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RESUME

Lorsqu’une équipe humain-machine est formée dans le but d’accomplir des taches de prise de
décision, certains facteurs humains peuvent avoir un impact important sur les performances
de I'équipe. C’est le cas en particulier de la charge de travail et de la confiance que place
un opérateur dans les capacités de la machine. Il peut alors étre nécessaire de prendre en
compte ces facteurs dans le design de la stratégie de collaboration. Cependant, la confiance
et la charge de travail varient dans le temps en fonction des interactions entre I’humain et
la machine. Une fagon de prendre en compte ces éléments est d’opter pour une stratégie de
collaboration adaptative, c¢’est-a-dire qui varie en fonction de I’état cognitif de I'opérateur.
Dans ce mémoire on propose une stratégie de collaboration adaptative sous la forme de sug-
gestions automatiques et dynamiques de partage de tache. Régulierement, une proposition
de partage de tache est suggérée a l'opérateur en prenant en compte sa charge de travail
ainsi que sa confiance. Cette stratégie est issue de la résolution d’un Processus Décisionnel
Markovien Partiellement Observable (POMDP). Pour cela des modeles quantitatifs des per-
formances humaines et de la dynamique de la confiance ont été sélectionnés. Des simulations
permettent de montrer le potentiel de la méthode en comparant les performances de la stra-
tégie adaptative proposée a celles d'une stratégie statique plus simple. Les résultats a long
terme de 1’équipe humain-machine sont en moyenne meilleurs de 24% lorsque la stratégie
adaptative est appliquée plutdt que la stratégie statique. L’utilisation de modeles quantita-
tifs dont certains parametres doivent étre identifiés pose la question de la robustesse de la
stratégie aux erreurs de calibration. On montre, toujours en simulation, que malgré certaines

erreurs de modeles, la stratégie proposée conserve son avantage.



ABSTRACT

In mixed-initiative systems where human and automation collaborate in order to complete
a decision-making task, some human factors can have an impact on the team performance.
For instance, the cognitive workload and the trust placed by the operator on the automa-
tion capabilities can be determining factors. Hence it could be relevant to take into account
these cognitive variables in the design of the collaboration strategy. However, both workload
and trust fluctuate with the history of past interactions. One way to include these dynamic
variables is to opt for an adaptive collaboration strategy. In this work, we propose an adap-
tive task allocation suggestion which dynamically allocate task according to the operator’s
trust level. This adaptive strategy is computed by solving a Partially Observable Markovian
Decision Process (POMDP). The POMDP is defined using quantitative models of human
performance and trust dynamic. We study this method’s potential by comparing, in simula-
tion, the performance results collected when the adaptive strategy is applied and those when
a static strategy is applied. The long term mean team reward is 24% higher with the adaptive
strategy than with the static strategy. Moreover we study the impact of model calibration
errors on the strategy performance. The proposed method seems to bring benefits even in

the presence of errors in the models.
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CHAPITRE 1 INTRODUCTION

Dans ce chapitre, on commencera par évoquer les diverses problématiques rencontrées lors-
qu’on congoit une machine destinée a travailler en collaboration avec un humain. Ensuite, un
scénario de collaboration précis sera introduit comme support de travail. Enfin on formulera

les objectifs qui ont orienté les travaux présentés dans ce mémoire.

1.1 La collaboration humain machine : les problématiques

1.1.1 Le contexte

Lorsqu’on décide qu'une machine! doit collaborer avec un humain, c’est que I’équipe per-
forme mieux que chacun des partenaires s’ils devaient réaliser la tache seuls. Une approche
possible pour concevoir cette équipe est d’automatiser le maximum de fonction possible et
de laisser le reste a I’humain. Or, aujourd’hui, on est capable d’automatiser des fonctions de
plus en plus complexes et dans des environnements de plus en plus incertains. Les ingénieurs
doivent donc repenser la fagon dont ils congoivent les équipes humain-machine (Cummings,
2014). D’abord on peut s’intéresser a l'allocation des taches, c’est-a-dire quelle tache doit
étre confiée & quel partenaire. En introduisant le concept de niveau d’automatisation (ou
Levels of Automation (LoA)) (Parasuraman et al., 2000), on diversifie les types de collabo-
ration entre humain et machine. L’échelle des niveaux d’automatisation liste les fagons dont
peut étre partagée 'autorité. Autrement dit, une tache n’a pas a étre réalisée soit entiere-
ment par un humain soit entierement par la machine. Ensuite, on peut poser la question
de savoir comment la machine et I’humain doivent collaborer. Une des réponses possibles
est les stratégies adaptatives (Rouse, 1988), (Parasuraman et al., 1992). Une stratégie de
collaboration adaptative consiste a faire varier certains aspects d’une tache en fonction de
parametres relatifs au systeme (par exemple la demande, les performances de la machine
etc...) ou relatifs a 'humain (ses performances, sa charge mentale etc...). Trois questions se
posent dans la conception de stratégies adaptatives : que faut-il adapter, en fonction de quoi
on adapte et comment adapter (Wickens et al., 2015)[Chapitre 12]. Evidemment les réponses

a ces questions dépendent beaucoup du contexte particulier.

Dans ce mémoire, on s’intéresse a la conception de stratégies de collaboration adaptatives.

En particulier on congoit une stratégie adaptative correspondant & un scénario donné. Cette

1. Dans ce mémoire, on appelle «machine» tout systeme comportant une partie automatisée. Cela com-
prend les systémes d’aide a la décision (e.g. aide a la conduite), des logiciels de supervision de systémes
complexes (e.g. supervision de centrale nucléaire) ou encore des robots (e.g. rover d’exploration).



stratégie doit améliorer les performances globales de I’équipe humain-machine en s’appuyant

sur les caractéristiques d’un humain.

1.1.2 Les particularités du «systeme» humain

Lorsqu’on souhaite concevoir une machine qui prend en compte I’humain, il faut comprendre
quelles sont les difficultés a surmonter pour espérer atteindre cet objectif. En particulier,

plusieurs problématiques sont posées par les caractéristiques du «systeme» humain.

D’abord, il faut rappeler la multiplicité des facteurs impactant le comportement humain
dans un contexte de collaboration avec une machine. Ces facteurs peuvent provenir de dif-
férentes sources telles que la machine (ses performances, sa lisibilité etc...), ’environnement
(les risques, la présence de collaborateurs humains etc...) ou 'humain lui méme (sa charge
mentale, son stress, ses compétences etc...). En plus de la multiplicité des sources influengant
le comportement humain, il faut ajouter 'importance de I’historique des interactions entre
I’humain et la machine. En effet, I’humain se base en partie sur ses expériences passées pour
prendre ses décisions, par exemple quand il fait le choix de faire confiance ou non a une

machine pour réaliser une tache.

Afin de guider des stratégies de conception qui soient précises, et pas seulement sous forme
de recommandations, il est impératif de quantifier un certain nombre de phénomenes. Par
exemple, si on souhaite concevoir un systéme qui minimise la charge mentale d’un opérateur,
il faut pouvoir représenter la charge mentale par un scalaire. Or il n’y a pas de consensus
sur une définition de la charge mentale comme une variable unidimensionnelle qu’il serait
possible, en plus, de mesurer. En outre, on ne dispose pas de modele physique du cerveau
humain qui permettrait de prédire le comportement humain en général. Enfin, bien que des
modeles du comportement humain ont été proposés dans des contextes particuliers, ils doivent
répondre a la question des différences inter-personnelles. En effet, chaque humain ne réagit
pas de la méme fagon méme si les situations sont identiques. Doit-on alors concevoir des

stratégies de collaboration uniques ou personnalisées ?

Méme si on a défini des concepts pour aider notre compréhension de ’humain (charge men-
tale, confiance, confiance en soi, conscience de la situation etc...), ces éléments ne sont pas
directement observables. On ne sait observer que la version subjective de ces concepts par
des questionnaires. On peut également observer directement le comportement de 'humain,
ses performances ou encore son utilisation de la machine sans I'interrompre dans ses activi-
tés. Il est aussi possible de mesurer des manifestations physiques un peu plus fines grace a
des capteurs physiologiques plus ou moins invasifs (rythme cardiaque, mouvement des yeux,

activité électrique du cerveau etc...). Dans tous les cas, il est difficile d’observer les processus



cognitifs qui conduisent a tel ou tel comportement.

1.2 Le probleme de partage de taches en classification

Dans cette section, on introduit le scénario de collaboration humain-machine pour lequel on

concevra la stratégie adaptative.

1.2.1 Description du scénario

Dans ce scénario de collaboration, I’équipe humain-machine doit réaliser des taches de clas-
sification binaire d’évenements aléatoires sur la base d'un certain nombre d’informations
incompletes. Chaque évenement ou objet peut étre classé soit par la machine soit par 'opé-
rateur. On suppose que les évenements sont indépendants les uns des autres. De plus ces

évenements surviennent de maniere périodique dans le temps.

Concretement, on peut formuler la tache de classification sous la forme dun test d’hypotheése.
Pour chaque évenement k, la machine ou I'humain doit choisir parmi I'hypothese Hy j (I'éve-
nement est intéressant) ou Hyy (hypothese nulle). Lorsque le décideur choisit 'hypothese
H, ;. (respectivement Hyj) on notera sa décision Dy = 1 (respectivement Dy = 0). Son choix

se fait a partir d’informations Y}, disponibles, définies comme une variable aléatoire.

Etant donné les quatre issues possibles d’une classification binaire (tableau 1.1), les capacités
d’un classificateur binaire peuvent étre représentées par ses probabilités de vrais positifs
Pyp = P(Dy = 1|Hy ) et de faux positifs Ppp := P(Dy = 0|Hoy). On suppose que ces
probabilités ne dépendent pas du temps. A chaque issue possible de la classification (vrai
positif, faux positif, faux négatif ou vrai négatif), on associe une récompense positive ou
négative qu’on note respectivement RV?” > 0, RFF <0, RFN <0 et RV" > 0. On supposera
de plus que RV? # RIN et RFP 4 RVN. Enfin un cofit additionnel R"* < 0 est collecté
lorsque la classification est réalisée par I'opérateur. Ce colit permet de prendre en compte
les situations ou I'opérateur a d’autres taches a accomplir que la classification d’évenement.
Ainsi, la problématique du temps perdu sur la réalisation des taches secondaires est intégrée

dans la réalisation de la tache principale.

Dans ce probléme, le temps est divisé en périodes de travail, indexées par t. Une période
de travail correspond a N taches de classification successives (/N est constant). Au début de
chaque période de travail, la machine suggere un partage de tache a l'opérateur, noté a,
¢’est-a-dire la proportion d’objet que I’humain devrait classer pendant cette période. L’opé-
rateur a ’autorité sur la machine et décide s’il veut compléter plus ou moins de taches que

proposé par la machine. Par exemple, un opérateur n’ayant pas confiance dans les capacités



Tableau 1.1. Résultats possibles d'une tache de classification binaire.

Classe réelle

Classe prédite Positif (Hy ) Négatif (Ho )
Positif (D = 1) Vrai positif Faux positif
Négatif (D = 0) Faux négatif Vrai négatif

du classificateur automatique aura tendance a classer manuellement tous les événements.

Remarque. Le choix du nombre N d’évenements dans une période de travail doit étre fait en
fonction du scénario particulier. Si IV est trop faible, on risque de brouiller 'opérateur avec
des changements de suggestion trop fréquents de la part de la machine. En revanche si N est
trop grand, on donne moins de chance a la suggestion automatique d’allocation de tache de

prendre en compte 1’état instantané de 'opérateur.

1.2.2 Justification du scénario

En premier lieu, on choisit une tache de classification binaire car elle est suffisamment pré-
cise pour étre décrite formellement. En outre, il s’agit d’'un premier exemple de collaboration
relativement simple qui pourrait étre complexifié par la suite selon plusieurs directions (clas-

sification en plus de deux catégories, environnement non statique etc...).

Le scénario choisi met en scéne une tache de prise de décision dans un environnement incer-
tain. Le décideur est contraint d’adopter un comportement basé sur des connaissances ou une
expertise. L’humain est connu pour étre plus performant dans ce genre de tache relativement
a ce que pourrait faire une machine (Cummings, 2014). Cependant les outils d’apprentissage
permettent de plus en plus aux machines d’aborder des probléemes de décision dans des envi-
ronnements complexes et incertains. Il est alors pertinent d’imaginer une collaboration entre

humain et machine pour des problemes de classification d’évenements.

De plus, le cadre est suffisamment général pour englober des situations diverses. On peut
imaginer des contextes industriels comme l'identification de défauts de fabrication sur des
objets ou le classement de courrier selon deux zones géographiques. Ce scénario peut corres-
pondre également a des contextes de sécurité comme l'identification d’évenements a risque
sur un ensemble d’écrans de vidéo-surveillance ou la différentiation entre des véhicules alliés

et des véhicules hostiles sur un écran radar.



Tableau 1.2. Notations.

P Probabilité qu'un objet soit intéressant (p = P(H1))

Pyp Probabilité qu’un classificateur réalise un vrai positif

Prp Probabilité qu’'un classificateur réalise un faux positif

N Nombre d’objet ou d’événement a classer pendant une période de travail

Wy Proportion d’objet classé par ’humain pendant la période de travail ¢

ay Proportion d’objet classé par ’humain suggéré par la machine

1.3 Objectifs de recherche

1.3.1 Développer une solution adaptative au probléeme de partage de taches

On souhaite proposer une méthode de conception d’une stratégie de partage de taches adap-
tatif. Wickens, dans (Wickens et al., 2015)[Chapitre 12], recommande qu’il faut adapter le
parametre qui influence le plus la charge mentale de travail de 'opérateur. On a vu dans le
scénario décrit que la machine doit régulierement proposer une répartition des taches entre
I’humain et la machine. L’objectif est donc de rendre la suggestion de partage de taches

adaptative.

1.3.2 Sélectionner des modeles quantitatifs de performance et de la confiance

humaine

Etant donné le contexte du scénario, on décide que la solution adaptative doit prendre en
compte deux facteurs humains susceptibles d’avoir un impact important sur les performances
de I'équipe : la charge de travail de I’humain et la confiance qu’il place dans la machine. Une
revue de littérature doit justifier ce choix. Enfin, la prise en compte de ces deux facteurs
nécessite la définition de modeles quantitatifs liant charge mentale, confiance et performance

de I’équipe.

1.3.3 Evaluer la solution adaptative

Outre la conception d’une stratégie adaptative qui prend en compte les concepts de charge
de travail et de confiance, on souhaite évaluer la pertinence de la démarche. En particulier on
cherche & comparer cette stratégie a une stratégie statique, i.e. dont la suggestion de partage
de taches est constante. La comparaison doit se faire en terme de performance de 1’équipe

a long terme mais également en terme de robustesse aux erreurs de modele et de facilité



d’application.

1.4 Plan du mémoire

Ce mémoire s’organise de la fagon suivante. Le chapitre 2 offre une revue de littérature qui,
a la fois, place ces travaux dans leur contexte de recherche et apporte des justifications a
un certain nombre de choix. Le chapitre 3 introduit le modele liant charge de travail et
performance humaine et apporte une premiere solution statique au probleme de partage de
taches. Le chapitre 4, quant a lui, présente un modele dynamique de la confiance qui sera
ensuite utilisé dans la conception de la stratégie adaptative. On présente également dans ce
chapitre les résultats des simulations permettant d’évaluer la pertinence de ’approche choisie.
Enfin, le dernier chapitre conclut ces travaux en évoquant leurs limites et de potentielles

améliorations.



CHAPITRE 2 REVUE DE LITTERATURE

Dans ce chapitre, on cherche a placer le sujet de ce mémoire dans son contexte. Cela permettra
en outre de justifier un certain nombre de points dans la démarche adoptée. En particulier,
on commencera par introduire le concept de charge de travail ainsi que des approches qui
ont été adoptées dans la littérature pour modéliser I'impact de cette charge de travail sur
les performances humaines. Dans un deuxiéme temps, on propose de définir ce qu’est la
confiance que place un humain dans une machine. De méme, on explore les différentes facons
de modéliser ce concept psychologique. Enfin, la derniére section tache de donner une idée
au lecteur des solutions proposées dans les dernieres années pour prendre en compte, dans le
design de stratégies de collaboration humain-machine, ces deux facteurs humains que sont la

confiance et la charge de travail.

2.1 La charge de travail

2.1.1 Définitions et justification
Définitions

Lorsqu’on s’intéresse au facteur humain, on a I’habitude de distinguer la charge de travail
objective de la charge mentale de travail. La charge de travail objective correspond a la
quantité de tache qu’on demande a un humain alors que la charge mentale refléte les ressources
cognitives mobilisées par 'humain pour réaliser les taches demandées. Evidemment, la charge
de travail objective impacte la charge mentale mais ne la caractérise pas a elle seule. Par
exemple, la personnalité, les compétences et 'attention d’un opérateur sont d’autres facteurs

influengant la charge mental d'un individu.

Impact de la charge de travail sur les performances humaines

L’article (Young et al., 2015) offre une revue des études abordant le concept de charge mentale
en ergonomie depuis leur début, dans les années 80. La charge mentale est un des concepts le
plus étudié en facteur humain. La principale motivation pour chercher a définir et mesurer la
charge mentale est I’étude de son impact sur les performances humaines. En particulier, on
cherche a prévenir les situations dans lesquelles un individu serait surchargé ou sous-chargé.
En effet, lorsqu’un opérateur est surchargé mentalement, il sera susceptible de commettre

des erreurs. A l'inverse, lorsque sa charge mentale est trop basse, cela peut provoquer des



problemes de perte d’attention, de perte de compétences ou encore d’ennui.

Mesurer la charge mentale de travail

De nombreuses études ont été proposées pour mesurer la charge mentale d’un individu lors-
qu’il accompli une tache. La premiere solution consiste a questionner ce dernier sur son
ressenti. On accede alors a la vision subjective de la charge mentale de I'opérateur (Moray,
1982). Cette mesure ne refléte pas exactement la quantité des ressources cognitives dépensées
par l'individu mais permet tout de méme des études comparatives. L'un des questionnaires
les plus répandus semble étre le NASA-Task Load indeX (NASA-TLX) (Hart et Staveland,
1988). Celui-ci, originellement développé pour le domaine de 'aviation, est aujourd’hui tres
largement utilisé pour évaluer la charge mentale d’un individu (Hart, 2006). La deuxié¢me
facon de mesurer la charge mentale consiste a observer un certain nombre de manifestations
physiologiques causée par celle-ci. Il est possible d’observer, par exemple, la dilatation des
pupilles, le rythme cardiaque ou encore l'activité électrique du cerveau. (Charles et Nixon,
2019) offre une revue récente des techniques de mesure de charge mentale via 'utilisation de

capteurs physiologiques.

2.1.2 Modéliser la charge de travail

On souhaite montrer ici que divers modeles quantitatifs de la charge mentale de travail ont
été proposés dans la littérature. On peut classer ces modeles en deux catégories : les modeles
qui sont capables de prédire la charge mentale d'un individu et les modeles qui, en plus, vont

prédire les performances de cet individu.

Modeéles prédisant la charge mentale

Les modeles de charge mentale varient d’abord en fonction de leur domaine d’application.
Les auteurs de (Loft et al., 2007) offrent une revue des modeles prédisant la charge mentale
dans le contexte de controle aérien et proposent a leur tour un autre modele dans (Loft et al.,
2009). Par exemple, dans (Manning et al., 2002), des modeles construits par régression, sont
capables de prédire la charge mentale subjective de controleurs aériens a partir du nombre,
de la durée et du type de contenu des communications orales. D’autres méthodes, listées
dans (da Silva, 2014), sont utilisées dans le domaine de la conduite d'un véhicule. Wickens
a, quant a lui, proposé un modele qui traite spécifiquement des situations ou 'opérateur doit
accomplir plusieurs taches et qui fait la distinction entre les types de ressources mobilisées

(perception visuelle, auditive, analyse, réponse verbale, manuelle etc...) (Wickens, 2008).



Modeles prédisant les performances humaines

On cite ici quelques travaux qui ont pour objet de prédire les performances humaines en
prenant en compte I'impact de la charge de travail. Par exemple, dans (Sorkin et Woods,
1985), Sorkin et Woods proposent de modéliser les performances de classification d’'un humain
en utilisant un modele de la Théorie de la Détection du Signal et en faisant varier I'un des
parametres du classifieur humain avec la fréquence d’apparition des éléments a traiter. Ici
cette fréquence peut s’interpréter comme la charge de travail objective de 'humain. Dans
(Rouse et al., 1993), les auteurs avancent un modele linéaire capable de prédire la charge
mentale subjective de I’humain ainsi que son comportement. Plus récemment, les auteurs
de (Wu et Liu, 2007) proposent un modele capable de prédire les performances de conduite
d’un individu en estimant a chaque instant leur charge mentale grace a 'observation de
son comportement et de ses réponses a un questionnaire. Ce modele prend également en
compte 1’'dge du conducteur. Enfin, une méthode estimant la charge mentale et la fiabilité
d’un opérateur griace a ses interactions avec une machine est utilisée dans (Gregoriades et
Sutcliffe, 2008).

2.2 La confiance

2.2.1 Définitions et justifications
Un exemple

Lorsqu’une équipe de collaboration humain-machine est formée, il est fréquent que I'opérateur
ait I’autorité sur la machine. Cette autorité peut lui permettre de reprendre le controle manuel
en cas de doutes sur les capacités de la machine. Typiquement, un opérateur qui viendrait
d’assister a plusieurs échecs successifs d’'une machine préférera, par manque de confiance,
réaliser les taches manuellement plutét que de continuer a les déléguer a la machine. Il est
possible alors que 'opérateur se surcharge volontairement le conduisant a faire des erreurs
alors que la machine est toujours capable de réaliser une partie des taches. Dans cet exemple
il apparait d’une part que le choix de 'opérateur d’avoir recours partiellement, totalement
ou pas du tout a la machine (on appellera cela la dépendance ou reliance), a un impact
significatif sur les performances de I’équipe humain-machine. D’autre part, la dépendance de

I'opérateur a la machine semble directement liée a sa confiance.
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Les facteurs de la dépendance de I’homme a la machine

Il est connu qu’une dépendance inappropriée peut avoir un impact négatif allant de la per-
formance sous-optimale (Robinette et al., 2016) a I'accident. Parasuraman et Riley classent
cet impact en deux catégories : la sous-exploitation (disuse) et la sur-exploitation (misuse)
(Parasuraman et Riley, 1997). Dans le premier cas, le probleme vient du fait que l'opérateur
n’utilise pas suffisamment la machine, dans le second, 'opérateur se repose a tort sur elle. Ce
sont deux situations qu’il est préférable d’éviter lorsqu’on concoit une stratégie de collabora-
tion. Plusieurs facteurs ont été identifiés comme influant le comportement de dépendance de
I’humain a la machine. La confiance que place un opérateur dans les capacités de la machine
apparait comme un facteur trés important (Lee et See, 2004), (Dzindolet et al., 2003). Ce-
pendant, des travaux ont mis en évidence le réle de la confiance en soi (Lee et Moray, 1994),
la charge mentale de travail (Parasuraman et Riley, 1997), la pression temporelle (Rice et
Keller, 2009), la difficulté apparente de la tache (Schwark et al., 2010) ou encore le style
de comportement (van den Brule et al., 2014). Les importances relatives de chacun de ces
facteurs dépendent du type de tdche demandé et de 'environnement. Certains ont proposé
des outils pour les identifier (Van Dongen et Van Maanen, 2013), (Dzindolet et al., 2001),
(Inagaki et Itoh, 2010).

Les facteurs de la confiance

Dans la littérature, on définit la confiance que place un individu dans un agent comme
la propension de cet agent a aider un individu dans la réalisation de ses objectifs dans un
environnement incertain et comportant des risques (Lee et See, 2004). Il s’agit d’un processus
psychologique qui permet de guider facilement le comportement d’un individu car il lui serait
extrémement cotiteux en ressources cognitives de prendre des décisions sans cette aide devant

des machines tres complexes.

La confiance est un processus cognitif interne a un individu et est, par conséquent, diffi-
cile a mesurer. Le principal moyen d’évaluer la confiance passe par des mesures subjectives.
C’est-a-dire qu’on demande au participant de remplir un questionnaire. On peut citer par
exemple 1’échelle Trust Perception Scale-HRI spécialisée dans le domaine des interactions
entre humain et robot (Schaefer, 2016), ou encore (Yagoda et Gillan, 2012a), (Park et al.,
2008), (Yagoda et Gillan, 2012b) ou (Madsen et Gregor, 2000). Le principal reproche fait
aux mesures subjectives est leur caractere invasif et incompatible avec des taches pour les-
quelles le temps est compté. D’autres travaux tentent de mesurer la confiance par des mesures
comportementales. En particulier, dans (Kaniarasu et al., 2012), les auteurs sont capables

de détecter des changements de confiance en observant le nombre d’alarmes lancées avant
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que 'opérateur baisse le niveau d’autonomie de la machine ainsi que le temps écoulé entre la
derniére alarme et le moment ou il agit ainsi. De méme, dans (Freedy et al., 2007), on propose
une mesure de la confiance dite rationnelle a partir de I’observation des comportements de

I'humain et de la machine.

A la difficulté de mesurer la confiance s’ajoute celle de la complexité de ses facteurs. Hancock
et al (Hancock et al., 2011) classent ces facteurs affectant la confiance en trois catégories : les
facteurs relatifs au robot, a I’humain et a ’environnement. Parmi les éléments émanant de la
machine, on trouve la fiabilité (Sanchez et al., 2014), la lisibilité (Oduor et Wiebe, 2008), la
prédictabilité (van den Brule et al., 2014) ou encore les types d’erreurs (Dixon et al., 2007),
(Madhavan et al., 2006) . Le niveau d’automatisation a également un impact sur le poids de
ces parametres sur la confiance (Chavaillaz et al., 2016) ainsi que le type des informations
partagées (Gao et Lee, 2006a). Parmi les facteurs environnementaux, on peut trouver entre
autre la complexité de la tache et les risques encourus (Perkins et al., 2010). Les facteurs liés
a ’humain comprennent les particularités culturelles (Sanchez et al., 2014), la personnalité
de lopérateur (Szalma et Taylor, 2011), son age (McBride et al., 2010). On peut également
citer son expertise représentée par la qualité du modele mental qu’il se fait de la machine et

de l'environnement (Wilkison, 2008) ou encore sa confiance initiale (Zhou, 2011).

2.2.2 Prédire le comportement d’un humain en modélisant la confiance
Remarques sur les modeles quantitatifs du comportement humain

Avant de concevoir une stratégie de collaboration entre humain et machine il est nécessaire
de comprendre le comportement des deux partenaires dont celui de ’humain en particulier.
Cette compréhension peut passer par des études qualitatives desquelles résultent des recom-
mandations appliquées par les professionnels. Cette compréhension peut également passer
par I’élaboration de modeles quantitatifs capable de prédire le comportement humain. Ces
modeles pourraient alors guider, avec davantage de précision que des recommandations, la
conception de stratégies de collaboration. Cependant, on a vu dans la section précédente
la diversité des facteurs influencant la dépendance d’un humain & une machine. A celle-ci
s’ajoute la diversité des facteurs impactant la confiance. De plus ces facteurs ne sont ni fa-
cilement quantifiables ni facilement observables. Parasuraman (Parasuraman, 2000) formule
donc quelques remarques sur la nature des modeles quantitatifs. D’abord il semble impos-
sible qu'un modele de comportement humain soit pertinent dans le cas général de toutes les
situations de collaboration humain-machine. Les différents modeles qui ont été proposés dans
la littérature ne sont donc pas en compétition. De plus, certains modeles sont dits normatifs,

c’est-a-dire qu’ils se basent sur une certaine théorie de la facon dont un humain prend une
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décision. Le fait que cette théorie soit en partie fausse ou trop simpliste ne rend pas obsolete
un modele quantitatif. Celui-ci peut tout de méme guider une stratégie de collaboration qui

va dans le sens d’'une amélioration des performances de 1’équipe.

Des approches de modélisation du comportement de dépendance humain

La premieére étape pour espérer prédire la confiance d’'un humain envers une machine a été
d’en comprendre tous les facteurs. Ainsi les premiers modeles de la confiance sont qualitatifs.
Par de multiples expériences réalisées dans divers contextes, on tente de dresser la liste
exhaustive des parametres a prendre en compte si on souhaite modéliser la confiance. Ce
travail a été fait dans (Desai, 2012) dans un contexte de téléopération d’un robot mobile,
dans (Boubin et al., 2017) ou encore dans (Sanders et al., 2011).

Les premiers modeles quantitatifs ont vu le jour dans les années 90. Dans (Lee et Moray,
1992), Lee et Moray proposent un modele linéaire dynamique de la confiance. La confiance
d’un opérateur au temps ¢t dépend de sa confiance au temps ¢ — 1 ainsi que des performances
et des erreurs de la machine aux temps ¢ et ¢ — 1. Dans (Gao et Lee, 2006b) les auteurs
proposent également un modele explicite mais celui-ci trouve ses bases dans la théorie de la
décision humaine. Ce modele, en plus de prédire si I'opérateur utilisera le controle manuel
ou automatique, décrit les processus psychologiques derriére la construction de la confiance.
L’entrée de ce modele est une valeur, non précisée, décrivant les capacités réelles de la ma-
chine. Ce modele a été étendu, dans (Gao et al., 2006), pour simuler une tache ou plusieurs
humains travailleraient avec une machine. Les autres modeles quantitatifs ne cherchent pas

forcément a fonder leur structure sur les théories du comportement humain.

Parmi les modeles linéaires, on peut trouver également (Xu et Dudek, 2016) qui observe le
comportement humain en plus de celui de la machine pour prédire la confiance. Dans (Li,
2020), I’état de confiance d’un humain est prédit par un filtre de Kalman dans le contexte
du controle d'un essaim de robot. Les entrées de ce modele sont les interventions de I’humain
et les performances de l'algorithme de contréle des robots. De méme, (Azevedo-Sa et al.,
2020) avance un modele estimant la confiance dans un véhicule a conduite autonome. Cette
estimation se fait grace aux observations du mouvement des yeux du participant, de son temps
d’utilisation de la conduite automatique et de ses performances sur une tache secondaire a

la supervision de la conduite.

Etant donné la nature aléatoire d’un certain nombre d’éléments dans un scénario de collabo-
ration humain-machine (I’environnement, le comportement de la machine, le comportement
humain, les observations etc...) et le faible nombre d’observations, des auteurs ont choisi d'uti-

liser des outils de statistique bayésienne. La confiance estimée d’'un humain est représentée
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par une distribution de probabilité. Cette distribution s’affine au fur et a mesure des interac-
tions. Dans (Liu, 2020), Liu fait une revue des modeles bayésiens de la confiance humaine. On
peut citer par exemple (Guo et Yang, 2020), (Van Maanen et al., 2007) et le modele OPTIMo
(Online Probabilistic Trust Inference Model) (Xu et Dudek, 2015) qui prédit la confiance et
les interventions d’un humain a partir des performances du robot, des interventions passées

de l'opérateur et de quelques retours sous forme de questionnaires.

Enfin une derniere approche consiste a construire un modele de la confiance par ’apprentis-
sage d'un réseau de neurones artificiels. C’est le cas dans (Farrell et Lewandowsky, 2000) par
exemple. Les outils en apprentissage profond et apprentissage par renforcement semblent ou-
vrir la voie vers ces modeles de la confiance basés largement sur les données. Par exemple dans
(Nam et al., 2017), les auteurs cherchent & modéliser le comportement humain lors du controle
d’un essaim de robot. En utilisant I'apprentissage par renforcement inversé ils parviennent a
identifier les parametres qui impactent la confiance ainsi que de modéliser quantitativement
cet impact. Les auteurs de (Soh et al., 2019) proposent et comparent des modeéles bayésiens
et neuronaux. Ils concluent entre autre que ces modeles peuvent étre complémentaires et

qu’une approche hybride devrait étre investiguée.

Critéres de choix d’un modéle

Dans (Hiatt et al., 2017), les auteurs proposent une revue des différentes techniques de mo-
délisation du comportement humain dans les contextes de collaboration humain robot. Ces
techniques sont classées en fonction de leur niveau de modélisation. Le niveau computation-
nel modélise ce que I'humain fait, le niveau algorithmique, comment il le fait et les processus
psychologiques sous-jacents et le niveau implémentationel la facon dont ces processus psy-
chologiques se réalisent physiquement. En outre, les auteurs identifient plusieurs criteres qui
doivent étre pris en compte dans le choix d’un modele. Parmi ceux-ci on trouve la part du
modele qui est apprise a partir de données, la quantité de données nécessaire a la convergence
du modele, la présence d’'une structure spécifiée «a la mainy, I’échelle de temps sur laquelle le

modele réalise ses prédictions ou encore la fagon dont le modele prend en compte ses erreurs.

Ces différents criteres confirment que les modeles quantitatifs proposés dans la littérature
sont aujourd’hui variés et complémentaires. La diversification des outils utilisés pour aborder
le concept de confiance humain machine montre le dynamisme de ce sujet de recherche tant

sur ’'aspect de la mesure que sur celui, peut-étre plus délicat, de sa modélisation.
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2.3 Conception de stratégies de collaboration humain-machine basées sur des

modeles quantitatifs

On s’intéresse ici aux diverses solutions qui ont été apportées au probleme d’amélioration de
la collaboration humain-machine. Plutot que de proposer une liste exhaustive des stratégies
de collaboration qui ont été publiées, on choisit dans cette section de citer une dizaine d’entre
elles, parmi les plus récentes, démontrant leur diversité. On s’intéresse particulierement aux
solutions qui cherchent & maintenir une charge de travail et/ou un niveau de confiance ap-
propriés. En outre, chacune des solutions citées sont basées sur un modele quantitatif du
comportement humain. Ces modeles sont utilisés pour prédire les performances, les décisions

ou le comportement de dépendance d’un humain a la machine.

2.3.1 Des stratégies d’allocation de controle (contrdle manuel ou automatique)

Une des fagons d’éviter qu’'un opérateur sous-exploite ou sur-exploite une machine est de
guider son choix de passer du contréle manuel au controle automatique et vice versa. Certaines
stratégies consistent a avertir I'opérateur lorsque la machine considere qu’il serait mieux de
changer le controle d'un systeme. Dans (Saeidi et Wang, 2019), les auteurs utilisent des
modeles dits objectifs de la confiance et de la confiance en soi ainsi que des modeles de
performance humaine pour proposer une stratégie d’allocation dynamique de tache. Ils testent
leur solution dans un contexte de téléopération d’un robot mobile et montrent que leur
stratégie est plus avantageuse (meilleures performances et charge mentale réduite) que celle
consistant a laisser le choix du mode de controle a 'opérateur seul. Dans (Wang et al., 2018),
une stratégie de controle est proposée concernant le choix de la trajectoire de plusieurs robots.

Cette stratégie integre également un modele dynamique de la confiance humaine.

2.3.2 Des stratégies de collaboration influencant le comportement de la machine

via des états dégradés

Influencer ou contraindre le choix du mode de controle (manuel ou automatique) permet
d’éviter directement des situations de sur-exploitation ou de sous-exploitation. C’est un
exemple d’allocation de niveau d’automatisation adaptatif. En effet, le niveau d’automa-
tisation s’adapte ici a la confiance de I’humain en la machine, la confiance de la machine
en I’humain et méme de la confiance de I’humain en lui-méme. Cependant, comme le décrit
(Muslim et Itoh, 2019), il n’est pas nécessaire d’adopter une stratégie d’allocation de controle
adaptative pour améliorer la collaboration dans une équipe humain-machine. On peut égale-

ment concevoir des stratégies adaptatives de partage de taches mais qui ne changent pas le
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niveau d’automatisation. Par exemple, la machine peut adapter son comportement au niveau

de confiance de I'humain mais celui-ci garde toujours 'autorité sur la machine.

Parmi ces stratégies qui ne changent pas le niveau d’automatisation de la collaboration, on
trouve celles qui consistent a passer d’un état de fonctionnement normal a un état de fonction-
nement dégradé, et vice versa, en fonction du niveau de confiance estimé de 'opérateur. Par
exemple, dans la stratégie TACtC' ( Trust-Aware Conservative Control) (Xu et Dudek, 2016)
(Xu, 2016), un robot mobile va altérer son comportement lorsque son superviseur humain
perd confiance en lui. Cet état de fonctionnement altéré consiste a rendre les mouvements
et les décisions du robot plus prédictibles et compréhensibles pour 'humain (vitesse réduite
et mouvements plus lisses). La confiance du superviseur humain est estimée par le modele
OPTIMo évoqué plus haut. Dans le méme esprit, dans (Sadrfaridpour, 2018), on cherche a
améliorer la collaboration dans une tache de manipulation d’objet partagée par un humain
et un bras robotique. Lorsque la confiance de I'opérateur est au dessus d'un certain seuil, le
robot est pro actif dans le choix de la trajectoire et estime la trajectoire souhaitée par son
partenaire humain lui permettant ainsi de mieux prendre en charge les efforts lors de la ma-
nipulation. Lorsque la confiance est trop basse, le choix de la trajectoire est laissé a I'humain.
L’estimation de la confiance de I’humain est basée sur les observations des performances du
robot mais aussi de la force appliquée par 'humain sur 'objet a déplacer, interprétée comme

le désaccord entre le robot et I’humain.

2.3.3 Des stratégies de collaboration influencant le comportement de la machine

avec un impact continu de la confiance

On a vu des stratégies qui proposent un mode dégradé lorsque la confiance descend en-dessous
d’un certain seuil. Voyons ici des stratégies qui inteégrent de maniere continue le niveau de
confiance de 'humain dans le comportement de la machine, c¢’est-a-dire sans le comparer a
un simple seuil. Par exemple, dans (Chen et al., 2020), un certain nombre d’objets avec des
récompenses et des risques différents, doivent étre déplacés par un bras robotique. L’opérateur
qui supervise le robot peut choisir de I'interrompre pour déplacer ’objet a sa place si il pense
que le robot va échouer. Les auteurs proposent une stratégie qui indique quel objet doit
étre déplacé a partir d’un estimé de 1’état de confiance de I’humain. Cette stratégie est le
résultat de la résolution d’un processus de décision markovien partiellement observable. Dans
(Saeidi et al., 2017), il est question de téléopération dans laquelle la commande du robot est
partagée entre I’humain et I'algorithme. La part du contréle de I'algorithme est pondérée par
la confiance estimée de ’humain. De plus, cette confiance est également prise en compte dans

le retour haptique fourni a 'opérateur.
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2.3.4 Des stratégies de collaboration promouvant une charge de travail appro-

priée

Jusque 1a, on a évoqué des stratégies qui promeuvent principalement une confiance appropriée
de 'humain et qui, parfois, prennent en compte ses performances et I'impact de la charge de
travail sur ses performances. Les deux prochains exemple de solutions adaptatives inteégrent
en particulier des modeles de la charge de travail. Dans (Srivastava et al., 2012), la machine
doit choisir le temps laissé a I’humain pour chacune des décisions qu’il doit prendre. La
conception de cette stratégie utilise des modeles décrivant la prise de décision humaine, le
compromis entre rapidité et précision ainsi que la conscience de la situation. Dans (Savla et
Frazzoli, 2011), un modele dynamique de la charge mentale permet de concevoir une stratégie

d’affectation de taches a un opérateur adaptée a sa charge mentale courante.

2.3.5 Des cadres de conception promouvant une confiance appropriée

Lorsqu’une solution de collaboration est proposée, elle s’inscrit en général dans un contexte
relativement particulier (manipulation d’objet, téléopération, supervision etc...). Cependant,
certains travaillent sur des méthodes de conception beaucoup plus générales. C’est le cas de
(Zhang et Lin, 2019) ou les auteurs proposent de concevoir une stratégie de collaboration
humain-machine en utilisant le formalisme des POMDP. Dans un exemple, ils prennent en
compte 'humeur d’un conducteur comme un des états du POMDP montrant le caractere
adaptatif de leur solution. De méme, dans (Floyd et al., 2014), un formalisme est proposé
pour permettre a une machine de choisir a chaque instant le comportement promouvant le
plus la confiance parmi un ensemble de comportement disponible. Cette méthode permet, de

plus, de prendre en compte les retours exprimés par 'humain (Floyd et al., 2015).

2.4 Conclusion de la revue de littérature

Ce chapitre a permis de mettre en lumiere les points suivants. D’abord la charge de travail et
la confiance sont deux facteurs qui peuvent impacter les performances d'une équipe humain-
machine. Il semble donc important de les prendre en compte si on souhaite concevoir une
machine centrée sur 'humain. De plus, on a vu que beaucoup se sont attelés a modéliser
ses concepts, y compris de maniere quantitative, en guise de premier pas vers la conception
de meilleures stratégies de collaboration. Certains de ces modeles ont d’ailleurs déja pris
part a 1’élaboration de ces stratégies. La solution proposée dans ce mémoire s’inscrit dans
cette démarche puisqu’il s’agit de proposer une stratégie de partage de taches basée sur des

modeles quantitatifs de confiance et de charge de travail.
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L’originalité de la solution proposée dans ce mémoire réside dans la combinaison du/de
— contexte, i.e., la suggestion de partage de taches pour des séquences de classifications,
— la prise en compte de I'impact de la charge de travail sur les performances,
— la prise en compte de la dynamique de la confiance.
En effet, ni la méthode, ni les modeles, ni le concept de partage de taches adaptatif ne sont
a eux seuls une nouveauté dans le domaine de la collaboration humain-machine. Cependant

I’association de ces divers éléments appliqués a ce contexte constitue I'intérét de ce mémoire.
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CHAPITRE 3 SOLUTION STATIQUE

Dans ce chapitre, une premiere solution statique est proposée pour répondre au probléme
de partage de taches décrit dans la section 1.2. Cette stratégie est congue pour prendre en
compte 'impact de la charge de travail de l'opérateur sur ses performances. Pour ce faire
on modélise la relation entre performance et charge de travail en étendant les concepts de
la Théorie de la Détection du Signal (TDS), théorie régulierement utilisée pour aborder des
problemes de performances humaines. Il résulte du modele de performance une stratégie
statique de partage de taches entre humain et machine. Cette stratégie servira de point de

comparaison dans la suite de ce mémoire.

La section 3.1 introduit le modele liant performance humaine et charge de travail. Ensuite
on discute de la fagon dont on pourrait identifier les parametres de ce modele dans la section
3.2. Enfin on développe dans la section 3.3 la solution statique au probleme de distribution
de tache.

3.1 Un modeéle de performance humaine dépendant de la charge de travail

3.1.1 Performance d’un classificateur binaire
Caractéristique de performance (ou Receiver Operating Characteristic (ROC))

La capacité d'un classificateur binaire peut étre caractérisée par son taux de vrais positifs
(Pyp) et celui de faux positifs (Prp) espérés lors d'une séquence de plusieurs classifications.
On appelle caractéristique de performance (ou Receiver Operating Characteristic (ROC))
(Fawcett, 2006) ’ensemble des points (Prp, Pyp) obtenus en faisant varier le seuil de discri-
mination du classificateur. La figure 3.1 montre des exemples de courbes ROC. Le point (0, 1)
représente un classificateur parfait. Il détecte 100% des objets intéressants et ne lance aucune
fausse alarme. Un point sur la diagonale partant de (0,0) a (1,1) représente un classificateur
aléatoire, i.e., qui décide de la classe d'un objet en langant une piece. Les courbes de la figure

3.1 sont tracées avec 'équation (3.5) avec d = 2 (trait pointillé) et d = 0.8 (trait plein).

Les courbes ROC sont utilisées comme outil graphique pour qualifier les performances en
détection de signal, classification d’évenement ou encore en diagnostique médical car il met
en évidence le compromis entre bonnes détections et fausses alarmes (Egan, 1975; Swets,
1988). Plus récemment, cet outil est souvent utilisé pour visualiser les performances des

classificateurs construits par apprentissage (Spackman, 1989).
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Courbes ROC
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Figure 3.1 Exemple de courbes ROC

Il est possible de tracer la courbe ROC d’un classificateur directement a partir de données
expérimentales. Lorsque le classificateur est un opérateur humain, il peut étre pertinent
d’utiliser un modele guidant le tracé de la caractéristique de performance. L’utilisation d’un

modele sous-jacent permet de

1. faciliter le tracé de sa caractéristique de performance en réduisant cette étape a I’iden-

tification de quelques parametres seulement,

2. interpréter 'impact de certains parametres comme la charge de travail de 'opérateur

sur ses performances.

Modéle proposé par la Théorie de la Détection du Signal (TDS)

Le modele de performance humaine proposé dans ce mémoire est basé sur la Théorie de la
Détection du Signal (TDS) (Peterson et al., 1954). Cette théorie est un moyen de modéliser
et d’évaluer la capacité a détecter un signal dans un environnement bruité. Initialement les
concepts de la Théorie de la Détection du Signal (TDS) ont été appliqués a la détection
automatique de signal mais rapidement des travaux ont montré les apports de cet outil en
psychologie (Green et Swets, 1966). Les principes fondamentaux peuvent étre trouvés dans
(Wickens, 2002) et (Wickens et al., 2015, Chapitre 2).

Le modele le plus simple proposé dans la TDS est appelé modele GVE. Reprenons le pro-
bleme de classification énoncé en introduction 1.2. Pour plus de clarté on omettra I'indice k
représentant I'index d’un objet parmi une séquence de classification. On a défini Y comme
une variable aléatoire représentant les informations disponibles pour permettre au classifi-
cateur de faire son choix. Supposons que les mécanismes d’acquisition et de traitement de

I'information d’'un humain transforme ce signal Y en une autre variable aléatoire I continue
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et unidimensionnelle appelée réponse interne.

Le modele Gaussien a Variances Egales fait 'hypothese que la réponse interne I suit la loi
N(0,1) quand I’hypothese Hy est vraie ou la loi N'(d, 1) dans le cas de 'hypotheése Hy, avec
N (p,0?) la loi normale de moyenne p et de variance o?. On notera d, un réel positif, la
sensibilité. La décision de I’humain est basée sur un seuil unique A. Si I > )\ alors la décision
sera D = 1, sinon I'humain décide D = 0 (voir la figure 3.2). Plutét que de parler du seuil
A dont la valeur dépend de la variable abstraite qu’est la réponse interne I, on préférera
définir le biais [ représentant la propension d’un classificateur a choisir une hypothese plutot
qu'une autre. On définit le biais comme le rapport des probabilités que la réponse interne

corresponde au seuil A sachant que le signal vienne des hypotheses H; ou Hy,

P(I = \| Hy)

”BZP(J:MHO)'

(3.1)
Le biais 3 grandit avec le seuil A. Dans le cas du modele GVE, il s’agit du rapport des densités
de probabilités des variables I|H; et I|Hy suivants des lois normales, évaluées en A. Apres

calcul, on obtient
B =t 2, (3.2)

Le modele GVE a pour particularité de distinguer la sensibilité du décideur de son biais.
Typiquement ce modele est capable de déterminer si des erreurs de classifications sont cau-
sées par une faible sensibilité ou un biais inapproprié. Le biais est fixé par I'opérateur mais
plusieurs facteurs peuvent I'influencer comme la perception de la fréquence de présence des
signaux et celle de I'importance relative des erreurs. Une formation peut également impacter
le biais. La sensibilité, quant a elle, peut étre interprétée comme la capacité du mécanisme
de détection a distinguer les stimuli provenant du signal de ceux provenant du bruit. Plus la
sensibilité est grande, plus on peut espérer différencier facilement les signaux. Si d = 0 alors

aucun indice ne permet de guider la classification.

Tracé de la courbe ROC avec le modéle GVE

On note ® la fonction de répartition d'une variable aléatoire X suivant la loi normale centrée

réduite, définie pour tout z € R par

O(z) = P(X < )

. (3.3)

]_ x
= — e
\/277' /—oo
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Hy d H,y

Vrai négatif Vrai positif

P(I\H)
P(I|Ho)

1

0 A Réponse interne

Faux négatif Faux positif

Figure 3.2 Schéma du modeéle Gaussien & Variances Egales de la Théorie de la Détection du
Signal

Dans le modele GVE la probabilité de réaliser un vrai positif est donnée par

Pvp = P(I > \| Hy)
=1-PX+d<))  avec X ~N(0,1) (3.4)
— B(d— )

Or on a également la probabilité de réaliser un faux positif Ppp = P(I > A\ | Hy) = ®(—)).
D’ou I'expression de la courbe ROC résultant du modele GVE :

Pyp = ®(d+ &' (Prp)). (3.5)

La figure 3.1 montre deux courbes ROC tracées avec 1'équation (3.5) pour deux différentes
valeurs de sensibilité d. Plus la sensibilité est faible plus la courbe s’aplatit contre la diagonale

(ou d = 0), c’est-a-dire que le classificateur devient aléatoire.

Remarque. On pourrait supposer que la réponse interne [ suive une loi logistique plutot
qu'une loi gaussienne comme dans le modele GVE. En remplacant & par la fonction de
répartition de la loi logistique standard dans I’équation (3.5), on obtient une courbe ROC

décrite par
Prp

" P+ (1 — Ppp)e~®

La figure 3.3 montre un exemple de courbes ROC tracées en supposant que la réponse interne

Pyp (3.6)

suive des lois logistiques. Les courbes sont tracées avec 'équation (3.6) avec d = 2 (trait
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pointillé) et d = 0.8 (trait plein). Ce choix a I'avantage d’offrir une formulation explicite des
courbes ROC contrairement au cas gaussien. Les démonstrations mathématiques de la fin
de ce chapitre en seraient simplifiées. On décide cependant de s’en tenir au modele gaussien
car, tel que justifié dans la TDS (Wickens, 2002), d'un point de vue empirique, les données
semblent souvent révéler des distributions gaussiennes. Ceci est appuyé par la théorie avec le
théoreme central limite qui garantit que la somme de variables aléatoires indépendantes et

identiquement distribuées converge en loi vers une loi normale.

3.1.2 Impact de la charge de travail

On souhaite étendre le modele de performance humaine donné par la TDS en prenant en

compte 'impact de la charge de travail de I’humain.

Définition de la charge de travail W

On définit la charge de travail W € [0, 1] représentant la quantité de travail effectuée pendant
une période de travail. Si N objets doivent étre classés pendant une période de travail et si
I'’humain effectue la classification de n” objets alors la machine doit classifier les n™ objets
restants (n™ = N —n"). Dans la suite on utilisera réguliérement 1’exposant h (respectivement
m) pour désigner une variable se rapportant a ’humain (respectivement a la machine). On

définit la charge de travail par :

(3.7)

Taux de vrais positifs
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Figure 3.3 Exemple de courbes ROC tracées avec la loi logistique
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Impact de la charge de travail W sur la sensibilité d

Dans le cadre du modéle Gaussien & Variances Egales, trois parameétres peuvent étre impactés
par la charge de travail : la sensibilité d, le critere A et le biais 3. On note que ces parametres
sont reliés entre eux par 1’équation (3.2). On cherche a introduire dans ces parameétres une

dépendance a W.

Dans (Putri et al., 2016), les auteurs évaluent I'impact de la fréquence d’apparition d’un signal
sur la performance de détection dans un environnement multi-tadche. Dans cette étude les
participants ont comme tache primaire de détecter des alarmes dans une interface présentant
52 jauges de niveau. Deux scénarios de complexité différente sont testés (le nombre d’alarmes
est multiplié par deux entre les scénarios). Les données recueillies servent a identifier le
modele gaussien de la TDS. Les résultats montrent que la sensibilité diminue lorsque la
quantité d’alarme a détecter augmente tandis que le biais des participants ne semble pas
significativement impacté. Bien que la tache ainsi que I’environnement de cette étude soient
différents de ceux énoncés dans notre probleme de classification binaire d’évenement, on

décide d’inclure la charge de travail dans le parametre de sensibilité.

Dans (Sorkin et Woods, 1985), les auteurs proposent des modeles de performance humaine
dans le cas ou 'opérateur doit valider ou non des alarmes lancées par un systeme automa-
tique. En particulier, ils proposent deux modeles reliant sensibilité de 'humain, au sens de la
TDS, et la fréquence des alarmes. Dans les deux cas, la sensibilité humaine est une fonction
décroissante de la fréquence des alarmes. Dans ce contexte, on peut supposer que la fréquence

d’apparition des alarmes s’apparente a la charge de travail telle qu’on 'a défini.

On propose le modele linéaire suivant :

d=d(W) = dy+ d,W. (3.8)

Ce modele tres simple est choisi pour sa facilité d’identification. Il est linéaire et ne dispose
que de deux parametres dy > 0 et d; < 0. De plus il traduit la diminution de la sensibilité

lorsque la charge de travail augmente.

Ainsi on obtient une famille de courbes ROC indexées par la charge de travail W (figure 3.4).

Plus la charge de travail est grande plus les points (Pyp, Prp) se rapprochent de la diagonale.
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Courbes ROC
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Figure 3.4 Famille de courbes ROC (équation (3.5)) indexées par la charge de travail W
(équation 3.8) avec dy = —d; =4

Impact de la charge de travail W sur le biais [ et le critere de décision A\

Si on considere que le biais § du classificateur humain est indépendant de la charge de travail

W comme le suggere (Putri et al., 2016), alors de 1’équation (3.2) on déduit
1
A(W)A(W) = Sd*(W) = In B (3.9)

D’ou, en supposant d(W) # 0,

Prp(W) = ® (— (dl(nmé) + d(‘;/)» , (3.10)

avec d(WW) donné par 1'équation (3.8). Le point (Pyp, Prp) décrivant les performances d’un
opérateur se déplacerait alors sur les courbes isobiais en fonction de sa charge de travail
(figure 3.5). Quand la charge de travail devient grande, 'opérateur tendrait vers I'un des
deux comportements suivants : soit il sélectionne toujours I'hypothese Hy (si In 3 < 0), soit
il sélectionne toujours I’hypothese nulle Hy (si In 3 > 0). Si son biais est exactement égal a
1 (In(B) = 0), alors a chaque classification, il aura autant de chance de prendre la bonne

décision que de se tromper.

Supposons que ['opérateur ait appris une regle de classification pendant une formation. Ainsi

on peut penser que sa regle de classification reste identique quelque soit sa charge de travail.
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Figure 3.5 Courbes de performance humaine isobiais

En revanche sa capacité a appliquer cette regle, elle, est susceptible d’étre amoindrie quand
I'opérateur est surchargé. Du point de vue du modele GVE, cela signifie que le critere de
décision A est indépendant de W. Supposer A constant est cependant incompatible avec

supposer que le biais 8 est constant.

On choisit finalement de supposer que la sensibilité d varie avec la charge de travail selon
(3.8) et que le critere A reste constant. Etant donné que le taux de faux positifs ne dépend que
de A (Prp = ®(—N\)), cela revient a supposer que le taux de faux positifs est fixé. Le point
(Pyp, Ppp) décrivant les performances d'un opérateur se déplacerait alors sur les courbes

isocritére en fonction de sa charge de travail (figure 3.6).

3.2 Calibration du modele

Dans cette section, on souhaite aborder la question de l'identification du modele liant per-
formance et charge de travail défini dans la section précédente. Pour ce faire, on commence
par décrire une expérience théorique permettant de récolter les données nécessaires a la cali-
bration du modele. Ensuite, a partir de données expérimentales fictives, on montre comment

les parametres du modele peuvent étre identifiés facilement.
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Figure 3.6 Courbes de performance humaine isocriteére tracées avec le modele GVE (3.5)
complété par la dépendance a la charge de travail W donnée par (3.8)

3.2.1 Récolte des données

Dans un double objectif de calibrer les parametres du modele de performance humaine et
d’en évaluer la pertinence, on cherche a récolter des données expérimentales. Le modele que
I'on cherche a évaluer a une entrée, la charge de travail W, et deux sorties, la performance
de classification caractérisée par Pl'p et Plp. Les parameétres a identifier sont au nombre de
deux : dy et d;.

Le but de I'expérience est de mesurer les performances de I'opérateur tout en faisant varier
sa charge de travail. Cependant, dans le but de tester la validité du modele, il est nécessaire
d’introduire de la variabilité dans le comportement de 'opérateur. On cherche en particulier,
pour une charge de travail donnée, a parcourir le plus possible la courbe ROC de 'opérateur.
Pour cela il est nécessaire de l'inciter a changer son critere de classification tout en gardant la
sensibilité constante. Plusieurs méthodes sont possibles pour expérimentalement faire varier

le critére de décision d’un humain, entre autre (Wickens, 2002, Chapitre 3),

1. faire varier la fréquence d’apparition de I’événement intéressant (p = P(H;)) : si un
évenement intéressant est tres rare, 'humain aura tendance a baisser son critere et
donc augmenter son taux de fausses alarmes. A l'inverse, si I’événement semble tres

fréquent, le taux de fausses alarmes devrait étre plus faible.
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2. faire varier la perception des cofits relatifs de chaque réponse (RVF, RFP, RVN et
RFN ) )

Les participants non experts seront davantage sensibles a la premiere méthode alors que les

opérateurs plus entrainés peuvent plus facilement altérer leur critere de décision suite a une

demande plus explicite.

3.2.2 Identification des parametres

Supposons qu’une expérience a permis de récolter les points tracés sur la figure 3.7.

On rappelle que le modele a identifier est le suivant :
Pyp = ®(dy + d,W + & (Prp)). (3.11)

Pour simplifier I'identification des parametres, on représente les points expérimentaux dans
le plan gaussien, c’est-a-dire qu’on applique la transformation Z, := ®~!(x) (figure 3.8). On
note qu’il faut retirer les points égaux a 0 et 1 car @' est défini sur (0,1). L’équation (3.11)
devient alors

Zp,p =do+ W+ Zp,,. (3.12)

Supposons qu’on dispose de n > 0 mesures, indexées par i, sous la forme (Zp, i, Zpyp.is Wi).

Supposons de plus que ces mesures proviennent d’'un méme modele entaché d’un bruit :

Zpyp1 — Lpppi 1 W

+ w, (3.13)

ZPVP,TZ - ZPFP,TL 1 Wn

ol w est une erreur aléatoire de moyenne 0 et d’écart-type o. Sur la figure 3.7, on a d =
[4,—4]T et 0 = 0.3.
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Figure 3.7 Données expérimentales fictives
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Figure 3.8 Données expérimentales fictives dans le plan gaussien
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En notant

_ZPVPJ - ZPFP,l

y = : )
_ZPVP:” - ZPFP,TL
1 W,

H= ,
1 w.,
d

d=|"],
d;

on formule le probleme d’estimation suivant
y = Hd 4+ w. (3.14)
Ce probleme peut étre résolu par moindres carrés avec en particulier,

d=H"H)'Hy. (3.15)

On obtient avee le jeu de données fictives d = [3.09, —3.78]7 (voir figure 3.9).

Remarque. La méthode d’identification présentée ici est simple et certaines précautions de-
vraient étre prises si on devait 'appliquer a un vrai jeu de données. Par exemple, la trans-
formation Z, (3.12) peut étre tres sensible aux bruits de mesure et introduire des erreurs au

moment de 'identification des parametres.

3.3 Une solution statique au probléme de partage de taches

3.3.1 Le probléme d’optimisation statique

Maintenant que le modele liant charge de travail et performances humaines est défini, on
formule un probleme de partage de taches exploitant ce modele. Dans ce chapitre, on est
intéressé par une stratégie de partage de taches statique, c’est-a-dire que le partage de taches

ne change pas en fonction des périodes de travail.

Soit p := P(H;) (p # 0) la probabilité que 1'objet ou 'événement soit intéressant (hypothese
Hi). On suppose que l'opérateur réalise une proportion W de tache pendant une période
de travail. La répartition des résultats de classification observée pendant cette période est
détaillée dans le tableau 3.1.
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Figure 3.9 Modele de performance identifié

Etant donné les récompenses (RV?, RFP RFN RVN  RM) associées a chaque issue d’une clas-

sification (section 1.2), on définit la fonction de récompense f suivante

fW) =
(1-W) [p(P{}‘PRVP + (1 — P(}IP)RFN> +(1—p) (plgnPRFP n (1 B P?P)RVNH N
o B+ 1 o)) 0 o+ 1 )
W R"

(3.16)

La stratégie de partage de taches statique proposée dans ce chapitre consiste a suggérer a
I'opérateur d’accomplir une proportion a; = W* de classification quelque soit la période de
travail ¢. La charge de travail optimale W* est le résultat de la maximisation de la fonction

de récompense instantanée f :

W* = argmaz f(W). (3.17)

wWelo,1]
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Tableau 3.1. Résultats d’une période de travail.

Classe réelle

Classificateur Classe prédite Positif Négatif Total

Positif (1 —-W)pPJp 1-W)1-p)Ppp
Machine (1-W)

Négatif (1=W)p(1 - Pyp) | (1 =W)(1 =p)(1 - Prp)

Positif WpPLp(W) W (1l —p)Ph(W)
Humain w
Négatif Wp(l = Pip(W)) | W(L=p)(1— Pip(W))
Total P (1-p) 1

3.3.2 Résultats du probleme d’optimisation

Nous nous intéressons ici a la résolution du probleme de maximisation statique (3.17). On

note avant tout, en développant (3.17), que le probléme est équivalent a

W* = argmaz f(W) (3.18)
We|o,1]

ou

FO) =9 (P07 - PE) (R = R)
(3.19)
Tt |

Intérét d’une équipe humain-machine

Un premier résultat donne la condition suivant laquelle I'opérateur humain est bénéfique a

I’équipe.

Théoréme 1. Supposons que Pty et Pl, sont des fonctions continues de W. Alors f atteint

son maximum W* dans [0, 1].
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Supposons de plus que P, et Pk, sont différentiables en W =0 et W = 1. Si

p(R"? = R™)(Pp(0) = ) + (1= p)(RFF = RYN) (Php(0) — Pp) > |R"],  (3.20)
alors le maximum W* est dans |0, 1]. Si, de plus,

p(R"" = R™)(Plp(1) = Pp) + (1= p)(RTF = RYN) (Php(1) — PRp) <|R",  (3.21)

alors le maximum W* est dans |0, 1[.

Remarque. Puisqu’on a supposé que I’humain a un taux de faux positifs indépendant de sa

charge de travail, les conditions (3.20) et (3.21) deviennent respectivement :

(P\f/LP(O) - P(/np) > C,

(PgP(l) - P\TP) <C, 52

B IR (- (R ) (Pl — Py

¢ p(RVP _ RFN)

(3.23)

Ce résultat montre que former une équipe humain-machine devient utile lorsque les perfor-
mances de lopérateur lorsqu’il est peu chargé (quand W = 0) sont suffisamment grandes
devant celles de 'algorithme et que ses performances lorsqu’il est tres chargé (quand W = 1)

sont suffisamment petites devant celles de la machine.

Démonstration. Dans le but de simplifier les notations, on réécrit (3.19) :

F(W) = aWPyp(W) + 6W Pip(W) — AW, (3.24)
avec
o :p<RVP _ RFN),
5= (1-p)(R"" = RN,
v =p(R"" = R*N) Py + (1 - p)(R™" = RVN) P — R™.

La fonction f est continue sur un intervalle fermé réel donc atteint son maximum dans [0, 1].
De plus,
F'(W) = aPip(W) + 6Ppp(W) + W (aPYp(W) + SPEp(W)) — 7.

Or il suffit d’avoir f’(O) > 0 pour s’assurer que le maximum W* n’est pas zéro, i.e., il suffit
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d’avoir
aP}p(0) + 0Ppp(0) > 7,

ce qui correspond & Phypothése (3.20). De méme, il suffit d’avoir f/(1) < 0 pour s’assurer

que le maximum W* n’est pas 1, i.e., il suffit d’avoir
aPyp(1) +6Ppp(l) <7,

ce qui correspond a I’hypothese (3.21). O

Résolution numérique du probleme

On s’intéresse ici a la résolution numérique du probleme (3.17) lorsque qu’on utilise le modele
de performance décrit plus haut. Le résultat suivant montre que le probleme de recherche de
maximum peut étre résolu facilement par dichotomie ou par résolution de équation f’ (W) =
0. La figure 3.10 montre un exemple de résolution ott Plp = Pl = 0.1, dy = —d; = 4 et
P, = ®(1.5 + &~ 1(Pm,)). On obtient alors W* ~ 0.38.

Théoréme 2. Supposons que P,(W) soit donné par (3.5) et (3.8) et que P!, soit indé-
pendant de W. Sous les conditions du théoréme 1, f a un unique maximum global W* dans
10,1[, et W* est 'unique solution de ’équation f'(W) = 0.

Démonstration. Etant donné que Pl,(W) = 0, Pexpression de f’ devient :

FW) =aPlp(W)+aWPlp(W) — v+ 6Ppp, (3.25)

ott PLp(W) = ®(diW + K), en notant K := dy + ®~H(Plp).
On cherche & montrer que f’ change de signe qu'une seule fois sur ]0, 1.

On sait du théoreme 1 que f'(0) > 0 et f/(1) < 0. De plus, f’ est dérivable et

F'W) = a(2PFp(W) + WPp(W)),
leé —(d1W + K)2
Jon exp ( 5

= g(W)(diW? + d KW — 2),

) (W2 + dy KW —2), (3.26)

oit g(W) est strictement positif (si d; < 0). Ainsi f” a le méme signe que le polynéme
(W) := (d%W2+d1K W—Q). Ce polynome possede deux racines réelles Wy et Wy (W; < W)

car son discriminant A = d3(K?+8) est positif. Le coefficient d? est positif donc le polynome



34
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Figure 3.10 Maximisation de f (3.19)

est d’abord positif, puis négatif puis de nouveau positif. Or [(0) = —2 < 0 donc la premiere
racine W est négative. En outre,

— si W, > 1, alors f” est toujours négative, donc f’ est décroissante,

— si Wy < 1, alors f” est décroissante puis croissante sur [0, 1.
Dans les deux cas, étant donné que f/(0) > 0 et f/(1) < 0, f’ ne peut passer qu'une fois par
0 sur ]0, 1[. W* est donc 1'unique solution de f'(W) = 0.

O

3.3.3 Conclusion

Dans ce chapitre, un modele liant, a chaque période de travail, charge de travail W et per-
formance humaine a été introduit. Ce modele a permis de proposer une premiere solution
au probleme de partage de taches dans ’équipe humain-machine. Cette stratégie simple est
la solution d'un probleme statique de maximisation de récompense instantanée. On peut
espérer de cette stratégie qu’elle trouve un équilibre entre charge de travail et performance
humaine. Cependant le probléeme formulé pour aboutir au partage de taches statique repose
sur une hypothese importante : 'opérateur suit toujours les recommandations de la machine.
Autrement dit on suppose que jamais il ne choisira de réaliser plus ou moins de classifications
que suggéré par la machine. Or il a été mis en évidence (voir chapitre 2) que la confiance
entre humain et machine pouvait avoir un impact sur le choix d’un opérateur de réaliser
une tache manuellement plutét que de la déléguer a une machine. Cette remarque conduit a

explorer de nouvelles stratégies de partage de taches.
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CHAPITRE 4 SOLUTION ADAPTATIVE

On a déja mis en évidence la nécessité de prendre en compte le comportement de dépendance
a la machine de 'opérateur dans le design d’une stratégie de partage de taches. Pour ce faire,
on a décidé de s’intéresser a 'un des principaux facteurs de la dépendance : la confiance
que place un humain dans les capacités d’une machine. La nature dynamique de la confiance
justifie la nécessité d’adopter une stratégie de collaboration adaptative, i.e., qui s’adapterait
a 1’état changeant de la confiance humaine. Dans ce chapitre, on propose et teste une telle

solution.

En premier lieu, on présente dans la section 4.1 le modele dynamique de la confiance qui est
utilisé dans la conception de la stratégie d’allocation de taches présentée dans la section 4.2.
Ensuite, dans la section 4.3, on cherche a prendre en compte la nature non observable de la
confiance pour proposer une stratégie plus réaliste. Le reste du chapitre tente d’explorer en

simulation les bénéfices et les limitations de la solution avancée.

4.1 Un modeéle dynamique de la confiance

4.1.1 Définition et dynamique de la confiance

Le modele présenté ci-dessous est une simplification du modele proposé par Gao et Lee
dans (Gao et Lee, 2006b). Dans cet article, les auteurs proposent un modele dynamique et
quantitatif capable de prédire a chaque instant si un opérateur va préférer le mode manuel
au mode automatique pour réaliser une tache de supervision de processus industriel. La
dépendance de ’humain a la machine est vu comme la différence entre la confiance que place

I’humain en les capacités de la machine et celle qu’il place en ses propres capacités.
Plusieurs simplifications ont été faites pour aboutir au modele présenté dans ce mémoire :

1. On suppose que la confiance en soi de I'opérateur reste constante au cours du temps.
Cette hypothese peut étre valable si 'opérateur est expérimenté. Ceci étant dit, il est
tout a fait possible d’étendre le modele proposé en prenant en compte la confiance en
SOi.

2. On suppose que les performances de classification de la machines sont observables par

Iopérateur a chaque fin de périodes de travail.

3. Dans (Gao et Lee, 2006b), la prédiction du modele est binaire (controle manuel ou

automatique) alors que nous cherchons plutot a prédire le pourcentage de tache que
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l'opérateur va compléter lui-méme. Ainsi les modeles de dépendance seront un peu
différents.
Définition de I’état humain

L’état de confiance de l'opérateur au début de la période t est représenté par un couple de
réel
l‘? = (TtaBt>T7 (41)

ou T; est appelé confiance dans la machine et B; est I'estimation faite par 'opérateur des

capacités de la machine.

Dynamique de I’état

La dynamique de 1’état 2 a pour entrées I’état décrivant I’environnement a la période ¢, noté

xy, ainsi que la suggestion de partage de taches de la machine a;. La dynamique est donnée

par
BH‘I = Bt +7] (C(xf,x?,at) - Bt) + th>
Ty = (1= )Ty + pBry +w/ (4.2)
=(1—wTi+u (Bt +n (C(If,x?,at) — Bt) + wf;) +wl.
ou

wP et w!l sont des variables aléatoires de moyenne nulle et d’écart type, respectivement,

op et or,

n € [0, 1] représente la transparence de l'interface. Plus 1 est grand, plus 'opérateur a

une bonne estimation des capacités que la machine vient de démontrer,

p € [0,1] représente 'inertie de la confiance. Plus u est proche de 1, plus opérateur
donne de l'importance aux interactions récentes par rapport aux interactions plus

anciennes,

C(z¢, 20, a;) € R est la fonction de capacités réelles de la machine. Cette fonction
représente les performances de la machine démontrées si la machine propose un partage

de taches a; alors que I’état de I'environnement est x¢ et celui de ’humain, x”.
t )yt

La définition de la fonction représentant les capacités réelles de la machine vu comme 'entrée
du modele de la dynamique de la confiance dépend du scénario étudié. Il peut s’agir de la
précision avec laquelle la machine exécute sa tache, d’une rapidité d’exécution, d’un taux

d’erreur ou encore d'un taux de succes. Dans le cas du scénario décrit dans la section 1.2, il
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est possible que 'humain prenne en compte non seulement les performances de classification
de la machine mais également sa capacité a suggérer un bon partage de taches, comme c’est

le cas avec la définition suivante :

P™ et P sont les pourcentages de succes des classifications réalisées respectivement par la

machine et '’humain. Ils sont définis par :

P =pPyp+ (1 —p)(1 — Ppp)

(4.4)
P! = pPyp(Wy) + (1 —p)(1 — Ppp)

ott Plp(W;) est donné par le modele de performance humaine décrit dans le chapitre précé-
dent (section 3.1). La fonction (4.3) représente les performances de classification de 1'équipe
humain-machine au complet mais les poids relatifs & certaines erreurs (RVY, RVY RFP RIN
et R") ne sont pas pris en compte. Cette définition sera utilisée dans le reste du mémoire.

D’autres candidats seront introduits dans la section 4.6.3.

La définition de C' peut étre délicate car, méme si le systeme est complexe, elle requiert de
réduire les performances de la machine a une variable unidimensionnelle. Une étude préli-
minaire peut étre nécessaire pour identifier le facteur qui représente le mieux les capacités
instantanées de la machine vues par un opérateur. On pourrait méme imaginer que cette

fonction soit un peu différente suivant les opérateurs.

4.1.2 Définition de la dépendance a la machine

On cherche désormais a prédire le comportement de dépendance de 1'opérateur étant donné
son état de confiance z!. Autrement dit on veut prédire le pourcentage de taches que I’humain
va réaliser pendant une période de travail, c’est-a-dire W, autrement appelé la charge de

travail dans ce mémoire.

On choisit le modele non linéaire suivant :

h _ Wf(at)
W) = o+ (1 - WT(ay))er @D’ (45)

avec

W(a,) = sat(ay), (4.6)

ou la fonction saturation est définie par sat(x) = max(0 + ¢, min(1 — €, x)).
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On compte trois parametres dans ce modele :

v > 0 représente la vitesse a laquelle la charge de travail imposée par 'opérateur lui-

méme, va grandir au fur et & mesure que sa confiance diminue.

T € R est la valeur de la confiance a laquelle 'opérateur va respecter la suggestion de la

machine si celle-ci est dans a; € [0+ €,1 — €.

e €10,1], lorsque a; est au-dela de I'intervalle [0 + €, 1 — €], on estime que I'opérateur ne

va pas respecter une suggestion trop extréme (trop petite ou trop grande).

Ce modele, illustré a la figure 4.1, traduit bien le fait que 'opérateur va davantage utiliser
la machine (i.e., W, est faible) que sa confiance T; est grande. De plus cette relation est
non linéaire comme le suggerent les données expérimentales dans (Gao et Lee, 2006b; Lee et
Moray, 1994). Le modele présenté a la particularité d’avoir introduit I'impact de la suggestion

de partage de taches a; dans la charge de travail W;.

modele de dépendance

1 T ;
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Figure 4.1 Modele de dépendance de I'humain & la machine avec v =5, T = 0.75 et € = 0.1

4.1.3 Remarques sur le modele de la confiance

Le modele proposé pour prédire le comportement de dépendance de I'opérateur a la machine
nécessite de garder en mémoire un état bidimensionnel x = (T}, B;)?. La connaissance de
cet état et celle de la suggestion de partage de taches de la machine a; permettent de prédire
quelle sera la charge de travail que s’imposera l'opérateur pendant la période de travail ¢
(équation (4.5)). De plus, & partir de 2 et a; nous sommes capable de prédire I'évolution de

I'état humain, i.e., z},; (équation (4.2)).
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Les parametres du modele présenté sont au nombre de 5 seulement. De plus chacun de
ces parametres a une interprétation. En revanche il est probable que ce modeéle ne soit pas
simple a identifier dans des scénarios complexes (par exemple la définition de la fonction C').
En outre, la valeur de certains parametres peut dépendre de 'opérateur et de sa personnalité.
En effet, dans (Gao et Lee, 2006b), certains mauvais scores de prédiction sont expliqués par
les différences de comportement individuel. Dans ce mémoire on ne propose pas de méthode

pour identifier les parametres du modele de la confiance.

4.2 Formulation du probleme en MDP

On rappelle qu'on cherche a concevoir une stratégie de partage de taches qui s’adapterait
A l'état de confiance de l'opérateur z'. On peut s’aider pour cela du modele quantitatif
de la dynamique de la confiance identifié dans la section précédente ainsi que du modele
liant charge de travail et performance humaine. En concevant cette stratégie, on cherche a

maximiser les performances de 1’équipe humain-machine sur le long terme.

Ce probleme de partage de taches adaptatif peut en fait se formuler sous la forme dun

processus de décision markovien (ou Markov Decision Process (MDP)).

4.2.1 Description

L’état du MDP comprend uniquement I’état de opérateur humain 2z = (T}, B;)T. L’espace

d’état est alors S = R?. Le modele de transition de 1'état est donné par les équations (4.2).

Remarque. Sile scénario est plus complexe que celui présenté dans la section 1.2, on pourrait
augmenter ’état du MDP avec une description de I’environnement si celui-ci doit étre gardé
en mémoire pour décrire les performances de 1’équipe. On devrait alors obtenir un modele

séquentiel markovien de cet état additionnel. L’état du MDP deviendrait alors s, = (af, z§)7.

L’action du MDP a; correspond a la suggestion de partage de taches formulée par la machine
a chaque début de période de travail. a; est la proportion de tache que 'opérateur devrait

accomplir selon la machine. L’espace d’action est alors A = [0, 1].

La fonction de récompense R(z" a;) immédiate est récoltée en fin de période t. Elle est
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donnée par
R(iﬁ?ﬂt) =
(1— W) lp(PGLPRVP +(1- ) RFN> 4 (1-p) (P}”PRFP +(1- PFP)RVN)] +
W, [p<P3P(Wt)RVP +(1- P"}P(Wt))RFN) +(1-p) (PgPRFP +(1- Ppp) RVN>] +

W, R,
(4.7)

conformément & la description du scénario. La charge de travail W; dépend de a7 et a; selon
I'équation (4.5).

Dans un premier temps, on va supposer que I'état du MDP ! est complétement observable
mais avec une période de retard. En effet, on peut observer de maniére certaine quelle a
été la charge de travail W; que s’est imposé l'opérateur a la fin de la période t. Sachant la
suggestion de la machine a;, on peut déduire T; car la fonction Ty — W;((T}, By)T, a;) est
inversible (équation (4.5)). Par ailleurs, on peut imaginer que B; soit observé directement a
partir de questionnaires a la fin de la période t. Ce retard d’une période dans 1’observation
de I'état implique que la machine va suggérer un nouveau partage de taches au début de la

période t qui dépendra de I'état 2 |, et pas de I'état .

On peut maintenant formuler le probleme sous la forme suivante. On cherche une politique,
c’est-a-dire des fonctions m; qui a 1’état 2! | associe un partage de taches a;. On souhaite
trouver la politique qui maximise la somme amortie des récompenses espérées sur un horizon

infini, i.e.,

max )E[gaﬁ%(m?,m(ﬁl))], (4.8)

w=(m,m1 ...

ou a € [0, 1] est le facteur d’atténuation.

4.2.2 Implémentation et résolution numérique
Résolution numérique du probléme

Le package, codé en Julia, nommé POMDPs.jl (Egorov et al., 2017) disponible ici https://
github.com/JuliaPOMDP/POMDPs. j1, a été utilisé pour la résolution numérique du probleme
d’optimisation. Ce package permet de définir un MDP ou un POMDP et réalise 'interface

avec divers algorithmes de résolution.

Parmi ces algorithmes, on a fait le choix d’utiliser le solveur SARSOP (Kurniawati et al.,


https://github.com/JuliaPOMDP/POMDPs.jl
https://github.com/JuliaPOMDP/POMDPs.jl
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2008) dont I'interface en Julia est disponible ici https://github.com/JuliaPOMDP/SARSOP.
j1. Cet algorithme permet de calculer une politique qui approxime la politique optimale d'un
POMDP ou d'un MDP dont les espaces d’états peuvent étre relativement grands. Il s’agit
d’un solveur hors ligne dont les espaces d’état et d’action sont discrets. En conséquence ces
espaces sont discrétisés de la facon suivante : S = (—1,—0.95,...,2)% et A = (0,0.05,...,1).
Ainsi on a Card(S) = 3721 et Card(A) = 21.

Dans son calcul, I'algorithme SARSOP maintient une borne supérieure V et une borne infé-
rieure V de la fonction de valeur optimale V*. Plus I’algorithme réalise d’itérations, plus V'
et V se rapprochent de V*. La précision d’une politique approximative est définie comme la
différence entre V et V. Lorsqu’on résoudra un MDP ou un POMDP, l'algorithme arrétera

sa recherche lorsque cette précision deviendra inférieure a 1.

Valeurs des parametres

Dans la suite, sauf mention contraire, les valeurs des parametres utilisées sont récapitulées
dans le tableau 4.1.

Tableau 4.1. Valeurs numériques des parametres des différents modeles.

Modele de performance | P, = 0.1, PRy = 0.1, Pl = ®(1.5 + @Y (PR,)), do = —dy = 4

Modele de confiance uw=0.5n1n=0.5 0r=0.10p=0.1

Modeéle de dépendance |v =5, T =0.8,e=0.1

Fonction de récompense |p = 0.5, RY" = RVN =100, RFP = RFN = —-100, R" =0, o = 0.95

Justifications des valeurs numériques des parametres

Les valeurs des parametres du modele de performance ont été choisies de sorte a ce que
I’humain soit plus performant que la machine lorsqu’il a peu de charge de travail et moins
performant lorsqu’il est surchargé. Pour illustration, la figure 4.2 montre la relation entre

charge de travail et taux de vrais positifs lorsqu’on utilise les valeurs du tableau 4.1.

Concernant le modele de confiance, les parametres 1 et p sont choisis égaux a 0.5 car il
s’agit de la moitié de leur intervalle de définition. Les écart-type des erreurs aléatoires sont

relativement grands car on s’attend a ce que le modele de confiance ne soit pas tres précis.

Une discussion sur un parametre du modele de la dépendance est offerte dans la section 4.4.1.


https://github.com/JuliaPOMDP/SARSOP.jl
https://github.com/JuliaPOMDP/SARSOP.jl
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Figure 4.2 Modele de performance de classification de 'humain et de la machine

Enfin, on a choisi, pour le modele de récompense, de donner la méme importance respective-
ment aux succes (vrais positifs et vrais négatifs) et aux erreurs (faux positifs et faux négatifs)
de classification. De plus on n’ajoute pas de cofit artificiel au travail de ’humain (R" = 0).
Alinsi les pénalités engendrées par le travail humain ne passent que par une augmentation de

charge de travail.

4.2.3 Résultats de simulation
Application de la politique adaptative en simulation

Une fois la politique approximativement optimale calculée, on souhaite la voir en action en

simulant des interactions entre machine et humain selon notre scénario.

On simule ainsi la collaboration de I’humain et de la machine par 50 périodes de travail
successives. Le comportement de 'humain est simulé par le modele décrit dans la section 4.1,
c’est-a-dire qu’on tire au hasard, selon la distribution de probabilité dictée par le modele, la

transition de 'état zf & I'état 2f'; & chaque période.

La figure 4.3 montre un exemple de 50 périodes de travail lorsque la machine suggere a chaque
période un partage de taches donné par la politique calculée en résolvant le MDP. L’état initial
de T'opérateur est 2! = (0,0)7, c’est-a-dire qu’il a trés peu confiance en les capacités de la
machine. Sur la figure de gauche, la machine suggere, a chaque début de période, la proportion
d’objet que devrait accomplir 'opérateur (pointillés noirs). Cette suggestion est dictée par
la politique solution du MDP. Pendant la période, 'opérateur choisit d’accomplir plus ou

moins de tdche que suggéré (trait magenta). Sur la figure de droite sont tracés I’évolution de
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I'état de 'opérateur (trait plein bleu pour 7 et tirets oranges pour B;) ainsi que les capacités

réelles de la machine C' en pointillés verts.

Un point important a retenir ici est que la politique optimale selon la résolution du MDP
formule une suggestion de partage de taches différente en fonction de 1'état de 'opérateur.
Autrement dit, la politique qui maximise les récompenses de 1’équipe au long terme est bien

adaptative.
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Figure 4.3 Simulation appliquant la politique du MDP

Remarques sur le choix du nombre N de classifications a réaliser pendant une

période de travail

On a déja évoqué en introduction (section 1.2) certaines précautions a prendre lorsqu’on
choisit le nombre N de classifications que doit réaliser I’équipe pendant une période de
travail. Si N est trop petit, alors, en pratique, les capacités réelles de la machine et de
I’humain seraient susceptibles de beaucoup varier d’une période de travail a une autre car les
taux de succes seraient calculés a partir d’un faible nombre de classifications. On peut alors
imaginer qu’on observerait des grandes variations sur la figure 4.3, remettant potentiellement
en cause la pertinence du partage de tache adaptatif. A linverse, si N est trop grand, on
perdrait la capacité du partage de taches adaptatif a réagir lorsque la confiance chute ou
bondit.

Comparaison des politiques adaptative et statique

On souhaite maintenant voir en quoi la stratégie adaptative est davantage bénéfique pour
I’équipe humain-machine. La figure 4.4 montre une simulation de 50 périodes de travail
lorsque la suggestion de partage de taches est la méme pour chaque période, ici a; = 0.3808.

Ce partage statique des taches est calculé selon la méthode décrite dans le chapitre 3. Il ne
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prend pas en compte la dynamique de la confiance de 'opérateur mais seulement sa charge

de travail. L’état initial de 'opérateur est aussi ici i = (0,0)7.
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Figure 4.4 Simulation appliquant une politique statique

Lorsqu’on regarde les récompenses récoltées pendant les simulations précédentes, on remarque
qu’en effet la stratégie adaptative du MDP semble apporter un bénéfice par rapport a la
stratégie statique (figure 4.5). On précise que pour que la comparaison soit juste, le calcul
des récompenses obtenues est le méme pour les deux stratégies (on utilise la somme atténuée

des récompenses instantanées données par (4.7)).

1000 -
750 -

500 [~

Récompenses cumulées amorties

—— Politique du MDP
M Politique statique

] 10 20 30 40 50
Périodes de travail

Figure 4.5 Récompenses cumulées amorties récoltées pendant les simulations des figures 4.3
et 4.4

Bien que cette simulation semble montrer un avantage certain a l'utilisation de la stratégie
issue de la résolution du MDP, une hypothese pourrait remettre en question ces résultats
préliminaires. Cette hypothese est le caractére observable de I’état de confiance z” de I'opé-

rateur.
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4.3 Formulation du probleme en POMDP

On est parvenu a concevoir une stratégie de partage de taches adaptative, qui a ’état de
confiance x! associe la suggestion d’allocation de tache. Jusque 13, on a supposé que 1’état
de '’humain était completement observable par la machine, avec une période de retard. L’ob-
servation d'un état cognitif tel que la confiance, peut se faire a travers des observations
comportementales, des questionnaires ou des mesure physiologiques. La moins invasive et
la plus transparente pour l'opérateur de ces méthodes est sans doute 1’observation compor-
tementale. Cependant de telles observations ne permettent pas de connaitre avec certitude

I’état interne humain.

Le cadre des MDP dispose d'une extension permettant d’inclure les situations ou I’état n’est
pas completement observé : les processus de décisions markoviens partiellement observables
(ou Partially Observed Markov Decision Process (POMDP)). Le but de cette section est
de proposer une stratégie adaptative d’allocation de taches qui ne s’appuierait que sur des

observations comportementales de 1’état de confiance de ’opérateur en formulant le probleme
comme un POMDP.

4.3.1 Description

Les états ainsi que les actions du POMDP sont les méme que ceux du MDP, voir la section 4.2.
La fonction de transition reste également la méme (équation (4.2)), tout comme la fonction

de récompense (équation (4.7)).

Observations

A chaque fin de période de travail, la machine fait une observation de Popérateur. Dans le
cas d’'un MDP, cette observation est directement I’état 2%, mais dans celui d’'un POMDP, on
observe o;. Puisqu’on s’est fixé comme objectif de n’utiliser que des observations comporte-
mentales de 'opérateur, o; est défini comme étant la proportion de taches qu’a effectivement

réalisé ’humain pendant la période ¢. L’espace des observations est donc O = [0, 1].

Dans un POMDP il faut également définir la fonction d’observation, qui donne la relation
entre une observation o; et I'état réel 2. Cette fonction est donnée par
W7 at)

(
WT(ay) + (1 — WT(ay))e (@itwp)=T) (4.9)

Ot(xzilu a?) -

ou wy est une variable aléatoire de moyenne nulle et d’écart type o,. WT(at) est défini par
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(4.6). Ce modele des observations est cohérent avec le modele estimant la charge de travail de
l'opérateur, utilisé dans le modele de la dynamique de 1'état (équation (4.5)). On aura pour
autant ajouté un bruit aléatoire wy, représentant les erreurs de modélisation du comportement

humain.

Etat de croyance

Dans un POMDP, la machine ne connait pas parfaitement 1'état 2" de 'opérateur a chaque
instant mais dispose seulement d’une distribution de probabilité sur ’espace d’état, appelé
état de croyance (ou belief state), noté by, pour choisir son action a; . On a b; € II(S), ou

I1(X) désigne I'ensemble des distributions de probabilité sur un ensemble X.

~

A chaque fois que la machine fait une observation o; de 'opérateur apres avoir pris I'action
as, I'état de croyance b, est mis a jour de sorte a ce que la probabilité que 'opérateur ait

évolué dans I'état 2 € S soit

I

bt+1(Ih )= P(Ih/|0t7 at, by)
= Z P(fh,|$h70t7at,bt) P(xh|0t7atabt)7

zhesS
/ P h by) P(z"a;,b
= > P@"z" a) (0™, a, br) P(zlay, t), avec le théoreme de Bayes
ohes P(o]ay, by)
1 /
=" P(z" 2", ap) P(oy|z", ar) by(z™),
Plotaty 2, P00 Plos?, ) bat)

(4.10)

ol
— P(2"|2", a;) est la probabilité que I'état de I'opérateur devienne 2" & la période ¢ + 1
sachant qu’a la période ¢ son état était 2 et que la machine a pris la décision ay,
— P(os]2", as) est la probabilité d’observer o; a la fin de la période ¢ sachant que I’état
au début de la période est 2" et I'action prise par la machine est a;,
— by(z") est la probabilité que I'état de 'opérateur a la période ¢ soit 2" selon 'état de

croyance by.
Remarque. On note que le dénominateur P(o;|a;,b;) dans (4.10) peut étre vu comme un
facteur de normalisation permettant en tout temps t d’avoir 3" neg by(2") = 1.
Ainsi, la machine garde un état de croyance aussi proche possible de 1’état réel de 'opérateur.

Lorsque l'opérateur et la machine se rencontrent pour la premiere fois, on peut aider la

machine a avoir une idée de I’état de confiance de l'opérateur, i.e., initialiser son état de
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croyance. A défaut d’indices, la machine peut définir by comme une distribution uniforme sur

I’ensemble des états possibles de 'opérateur.

Désormais, la résolution du POMDP doit permettre de trouver la politique, i.e., les fonctions
m qui a chaque état de croyance b; associent une suggestion de partage de taches a;. Cette
politique devra maximiser I’espérance de la somme amortie des récompenses sur un horizon
infini :

max )ELzzlatR(x?,m(th], (4.11)

T=(70, 1.

ou a € [0, 1] est le facteur d’atténuation.

Boucle de simulation

La simulation d’une succession de périodes de travail est décrite par 'algorithme 1. La fonc-
tion observation : S x A — TI(O) associe a un état de l'opérateur x” et une suggestion
d’allocation de tache a;, la distribution de probabilité de 1’observation o, de la machine.
Cette distribution est calculée a partir de (4.9). La fonction transition : S x A — TI(S)
associe a un état de opérateur x7 et une suggestion d’allocation de tache a;, la distribution
de probabilité du nouvel état 2", de Popérateur. Cette distribution est calculée a partir de
(4.2). La fonction rand(Y') ou Y € II(X) est une distribution de probabilité sur 'espace
X, tire au hasard un élément de 'espace X selon la distribution de probabilité Y. Enfin la
fonction update : II(S) x O x A — II(S) donne la distribution de probabilité correspondant
au nouvel état de croyance b;,; connaissant 1’état de croyance précédent by, I'observation o,

et 'action de la machine a;. Cette fonction est donnée par (4.10).

A chaque nouvelle période de travail, la machine suggere le partage de taches correspondant
a son état de croyance actuel b selon la politique 7. Ensuite la période de travail est réalisée et
des récompenses sont collectées. Pendant ce temps, la machine observe le comportement de
I'opérateur, c’est-a-dire la portion de tache qu’il va décider d’accomplir lui-méme. La machine
va alors mettre a jour son état de croyance en prenant en compte cette derniére observation
ainsi que son état de croyance précédent. A la fin de la période, 1'état réel de I'opérateur a
évolué en fonction de l'interaction qu’il vient d’avoir avec la machine. Une nouvelle période

de travail peut alors débuter.

4.3.2 Implémentation et résolution numérique

Les outils utilisés pour résoudre ce POMDP sont les méme que pour le MDP (voir la section
4.2.2).
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Algorithme 1 : Simulation de n périodes de travail lorsque la machine suggere
un partage de taches donné par la politique m en se basant sur ’observation du
comportement de 'opérateur.

1zt — $8 // état réel (caché pour la machine)
27+ 0 // récompenses cumulées amorties
3 b<+ by // initialisation de 1’état de croyance
4 pour t < 1 a n faire

// on souhaite simuler n périodes de travail

5 a <— W(b) // la machine choisit un partage de téches & suggérer selon la
politique 7

6 T +—7‘+foﬁ}%th,a) // une récompense est collectée

7 0 < ra7ui(observation(xh,a)> // la machine observe le comportement de

1’opérateur pendant la période
8 b %—’update(b,o,a) // la machine met & jour son état de croyance en prenant en

compte sa derniére observation

9 " é—-rarui(tTQTMntion(xh,a)) // 1’état réel de 1l’opérateur évolue

10 retourner r

Tout comme les espaces d’état et d’action, il a été nécessaire de discrétiser 'espace des
observations. On a alors O = (0,0.05,...,1) et Card(O) = 21.

Les valeurs numériques des parametres des modeles sont données, sauf mention contraire,
dans le tableau 4.1. Un parametre supplémentaire est nécessaire pour le modele d’observation,

I’écart type de la variable aléatoire wy. Dans la suite on choisira oy = 0.05.

4.3.3 Résultats de simulation

Apres calcul de la stratégie approximativement optimale, on décide de réaliser une simulation
de 50 périodes de travail (voir figure 4.6). Encore une fois, on remarque la stratégie optimisant

la récompense a long terme est bien une stratégie adaptative.

Dans cette simulation en particulier, la politique du POMDP a récolté une récompense totale
supérieure a celle de la politique statique (figure 4.7). Ce résultat préliminaire nous encourage
a chercher a savoir dans quels cas on obtient un tel bénéfice. On aimerait également explorer
les limites de cette approche. Les prochaines sections s’attellent a ces questions en proposant

divers expériences de simulation.
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Figure 4.6 Simulations appliquant la politique du POMDP (figures du haut) et la politique
statique (figures du bas)

4.4 Expérience 1 : Modeles parfaits

Dans cette section, on cherche a identifier les bénéfices de la stratégie du POMDP. Pour
cela, on commence par étudier le comportement de cette politique lorsque les décisions de
Iopérateur sont déterministes. Autrement dit, on retire la part d’aléatoire dans les modeles de
comportement humain (il n’y a plus de variables aléatoires w?, w! et w¢ dans, respectivement,

(4.2) et (4.9)).

4.4.1 Comportement en régime permanent

La figure 4.8 compare les comportements des stratégies statique et dynamique lorsque le
comportement de l'opérateur est déterministe. L’état initial est, pour les deux simulations,
xh = (1.5,1.5)T. On constate qu’en régime permanent les deux politiques ont un comporte-
ment proche. La politique issue de la résolution du POMDP est constante avec a,, = 0.40
contre a = 0.38 pour la politique statique. On a des récompenses totales similaires pour les

deux politiques : 1027 pour la politique du POMDP et 1022 pour la politique statique.

Si la politique statique est en effet optimale en régime permanent, on devrait avoir a,, = W*,
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Figure 4.7 Récompenses cumulées amorties récoltées pendant deux simulations, I'une appli-
quant la stratégie du POMDP, I'autre appliquant la stratégie statique

ou W* est la charge de travail optimale lorsque le probleme est statique. De plus il faudrait que
I'opérateur réalise toujours la proportion de tache suggérée par la machine, i.e., Wy = too.-
Selon (4.5), c’est le cas lorsque ay, € [0.1,0.9] et T = T,. Or, on note qu’en régime permanent,

on doit avoir

Boo = Cooa

(4.12)
Ty = Ba.

Il faut donc avoir T = C., pour que la stratégie statique soit optimale. Or C,, = (1 —
W) P™ + W PHW,,). Dol la stratégie statique est optimale si W* € [0.1,0.9] et T =
C* = (1 — W*)P™ + W*Ph(W*). 1l se trouve qu’ici on a choisi T' = 0.8 alors que C* = 0.8.
C’est pour cela qu’en régime permanent les deux stratégies sont équivalentes. La différence

entre a, = 0.4 et W* = 0.38 s’explique par la discrétisation de I'espace des actions.

On peut voir que, sur la figure 4.9, lorsque T # C*, alors 'opérateur ne va pas suivre
exactement la recommandation de la machine en régime permanent. La stratégie issue du
POMDP prend en compte cela et adapte sa suggestion pour que toujours la charge de travail
de 'opérateur soit le plus proche possible de la charge optimale, ici W, = 0.36, contrairement
a la stratégie statique. La politique du POMDP obtient une récompense totale d’environ 1023

alors que celle de la politique statique descend a 956.

Cette observation peut s’interpréter de la fagon suivante. Si le jugement de 'opérateur n’est
pas biaisé, c’est-a-dire si il suit les recommandations de la machine lorsque celle-ci démontre
des capacités maximales (T = (C* ), alors la stratégie statique est optimale en régime per-

manent. La stratégie issue du POMDP rajoute une constante a la suggestion de tache par
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Figure 4.8 Simulations du régime permanent avec T = C* = 0.8

rapport a la stratégie statique pour prendre en compte le biais quand il existe.

4.4.2 Comportement en régime transitoire
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Comparons le régime transitoire des deux stratégies sur les figures 4.8, 4.9, 4.10 et 4.11.

On s’intéresse a la rapidité avec laquelle la charge de travail de 'opérateur s’approche de
sa valeur finale. Appelons Tr la période a partir de laquelle W, rentre dans l'intervalle

[0.85W, 1.15W.] et n’en sort plus.

Tableau 4.2. Comparaison de la durée du régime transitoire lorsque le comportement de

I'opérateur est déterministe.

Figure 4.8 | Figure 4.9 | Figure 4.10 | Figure 4.11
Politique du POMDP | Tr =4 Tr =3 Tr =3 Tr =2
Politique statique Tr=5 Tr=4 Tr =28 Tr =5

On compare la durée des régimes transitoires pour les deux stratégies dans le tableau 4.2. On
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Figure 4.9 Simulations du régime permanent avec T = 0.6 # C*

remarque que bien que les conditions soient différentes (valeur du parametre T et état initial
zh), la charge de travail se rapproche systématiquement plus vite de sa valeur finale lorsque
la politique du POMDP est appliquée. De plus, dans le cas des figures 4.8 et 4.10, les régimes
permanents sont identiques donc la différence des récompenses accumulées s’expliquent par

un régime transitoire plus rapide.

4.4.3 Effet de ’observation partielle

Jusque la, ’état de croyance initial qui guide les premieres suggestions de la machine, est le
plus flou qui puisse étre puisque qu’il s’agit d’une distribution uniforme sur I’ensemble des

états possibles, i.e., pour tout 2" € S,

bo(z") = CG:CKS) (4.13)

On peut se demander a quel point l'initialisation de cette distribution a un impact sur
les premieres périodes de travail. La figure 4.11 montre la méme politique dans les mémes

conditions que la figure 4.8 mis a part que I’état de croyance initial est exact, i.e., pour tout
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(4.14)

On note que les premieres suggestions de la machine sont alors différentes. On remarque éga-

lement que la récompense totale obtenue monte a 1041 pour la stratégie du POMDP, contre

1027 lorsque l'état de croyance était une distribution uniforme. La stratégie du POMDP

devient alors encore plus avantageuse que la stratégie statique.
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On conclut que la qualité de I'état de croyance initial peut affecter la durée du régime

transitoire et ainsi les récompenses de I’équipe.

Pour conclure, on a vu dans cette section que, si le modele de I’humain est parfait, la stratégie

du POMDP n’a un intérét que pendant le régime transitoire, a condition que l'opérateur ne

soit pas biaisé dans son jugement (voir le paragraphe 4.4.1). On a vu que dans ce cas la

stratégie du POMDP est avantageuse méme en régime permanent. On note toutefois que les
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différences de récompenses récoltées ne sont pas suffisamment importantes (moins de 10% de

récompenses en plus) pour que 'approche par POMDP soit vraiment pertinente.

4.5 Expérience 2 : Modeles imparfaits

On vient de discuter des cas dans lesquels la politique issue de la résolution du POMDP a
un bénéfice par rapport a la stratégie statique lorsque l'opérateur se comporte exactement
comme les modeles de performance et de confiance le prédisent. Puisque les performances de
la machine sont constantes, alors la répartition des taches converge vers un état permanent.
Dans cette situation, les différences de récompenses récoltées ne semblent pas suffisamment
grandes pour valider I'approche par POMDP. Dans cette section, on va comparer les stratégies
statiques et adaptatives lorsque I'opérateur ne se comporte pas toujours comme le modele de
la confiance le prédit. Cette hypothese est beaucoup plus réaliste puisque ce modele néglige
naturellement un certain nombre de phénomenes difficilement modélisables. Désormais on

stipule dans la définition du POMDP la partie aléatoire de la dynamique de la confiance.

4.5.1 Comparaison entre les politiques statique et adaptative

Maintenant que le comportement de 'opérateur a une part d’aléatoire, visualiser la politique
en action sur seulement une simulation ne suffit pas a conclure sur I'avantage d’une stratégie

sur une autre. Il faut pour cela, réaliser un tres grand nombre de simulations.

La figure 4.12 compare les récompenses totales moyennes acquises pendant 5000 simulations
appliquant la stratégie statique ou la stratégie calculée a partir du POMDP. On voit que
la politique adaptative dispose d'un avantage certain sur la politique statique. Cet avantage
s’exprime a la fois par une moyenne des récompenses plus haute (946 contre 763 pour la
politique statique, soit pres de 24% de récompenses supplémentaires) ainsi que par une plus

faible dispersion (écart-type de 21 contre 68 pour la politique statique).

4.5.2 Effets du bruit sur le suivi de I’état

Dans un POMDP, une des difficultés est de construire un état de croyance suffisamment
proche de I’état réel. Afin de visualiser la qualité de I’état de croyance, on définit la métrique

suivante :

d"(bat)= | > Y b(ah = (T, B))(T - Ty)? (4.15)

T€lo,...,1] B€[0,...,1]

dPal)= | Y > b(ah=(T,B))(B- B (4.16)

BegJo,...,1] T€[0,...,1]
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Figure 4.12 Récompenses totales amorties collectées dans 5000 simulations de 50 périodes de
travail

Selon cette métrique, pour I’état de confiance T; par exemple, la différence entre une confiance
supposée T et la confiance réelle T} compte d’autant plus que la probabilité de T" selon ’état
de croyance b; est grande. Ainsi plus d’ et d”® sont grands plus la distribution de 1'état
de croyance est éloignée de 1'état réel. Aussi 'état de croyance est exact by(z?) = 1 si et

seulement si d”'(by, 2) = 0 et dB(b;, z1') = 0.

La figure 4.13 montre I’évolution des erreurs de 1’état de croyance pendant la simulation de
la figure 4.6. Dans cette simulation I'état de croyance était initialisé par une distribution
uniforme sur l'espace d’état, expliquant les fortes erreurs initiales. Pendant les premieres
périodes de travail, la machine construit un état de croyance plus précis. Elle n’atteint pour
autant, jamais 1’état de croyance parfait du fait de la part d’aléatoire dans les observations

ainsi que dans la dynamique de .

4.6 Expérience 3 : Erreurs d’identification des modéeles

On a vu l'intérét d’adopter une stratégie dynamique par le gain en performance a long terme
que prédisent les simulations. La stratégie du POMDP repose essentiellement sur la vali-
dité des modeles prédisant le comportement de I'opérateur. Cette validité passe entre autre
par la capacité a calibrer les parametres de ces modeles. Cette étape peut poser un certain
nombre de difficultés tant au niveau de la récolte de données expérimentales qu’a l'identifi-
cation numérique des modeles. Dans cette section, on souhaite explorer jusqu’a quel point
ces inévitables erreurs d’identification peuvent affecter les bénéfices de I'approche adaptative
par rapport a l'approche statique. Pour cela on réalise des séquences de 5000 simulations

de 50 périodes de travail avec zf = (0,0)7. Dans certaines de ces séquences, on supposera
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Figure 4.13 Erreur de suivi de I’état de croyance, telle que défini par (4.15) et (4.16)

que certains parametres ont mal été identifiés, introduisant une différence entre le modele
utilisé dans le calcul de la politique optimale et celui utilisé pour simuler le comportement

de 'opérateur.

4.6.1 Erreur constante dans le modele de performance

On s’intéresse d’abord a la robustesse de la stratégie du POMDP face a des erreurs dans
le modele liant charge de travail et performances humaines. En particulier, on va supposer

qu’en simulation la sensibilité de 'opérateur suit
d(W) =do + (di + kdy)W, (4.17)

au lieu de (3.8). Lorsque l'erreur k est négative, 'opérateur est plus performant que prévu,
lorsque k est positive, il I'est moins (car d; < 0). Les courbes ROC utilisées en simulation

seront donc un peu différentes des courbes ROC utilisées pour résoudre le POMDP.

La figure 4.14 montre les récompenses moyennes et leur écart-type calculées apres 5000 si-
mulations pour différentes valeurs de l'erreur kdy, ot k est exprimé comme un pourcentage
d’erreur sur d;. On note que la stratégie statique est aussi impactée par cette erreur de cali-
bration car elle utilise aussi le modele liant performance et charge de travail. Sur cette figure,

et les trois prochaines, les traits indiquent un écart type de chaque coté des moyennes.

Les résultats montrent que la stratégie du POMDP garde un avantage sur la stratégie statique
tant que k ne passe pas sous les -25% d’erreur. En deca de cette limite les deux stratégies
semblent donner des résultats tres similaires. Autrement dit, si le modele sur estime trop

I'impact négatif de la charge de travail sur les performances humaines, alors la stratégie
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Figure 4.14 Robustesse a une erreur constante dans le modele de performance

adaptative perd son intérét devant une simple stratégie statique. Par ailleurs, lorsque le
modele sous estime 'impact de la charge de travail, I’écart entre les deux stratégies s’agrandit

en faveur de la stratégie issue du POMDP.

4.6.2 Erreur dans le modele de confiance : constantes de temps

On cherche ici a tester la robustesse de la stratégie adaptative a des erreurs dans le modele
de la confiance humaine. Supposons ici que dans (4.2), le parametre pu devienne p + kpu. De

méme on supposera qu’en fait n vaut n + k7. k est exprimé par un pourcentage d’erreur.

La figure 4.15 affiche les récompenses moyennes amorties et leur écart-type obtenus. Sur la
figure du haut (resp. du bas), on introduit en simulation une valeur de p (resp. de i) différente
de celle utilisée dans le calcul du POMDP.

La figure 4.15 montre que les récompenses récoltées par la politique adaptative sont toujours
supérieures a celles récoltées par la politique statique, et ce, malgré des erreurs d’identification

des parametres n ou pu.
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4.6.3 Erreur dans le modeéle de la confiance : fonction de capacité réelle de la

machine

On a déja évoqué la difficulté potentielle a définir la fonction représentant par un scalaire
la capacité réelle démontrée par la machine pendant une période. Voyons si une erreur de
définition de cette fonction affecte I'avantage de la stratégie dynamique. La fonction utilisée
dans la résolution du POMDP est toujours donnée par 4.3. D’autres fonctions sont utilisées
en simulations. Les candidats testés sont les suivants :

— Performances de 1’équipe non biaisée : 'opérateur prend en compte la récompense

obtenue lors de la période de travail (il a intégré la relative importance des erreurs)

R(zh, a;) — (min(RFN, REP) + Rm)
max(RYP, RVN) — (min(RFN, RFP) 4 Rm)

Ci (2!, a,) = (4.18)

— Performances de la machine seule : 'opérateur mesure les capacités de la machine par

le pourcentage de bonnes classifications de la machine seule.
Co(al, ay) = (1 — W,)P™, (4.19)

ou P™ est le pourcentage de succes (vrais positifs ou vrais négatifs) de la machine
(voir 'équation (4.4)).

— Performances moyennes de la machine seule : 'opérateur ne prend en compte que les
performances moyennes de la machine, quelque soit le pourcentage de classifications
réalisées par la machine pendant la période t.

Cs(2l, a;) = P™ (4.20)

s

Encore une fois, on trace les récompenses moyennes obtenues en utilisant les différentes
définitions de C. On voit sur la figure 4.16 que malgré des définitions erronées de la fonction

décrivant les capacités réelles de la machine, la stratégie adaptative garde son bénéfice.

Remarque. On remarque que dans le cas de la fonction Cs, les performances de I'équipe sont
grandement diminuées, surtout lorsque la politique statique est adoptée. Ceci s’explique par
le fait que la confiance de 'opérateur est faible, le conduisant ainsi a réaliser presque toutes
les taches. Cette surcharge de travail lui fait commettre beaucoup d’erreurs. L’opérateur a
peu confiance car, selon Cs, il ne juge la machine que par la quantité de taches réussies par
elle sans prendre en compte que lui aussi participe a accomplir les taches. Autrement dit, il

considere les bonnes classifications qu’il réalise lui-méme comme des erreurs de la machine.
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CHAPITRE 5 CONCLUSION

Ce dernier chapitre réalise une synthese du travail proposé dans ce mémoire. On évoque les
limitations de I'approche avancée. Enfin, plusieurs pistes de réflexions sont apportées pour

guider de potentielles améliorations futures.

5.1 Syntheése des travaux

L’objectif de recherche était le suivant : améliorer les performances d'une équipe humain-
machine en adoptant une stratégie de collaboration adaptative prenant en compte certaines

caractéristiques propres a un humain.

La premiere étape fut la définition d’un scénario type d’interaction entre humain et machine
susceptible de servir de support au développement d’une méthode de collaboration adapta-
tive. Il a été choisi d’étudier un scénario de classifications binaires répétées réalisées soit par
la machine soit par 'humain. Cette décision de choisir qui de la machine ou de I'humain
réalise chaque classification revient a 'opérateur lui-méme mais la machine peut lui suggérer
un partage de taches. Au regard de cette tache, deux principaux facteurs, relatifs & I’humain,
sont susceptibles d’impacter les performances de 1'équipe. Ces facteurs sont d’une part I'in-
fluence de la charge de travail de 'opérateur sur ses performances de classification et d’autre

part sa propension a utiliser la machine.

Afin de guider une stratégie de partage de taches améliorant les performances de I’équipe, on
a choisi de se baser sur des modeles quantitatifs permettant de prédire le comportement de
I'opérateur, tout en gardant en téte que ces modeles pouvaient étre approximatifs. La relation
entre performance de classification et charge de travail a été modélisée par des courbes ROC
dont la forme s’inspire des modeles de la Théorie de la Détection du Signal. La dépendance
a la machine est, quant a elle, prédite par un modele dynamique de la confiance proposé par

Gao et Lee (Gao et Lee, 2006b).

La nature dynamique du modele de la confiance nous a conduit a formuler le probleme de
suggestion de partage de taches comme un Processus Décisionnel Markovien. De plus cet
outil a I'avantage de prendre en compte la part d’aléatoire du comportement de 'humain.
En outre, afin de prendre en compte le caractere non observable de ’état de confiance de
I’humain, on a reformulé le probleme sous la forme d’'un POMDP. Gréce a cette méthode,
la machine est capable de suggérer un partage de taches a 'opérateur en prenant en compte

son état présumé de confiance.
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La présence de modeles qui peuvent étre compliqués a définir et a identifier suivant I’environ-
nement nous a conduit a nous questionner sur le réel bénéfice d’une telle approche par rapport
a des stratégies plus naives mais plus simple a mettre en place. Les simulations montrent que
la stratégie issue de la résolution du POMDP apporte un bénéfice non négligeable sur le total
des récompenses acquises sur le long terme par rapport a une stratégie d’allocation de tache
statique (récompense moyenne augmentée de 24%) . Cet avantage s’explique par plusieurs
comportements. D’abord, la machine est capable de prendre en compte que 'opérateur peut
avoir un a priori biaisé sur les capacités de la machine. De plus, lorsque I'opérateur change
soudainement d’état de confiance (chute ou hausse non prédite), la machine est capable de
produire une suggestion de partage de taches ajustée, maintenant ainsi une charge de travail

adaptée a l'opérateur pour que les performances de I’équipe n’en patissent pas trop.

Enfin nous avons exploré, toujours en simulation, la robustesse de la stratégie adaptative
face a certaines erreurs d’identification des parametres des modeles. Les résultats montrent
que des erreurs trop importantes dans certains parametres peuvent remettre en question la
pertinence de la stratégie adaptative. Cependant la méthode semble étre plus robuste lorsque

les erreurs concernent d’autres parametres.

5.2 Limitations de la solution

5.2.1 Variété des scénarios

On a évoqué dans les justifications du scenario de collaboration (section 1.2.2) le caractere
général de la tache choisie. En effet, on peut imaginer beaucoup de contextes différents dans
lesquels une tache de classification binaire répétée doit étre effectuée en collaboration entre
une machine et un humain. En outre, souvent, 'humain a 'autorité sur la machine. On a
supposé que les deux principaux facteurs affectant les performances de I'équipe étaient la
charge de travail portée par I'opérateur et la confiance que ce dernier place dans les capacités
de la machine. Or, dans certains contextes de travail, d’autres facteurs mériteraient d’étre
pris en compte si 'on souhaite prédire le comportement de 'opérateur, méme de maniére

approximative. On énumere dans la suite certains de ces facteurs.

La confiance en soi

On pourrait citer par exemple, 'impact de la confiance en soi de 'opérateur sur son com-
portement de dépendance a la machine. La confiance en soi est intégrée dans les modeles et
solutions de collaboration suivants (Gao et Lee, 2006b), (Sacidi et Wang, 2019), (Van Dongen
et Van Maanen, 2013), (Lee et Moray, 1994), (Gao et al., 2013).
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La charge mentale

Dans ce mémoire, on a défini la charge de travail comme la proportion de classifications
réalisées par 'opérateur. Dans la littérature, on distingue souvent la charge de travail telle
que définie ici, a la charge mentale. La charge mentale est une mesure subjective du cotit
demandé a un humain pour compléter une tache avec une certaine performance. Il pourrait
étre alors nécessaire d’intégrer une variable décrivant la charge mentale de travail en tout
temps afin de mieux prédire les performances de 'opérateur. Diverses approches existent pour
mesurer la charge mentale d’un opérateur notamment a partir de capteurs physiologiques,

voir (Charles et Nixon, 2019) pour une revue récente.

La compréhensibilité de la machine

Imaginons que la machine soit capable d’indiquer un niveau de confiance sur chacune des
classifications qu’elle réalise, comme le permettent généralement les algorithmes de classifica-
tion construits par apprentissage. L’opérateur s’aiderait probablement de cette information
pour décider combien et quel objet il devrait classer manuellement. La stratégie de suggestion

de partage de taches devrait alors prendre en compte également ces indices de confiance.

5.2.2 Difficulté de calibration des modeéles

Les modeles utilisés dans la stratégie de partage de taches adaptative nécessitent la calibration
de certains de leurs parameétres. Cette étape d’identification requiert la collecte de données
expérimentales. On a abordé cette étape dans le cas du modele de performance humaine
(section 3.2) mais pas dans le cas du modele de la confiance. En effet la calibration de ce

modele est plus complexe pour les raisons suivantes :

1. L’entrée du modele (la fonction C' décrivant les capacités réelles de la machine comme
un réel) n’est pas clairement définie. En effet elle peut dépendre fortement du contexte
(voir les différents candidats proposés dans 4.6.3). La définition de cette fonction peut
requérir une étude préliminaire.

2. La confiance est dynamique et les suggestions de la machine ont des conséquences sur

cette dynamique.

3. Les états B; et T; ne sont pas directement observables. Seul le comportement de
I'opérateur 'est. Le modele liant la dépendance de 'opérateur a son état de confiance

doit lul méme étre identifié.
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5.3 Ameéliorations futures

5.3.1 Validation expérimentales

Concernant la méthodologie adoptée dans ces travaux, la principale limitation porte sur I’ab-
sence de validation expérimentale. Dans un premier temps, une expérience doit étre imaginée
pour évaluer et calibrer les modeles sélectionnés. La stratégie issue du POMDP pourra alors
étre calculée. Enfin, une seconde expérience doit confronter les participants a la tache de
collaboration adoptant la stratégie adaptative pour suggérer le partage de taches a chaque
période. Cette expérience devra vérifier si la stratégie adaptative augmente significativement

les récompenses cumulées par rapport a la stratégie statique.

5.3.2 Etudier les effets négligés dans les modéles

L’objectif premier de la conception d’un partage de taches adaptatif est 'amélioration des
performances a long terme. D’autres facteurs peuvent étre pris en compte dans I’évaluation de
la méthode. Par exemple, il serait intéressant de s’assurer que la charge mentale de I'opérateur
reste convenable. Il faut également vérifier que le changement régulier de distribution de tache
n’introduise pas de confusion ou d’effet de surprise pour 'opérateur. L’utilisation de cet outil
optimisant la collaboration ne doit pas non plus baisser son attention ou faire naitre de la
complaisance. Dans le cas de notre scénario, donner une suggestion de partage de taches
automatique a l'opérateur ne doit pas lui faire penser qu’il pourrait se dispenser de préter
attention aux performances de la machine. Ceci nuirait a sa conscience de la situation. Pour
synthétiser, la solution de partage de taches adaptatif proposée doit étre évaluée a la lumiere

de plusieurs facteurs humains en plus des performances de 1’équipe.

5.3.3 Comparer la solutions a d’autres approches

Le faible nombre de modeles quantitatifs de la confiance dans la littérature montre la difficulté
de leur définition. Pourtant ces modeles, une fois calibrés, ont 'avantage de permettre la
conception d’une stratégie adaptative préte a 'emploi. De plus, bien que ces modeles aient
une capacité de prédiction limitée, les outils de commande stochastique permettent de gérer

cela.

Cependant, d’autres outils sont capables de concevoir une stratégie de partage de taches qui
s’adapte a 1’état d’un opérateur. En particulier, les méthodes d’apprentissage par renforce-
ment, peuvent apprendre une stratégie adaptative au cours des interactions avec I'opérateur.

Il n’est pas nécessaire de fournir de modele prédisant le comportement d’un humain. Seules les
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données suffisent a ’optimisation de la stratégie. Néanmoins la quantité de données nécessaire

pour que les algorithmes convergent vers une solution convenable peut étre tres importante.

Il pourrait étre intéressant de comparer ’approche par modele et celle basée sur une boite
noire afin de déterminer si elles aboutissent a des politiques identiques. Si on fournit des
données physiologiques aux algorithmes d’apprentissage, on pourrait s’attendre a ce que la
machine soit capable de mieux connaitre 1’état cognitif de 'opérateur a chaque instant avant

méme qu’il ne se traduise en comportement.
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