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RÉSUMÉ 

Au cours de la dernière décennie, la microscopie de localisation ultrasonore (ULM) a permis 

d’imager le système vasculaire cérébral in vivo comme jamais auparavant, avec une résolution 

d’environ dix microns. Cependant, avec une cadence d’imagerie pouvant atteindre 20.000 images 

par seconde, cette méthode nécessite l’acquisition, la transmission, le stockage et le traitement 

d’une grande quantité de données. Chacune de ces étapes peut devenir difficile sans les ordinateurs 

et échographes adaptés à cette application. Nous proposons ici une nouvelle méthode de 

reconstruction, baptisée Sparse-ULM, pour diminuer cette quantité de données et la complexité du 

matériel nécessaire, en sous-échantillonnant de manière aléatoire les canaux d’une sonde linéaire. 

L’évaluation des performances de la méthode ainsi que l’optimisation des paramètres ont été 

principalement réalisées in silico dans un fantôme anatomiquement réaliste, puis comparées aux 

acquisitions sur un cerveau de rat avec craniotomie. La réduction du nombre d’éléments actifs en 

réception détériore le rapport signal à bruit des données post reconstruction et peut conduire à de 

fausses détections de microbulles, diminuant le contraste des angiogrammes obtenus. Cependant, 

cela n’impacte que faiblement la précision de localisation des microbulles. Ces résultats montrent 

qu’il est possible de trouver un compromis entre le nombre de canaux et la qualité du réseau 

vasculaire reconstruit, et démontrent la faisabilité de réaliser la microscopie de localisation avec 

un nombre de canaux en réception considérablement réduit, ouvrant la voie à des dispositifs peu 

coûteux permettant une cartographie vasculaire à haute résolution. 
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ABSTRACT 

Over the past decade, Ultrasound Localisation Microscopy (ULM) has made it possible to image 

cerebral vasculature in vivo as never before, with a resolution of about ten microns. However, with 

frame rate up to 20.000 frames per second, this method requires large amount of data to be acquired, 

transmitted, stored, and processed. Each of these steps can become challenging without computers 

or ultrasound scanners provided for this application. Herein, we propose a novel reconstruction 

framework, named Sparse-ULM for decrease this quantity of data and the complexity of the 

required hardware by randomly sub-sampling the channels of a linear probe. Method’s 

performance evaluation as well as parameters optimization were mainly performed in silico in an 

anatomically realistic phantom and then compared to the acquisitions on a rat brain with 

craniotomy. Reducing the number of active elements deteriorates the signal-to-noise ratio of post-

beamforming data, and could lead to false microbubbles detections, decreasing the contrast of the 

angiograms obtained. However, it has little effect on localization accuracy of microbubbles. These 

results show that a compromise can be found between the number of channels and the quality of 

the reconstructed vascular network, and demonstrate feasibility of performing ULM with a 

drastically reduced number of channels in receive, paving the way for low-cost devices enabling 

high-resolution vascular mapping. 
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CHAPITRE 1 INTRODUCTION 

1.1 Le système sanguin et ses pathologies 

Long de 100.000km, le système sanguin est un des éléments cruciaux du corps humain. Il est 

responsable du transport des ressources vers les organes et tissus, notamment les nutriments et le 

dioxygène, mais aussi de l’élimination des déchets. Du fait de son rôle fondamental, une défaillance 

du système circulatoire, en cas d’obstruction ou de fuite, peut avoir de graves conséquences suivant 

l’organe qui sera impacté. En cas de défaillance cardiaque, on parlera de maladies cardio-

vasculaires. Celles-ci sont la première cause de décès au monde (OMS, 2018). Le cerveau peut 

également être touché, comme lors des accidents vasculaires cérébraux. Ceux-ci représentent la 

première cause de handicap acquis (Mendis, 2013), ainsi que la deuxième cause de décès au monde 

(OMS, 2018). Ces troubles sont directement imputables à des dysfonctionnements de l’appareil 

circulatoire, et une intervention sur celui-ci, qu’elle soit chirurgicale ou médicamenteuse, est 

souvent nécessaire afin de rétablir une fonction normale. Cependant, d’autres pathologies, dont les 

mécanismes d’actions sont moins évidents, ont été montrées comme étant directement liées au 

système sanguin. C’est le cas par exemple de la démence, dont on impute entre 8 et 10% des cas à 

une maladie vasculaire et 60 à 70% à une maladie d’Alzheimer (Jellinger, 2007). Or, cette dernière 

serait elle-même une maladie vasculaire avec des conséquences neurodégénératives (Torre, 2002).  

Certaines maladies, à contrario, engendrent des modifications du système vasculaire, au moins 

localement. C’est le cas notamment des cancers qui, pour combler leurs besoins en nutriments et 

en oxygène, vont développer rapidement un système sanguin, parfois chaotique : c’est 

l’angiogenèse. Or cette angiogenèse peut être utilisée contre la tumeur, en la détectant et en 

l’inhibant (Nishida et al., 2006).   

Pouvoir imager le système vasculaire apparait donc comme une nécessité pour plusieurs raisons : 

prévenir les risques, diagnostiquer, vérifier la réponse aux traitements ou encore étudier ces 

maladies.   
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1.2 Imagerie du système sanguin 

1.2.1 Méthodes non optiques 

La plupart des méthodes utilisées cliniquement pour l’imagerie des vaisseaux ou du flux sanguins 

sont non-optiques. La plus répandue est l’imagerie Doppler par ultrasons (US), notamment grâce 

à son faible coût. D’autres méthodes sont néanmoins utilisées : la tomodensitométrie (CT) ou la 

microtomodensitométrie (µCT), l’imagerie par résonance magnétique (IRM) ou encore la 

tomographie par émission de positons (PET). Des exemples de ces modalités sont présentés à la 

Figure 1.1 et leurs caractéristiques sont résumées dans le Tableau 1-1. Elles constituent des outils 

efficaces pour l’imagerie de la macro-vascularisation, mais leur faible résolution ou contraste les 

rend moins efficaces pour visualiser la microvascularisation (Upputuri et al., 2015). 

 

Figure 1.1 -Illustrations de 4 modalités d’imagerie non optiques : US, IRM, PET/CT et µCT. A) 

Power Doppler ultrarapide directionnel du cerveau d’un nouveau-né, extrait de (Demené et al., 

2014). B) Couche d'une angiographie 3D par temps de vol (TOF-MRA) du crâne acquise par IRM 

à 7T, extrait de (Bock, 2019). C) Vue sagittale d’un rendu 3D de CT 4D, extrait de (Meijs et al., 

2017). D) Rendu volumique 3D µCT haute résolution d'un membre postérieur ligaturé rempli de 

30% de bismuth, extrait de (Zagorchev et al., 2010).  

1.2.2 Méthodes optiques 

L’imagerie optique est davantage utilisée pour imager la microvascularisation. En effet, des 

techniques comme la tomographie par cohérence optique (OCT), la microscopie d’excitation à un 

ou deux photons (1PFM et 2PFM respectivement), l'imagerie spectrale de polarisation orthogonale 

(OPS) ou encore l’imagerie de contraste par speckle laser (LSCI) offrent une résolution comprise 
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entre un et dix microns. C’est l’ordre de grandeur des plus petits capillaires chez l’humain. 

Néanmoins ces modalités ne sont effectives qu’en surface, et ne peuvent imager plus profond 

qu’une épaisseur de l’ordre du millimètre. De plus, leur résolution décroit avec la profondeur.  

1.2.3 Méthode hybride 

L’imagerie photo-acoustique (PAI) est une modalité d’imagerie où des pulses laser sont générés 

grâce à un laser dans les tissus. Ceux-ci vont alors, par effets thermiques, produire des ondes dans 

des fréquences de l’ordre du MHz, qui vont pouvoir être reçues par une sonde ultrasonore. Cette 

modalité dispose d’une bonne résolution adaptable en fonction du besoin pour aller de 800µm 

jusqu’à 0,1µm. La profondeur d’imagerie est également supérieure à celle de l’imagerie optique, 

pouvant aller jusqu’à 7cm de profondeur (Upputuri et al., 2015). La réalisation d’autres mesures 

comme celle de la saturation en oxygène du sang ont également été montrées. 

 

Tableau 1-1 - Comparaison des différentes modalités d'imagerie des vaisseaux sanguins. Extrait de 

(Upputuri et al., 2015) 

 
Modalité 

Résolution spatiale 

(µm) 

Profondeur 

d’imagerie (mm) 
Mesures physiologiques 

Méthodes non 

optiques 

CT 100 Corps entier 

Structure osseuse, vaisseaux 

sanguins avec agent de 

contraste 

IRM 25 - 100 Corps entier 

Structure des tissus mous, 

vaisseaux sanguins avec agent 

de contraste 

US 30 300 
Structure des tissus mous, flux 

sanguin 

PET 

 

1000 Corps entier 

Flux sanguin 

Méthodes optiques OCT 1 - 10 1 - 2 Flux sanguin, saturation en 02  
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1PFM 1 - 2 0,2 – 0,5 
Morphologie microvasculaire, 

flux sanguin 

2PFM 1 - 2 0,5 - 1 
Morphologie microvasculaire, 

oxygénation du sang 

OPS 1 - 5 0,5 - 1 
Concentration en hémoglobine 

totale 

LSCI 10 0,1 - 70 Flux sanguin 

Méthode hybride PAI 0,1 - 800 0,1 - 70 

Concentration en hémoglobine 

totale, saturation en 02, flux 

sanguin, structure des 

vaisseaux sanguins 

 

1.2.4 Microscopie de localisation ultrasonore 

Bien que plus d’une dizaine de techniques d’imagerie permette d’imager les vaisseaux sanguins, 

aucune utilisée cliniquement ne permet d’imager l’intégralité des vaisseaux sanguins en incluant 

les capillaires, en profondeur, de manière non ionisante et non invasive. Or, depuis une dizaine 

d’années maintenant, se développe une nouvelle modalité basée sur les ultrasons : la microscopie 

de localisation ultrasonore (ULM). Basée sur la microscopie de localisation et l’imagerie 

ultrasonore ultrarapide (ces méthodes sont décrites dans la section 2.1) elle utilise l’injection de 

microbulles comme agent de contraste. Ces microbulles vont ensuite être imagées avec une cadence 

d’imagerie élevée (entre 1 et 10kHz), puis localisées. Cette méthode permet d’obtenir une 

résolution de l’ordre de 10µm, tout en imageant en profondeur. Elle montre cependant quelques 

inconvénients : 

▪ La parallélisation des canaux entraine une quantité de données à transférer simultanément 

plus importante. Ce taux de transfert est actuellement un des éléments limitants de cette 

technologie. Il requiert des échographes pouvant recevoir l’intégralité des signaux, qui est 

de 1024 pour une sonde matricielle permettant d’imager en trois dimensions. Les 

échographes actuels n’en recevant que 128 ou 256, il faut également les paralléliser, ce qui 



5 

 

requiert un montage similaire à celui de la Figure 1.2. Cette modalité, appréciée pour son 

faible coût, devient alors nettement plus onéreuse, chaque échographe ayant un coût de 

l’ordre de 100.000€. 

▪ Les sondes ultrasonores sont fabriquées actuellement pour respecter le critère de Nyquist. 

La distance entre chaque élément piézo-électrique (nommée pitch), comprenant la largeur 

de l’élément (width) et l’espacement entre ceux-ci, est inférieure ou égale à la longueur 

d’onde utilisée pour limiter le repliement spectral (aliasing), et les artefacts dans l’image 

qui en découlent. Pour imager une grande tranche en 2D ou un grand volume en 3D, il faut 

donc beaucoup d’éléments. Cela augmente la complexité des sondes, surtout à haute 

fréquence où la taille des éléments est petite, et en 3D. Cette complexité se répercute encore 

une fois sur le prix. Pour les sondes 3D, le coût varie quadratiquement par rapport au 

nombre d’éléments. 

▪ Enfin, pour une même qualité d’image que les ondes focalisées, les ondes planes requièrent 

plusieurs angles qui constitue autant de données supplémentaires à stocker. 

Ces problèmes pourraient être résolus en sous-échantillonnant aléatoirement les canaux des sondes 

d’acquisition lors d’une acquisition pour l’ULM. En effet, avec l’ULM, la résolution n’est plus 

définie par la longueur d’onde utilisée, mais par la faculté à localiser des microbulles éparses. Cette 

étude vise à montrer que l’intégralité des canaux d’une sonde ultrasonore n’est pas simultanément 

nécessaire pour cela, et à quantifier la dégradation des images au regard de plusieurs paramètres : 

le nombre de canaux en réception, le nombre d’angles, et la position des canaux actifs. 
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Figure 1.2 - Configuration pour l'imagerie ultrasonore ultrarapide 3D. Le système comprend quatre 

échographes Aixplorer (Supersonic Imaging, Aix-en-Provence, France) avec 1024 canaux en 

émission et 512 en réception, et 5 ordinateurs. Extrait de (Gennisson et al., 2015). © 2015 IEEE 

1.3 Objectifs du projet 

Afin de réaliser ce projet, l’objectif principal à été découpé en trois objectifs spécifiques. 

• Déterminer la faisabilité d’une méthode de réduction du nombre de canaux pour l’angiographie 

de localisation ultrasonore compressée. 

o Adapter la chaine de traitement de la microscopie de localisation aux données sous-

échantillonnées dans la dimension des canaux 

o Créer un fantôme in silico pour évaluer les performances de la méthode, en extrayant les 

métriques adéquates 

o Extraire et étudier les paramètres influençant la qualité des images obtenues  

o Valider la méthode sur des données in vivo 
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Ces travaux ont mené aux publications et présentations suivantes : 

Article scientifique : 

E. Hardy, J. Porée, H. Belgharbi, C. Bourquin, F. Lesage, J. Provost, « Sparse channel sampling 

for ultrasound localization microscopy (Sparse-ULM) ». Soumis à « Physics In Medicine and 

Biology » le 23 novembre 2020 

Brevet provisoire : 

E. Hardy, J. Porée, F. Lesage, J. Provost, « Methods and Systems for Ultrasound Localization 

Microscopy »,63061915, August 2020 

Présentation par affiche en conférence : 

E. Hardy, J. Porée, H. Belgharbi, C. Bourquin, F. Lesage, J. Provost, « Sparse channel sampling 

for ultrasound localization microscopy (Sparse-ULM) ». International Ultrasonics Symposium, 

IEEE, Las Vegas, Nevada, USA, Sep. 06-11, 2020.
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CHAPITRE 2 REVUE DE LITTÉRATURE 

2.1 Principes de l’imagerie ultrasonore : du signal électrique à la 

formation d’une image 

Cette section présente les principes physiques qui entrent en jeu en imagerie ultrasonore, et que 

l’on utilise pour passer d’un signal électrique à une image exploitable. 

2.1.1 Effet piézo-électrique et sonde échographique 

L’effet piézo-électrique est un couple de propriétés que possèdent certains matériaux. Ces 

matériaux, lorsqu’ils sont soumis à une contrainte mécanique vont se polariser électriquement : 

c’est l’effet direct. Réciproquement, ceux-ci vont se déformer lorsque soumis à un champ 

électrique : c’est l’effet inverse. Ces matériaux permettent ainsi une conversion entre l’énergie 

électrique et l’énergie mécanique. Les applications sont légion tant pour l’effet direct (microphone, 

capteur d’accélération) que pour l’effet inverse (haut-parleur, montre à quartz). Cet effet est utilisé 

pour l’émission et la réception d’ondes ultrasonores par les sondes échographiques. 

La majeure partie des sondes échographiques utilisent la piézo-électricité, même si d’autres 

méthodes se développent actuellement, comme les transducteurs ultrasonores micro-usinés 

capacitifs (abrégé CMUT) (Oralkan et al., 2002). Une sonde est donc une barrette d’éléments 

piézo-électriques en céramique, dont la taille, le nombre et l’agencement varient en fonction de 

l’application souhaitée. Les sondes linéaires comme celle présentée à la Figure 2.1 sont courantes.  
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Figure 2.1 - Paramètres géométriques d'une sonde échographique plane. Extrait de (Porée, 2017) 

Une sonde peut être définie par sa réponse impulsionnelle (réponse à une excitation en Dirac), qui 

dépend des paramètres géométriques de celle-ci. Un des paramètres primordiaux de cette sonde est 

la fréquence centrale. Elle dépend principalement de la largeur des éléments (pitch, p) ainsi que de 

la célérité du son dans le milieu (c), tel que : 

𝑓𝑐 =
𝑐

2𝑝
 [𝐻𝑧] (2.1) 

Avec 

𝑐 =
1

√𝜌𝜅
 (2.2) 

 étant la densité du milieu et  sa compressibilité 

En acoustique médicale, les fréquences utilisées vont de 1 à 20 MHz, ce qui correspond, en 

considérant la célérité du son dans les tissus à 1540 m/s, à des longueurs d’onde comprises entre 

1.5mm et 77µm.  
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2.1.2 Équations d’ondes et stratégie d’émission 

Pour générer l’onde ultrasonore, une tension de forme et de longueur variable, appelée pulse, va 

être appliquée aux éléments piézo-électriques. La perturbation va se propager dans le milieu, et son 

champ de pression décrit par l’équation d’onde 

∇2𝑝 =
1

𝑐2

𝜕2𝑝

𝜕𝑡2
 (2.3)  

Il existe plusieurs solutions à cette équation. Les ondes planes sont l’une d’entre elles. La pression 

selon la direction axiale, ou profondeur z, ainsi que selon le temps t s’exprime alors : 

𝑝(𝑧, 𝑡) = 𝑝0 cos[2𝜋(𝜆𝑧 − 𝑓𝑡)] (2.4) 

Avec  la longueur de l’onde émise, f sa fréquence et po son amplitude. 

L’on considèrera ici principalement la propagation longitudinale de l’onde, même si les ondes de 

cisaillement sont également utilisées, notamment pour l’élastographie. 

 Émission d’une onde ultrasonore 

Pour émettre une onde ultrasonore, chaque élément avec lequel on souhaite émettre doit recevoir 

un signal électrique. Néanmoins tous les éléments ne doivent pas nécessairement recevoir ce signal 

avec la même intensité, on parle d’apodisation, ni en même temps, on parle de retard. Ces deux 

modulations du signal sont implémentées analogiquement via des poids et des délais, comme 

illustré à la Figure 2.2. 
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Figure 2.2 - Émission (à gauche) et réception (à droite) d'une onde ultrasonore. En émission, le 

signal est retardé pour obtenir un front d'onde convergent, et une apodisation est effectuée sur les 

éléments latéraux. En réception, les signaux sont analogiquement retardés pour pouvoir être 

sommés de manière cohérente. 

Il existe plusieurs de stratégie d’émission, produisant des fronts d’onde de formes différentes. Est 

appelé front d’onde l’ensemble des points de l’espace ou l’onde a la même phase. Les ondes 

principalement utilisées sont les ondes planes, focalisées et divergentes. Leur illustration est fournie 

à la Figure 2.3. 
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Figure 2.3 - Illustration des principales stratégies de transmission. En haut à gauche, les ondes 

focalisées. Les délais sont calculés pour que le front d'onde converge vers un point en aval de la 

sonde. En haut à droite les ondes divergentes. Les délais sont calculés pour simuler une source 

ponctuelle en amont de la sonde. En bas, les ondes planes. Les délais sont nuls, ou linéaires pour 

obtenir un angle. 

 Ondes focalisées 

Les ondes focalisées sont les plus utilisées cliniquement à l’heure actuelle. Pour acquérir une 

image, on calcule les délais afin de faire focaliser l’onde en un point situé en aval de la sonde, dans 

le milieu à imager. Deux méthodes sont possibles : 
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• Une sous ouverture est utilisée. Le point focal se trouve alors en dessous de l’élément en 

réception, lui-même placé au centre de la sous-ouverture (voir Figure 2.4). 

• Toute la sonde est utilisée et les délais sont ajustés pour focaliser sur les différents points 

d’une droite située à une certaine profondeur, créant ainsi des ondes focalisées orientées. 

 

Figure 2.4 - Illustration d’une mesure en ondes focalisées (à gauche) et en ondes planes avec 3 

angles (à droite) 

La profondeur choisie correspond à la profondeur focale de la sonde en élévation. Elle est propre 

à chaque sonde et définie principalement par la lentille de celle-ci. 

Une image est ainsi obtenue colonne par colonne, et nécessite par conséquent entre 64 et 128 

couples émission/réception. 

 Ondes divergentes 

Les ondes divergentes sont créées en simulant une source ponctuelle en amont de la sonde. 

Cependant, du fait que l’énergie se dissipe, les zones à imager n’en reçoivent que peu. Cela peut 

être compensé en envoyant plusieurs ondes divergentes, en en combinant les images au moment 

de la reconstruction.  

 Ondes planes 

Introduites au début des années 80 (Delannoy et al., 1979; Shattuck et al., 1984), les ondes planes 

sont une alternative notamment aux ondes focalisées présentées précédemment. Contrairement à 

ces dernières qui viennent focaliser l’onde sur chaque ligne de l’image, et qui a donc besoin 

Elément en émission
Elément en réception
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d’autant d’acquisitions que de ligne dans l’image (par exemple 128 pour une sonde à 

128 éléments), l’intégralité du milieu est insonifiée en une seule fois (voir Figure 2.4). Cette 

augmentation de cadence se fait au prix d’une perte de contraste, qui peut toutefois être compensée 

en envoyant des ondes planes angulées, et en moyennant ces acquisitions après les avoir 

reconstruites, on parle alors de « compounding ». En théorie, il faut n angles pour obtenir la même 

résolution qu’avec des ondes focalisées où : 

𝑛 =
𝐿

𝜆𝐹
 𝑎𝑣𝑒𝑐 𝐹 =

𝑧

2𝑎
(2.5) 

 

L étant la largeur de la sonde,  la longueur d’onde, F le F-number, un paramètre dépendant de la 

directivité des éléments, z la profondeur de reconstruction et 2a l’ouverture comme définie à la 

Figure 2.1 (Montaldo et al., 2009). 

Par exemple, en prenant F=1.5 (généralement compris entre 1 et 2), =100µm et L=1cm, il faut 

environ 67 ondes planes pour que le système d’imagerie produise la même réponse impulsionnelle. 

En pratique, une dizaine suffit. 

2.1.3 Interaction de l’onde avec le milieu 

La propagation de l’onde induit un déplacement des molécules constitutives du milieu. Plusieurs 

interactions sont alors possibles. 

 Atténuation 

Le déplacement des molécules du milieu génère un échauffement de celui-ci. Une partie de 

l’énergie mécanique est alors dissipée sous forme thermique. Cette perte est modélisable par 

l’équation : 

𝑝(𝑧) = 𝑝0𝑒−𝛼𝑧 (2.6) 

Où  est un coefficient dépendant de la longueur d’onde utilisée, variant dans le même opposé. 

Bien que cette conversion en énergie thermique soit parfois recherché dans le cadre de traitement, 

notamment de tumeurs (Marmor et al., 1979), elle diminue la qualité du signal dans un contexte 

d’imagerie. Il faut alors trouver un compromis entre la longueur d’onde utilisée, dont la diminution 
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augmentera la résolution, et la profondeur d’imagerie désirée. Il est néanmoins possible de tenir 

compte de cet effet au moment de l’enregistrement des données ou bien de leur reconstruction avec 

un gain de compensation de temps (TGC). 

 Réflexions spéculaires 

Les milieux diffusant une onde acoustique possèdent une impédance acoustique Z tel que : 

𝑍 = 𝜌𝑐 (2.7) 

Lorsqu’une onde rencontre une interface entre deux milieux d’impédances distinctes, une partie de 

l’onde incidente va être transmise et éventuellement réfractée, tandis qu’une partie va être réfléchie. 

En utilisant les notations de la Figure 2.5, le coefficient de réflexion R et de transmission T 

s’écrivent alors (Suetens, 2009) : 

𝑅 =  
(𝑍2 cos 𝜃𝑖 − 𝑍1 cos 𝜃𝑡)2

(𝑍2 cos 𝜃𝑖 + 𝑍1 cos 𝜃𝑡)2
 𝑒𝑡 𝑇 = 1 − 𝑅 =

4𝑍1𝑍2 cos 𝜃𝑖 cos 𝜃𝑡

(𝑍2 cos 𝜃𝑖 + 𝑍1 cos 𝜃𝑡)2
 (2.8) 

Avec, d’après les lois de Snell-Descartes : 

cos 𝜃𝑡 =  √1 − (
𝑐2

𝑐1
sin 𝜃𝑖)

2

(2.9) 

Ce type de réflexion a peu lieu en imagerie ultrasonore car il nécessite que les milieux aient des 

impédances relativement différentes, comme c’est le cas pour les interfaces air/tissus et tissus/os. 

Pour éviter les interfaces air/tissus, du gel est utilisé cliniquement entre la sonde et la zone à imager. 

Les os peuvent donc générer des réflexions importantes, même si en pratique, on essaye de les 

éviter. 
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Figure 2.5 – Types de réflexion dans un milieu inhomogène. À gauche, la réflexion spéculaire à 

l'interface entre deux milieux d'impédances acoustiques différentes. À droite, la réflexion diffuse 

omnidirectionnelle d'un réflecteur ponctuel de diamètre inférieur à la longueur d'onde. Inspirée de 

(Roux, 2016). 

 Réflexions diffuses 

Contrairement aux réflexions spéculaires qui nécessitent des interfaces, les réflexions diffuses 

peuvent apparaitre dans les tissus. En effet, en pratique, les tissus montrent localement des 

variations de densité et de compressibilité. Les inhomogénéités de taille inférieure à la longueur 

d’onde se comportent, au passage de l’onde ultrasonore, comme des sources ponctuelles et 

participent au signal rétrodiffusé vers la sonde (voir Figure 2.5. Elles sont responsables de la 

granularité des images ultrasonores, appelée speckle, qui est propre à chaque tissu et qui permet 

donc de les caractériser ou de les suivre.  

2.1.4 Enregistrement des signaux ultrasonore 

Les ondes rétrodiffusées vers la sonde sont reconverties en signal électrique par les éléments 

piézoélectriques. Ces signaux ultrasonores sont des signaux radiofréquences (RF) variant entre 1 

et 20 MHz selon la sonde utilisée. Afin de respecter le critère de Nyquist, il faut, à priori, 

échantillonner les signaux à une fréquence deux fois supérieure à la fréquence maximale. Or il se 

Medium 1
Z1 = 1 c1

Medium 2
Z2 = 2 c2

i r = i

t
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trouve que le signal d’intérêt en ultrason est souvent à bande de fréquences étroite, comprise entre 

50 et 70% de la fréquence centrale de la sonde (Kirkhorn, 1999). Il est donc possible grâce à la 

mise en quadrature de phase (IQ) de récupérer 200%, 100% ou 50% de la bande passante (la bande 

passante est définie ici comme les fréquences entre 0 et la fréquence centrale de la sonde,  et non 

la fréquence maximale). Concrètement, cette mise en quadrature est réalisée en échantillonnant les 

signaux à quatre fois la fréquence centrale de la sonde utilisée, puis en conservant tous les 

échantillons (200%), deux sur quatre (100%) ou deux sur huit (50%) selon la bande passante que 

l’on souhaite conserver. Le premier échantillon devient la partie réelle du signal, le deuxième la 

partie imaginaire. Il est possible, mais pas indispensable, d’interpoler la partie imaginaire pour la 

recaler sur le même temps d’échantillonnage que la partie réelle. 

2.1.5 Formation de l’image 

Le processus de formation de l’image, ou reconstruction est l’étape qui permet de passer des 

signaux électriques à une image. Le principe repose principalement sur le recalage des signaux 

pour les sommer de manière cohérente. Les algorithmes comme le Retard et Somme (DAS) sont 

présentés à la section 2.3.1.  

2.1.6 Résolution du système d’imagerie 

En imagerie 2D, on distingue principalement 3 résolutions : la résolution axiale, latérale et 

temporelle. Dans la direction azimutale, on parlera plus volontiers de focalisation en élévation. En 

effet, la lentille de la sonde permet de focaliser l’onde à une profondeur définie appelée focale en 

élévation. À cette profondeur, la largeur de l’onde est comprise entre 0.5 et 1mm. C’est dans cette 

direction que la résolution est la moins bonne. 

 Résolution axiale 

La résolution axiale quant à elle est définie comme la différence de profondeur minimale entre 

deux réflecteurs pour qu’ils puissent être distingués l’un de l’autre. Elle est en théorie égale à la 

moitié de la longueur d’onde utilisée (Ng & Swanevelder, 2011), mais elle est influencée par la 

longueur du pulse. La longueur de pulse est définie comme le produit de la durée du pulse (nombre 

période de sinus généralement) par la longueur d’onde. Un pulse spatialement court donne une 

meilleure résolution. Une haute fréquence et un nombre de cycles faible sont donc à privilégier. 
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Cependant, les hautes fréquences sont plus atténuées et un pulse court possède une plage 

fréquentielle plus importante, ce qui peut nuire à la qualité du signal reçu par la sonde. 

 Résolution latérale 

La résolution latérale est la distance minimale séparant deux réflecteurs dans la direction 

orthogonale à celle de propagation de l’onde. En ondes focalisées, elle est principalement définie 

par la largeur du faisceau ultrasonore. Celle-ci est définie comme (Ng & Swanevelder, 2011) : 

  

𝐿𝐹 = 𝜆
𝐹𝐿

2𝑎
 (2.10) 

Avec FL la profondeur de focalisation et 2a l’ouverture. 

Elle peut être améliorée en focalisant l’onde à plusieurs profondeurs, mais cela augmente le nombre 

d’émissions/réceptions nécessaires, diminuant ainsi la cadence d’imagerie et par conséquent la 

résolution temporelle. 

 Résolution temporelle 

La résolution temporelle correspond au pas de temps entre chaque image. Dans le cadre de 

l’imagerie conventionnelle, elle peut être approximée par : 

𝑅𝑇 ≈ 𝑁
2𝑧𝑚𝑎𝑥

𝑐
 (2.11) 

Avec c la célérité de l’onde, N le nombre de tirs nécessairement pour former une image et zmax la 

profondeur maximum. Avoir une bonne résolution temporelle est utile pour suivre des phénomènes 

rapides. Cette résolution peut être augmentée en diminuant le nombre de tirs, ce qui nuira 

principalement à la résolution latérale oui diminuera la largeur du champ imagé. 

2.2 Modalités d’imagerie ultrasonore et leurs évolutions 

Cette partie vise à donner un aperçu des modalités d’imagerie utilisée en pratique clinique ou en 

recherche, afin de saisir les avancées qui ont abouti à la microscopie de localisation ultrasonore et 

d’en comprendre l’intérêt.  
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2.2.1 Imagerie ultrasonore conventionnelle 

Bien que l’imagerie ultrasonore apparaisse dans les années 40, c’est dans les années 50 et 70 

qu’elle se développe réellement pour devenir ce que nous connaissons aujourd’hui, notamment en 

bénéficiant des avancées du sonar (Shung, 2015). En effet, dans les années 50 sont établies les 

bases de l’imagerie pulse-écho, permettant l’étude des différents tissus, ainsi que celle de 

l’imagerie Doppler, permettant de mesurer les vitesses d’écoulement des fluides. Mais c’est 

seulement dans les années 70, lorsqu’un seul élément piézo-électrique (A-Mode), parfois motorisé, 

laisse place à une barrette d’éléments contrôlés indépendamment (B-Mode) que les possibilités de 

cette modalité s’élargirent. S’ensuivit le développement de plusieurs méthodes comme les ondes 

pulsées, les ondes continues, les ondes focalisées ou encore les ondes planes. Bien que le contraste 

en imagerie ultrasonore soit assez faible, à cause du « speckle », cette granularité typique que l’on 

voit sur les échographies et qui rend l’identification de structure tissulaire difficile, cette modalité 

est devenue la deuxième la plus utilisée actuellement (derrière la radiographie à rayon X), en 

proposant une solution peu onéreuse, sûre, et non ionisante (Shung, 2015). 

Un autre mode d’imagerie, le M-mode, permet d’imager une colonne du milieu, et ce au cours du 

temps. Cette modalité est principalement utilisée en imagerie cardiaque pour suivre la déformation 

du cœur. 

2.2.2 Imagerie Doppler 

L’imagerie Doppler est une technique d’imagerie qui utilise l’effet du même nom. Elle permet 

d’imager les vaisseaux sanguins, principalement les vaisseaux sanguins périphériques, et d’en 

mesurer le flux, de manière précise et non invasive. Cette technique utilise la variation de la 

fréquence de l’onde (effet Doppler) par les globules rouges qui se déplacent dans les vaisseaux, ce 

qui permet d’en extraire la vitesse et la direction. Il en existe trois variantes : le Doppler pulsé, 

couleur, et puissance (Cura et al., 2012).  

 Doppler pulsé 

Pour effectuer un Doppler pulsé, on procède comme en imagerie conventionnelle. Un pulse court 

est émis et l’écho résultant enregistrer par la sonde, et ce de manière répétitive avec une fréquence 

appelée fréquence de répétition du pulse (PRF). De cette fréquence dépend la profondeur maximale 
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d’imagerie zmax ainsi que la vitesse maximale vmax que l’on pourra imager sans repliement spectral 

avec : 

𝑃𝑅𝐹 ≈
𝑐

2𝑧𝑚𝑎𝑥
 𝑒𝑡 𝑣𝑚𝑎𝑥 =

𝑐 𝑃𝑅𝐹

2𝑓𝑐
 (2.12) 

fc étant la fréquence centrale de la sonde.  

On obtient alors, pour un vaisseau fixé un spectre des vitesses. Celui-ci peut être superposé à une 

image B-mode, on appelle cela le Doppler duplex. 

 Doppler couleur 

Cette technique vise à acquérir simultanément une image ultrasonore classique, ainsi que 

l’information de vitesse et de direction par effet Doppler. Cette information est ensuite encodée sur 

l’image par de la couleur. On utilise conventionnellement le rouge pour les vaisseaux avec un flux 

se dirigeant vers la sonde et le bleu pour ceux s’en éloignant. 

 Doppler puissance 

Le Doppler puissance utilise la vitesse des flux sanguins comme critère discriminant afin de les 

extraire du signal tissulaire. Une fois le signal tissulaire retirée, l’image est reconstruite et on 

obtient une carte de l’intensité, ou de la puissance, des vaisseaux sanguins. Cette mesure sera 

directement proportionnelle au nombre d’érythrocytes présent dans chaque pixel. Du fait que l’on 

n’utilise pas de variation fréquentielle de l’onde, cette méthode est plus sensible, et non impactée 

par l’angulation de la sonde et le repliement spectral. 

2.2.3 Imagerie ultrasonore ultrarapide 

L’imagerie ultrarapide (Tanter & Fink, 2014) désigne une technique d’imagerie dans laquelle on 

insonifie un large champ de vue, grâce à l’utilisation d’ondes planes, avant de récupérer le signal 

pour former une image, et ce, plus de 1000 fois par secondes. Bien que le concept date de la fin 

des années 70, ce n’est que très récemment que cette technologie a pu être implémentée 

cliniquement (Couture et al., 2018). Cette avancée a été permise grâce aux développements des 

calculs parallèles et sur processeurs graphiques (GPU), rendant possible la reconstruction des 

images en temps réel. Cela a ouvert la porte à de nombreuses techniques d’imagerie. Il est 

désormais possible de suivre le déplacement d’ondes de cisaillement pour l’élastographie (Sandrin 
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et al., 1999), de faire du Doppler ultrarapide (Montaldo et al., 2010), ou encore de l’imagerie 

ultrasonore fonctionnelle (Macé et al., 2011) (fUs, par analogie avec l’imagerie par résonance 

magnétique fonctionnelle). La Figure 2.6 illustre les différences entre l’imagerie Doppler 

conventionnelle, l’imagerie Doppler ultrarapide et l’imagerie fonctionnelle. 

 

Figure 2.6 - Carte 2D du cerveau d’un rat avec a) l’imagerie Doppler conventionnelle, b) l’imagerie 

Doppler ultrarapide et c) le fUs en stimulant les vibrisses du rat. Extrait de (Tanter & Fink, 2014). 

© 2014 IEEE 

2.2.4 Imagerie de contraste 

L’imagerie de contraste, ou imagerie à contraste amélioré, est l’ajout d’agents de contraste aux 

méthodes d’imagerie traditionnelles. En imagerie ultrasonore, il s’agit de microbulles, composées 

d’une couche externe biocompatible comme des lipides, des ou des biopolymères renfermant un 

gaz (Quaia, 2007). Les microbulles permettent d’améliorer le signal non seulement grâce à leur 

échogénicité importante, mais aussi grâce à leur non-linéarité. En effet, si la puissance acoustique 

reçue par les microbulles est suffisamment importante et à leur fréquence de résonance, la dilatation 

des microbulles sera plus importante lors des moments de dépression du milieu que la contraction 

lors des moments de surpression, générant des fréquences harmoniques. L’usage de microbulles 

est considéré comme sûr, et les effets secondaires sont rares et d’intensité modérée chez l’humain 

(Quaia, 2007) . 

2.2.5 Imagerie super-résolue 

On peut qualifier d’imagerie ultrasonore super-résolue les techniques qui permettent de surpasser 

les limites fixées par la diffraction, et d’obtenir des résolutions inférieures à la longueur d’onde. 

Pour cela, plusieurs méthodes ont été développées, basées notamment sur les interactions avec 

d’autres types d’ondes, acoustiques ou magnétiques par exemple (Fink & Tanter, 2010). 
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La majeure partie des études utilisant uniquement des ondes ultrasonores, les auteurs sont parvenus 

à obtenir une résolution de /3 (Couture et al., 2018), en utilisant par exemple le renversement 

l’opérateur de retournement temporel comme une matrice de covariance (Prada & Thomas, 2003). 

Cependant, cette méthode n’était pas réalisable in vivo, car la méthode nécessite un nombre de 

réflecteurs inférieur au nombre de piézo-électrique de la sonde, ce qui n’est pas le cas avec un tissu 

biologique. Cette méthode et d’autres n’ont pas été applicables, néanmoins un point important en 

est ressorti : pour obtenir une image super résolue, il faut un nombre limité de réflecteurs (Couture 

et al., 2018).  

2.2.6 Microscopie de localisation ultrasonore 

En imagerie ultrasonore comme en optique, il a longtemps fallu chercher un compromis entre la 

surface de pénétration et la résolution de l’image. En effet, la résolution dépend de la fréquence 

d’émission des ondes et est limitée par le phénomène de diffraction (Couture et al., 2018). En outre, 

plus la longueur d’onde est faible, moins l’onde pénètre dans le milieu. Par exemple, à 15MHz, la 

résolution classique est de l’ordre de la longueur d’onde soit 0.1mm, et la distance à laquelle l’onde 

a perdu la moitié de son énergie est de 5mm. À 3 MHZ, la résolution diminue à 0.5mm, mais la 

profondeur de mi-énergie augmente à 15mm. Pour outrepasser cet état de fait, les imageries optique 

et ultrasonore ont trouvé une solution : la microscopie de localisation. Cette méthode se base sur la 

détection des centroïdes d’objets épars ou ‘activables’ dans le temps. En ultrasons, il peut s’agir de 

microbulles de gaz (Christensen-Jeffries, 2017), initialement utilisées comme agent de contrastes 

pour l’imagerie Doppler (Couture et al., 2012), et plus globalement en imagerie de contraste, ou 

des nanogouttelettes (G. Zhang et al., 2018). La résolution s’affranchit ainsi des limites de la 

diffraction, et est désormais définie par la faculté de localiser le centre de la figure d’étalement du 

point (PSF) des microbulles. Cela permet par exemple d’imager les microstructures vasculaires 

dans le cerveau (Figure 2.7). 
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Figure 2.7 - ULM du cerveau d’un rat in vivo. Extrait de (Couture et al., 2018). © 2018 IEEE 

2.2.7 Imagerie ultrasonore 3D 

 

Figure 2.8 - Sonde ultrasonore matricielle 32x32 éléments, 8MHz, fabriquée par Vermon, France. 

Toutes les techniques évoquées précédemment ont été développées en 2D, mais leur pendant 

tridimensionnel existe pour la plupart. En effet, grâce à une sonde matricielle comme celle de la 

Figure 2.8, il est possible d’imager un volume en une seule acquisition. Cela à l’avantage évident 

d’avoir une vue d’ensemble sur un organe, et de pouvoir saisir des phénomènes ayant lieu dans la 

dimension orthogonale au plan d’imagerie 2D choisi. Une des applications pour laquelle l’imagerie 

3D à démontrer son efficacité est la mesure de la rigidité artérielle, avec une réduction de la 
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variabilité inter et intra-observateur. Elle permet également de réaliser des Doppler ultrarapides, 

mais également la microscopie de localisation ultrasonore, comme sur la Figure 5.1. 

2.3 Chaine d’acquisition et de traitement pour la microscopie de 

localisation ultrasonore 

La méthode générale pour réaliser l’ULM a été décrite dans  (Christensen-Jeffries, 2017), 

cependant, les algorithmes utilisés peuvent différer selon les groupes. Des étapes supplémentaires 

peuvent être ajoutées, comme de la correction de mouvement, la correction d’aberrations, ou la 

séparation des microbulles suivant leur direction. Cette section décrit les algorithmes 

majoritairement utilisés dans la littérature. Un aperçu de la chaine de traitement est donné à la 

Figure 4.1. 

2.3.1 Reconstruction des données 

 Algorithme DAS 

La reconstruction (ou beamforming) est l’une des étapes primordiales de l’imagerie ultrasonore. 

La méthode la plus répandue, et implémentée dans les imageurs cliniques est le retard-et-somme 

(DAS). Cet algorithme, simple au premier abord, peut être implémenté analogiquement ou 

numériquement. Il a été décrit dans (Montaldo et al., 2009). 

 

Figure 2.9 - Schéma de l'algorithme DAS 

Dans la Figure 2.9, on émet une onde plane avec un angle  sur un milieu contenant 3 réflecteurs. 

Au passage de l’onde, ces trois points se comportent comme des sources ponctuelles, réfléchissant 

une onde dont le front est circulaire. Ces signaux vont se retrouver dans les données IQ sous forme 

d’hyperboles. Pour reconstruire l’image on discrétise la région d’intérêt en pixel, isotrope ou non, 
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ayant des dimensions allant de λ/2 à λ/8, λ étant la longueur d’onde utilisée. Pour retrouver 

l’intensité s(x,z), où x et z sont les coordonnées du pixel considéré, on va calculer le temps mis par 

l’onde pour arriver à ce pixel (𝜏𝑎𝑙𝑙𝑒𝑟), et revenir à chaque élément de la sonde xi (𝜏𝑟𝑒𝑡𝑜𝑢𝑟).  

𝜏𝑎𝑙𝑙𝑒𝑟(𝛼, 𝑥, 𝑧) = (
𝑧 ∗ cos 𝛼 + 𝑥 sin 𝛼

𝑐
) (2.13) 

Avec c la célérité moyenne du son dans le milieu. 

𝜏𝑟𝑒𝑡𝑜𝑢𝑟(𝑥, 𝑧, 𝑥𝑖) =  
√𝑧2 + (𝑥 − 𝑥𝑖)2

𝑐
 (2.14) 

On pose 

𝜏(𝛼, 𝑥, 𝑧, 𝑥𝑖) = 𝜏𝑎𝑙𝑙𝑒𝑟 + 𝜏𝑟𝑒𝑡𝑜𝑢𝑟  (2.15) 

On va alors fixer un paramètre, l’ouverture, qui permet de garder une PSF similaire pour toutes les 

profondeurs de reconstruction. Ce paramètre peut s’exprimer sous plusieurs formes, appelons-le 

a(z). a(z) est une distance telle que nous considérons uniquement les éléments de la sonde dans 

l’intervalle [x-a , x+a].  

On a alors :  

𝑠(𝑥, 𝑦) = ∑ 𝐼𝑄

𝑥𝑖∈[𝑥−𝑎,𝑥+𝑎]

(𝑥𝑖, 𝜏) (2.16) 

Cette approche à l’avantage d’être facilement implémentable, parallélisable et flexible. Cependant, 

elle suppose plusieurs hypothèses comme l’homogénéité de la célérité du son dans le milieu et la 

planéité du front d’onde.  De plus, certains paramètres sont à régler assez empiriquement, comme 

l’ouverture. 

 Reconstruction matricielle 

Une deuxième approche, plus récente, a été introduite par (Berthon et al., 2018), utilise des 

matrices. 

Il est possible d’écrire que les mesures IQ y, et le signal à mesurer x sont reliés par un opérateur 

direct G tel que 

𝒚 = 𝐺(𝒙) (2.17) 

x et y sont alors des vecteurs. En inversant le problème, on obtient une approximation de x, 𝑥̂ 
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𝒙̂ = 𝑑𝑖𝑎𝑔(𝐾∗𝐾)−1𝐾∗𝒚 (2.18) 

Tel que K est une matrice de PSF organisée comme dans la. 𝐾∗désigne la matrice adjointe de K. 

Chaque colonne de la matrice K représente une acquisition, avec le signal reçu par chaque élément, 

et ce autant de fois qu’il y de couple émissions/réception. La dimension dans cette direction est 

donc Néchantillon*Nélement*Nangle, avec Néchantillon le nombre d’échantillons (dépendant de la 

profondeur à imager), Nélement le nombre d’éléments de la sonde, et Nangle le nombre d’angles. 

Chaque colonne correspond à la PSF d’un point sur un pixel de l’espace de reconstruction. Il y a 

donc Nx*Nz colonnes, avec Nx le nombre de pixels dans la direction x et Nz le nombre de pixels 

dans la direction z. 

Cette méthode présente de meilleurs résultats que le DAS, cependant il faut créer et stocker la 

matrice K. Le premier point nécessite de simuler Nx*Nz PSF en utilisant un simulateur comme 

Field II (Jensen, 1996). Cette opération peut prendre plusieurs heures, voire jours, et il faut la 

recommencer pour chaque modification d’un paramètre, ce qui rend cette approche peu flexible. 

Pour le second point, bien que la matrice contienne principalement des zéros, son stockage 

nécessite plusieurs gigaoctets (Go), qu’il faudra préférablement charger en mémoire vive pour 

l’utiliser. 

2.3.2 Filtrage du signal tissulaire 

Le signal des microbulles, bien que celles-ci soient fortement échogènes, est masqué par le signal 

tissulaire. Pour le faire ressortir, plusieurs méthodes existent. Elles reposent généralement sur un 

filtrage spatiotemporel, appliqué soit à chaque échantillon IQ, soit aux pixels de l’image 

reconstruite, en considérant les variations sur les acquisitions au sein d’un bloc de données. Le 

temps entre chaque acquisition (de l’ordre la ms) est appelé temps long, en opposition au temps 

entre chaque échantillon RF appelé temps court (de l’ordre de la µs). 

Il existe par exemple des filtres de rang (comme la médiane), des filtres de moyennage non local, 

ou des filtres basés sur la décomposition en valeurs singulières (SVD). Bien que chacun puisse être 

adapté à certaines circonstances (Piepenbrock et al., 2018), c’est le filtrage par SVD, montré 

particulièrement efficace (Demené et al., 2015), qui a permis l’essor de l’ULM. Il consiste à 

décomposer les acquisitions en vecteurs propres et à en supprimer les premiers. En effet, les 

premiers vecteurs représentent le signal le plus cohérent, correspondant au tissu. Le seuil de 



27 

 

coupure peut être avoisiné en observant la décroissance des valeurs propres, mais est généralement 

établi de manière empirique. 

2.3.3 Corrélation avec la PSF et ajustement gaussien 

Une fois les microbulles isolées, il faut les détecter et les localiser. La corrélation par une PSF 

obtenue par simulation est une méthode pour détecter les microbulles. Celle-ci n’a pas été 

clairement établie dans la littérature. Elle permet de passer d’une carte d’intensité, à une carte 

normalisée entre 0 et 1. Les maximums de corrélation sont alors repérés, et un ajustement (ou fitting 

gaussien) est effectué sur les pixels voisins à l’aide d’une gaussienne dans les directions d’intérêt 

(x et z en 2D, x, y et z en 3D). Cette étape permet de trouver le centre des PSF, et par conséquent 

de localiser les microbulles avec une précision sous-pixellique, et nettement inférieure à la longueur 

d’onde utilisée. L’avantage de cette méthode est d’être facilement implémentable (Guo, 2011). 

2.3.4 Angiogrammes 

Les angiogrammes sont les cartes représentant les vaisseaux sanguins. Ils peuvent être obtenus de 

plusieurs façons à partir des positions des microbulles (voir Figure 1.1). La première façon est de 

faire une carte binaire des pixels où au moins une microbulle a été localisée. Cette méthode ne 

donne pas d’information sur le nombre de microbulles ayant été localisées dans ce pixel, et est très 

sensible au bruit. Les cartes de densités, utilisées dans ce mémoire, sont créées en accumulant les 

positions des microbulles, sur une grille, possédant avec un maillage plus fin que la grille de 

reconstruction. Elle est présentée avec un affichage logarithmique, pour mieux rendre compte des 

différentes tailles de vaisseaux, l’écart entre le nombre de microbulles dans les petits vaisseaux 

pouvant être important (facteur 100 (Hingot et al., 2019)). À partir des positions, il est également 

possible de faire le suivi des microbulles, et représenter les pistes des microbulles. Enfin, on peut 

extraire des pistes précédentes les vitesses des microbulles, et représenter celles-ci, soit en 

vectoriel, soit en moyennant la vitesse des microbulles à l’intérieur des pixels. 
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Figure 2.10 – Différentes modalités de l’ULM. A) Positions des microbulles détectées, B) Pistes 

des microbulles correspondantes, C) Carte de densité des microbulles, D) Champ de vitesses 

moyennes. Extrait de (Hingot et al., 2019).   
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2.4 Imagerie ultrasonore compressée 

2.4.1 Ouverture synthétique parcimonieuse 

L’ouverture synthétique est un terme assez générique, qui ici désigne un mode d’acquisition dans 

lequel les éléments d’une sonde vont tour à tour émettre un pulse, puis le signal rétrodiffusé sera 

enregistré par tous les éléments. Outre la quantité de données créer, cette méthode est coûteuse en 

temps. Pour réduire la durée d’acquisition, on utilise le principe d’ouverture effective (Chiao & 

Thomas, 1996). En imagerie ultrasonore, l’ouverture effective est définie comme le produit de 

convolution entre l’ouverture en émission et l’ouverture en réception, et la réponse impulsionnelle 

du système d’imagerie est liée à la transformée de Fourier de celle-ci. (Lockwood et al., 1998) à 

montrer un moyen simple de conserver cette ouverture effective en diminuant le nombre 

d’émissions nécessaires grâce à des apodisations en réception. Cette méthode a été utilisée par 

(Korukonda & Doyley, 2011a, 2011b) en élastographie. Une représentation graphique du calcul 

des apodisations, ainsi que des résultats extraits de (Korukonda & Doyley, 2011a) et (Korukonda 

& Doyley, 2011b). 

 

Figure 2.11 - a) et b) schémas d’acquisition pour l’ouverture synthétique complète et parcimonieuse 

respectivement. Extrait de (Korukonda & Doyley, 2011a).  c) et d) déformation mesurée dans un 

fantôme de vaisseau avec la méthode parcimonieuse (c) et avec des ondes planes (d). Extrait de 

(Korukonda & Doyley, 2011b). © 2011 IEEE 

2.4.2 Optimisation de la position des éléments des sondes ultrasonores 

Afin de réduire le nombre de canaux d’une sonde tout en conservant la qualité d’image, il est 

possible de concevoir les sondes pour optimiser certains paramètres, par exemple maximiser 

l’énergie au centre du volume imagé, en rejetant les lobes latéraux à l’extérieur du champ de vue. 

C’est ce qu’ont fait plusieurs groupes de recherche sur des sondes matricielles, en essayant des 

a) b)
d)c)
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motifs géométriques (Austeng & Holm, 2002; Yen et al., 2000), ou aléatoires (Yen et al., 2000). Il 

est aussi possible de résoudre cela comme un problème d’optimisation en garder une taille 

d’élément fixe (Davidsen et al., 1994; Roux et al., 2018; Sciallero & Trucco, 2015) ou en la faisant 

varier (Diarra, Robini, Liebgott, et al., 2013; Diarra, Robini, Tortoli, et al., 2013). La Figure 2.12  

donne la configuration présentée comme optimale par (Roux et al., 2018) pour la sonde matricielle 

de la Figure 2.12 échantillonnée à 256 canaux pour l’utilisation en ondes focalisées et divergentes. 

Une approche un peu différente pour les sondes linéaires utilise la photo-acoustique pour étudier 

le parallèle entre une apodisation des éléments en réception et une densité d’éléments qui varie sur 

la sonde (Alles & Desjardins, 2020). Ils démontrent ainsi l’intérêt d’un pitch (taille de l’élément et 

espacement entre eux) non uniforme. 

 

Figure 2.12 - Configuration optimale pour une sonde 2D avec 256 éléments parmi 1024. Extrait de 

(Roux et al., 2018). 

De manière analogue, des méthodes utilisant des sondes parcimonieuses se déplaçant ont été 

développés pour des applications d’imagerie à courte portée (Gumbmann & Schmidt, 2011). 

2.4.3 Acquisition comprimée 

 Théorie 

L’une des méthodes les plus étudiées en imagerie médicale est l’acquisition comprimée (CS). Cette 

théorie, établit par Donoho (Donoho, 2006) et Candès, Tao et Romberg (E. J. Candès et al., 2006) 

en 2006 a déjà montrée son efficacité pour l’IRM (Lustig et al., 2007), la tomographie par rayons 

X (G.-H. Chen et al., 2008) et la tomographie photo-acoustique (Provost & Lesage, 2009), en 
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recouvrant des signaux dits parcimonieux (sparse en anglais). Un signal est considéré comme 

parcimonieux s’il existe une base (Fourrier, ondelette, curvelette) où le signal peut être représenté 

par peu de coefficients. Dans ce cas, cette théorie nous dit que : 

1. le signal peut être retrouvé avec un nombre d’échantillons inférieur à celui fixé par le critère 

de Nyquist 

2. les échantillons doivent être prélevés dans une base la plus incohérente possible avec la 

base de parcimonie, condition généralement respectée en réalisant un échantillonnage 

aléatoire 

3. parmi tous les signaux pouvant être expliqués par ces échantillons, le signal ayant le moins 

de coefficients non nuls dans la base de parcimonie sera le signal original (E. Candès & 

Romberg, 2007) 

Mathématiquement, soit 𝑥 ∈  ℝ𝑁 un signal parcimonieux dans la base 𝜓 ∈  ℝ𝑁∗𝑁 tel que 𝑠 =  𝜓𝑥 

possède S coefficients non nuls, S<<N. Soit 𝑦 ∈  ℝ𝐾 une mesure de x dans une base 𝐴 ∈ ℝ𝐾∗𝑁 

incohérente avec la base 𝜓 tel que 𝑦 = 𝐴𝑥 et 𝑆 < 𝐾 < 𝑁. L’image originale peut être reconstruite 

en résolvant le problème d’optimisation contraint suivant : 

min|𝜓𝑥|1  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑦 = 𝐴𝑥 (4.1)  

Où |. |1 désigne la norme L1. (démonstration inspirée de (Quinsac et al., 2010)) 

La norme L1 est un point primordial puisque c’est la seule qui permet de retrouver un signal K-

parcimonieux : ce ne sera pratiquement jamais le cas avec une norme L2, tandis que la norme L0 

donne un problème qui n’est pas toujours calculable numériquement. 
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 Application en imagerie ultrasonore 

 

Figure 2.13 - Image cardiaque. a) Image en imagerie conventionnelle, b) image avec la méthode 

Xampling. Extrait de (Wagner et al., 2012). © 2012 IEEE 

L’imagerie ultrasonore comprimée a été beaucoup déclinée. Certaines études considèrent que la 

distribution des réflecteurs dans le milieu à imager est parcimonieuse (David et al., 2015; M. F. 

Schiffner et al., 2012; Martin F. Schiffner & Schmitz, 2011; Wagner et al., 2011, 2012; Q. Zhang 

et al., 2013). Cette hypothèse assez forte permet de reconstruire des images, mais la granularité des 

images ultrasonore, le speckle, qui résulte d’un grand nombre de diffuseurs s’en voit altérer (voir 

Figure 2.13). 

Une autre approche est de reconstruire un signal RF sous échantillonné (Friboulet et al., 2010; 

Liebgott et al., 2013; Liu et al., 2017; Lorintiu et al., 2015; Ramkumar & Thittai, 2020) en 

considérant le signal parcimonieux dans le domaine de Fourier (Liebgott et al., 2013), dans une 

base d’ondelettes (Friboulet et al., 2010; Liebgott et al., 2013; Liu et al., 2017), dans la base ‘waves 

atoms’ (Friboulet et al., 2010; Liebgott et al., 2013; Ramkumar & Thittai, 2020), ou encore dans 

un dictionnaire conçu avec des données d’entrainement (Lorintiu et al., 2015). Cette dernière 

méthode se montre d’ailleurs particulièrement efficace (voir Figure 2.14) 

a) b)
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Figure 2.14 - NRMSE (racine de l’erreur quadratique moyenne) pour différentes stratégies de sous-

échantillonnage et différente base de parcimonie pour l’imagerie 3D. a) échantillonnage aléatoire 

(R1) b) échantillonnage aléatoire conservé selon la direction axiale (mêmes canaux en réception) 

(R2). c) erreur selon le nombre d’échantillons retirés pour la stratégie R1 en bleu et R2 en rouge. 

DCT correspond à la base de cosinus discret et K-SVD à l’algorithme d’optimisation utilisé pour 

trouver le dictionnaire. La stratégie d’échantillonnage R1 est légèrement meilleure que R2, car plus 

incohérente avec les bases utilisées, mais difficilement utilisable en pratique. Extrait de (Lorintiu 

et al., 2015). © 2015 IEEE 

En contrôle non destructif, on cherche principalement à détecter et localiser des défauts dans un 

matériau uniforme, ou avec peu d’interfaces. Bien qu’ils soient peu nombreux, si deux défauts sont 

trop près au regard de la longueur d’onde utilisée, leur identification et localisation précise peuvent 

être ardus. De plus les échos peuvent être partiellement ou complètement caché par le bruit avec 

l’atténuation du signal au cours de sa propagation. Une méthode simple pour localiser les défauts 

est le filtre adapté (ou matched filter) qui correspond au maximum d’intercorrélation entre le signal 

mesuré et l’onde incidente. Cependant cette technique est rapidement limitée lorsque les signaux 

de plusieurs défauts se chevauchent. Il est alors possible de tirer parti de la parcimonie des défaut 

et d’utiliser des techniques d’acquisitions comprimées pour déconvoluer l’image et régularisant la 

norme L1 ou L0 (Jin et al., 2016; Soussen et al., 2012). Il existe pour cela l’algorithme très populaire 

a)

b)

c)
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de matching pursuit et que certaines de ces variantes (G.-M. Zhang et al., 2012), ainsi que le 

méthode Prony (Boßmann et al., 2012). Des approches similaires sont également utilisées en 

géophysique (G.-X. Chen et al., 2013; Trad et al., 2003). 
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CHAPITRE 3 MÉTHODOLOGIE 

Afin de mener à bien ce projet, les tâches à accomplir ont été subdivisées en trois groupes : 

1. Mettre en place la chaine de traitement pour l’ULM et trouver une stratégie de diminution 

du nombre de canaux 

2. Effectuer des simulations réalistes pour pouvoir étudier l’impact des différents paramètres 

en connaissant la vérité terrain  

3. Obtenir des données in vivo pour valider la méthode 

3.1 Mise en place de la chaine de traitement 

3.1.1 Implémentation des algorithmes  

La majeure partie des algorithmes (simulateur, reconstruction, corrélation, ajustement gaussien, 

création des cartes de densité) ont été développées par Jonathan Porée sur MATLAB (Matworks, 

EUA) ou via des kernels CUDA afin d’avoir des codes rapides, utilisant la grande parallélisation 

offerte par les processeurs graphiques. J’ai cependant contribué à la transition des codes 

d’acquisition des données de la 2D vers la 3D, ainsi que participé à l’optimisation des codes. J’ai 

également implémenté l’algorithme matricielle présenté à la section 2.3.1.2 en 2D et en 3D.  

3.1.2 Amélioration de la chaine de traitement 

Après avoir établi la méthode générale, qui consiste à changer aléatoirement l’échantillonnage de 

la sonde à chaque bloc de données (voir section 4.3.2), ces étapes ont été décomposées pour essayer 

d’améliorer la qualité des angiogrammes. Deux études ont été particulièrement poussées : le test 

d’une corrélation glissante, avec une PSF pixel-spécifique et celui de différents opérateurs pour la 

composition des angles (compounding). Le premier ajoutait un temps de simulation non 

négligeable et les résultats n’étaient pas convaincants, notamment à cause d’artéfacts créés à la 

profondeur de focalisation en élévation. Le remplacement de la moyenne lors de la composition 

notamment par la médiane, le minimum et le maximum des angles, n’a pas non plus donné 

d’amélioration convaincante.  
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3.1.3 Paramètres non traités 

Afin de développer la méthode décrite à la section 4.3.2, plusieurs paramètres ont été considérés 

puis écartés. C’est le cas de l’échantillonnage angulaire. Les résultats du Chapitre 4 établissent 

l’importance du nombre d’angles. Néanmoins, des simulations réalisées avec un pas angulaires 

variable ont montré que ce paramètre n’avait qu’un faible impact. Un échantillonnage aléatoire des 

angles aurait pu être étudié, mais l’impact aurait probablement été faible également. Un sous 

échantillonnage des échantillons aurait pu être considéré, néanmoins, bien que réduisant la quantité 

de données à transférer et stocker, ce n’est pas un paramètre qui joue sur la complexité du matériel 

d’acquisition. Ce point a donc également été mis de côté. 

3.2 Création du fantôme physio-réaliste 

Pour la création du fantôme, Hatim m’a fourni les positions de microbulles à 20.000 instants 

circulant à l’intérieur de 6 reconstructions de systèmes vasculaires de souris. Le développement du 

fantôme et les métriques extraites sont décrits à la section 4.3.3. Outre l’étude du nombre d’angles 

et de canaux, ce fantôme m’a permis de mieux étudier la corrélation, et notamment le choix du 

seuil à adopter. Ce paramètre est important en simulation car il influe grandement sur les métriques, 

et un seuil mal choisi pourrait avantager certaines valeurs des paramètres (angles et canaux) et 

biaiser le résultat. Pour cela j’ai observé les histogrammes des corrélations des microbulles, en 

faisant varier le nombre d’angles et le nombre de canaux (Figure 3.1). 
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Figure 3.1 - Histogrammes de corrélation des microbulles pour différents nombres de canaux et 

d’angles. La barre verte représente un seuil fixe à 0,75, la barre rouge le seuil obtenu par la méthode 

d'Otsu et la barre verte un nombre de microbulles conservées constant, ici 30%. Le nombre au-

dessus de l’histogramme correspond au nombre de microbulles conservées pour le seuil à 0,75. 

À partir de ces histogrammes, on voit deux blocs se distinguent, et que la séparation est plus nette 

avec l’augmentation du nombre d’angles et de canaux. La méthode d'Otsu, qui est une méthode 

basée sur l’histogramme semblait donc particulièrement indiquée. Pour le vérifier, les courbes ROC 

ont été tracées en utilisant le taux de faux positifs et de faux négatifs (Figure 3.2). 
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Figure 3.2 - Courbes ROC sur le seuil de corrélation pour différents nombres d’angles et de canaux. 

Plus le nombre de canaux est élevé, plus la courbe se décale vers le coin supérieur gauche. Les 

carrés verts représentent des seuils fixes, les carrés bleus un nombre de microbulles fixes, et le 

carré rouge représente le seuil obtenu avec la méthode d’Otsu. 

La méthode d’Otsu, sans atteindre le maximum, s’en rapproche avec une sensibilité et une 

sensitivité élevée. Cette option a donc été retenue pour les courbes de la section 4.4.1. 

3.3 Validations in-vivo 

Le montage expérimental est décrit à la section 4.3.4. Les données ont été acquise sur un cerveau 

de rat avec craniotomie, à l’institut de cardiologie de Montréal. La craniotomie a été réalisée par 

Marc-Antoine Gillis. L’échographe est un système Vantage (Verasonics, Wa, EUA) à 256 canaux. 

Les échographes de Verasonics sont des échographes de recherche, programmable, et dont on peut 

extraire les données brutes, contrairement à la majeure partie des échographes cliniques. Les codes 

d’acquisition 2D ont été principalement écrit par Chloé.  

Le chapitre suivant reprend la méthodologie, et les résultats principaux de ce projet.  
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4.1 Abstract 

 Ultrasound Localization Microscopy (ULM) has recently enabled the mapping of the cerebral 

vasculature in vivo with a resolution ten times smaller than the wavelength used, down to ten 

microns. However, with frame rates up to 20.000 frames per second, this method requires large 

amount of data to be acquired, transmitted, stored, and processed. The transfer rate is, as of today, 

one of the main limiting factors of this technology. Herein, we introduce a novel reconstruction 

framework to decrease this quantity of data to be acquired and the complexity of the required 

hardware by randomly subsampling the channels of a linear probe. Method performance evaluation 

as well as parameters optimization were conducted in silico using the SIMUS simulation software 

in an anatomically realistic phantom and then compared to in vivo acquisitions in a rat brain after 

craniotomy. Results show that reducing the number of active elements deteriorates the signal-to-

noise ratio and could lead to false microbubbles detections but has limited effect on localization 

accuracy. These results suggest that a compromise can be found between the number of channels 

and the quality of the reconstructed vascular network, and demonstrate feasibility of performing 

ULM with a reduced number of channels in receive, paving the way for low-cost devices enabling 

high-resolution vascular mapping.  

Keywords: Ultrasound Localization Microscopy, Sparse array 

4.2 Introduction 
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By locating the centroids of sparse microbubbles (MB) circulating in the vascular network, 

Ultrasound Localization Microscopy (ULM) allows to go beyond the limits of conventional 

ultrasound imaging fixed by diffraction, and to go down to a resolution of only a few microns 

(Errico et al 2015, Couture et al 2011, Christensen-Jeffries et al 2015, Desailly et al 2013, OˈReilly 

and Hynynen 2013, Couture et al 2018). In addition to its high imaging rate, low cost, non-

invasiveness and non-ionization, this modality is, as of today, the only one capable of imaging the 

entire vasculature of an organ within a wide field of view and in depth. Recent applications of 

ULM include the mapping of tumour vasculature, for early stage detection (Lin et al 2017), 

characterization (Opacic et al 2018), or treatment monitoring (Ghosh et al 2017). Other fields of 

interest include the detection and monitoring of treatment for cardiovascular or neurodegenerative 

diseases. For instance, Hingot et al. have imaged the cerebral perfusion of mice before, during and 

after ischemic strokes to evaluates the outcomes and the responses to treatment (Hingot et al 2020). 

Numerous studies have already been carried out on sparse ultrasound imaging to reduce the 

acquisition time, the amount of data or the hardware complexity. Compressed sensing (Candès et 

al 2006, Candès and Romberg 2007, Donoho 2006) has shown its effectiveness in magnetic 

resonance imaging (Lustig et al 2007), photo-acoustic imaging (Provost and Lesage 2009), and X-

ray tomography (Chen et al 2008). In ultrasound imaging, reconstructing sparse radiofrequency 

(RF) raw data in a wavelets base (Friboulet et al 2010, Liebgott et al 2013, Liu et al 2017), in the 

Fourier Domain (Liebgott et al 2013), wave atom base (Friboulet et al 2010, Liebgott et al 2013, 

Ramkumar and Thittai 2020) or dictionary learning base (Lorintiu et al 2015) have been shown. 

Other studies considered the sparsity of post-beamformed RF images (Achim et al 2010, Basarab 

et al 2013, Chernyakova and Eldar 2014, Dobigeon et al 2012, Quinsac et al 2012), scatterers 

distribution (David et al 2015, Schiffner et al 2012, Wagner et al 2012, Wang et al 2014, Zhang et 

al 2013) or used the sparsity of the vascular structure (Bar-Zion et al 2018). In the context of 

ultrasound, the goal was to reduce either the number of pulses/echoes, especially for synthetic 

transmit aperture, the number of channels or the number of samples.  

Other approaches based on sparse arrays have also been proposed. Korukonda et al. showed the 

feasibility of synthetic aperture elastography imaging with a sparse array (Korukonda and Doyley 

2011), decreasing the number of transmits to maintain a high frame rate. Several groups have also 

worked on optimizing the location of matrix array elements on several criteria : contrast, resolution, 

location and amplitude of the side lobes (Austeng and Holm 2002, Davidsen et al 1994, Diarra et 
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al 2013, Roux et al 2018, Sciallero and Trucco 2015, Yen et al 2000). Relatedly, Alles et al. have 

compared different element density laws of a linear probe with their equivalent in apodization to 

demonstrate the interest of a non-uniform pitch (Alles and Desjardins 2020).  

With regard to ULM, the feasibility of a sparse sampling of ultrasound probes has been shown in 

vitro in 2D with a model-based reconstruction method (Vilov et al 2020), and in 3D, keeping only 

half of a 1024-element matrix probe (Harput et al 2018). Moreover, as demonstrated by Desailly 

et al. in 2015, the standard deviation of the precision of localization of a unique scatterer is 

inversely proportional to the square root of the number of active receive channels at constant signal-

to-noise ratio (SNR) (Desailly et al 2015). These elements seem to indicate the possibility to 

localize with subwavelength accuracy the microbubbles with few receive channels, and to transfer 

the complexity of the acquisition system to the software, reducing the costs of the ultrasound 

scanners, as well as the quantity of data to be collected, transferred, stored and processed.  

Herein, we propose a novel sparse reconstruction framework to reduce the number of acquisition 

channels by randomly subsampling the receive channels, from 128 down to 16. The effects of the 

subsampling as well as the position of the withdrawn channels and the number of steered angles 

were investigated in physio-realistic simulations and in-vivo data, acquired in a rat brain. 

4.3 Methods 

4.3.1 Localization Microscopy Pipeline 

The pipeline we used is conventional and similar to other approaches described in the literature 

(Christensen-Jeffries et al 2020). The reconstruction of the data was achieved by a Delay and Sum 

algorithm (DAS) (Montaldo et al 2009) on an orthonormal grid with λ/4 resolution (25.7 μm) with 

 the wavelength (see Figure 4.1). To artificially decrease the microbubble concentration, and 

consequently increase the image quality, we separated the ascending and descending microbubbles 

in in-vivo data. To do so we applied a filter on the Fourier transform of a pixel signal (Osmanski 

et al 2012). This method was previously shown as effective by Huang et al (Huang et al 2020). For 

in-vivo data, a Singular Value Decomposition (SVD) (Demené et al 2015) was computed to reject 

the tissue signal by withdrawing the first 27 eigenvectors. Then, the point spread function (PSF) of 

a microbubble located in the center of the reconstructed region was simulated considering a fully 

populated array and correlated with the reconstructed images. A Gaussian fitting was then 
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performed on the correlation maps to localize microbubbles centers with a subwavelength 

precision. The microbubbles were tracked in time using a nearest-neighbour criterion to eliminate 

microbubbles that did not persist for more than two consecutive frames. 

 

Figure 4.1 - Ultrasound localization microscopy pipeline. The RF data containing the microbubble 

and tissue signal was reconstructed from one spatial axis (x) and one temporal axis to two spatial 

axes (x,z). A SVD was performed on the raw or beamformed data to remove the tissue signal. A 

correlation was then performed, and a Gaussian fitting on the pixels with the highest correlations 

allowed us to obtain the position with sub-pixel precision. These positions were accumulated on a 

grid to form the angiogram. 

4.3.2 Receive Channel Reduction Method 

The approach proposed herein to decrease the number of acquisition channels consists in  

1) randomly selecting groups of receive elements according to insonification-angle-specific 

probability laws, which  

2) remain constant during an entire buffer. The latter aspect is central to the approach, as it enables 

the use of standard SVD filtering to isolate microbubbles (see Figure 4.2). 
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Beamformed 
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Figure 4.2 - Sub-sampling method. Diagram showing an example of the subsampling method used 

in the 3D space formed by the frame number (slow time), emitted angles, and receive channels. 

Active channels are represented in white. The selected active channels change from one angle to 

the other, but stay constant from one frame to the next. 

To evaluate the influence of the elements position in the reconstructions, several probability laws 

were tested. The elements were then selected among the 128 of the probe used with a higher 

probability for the external elements (Ext1 and Ext2 laws), for the central elements (Cen1 and Cen2 

laws) or in a uniform way (Uni law). 

4.3.3 Creation of the In-Silico Phantom and Metrics Extracted 

Six vascular networks from mouse brains were imaged using 2-photon imaging and reconstructed 

(Damseh et al 2019). The vasculature was then segmented to circulate microbubbles following a 

physio-realistic distribution. The microbubble positions thus obtained were dilated by a factor 5 to 

fill the field of view of the probe, and cut along one direction. The slices were translated and rotated 

to fill a field of view equivalent to that of a rat brain while avoiding redundancy. The positions of 

13 microbubbles per slice in the resulting phantom were simulated to obtain ultrasound images 

with a frame rate of 1000 frames per second (fps), 13 angles (from -3° to 3° in steps of 0.5°) and a 

concentration of 3.84 microbubbles/mm3 which was found to be an optimal concentration for our 

localization algorithms and ultrasound probe. To emulate the linear acoustic response of the 

microbubbles, we used an in-house GPU implementation of the frequency-based simulation 

software (Shahriari and Garcia 2018). It has been set up to emulate a L-22-14 probe (Vermon, 
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France) at 15 MHz. 50 buffers of 400 frames were obtained and stored as in-vivo data to be 

reconstructed (see Fig. 3). 

 

Figure 4.3 - Physio-realistic phantom pipeline. At the left, the six segmented angioarchitectures 

from 2-photon measurement that were used to generate microbubble physio-realistic position and 

speed. At the center, the obtained phantom. At the right, the simulated sparse RF data. 

 

The microbubbles were then located and uniquely matched with the positions used for the 

simulation. Three metrics were measured:  

the false positive rate (FPR) defined as 

number of unmatched localized microbubbles

number of localized microbubbles
 (4.1) 

the false negative rate (FNR) defined as 

number of undetected simulated microbubbles

number of simulated microbubbles
 (4.2) 

the mean distance between the simulated and localized microbubbles, which will be referred to as 

accuracy 

The standard deviation of the distances between the simulated and localized microbubbles will be 

referred to as precision. All the metrics, including the STD, were calculated per frame. 
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This phantom has been designed to fill the entire probe’s field of view with a homogeneous 

distribution of microbubbles in it, in order to avoid evaluation bias due to a higher number of active 

receive elements above denser microbubble zones. 

 

4.3.4 In-Vivo Acquisition Setup 

The acquisition was performed on a female rat’s brain after craniotomy sedated with Isofluorane 

(2 %) and placed on a monitoring platform (Labeo Technologies Inc., Montréal, Canada) to 

monitor its heart and respiratory rate. The platform was heated to maintain the body temperature 

at 35°C. Three steered plane (-1, 0 and 1°) were emitted with a fully populated array (L22-14, 18 

MHz, Vermon, France) and backscattered signals were recorded with a Vantage 256 system 

(Verasonics, WA, USA) after a bolus injection in the tail vein of a 50-μL MB solution (1.2 × 1010 

microbubbles per milliliter, Definity, Lantheus Medical Imaging, Billerica, MA, USA) diluted in 

50 µL of saline. Each acquisition consisted of blocks, that will be referred as buffers, of 400 RF 

data, acquired at an imaging cadence of 1000 frames per seconds. 

 

Figure 4.4 - In-vivo acquisition setup. Diagram presenting the parameters and equipment used, 

from acquisition to data recording. The frame containing the RF data for the 3 angles are arranged 

by buffers of 400. 400 buffers are acquired, at a rate of one every 2 seconds approximately.  
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PRF 3 kHz

Compounding angles  1 ,0 ,1 

Effective frame rate 1000 fps



46 

 

4.3.5 Angiogram Display 

To display the angiogram, the positions of microbubbles having a correlation above a threshold 

were accumulated on a grid of λ/12 (8.6 µm). The threshold was set at 0.5 for in-vivo data and 

determined by the Otsu method for in in-silico data. The Otsu method was chosen through the 

realization of ROC curves on in-silico metrics. A median filter with a 2 x 2 kernel (8.5 µm x 8.5 

µm) was performed. The microbubble density was displayed on a logarithmic scale along with a 

gamma correction of 2 to ease the visualization of small vessels in in-vivo density maps. 

4.3.6 Parameters of interest 

Three main parameters have been studied in this work: the number of channels in receive, the 

number of angles, and the position of the elements in receive. The first two have been studied 

together, while the last one has been studied for 32 receiving channels and 5 angles. 

The impact of the amount of data was also observed. For this, the number of data buffers was 

proportionally adjusted downward to compensate for a higher number of channels: 400 for 16 

elements, 200 for 32 elements down to 50 for 128 elements. 

4.4 Results 

4.4.1 In-Silico Results 

 Microbubbles can be accurately localized using an under-sampled probe. 

Several parameters influence the quantity of data and the required transfer rate: sampling 

frequency, acquisition depth, number of channels, number of pulse echoes. We have chosen to vary 

the number of angles emitted and the number of channels in order to find out if a compromise could 

be found between these parameters, on the one hand, and the image quality, on the other hand. The 

in-silico results of this study are presented in Figure 4.5. The FPR, linked to the contrast of the 

image, decreased with the increase in number of channels to converge towards 3.5 % for each 

number of angles. However, with 16 channels, the FPR exhibited important differences: 27 %, 11 

% and 7.9 % of false positive microbubbles in average for 3, 7 and 11 angles, respectively. The 

FNR is also linked to the contrast, a low FNR meaning a high level of detection of the 

microbubbles. Simulations with only 3 angles stood out with a FNR of 80 % for 3 angles and 16 
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receive channels. Nevertheless, the accuracy of localization was similar for each number of angles 

and channel, with a variation smaller than 2 µm when the precision (i.e. standard deviation or STD) 

varies between 9.7 µm and 7.4 µm for 16 channels/3 angles and 128 channels/13 angles 

respectively. The mean localization accuracy was approximately 10 µm or λ/10. 

 

Figure 4.5 - In-silico results for different numbers of active receive channels and angles. FNR, FPR 

and accuracy for a number of active receive elements varying from 16 to 128 by steps of 16 and 

number compounding angles varying from 3 to 13 keeping an angular sampling of 0.5°. The curves 

are obtained by averaging extracted metrics on the 20000 reconstructed frames. Angiograms 

represent a region of interest extracted from the in-silico phantom. The reference was obtained by 

accumulating the positions of the microbubbles while considering their azimuthal position (y) null. 

 The position of the active receive elements is of little importance in silico. 

To avoid redundancy in the side lobes positions that create artifacts in the image, we have 

developed an approach where the active elements in receive are changed as often as possible. 

Hence, instead of optimizing a deterministic configuration of active elements, we select them using 

different probability distributions that, e.g., promote either the central elements or the side 

elements. The comparison was made with 32 channels in receive and 5 compounded angles (see 
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Figure 4.6). We can see that the central elements increase the accuracy (9.4 µm in average for Cen2 

and 10.3 µm for Ext2) and the precision, while the side elements enhanced the detection of 

microbubbles with a low FNR (71,3 % of false negative microbubbles for Cen2 and 68,4 % for 

Ext1). The FPR is the lowest for a uniform selection of channels (7.9 % of false positive 

microbubbles). However, the variations of these metrics are small compared to the STD. The 

angiograms show minor qualitative differences except a slightly higher intensity of the central 

vessels for Cen1 law and a higher intensity of the lateral vessels for Ext 1 law, which is expected. 

 

Figure 4.6 - In-silico comparison of different channel selection probability laws. Comparison of 5 

probability laws for 32 receive channels and 5 angles (-1, -0.5, 0, 0.5, 1). The curves are obtained 

by averaging metrics on the 20000 reconstructed frames. The occurrence frequencies correspond 

to the theoretical ones. 

4.4.2 In-vivo results 

 False microbubble detections decrease the contrast and smaller vessels disappear. 

To evaluate the method in vivo, we worked on data from a rat acquisition with craniotomy. The 

signals of the 128 channels were recorded and subsampled during processing. In Figure 4.7, results 

show that the background noise increases, and the smaller vessels tend to disappear with the 

decrease in number of channels. For example, the two vessels indicated by a white arrow in in the 

center of the green region of interest, were only visible in the angiograms reconstructed using 32 
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channels or more. However, their distinction and even more the measurement of their width remain 

difficult on profiles without the fully populated array. Similarly, for the magenta region of interest, 

only the two main vessels are visible with 16 channels. Other vessels and their ramifications appear 

progressively with the addition of channels. 

Signal degradation due to the reduction in the number of channels is inevitable. However, with 16 

channels we obtain vessels with both better resolution and contrast than with Contrast Enhanced 

Ultrafast Power Doppler. Indeed, although the presence of microbubbles increases contrast, 

diffraction, spreads the large vessels and degrades resolution. The Full Width at Half Maximum 

(FWHM) of the vessel on the left side of the profile thus increases from about 150 µm to more than 

200 µm. 
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Figure 4.7 - In-vivo results for different numbers of active receive channels. a), b), c) and d) are 

respectively the angiograms obtained with 16, 32, 64 and 128 channels in receive. e) is the power 

Doppler obtained with the same data set, i.e. with microbubbles, displayed at -45dB. Power 

Doppler and angiograms are in logarithmic scale. 2 regions of interest and one profile are extracted. 

The profiles are normalized between 0 and 1 with respect to their original image. 

We have also studied the effect of active receive element count for a fixed amount of data transfer 

by increasing the number of imaging frames when using fewer receive elements (Figure 4.8). 

Overall, the contrast increased with the number of active receive elements. However, the smaller 

vessels disappear, even with 128 channels. For instance, the small vessels indicated by white 

arrows in the green region of interest, are more easily discernible with 64 channels than with 128. 
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In addition, the network filing is impacted with 50 buffers, as shown by the discontinuity of these 

vessels. Contrast and resolution of angiograms remain higher than with Power Doppler. 

 

Figure 4.8 - In-vivo results for different numbers of active receive channels with the same amount 

of data. a), b), c) and d) are respectively the angiograms obtained with 16, 32, 64 and 128 channels 

in receive. e) is the power Doppler obtained with the same data set, i.e. with microbubbles, 

displayed at -45dB. Power Doppler and angiograms are in logarithmic scale and the number of 

buffers used to reconstruct the images are adjusted to keep the same quantity of data. Two regions 

of interest and one profile are extracted. The profiles are normalized between 0 and 1 with respect 

to their original image. 
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 Slightly favoring the central elements provides better overall image contrast. 

We reconstructed the in vivo data with the same laws of probability of occurrence of the elements 

as shown in Figure 4.6.The results, Figure 4.9, show that the degradation of the vessels in the center 

of the image is faster with a probability law favoring the external elements (Ext1 and Ext2) than 

that of the external vessels with a law favoring the central elements (Cen1 and Cen2).  

 

Figure 4.9 - In-vivo comparison of different channel selection probability laws. a), b) and c) are 

density maps of the in vivo rat angioarchitecture with the probability law Cen1, Uni and Ext1. d) 

and e) are the theoretical law for the random selection, and the effective occurrence frequency of 

each element. f) and g) are vessels profiles extracted from the angiogram, one at the center of the 

image, one outside. They are normalized between 0 and 1 with respect to the minimum and 

maximum of the profiles. 

4.5 Discussion 

This study introduced the Sparse-ULM method to decrease the transfer rate in ultrasound scanner 

while achieving ULM, to decrease the hardware complexity and the cost of these devices. This 

method allowed us to achieve angiographic images despite a reduction of active receive elements 

by a factor of 8. 

f) Center Vessel Profile (green)

0,8

0,6

0,4

0,2

0

1

0 20 20

N
o
rm
a
li
ze
d
In
te
n
si
ty

(a
 u
 )

Distance (µm)

g) Side Vessel Profile (magenta)

0,8

0,6

0,4

0,2

0

1

0 10 10
N
o
rm
a
li
ze
d
In
te
n
si
ty
(a
 u
 )

Distance (µm)

a) Angiogram with Probability Law Cen1 b) Angiogram with Probability Law Uni c) Angiogram with Probability Law Ext1

O
cc
u
rr
e
n
ce
 
fr
e
q
u
e
n
cy

d) Theoretical occurrence freq.

0,4

0,2

0,1

0

0,6

0,3

0,5

16 32 48 64 80 96 112

Channel number

e) Effective occurrence freq.

O
cc
u
rr
e
n
ce
 
fr
e
q
u
e
n
cy

0,4

0,2

0,1

0

0,6

0,3

0,5

16 32 48 64 80 96 112

Channel number

Probability Law :

673 MB 

or more

100 MB

0 MB

Cen2 Cen1 Uni Ext1 Ext2



53 

 

We have shown with the help of a physio-realistic phantom that as the number of channels in 

receive decreased, the number of incorrectly detected or non-localized microbubbles increased. 

Incorrectly localized microbubbles, or false positives, created a background noise when the 

undetected bubbles, or false negatives, decreased the vessel signal, which resulted in a decrease in 

contrast. However, accuracy and precision were maintained with the decrease in the number of 

channels which means that our ability to accurately locate the microbubble center remained intact 

even with a degraded PSF. One of the reasons could be that, even if the shape of the PSF is 

modified, the main changes took place on the side lobes. As a result, the correlation with a small 

kernel (11pixels by 11 pixels) is only slightly impacted and detection remained good, as well as 

localization, where the Gaussian fitting was robust to these changes. The preservation of the 

precision could seem to contradict the theory of Desailly et. al, which predicts a decrease in 

precision proportional to the square root of the number of elements in the probe (Desailly et al 

2015). However, our models differ on several points: here the localization is done on several 

microbubbles within the same image. Moreover, the decay described above is obtained by deriving 

the Cramer-Rao lower bound, which may not be reached. In addition, our phantom had no noise 

(electrical, measurement, etc.) or tissue. This limitation is important because the lower bound of 

Desailly et al. also depends on the SNR, and it is known that in the presence of this noise, the 

reduction of the number of channels will have more impact on the signal quality. Other studies are 

therefore to be carried out, especially since the impact of the subsampling the SVD is always to be 

evaluated.  

The study of how to choose the elements of the probe indicated that a uniform law or one that 

slightly promotes the central elements is to be recommended since they seemed to be a good 

compromise between FPR, FNR and accuracy. Nevertheless, given the small variation in metrics 

with respect to their STD, no conclusion was possible. The rapid convergence of the FNR and the 

FPR with the increase in the number of transmitting channels, especially for 5 angles and more, as 

well as the invariance of the accuracy and precision allow us to conclude that a compromise 

between the quality of the angiogram and the number of receiving channels is theoretically 

possible. 
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On in-vivo data, the decrease of the sensibility and of the amount of data impacted the filling of 

the angiograms, as it has been shown in figure 8. The smaller vessels are the first to disappear in 

both cases. The disappearance of these vessels is probably due to a lower number of microbubbles 

within them. According to Hingot et al., beyond the lower blood flow in small vessels, these contain 

a higher quantity of red blood cells in relation to the number of microbubbles, so much so that a 

100µm vessel transits 100 times more microbubbles than a 5µm vessel. (Hingot et al 2019). Here 

we lacked data with a higher number of angles to study this parameter correctly. The main arterial 

structures were preserved, and more visible than with Power Doppler.  

As for the in-silico part, the location of the active receive elements did not have a preponderant 

impact, even if the uniform laws or a law slightly favoring the center seemed to give a better 

angiogram overall, with more little structures in the centre. As a result, the distribution of active 

elements was not the main driver of improvement. Nonetheless, it might be interesting to 

investigate further on the choice of distributions between the compounded angles. Indeed, although 

it is necessary to change the elements as often as possible, the selected configuration has a direct 

impact on the location of the side lobes, and a judicious distribution of the configurations according 

to the angles of a frame could make it possible to limit the side lobes during the compounding, and 

thus reduce the false positive rate. 

 

As far as bandwidth is concerned, a reduction in the number of active receive elements from 128 

to 16 reduce the number of channels required by a factor of 8. An integration on a compact system 

is then fully feasible. Such a system would leave the possibility of acquiring a larger number of 

channels by splitting them into multiples of 16, thus making it possible to adapt the image quality 

to the desired application. 

 

Overall, the results are encouraging, but further research, particularly on the possibility of 

extracting biomarkers from under-sampled data, will allow further conclusions to be drawn on the 

effectiveness of this method. 

In order to further improve the method, other techniques could be integrated, based either on 

compressed sensing or on neural networks. The union of the two also gives interesting results. 

Indeed, the injection of knowledge via deep learning has allowed the reduction of artifacts caused 
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by aliasing in MRI (Yang et al 2018, Lee et al 2017) and CT (Han et al 2016). These are avenues 

that will not remain unexplored in ultrasound imaging. 
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CHAPITRE 5 DISCUSSION GÉNÉRALE 

Ce chapitre fait le point sur les objectifs fixés pour ce projet, et donne les pistes à suivre pour 

continuer son développement.  

5.1 Retours sur les objectifs 

5.1.1 Établir une méthode de diminution du nom re de canaux pour l’ULM 

La méthode proposée ici atteint bien cet objectif. Pour la sonde utilisée à 128 éléments, une 

réduction d’un facteur 4 à 8 suivant la qualité d’image voulue est possible. La méthode choisie 

conserve les mêmes voies au cours d’une acquisition. Cette méthode, avec 16 canaux est 

complètement implémentable sur une carte FPGA. Le post-traitement n’a cependant pas été 

optimisé par rapport à la réduction de canaux, et un ordinateur muni d’une bonne carte graphique 

reste à ce stade nécessaire pour la reconstruction. L’échographe ayant un coût très nettement 

supérieur à celui de l’ordinateur (d’un facteur 50 environ), le coût final serait tout de même 

grandement réduit. 

5.1.2 Extraction et étude des paramètres importants  

Ce point a été réalisé grâce à la création du fantôme physio-réaliste et l’extraction de métriques. 

L’impact du nombre de canaux et du nombre d’angles a pu être quantitativement étudié ainsi que 

la position des éléments. Néanmoins, en plus des limitations précisées à la section 4.5, cette étude 

reste imparfaite. En effet certains paramètres n’ont pas pu être pleinement étudiés comme la 

concentration. Celui-ci pourrait cependant avoir un impact conséquent sur la qualité d’image. La 

cause principale de cela est le temps de simulation. En effet pour générer les 20.000 images RF, 

pour une concentration, le temps de calcul est d’une semaine environ, pendant lequel l’ordinateur 

ne peut pas être utilisé pour une autre tâche requérant la carte graphique (traitement par exemple). 

De plus, ce fantôme n’a pas permis d’extraire une règle générale pour choisir les canaux. Du fait 

que ceux-ci doivent changer régulièrement, des configurations optimales ne servent à rien, il faut 

une règle. L’étude des configurations donnant les meilleurs scores (taux de faux positifs, faux 

négatifs, précision) n’a pas permis de l’extraire, aucun point commun n’a pu être trouvé. Enfin, 

certains paramètres restent à régler de manière empirique. 
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5.1.3 Validation sur un modèle in vivo 

Cette partie a été menée à bien grâce à un set de données provenant d’un rat avec craniotomie. 

Cette validation a permis de montrer que la méthode fonctionnant même en présence de bruit et de 

tissus, facteurs qui peuvent faire s’écrouler certaines méthodes fonctionnant en simulation. 

Néanmoins pour vraiment valider la méthode, d’autres acquisitions sont nécessaires, notamment 

avec un nombre d’angles supérieurs. En effet, l’étude in silico a montré que l’amélioration entre 3 

angles et 5 angles était notable. De meilleurs résultats sont donc à espérer. Enfin, le crâne est un 

obstacle en imagerie ultrasonore en règle générale. Cette méthode reste donc à prouver en sa 

présence. 

5.2 Futurs développements 

5.2.1 Imagerie 3D 

Cette méthode est utile en imagerie 2D, mais montre son vrai potentiel en imagerie 3D, où le 

nombre de canaux utilisé ainsi que le coût de la sonde croissent de manière quadratique. Une étude 

préliminaire avait été réalisée, avec une configuration fixe (voir Figure 5.1). Cette méthode pourrait 

donner de bons résultats. 

 

Figure 5.1 - ULM 3D d'un cerveau de chat avec craniotomie 

5.2.2  Implémentation physique 

La prochaine étape vers une utilisation réelle, et dans le meilleur des cas vers une 

commercialisation, de la méthode Sparse-ULM réside dans son implémentation physique sur une 
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carte FPGA. L’architecture serait globalement celle présentée à la Figure 5.2, où des multiplexeurs 

gèreraient les canaux en réception. Cela rajouterait une contrainte sur le choix des canaux qui devra 

être prise en compte sur la partie logicielle et lors du câblage. Cela confirme l’intérêt d’avoir une 

vision plus fine du choix des canaux. De plus, l’émission pourrait être séparée pour permettre une 

plus grande flexibilité sur les ondes émises, et pour séparer les hautes et basses tensions. 

 

Figure 5.2 - Schéma d'un système pouvant être utilisé pour implémenter Sparse-ULM. LNA : 

amplificateur bas-bruit. LPF : Filtre passe-bas. ADC : convertisseur analogique-numérique 

5.2.3 Au-delà de Sparse-ULM 

Cette méthode n’est pas l’apanage de la réduction de canaux en imagerie ultrasonore. Plusieurs 

autres sont présentées à la section 2.4. Des méthodes connexes utilisant notamment l’intelligence 

artificielle, intégrant via l’apprentissage beaucoup plus d’information à priori, pourraient donner 

des résultats encore meilleurs, limitant le repliement spectral par exemple, ou reconnaissant mieux 

une microbulle indépendamment de l’emplacement de celle-ci ou du choix des canaux.  
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CHAPITRE 6 CONCLUSION 

Ce projet a permis le développement et l’évaluation d’une méthode simple pour réduire le nombre 

de canaux lors de l’imagerie de vaisseaux par microscopie de localisation ultrasonore. Cette 

méthode, en réduisant le nombre de canaux d’un facteur huit, permet de conserver une résolution 

et un contraste supérieur à celui de l’imagerie Doppler ultrarapide à contraste augmenté, qui est 

actuellement l’approche la plus proche utilisée en pratique clinique, tout en en diminuant les coûts. 

Bien que du développement reste à faire, cette avancée devrait permettre le développement 

d’échographes compacts réalisant l’ULM, et ainsi faciliter son inscription dans une pratique 

clinique. 

Sur le long terme, un tel système permettrait d’imager les vaisseaux sang en incluant les capillaires 

de manière non invasive. Il constituerait alors un outil de plus pour les professionnels de santé dans 

la lutte contre les cancers, les maladies cardio-vasculaires ou neuro-dégénératives, tant pour le 

diagnostic que le traitement. 
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