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Abstract

The recent problems of increased oil prices, global warming, and environmental pollution highlighted the urgent
need for cost effective, reliable and environmentally conscious production process. Hence to achieve clean and
healthy production, the chemical process industry strives to continually improve their preparedness and awareness
through adaptive inference logic by effectively extracting and signaturing cascade clues from past experiences and
predicting the possible scenarios of risk and its sources. These sources are usually related to equipment life cycle,
starting from suppliers’ evaluation and ending by its salvage or disposal. Methods are thus needed to effectively
utilize data collected and knowledge available in order to make the right decision at the right moment. Despite the
considerable technological advancement, these decisions still depend heavily on human expertise, which is,
although very valuable, are subject to errors, and may be lost due to death, retirement or resignation. Therefore, an
integrated equipment health management system that takes into consideration the equipment life cycle, which leads
to environmentally conscious production, is proposed. In order to manage and develop environmentally conscious
plant operation, it is essential to provide a synergetic intelligent fault diagnosis and prognosis framework embedded
in systematic interoperable platform with respect to product life cycle, process safety and environmental measures.
The proposed system employs a systematic expert knowledge structure considering operation execution, process
safety and control, warranty policies, and environmental issues during equipment life cycle to assist the user in
evaluating uncertainties and the process of decision making.

Introduction
The recent problems of increased oil prices, global warming, and

environmental pollution highlighted the urgent need for practical and
flexible production chains based on clean process. Chemical process is
quite complex, where it involves different views [1,2]. It has been
referred as physico-chemical process where there is a link between
chemical phenomena and the physical systems and structures. Faults as
part of the hybrid phenomena might be triggered by several reasons
such as human error, equipment/part deterioration, system error,
control device error, environmental stress or material deficiencies
which might be associated with negative environmental impacts, out-
of specification products and process shutdown. This is a fact that there
is always a time delay during fault diffusion between infancy and
maturity of abnormality which appears for us through sensors data.
Despite the high environment-safety international requirements,
physical protection layers and even higher society demands to add
mitigation to reduce the consequences of any residual risk, accidents
still occur. Hence to achieve clean and healthy production, the
chemical process industry strives to continually improve their
preparedness and awareness through adaptive inference logic by
effectively extracting and signaturing cascade clues from past
experiences and predicting the possible scenarios of abnormality and
its sources based on real data in plant operation. Thus, plant operation
is tightly linked with intelligent fault diagnosis and prognosis.
Intelligent fault diagnosis is a complex process where it requires proper
understanding of current condition, symptoms and adequate
knowledge to identify faults and diagnose root causes and possible
consequences. However, the accuracy of current diagnostic and
prognostic methods is significantly limited by several critical

challenges. (1) Equipment may be subject to multiple degradation
processes which lead to multiple failure modes, such as gear tooth root
crack and gear surface wear in a gearbox system. Effective methods are
needed to evaluate and predict the health condition with presence of
multiple degradation processes. (2) The same type of equipment, such
as wind turbines and aircraft gas turbine engines, may be used under
various operating conditions. Methods are needed to effectively utilize
data collected from equipment under various operating conditions so
as to achieve more accurate equipment health condition evaluation
and prediction performance. (3) Condition monitoring data are
typically collected from similar equipment with different
specifications, such as gears with different tooth numbers. The
accuracy of equipment health evaluation and prediction depends
heavily on the availability of sufficient failure and degradation data,
which are very limited in many applications. This challenge is coupled
with the previous one, and effective methods are needed to fully utilize
all the data from equipment with different specifications under various
operating conditions. (4) Despite the considerable advancement in
condition monitoring and prediction, they still depend heavily on
human expertise, which is, although very valuable, are subject to
errors. Therefore, intelligent fault prognosis is highly correlated with
knowledge based structure semantically describing fault scenarios and
plant topology. Plant topology describes process in terms of: a) static
dimension which includes facility, materials/products, topology and
human through ports, b) dynamic dimension including behaviour
models, which are represented as states, transitions, and messages, and,
c) finally operation dimension including purposes and methods to be
executed as a response to incoming message. In order to manage and
develop environmentally conscious plant operation, it is essential to
provide a synergetic intelligent fault prognosis framework embedded
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by systematic interoperability platform with respect to product life
cycle, process safety and environmental measures. The proposed
framework employs a systematic expert knowledge structure
considering operation execution, process safety and control, warranty
policies and environmental issues during system life cycle to enable
users to effectively predict the time-to-failure (or lead time) and the
associated uncertainty in flexible and optimized manner.

The methodology is a step-by-step process in which various
attributes of the plant topology and knowledge base are grouped
together at different levels. To support the four integrated steps, the
proposed topology engineering captures data semantics with plant
representations and formalizes data meanings with ontology to build
semantic interoperability of a rule-based adaptive inference engine.
The framework integrates the object-based modelling, standard for the
Exchange of Plant model data (STEP) approaches with Ontology Web
Language (OWL) and fault models to represent, understand, interpret
and share the semantically interoperable failure modes, causes, failure
mechanisms and HSE consequences to better address fault scenarios
and signatures [3]. It involves three areas: ontology engineering, plant
model standardization and fault modelling:

Ontology represents formal, explicit and shared understanding
about geometric and non-geometric data and maintenance semantics,
as fault properties, fault behaviours, inter-part relationships and
constraints. They allow classification and precise description of the
concepts/terminologies used in a fault diagnosis and enable semantic
mappings among fault scenarios.

Plant data model standards serve as a common foundation for
interoperating multi-disciplinary applications. In particular, the STEP
and XML standards address the information sharability by classifying
and defining the standardized information elements and their
relationships, and facilitate the data communication between
applications by the use of open and neutral file formats and databases.

Fault propagation scenarios are constructed and used to
comprehend root causes and consequences and evaluate the associated
risks with abnormal situation or process deviation. The proposed
qualitative models are further tuned using the developed quantitative
models using trouble shooting and correlation matrix that provides
information about relationships among process variables contributing
to each fault. Risk is evaluated using historical data from maintenance
history (e.g. reliability data) which are used along with each fault
scenario. There are varieties of sources to collect failure data such as
from maintenance history, i.e., from computerized maintenance
management systems (CMMS) or via memberships to reliability data
banks, e.g. Offshore Reliability Data or OREDA handbook. Failure
data can also be extracted from accident/incident databases that are
widely developed and maintained for chemical/petrochemical plants,
such as those published by Environmental Protection Agency (EPA)/
Occupational Safety and Health Administration [4].

The integrated methodology
This study presents a synergetic intelligent framework to tune fault

models and predict future behaviors through maintenance data
including historical record and sensor signals, signature extraction,
failure mapping in data space. The study is composed of three main
processes. The first process is a knowledge acquisition based on the
semantic definition of plant topology and past experience
corresponding to human experience and operation design, operation
execution, process safety and control, supply chain design and

operation, and environmental issues. The second process is to develop
an adaptive linguistic rule-based inference engine through qualitative
and quantitative fault signatures, fault propagation scenarios and
knowledge base. The engine is adopted by real time process data,
conversion of raw data into trends and the analysis of these trends
using sensor and trend fusion algorithms. The rule-based adaptive
inference engine is then used to detect, diagnose faults and calculate
risks for each fault propagation scenario, which is in the third process.
The fourth process is concerned with planning and evaluation of
recovery actions based on the diagnosed faults [5,6].

A semantic knowledge acquisition and representation
To achieve the objective, at first knowledge base structure is defined

through the OREDA handbook, manufacturer troubleshooting, field
expert maintenance personnel, and equipment handbook with respect
to the interactive effect of failure modes on the operating parameters.
The OREDA handbook includes high quality reliability data for
offshore/onshore equipment (which are collected from offshore
equipment of ten Oil and Gas companies), and provides both
quantitative and qualitative information as a basis for reliability,
availability, maintenance and safety (RAMS) analysis [7]. In this
taxonomy various items are classified into equipment classes based on
one main function (e.g. pumps, valves). These equipment classes are
categorized in 5 major categories: machinery (e.g. pumps,
compressors), electric equipment (e.g. electric generators), mechanical
equipment (e.g. heat exchangers), control and safety equipment (e.g.
valves) and subsea equipment (e.g. subsea isolation system). Further,
each equipment class is classified according to its design characteristics
and type of service (system), e.g. pumps are classified into centrifugal,
reciprocating and rotary pumps. Next, the failure and maintenance
data of each of the equipment units of these narrow taxonomy classes
are described by failure modes, failure mechanisms, causes in different
disciplines such as mechanical, material, electrical and instrument.

The STEP technology and object-based modelling techniques are
used for representation of information models which are the computer
interpretable and processible. The STEP AP203 is used as the common
data representation model for the mechanical domain, and AP210 for
the electronic domain in the present study. These two STEP APs are
extended with supporting definitions for richer semantics on fault
types, fault behaviours, relationships, constraints. Also, supplementary
definitions of equipment such as warranty policies, maintenance
procedures, safety and environmental emergency procedures are
modelled as STEP extensions and populated with equipment
maintenance history datasets extracted from user inputs. Two STEP
extension mechanisms are investigated to connect the supplementary
definitions in the extension models to the relevant fault already existed
in the knowledge database according to plant topology. Therefore,
representation models formalize the syntax and semantics of failure
expressions, such as symbols, terminologies, concepts, or relationships,
design aspects and manufacturer recommendations during the
lifecycle of equipment. An ontology based on OWL is then applied in
an effort to improve the representation of knowledge that is used and
produced during qualitative models Failure Mode and Effect Analysis
and HAZOP. Traditionally, the information of FMEA studies is
registered in text format. The reusability of this knowledge during
design or operations is limited due to difficulties in finding and
analysing information. The basic ontology is extended so that rule-
based inference engine can use more informative queries (instead of
text based) to find relevant information during fault prognosis [8-11].
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An intelligent inference engine
Proper diagnosis of equipment failure needs to consider many

symptoms of hydraulic or mechanical causes, and due to nonlinear,
time-varying behaviour and imprecise measurement information of
the systems it is difficult to deal with failures with precise mathematical
equations. Because of uncertainties and ambiguities about the failure
causes, the existing diagnosis methods like vibration signal and
condition monitoring are blurred to a great extent. While, human
maintenance operators with the aid of their practical experience can
handle these complex situations, with only a set of imprecise linguistic
if-then rules and imprecise system state. This study combines human
experience and mathematical algorithms to enhance inference engine
ability as a decision making system.

The inference engine imitates the reasoning process of the domain
experts to seek information and relationships from the knowledge base
to provide answers, predictions and suggestions possible fault
scenarios. The inference process is a combination of five sub-processes:
fuzzification of the input variables, application of the fuzzy operator
(AND or OR) in the antecedent, implication from the antecedent to
the consequent, aggregation of the consequents across the rules and
defuzzification. Reasoning process is formed by fault signatures
defined by qualitative analysis like FMEA and the impact of failure
causes on both the hydraulic and mechanical operating parameters of
equipment flow rate, discharge pressure, efficiency, vibration, and
temperature. Then rule-based knowledge linguistically articulates the
signatures through trouble shootings, handbook, and maintenance
personnel. At the end condition monitoring techniques such as
dissolved gas analysis (DGA), vibration analysis thermo graph analysis
are coupled with the rule based knowledge engine to improve
flexibility and accuracy of detection in uncertain situation.

3. An adaptive intelligent fault prognosis approach
The last step of the methodology is to an embedded neural network

that is capable to be trained by a semantic intelligent inference rule
base engine to accurately predict fault behaviour from sensor signals
and take necessary maintenance actions. The proposed neural network
is expected to take more advantages of adaptive learning, self-
organization, real time operation and fault tolerance in comparing to
the same available application in the market. The output of the
approach is a list of well-arranged most possible scenarios in
descending order which can linked to warranty policies,
environmental program and safety plan for the essential inspection
actions.

Conclusion
This paper proposed an integrated intelligent equipment health

management system that takes into consideration the equipment’s life
cycle and the environmentally conscious production. Our research into

intelligent fault diagnosis system is continuing by developing: 1)
Knowledge database module of maintenance records, sensor signals
resulting from the simulation of different faults, under different
component specifications, different warranty policies and working
conditions through Oil and Gas standards such as OREDA, ISO14224,
EPA and OSHA. This knowledge base will be represented according to
OWL, STEP to maximize shareability, interoperability and integration
across system software, 2) An intelligent inference engine module to
effectively articulate reasoning process and the interpretation of
different faults under varying conditions supported by human
experience. 3) An adaptive intelligent fault diagnosis and prognosis
module that considers varying conditions and multiple degradation
processes. 4) Novel supplier evaluation methodology embedded in the
software that considers product life cycle cost and green performance.
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