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1. Vibrational modes

GaSe has a hexagonal layered lattice structure with each monolayer consisting of two

opposed tetrahedral layers of gallium and selenium in a Se-Ga-Ga-Se sequence. The unit cell

of the monolayer contains four atoms and the resulting 12 vibrational modes are identified

using the representations of the D3h point-group.

The monolayer stacking order determines the bulk polytype. The most common polytype

identified in the literature is 󰂃-Gase. It expresses a ABA stacking order and a D1
3h space

group, and it lacks inversion symmetry [1–5]. The γ-GaSe (C5
3v) and β-GaSe polytypes

(D4
6h) have also been identified by some authors. Due to the weak inter-layer interactions,

all polytypes exhibit similar electronic and vibrational characteristics[4, 6–8] and it can be

challenging to distinguish them. In Raman spectroscopy for example, the splittings resulting

from the stacking order is typically smaller than the phonon linewidths. Large and high

quality Bridgeman-grown crystals such as those used in this work are predominantly of the

󰂃 polytype [1–5].

The unit cell of 󰂃-GaSe spans two monolayers and contains 8 atoms. There are a total

of 24 vibrational modes. The bulk normal modes bear the same symmetry representations

as those of the monolayer, but each mode is now split into Davydov doublets[2], where the

two modes are built from two monolayer modes placed either in- or out-of-phase. Owing

to the very weak interlayer interactions in GaSe [2, 9, 10], the Davydov doublets are nearly

degenerate and, for the high-energy optical modes studied in this work, have yet to be

resolved. Supplementary Table 1 lists the 12 in-phase optical normal modes of bulk 󰂃−GaSe

along with their reported energies and selection rules. The remaining 12 out-of-phase modes

can be constructed by inverting the displacement in one of the two monolayers.

2. Momentum conservation in Raman scattering

Momentum conservation requires k = qi − qs or k =
󰁳

q2i + q2s − 2qiqs cos(ψ), where qi

and qs are the incident and scattered photon wavevectors, and ψ is the angle between these

two vectors. Hence, Raman spectroscopy can probe excitations with wavevector magnitudes

k in the range |qi − qs| ≤ k ≤ qi + qs. Using visible light to probe material excitations, the

magnitude of qi and qs are of the order of 105 cm−1.
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Supplementary Table 1. Normal vibrational modes of 󰂃-GaSe. For each normal mode, from top to

bottom are the Mulliken symbols, schematic atomic displacements within the unit cell, frequencies,

mode activity, and Raman selection rules. The mode frequencies, along with their attribution, are

averaged frequencies found in Refs. [1, 11–15]. Raman selection rules are reported using the Porto

notation.
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For typical phonon frequencies (ω ≈ 200−1000 cm−1), bulk polaritonic effects are ob-

served for wavevectors values of the order of k ∼ 5× 103 cm−1[16]. Such low value can only

be achieved using a near-forward measurement configuration, ψ ≈ 0 (see Fig. 1(b)). Al-

though near-forward Raman scattering can be implemented relatively easily, it is rarely used

and the large majority of Raman instruments are configured to be operated in a backward

scattering configuration only. In the commonly used backscattering configuration (see Fig.

1(a)), ψ ≈ 180° and the smallest wavevector probed is k ≈ 105 cm−1. Although this value

is much less than the overall size of the Brillouin zone, it is nonetheless quite far from the
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light line where the coupling between a polar phonon and light is significant in bulk sam-

ples. Hence, only purely mechanical vibrational modes (phonons) are generally observed in a

backscattering configuration. It is important to note that, in some conditions, near-forward

Raman scattering can be observed in a backward scattering configuration. 1(c) illustrated

the case where the laser excitation is reflected at the back surface and redirected towards the

collection objective. Forward-scattering can then be observed in the Raman spectra. This

aspect is further discussed in Supplementary Notes 11 and 12 for quasi-bulk GaSe sample

with thicknesses up to 70 µm.

In the context of polaritons in thin Van der Walls crystals, two significant aspects in-

fluence the magnitude of polariton wavenumbers. First, the crystal anisotropy provides an

hyperbolic dispersion relation in the reststrahlen region, such that there are no upper limit

on the magnitude of k. Second, increasing confinement by reducing sample dimensions al-

lows taking advantage of this hyperbolicity by pushing polariton wavenumbers to higher

values. The deep subwavelength confinement in submicron size samples pushes k values in

a range compatible with backscattering Raman spectroscopy (Supplementary Figure 1(a)).
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Reflected Forward 
Scattering

Near-forward 
Scattering

Typical
Backscattering

Supplementary Figure 1. Schematic representation of the three relevant Raman scattering geome-

tries. qi, qs and k represent the incident, scattered, and polariton wave vectors, respectively. θ and

θo are the angles of the incident and scattered beams relative to the z or c axis. The subscript o is

added to propagation angles outside the sample. qouti and qouts are the photon wavevectors outside

the sample. (a) Typical backscattering configuration, where the scattered photon is redirected

toward the upper surface of the sample by the large vertical component kz of the probed polariton

wave vector. (b) Near-forward geometry, where the scattered photon’s propagation direction is

only slightly altered by the small k and exits the sample through the opposing face. (c) Example

of reflected forward scattering, wherein the incident photon is first reflected by the lower surface

of the sample, allowing near-forward scattering to be observed in a backscattering experimental

configuration.

3. Phonon dispersion in uniaxial crystals

In uniaxial crystals, the energy of polar phonons is determined by the direction of atomic

movements with respect to the extraordinary axis (A or E modes) and the long-range

coulomb interaction at the origin of the LO and TO splitting. For propagation along high

symmetry crystal directions, phonons can straightforwardly be defined by their A, E, TO and

LO characters. At oblique angles however, phonons exhibit mixed characters and reduced

symmetry[17] and, depending on the relative magnitudes of the electrostatic and crystalline
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contributions, dispersion relatively close to the Brillouin zone center can be observed.[18–

20] In GaSe, the Coulomb interaction largely dominates the crystal anisotropy and polar

modes preserve a dominant TO or LO characters at all angles. As a function of internal

propagation angle θ, the photon frequency is given by [1, 19]

ω2
To(θ) = ω2

TO⊥, (1)

ω2
Te(θ) = ω2

TO⊥ cos2 θ + ω2
TO// sin

2 θ, (2)

ω2
Le(θ) = ω2

LO// cos
2 θ + ω2

LO⊥ sin2 θ. (3)

and illustrated in Fig. 2(a). The three phonon dispersion branches can be identified as

the transverse ordinary phonon (To, E ′
TO → E ′

TO), transverse extraordinary phonon (Te,

E ′
TO → A′′

2LO) and longitudinal extraordinary phonon (Le, A′′
2LO → E ′

LO).
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Supplementary Figure 2. Comparison between the calculated lattice-induced dispersion and ob-

served angular dispersion. (a) Complete lattice dispersion curve of zone-center phonons (ω/c ≪

k ≪ π
a ) as a function of internal propagation angles with respect to the uniaxe c. Red and black

curves illustrate the extraordinary phonon branches, and the ordinary non-dispersive To branch

is represented by the blue curve. The upper scale indicates the corresponding external optical

scattering angle, with the shaded area illustrating the accessible internal propagation angles below

the total internal reflection angle of 19.8◦. Lattice mode energies are indicated by the horizontal

dotted lines. (b) Enlarged view of the shaded region in (a), with the measured data points shown

in Fig. 2(f) of the main text. Uncertainties are smaller than the data points.

As shown in Fig. 2(b), the experimental data from the 650-nm thick sample presented in
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the main text is incompatible with the expected position and dispersion of purely mechanical

phonons.

4. Permittivity of GaSe

For materials with multiple polar phonons, the permittivity involves the coupling of the

nλ polar modes occurring along the direction λ and can be defined as [21],

󰂃λ(ω) = 󰂃λ∞

nλ󰁜

i=1

󰀕
ω2
LOλi − ω2

ω2
TOλi − ω2

󰀖
, (4)

where 󰂃∞ represents the high-frequency permittivity, and ωTO and ωLO are the transverse TO

and LO phonon frequencies. For GaSe, there are two distinct groups of three polar modes

2× (1A + 2E). The first group consists of out-of-phase acoustic modes (see Supplementary

Table 1) and occur at very low frequencies. Hence, these weak resonances [8, 22] at low-

frequency do not appreciably affect the permittivity in the vicinity of the second group

of polar modes, located above 200 cm−1. Hence, for ordinary (transverse) polaritons, the

permittivity is given by,

󰂃⊥(ω) = 󰂃∞⊥

󰀕
ω2
LO⊥ − ω2

ω2
TO⊥ − ω2

󰀖
, (5)

and, for extraordinary polaritons propagating in the ab plane, the permittivity is

󰂃󰀂(ω) = 󰂃∞󰀂

󰀣
ω2
LO󰀂 − ω2

ω2
TO󰀂 − ω2

󰀤
. (6)

In these equations, the damping factor has been omitted for simplicity. It can be reintro-

duced through the following substitution ω2 → ω2 + iΓω. The parameters used to model

the permittivity were taken from Ref. 23 and are listed in Supplementary Table 2.

Supplementary Table 2. Transverse and longitudinal frequencies and high-frequency permittivities

for the in-plane and out-of plane polar phonons in GaSe [23].

Mode (direction) ωTO (cm−1) ωLO (cm−1) 󰂃∞

In-plane E′(21,2) mode (⊥) 213.5 254 7.44

Out-of-plane A′′
2(2) mode (󰀂) 236 244.5 5.76
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The general dispersion relation for arbitrary wave vector directions of extraordinary waves

polaritons depends on both the wavelength and the propagation angle θ relative to the c

axis [19],

k2c2

ω2
= 󰂃e(ω, θ) =

󰂃⊥(ω)󰂃󰀂(ω)

󰂃⊥(ω) sin θ2 + 󰂃󰀂(ω) cos θ2
, (7)

which can also be expressed as

ω2

c2
=

k2
⊥
󰂃⊥

+
k2
󰀂

󰂃󰀂
. (8)

For positive 󰂃⊥ and 󰂃󰀂, the dispersion relation (8) describes a revolution ellipsoid. For

negative 󰂃⊥ and positive 󰂃󰀂, the dispersion relation describes a one-sheeted revolution hy-

perboloid, known as a Type I hyperbolic dispersion. For negative 󰂃⊥ and positive 󰂃󰀂, the

dispersion describes a two-sheeted revolution hyperboloid, known as Type II hyperbolic dis-

persion (yellow regions in Fig. 1). Frequency regions where both permittivities are negative

correspond to a double Reststrahlen region (blue regions in Fig.1).

5. Raman tensors

The Raman tensor components for each of the normal modes of are [24]:

↔
RA′

1
=

󰀳

󰁅󰁅󰁅󰁃

a 0 0

0 a 0

0 0 b

󰀴

󰁆󰁆󰁆󰁄
,

↔
RA

′′
2
(z) = 0,

↔
RE′

1
(x) =

󰀳

󰁅󰁅󰁅󰁃

0 d 0

d 0 0

0 0 0

󰀴

󰁆󰁆󰁆󰁄
,

↔
RE′

1
(y) =

󰀳

󰁅󰁅󰁅󰁃

d 0 0

0 −d 0

0 0 0

󰀴

󰁆󰁆󰁆󰁄
,

↔
R

(1)

E
′′ =

󰀳

󰁅󰁅󰁅󰁃

0 0 0

0 0 c

0 c 0

󰀴

󰁆󰁆󰁆󰁄
,

↔
R

(2)

E
′′ =

󰀳

󰁅󰁅󰁅󰁃

0 0 −c

0 0 0

−c 0 0

󰀴

󰁆󰁆󰁆󰁄
,

(9)

where a, b, c and d are constants. The Cartesian coordinates identify the polarization direc-

tion for polar modes (A2 and E ′
1).
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6. Raman scattering from phonon-polaritons

In order to conveniently model polariton scattering, Raman tensor elements shall be de-

fined along normal polariton coordinates. Given the connection between polariton lattice

deformation and macroscopic electric field, the resulting polariton tensor can be interchange-

ably expressed as a function of either their mechanical or electromagnetic components.

Polariton normal coordinates Polariton branches do not exhibit the same symme-

tries as the crystal lattice as they propagate obliquely in the crystal. In order to ex-

press the resulting first-order effect of the polariton on the susceptibility of the material,

the polariton normal coordinates {To, Te, Le} are projected onto the lattice coordinates

{x, y, z}. With the polariton wavevector orientation in the lattice coordinates defined as

k = k (sin θ cosφ, sin θ sinφ, cos θ), the polariton normal coordinates are defined such that

󰁦To ⊥ (ẑ,k), 󰁦Te ⊥ (T̂ o,k) and 󰁦Le 󰀂 k.

Mechanical and electro-optical contributions of polaritons to the polarizability Raman

scattering originates from the modulation of the susceptibility of a material by mechanical

atomic displacements. However, oscillating macroscopic electric fields in a material can also

modulate the susceptibility, which is fundamental premise of non-linear optics. Considering

explicitly polar phonons or polaritons, the material susceptibility can be expressed as a

Taylor series of the macroscopic electric field E associated to the lattice displacements.

It is critical to note here that for polar vibrational modes, the lattice displacement and

accompanying electric field possess the same symmetry and frequencies. Hence, the total

first-order effect of the polariton on the material susceptibility can then be written as

δχ↔N =
↔
RNQN + 2χ↔

(2)
N EN , (10)

with N indicating the polariton normal coordinates {To, Te, Le}, and QN and EN the

polariton displacements and electric fields. χ↔(2) is the second-order susceptibility tensor as

usual defined in non-linear optics. Given their equivalent symmetry, QN and EN can be

linked by a frequency-dependent scalar parameter [25] :

E⊥,// =
ω2
TO;⊥,// − ω2

ωTO;⊥,//

󰁳
󰂃0(󰂃s;⊥,// − 󰂃∞;⊥,//)

Q⊥,// =
1

K⊥,//
Q⊥,//, (11)

defining K⊥,// ≡ Q⊥,///E⊥,//. This relation establishes a direct proportionality between the

electric and atomic displacement fields, and the variation of the susceptibility can then be
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equivalently expressed as a function of the atomic displacements,

δχ↔N ∝
󰀕

↔
RN +

2

KN

χ↔
(2)
N

󰀖
QN , (12)

or as a function of the electric field,

δχ↔N ∝
󰀓
KN

↔
RN + 2χ↔

(2)
N

󰀔
EN , (13)

with KTo,Te = K⊥ and KLe = K󰀂. Note here that KN diverges for ω → ωTO, as the electric

field vanishes at the transverse frequency.

These expressions demonstrate that the effective polariton Raman tensor can be ex-

pressed interchangeably as a function of the mechanical or electrical component, using the

appropriate form of the tensor. This property enables the use of a numerical electromag-

netic waveguide model to compute the Raman scattering efficiency. The effective polariton

Raman tensor used here is defined as

󰁨RN ≡ KN

↔
RN + 2χ↔

(2)
N . (14)

The Faust-Henry coefficient The relative magnitudes of
↔
RN and χ↔

(2)
N for a given material

can be expressed as a function of the Faust-Henry coefficients CFH
λ [26]. As a function of

the tensor elements, these coefficients are given by

Rλ,ij

χ
(2)
λ,ij

= CFH
λ,ij

2ωTOλ󰁳
󰂃0(󰂃sλ − 󰂃∞λ)

, (15)

where 󰂃s is the static relative permittivity.

7. Polariton scattering intensity

Taking into account the Hopfield coefficients hE
λ [27] for each polariton coordinate, we can

now calculate the Raman scattering efficiency using the polariton tensors presented above.

These coefficients characterize the proportion of the energy in the electromagnetic and me-

chanical parts of the polariton. For uniaxial crystals, the expressions of these coefficients,

expressed in the polariton coordinate basis, are given by [28],
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HE
To(ω, θ) =

hE
⊥

󰂃∞⊥
, (16)

HE
Te(ω, θ) =

hE
⊥ cos2 θ

󰂃∞⊥
+

hE
// sin

2 θ

󰂃∞//

, (17)

HE
Le(ω, θ) =

hE
⊥ sin2 θ

󰂃∞⊥
+

hE
// cos

2 θ

󰂃∞//

. (18)

The total scattering intensity can then be expressed by including the explicit momentum

conservation integral spanning from −d/2 to d/2 in the z dimension, which yields [29],

IN(ω) =
C(nω + 1)

d

󰀏󰀏󰀏󰀏󰀏(êi ·
󰁨RN · ês)

󰁝 d/2

−d/2

eι∆q⊥z〈EN(z)〉dz

󰀏󰀏󰀏󰀏󰀏

2

δ(∆q// − k//)HE
N(ω, θ), (19)

where ∆q = qi − qs, nω is the occupation factor of polaritons at frequency ω, 〈EN(z)〉 =
󰁳

EN(z)󰂏EN(z) and C is a constant. The overlap integral between the polariton electric field

distribution and the scattered momentum in the z axis, which results in a Dirac delta for

the ’infinite’ in-plane direction, gives rise to a relaxed z wave vector conservation condition

in a thin film.

As a function of sample thickness, the Raman intensity is governed by the integral in

Supplementary Equation 19 and the probed volume. At 532 nm, the integral is maximized

for a thickness of about 150 nm. Away from this thickness, the integral slowly decreases.

The probed volume increases linearly with thickness, but it saturates at the penetration

depth of the excitation laser (5.6 µm).

8. Polariton Field distribution EN (z)

In order to compute the Raman cross-section described by equation (19), the polariton

electric field distribution inside the sample must be determined. The anisotropic multilayer

media resulting from 2D material layering precludes the use of simple analytical approaches.

The 4× 4 transfer matrix formalism described in Ref. [30] provides a powerful and versatile

numerical model of electromagnetic propagation through arbitrarily complex and anisotropic

media.

Typical results are shown in Fig. 3, where the electric field spatial distribution |Ex(z)|2

is presented as a function of frequency for four different tilt angles, corresponding to four
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different in-plane wavevectors. For the purpose of this figure, the spectral broadening pa-

rameter is set to Γ = 0.5 cm−1 to help discriminate nearly-degenerate modes. Both surface

polariton modes are clearly visible, as well as some lower and upper extraordinary polariton

modes.

A A EAA

z 
(n

m
)

z 
(n

m
)

Supplementary Figure 3. Spatial field distribution in a 650 nm thick sample of GaSe on a Si/SiO2

substrate for different scattering angles (θ = 5, 7.5, 10 and 20°). The field intensity |Ex(z)|2 is

presented using a logarithmic scale. The guided upper and lower extraordinary polariton branches

are indicated by the white brackets and both surface polariton modes are indicated by Sp(Air) and

Sp(SiO2). Lattice normal modes are indicated by the vertical dashed lines.
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9. Modelisation parameters

All parameters involved in Raman spectra calculations are taken from the literature, set

by the sample structure, or determined by the measurement configuration. These values

are presented in Supplementary Table 3. Except for an overall constant C used to adjust

the absolute scattering intensity, no free parameters are required to compute the Raman

spectra.

Supplementary Table 3. Parameters used in the computation of Raman spectra

Parameter Description Value

CFH
λ,ij GaSe Faust-Henry coefficients -0.3651 [29]

ωTO;⊥ GaSe E′(TO) energy 213.5 cm−1 [23]

ωTO;⊥ GaSe E′(LO) energy 254 cm−1 [23]

ωTO;// GaSe A
′′
2(TO) energy 236 cm−1 [23]

ωTO;// GaSe A
′′
2(LO) energy 244.5 cm−1 [23]

󰂃∞;⊥ GaSe E′ high-frequency permittivity 7.44 [23]

󰂃∞;// GaSe A
′′
2 high-frequency permittivity 5.76 [23]

󰂃Si(σ) Silicon permittivity at σ 11.69 [31]

󰂃SiO2(σ) SiO2 permittivity at σ Data from [32]

Γ⊥,// Polariton broadening parameter 1.8 cm−1

dGaSe GaSe slab thickness As determined from AFM measurements

dSiO2 Substrate SiO2 thickness 300 nm

φ Sample first Euler angle 0°

θ Sample tilt (second Euler angle) 0-45°

ψ Sample rotation (third Euler angle) 45°

σ Probed polariton wavenumber 180-265 cm−1

α Laser polarization angle 45°

10. Calculated Raman backscattering intensity

The calculated polariton scattering intensity is shown in 4 as a function of k󰀂 and polari-

ton coordinates: (a) transverse ordinary (To), (b) transverse extraordinary (Te), and (c)
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longitudinal extraordinary (Le).
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Supplementary Figure 4. Calculated polariton Raman scattering intensity dispersion for a 650 nm-

GaSe sample on SiO2/Si. (a-c) Calculated Raman spectra as a function of three normal coordinates

(To, Te, Le).

11. Backscattering efficiency

The scattering anisotropy can be evaluated using the function S = (IF − IB)/(IF + IB),

where IF and IB are the forward and backward intensity integrated from 180 to 270 cm−1

and averaged over 15 logarithmically spaced scattering angles from 0 to 45°. Fig. 5 presents

S as function sample thickness and reveals that for GaSe the anisotropy is negligible below

1 µm, IF ≈ IB.
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Supplementary Figure 5. Scattering anisotropy as a function of sample thickness. Below 1 µm, the

anisotropy is negligible: forward and backward scattering are equality likely.

12. Forward scattering signal in backscattering configuration

For thick samples, the scattering anisotropy S is large (see Fig. 3(a)) and polaritons

scattering is limited to very small wavevectors, hence preventing their observation in the

typical backscattering configuration used for the study of 2D materials. We demonstrate

below that polaritons can nonetheless be observed in backscattering configuration for thick

samples in some special conditions.

Fig. 6 presents the Raman spectra of a freestanding 70 µm GaSe sample excited at 532 nm

and 633 nm. In addition to the allowed lattice phonon at θ = 0 (A′
1
1, E ′(TO), A′

1
4), the

upper extraordinary polariton (UEp) is observed. Because of the weak confinement in a such

a thick sample, this polariton appears slightly below the frequency of the forbidden E ′(LO)

phonon with an asymmetric lineshape extending towards low frequencies. It appears only

when the sample is excited below the gap (633 nm), where the sample is transparent to both

the incident and scattered light. In this condition, the penetration depth exceeds the sample

thickness and the Raman spectra is composed of both a backscattered signal from lattice

phonons (k >> ω/c) and a forward-scattered signal from polaritons (k ≥ ω/c) involving a

reflection at the back of the sample sending the light back toward the collection objective

(see Fig. 1(c)). In both cases, the tangential polariton wave vector is the same, but there is
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a significant difference in the magnitude of the probed perpendicular wave vector.

Backscattered and reflected forward scattered signals can be discriminated by moving the

focal point of the 633 nm excitation along the optical axis. Figure 6(b) shows the integrated

Raman intensity as a function of the focal point depth within the sample, whose surfaces are

identified by the two vertical lines at 0 and 70 µm. The normalized intensity profiles of all

three lattice phonons (A′
1
1, A′

1
4, and E ′(TO)) are almost identical and are maximum at about

the center of the sample, as this position maximizes the probed volume (see middle inset).

In contrast, directional forward scattering is expected to be minimum at the sample surface

(see left insert) and maximum at the rear surface, where reflected rays are directly guided

back to the collection optics (right inset). As can be seen from Fig. 6(b), the intensity profile

of the upper extraordinary polariton (UEp) is very different from that observed from lattice

phonons and indeed matches the profile expected from near-forward scattering involving a

reflection at the back surface.

Hence, care must be applied in the assignment of phonons in 2D materials, as weakly

confined polaritons may also contribute to Raman spectra even in a backscattering config-

uration. This aspect may help explain some of the confusion regarding the assignment of

GaSe phonons in the literature.
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Supplementary Figure 6. (a) Backscattered Raman spectra from a freestanding 70 µm sample

under 633 nm (red curve) and 532 nm (green curve) excitation at normal incidence. The lattice

phonons (A′
1
1, E′(TO) and A′

1
4) are readily identified along with the upper extraordinary polariton

(UEp) mode at 252 cm−1. The latter is observed only using sub-bandgap excitation (633 nm). (b)

Normalized Raman backscattering intensity of the A′
1
1 (black squares), E′(TO) (blue squares),

A′
1
4 (green squares) and UEp (red triangles), using a 633 nm excitation. Estimated locations of the

sample interfaces are shown by the vertical lines. Insets: incident and scattered ray configurations

at both surfaces and midway into the sample.

13. Raman spectra as a function of thickness

Interlayer interactions in thin 2D samples affect lattice phonon frequencies and, upon

proper calibration, frequencies determined from Raman spectroscopy are commonly used

for a convenient and rapid evaluation of sample thicknesses. Because of the relatively weak

interlayer interactions, phonon frequency changes are typically resolved for samples com-

posed of less than 20 monolayers. [33] In contrast, the thickness dependence of the surface

and upper extraordinary polaritons shown in 7 allow extending the range where Raman

scattering can be used for thickness measurements.

Polariton dispersion curves as a function of sample thickness are presented in 7 for differ-

ent tilt angles θ. For simplicity, the effect of a finite angular acceptance of the instrumen-

tation is not considered in the following discussion. For θ = 5°, the lower surface polariton

frequency sensitively depends on the thickness, spanning a range from about 220 cm−1 at

100 nm to about 240 cm−1 at 1000 nm. In contrast, the upper extraordinary polariton evolves
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more slowly, starting at about 245 cm−1 and evolving to 250 cm−1. At higher tilt angles,

larger k󰀂 are probed and the regions of rapid evolution of the polariton frequency are pushed

to lower thicknesses.

This sensitive dependence of polariton frequencies could be exploited to determine sample

thicknesses in a mesoscopic regime up to 1000 nm, thereby extending the range where Raman

spectroscopy can be used to determine sample thickness by a few orders of magnitude.

E

E

A

A

35o25o 45o15o5o

Supplementary Figure 7. Polariton Raman spectra as a function of sample thickness for various

angles θ. The energies of the lattice phonons are indicated by the horizontal lines

14. Angular resolution

The finite angular aperture of the excitation and collection optics limits the capacity to

resolve the dispersion relation of polaritons. Decreasing this aperture improves the resolution

of the measurements. The simplest implementation consists in placing an iris in the optical

path of the collimated Raman emission. For this demonstration, the LSp is selected for

its relatively important dispersion at a sample tilt angle of θ = 10°. Fig. 8 shows the

the position and width of the LSp as function of the diameter of the iris. Reducing this

diameter from 5 to 1mm narrows the width from 10 to less than 7.5 cm−1. Concomitantly,

the position shifts to higher energy, indicating that the group velocity (dω
dk
) decreases with

the tilt angle (or k󰀂).
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Supplementary Figure 8. Measure frequency and FWHM of the LSp in function of an iris diameter,

placed before the focusing lens of the spectrometer. Measured from an estimated 270 nm thick GaSe

sample.
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