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RESUME

Au cours de la derniere décennie, la microscopie de localisation ultrasonore (ULM) a permis
d’imager le systéme vasculaire cérébral in vivo comme jamais auparavant, avec une résolution
d’environ dix microns. Cependant, avec une cadence d’imagerie pouvant atteindre 20.000 images
par seconde, cette méthode nécessite I’acquisition, la transmission, le stockage et le traitement
d’une grande quantité de données. Chacune de ces étapes peut devenir difficile sans les ordinateurs
et échographes adaptés a cette application. Nous proposons ici une nouvelle méthode de
reconstruction, baptisée Sparse-ULM, pour diminuer cette quantité de données et la complexité du
matériel nécessaire, en sous-échantillonnant de maniére aléatoire les canaux d’une sonde linéaire.
L’¢évaluation des performances de la méthode ainsi que ’optimisation des parametres ont été
principalement réalisées in silico dans un fantbme anatomiquement réaliste, puis comparées aux
acquisitions sur un cerveau de rat avec craniotomie. La réduction du nombre d’éléments actifs en
réception détériore le rapport signal a bruit des données post reconstruction et peut conduire a de
fausses détections de microbulles, diminuant le contraste des angiogrammes obtenus. Cependant,
cela n’impacte que faiblement la précision de localisation des microbulles. Ces résultats montrent
qu’il est possible de trouver un compromis entre le nombre de canaux et la qualité du réseau
vasculaire reconstruit, et démontrent la faisabilité de réaliser la microscopie de localisation avec
un nombre de canaux en réception considérablement réduit, ouvrant la voie a des dispositifs peu

colteux permettant une cartographie vasculaire a haute résolution.



ABSTRACT

Over the past decade, Ultrasound Localisation Microscopy (ULM) has made it possible to image
cerebral vasculature in vivo as never before, with a resolution of about ten microns. However, with
frame rate up to 20.000 frames per second, this method requires large amount of data to be acquired,
transmitted, stored, and processed. Each of these steps can become challenging without computers
or ultrasound scanners provided for this application. Herein, we propose a novel reconstruction
framework, named Sparse-ULM for decrease this quantity of data and the complexity of the
required hardware by randomly sub-sampling the channels of a linear probe. Method’s
performance evaluation as well as parameters optimization were mainly performed in silico in an
anatomically realistic phantom and then compared to the acquisitions on a rat brain with
craniotomy. Reducing the number of active elements deteriorates the signal-to-noise ratio of post-
beamforming data, and could lead to false microbubbles detections, decreasing the contrast of the
angiograms obtained. However, it has little effect on localization accuracy of microbubbles. These
results show that a compromise can be found between the number of channels and the quality of
the reconstructed vascular network, and demonstrate feasibility of performing ULM with a
drastically reduced number of channels in receive, paving the way for low-cost devices enabling

high-resolution vascular mapping.



Vi

TABLE DES MATIERES

REMERCIEMENTS ... ne e Il
RESUME ...ttt \%
AB ST RA CT ettt bbbttt e e bt e e Rt e e b e e bt enhe e b e e be e e nbe e naeeanbeenree s V
TABLE DES MATIERES ..ottt ssss s st snas st nae s ssn s sanenes Vi
LISTE DES TABLEAUX ...ttt X
LISTE DES FIGURES. ... .ottt Xl
LISTE DES SIGLES ET ABREVIATIONS ....oouiiiieieteeeeseeeetees st enes s s enenenen XV
CHAPITRE 1  INTRODUCTION ...ttt sttt s nneas 1
1.1  Le systeme sanguin et Ses PathOlOgIS ........ccccveiieiieiieiiece e 1
1.2 Imagerie du SYStEME SANQUIN ........ccvieieiieiie e ste et e e sre e e e s e e saeeneenres 2
1.2.1  MEhOUES NON OPLIUES. .....cverieiieieiieiceie sttt sttt 2
1.2.2  MELNOUES OPLIGUES. ....euveretiiesieicete ettt ettt bttt e 2
1.2.3 MEthode NYDIIAE ..c.eeceeeeeee e 3
1.2.4 Microscopie de localisation UItraSONOre. ..........cccvevvviieiieie e 4

1.3 ODJECHTS AU PrOJEL.....eieeieitiitiitieeei ettt 6
CHAPITRE 2 REVUE DE LITTERATURE ......oiitietceeeeeee et 8

2.1  Principes de I’'imagerie ultrasonore : du signal électrique a la formation d’une image ...8

2.1.1 Effet piézo-électrique et sonde échographique .........ccccveeeeieiiieiieie e 8
2.1.2 Equations d’ondes et stratégie d’émiSSiOn .........c..cocvvevervrerresreeeeereseseesensessenessesnens, 10
2.1.3 Interaction de I’onde avec 1e€ MIlICU .........cceeeiiiiiiiiiiiiiee e 14
2.1.4 Enregistrement des SignauX UItraSONO0re. .........ccveiiiiiieiie i 16
2.1.5 Formation de IIMAE .......cccovviiiiiiiiiiiiicii e 17

2.1.6 Résolution du SySteme d’IMAZETIC .....c.vveverriiriieiiiieriee e 17



vii

2.2  Modalités d’imagerie ultrasonore et leurs €VOlutions ...........cccovvervirieiieiiniisiciesces 18
2.2.1 Imagerie ultrasonore conventionNelle ...........cccoooiiiiiiiiiiiic e 19
2.2.2  IMAQEIIE DOPPIET.....ei ittt ettt 19
2.2.3 Imagerie ultrasonore UIrarapide ..........cooveieieeie i 20
2.2.4  IMAQEri U CONIASTE .....cueiuieeiieiteiteite ettt bbbt 21
2.2.5  IMAQErie SUPEI-TESOIUE .......ouiiiiieiieiieie ettt e 21
2.2.6 Microscopie de localisation UItraSONO0re. .........ccccuviieiierieiiise e 22
2.2.7 Imagerie UIrasonore 3D ........cciiiiiiiieie ettt re e sne s 23

2.3  Chaine d’acquisition et de traitement pour la microscopie de localisation ultrasonore.24

2.3.1  ReconStruction des ONNEES ...........ccecveieeieieierese e 24
2.3.2 Filtrage du signal tISSUIAITE ........cccvviieiiee e 26
2.3.3 Corrélation avec la PSF et ajustement QauSSIEN ...........ccvevereereiiieiee e eee s e eee s 27
2.3.4  ANQGIOGIAIMIMIES .....iviitiitieiieitet ettt sttt e ettt b e bttt s e e s e e e b e b et beabeebeeneenee e 27
2.4 Imagerie Ultrason0re COMPIESSER .......coviirierieieierieeere sttt ne e e e 29
2.4.1 Ouverture synthétique ParCiMONIEUSE ...........ccveiueiierieeriecee e este e st sre e sre e eneas 29
2.4.2 Optimisation de la position des éléments des sondes ultrasonores..............cccccccveue.. 29
2.4.3  ACQUISItION COMPIIMER ....eiviiiiiieieeiee ettt e 30
CHAPITRE 3  METHODOLOGIE ........oieieeeeeeeeeeeeeeee et s e, 35
3.1  Mise en place de la chaine de traitement.............cccceeeiieii e 35
3.1.1 Implémentation des algorithmeS ..........cccoeiiiiiiie e 35
3.1.2 Amélioration de la chaine de traitement ..........cccccveveiiieii e 35
3.1.3  Parametres NON traITES .......ccvviueiieieeieseeie et ae et e steenee e sreeneennes 36
3.2 Création du fantbme phySio-réaliSte ...........cccviiieiiiiiiicce e 36

3.3 NV A IOAEIONS INMVIV O s 38



viii

CHAPITRE 4 ARTICLE 1: SPARSE CHANNEL SAMPLING FOR ULTRASOUND

LOCALIZATION MICROSCOPY (SPARSE-ULM).....cccooiiiiiiiieiine e 39
A1 ADSIFACE ...t 39
4.2 INEFOAUCTION ...ttt ettt b anes 39
A3 IMIBENODS ...t 41

4.3.1 Localization Microscopy PIPeline..........cocoiiiiiiiiiieee e 41
4.3.2 Receive Channel Reduction Method............ccocooveiiiiiiiiiniceeee e 42
4.3.3 Creation of the In-Silico Phantom and Metrics Extracted ............cccccoveivincnicnnnnnn 43
4.3.4  IN-VIVO ACQUISITION SELUD ...cuviriiiiiiiitiiiisieeiieee e 45
4.3.5 ANQIOGram DISPIAY .....cceiiiiiiiiiie i e 46
4.3.6 Parameters OF INTEIEST........oiuiiiiiiiiei e 46
A4 RESUIS ..ottt nes 46
441 IN-SHICO RESUILS ....c.eiiiiiiiiiciiee bbb 46
A4.4.2  IN-VIVO TESUITS ..ottt bbbt 48
4.5 DISCUSSION ..otttk ettt bt bbb bbbt b e bbbt b e anes 52
4.6 ACKNOWIEUGEMENT.......uiiiiieieiie ettt e e e re e e sae e beeneenneas 55
A7 RETEIBNCES ...ttt bbbttt b bbbt e e 55

CHAPITRES5  DISCUSSION GENERALE ......o.oovuiiiieicineneeseeneesessesssssesssssssssesesssesnns 61

5.1  Retours SUr 185 ODJECLITS .......coviiiicicce e 61
5.1.1 Etablir une méthode de diminution du nombre de canaux pour 'ULM.................... 61
5.1.2 Extraction et étude des parametres IMPOITaNTS.........ccocovvriririieienene e 61
5.1.3 Validation sur un MOGEIE IN VIVO........ccccuiiiiiiiieiie e 62

5.2 FULUIS AEVEIOPPEMENTS.....c.viiii ettt sbe et ane s 62
5.2.1  IMAGEIIE 3D ittt 62

5.2.2  Implémentation PhYSIQUE ........coveiiiiic ettt 62



5.23 Au-

CHAPITRE 6

REFERENCES

dela de SPArse-ULM ..ot e

CONCLUSION ...ttt



LISTE DES TABLEAUX

Tableau 1-1 - Comparaison des différentes modalités d'imagerie des vaisseaux sanguins. Extrait de
(UPPULUTT €L AL, 2015) ..t e e b te e e nne e sre e e enes 3



Xi

LISTE DES FIGURES

Figure 1.1 -Illustrations de 4 modalités d’imagerie non optiques : US, IRM, PET/CT et uCT. A)
Power Doppler ultrarapide directionnel du cerveau d’un nouveau-né, extrait de (Demené et
al., 2014). B) Couche d'une angiographie 3D par temps de vol (TOF-MRA) du créne acquise
par IRM a 7T, extrait de (Bock, 2019). C) Vue sagittale d’un rendu 3D de CT 4D, extrait de
(Meijs et al., 2017). D) Rendu volumique 3D pCT haute résolution d'un membre postérieur

ligaturé rempli de 30% de bismuth, extrait de (Zagorchev et al., 2010). .........ccevvevverriiiennn, 2

Figure 1.2 - Configuration pour I'imagerie ultrasonore ultrarapide 3D. Le systéme comprend quatre
échographes Aixplorer (Supersonic Imaging, Aix-en-Provence, France) avec 1024 canaux en

émission et 512 en réception, et 5 ordinateurs. Extrait de (Gennisson et al., 2015). © 2015

Figure 2.1 - Parametres géomeétriques d'une sonde échographique plane. Extrait de (Porée, 2017)9

Figure 2.2 - Emission (& gauche) et réception (a droite) d'une onde ultrasonore. En émission, le
signal est retardé pour obtenir un front d'onde convergent, et une apodisation est effectuée sur
les éléments latéraux. En réception, les signaux sont analogiquement retardés pour pouvoir

Btre SOMIMEAS 08 MANI BT CONMBIENTE. .ttt ettt e e e e e e e ettt e e e e e e e e e ereeees 11

Figure 2.3 - Illustration des principales stratégies de transmission. En haut & gauche, les ondes
focalisées. Les délais sont calculés pour que le front d'onde converge vers un point en aval de
la sonde. En haut a droite les ondes divergentes. Les délais sont calculés pour simuler une
source ponctuelle en amont de la sonde. En bas, les ondes planes. Les délais sont nuls, ou

linéaires pour ObteNIr UN ANGIE. .......ooviiiiiie e 12

Figure 2.4 - Tllustration d’une mesure en ondes focalisées (a gauche) et en ondes planes avec 3
angles (a droite) La profondeur choisie correspond a la profondeur focale de la sonde en

élévation. Elle est propre a chaque sonde et définie principalement par la lentille de celle-ci.

Figure 2.5 — Types de réflexion dans un milieu inhomogéne. A gauche, la réflexion spéculaire a
l'interface entre deux milieux d'impédances acoustiques différentes. A droite, la réflexion
diffuse omnidirectionnelle d'un réflecteur ponctuel de diamétre inférieur a la longueur d'onde.
INSPIr€e de (ROUX, 2016). .. ..ecuieueeiieieie ittt 16



xii

Figure 2.6 - Carte 2D du cerveau d’un rat avec a) I’imagerie Doppler conventionnelle, b) I’imagerie
Doppler ultrarapide et c) le fUs en stimulant les vibrisses du rat. Extrait de (Tanter & Fink,
2014). © 2014 IEEE .......ci oottt ettt 21

Figure 2.7 - ULM du cerveau d’un rat in vivo. Extrait de (Couture et al., 2018). © 2018 IEEE ..23

Figure 2.8 - Sonde ultrasonore matricielle 32x32 éléments, 8MHz, fabriquée par Vermon, France.

Figure 2.9 - Schéma de 1'algorithme DAS. ... 24

Figure 2.10 — Différentes modalités de I’'ULM. A) Positions des microbulles détectées, B) Pistes
des microbulles correspondantes, C) Carte de densité des microbulles, D) Champ de vitesses
moyennes. Extrait de (Hingot et al., 2019). .......coiiiiiiiie e 28

Figure 2.11 - a) et b) schémas d’acquisition pour I’ouverture synthétique compléte et parcimonieuse
respectivement. Extrait de (Korukonda & Doyley, 2011a). c) et d) déformation mesurée dans
un fantdme de vaisseau avec la méthode parcimonieuse (c) et avec des ondes planes (d).
Extrait de (Korukonda & Doyley, 2011b). © 2011 IEEE..........cccooiiiiiiiiieee, 29

Figure 2.12 - Configuration optimale pour une sonde 2D avec 256 éléments parmi 1024. Extrait de
(ROUX €L AL, 20L8). ...ttt ettt e sta et e s be e be et e s aeesbeensesaaenreens 30

Figure 2.13 - Image cardiaque. a) Image en imagerie conventionnelle, b) image avec la méthode
Xampling. Extrait de (Wagner et al., 2012). © 2012 IEEE ...........cccoeiiiiieiini e 32

Figure 2.14 - NRMSE (racine de I’erreur quadratique moyenne) pour différentes stratégies de sous-
échantillonnage et différente base de parcimonie pour I’imagerie 3D. a) échantillonnage
aléatoire (R1) b) échantillonnage aléatoire conservé selon la direction axiale (mémes canaux
en réception) (R2). ¢) erreur selon le nombre d’échantillons retirés pour la stratégie R1 en bleu
et R2 en rouge. DCT correspond a la base de cosinus discret et K-SVD a I’algorithme
d’optimisation utilisé pour trouver le dictionnaire. La stratégie d’échantillonnage R1 est
Iégerement meilleure que R2, car plus incohérente avec les bases utilisées, mais difficilement
utilisable en pratique. Extrait de (Lorintiu et al., 2015). © 2015 IEEE ..........cccccoevvevviiennnn. 33

Figure 3.1 - Histogrammes de correlation des microbulles pour différents nombres de canaux et
d’angles. La barre verte représente un seuil fixe a 0,75, la barre rouge le seuil obtenu par la

méthode d'Otsu et la barre verte un nombre de microbulles conservées constant, ici 30%. Le



Xiii

nombre au-dessus de 1’histogramme correspond au nombre de microbulles conservées pour le

SBUIL @ 0,75 ettt ettt e e et e e e ettt e e ettt e e e e et e e aa et e e e ee e teeeaerteeaanrteeeaareeeaas 37

Figure 3.2 - Courbes ROC sur le seuil de corrélation pour différents nombres d’angles et de canaux.
Plus le nombre de canaux est élevé, plus la courbe se décale vers le coin supérieur gauche.
Les carrés verts représentent des seuils fixes, les carrés bleus un nombre de microbulles fixes,

et le carré rouge représente le seuil obtenu avec la méthode d’Otsu. ........ccocceeviiiiiiiiinnnne 38

Figure 4.1 - Ultrasound localization microscopy pipeline. The RF data containing the microbubble
and tissue signal was reconstructed from one spatial axis (x) and one temporal axis to two
spatial axes (x,z). A SVD was performed on the raw or beamformed data to remove the tissue
signal. A correlation was then performed, and a Gaussian fitting on the pixels with the highest
correlations allowed us to obtain the position with sub-pixel precision. These positions were

accumulated on a grid to form the angiogram............cccevveveiieecie e 42

Figure 4.2 - Sub-sampling method. Diagram showing an example of the subsampling method used
in the 3D space formed by the frame number (slow time), emitted angles, and receive
channels. Active channels are represented in white. The selected active channels change from

one angle to the other, but stay constant from one frame to the next............ccccoeveieivenene 43

Figure 4.3 - Physio-realistic phantom pipeline. At the left, the six segmented angioarchitectures
from 2-photon measurement that were used to generate microbubble physio-realistic position
and speed. At the center, the obtained phantom. At the right, the simulated sparse RF data.44

Figure 4.4 - In-vivo acquisition setup. Diagram presenting the parameters and equipment used,
from acquisition to data recording. The frame containing the RF data for the 3 angles are
arranged by buffers of 400. 400 buffers are acquired, at a rate of one every 2 seconds

APPFOXIMALEIY . ...t re e e b et e e nreereanes 45

Figure 4.5 - In-silico results for different numbers of active receive channels and angles. FNR, FPR
and accuracy for a number of active receive elements varying from 16 to 128 by steps of 16
and number compounding angles varying from 3 to 13 keeping an angular sampling of 0.5°.
The curves are obtained by averaging extracted metrics on the 20000 reconstructed frames.
Angiograms represent a region of interest extracted from the in-silico phantom. The reference
was obtained by accumulating the positions of the microbubbles while considering their

azimuthal PoSItION (V) NUIL ..o e 47



Xiv

Figure 4.6 - In-silico comparison of different channel selection probability laws. Comparison of 5
probability laws for 32 receive channels and 5 angles (-1, -0.5, 0, 0.5, 1). The curves are
obtained by averaging metrics on the 20000 reconstructed frames. The occurrence frequencies

correspond to the theoretiCal ONES. ...........covv i 48

Figure 4.7 - In-vivo results for different numbers of active receive channels. a), b), ¢) and d) are
respectively the angiograms obtained with 16, 32, 64 and 128 channels in receive. e) is the
power Doppler obtained with the same data set, i.e. with microbubbles, displayed at -45dB.
Power Doppler and angiograms are in logarithmic scale. 2 regions of interest and one profile

are extracted. The profiles are normalized between 0 and 1 with respect to their original image.

Figure 4.8 - In-vivo results for different numbers of active receive channels with the same amount
of data. a), b), ¢) and d) are respectively the angiograms obtained with 16, 32, 64 and 128
channels in receive. e) is the power Doppler obtained with the same data set, i.e. with
microbubbles, displayed at -45dB. Power Doppler and angiograms are in logarithmic scale
and the number of buffers used to reconstruct the images are adjusted to keep the same
quantity of data. Two regions of interest and one profile are extracted. The profiles are

normalized between 0 and 1 with respect to their original image...........ccccocvivinininienenn, 51

Figure 4.9 - In-vivo comparison of different channel selection probability laws. a), b) and c) are
density maps of the in vivo rat angioarchitecture with the probability law Cenl, Uni and Ext1.
d) and e) are the theoretical law for the random selection, and the effective occurrence
frequency of each element. f) and g) are vessels profiles extracted from the angiogram, one at
the center of the image, one outside. They are normalized between 0 and 1 with respect to the

minimum and maximum of the Profiles. ..., 52
Figure 5.1 - ULM 3D d'un cerveau de chat avec CraniotOmie ..........ccceevvvevieiiieevie e 62

Figure 5.2 - Schéma d'un systeme pouvant étre utilisé pour implémenter Sparse-ULM. LNA :

amplificateur bas-bruit. LPF : Filtre passe-bas. ADC : convertisseur analogique-numérique



CT
nCT
IRM
PET
UsS
ULM
2D
3D
PSF
DAS
TGC
RF
SVvD
CS

LISTE DES SIGLES ET ABREVIATIONS

Tomodensitométrie
Micro-tomodensitométrie

Imagerie par résonance magnétique
Tomographie par émission de positons
Ultrasons

Microscopie de localisation ultrasonore
Deux-dimensionnel

Tri-dimensionnel

Figure d’étalement du point
Algorithme Retard et Somme

Gain de compensation de temps
Radiofréquences

Décomposition en valeur singuliere

Acquisition comprimée

XV



CHAPITRE1 INTRODUCTION

1.1 Le systéeme sanguin et ses pathologies

Long de 100.000km, le systéeme sanguin est un des eéléments cruciaux du corps humain. Il est
responsable du transport des ressources vers les organes et tissus, notamment les nutriments et le
dioxygene, mais aussi de I’¢limination des déchets. Du fait de son réle fondamental, une défaillance
du systéme circulatoire, en cas d’obstruction ou de fuite, peut avoir de graves conséquences suivant
I’organe qui sera impacté. En cas de défaillance cardiaque, on parlera de maladies cardio-
vasculaires. Celles-ci sont la premiere cause de déces au monde (OMS, 2018). Le cerveau peut
également étre touché, comme lors des accidents vasculaires cerébraux. Ceux-ci représentent la
premiere cause de handicap acquis (Mendis, 2013), ainsi que la deuxiéme cause de déces au monde
(OMS, 2018). Ces troubles sont directement imputables a des dysfonctionnements de 1’appareil
circulatoire, et une intervention sur celui-ci, qu’elle soit chirurgicale ou médicamenteuse, est
souvent nécessaire afin de rétablir une fonction normale. Cependant, d’autres pathologies, dont les
mécanismes d’actions sont moins évidents, ont été montrées comme étant directement liées au
systeme sanguin. C’est le cas par exemple de la démence, dont on impute entre 8 et 10% des cas a
une maladie vasculaire et 60 a 70% a une maladie d’ Alzheimer (Jellinger, 2007). Or, cette derniere

serait elle-méme une maladie vasculaire avec des conséquences neurodégénératives (Torre, 2002).

Certaines maladies, a contrario, engendrent des modifications du systéme vasculaire, au moins
localement. C’est le cas notamment des cancers qui, pour combler leurs besoins en nutriments et
en oxygeéne, vont développer rapidement un systeme sanguin, parfois chaotique : c’est
I’angiogenése. Or cette angiogenése peut étre utilisée contre la tumeur, en la détectant et en
I’inhibant (Nishida et al., 2006).

Pouvoir imager le systéme vasculaire apparait donc comme une nécessité pour plusieurs raisons :
prévenir les risques, diagnostiquer, vérifier la réponse aux traitements ou encore étudier ces

maladies.



1.2 Imagerie du systeme sanguin

1.2.1 Meéthodes non optiques

La plupart des méthodes utilisées cliniquement pour I’imagerie des vaisseaux ou du flux sanguins
sont non-optiques. La plus répandue est I’imagerie Doppler par ultrasons (US), notamment gréce
a son faible colt. D’autres méthodes sont néanmoins utilisées : la tomodensitométrie (CT) ou la
microtomodensitométrie (uCT), I’imagerie par résonance magnétique (IRM) ou encore la
tomographie par émission de positons (PET). Des exemples de ces modalités sont présentés a la
Figure 1.1 et leurs caractéristiques sont résumées dans le Tableau 1-1. Elles constituent des outils
efficaces pour I’imagerie de la macro-vascularisation, mais leur faible résolution ou contraste les

rend moins efficaces pour visualiser la microvascularisation (Upputuri et al., 2015).

Figure 1.1 -Illustrations de 4 modalités d’imagerie non optiques : US, IRM, PET/CT et uCT. A)
Power Doppler ultrarapide directionnel du cerveau d’un nouveau-né, extrait de (Demené et al.,
2014). B) Couche d'une angiographie 3D par temps de vol (TOF-MRA) du créne acquise par IRM
a 7T, extrait de (Bock, 2019). C) Vue sagittale d’un rendu 3D de CT 4D, extrait de (Meijs et al.,
2017). D) Rendu volumique 3D uCT haute résolution d'un membre postérieur ligaturé rempli de
30% de bismuth, extrait de (Zagorchev et al., 2010).

1.2.2 Méthodes optiques

L’imagerie optique est davantage utilisée pour imager la microvascularisation. En effet, des
techniques comme la tomographie par cohérence optique (OCT), la microscopie d’excitation a un
ou deux photons (1PFM et 2PFM respectivement), I'imagerie spectrale de polarisation orthogonale

(OPS) ou encore I’imagerie de contraste par speckle laser (LSCI) offrent une résolution comprise



entre un et dix microns. C’est ’ordre de grandeur des plus petits capillaires chez I’humain.
Néanmoins ces modalités ne sont effectives qu’en surface, et ne peuvent imager plus profond

qu’une épaisseur de I’ordre du millimétre. De plus, leur résolution décroit avec la profondeur.

1.2.3 Méthode hybride

L’imagerie photo-acoustique (PAI) est une modalité d’imagerie ou des pulses laser sont généres
grace a un laser dans les tissus. Ceux-ci vont alors, par effets thermiques, produire des ondes dans
des fréquences de 1’ordre du MHz, qui vont pouvoir étre recues par une sonde ultrasonore. Cette
modalité dispose d’une bonne résolution adaptable en fonction du besoin pour aller de 800um
jusqu’a 0,1um. La profondeur d’imagerie est également supérieure a celle de 1’imagerie optique,
pouvant aller jusqu’a 7cm de profondeur (Upputuri et al., 2015). La réalisation d’autres mesures

comme celle de la saturation en oxygene du sang ont également été montrées.

Tableau 1-1 - Comparaison des différentes modalités d'imagerie des vaisseaux sanguins. Extrait de
(Upputuri et al., 2015)

. Résolution spatiale Profondeur . )
Modalité Mesures physiologiques
(um) d’imagerie (mm)
Structure osseuse, vaisseaux
CT 100 Corps entier sanguins avec agent de
contraste
Structure des tissus mous,
IRM 25-100 Corps entier vaisseaux sanguins avec agent
Méthodes non
] de contraste
optiques
Structure des tissus mous, flux
us 30 300 )
sanguin
PET Flux sanguin
1000 Corps entier

Méthodes optiques OCT 1-10 1-2 Flux sanguin, saturation en 02




Morphologie microvasculaire,

1PFM 1-2 0,2-05 )
flux sanguin
Morphologie microvasculaire,
2PFM 1-2 05-1 o
oxygénation du sang
Concentration en hémoglobine
OPS 1-5 05-1
totale
LSCI 10 0,1-70 Flux sanguin
Concentration en hémoglobine
) . totale, saturation en 0% flux
Méthode hybride PAI 0,1 -800 0,1-70

sanguin, structure des

vaisseaux sanguins

1.2.4 Microscopie de localisation ultrasonore

Bien que plus d’une dizaine de techniques d’imagerie permette d’imager les vaisseaux sanguins,
aucune utilisée cliniquement ne permet d’imager 1’intégralité des vaisseaux sanguins en incluant
les capillaires, en profondeur, de maniére non ionisante et non invasive. Or, depuis une dizaine
d’années maintenant, se développe une nouvelle modalité basée sur les ultrasons : la microscopie
de localisation ultrasonore (ULM). Basée sur la microscopie de localisation et 1’imagerie
ultrasonore ultrarapide (ces méthodes sont décrites dans la section 2.1) elle utilise I’injection de
microbulles comme agent de contraste. Ces microbulles vont ensuite étre imagées avec une cadence
d’imagerie élevée (entre 1 et 10kHz), puis localisées. Cette méthode permet d’obtenir une
résolution de I’ordre de 10um, tout en imageant en profondeur. Elle montre cependant quelques

inconvénients ;

= La parallélisation des canaux entraine une quantité de données a transférer simultanément
plus importante. Ce taux de transfert est actuellement un des éléments limitants de cette
technologie. Il requiert des échographes pouvant recevoir I’intégralité des signaux, qui est
de 1024 pour une sonde matricielle permettant d’imager en trois dimensions. LeS

échographes actuels n’en recevant que 128 ou 256, il faut également les paralléliser, ce qui



requiert un montage similaire a celui de la Figure 1.2. Cette modalité, appréciée pour son
faible co(t, devient alors nettement plus onéreuse, chaque échographe ayant un co(t de
I’ordre de 100.000€.

= Les sondes ultrasonores sont fabriquées actuellement pour respecter le critere de Nyquist.
La distance entre chaque élément piézo-électrique (nommée pitch), comprenant la largeur
de I’élément (width) et ’espacement entre ceux-ci, est inférieure ou égale a la longueur
d’onde utilisée pour limiter le repliement spectral (aliasing), et les artefacts dans I’image
qui en découlent. Pour imager une grande tranche en 2D ou un grand volume en 3D, il faut
donc beaucoup d’¢léments. Cela augmente la complexité des sondes, surtout a haute
fréquence ou la taille des éléments est petite, et en 3D. Cette complexité se répercute encore
une fois sur le prix. Pour les sondes 3D, le co(t varie quadratiquement par rapport au

nombre d’éléments.

» Enfin, pour une méme qualité d’image que les ondes focalisées, les ondes planes requierent

plusieurs angles qui constitue autant de données supplémentaires a stocker.

Ces problemes pourraient étre résolus en sous-échantillonnant aléatoirement les canaux des sondes
d’acquisition lors d’une acquisition pour I’'ULM. En effet, avec ’'ULM, la résolution n’est plus
définie par la longueur d’onde utilisée, mais par la faculté a localiser des microbulles éparses. Cette
étude vise a montrer que I’intégralité¢ des canaux d’une sonde ultrasonore n’est pas simultanément
nécessaire pour cela, et a quantifier la dégradation des images au regard de plusieurs paramétres :

le nombre de canaux en réception, le nombre d’angles, et la position des canaux actifs.
9 b



Figure 1.2 - Configuration pour I'imagerie ultrasonore ultrarapide 3D. Le systeme comprend quatre
échographes Aixplorer (Supersonic Imaging, Aix-en-Provence, France) avec 1024 canaux en

émission et 512 en réception, et 5 ordinateurs. Extrait de (Gennisson et al., 2015). © 2015 IEEE

1.3 Objectifs du projet
Afin de réaliser ce projet, I’objectif principal a été découpé en trois objectifs spécifiques.

e Déterminer la faisabilité d’une méthode de réduction du nombre de canaux pour I’angiographie

de localisation ultrasonore compressée.

o Adapter la chaine de traitement de la microscopie de localisation aux données sous-
échantillonnées dans la dimension des canaux

o Créer un fantdbme in silico pour évaluer les performances de la méthode, en extrayant les
métriques adéquates

o Extraire et étudier les parameétres influencant la qualité des images obtenues

o Valider la méthode sur des données in vivo



Ces travaux ont mené aux publications et présentations suivantes :

Article scientifique :

E. Hardy, J. Porée, H. Belgharbi, C. Bourquin, F. Lesage, J. Provost, « Sparse channel sampling
for ultrasound localization microscopy (Sparse-ULM) ». Soumis a « Physics In Medicine and

Biology » le 23 novembre 2020

Brevet provisoire :

E. Hardy, J. Porée, F. Lesage, J. Provost, « Methods and Systems for Ultrasound Localization
Microscopy »,63061915, August 2020

Présentation par affiche en conférence :

E. Hardy, J. Porée, H. Belgharbi, C. Bourquin, F. Lesage, J. Provost, « Sparse channel sampling
for ultrasound localization microscopy (Sparse-ULM) ». International Ultrasonics Symposium,
IEEE, Las Vegas, Nevada, USA, Sep. 06-11, 2020.



CHAPITRE2 REVUE DE LITTERATURE

2.1 Principes de I’imagerie ultrasonore : du signal électrique a la

formation d’une image

Cette section présente les principes physiques qui entrent en jeu en imagerie ultrasonore, et que

’on utilise pour passer d’un signal électrique a une image exploitable.

2.1.1 Effet piézo-électrique et sonde échographique

L’effet piézo-électrique est un couple de propriétés que possedent certains matériaux. Ces
matériaux, lorsqu’ils sont soumis a une contrainte mécanique vont se polariser électriquement :
c’est I’effet direct. Réciproquement, ceux-ci vont se déformer lorsque soumis a un champ
électrique : c’est I’effet inverse. Ces matériaux permettent ainsi une conversion entre 1’énergie
¢lectrique et I’énergie mécanique. Les applications sont légion tant pour ’effet direct (microphone,
capteur d’accélération) que pour I’effet inverse (haut-parleur, montre a quartz). Cet effet est utilisé

pour I’émission et la réception d’ondes ultrasonores par les sondes échographiques.

La majeure partie des sondes échographiques utilisent la piézo-¢lectricité, méme si d’autres
méthodes se développent actuellement, comme les transducteurs ultrasonores micro-usinés
capacitifs (abrégé CMUT) (Oralkan et al., 2002). Une sonde est donc une barrette d’éléments
piézo-électriques en céramique, dont la taille, le nombre et I’agencement varient en fonction de

I’application souhaitée. Les sondes linéaires comme celle présentée a la Figure 2.1 sont courantes.



azimuthale

_. latérale
X

Width = 2b

g

Z axiale

Ouverture = 2a

Figure 2.1 - Paramétres géométriques d'une sonde échographique plane. Extrait de (Porée, 2017)

Une sonde peut étre définie par sa réponse impulsionnelle (réponse a une excitation en Dirac), qui
dépend des parametres geométriques de celle-ci. Un des paramétres primordiaux de cette sonde est
la fréquence centrale. Elle dépend principalement de la largeur des éléments (pitch, p) ainsi que de

la célérité du son dans le milieu (c), tel que :

fc= > [Hz] (2.1)
Avec
1
Cc = \/ﬁ (2.2)

p étant la densité du milieu et k sa compressibilité

En acoustique médicale, les fréquences utilisées vont de 1 & 20 MHz, ce qui correspond, en
considérant la célérité du son dans les tissus a 1540 m/s, a des longueurs d’onde comprises entre

1.5mm et 77um.
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2.1.2 Equations d’ondes et stratégie d’émission

Pour générer 1’onde ultrasonore, une tension de forme et de longueur variable, appelée pulse, va
étre appliquée aux éléments piézo-électriques. La perturbation va se propager dans le milieu, et son

champ de pression décrit par 1’équation d’onde

vz _ 1 62p
T c2 gr2

(2.3)

Il existe plusieurs solutions a cette équation. Les ondes planes sont 1’une d’entre elles. La pression

selon la direction axiale, ou profondeur z, ainsi que selon le temps t s’exprime alors :
p(z,t) = po cos[2n(Az — ft)] (2.4)
Avec A\ la longueur de I’onde émise, f sa fréquence et po Son amplitude.

L’on considerera ici principalement la propagation longitudinale de 1’onde, méme si les ondes de

cisaillement sont également utilisées, notamment pour 1’¢lastographie.

2.1.2.1 Emission d’une onde ultrasonore

Pour émettre une onde ultrasonore, chaque élément avec lequel on souhaite émettre doit recevoir
un signal électrique. Néanmoins tous les éléments ne doivent pas nécessairement recevoir ce signal
avec la méme intensité, on parle d’apodisation, ni en méme temps, on parle de retard. Ces deux
modulations du signal sont implémentées analogiquement via des poids et des délais, comme

illustré & la Figure 2.2.
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Emission Réception

Délais et [I:l I:l |:| I:l I:l I:l]

poids

I I B B O I I

EEEEE N

) v
\ Vs

Signaux électriques
Ondes ultrasonores

Front d’onde

Figure 2.2 - Emission (& gauche) et réception (a droite) d'une onde ultrasonore. En émission, le
signal est retardé pour obtenir un front d'onde convergent, et une apodisation est effectuée sur les
éléments latéraux. En réception, les signaux sont analogiquement retardés pour pouvoir étre

sommeés de maniéere cohérente.

Il existe plusieurs de stratégie d’émission, produisant des fronts d’onde de formes différentes. Est
appelé front d’onde I’ensemble des points de I’espace ou 1’onde a la méme phase. Les ondes
principalement utilisées sont les ondes planes, focalisées et divergentes. Leur illustration est fournie

a la Figure 2.3.



Onde focalisé

Pomt focal

Onde divergente

Source
virtuelle
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Onde plane
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. 9
Y Point focal 4 I'infini
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Figure 2.3 - Illustration des principales stratégies de transmission. En haut & gauche, les ondes

focalisées. Les délais sont calculés pour que le front d'onde converge vers un point en aval de la

sonde. En haut a droite les ondes divergentes. Les délais sont calculés pour simuler une source

ponctuelle en amont de la sonde. En bas, les ondes planes. Les délais sont nuls, ou linéaires pour

obtenir un angle.

2.1.2.2 Ondes focalisées

Les ondes focalisées sont les plus utilisées cliniquement a I’heure actuelle. Pour acquérir une

image, on calcule les délais afin de faire focaliser I’onde en un point situé en aval de la sonde, dans

le milieu a imager. Deux méthodes sont possibles :
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e Une sous ouverture est utilisée. Le point focal se trouve alors en dessous de 1’élément en

réception, lui-méme placé au centre de la sous-ouverture (voir Figure 2.4).

e Toute la sonde est utilisée et les délais sont ajustés pour focaliser sur les différents points

d’une droite située a une certaine profondeur, créant ainsi des ondes focalisées orientées.

BEIément en émission
[IEIément en réception

Figure 2.4 - Tllustration d’une mesure en ondes focalisées (a gauche) et en ondes planes avec 3
angles (a droite)
La profondeur choisie correspond a la profondeur focale de la sonde en élévation. Elle est propre
a chaque sonde et définie principalement par la lentille de celle-ci.

Une image est ainsi obtenue colonne par colonne, et nécessite par conséquent entre 64 et 128

couples émission/réception.

2.1.2.3 Ondes divergentes

Les ondes divergentes sont créées en simulant une source ponctuelle en amont de la sonde.
Cependant, du fait que I’énergie se dissipe, les zones a imager n’en regoivent que peu. Cela peut
étre compensé en envoyant plusieurs ondes divergentes, en en combinant les images au moment

de la reconstruction.

2.1.2.4 Ondes planes

Introduites au début des annéees 80 (Delannoy et al., 1979; Shattuck et al., 1984), les ondes planes
sont une alternative notamment aux ondes focalisées présentées précédemment. Contrairement a

ces dernicres qui viennent focaliser ’onde sur chaque ligne de I’image, et qui a donc besoin
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d’autant d’acquisitions que de ligne dans I’image (par exemple 128 pour une sonde a
128 éléments), I’intégralité du milieu est insonifiée en une seule fois (voir Figure 2.4). Cette
augmentation de cadence se fait au prix d’une perte de contraste, qui peut toutefois étre compensée
en envoyant des ondes planes angulées, et en moyennant ces acquisitions apres les avoir
reconstruites, on parle alors de « compounding ». En théorie, il faut n angles pour obtenir la méme
résolution qu’avec des ondes focalisées ou :

_L F=2 (2.5)
n—/lFavec —za .

L étant la largeur de la sonde, A la longueur d’onde, F le F-number, un parametre dépendant de la
directivité des éléments, z la profondeur de reconstruction et 2a I’ouverture comme définie a la
Figure 2.1 (Montaldo et al., 2009).

Par exemple, en prenant F=1.5 (généralement compris entre 1 et 2), A=100um et L=1cm, il faut
environ 67 ondes planes pour que le systéme d’imagerie produise la méme réponse impulsionnelle.

En pratique, une dizaine suffit.

2.1.3 Interaction de I’onde avec le milieu

La propagation de I’onde induit un déplacement des molécules constitutives du milieu. Plusieurs
interactions sont alors possibles.

2.1.3.1 Atténuation

Le déplacement des molécules du milieu génere un échauffement de celui-ci. Une partie de
I’énergie mécanique est alors dissipée sous forme thermique. Cette perte est modélisable par

I’équation :
p(z) = poe™** (2.6)
Ou a est un coefficient dépendant de la longueur d’onde utilisée, variant dans le méme opposé.

Bien que cette conversion en énergie thermique soit parfois recherché dans le cadre de traitement,
notamment de tumeurs (Marmor et al., 1979), elle diminue la qualité du signal dans un contexte

d’imagerie. Il faut alors trouver un compromis entre la longueur d’onde utilisée, dont la diminution
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augmentera la résolution, et la profondeur d’imagerie désirée. Il est néanmoins possible de tenir
compte de cet effet au moment de I’enregistrement des données ou bien de leur reconstruction avec

un gain de compensation de temps (TGC).

2.1.3.2 Réflexions spéculaires
Les milieux diffusant une onde acoustique possedent une impédance acoustique Z tel que :
Z = pc (2.7)

Lorsqu’une onde rencontre une interface entre deux milieux d’impédances distinctes, une partie de
I’onde incidente va étre transmise et éventuellement réfractée, tandis qu’une partie va étre réfléchie.
En utilisant les notations de la Figure 2.5, le coefficient de réflexion R et de transmission T

s’écrivent alors (Suetens, 2009) :

(Z, cos 0; — Z; cos 0,)*? 47,7, cos 8; cos 0,
= etT=1—-R= (2.8)
(Z, cosB; + Z, cos 6,)? (Z, cos 8; + Z; cos 6,)?

Avec, d’apres les lois de Snell-Descartes :

2

c2
cosf, = |1-— (H sin Gi) (2.9)

Ce type de réflexion a peu lieu en imagerie ultrasonore car il nécessite que les milieux aient des
impédances relativement différentes, comme c’est le cas pour les interfaces air/tissus et tissus/0s.
Pour éviter les interfaces air/tissus, du gel est utilisé cliniquement entre la sonde et la zone a imager.
Les os peuvent donc générer des réflexions importantes, méme si en pratique, on essaye de les

éviter.
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Medium 1
Z,=p; ¢
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Figure 2.5 — Types de réflexion dans un milieu inhomogéne. A gauche, la réflexion spéculaire a

l'interface entre deux milieux d'impédances acoustiques différentes. A droite, la réflexion diffuse
omnidirectionnelle d'un réflecteur ponctuel de diamétre inférieur a la longueur d'onde. Inspirée de
(Roux, 2016).

2.1.3.3 Réflexions diffuses

Contrairement aux réflexions spéculaires qui nécessitent des interfaces, les réflexions diffuses
peuvent apparaitre dans les tissus. En effet, en pratique, les tissus montrent localement des
variations de densité et de compressibilité. Les inhomogénéités de taille inférieure a la longueur
d’onde se comportent, au passage de I’onde ultrasonore, comme des sources ponctuelles et
participent au signal rétrodiffusé vers la sonde (voir Figure 2.5. Elles sont responsables de la
granularité des images ultrasonores, appelée speckle, qui est propre a chaque tissu et qui permet

donc de les caractériser ou de les suivre.

2.1.4 Enregistrement des signaux ultrasonore

Les ondes rétrodiffusées vers la sonde sont reconverties en signal électrique par les éléments
piézoélectriques. Ces signaux ultrasonores sont des signaux radiofréquences (RF) variant entre 1
et 20 MHz selon la sonde utilisée. Afin de respecter le critéere de Nyquist, il faut, a priori,

échantillonner les signaux a une fréquence deux fois supérieure a la frequence maximale. Or il se
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trouve que le signal d’intérét en ultrason est souvent a bande de fréquences étroite, comprise entre
50 et 70% de la fréquence centrale de la sonde (Kirkhorn, 1999). Il est donc possible gréce a la
mise en quadrature de phase (IQ) de récupérer 200%, 100% ou 50% de la bande passante (la bande
passante est définie ici comme les fréquences entre 0 et la fréquence centrale de la sonde, et non
la fréquence maximale). Concretement, cette mise en quadrature est réalisée en échantillonnant les
signaux & quatre fois la fréquence centrale de la sonde utilisée, puis en conservant tous les
échantillons (200%), deux sur quatre (100%) ou deux sur huit (50%) selon la bande passante que
I’on souhaite conserver. Le premier échantillon devient la partie réelle du signal, le deuxieme la
partie imaginaire. Il est possible, mais pas indispensable, d’interpoler la partie imaginaire pour la

recaler sur le méme temps d’échantillonnage que la partie réelle.

2.1.5 Formation de I’'image

Le processus de formation de 1’image, ou reconstruction est I’étape qui permet de passer des
signaux électriques a une image. Le principe repose principalement sur le recalage des signaux
pour les sommer de maniere cohérente. Les algorithmes comme le Retard et Somme (DAS) sont

présentés a la section 2.3.1.

2.1.6 Résolution du systéme d’imagerie

En imagerie 2D, on distingue principalement 3 résolutions : la résolution axiale, latérale et
temporelle. Dans la direction azimutale, on parlera plus volontiers de focalisation en élévation. En
effet, la lentille de la sonde permet de focaliser I’onde a une profondeur définie appelée focale en
élévation. A cette profondeur, la largeur de I’onde est comprise entre 0.5 et Imm. C’est dans cette

direction que la résolution est la moins bonne.

2.1.6.1 Résolution axiale

La résolution axiale quant a elle est définie comme la différence de profondeur minimale entre
deux réflecteurs pour qu’ils puissent étre distingués I’un de 1’autre. Elle est en théorie égale a la
moitié de la longueur d’onde utilisée (Ng & Swanevelder, 2011), mais elle est influencée par la
longueur du pulse. La longueur de pulse est définie comme le produit de la durée du pulse (hombre
période de sinus généralement) par la longueur d’onde. Un pulse spatialement court donne une

meilleure résolution. Une haute fréquence et un nombre de cycles faible sont donc a privilégier.
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Cependant, les hautes fréquences sont plus atténuées et un pulse court possede une plage
fréquentielle plus importante, ce qui peut nuire a la qualité du signal regu par la sonde.
2.1.6.2 Résolution latérale

La résolution latérale est la distance minimale séparant deux réflecteurs dans la direction
orthogonale a celle de propagation de 1’onde. En ondes focalisées, elle est principalement définie

par la largeur du faisceau ultrasonore. Celle-ci est définie comme (Ng & Swanevelder, 2011) :

F,

Avec F la profondeur de focalisation et 2a I’ouverture.

Elle peut étre améliorée en focalisant 1’onde a plusieurs profondeurs, mais cela augmente le nombre
d’émissions/réceptions nécessaires, diminuant ainsi la cadence d’imagerie et par conséquent la

résolution temporelle.

2.1.6.3 Résolution temporelle

La résolution temporelle correspond au pas de temps entre chaque image. Dans le cadre de

I’imagerie conventionnelle, elle peut étre approximée par :

szax
Cc

Ry ~ (2.11)

Avec c la célérité de ’onde, N le nombre de tirs nécessairement pour former une image et zZmax la
profondeur maximum. Avoir une bonne résolution temporelle est utile pour suivre des phénomenes
rapides. Cette résolution peut étre augmentée en diminuant le nombre de tirs, ce qui nuira

principalement a la résolution latérale oui diminuera la largeur du champ imagé.

2.2 Modalités d’imagerie ultrasonore et leurs évolutions

Cette partie vise a donner un apercu des modalités d’imagerie utilisee en pratique clinique ou en
recherche, afin de saisir les avancées qui ont abouti a la microscopie de localisation ultrasonore et

d’en comprendre I’intérét.
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2.2.1 Imagerie ultrasonore conventionnelle

Bien que I’imagerie ultrasonore apparaisse dans les années 40, c’est dans les années 50 et 70
qu’elle se développe réellement pour devenir ce que nous connaissons aujourd’hui, notamment en
bénéficiant des avancées du sonar (Shung, 2015). En effet, dans les années 50 sont établies les
bases de I’imagerie pulse-écho, permettant 1’étude des différents tissus, ainsi que celle de
I’imagerie Doppler, permettant de mesurer les vitesses d’écoulement des fluides. Mais c’est
seulement dans les années 70, lorsqu’un seul élément piézo-électrique (A-Mode), parfois motorisé,
laisse place a une barrette d’éléments contr6lés indépendamment (B-Mode) que les possibilités de
cette modalité s’¢largirent. S’ensuivit le développement de plusieurs méthodes comme les ondes
pulsées, les ondes continues, les ondes focalisées ou encore les ondes planes. Bien que le contraste
en imagerie ultrasonore soit assez faible, a cause du « speckle », cette granularité typique que 1’on
voit sur les échographies et qui rend 1’identification de structure tissulaire difficile, cette modalité
est devenue la deuxiéme la plus utilisee actuellement (derriére la radiographie a rayon X), en

proposant une solution peu onéreuse, sdre, et non ionisante (Shung, 2015).

Un autre mode d’imagerie, le M-mode, permet d’imager une colonne du milieu, et ce au cours du
temps. Cette modalité est principalement utilisée en imagerie cardiaque pour suivre la déformation

du cceur.

2.2.2 Imagerie Doppler

L’imagerie Doppler est une technique d’imagerie qui utilise 1’effet du méme nom. Elle permet
d’imager les vaisseaux sanguins, principalement les vaisseaux sanguins periphériques, et d’en
mesurer le flux, de maniére précise et non invasive. Cette technique utilise la variation de la
fréquence de I’onde (effet Doppler) par les globules rouges qui se déplacent dans les vaisseaux, ce
qui permet d’en extraire la vitesse et la direction. Il en existe trois variantes : le Doppler pulsé,

couleur, et puissance (Cura et al., 2012).

2.2.2.1 Doppler pulsé

Pour effectuer un Doppler pulsé, on procéde comme en imagerie conventionnelle. Un pulse court
est émis et 1’écho résultant enregistrer par la sonde, et ce de maniere répétitive avec une fréquence

appelee fréquence de répétition du pulse (PRF). De cette fréquence dépend la profondeur maximale
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d’imagerie Zmax ainsi que la vitesse maximale Vmax que 1’on pourra imager sans repliement spectral

avec .

PRF =~ et Vmax = ——— (2.12)

fc etant la fréquence centrale de la sonde.

On obtient alors, pour un vaisseau fixé un spectre des vitesses. Celui-ci peut étre superposé a une

image B-mode, on appelle cela le Doppler duplex.

2.2.2.2 Doppler couleur

Cette technique vise a acquérir simultanément une image ultrasonore classique, ainsi que
I’information de vitesse et de direction par effet Doppler. Cette information est ensuite encodée sur
I’image par de la couleur. On utilise conventionnellement le rouge pour les vaisseaux avec un flux

se dirigeant vers la sonde et le bleu pour ceux s’en €loignant.

2.2.2.3 Doppler puissance

Le Doppler puissance utilise la vitesse des flux sanguins comme critere discriminant afin de les
extraire du signal tissulaire. Une fois le signal tissulaire retirée, I’image est reconstruite et on
obtient une carte de I’intensité, ou de la puissance, des vaisseaux sanguins. Cette mesure sera
directement proportionnelle au nombre d’érythrocytes présent dans chaque pixel. Du fait que I’on
n’utilise pas de variation fréquentielle de 1’onde, cette méthode est plus sensible, et non impactée

par ’angulation de la sonde et le repliement spectral.

2.2.3 Imagerie ultrasonore ultrarapide

L’imagerie ultrarapide (Tanter & Fink, 2014) désigne une technique d’imagerie dans laquelle on
insonifie un large champ de vue, grace a I’utilisation d’ondes planes, avant de récupérer le signal
pour former une image, et ce, plus de 1000 fois par secondes. Bien que le concept date de la fin
des années 70, ce n’est que trés récemment que cette technologie a pu étre implémentée
cliniguement (Couture et al., 2018). Cette avancée a été permise grace aux développements des
calculs paralleles et sur processeurs graphiques (GPU), rendant possible la reconstruction des
images en temps réel. Cela a ouvert la porte & de nombreuses techniques d’imagerie. 1l est

désormais possible de suivre le déplacement d’ondes de cisaillement pour 1’¢élastographie (Sandrin
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et al., 1999), de faire du Doppler ultrarapide (Montaldo et al., 2010), ou encore de 1’imagerie
ultrasonore fonctionnelle (Macé et al., 2011) (fUs, par analogie avec I’imagerie par résonance
magnétique fonctionnelle). La Figure 2.6 illustre les différences entre 1’imagerie Doppler

conventionnelle, I’imagerie Doppler ultrarapide et I’imagerie fonctionnelle.

Figure 2.6 - Carte 2D du cerveau d’un rat avec a) I’imagerie Doppler conventionnelle, b) I’imagerie
Doppler ultrarapide et ¢) le fUs en stimulant les vibrisses du rat. Extrait de (Tanter & Fink, 2014).
© 2014 IEEE

2.2.4 Imagerie de contraste

L’imagerie de contraste, ou imagerie a contraste amélioré, est I’ajout d’agents de contraste aux
méthodes d’imagerie traditionnelles. En imagerie ultrasonore, il s’agit de microbulles, composées
d’une couche externe biocompatible comme des lipides, des ou des biopolymeéres renfermant un
gaz (Quaia, 2007). Les microbulles permettent d’améliorer le signal non seulement gréce a leur
échogénicité importante, mais aussi grace a leur non-linéarité. En effet, si la puissance acoustique
recue par les microbulles est suffisamment importante et a leur fréquence de résonance, la dilatation
des microbulles sera plus importante lors des moments de dépression du milieu que la contraction
lors des moments de surpression, générant des fréquences harmoniques. L usage de microbulles
est considéré comme sir, et les effets secondaires sont rares et d’intensité modérée chez I’humain

(Quaia, 2007) .

2.2.5 Imagerie super-resolue

On peut qualifier d’imagerie ultrasonore super-résolue les techniques qui permettent de surpasser
les limites fixées par la diffraction, et d’obtenir des résolutions inférieures a la longueur d’onde.
Pour cela, plusieurs méthodes ont été développées, basees notamment sur les interactions avec

d’autres types d’ondes, acoustiques ou magnétiques par exemple (Fink & Tanter, 2010).
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La majeure partie des études utilisant uniquement des ondes ultrasonores, les auteurs sont parvenus
a obtenir une résolution de A/3 (Couture et al., 2018), en utilisant par exemple le renversement
I’opérateur de retournement temporel comme une matrice de covariance (Prada & Thomas, 2003).
Cependant, cette méthode n’était pas réalisable in vivo, car la méthode nécessite un nombre de
réflecteurs inférieur au nombre de piézo-électrique de la sonde, ce qui n’est pas le cas avec un tissu
biologique. Cette méthode et d’autres n’ont pas été applicables, néanmoins un point important en
est ressorti : pour obtenir une image super résolue, il faut un nombre limité de réflecteurs (Couture
etal., 2018).

2.2.6 Microscopie de localisation ultrasonore

En imagerie ultrasonore comme en optique, il a longtemps fallu chercher un compromis entre la
surface de pénétration et la résolution de I’image. En effet, la résolution dépend de la fréquence
d’émission des ondes et est limitée par le phénomeéne de diffraction (Couture et al., 2018). En outre,
plus la longueur d’onde est faible, moins 1’onde pénétre dans le milieu. Par exemple, & I15MHz, la
résolution classique est de 1’ordre de la longueur d’onde soit 0. lmm, et la distance a laquelle I’onde
a perdu la moitié de son énergie est de 5mm. A 3 MHZ, la résolution diminue & 0.5mm, mais la
profondeur de mi-énergie augmente a 15mm. Pour outrepasser cet état de fait, les imageries optique
et ultrasonore ont trouveé une solution : la microscopie de localisation. Cette méthode se base sur la
détection des centroides d’objets épars ou ‘activables’ dans le temps. En ultrasons, il peut s’agir de
microbulles de gaz (Christensen-Jeffries, 2017), initialement utilisées comme agent de contrastes
pour I’imagerie Doppler (Couture et al., 2012), et plus globalement en imagerie de contraste, ou
des nanogouttelettes (G. Zhang et al., 2018). La résolution s’affranchit ainsi des limites de la
diffraction, et est désormais définie par la faculté de localiser le centre de la figure d’étalement du
point (PSF) des microbulles. Cela permet par exemple d’imager les microstructures vasculaires

dans le cerveau (Figure 2.7).
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Figure 2.7 - ULM du cerveau d’un rat in vivo. Extrait de (Couture et al., 2018). © 2018 IEEE

2.2.7 Imagerie ultrasonore 3D

Figure 2.8 - Sonde ultrasonore matricielle 32x32 éléments, 8MHz, fabriquée par Vermon, France.

Toutes les techniques évoquées précédemment ont éte développées en 2D, mais leur pendant
tridimensionnel existe pour la plupart. En effet, grace a une sonde matricielle comme celle de la
Figure 2.8, il est possible d’imager un volume en une seule acquisition. Cela a 1’avantage évident
d’avoir une vue d’ensemble sur un organe, et de pouvoir saisir des phénomenes ayant lieu dans la
dimension orthogonale au plan d’imagerie 2D choisi. Une des applications pour laquelle I’imagerie
3D a demontrer son efficacité est la mesure de la rigidité artérielle, avec une réduction de la
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variabilité inter et intra-observateur. Elle permet également de réaliser des Doppler ultrarapides,

mais également la microscopie de localisation ultrasonore, comme sur la Figure 5.1.

2.3 Chaine d’acquisition et de traitement pour la microscopie de

localisation ultrasonore

La méthode générale pour réaliser ’'ULM a été décrite dans (Christensen-Jeffries, 2017),
cependant, les algorithmes utilisés peuvent différer selon les groupes. Des étapes supplémentaires
peuvent étre ajoutées, comme de la correction de mouvement, la correction d’aberrations, ou la
séparation des microbulles suivant leur direction. Cette section décrit les algorithmes
majoritairement utilisés dans la littérature. Un apercu de la chaine de traitement est donné a la

Figure 4.1.
2.3.1 Reconstruction des données

2.3.1.1 Algorithme DAS

La reconstruction (ou beamforming) est I’'une des étapes primordiales de 1’imagerie ultrasonore.
La méthode la plus répandue, et implémentée dans les imageurs cliniques est le retard-et-somme
(DAS). Cet algorithme, simple au premier abord, peut étre implémenté analogiquement ou

numériquement. 1l a été décrit dans (Montaldo et al., 2009).

7 ?nde lane|
v
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|

Milieu a imager

Données 1Q
x

Milieu a imager

Figure 2.9 - Schéma de I'algorithme DAS

Dans la Figure 2.9, on émet une onde plane avec un angle o sur un milieu contenant 3 réflecteurs.
Au passage de I’onde, ces trois points se comportent comme des sources ponctuelles, réfléchissant
une onde dont le front est circulaire. Ces signaux vont se retrouver dans les données 1Q sous forme

d’hyperboles. Pour reconstruire I’image on discrétise la région d’intérét en pixel, isotrope ou non,
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ayant des dimensions allant de A/2 a A/8, A étant la longueur d’onde utilisée. Pour retrouver
I’intensité s(x,z), ou x et z sont les coordonnées du pixel considéré, on va calculer le temps mis par

I’onde pour arriver a ce pixel (T4¢r), €t revenir a chaque élément de la sonde Xi (Tyerour)-

zZ*xcosa + xsina
Tauter (@, X, 2) = ( c ) (2.13)
Avec c la célérité moyenne du son dans le milieu.
JZ2 + (x — x;)?
Tretour(x: Z, xi) = c . (2-14)
On pose
(@, X, Z,X;) = Tauer t Tretour (2.15)

On va alors fixer un parametre, I’ouverture, qui permet de garder une PSF similaire pour toutes les
profondeurs de reconstruction. Ce parameétre peut s’exprimer sous plusieurs formes, appelons-le
a(z). a(z) est une distance telle que nous considérons uniquement les éléments de la sonde dans

I’intervalle [x-a , X+a].
Onaalors:
sy = ) 1GwD) (2.16)
xi€[x—a,x+al

Cette approche a I’avantage d’étre facilement implémentable, parallélisable et flexible. Cependant,
elle suppose plusieurs hypothéses comme ’homogénéité de la célérité du son dans le milieu et la
planéité du front d’onde. De plus, certains paramétres sont a régler assez empiriquement, comme

I’ouverture.

2.3.1.2 Reconstruction matricielle

Une deuxieme approche, plus récente, a été introduite par (Berthon et al., 2018), utilise des

matrices.

Il est possible d’écrire que les mesures IQ Y, et le signal & mesurer x sont reliés par un opérateur

direct G tel que
y=G(x) (2.17)

x et y sont alors des vecteurs. En inversant le probléme, on obtient une approximation de x, X
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X = diag(K*K)'K*y (2.18)
Tel que K est une matrice de PSF organisée comme dans la. K*désigne la matrice adjointe de K.

Chaque colonne de la matrice K représente une acquisition, avec le signal recu par chaque élément,
et ce autant de fois qu’il y de couple émissions/réception. La dimension dans cette direction est
donc  Nechantilion*Nelement*Nangle, aveC Nechantiion le nombre d’échantillons (dépendant de la
profondeur & imager), Neement le nombre d’éléments de la sonde, et Nangle le nombre d’angles.
Chaque colonne correspond a la PSF d’un point sur un pixel de I’espace de reconstruction. Il y a
donc Nx*N; colonnes, avec Nx le nombre de pixels dans la direction x et N, le nombre de pixels

dans la direction z.

Cette méthode présente de meilleurs résultats que le DAS, cependant il faut créer et stocker la
matrice K. Le premier point nécessite de simuler Nx*N; PSF en utilisant un simulateur comme
Field Il (Jensen, 1996). Cette opération peut prendre plusieurs heures, voire jours, et il faut la
recommencer pour chaque modification d’un parameétre, ce qui rend cette approche peu flexible.
Pour le second point, bien que la matrice contienne principalement des zéros, son stockage
nécessite plusieurs gigaoctets (Go), qu’il faudra préférablement charger en mémoire vive pour

’utiliser.

2.3.2 Filtrage du signal tissulaire

Le signal des microbulles, bien que celles-ci soient fortement échogenes, est masqué par le signal
tissulaire. Pour le faire ressortir, plusieurs méthodes existent. Elles reposent généralement sur un
filtrage spatiotemporel, appliqué soit a chaque échantillon 1Q, soit aux pixels de I’image
reconstruite, en considérant les variations sur les acquisitions au sein d’un bloc de données. Le
temps entre chaque acquisition (de 1’ordre la ms) est appelé temps long, en opposition au temps

entre chaque échantillon RF appelé temps court (de 1’ordre de la ps).

Il existe par exemple des filtres de rang (comme la médiane), des filtres de moyennage non local,
ou des filtres basés sur la décomposition en valeurs singulieres (SVD). Bien que chacun puisse étre
adapté a certaines circonstances (Piepenbrock et al., 2018), c’est le filtrage par SVD, montré
particuliérement efficace (Demené et al., 2015), qui a permis I’essor de 'ULM. Il consiste a
décomposer les acquisitions en vecteurs propres et a en supprimer les premiers. En effet, les

premiers vecteurs représentent le signal le plus cohérent, correspondant au tissu. Le seuil de
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coupure peut étre avoisiné en observant la décroissance des valeurs propres, mais est généralement

établi de maniere empirique.

2.3.3 Corrélation avec la PSF et ajustement gaussien

Une fois les microbulles isolées, il faut les détecter et les localiser. La corrélation par une PSF
obtenue par simulation est une méthode pour détecter les microbulles. Celle-ci n’a pas été
clairement établie dans la littérature. Elle permet de passer d’une carte d’intensité, a une carte
normalisée entre 0 et 1. Les maximums de corrélation sont alors repérés, et un ajustement (ou fitting
gaussien) est effectué sur les pixels voisins a 1’aide d’une gaussienne dans les directions d’intérét
(xetzen 2D, x, y et z en 3D). Cette étape permet de trouver le centre des PSF, et par conséquent
de localiser les microbulles avec une précision sous-pixellique, et nettement inférieure a la longueur

d’onde utilisée. L’avantage de cette méthode est d’étre facilement implémentable (Guo, 2011).

2.3.4 Angiogrammes

Les angiogrammes sont les cartes représentant les vaisseaux sanguins. lls peuvent étre obtenus de
plusieurs fagons a partir des positions des microbulles (voir Figure 1.1). La premiere facon est de
faire une carte binaire des pixels ou au moins une microbulle a été localisée. Cette méthode ne
donne pas d’information sur le nombre de microbulles ayant été localisées dans ce pixel, et est tres
sensible au bruit. Les cartes de densités, utilisées dans ce mémoire, sont créées en accumulant les
positions des microbulles, sur une grille, possédant avec un maillage plus fin que la grille de
reconstruction. Elle est présentée avec un affichage logarithmique, pour mieux rendre compte des
différentes tailles de vaisseaux, 1’écart entre le nombre de microbulles dans les petits vaisseaux
pouvant étre important (facteur 100 (Hingot et al., 2019)). A partir des positions, il est également
possible de faire le suivi des microbulles, et représenter les pistes des microbulles. Enfin, on peut
extraire des pistes précédentes les vitesses des microbulles, et représenter celles-ci, soit en

vectoriel, soit en moyennant la vitesse des microbulles a I’intérieur des pixels.
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Figure 2.10 — Différentes modalités de ’'ULM. A) Positions des microbulles détectées, B) Pistes

D) Champ de vitesses

des microbulles correspondantes, C) Carte de densité des microbulles

moyennes. Extrait de (Hingot et al., 2019).
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2.4 Imagerie ultrasonore compressée

2.4.1 Ouverture synthétique parcimonieuse

L’ouverture synthétique est un terme assez générique, qui ici désigne un mode d’acquisition dans
lequel les ¢léments d’une sonde vont tour a tour émettre un pulse, puis le signal rétrodiffusé sera
enregistré par tous les éléments. Outre la quantité de données créer, cette méthode est colteuse en
temps. Pour réduire la durée d’acquisition, on utilise le principe d’ouverture effective (Chiao &
Thomas, 1996). En imagerie ultrasonore, I’ouverture effective est définie comme le produit de
convolution entre I’ouverture en émission et I’ouverture en réception, et la réponse impulsionnelle
du systéme d’imagerie est liée a la transformée de Fourier de celle-ci. (Lockwood et al., 1998) a
montrer un moyen simple de conserver cette ouverture effective en diminuant le nombre
d’émissions nécessaires grace a des apodisations en réception. Cette méthode a été utilisée par
(Korukonda & Doyley, 2011a, 2011b) en élastographie. Une représentation graphique du calcul
des apodisations, ainsi que des résultats extraits de (Korukonda & Doyley, 2011a) et (Korukonda
& Doyley, 2011b).
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Figure 2.11 - a) et b) schémas d’acquisition pour I’ouverture synthétique compléte et parcimonieuse
respectivement. Extrait de (Korukonda & Doyley, 2011a). c) et d) déformation mesurée dans un
fantdme de vaisseau avec la méthode parcimonieuse (c) et avec des ondes planes (d). Extrait de
(Korukonda & Doyley, 2011b). © 2011 IEEE

2.4.2 Optimisation de la position des élements des sondes ultrasonores

Afin de réduire le nombre de canaux d’une sonde tout en conservant la qualité d’image, il est
possible de concevoir les sondes pour optimiser certains parametres, par exemple maximiser
I’énergie au centre du volume imaggé, en rejetant les lobes latéraux a 1’extérieur du champ de vue.

C’est ce qu’ont fait plusieurs groupes de recherche sur des sondes matricielles, en essayant des
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motifs géométriques (Austeng & Holm, 2002; Yen et al., 2000), ou aléatoires (Yen et al., 2000). Il
est aussi possible de résoudre cela comme un probléme d’optimisation en garder une taille
d’élément fixe (Davidsen et al., 1994; Roux et al., 2018; Sciallero & Trucco, 2015) ou en la faisant
varier (Diarra, Robini, Liebgott, et al., 2013; Diarra, Robini, Tortoli, et al., 2013). La Figure 2.12
donne la configuration présentée comme optimale par (Roux et al., 2018) pour la sonde matricielle
de la Figure 2.12 échantillonnée a 256 canaux pour 1’utilisation en ondes focalisées et divergentes.
Une approche un peu différente pour les sondes linéaires utilise la photo-acoustique pour étudier
le parall¢le entre une apodisation des éléments en réception et une densité d’éléments qui varie sur
la sonde (Alles & Desjardins, 2020). Ils démontrent ainsi I’intérét d’un pitch (taille de 1’é1ément et
espacement entre eux) non uniforme.
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Figure 2.12 - Configuration optimale pour une sonde 2D avec 256 éléments parmi 1024. Extrait de
(Roux et al., 2018).

De maniére analogue, des méthodes utilisant des sondes parcimonieuses se déplacant ont été

développés pour des applications d’imagerie a courte portée (Gumbmann & Schmidt, 2011).
2.4.3 Acquisition comprimee

2.4.3.1 Théorie

L’une des méthodes les plus étudiées en imagerie médicale est 1I’acquisition comprimée (CS). Cette
théorie, établit par Donoho (Donoho, 2006) et Candés, Tao et Romberg (E. J. Candés et al., 2006)
en 2006 a déja montrée son efficacité pour I’IRM (Lustig et al., 2007), la tomographie par rayons
X (G.-H. Chen et al., 2008) et la tomographie photo-acoustique (Provost & Lesage, 2009), en
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recouvrant des signaux dits parcimonieux (sparse en anglais). Un signal est considéré comme
parcimonieux s’il existe une base (Fourrier, ondelette, curvelette) ou le signal peut étre représenté

par peu de coefficients. Dans ce cas, cette théorie nous dit que :

1. lesignal peut étre retrouvé avec un nombre d’échantillons inférieur a celui fixé par le critére

de Nyquist

2. les échantillons doivent étre prélevés dans une base la plus incohérente possible avec la
base de parcimonie, condition généralement respectée en réalisant un échantillonnage

aléatoire

3. parmi tous les signaux pouvant étre expliqués par ces échantillons, le signal ayant le moins
de coefficients non nuls dans la base de parcimonie sera le signal original (E. Candes &
Romberg, 2007)

Mathématiquement, soit x € R un signal parcimonieux dans la base € R¥*N tel que s = yx
possede S coefficients non nuls, S<<N. Soit y € R¥X une mesure de x dans une base 4 € RK*N
incohérente avec la base i tel que y = Ax et S < K < N. L’image originale peut étre reconstruite

en résolvant le probléme d’optimisation contraint suivant :
min|yx|, subjectto y = Ax (4.1)
Ou |.|; désigne la norme Li. (démonstration inspirée de (Quinsac et al., 2010))

La norme L1 est un point primordial puisque c’est la seule qui permet de retrouver un signal K-
parcimonieux : ce ne sera pratiquement jamais le cas avec une norme L., tandis que la norme Lo

donne un probléme qui n’est pas toujours calculable numériquement.
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2.4.3.2 Application en imagerie ultrasonore
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Figure 2.13 - Image cardiaque. a) Image en imagerie conventionnelle, b) image avec la méthode
Xampling. Extrait de (Wagner et al., 2012). © 2012 IEEE

L’imagerie ultrasonore comprimée a été beaucoup déclinée. Certaines études considérent que la
distribution des réflecteurs dans le milieu a imager est parcimonieuse (David et al., 2015; M. F.
Schiffner et al., 2012; Martin F. Schiffner & Schmitz, 2011; Wagner et al., 2011, 2012; Q. Zhang
et al., 2013). Cette hypothese assez forte permet de reconstruire des images, mais la granularité des
images ultrasonore, le speckle, qui résulte d’un grand nombre de diffuseurs s’en voit altérer (voir

Figure 2.13).

Une autre approche est de reconstruire un signal RF sous échantillonné (Friboulet et al., 2010;
Liebgott et al., 2013; Liu et al., 2017; Lorintiu et al., 2015; Ramkumar & Thittai, 2020) en
considérant le signal parcimonieux dans le domaine de Fourier (Liebgott et al., 2013), dans une
base d’ondelettes (Friboulet et al., 2010; Liebgott et al., 2013; Liu et al., 2017), dans la base ‘waves
atoms’ (Friboulet et al., 2010; Liebgott et al., 2013; Ramkumar & Thittai, 2020), ou encore dans
un dictionnaire congu avec des données d’entrainement (Lorintiu et al., 2015). Cette derniére

méthode se montre d’ailleurs particuliérement efficace (voir Figure 2.14)
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Figure 2.14 - NRMSE (racine de I’erreur quadratique moyenne) pour différentes stratégies de sous-
échantillonnage et différente base de parcimonie pour 1I’imagerie 3D. a) échantillonnage aléatoire
(R1) b) echantillonnage aléatoire conservé selon la direction axiale (mémes canaux en réception)
(R2). ¢) erreur selon le nombre d’échantillons retirés pour la stratégie R1 en bleu et R2 en rouge.
DCT correspond a la base de cosinus discret et K-SVD a I’algorithme d’optimisation utilisé pour
trouver le dictionnaire. La stratégie d’échantillonnage R1 est 1égerement meilleure que R2, car plus
incohérente avec les bases utilisées, mais difficilement utilisable en pratique. Extrait de (Lorintiu
et al., 2015). © 2015 IEEE

En contréle non destructif, on cherche principalement a détecter et localiser des défauts dans un
matériau uniforme, ou avec peu d’interfaces. Bien qu’ils soient peu nombreux, i deux défauts sont
trop pres au regard de la longueur d’onde utilisée, leur identification et localisation précise peuvent
étre ardus. De plus les échos peuvent étre partiellement ou completement caché par le bruit avec
’atténuation du signal au cours de sa propagation. Une méthode simple pour localiser les défauts
est le filtre adapteé (ou matched filter) qui correspond au maximum d’intercorrélation entre le signal
mesuré et I’onde incidente. Cependant cette technique est rapidement limitee lorsque les signaux
de plusieurs défauts se chevauchent. Il est alors possible de tirer parti de la parcimonie des défaut
et d’utiliser des techniques d’acquisitions comprimées pour déconvoluer 1’image et régularisant la

norme L1 ou Lo (Jin etal., 2016; Soussen et al., 2012). Il existe pour cela 1’algorithme trés populaire
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de matching pursuit et que certaines de ces variantes (G.-M. Zhang et al., 2012), ainsi que le
méthode Prony (Bofmann et al., 2012). Des approches similaires sont également utilisées en
géophysique (G.-X. Chen et al., 2013; Trad et al., 2003).
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CHAPITRE3 METHODOLOGIE

Afin de mener a bien ce projet, les taches a accomplir ont été subdivisées en trois groupes :

1. Mettre en place la chaine de traitement pour ’'ULM et trouver une stratégie de diminution

du nombre de canaux

2. Effectuer des simulations réalistes pour pouvoir étudier I’impact des différents paramétres

en connaissant la vérité terrain

3. Obtenir des données in vivo pour valider la méthode
3.1 Mise en place de la chaine de traitement

3.1.1 Implémentation des algorithmes

La majeure partie des algorithmes (simulateur, reconstruction, corrélation, ajustement gaussien,
création des cartes de densité) ont été développées par Jonathan Porée sur MATLAB (Matworks,
EUA) ou via des kernels CUDA afin d’avoir des codes rapides, utilisant la grande parallélisation
offerte par les processeurs graphiques. J’ai cependant contribué¢ a la transition des codes
d’acquisition des données de la 2D vers la 3D, ainsi que participé a 1’optimisation des codes. J’ai

également implémenté 1’algorithme matricielle présenté a la section 2.3.1.2 en 2D et en 3D.

3.1.2 Amélioration de la chaine de traitement

Apres avoir établi la méthode générale, qui consiste a changer aléatoirement 1’échantillonnage de
la sonde a chaque bloc de données (voir section 4.3.2), ces étapes ont été décomposées pour essayer
d’améliorer la qualité des angiogrammes. Deux études ont été particulierement poussées : le test
d’une corrélation glissante, avec une PSF pixel-spécifique et celui de différents opérateurs pour la
composition des angles (compounding). Le premier ajoutait un temps de simulation non
négligeable et les résultats n’étaient pas convaincants, notamment a cause d’artéfacts créés a la
profondeur de focalisation en élévation. Le remplacement de la moyenne lors de la composition
notamment par la médiane, le minimum et le maximum des angles, n’a pas non plus donné

d’amélioration convaincante.
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3.1.3 Parameétres non traités

Afin de développer la méthode décrite a la section 4.3.2, plusieurs parametres ont été considéres
puis écartés. C’est le cas de I’échantillonnage angulaire. Les résultats du Chapitre 4 établissent
I’importance du nombre d’angles. Néanmoins, des simulations réalisées avec un pas angulaires
variable ont montré que ce paramétre n’avait qu’un faible impact. Un échantillonnage aléatoire des
angles aurait pu étre étudi¢, mais I’impact aurait probablement été faible également. Un sous
échantillonnage des échantillons aurait pu étre considéré, néanmoins, bien que réduisant la quantité
de données a transférer et stocker, ce n’est pas un parameétre qui joue sur la complexité du matériel

d’acquisition. Ce point a donc également été mis de coté.

3.2 Création du fantdme physio-réaliste

Pour la création du fantdme, Hatim m’a fourni les positions de microbulles a 20.000 instants
circulant a I’intérieur de 6 reconstructions de systemes vasculaires de souris. Le développement du
fantbme et les métriques extraites sont décrits a la section 4.3.3. Outre I’étude du nombre d’angles
et de canaux, ce fantome m’a permis de mieux étudier la corrélation, et notamment le choix du
seuil a adopter. Ce parameétre est important en simulation car il influe grandement sur les métriques,
et un seuil mal choisi pourrait avantager certaines valeurs des parametres (angles et canaux) et
biaiser le résultat. Pour cela j’ai observé les histogrammes des corrélations des microbulles, en

faisant varier le nombre d’angles et le nombre de canaux (Figure 3.1).
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Figure 3.1 - Histogrammes de corrélation des microbulles pour différents nombres de canaux et

d’angles. La barre verte représente un seuil fixe a 0,75, 1a barre rouge le seuil obtenu par la méthode

d'Otsu et la barre verte un nombre de microbulles conservées constant, ici 30%. Le nombre au-

dessus de I’histogramme correspond au nombre de microbulles conservées pour le seuil a 0,75.

A partir de ces histogrammes, on voit deux blocs se distinguent, et que la séparation est plus nette

avec 1I’augmentation du nombre d’angles et de canaux. La méthode d'Otsu, qui est une méthode

basée sur I’histogramme semblait donc particulierement indiquée. Pour le vérifier, les courbes ROC

ont été tracées en utilisant le taux de faux positifs et de faux négatifs (Figure 3.2).
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Figure 3.2 - Courbes ROC sur le seuil de corrélation pour différents nombres d’angles et de canaux.
Plus le nombre de canaux est elevé, plus la courbe se décale vers le coin supérieur gauche. Les
carrés verts représentent des seuils fixes, les carrés bleus un nombre de microbulles fixes, et le

carré rouge représente le seuil obtenu avec la méthode d’Otsu.

La méthode d’Otsu, sans atteindre le maximum, s’en rapproche avec une sensibilité et une

sensitivité élevée. Cette option a donc été retenue pour les courbes de la section 4.4.1.

3.3 Validations in-vivo

Le montage expérimental est décrit a la section 4.3.4. Les données ont été acquise sur un cerveau
de rat avec craniotomie, a I’institut de cardiologie de Montréal. La craniotomie a été réalisée par
Marc-Antoine Gillis. L’échographe est un systéme Vantage (Verasonics, Wa, EUA) a 256 canaux.
Les echographes de Verasonics sont des échographes de recherche, programmable, et dont on peut
extraire les données brutes, contrairement a la majeure partie des échographes cliniques. Les codes

d’acquisition 2D ont été principalement écrit par Chloe.

Le chapitre suivant reprend la méthodologie, et les résultats principaux de ce projet.
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4.1 Abstract

Ultrasound Localization Microscopy (ULM) has recently enabled the mapping of the cerebral
vasculature in vivo with a resolution ten times smaller than the wavelength used, down to ten
microns. However, with frame rates up to 20.000 frames per second, this method requires large
amount of data to be acquired, transmitted, stored, and processed. The transfer rate is, as of today,
one of the main limiting factors of this technology. Herein, we introduce a novel reconstruction
framework to decrease this quantity of data to be acquired and the complexity of the required
hardware by randomly subsampling the channels of a linear probe. Method performance evaluation
as well as parameters optimization were conducted in silico using the SIMUS simulation software
in an anatomically realistic phantom and then compared to in vivo acquisitions in a rat brain after
craniotomy. Results show that reducing the number of active elements deteriorates the signal-to-
noise ratio and could lead to false microbubbles detections but has limited effect on localization
accuracy. These results suggest that a compromise can be found between the number of channels
and the quality of the reconstructed vascular network, and demonstrate feasibility of performing
ULM with a reduced number of channels in receive, paving the way for low-cost devices enabling

high-resolution vascular mapping.

Keywords: Ultrasound Localization Microscopy, Sparse array

4.2 Introduction
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By locating the centroids of sparse microbubbles (MB) circulating in the vascular network,
Ultrasound Localization Microscopy (ULM) allows to go beyond the limits of conventional
ultrasound imaging fixed by diffraction, and to go down to a resolution of only a few microns
(Errico et al 2015, Couture et al 2011, Christensen-Jeffries et al 2015, Desailly et al 2013, O'Reilly
and Hynynen 2013, Couture et al 2018). In addition to its high imaging rate, low cost, non-
invasiveness and non-ionization, this modality is, as of today, the only one capable of imaging the
entire vasculature of an organ within a wide field of view and in depth. Recent applications of
ULM include the mapping of tumour vasculature, for early stage detection (Lin et al 2017),
characterization (Opacic et al 2018), or treatment monitoring (Ghosh et al 2017). Other fields of
interest include the detection and monitoring of treatment for cardiovascular or neurodegenerative
diseases. For instance, Hingot et al. have imaged the cerebral perfusion of mice before, during and

after ischemic strokes to evaluates the outcomes and the responses to treatment (Hingot et al 2020).

Numerous studies have already been carried out on sparse ultrasound imaging to reduce the
acquisition time, the amount of data or the hardware complexity. Compressed sensing (Candés et
al 2006, Candes and Romberg 2007, Donoho 2006) has shown its effectiveness in magnetic
resonance imaging (Lustig et al 2007), photo-acoustic imaging (Provost and Lesage 2009), and X-
ray tomography (Chen et al 2008). In ultrasound imaging, reconstructing sparse radiofrequency
(RF) raw data in a wavelets base (Friboulet et al 2010, Liebgott et al 2013, Liu et al 2017), in the
Fourier Domain (Liebgott et al 2013), wave atom base (Friboulet et al 2010, Liebgott et al 2013,
Ramkumar and Thittai 2020) or dictionary learning base (Lorintiu et al 2015) have been shown.
Other studies considered the sparsity of post-beamformed RF images (Achim et al 2010, Basarab
et al 2013, Chernyakova and Eldar 2014, Dobigeon et al 2012, Quinsac et al 2012), scatterers
distribution (David et al 2015, Schiffner et al 2012, Wagner et al 2012, Wang et al 2014, Zhang et
al 2013) or used the sparsity of the vascular structure (Bar-Zion et al 2018). In the context of
ultrasound, the goal was to reduce either the number of pulses/echoes, especially for synthetic

transmit aperture, the number of channels or the number of samples.

Other approaches based on sparse arrays have also been proposed. Korukonda et al. showed the
feasibility of synthetic aperture elastography imaging with a sparse array (Korukonda and Doyley
2011), decreasing the number of transmits to maintain a high frame rate. Several groups have also
worked on optimizing the location of matrix array elements on several criteria : contrast, resolution,

location and amplitude of the side lobes (Austeng and Holm 2002, Davidsen et al 1994, Diarra et
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al 2013, Roux et al 2018, Sciallero and Trucco 2015, Yen et al 2000). Relatedly, Alles et al. have
compared different element density laws of a linear probe with their equivalent in apodization to

demonstrate the interest of a non-uniform pitch (Alles and Desjardins 2020).

With regard to ULM, the feasibility of a sparse sampling of ultrasound probes has been shown in
vitro in 2D with a model-based reconstruction method (Vilov et al 2020), and in 3D, keeping only
half of a 1024-element matrix probe (Harput et al 2018). Moreover, as demonstrated by Desailly
et al. in 2015, the standard deviation of the precision of localization of a unique scatterer is
inversely proportional to the square root of the number of active receive channels at constant signal-
to-noise ratio (SNR) (Desailly et al 2015). These elements seem to indicate the possibility to
localize with subwavelength accuracy the microbubbles with few receive channels, and to transfer
the complexity of the acquisition system to the software, reducing the costs of the ultrasound

scanners, as well as the quantity of data to be collected, transferred, stored and processed.

Herein, we propose a novel sparse reconstruction framework to reduce the number of acquisition
channels by randomly subsampling the receive channels, from 128 down to 16. The effects of the
subsampling as well as the position of the withdrawn channels and the number of steered angles

were investigated in physio-realistic simulations and in-vivo data, acquired in a rat brain.

4.3 Methods

4.3.1 Localization Microscopy Pipeline

The pipeline we used is conventional and similar to other approaches described in the literature
(Christensen-Jeffries et al 2020). The reconstruction of the data was achieved by a Delay and Sum
algorithm (DAS) (Montaldo et al 2009) on an orthonormal grid with A/4 resolution (25.7 um) with
A the wavelength (see Figure 4.1). To artificially decrease the microbubble concentration, and
consequently increase the image quality, we separated the ascending and descending microbubbles
in in-vivo data. To do so we applied a filter on the Fourier transform of a pixel signal (Osmanski
et al 2012). This method was previously shown as effective by Huang et al (Huang et al 2020). For
in-vivo data, a Singular Value Decomposition (SVD) (Demené et al 2015) was computed to reject
the tissue signal by withdrawing the first 27 eigenvectors. Then, the point spread function (PSF) of
a microbubble located in the center of the reconstructed region was simulated considering a fully

populated array and correlated with the reconstructed images. A Gaussian fitting was then
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performed on the correlation maps to localize microbubbles centers with a subwavelength
precision. The microbubbles were tracked in time using a nearest-neighbour criterion to eliminate

microbubbles that did not persist for more than two consecutive frames.

Beamformed
microbubble signal

. -,

Positions

Sparse RF data Correlation Map Density map

Clutter Filter (SVD) + Correlation with Gaussian Fitting Accumulation on a grid
Beamforming PSF

Figure 4.1 - Ultrasound localization microscopy pipeline. The RF data containing the microbubble
and tissue signal was reconstructed from one spatial axis (x) and one temporal axis to two spatial
axes (x,z). A SVD was performed on the raw or beamformed data to remove the tissue signal. A
correlation was then performed, and a Gaussian fitting on the pixels with the highest correlations
allowed us to obtain the position with sub-pixel precision. These positions were accumulated on a
grid to form the angiogram.

4.3.2 Receive Channel Reduction Method

The approach proposed herein to decrease the number of acquisition channels consists in

1) randomly selecting groups of receive elements according to insonification-angle-specific

probability laws, which

2) remain constant during an entire buffer. The latter aspect is central to the approach, as it enables

the use of standard SVD filtering to isolate microbubbles (see Figure 4.2).
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Frame

Figure 4.2 - Sub-sampling method. Diagram showing an example of the subsampling method used
in the 3D space formed by the frame number (slow time), emitted angles, and receive channels.
Active channels are represented in white. The selected active channels change from one angle to

the other, but stay constant from one frame to the next.

To evaluate the influence of the elements position in the reconstructions, several probability laws
were tested. The elements were then selected among the 128 of the probe used with a higher
probability for the external elements (Extl and Ext2 laws), for the central elements (Cenl and Cen2

laws) or in a uniform way (Uni law).

4.3.3 Creation of the In-Silico Phantom and Metrics Extracted

Six vascular networks from mouse brains were imaged using 2-photon imaging and reconstructed
(Damseh et al 2019). The vasculature was then segmented to circulate microbubbles following a
physio-realistic distribution. The microbubble positions thus obtained were dilated by a factor 5 to
fill the field of view of the probe, and cut along one direction. The slices were translated and rotated
to fill a field of view equivalent to that of a rat brain while avoiding redundancy. The positions of
13 microbubbles per slice in the resulting phantom were simulated to obtain ultrasound images
with a frame rate of 1000 frames per second (fps), 13 angles (from -3° to 3° in steps of 0.5°) and a
concentration of 3.84 microbubbles/mm3 which was found to be an optimal concentration for our
localization algorithms and ultrasound probe. To emulate the linear acoustic response of the
microbubbles, we used an in-house GPU implementation of the frequency-based simulation
software (Shahriari and Garcia 2018). It has been set up to emulate a L-22-14 probe (Vermon,



44

France) at 15 MHz. 50 buffers of 400 frames were obtained and stored as in-vivo data to be
reconstructed (see Fig. 3).

SIMULATION

Parameters

L-22-14 probe
15MHz

50 buffers

400 frames per buffer
13 angles

3,84 uB/mm?3

50*400
acquisitions

Figure 4.3 - Physio-realistic phantom pipeline. At the left, the six segmented angioarchitectures
from 2-photon measurement that were used to generate microbubble physio-realistic position and
speed. At the center, the obtained phantom. At the right, the simulated sparse RF data.

The microbubbles were then located and uniquely matched with the positions used for the

simulation. Three metrics were measured:
the false positive rate (FPR) defined as

number of unmatched localized microbubbles

number of localized microbubbles (1)
the false negative rate (FNR) defined as
number of undetected simulated microbubbles (4.2)

number of simulated microbubbles
the mean distance between the simulated and localized microbubbles, which will be referred to as

accuracy

The standard deviation of the distances between the simulated and localized microbubbles will be

referred to as precision. All the metrics, including the STD, were calculated per frame.
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This phantom has been designed to fill the entire probe’s field of view with a homogeneous
distribution of microbubbles in it, in order to avoid evaluation bias due to a higher number of active

receive elements above denser microbubble zones.

4.3.4 In-Vivo Acquisition Setup

The acquisition was performed on a female rat’s brain after craniotomy sedated with Isofluorane
(2 %) and placed on a monitoring platform (Labeo Technologies Inc., Montréal, Canada) to
monitor its heart and respiratory rate. The platform was heated to maintain the body temperature
at 35°C. Three steered plane (-1, 0 and 1°) were emitted with a fully populated array (L22-14, 18
MHz, Vermon, France) and backscattered signals were recorded with a Vantage 256 system
(Verasonics, WA, USA) after a bolus injection in the tail vein of a 50-uL MB solution (1.2 x 10°
microbubbles per milliliter, Definity, Lantheus Medical Imaging, Billerica, MA, USA) diluted in
50 uL of saline. Each acquisition consisted of blocks, that will be referred as buffers, of 400 RF

data, acquired at an imaging cadence of 1000 frames per seconds.

Probe 122 -14 (Vermon ,
France)

Center frequency 18 MHz

Number of elements 128

Linear Pitch 0.1 mm

Element width 0.08 mm

Elevation focus 8 mm

400 RF
buffers of
400 frames

50-puL microbubble solution
(Definity, Lantheus, MA)

Transmit Frequency 15.625 MHz
Waveform 3 cycles

PRF 3 kHz ]
Female rat with Compounding angles  -1°,0°,1° Vantage System (Verasonics,
craniotomy Effective frame rate 1000 fps WA, USA)

Figure 4.4 - In-vivo acquisition setup. Diagram presenting the parameters and equipment used,
from acquisition to data recording. The frame containing the RF data for the 3 angles are arranged

by buffers of 400. 400 buffers are acquired, at a rate of one every 2 seconds approximately.
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4.3.5 Angiogram Display

To display the angiogram, the positions of microbubbles having a correlation above a threshold
were accumulated on a grid of A/12 (8.6 pum). The threshold was set at 0.5 for in-vivo data and
determined by the Otsu method for in in-silico data. The Otsu method was chosen through the
realization of ROC curves on in-silico metrics. A median filter with a 2 x 2 kernel (8.5 um x 8.5
pum) was performed. The microbubble density was displayed on a logarithmic scale along with a

gamma correction of 2 to ease the visualization of small vessels in in-vivo density maps.

4.3.6 Parameters of interest

Three main parameters have been studied in this work: the number of channels in receive, the
number of angles, and the position of the elements in receive. The first two have been studied
together, while the last one has been studied for 32 receiving channels and 5 angles.

The impact of the amount of data was also observed. For this, the number of data buffers was
proportionally adjusted downward to compensate for a higher number of channels: 400 for 16

elements, 200 for 32 elements down to 50 for 128 elements.

4.4 Results

4.4.1 In-Silico Results

4.4.1.1 Microbubbles can be accurately localized using an under-sampled probe.

Several parameters influence the quantity of data and the required transfer rate: sampling
frequency, acquisition depth, number of channels, number of pulse echoes. We have chosen to vary
the number of angles emitted and the number of channels in order to find out if a compromise could
be found between these parameters, on the one hand, and the image quality, on the other hand. The
in-silico results of this study are presented in Figure 4.5. The FPR, linked to the contrast of the
image, decreased with the increase in number of channels to converge towards 3.5 % for each
number of angles. However, with 16 channels, the FPR exhibited important differences: 27 %, 11
% and 7.9 % of false positive microbubbles in average for 3, 7 and 11 angles, respectively. The
FNR is also linked to the contrast, a low FNR meaning a high level of detection of the
microbubbles. Simulations with only 3 angles stood out with a FNR of 80 % for 3 angles and 16
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receive channels. Nevertheless, the accuracy of localization was similar for each number of angles
and channel, with a variation smaller than 2 um when the precision (i.e. standard deviation or STD)
varies between 9.7 pum and 7.4 pm for 16 channels/3 angles and 128 channels/13 angles

respectively. The mean localization accuracy was approximately 10 um or A/10.
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Figure 4.5 - In-silico results for different numbers of active receive channels and angles. FNR, FPR
and accuracy for a number of active receive elements varying from 16 to 128 by steps of 16 and
number compounding angles varying from 3 to 13 keeping an angular sampling of 0.5°. The curves
are obtained by averaging extracted metrics on the 20000 reconstructed frames. Angiograms
represent a region of interest extracted from the in-silico phantom. The reference was obtained by

accumulating the positions of the microbubbles while considering their azimuthal position (y) null.

4.4.1.2 The position of the active receive elements is of little importance in silico.

To avoid redundancy in the side lobes positions that create artifacts in the image, we have
developed an approach where the active elements in receive are changed as often as possible.
Hence, instead of optimizing a deterministic configuration of active elements, we select them using
different probability distributions that, e.g., promote either the central elements or the side

elements. The comparison was made with 32 channels in receive and 5 compounded angles (see
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Figure 4.6). We can see that the central elements increase the accuracy (9.4 um in average for Cen2
and 10.3 pm for Ext2) and the precision, while the side elements enhanced the detection of
microbubbles with a low FNR (71,3 % of false negative microbubbles for Cen2 and 68,4 % for
Extl). The FPR is the lowest for a uniform selection of channels (7.9 % of false positive
microbubbles). However, the variations of these metrics are small compared to the STD. The
angiograms show minor qualitative differences except a slightly higher intensity of the central

vessels for Cenl law and a higher intensity of the lateral vessels for Ext 1 law, which is expected.
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Figure 4.6 - In-silico comparison of different channel selection probability laws. Comparison of 5
probability laws for 32 receive channels and 5 angles (-1, -0.5, 0, 0.5, 1). The curves are obtained
by averaging metrics on the 20000 reconstructed frames. The occurrence frequencies correspond

to the theoretical ones.

4.4.2 In-vivo results

4.4.2.1 False microbubble detections decrease the contrast and smaller vessels disappear.

To evaluate the method in vivo, we worked on data from a rat acquisition with craniotomy. The
signals of the 128 channels were recorded and subsampled during processing. In Figure 4.7, results
show that the background noise increases, and the smaller vessels tend to disappear with the
decrease in number of channels. For example, the two vessels indicated by a white arrow in in the

center of the green region of interest, were only visible in the angiograms reconstructed using 32
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channels or more. However, their distinction and even more the measurement of their width remain
difficult on profiles without the fully populated array. Similarly, for the magenta region of interest,
only the two main vessels are visible with 16 channels. Other vessels and their ramifications appear

progressively with the addition of channels.

Signal degradation due to the reduction in the number of channels is inevitable. However, with 16
channels we obtain vessels with both better resolution and contrast than with Contrast Enhanced
Ultrafast Power Doppler. Indeed, although the presence of microbubbles increases contrast,
diffraction, spreads the large vessels and degrades resolution. The Full Width at Half Maximum
(FWHM) of the vessel on the left side of the profile thus increases from about 150 pm to more than
200 pm.
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Figure 4.7 - In-vivo results for different numbers of active receive channels. a), b), ¢) and d) are
respectively the angiograms obtained with 16, 32, 64 and 128 channels in receive. ) is the power
Doppler obtained with the same data set, i.e. with microbubbles, displayed at -45dB. Power
Doppler and angiograms are in logarithmic scale. 2 regions of interest and one profile are extracted.
The profiles are normalized between 0 and 1 with respect to their original image.

We have also studied the effect of active receive element count for a fixed amount of data transfer
by increasing the number of imaging frames when using fewer receive elements (Figure 4.8).
Overall, the contrast increased with the number of active receive elements. However, the smaller
vessels disappear, even with 128 channels. For instance, the small vessels indicated by white

arrows in the green region of interest, are more easily discernible with 64 channels than with 128.
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In addition, the network filing is impacted with 50 buffers, as shown by the discontinuity of these
vessels. Contrast and resolution of angiograms remain higher than with Power Doppler.

a) Sparse-ULM 16 Channels Angiogram (400 buffers) b) Sparse-ULM 32 Channels Angiogram (200 buffers)
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Figure 4.8 - In-vivo results for different numbers of active receive channels with the same amount
of data. a), b), ¢) and d) are respectively the angiograms obtained with 16, 32, 64 and 128 channels
in receive. e) is the power Doppler obtained with the same data set, i.e. with microbubbles,
displayed at -45dB. Power Doppler and angiograms are in logarithmic scale and the number of
buffers used to reconstruct the images are adjusted to keep the same quantity of data. Two regions
of interest and one profile are extracted. The profiles are normalized between 0 and 1 with respect

to their original image.
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4.4.2.2 Slightly favoring the central elements provides better overall image contrast.

We reconstructed the in vivo data with the same laws of probability of occurrence of the elements
as shown in Figure 4.6.The results, Figure 4.9, show that the degradation of the vessels in the center
of the image is faster with a probability law favoring the external elements (Extl and Ext2) than

that of the external vessels with a law favoring the central elements (Cenl and Cen2).
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Figure 4.9 - In-vivo comparison of different channel selection probability laws. a), b) and c) are
density maps of the in vivo rat angioarchitecture with the probability law Cenl, Uni and Extl. d)
and e) are the theoretical law for the random selection, and the effective occurrence frequency of
each element. f) and g) are vessels profiles extracted from the angiogram, one at the center of the
image, one outside. They are normalized between 0 and 1 with respect to the minimum and

maximum of the profiles.

4.5 Discussion

This study introduced the Sparse-ULM method to decrease the transfer rate in ultrasound scanner
while achieving ULM, to decrease the hardware complexity and the cost of these devices. This
method allowed us to achieve angiographic images despite a reduction of active receive elements
by a factor of 8.
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We have shown with the help of a physio-realistic phantom that as the number of channels in
receive decreased, the number of incorrectly detected or non-localized microbubbles increased.
Incorrectly localized microbubbles, or false positives, created a background noise when the
undetected bubbles, or false negatives, decreased the vessel signal, which resulted in a decrease in
contrast. However, accuracy and precision were maintained with the decrease in the number of
channels which means that our ability to accurately locate the microbubble center remained intact
even with a degraded PSF. One of the reasons could be that, even if the shape of the PSF is
modified, the main changes took place on the side lobes. As a result, the correlation with a small
kernel (11pixels by 11 pixels) is only slightly impacted and detection remained good, as well as
localization, where the Gaussian fitting was robust to these changes. The preservation of the
precision could seem to contradict the theory of Desailly et. al, which predicts a decrease in
precision proportional to the square root of the number of elements in the probe (Desailly et al
2015). However, our models differ on several points: here the localization is done on several
microbubbles within the same image. Moreover, the decay described above is obtained by deriving
the Cramer-Rao lower bound, which may not be reached. In addition, our phantom had no noise
(electrical, measurement, etc.) or tissue. This limitation is important because the lower bound of
Desailly et al. also depends on the SNR, and it is known that in the presence of this noise, the
reduction of the number of channels will have more impact on the signal quality. Other studies are
therefore to be carried out, especially since the impact of the subsampling the SVD is always to be

evaluated.

The study of how to choose the elements of the probe indicated that a uniform law or one that
slightly promotes the central elements is to be recommended since they seemed to be a good
compromise between FPR, FNR and accuracy. Nevertheless, given the small variation in metrics
with respect to their STD, no conclusion was possible. The rapid convergence of the FNR and the
FPR with the increase in the number of transmitting channels, especially for 5 angles and more, as
well as the invariance of the accuracy and precision allow us to conclude that a compromise
between the quality of the angiogram and the number of receiving channels is theoretically

possible.
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On in-vivo data, the decrease of the sensibility and of the amount of data impacted the filling of
the angiograms, as it has been shown in figure 8. The smaller vessels are the first to disappear in
both cases. The disappearance of these vessels is probably due to a lower number of microbubbles
within them. According to Hingot et al., beyond the lower blood flow in small vessels, these contain
a higher quantity of red blood cells in relation to the number of microbubbles, so much so that a
100um vessel transits 100 times more microbubbles than a 5um vessel. (Hingot et al 2019). Here
we lacked data with a higher number of angles to study this parameter correctly. The main arterial

structures were preserved, and more visible than with Power Doppler.

As for the in-silico part, the location of the active receive elements did not have a preponderant
impact, even if the uniform laws or a law slightly favoring the center seemed to give a better
angiogram overall, with more little structures in the centre. As a result, the distribution of active
elements was not the main driver of improvement. Nonetheless, it might be interesting to
investigate further on the choice of distributions between the compounded angles. Indeed, although
it is necessary to change the elements as often as possible, the selected configuration has a direct
impact on the location of the side lobes, and a judicious distribution of the configurations according
to the angles of a frame could make it possible to limit the side lobes during the compounding, and

thus reduce the false positive rate.

As far as bandwidth is concerned, a reduction in the number of active receive elements from 128
to 16 reduce the number of channels required by a factor of 8. An integration on a compact system
is then fully feasible. Such a system would leave the possibility of acquiring a larger number of
channels by splitting them into multiples of 16, thus making it possible to adapt the image quality

to the desired application.

Overall, the results are encouraging, but further research, particularly on the possibility of
extracting biomarkers from under-sampled data, will allow further conclusions to be drawn on the

effectiveness of this method.

In order to further improve the method, other techniques could be integrated, based either on
compressed sensing or on neural networks. The union of the two also gives interesting results.

Indeed, the injection of knowledge via deep learning has allowed the reduction of artifacts caused



55

by aliasing in MRI (Yang et al 2018, Lee et al 2017) and CT (Han et al 2016). These are avenues

that will not remain unexplored in ultrasound imaging.
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CHAPITRES5 DISCUSSION GENERALE

Ce chapitre fait le point sur les objectifs fixés pour ce projet, et donne les pistes a suivre pour

continuer son développement.
5.1 Retours sur les objectifs

5.1.1 Etablir une méthode de diminution du nombre de canaux pour ’'ULM

La méthode proposée ici atteint bien cet objectif. Pour la sonde utilisée a 128 éléments, une
réduction d’un facteur 4 a 8 suivant la qualité d’image voulue est possible. La méthode choisie
conserve les mémes voies au cours d’une acquisition. Cette méthode, avec 16 canaux est
complétement implémentable sur une carte FPGA. Le post-traitement n’a cependant pas été
optimisé par rapport a la réduction de canaux, et un ordinateur muni d’une bonne carte graphique
reste a ce stade nécessaire pour la reconstruction. L’échographe ayant un coiit trés nettement
supérieur a celui de ’ordinateur (d’un facteur 50 environ), le codt final serait tout de méme

grandement réduit.

5.1.2 Extraction et étude des parametres importants

Ce point a été réalisé grace a la création du fantbme physio-réaliste et I’extraction de métriques.
L’impact du nombre de canaux et du nombre d’angles a pu étre quantitativement étudié ainsi que
la position des éléments. Néanmoins, en plus des limitations précisées a la section 4.5, cette étude
reste imparfaite. En effet certains paramétres n’ont pas pu étre pleinement étudiés comme la
concentration. Celui-ci pourrait cependant avoir un impact conséquent sur la qualité d’image. La
cause principale de cela est le temps de simulation. En effet pour générer les 20.000 images RF,
pour une concentration, le temps de calcul est d’une semaine environ, pendant lequel 1’ordinateur
ne peut pas étre utilisé pour une autre tache requérant la carte graphique (traitement par exemple).
De plus, ce fantdme n’a pas permis d’extraire une regle générale pour choisir les canaux. Du fait
gue ceux-ci doivent changer régulierement, des configurations optimales ne servent a rien, il faut
une régle. L’étude des configurations donnant les meilleurs scores (taux de faux positifs, faux
négatifs, précision) n’a pas permis de I’extraire, aucun point commun n’a pu étre trouvé. Enfin,

certains parametres restent a régler de maniére empirique.
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5.1.3 Validation sur un modele in vivo

Cette partie a été menée a bien grace a un set de données provenant d’un rat avec craniotomie.
Cette validation a permis de montrer que la méthode fonctionnant méme en présence de bruit et de
tissus, facteurs qui peuvent faire s’écrouler certaines méthodes fonctionnant en simulation.
Néanmoins pour vraiment valider la méthode, d’autres acquisitions sont nécessaires, notamment
avec un nombre d’angles supérieurs. En effet, 1’étude in silico a montré que 1’amélioration entre 3
angles et 5 angles était notable. De meilleurs résultats sont donc a espérer. Enfin, le créne est un
obstacle en imagerie ultrasonore en régle générale. Cette méthode reste donc a prouver en sa

présence.

5.2 Futurs développements

5.2.1 Imagerie 3D

Cette méthode est utile en imagerie 2D, mais montre son vrai potentiel en imagerie 3D, ou le
nombre de canaux utilisé ainsi que le co(t de la sonde croissent de maniere quadratique. Une étude
préliminaire avait été réalisée, avec une configuration fixe (voir Figure 5.1). Cette méthode pourrait

donner de bons résultats.

1024 canaux 256 canaux 128 canaux 64 canaux

Figure 5.1 - ULM 3D d'un cerveau de chat avec craniotomie

5.2.2 Implémentation physique

La prochaine étape vers une utilisation réelle, et dans le meilleur des cas vers une

commercialisation, de la méthode Sparse-ULM réside dans son implémentation physique sur une
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carte FPGA. L’architecture serait globalement celle présentée a la Figure 5.2, ou des multiplexeurs
geéreraient les canaux en réception. Cela rajouterait une contrainte sur le choix des canaux qui devra
étre prise en compte sur la partie logicielle et lors du cablage. Cela confirme 1’intérét d’avoir une
vision plus fine du choix des canaux. De plus, I’émission pourrait étre séparée pour permettre une

plus grande flexibilité sur les ondes émises, et pour séparer les hautes et basses tensions.
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Figure 5.2 - Schéma d'un systéme pouvant étre utilisé pour implémenter Sparse-ULM. LNA :
amplificateur bas-bruit. LPF : Filtre passe-bas. ADC : convertisseur analogique-numerique

5.2.3 Au-dela de Sparse-ULM

Cette méthode n’est pas 1’apanage de la réduction de canaux en imagerie ultrasonore. Plusieurs
autres sont présentées a la section 2.4. Des méthodes connexes utilisant notamment I’intelligence
artificielle, intégrant via ’apprentissage beaucoup plus d’information & priori, pourraient donner
des résultats encore meilleurs, limitant le repliement spectral par exemple, ou reconnaissant mieux

une microbulle indépendamment de I’emplacement de celle-ci ou du choix des canaux.
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CHAPITRE6 CONCLUSION

Ce projet a permis le développement et 1’évaluation d’une méthode simple pour réduire le nombre
de canaux lors de I’imagerie de vaisseaux par microscopie de localisation ultrasonore. Cette
méthode, en réduisant le nombre de canaux d’un facteur huit, permet de conserver une résolution
et un contraste supérieur a celui de I’imagerie Doppler ultrarapide a contraste augmenté, qui est
actuellement 1’approche la plus proche utilisée en pratique clinique, tout en en diminuant les codts.
Bien que du développement reste a faire, cette avancée devrait permettre le développement
d’échographes compacts réalisant 1’'ULM, et ainsi faciliter son inscription dans une pratique
clinique.

Sur le long terme, un tel systéme permettrait d’imager les vaisseaux sang en incluant les capillaires
de maniere non invasive. Il constituerait alors un outil de plus pour les professionnels de santé dans
la lutte contre les cancers, les maladies cardio-vasculaires ou neuro-dégénératives, tant pour le

diagnostic que le traitement.
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