Dn=vs-g/a*hs+g*(S0-Sfs)*dtP; 

  
        hun(i)=(Dq-Dn)/(2*g/a); 
        vun(i)=Dn+g/a*hun(i);    
    end 

     
    vr=vu(iimax)+CFL*(vu(iimax-1)-vu(iimax));                
    hr=hu(iimax)+CFL*(hu(iimax-1)-hu(iimax));                
    Sfr=f/(2*D)*vr*abs(vr); 
    Dq=vr+(g/a)*hr+g*(S0-Sfr)*dtP;     

         
    vs=vu(iimax)+CFL*(vp2-vu(iimax)); 
    hs=hu(iimax)+CFL*(hp2-hu(iimax)); 
    Sfs=f/(2*D)*vs*abs(vs); 
    Dn=vs-g/a*hs+g*(S0-Sfs)*dtP; 

     
    hun(iimax)=(Dq-Dn)/(2*g/a); 
    vun(iimax)=Dn+g/a*hun(iimax); 

     

     
    %%%%%%%%%%%%%%%End pressurized flows%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % %%%%%%%%%%%%%%Air Volume & Pressure%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    Van=Va-dtP*A*vun(iimax); 
    han=-Hatm+(ha+Hatm)*((abs(Va))^k)*((abs(Van))^(-k)); 
    %%%%%%%%%%%%%%End Air Volume and Pressure%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    Va=Van; 
    ha=han;  
    vu=vun; 
    hu=hun; 
    v=vn; 
    y=yn; 

     
    for i=1:imax 
    teta=2.0*acos((D/2-y(i))/(D/2)); 
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    AF(i)=((D^2)/8)*(abs(teta)-sin(abs(teta))); 
    c(i)=sqrt(g*D/8)*sqrt(abs((abs(teta)-sin(abs(teta))))/sin(abs(teta)/2)); 
    Ap(i)=(rho*g/12)*((3*D^2-4*D*y(i)+4*y(i)^2)*sqrt(abs(y(i)*(D-y(i))))-

3*(D^2)*(D-2*y(i))*atan(sqrt(abs(y(i)/(D-y(i)))))); 

  
    end 

     
 [vp1,yp1,cp1,hp2,vp2,wun]=Tran(vu,hu,iimax,y,v,c,wu,ha,rho,a,dtF,dtP); 
 Length(nn)=Length(nn-1)+wu*dtF; 

  
if(Length(nn)>x(1)) 
    iimax=iimax+1;  imax=imax-1; 

     
    hu1=hu;vu1=vu;x1=x; 
    xx(iimax)=xx(iimax-1)+dx; 
    for i=1:imax 
       x(i)=x1(i)+dx;  
    end 
    for i=1:iimax-1  
        hu(i+1)=hu1(i); 
        vu(i+1)=vu1(i); 
    end 
    hu(1)=hu(2); 
    vu(1)=vu(2); 
end  

  
if(Length(nn)<xx(iimax))         
    iimax=iimax-1; 
    imax=imax+1; 
    hu1=hu;vu1=vu;x1=x; 
    xx(iimax)=xx(iimax-1)-dx; 

     
    x(imax)=x1(imax-1); 
    for i=1:imax-1 
       x(i)=x1(i)-dx;  
    end 

    
    for i=1:iimax  
        hu(i)=hu1(i+1); 
        vu(i)=vu1(i+1); 
    end  

     
    y(imax)=y(imax-1);  AF(imax)=AF(imax-1);  c(imax)=c(imax-1);  
v(imax)=v(imax-1);  Ap(imax)=Ap(imax-1); 

   
end 

  
   wu=wun; 
   wup(nn)=wu; 
   hap(nn)=ha;hup(nn)=hu(iimax); 
   Vap(nn)=Va; 
   Q33(nn)=vu(iimax)*A; 
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 if (mod(nn,1000)==0 )     
        nn  

  
        figure(2) 
        plot(t/(Va_0^(1/3)/sqrt(g*D)),hup/D); 
        ylabel('(Hair-Hatm)/D');xlabel('Time t*') 
        title('Hatcher et al. - Shock-fitting') 

         
        figure(3) 
        plot(t/((Van)^(1/3)/sqrt(g*D)),Q33/sqrt(g*D^5),'-k'); 
        ylabel('Dimensionless discharge Q*');xlabel('Time t*') 
        title('Hatcher et al. - Shock-fitting') 

   
        figure(5) 
        plot(xx(1:iimax),hu(1:iimax),'-o'); 
        ylabel('Pressure of the pressurized zone hu') 
        xlabel('x') 

 
        figure(7) 
        plot(x(1:imax),y(1:imax)/D,'-o'); 
        ylabel('Depth of the free surface zone y') 
        xlabel('x') 

  
        figure(8) 
        plot(t/((Van)^(1/3)/sqrt(g*D)),wup,'-k'); 
        ylabel('wu');xlabel('T*') 

      
        figure(9) 
        plot(t,Length) 
        ylabel('Lu');xlabel('T*')  

    
        pause(0.05) 
 end  

  
end 

  

  

2. Function called : ‘Tran’ : 
 
function [vp1,yp1,cp1,hp2,vp2,wun]=Tran(vu,hu,iimax,y,v,c,wu,ha,rho,a,dtF,dtP) 
D=0.053; 
if(wu>0) 
[vp2,hp2,wun]=flxT4(y,v,vu,hu,ha,iimax,wu,rho,a,c,dtF,dtP); 
vp1=v(1);   yp1=y(1);   cp1=c(1); 
end 

  
if(wu<=0) 
[vp1,yp1,vp2,hp2,cp1,wun]=flxT1(ha,iimax,vu,hu,y,v,rho,a,c,dtF,dtP); 
end 

  
end 
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3. Function called : ‘flxT1’ : 
 

function [vp1,yp1,vp2,hp2,cp1,wun]=flxT1(ha,iimax,vu,hu,y,v,rho,a,c,dtF,dtP) 
global D g A S0 f n 

  
tol=1e-16;delta=1e-16; 

  
teta=2*acos((D/2-y(1))/(D/2)); 
AF(1)=((D^2)/8)*(abs(teta)-sin(abs(teta))); 
Ap(1)=(rho*g/12)*((3*D^2-4*D*y(1)+4*y(1)^2)*sqrt(abs(y(1)*(D-y(1))))-

3*(D^2)*(D-2*y(1))*atan(sqrt(abs(y(1)/(D-y(1)))))); 

  
resv1=10.0;resy1=10.0;resv2=10.0;resh2=10.0;resc1=10.0;rest=10.0;resAp=10.0; 

resA=10.0; 

  
vp1=v(1)+tol;yp1=y(1)+tol;cp1=c(1)+tol;App1=Ap(1)+tol;Ap1=AF(1)+tol; 

vp2=vu(iimax)+tol;hp2=hu(iimax)+tol;teta=3.0; 

  
wun=(A*vu(iimax)-AF(1)*v(1))/(A-AF(1)); 

  
kk=1; 

 
while((resv1>tol || resy1>tol || resv2>tol || resh2>tol || resc1>tol || 

rest>tol || resAp>tol || resA>tol) && (kk<3000)) 

  
kk=kk+1; 

  
G1=0.5*sqrt(g*D/8)/sqrt((abs(teta)-sin(abs(teta)))/sin(abs(teta)/2))*((1-

cos(abs(teta)))*sin(abs(teta)/2)-0.5*cos(abs(teta)/2)*(abs(teta)-

sin(abs(teta))))/(sin(abs(teta)/2))^2; 
G2=(rho*g/12)*((-4*D+8*yp1)*sqrt(abs(yp1*(D-yp1)))+(3*D^2-

4*D*yp1+4*(yp1^2))*(abs(D-2*yp1))/(2*sqrt(abs(yp1*(D-

yp1))))+6*(D^2)*atan(sqrt(abs(yp1/(D-yp1))))-3*(D^2)*(abs((D-

2*yp1))/D)*(sqrt(abs(D-yp1))/(2*sqrt(yp1))+sqrt(yp1)/(2*sqrt(abs(D-yp1))))); 

 
Pt=abs(teta)*(D/2);  
Rs=abs(Ap1/(abs(Pt)+delta));  

  
Sf1=abs(((n^2)*(v(1)^2))/(Rs^(4/3))); 
Sf2=f/(2*D)*vu(iimax)*abs(vu(iimax)); 

  
J=[1 g/a 0 0 0 0 0 0;   
   0 0 1 -g/cp1 g*yp1/(cp1^2) 0 0 0; 
   A 0 -Ap1 0 0 0 0 -vp1+wun 
   -rho*A*(vp1-vp2)+rho*A*vp2-wun*rho*A rho*g*A -rho*A*vp2+wun*rho*A 0 0 0 -1 0; 
   0 0 0 0 -1 G1 0 0; 
   0 0 0 -1 0 (D/4)*sin(abs(teta)/2) 0 0; 
   0 0 0 G2 0 0 -1 0; 
   0 0 0 0 0 D^2/8.0*(1-cos(abs(teta))) 0 -1]; 

  
ff=[vp2-vu(iimax)+(g/a)*hp2-(g/a)*hu(iimax)+g*dtP*(Sf2-S0); 
    vp1-v(1)-(g/cp1)*yp1+(g/c(1))*y(1)+g*dtF*(Sf1-S0); 
    A*vp2-Ap1*vp1-wun*(A-Ap1); 
    rho*g*(hp2-0.5*D)*A-App1-rho*g*A*ha-rho*vp2*A*(vp1-vp2)+rho*wun*A*(vp1-

vp2); 
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    -cp1+sqrt(g*D/8)*sqrt((abs(teta)-sin(abs(teta)))/sin(abs(teta)/2)); 
    -yp1+(D/2)*(1-cos(abs(teta)/2)); 
    -App1+(rho*g/12)*((3*D^2-4*D*yp1+4*yp1^2)*sqrt(yp1*(D-yp1))-3*(D^2)*(D-

2*yp1)*atan(sqrt(yp1/(D-yp1)))); 
    -Ap1+((D^2)/8)*(abs(teta)-sin(abs(teta)))]; 

  
vp2m=vp2;   hp2m=hp2;   vp1m=vp1;   yp1m=yp1;   cp1m=cp1;   tetam=teta; 
App1m=App1;   Am=Ap1; 

 
df=J\ff; 

  
vp2=vp2-df(1); 
hp2=hp2-df(2); 
vp1=vp1-df(3); 
yp1=yp1-df(4); 
cp1=cp1-df(5); 
teta=teta-df(6); 
App1=App1-df(7); 
Ap1=Ap1-df(8); 

  
resv2=abs(vp2m-vp2); 
resh2=abs(hp2m-hp2); 
resv1=abs(vp1-vp1m); 
resy1=abs(yp1-yp1m); 
resc1=abs(cp1m-cp1); 
rest=abs(tetam-teta); 
resAp=abs(App1m-App1); 
resA=abs(Am-Ap1); 
end 

  
if (~isreal(vp2) || ~isreal(hp2) || ~isreal(vp1) || ~isreal(yp1) || 

~isreal(cp1) || ~isreal(teta) || ~isreal(App1) || ~isreal(App1)) 

  
tol=1e-16; 
teta=2*acos((D/2-y(1))/(D/2)); 
AF(1)=((D^2)/8)*(abs(teta)-sin(abs(teta))); 
Ap(1)=(rho*g/12)*((3*D^2-4*D*y(1)+4*y(1)^2)*sqrt(abs(y(1)*(D-y(1))))-

3*(D^2)*(D-2*y(1))*atan(sqrt(abs(y(1)/(D-y(1)))))); 

 
resv1=10.0;resy1=10.0;resv2=10.0;resh2=10.0;resc1=10.0;rest=10.0;resAp=10.0;re

sA=10.0; 

  
vp1=v(1)+tol;yp1=y(1)+tol;cp1=c(1)+tol;App1=Ap(1)+tol;Ap1=AF(1)+tol; 

vp2=vu(iimax)+tol;hp2=hu(iimax)+tol;teta=3.0; 

  
wun=(A*vu(iimax)-AF(1)*v(1))/(A-AF(1));       
Pt=abs(teta)*(D/2);  
Rs=abs(Ap1/(abs(Pt)+delta));  

  
Sf1=abs(((n^2)*(v(1)^2))/(Rs^(4/3))); 
Sf2=f/(2*D)*vu(iimax)*abs(vu(iimax)); 

  
F=@(x) [x(1)-vu(iimax)+(g/a)*x(2)-(g/a)*hu(iimax)+g*dtP*(Sf2-S0); 
    x(3)-v(1)-(g/cp1)*x(4)+(g/c(1))*y(1)+g*dtF*(Sf1-S0); 
    A*x(1)-Ap1*x(3)-wun*(A-Ap1); 
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    rho*g*(x(2)-0.5*D)*A-x(7)-rho*g*A*ha-rho*x(1)*A*(x(3)-

x(1))+rho*wun*A*(x(3)-x(1)); 
    -x(5)+sqrt(g*D/8)*sqrt((abs(x(6))-sin(abs(x(6))))/sin(abs(x(6))/2)); 
    -x(4)+(D/2)*(1-cos(abs(x(6))/2)); 
    -x(7)+(rho*g/12)*((3*D^2-4*D*x(4)+4*x(4)^2)*sqrt(x(4)*(D-x(4)))-

3*(D^2)*(D-2*x(4))*atan(sqrt(x(4)/(D-x(4))))); 
    -x(8)+((D^2)/8)*(abs(x(6))-sin(abs(x(6))))]; 

  
x0=[vp2;hp2;vp1;yp1;cp1;teta;App1;Ap1]; 
[x] = fsolve(F,x0) 
end 

 
end 

 

4. Function called : ‘flxT1’ : 
 

function [vp2,hp2,wun]=flxT4(y,v,vu,hu,ha,iimax,wu,rho,a,c,dtF,dtP) 

  
global D g A S0 f n 
 

tol=1e-16; 
resv=10.0;resh=10.0;resw=10.0; 
vp2=vu(iimax)+tol;   hp2=hu(iimax)+tol;   wun=wu+tol;kk=1; 

  
teta=2*acos((D/2-y(1))/(D/2)); 
AF(1)=((D^2)/8)*(abs(teta)-sin(abs(teta))); 
Ap(1)=(rho*g/12)*((3*D^2-4*D*y(1)+4*y(1)^2)*sqrt(abs(y(1)*(D-y(1))))-

3*(D^2)*(D-2*y(1))*atan(sqrt(abs(y(1)/(D-y(1)))))); 

  
while((resv>tol || resh>tol || resw>tol) && (kk<1000))   
kk=kk+1; 
Sf2=f/(2*D)*vu(iimax)*abs(vu(iimax)); 

  
J=[1 g/a 0; 
   A 0 -(A-AF(1)); 
   rho*A*v(1)-wun*rho*A rho*g*A rho*A*(v(1)-vp2)]; 

  
ff=[vp2+g/a*hp2-vu(iimax)-g/a*hu(iimax)+g*dtF*(Sf2-S0); 
    A*vp2-AF(1)*v(1)-wun*(A-AF(1)); 
   rho*g*(hp2-0.5*D)*A-Ap(1)-rho*g*A*ha-rho*A*v(1)*(v(1)-vp2)+wun*rho*A*(v(1)-

vp2)]; 

  
df=J\ff; 

  
vpm=vp2; 
hpm=hp2; 
wm=wun; 

  
vp2=vp2-df(1);       hp2=hp2-df(2);       wun=wun-df(3); 
resv=abs(vp2-vpm);   resh=abs(hp2-hpm);    resw=abs(wun-wm); 
end 
end 


