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RÉSUMÉ

Lorsqu’une équipe humain-machine est formée dans le but d’accomplir des tâches de prise de
décision, certains facteurs humains peuvent avoir un impact important sur les performances
de l’équipe. C’est le cas en particulier de la charge de travail et de la confiance que place
un opérateur dans les capacités de la machine. Il peut alors être nécessaire de prendre en
compte ces facteurs dans le design de la stratégie de collaboration. Cependant, la confiance
et la charge de travail varient dans le temps en fonction des interactions entre l’humain et
la machine. Une façon de prendre en compte ces éléments est d’opter pour une stratégie de
collaboration adaptative, c’est-à-dire qui varie en fonction de l’état cognitif de l’opérateur.
Dans ce mémoire on propose une stratégie de collaboration adaptative sous la forme de sug-
gestions automatiques et dynamiques de partage de tâche. Régulièrement, une proposition
de partage de tâche est suggérée à l’opérateur en prenant en compte sa charge de travail
ainsi que sa confiance. Cette stratégie est issue de la résolution d’un Processus Décisionnel
Markovien Partiellement Observable (POMDP). Pour cela des modèles quantitatifs des per-
formances humaines et de la dynamique de la confiance ont été sélectionnés. Des simulations
permettent de montrer le potentiel de la méthode en comparant les performances de la stra-
tégie adaptative proposée à celles d’une stratégie statique plus simple. Les résultats à long
terme de l’équipe humain-machine sont en moyenne meilleurs de 24% lorsque la stratégie
adaptative est appliquée plutôt que la stratégie statique. L’utilisation de modèles quantita-
tifs dont certains paramètres doivent être identifiés pose la question de la robustesse de la
stratégie aux erreurs de calibration. On montre, toujours en simulation, que malgré certaines
erreurs de modèles, la stratégie proposée conserve son avantage.
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ABSTRACT

In mixed-initiative systems where human and automation collaborate in order to complete
a decision-making task, some human factors can have an impact on the team performance.
For instance, the cognitive workload and the trust placed by the operator on the automa-
tion capabilities can be determining factors. Hence it could be relevant to take into account
these cognitive variables in the design of the collaboration strategy. However, both workload
and trust fluctuate with the history of past interactions. One way to include these dynamic
variables is to opt for an adaptive collaboration strategy. In this work, we propose an adap-
tive task allocation suggestion which dynamically allocate task according to the operator’s
trust level. This adaptive strategy is computed by solving a Partially Observable Markovian
Decision Process (POMDP). The POMDP is defined using quantitative models of human
performance and trust dynamic. We study this method’s potential by comparing, in simula-
tion, the performance results collected when the adaptive strategy is applied and those when
a static strategy is applied. The long term mean team reward is 24% higher with the adaptive
strategy than with the static strategy. Moreover we study the impact of model calibration
errors on the strategy performance. The proposed method seems to bring benefits even in
the presence of errors in the models.
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CHAPITRE 1 INTRODUCTION

Dans ce chapitre, on commencera par évoquer les diverses problématiques rencontrées lors-
qu’on conçoit une machine destinée à travailler en collaboration avec un humain. Ensuite, un
scénario de collaboration précis sera introduit comme support de travail. Enfin on formulera
les objectifs qui ont orienté les travaux présentés dans ce mémoire.

1.1 La collaboration humain machine : les problématiques

1.1.1 Le contexte

Lorsqu’on décide qu’une machine 1 doit collaborer avec un humain, c’est que l’équipe per-
forme mieux que chacun des partenaires s’ils devaient réaliser la tâche seuls. Une approche
possible pour concevoir cette équipe est d’automatiser le maximum de fonction possible et
de laisser le reste à l’humain. Or, aujourd’hui, on est capable d’automatiser des fonctions de
plus en plus complexes et dans des environnements de plus en plus incertains. Les ingénieurs
doivent donc repenser la façon dont ils conçoivent les équipes humain-machine (Cummings,
2014). D’abord on peut s’intéresser à l’allocation des tâches, c’est-à-dire quelle tâche doit
être confiée à quel partenaire. En introduisant le concept de niveau d’automatisation (ou
Levels of Automation (LoA)) (Parasuraman et al., 2000), on diversifie les types de collabo-
ration entre humain et machine. L’échelle des niveaux d’automatisation liste les façons dont
peut être partagée l’autorité. Autrement dit, une tâche n’a pas à être réalisée soit entière-
ment par un humain soit entièrement par la machine. Ensuite, on peut poser la question
de savoir comment la machine et l’humain doivent collaborer. Une des réponses possibles
est les stratégies adaptatives (Rouse, 1988), (Parasuraman et al., 1992). Une stratégie de
collaboration adaptative consiste à faire varier certains aspects d’une tâche en fonction de
paramètres relatifs au système (par exemple la demande, les performances de la machine
etc...) ou relatifs à l’humain (ses performances, sa charge mentale etc...). Trois questions se
posent dans la conception de stratégies adaptatives : que faut-il adapter, en fonction de quoi
on adapte et comment adapter (Wickens et al., 2015)[Chapitre 12]. Évidemment les réponses
à ces questions dépendent beaucoup du contexte particulier.

Dans ce mémoire, on s’intéresse à la conception de stratégies de collaboration adaptatives.
En particulier on conçoit une stratégie adaptative correspondant à un scénario donné. Cette

1. Dans ce mémoire, on appelle «machine» tout système comportant une partie automatisée. Cela com-
prend les systèmes d’aide à la décision (e.g. aide à la conduite), des logiciels de supervision de systèmes
complexes (e.g. supervision de centrale nucléaire) ou encore des robots (e.g. rover d’exploration).
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stratégie doit améliorer les performances globales de l’équipe humain-machine en s’appuyant
sur les caractéristiques d’un humain.

1.1.2 Les particularités du «système» humain

Lorsqu’on souhaite concevoir une machine qui prend en compte l’humain, il faut comprendre
quelles sont les difficultés à surmonter pour espérer atteindre cet objectif. En particulier,
plusieurs problématiques sont posées par les caractéristiques du «système» humain.

D’abord, il faut rappeler la multiplicité des facteurs impactant le comportement humain
dans un contexte de collaboration avec une machine. Ces facteurs peuvent provenir de dif-
férentes sources telles que la machine (ses performances, sa lisibilité etc...), l’environnement
(les risques, la présence de collaborateurs humains etc...) ou l’humain lui même (sa charge
mentale, son stress, ses compétences etc...). En plus de la multiplicité des sources influençant
le comportement humain, il faut ajouter l’importance de l’historique des interactions entre
l’humain et la machine. En effet, l’humain se base en partie sur ses expériences passées pour
prendre ses décisions, par exemple quand il fait le choix de faire confiance ou non à une
machine pour réaliser une tâche.

Afin de guider des stratégies de conception qui soient précises, et pas seulement sous forme
de recommandations, il est impératif de quantifier un certain nombre de phénomènes. Par
exemple, si on souhaite concevoir un système qui minimise la charge mentale d’un opérateur,
il faut pouvoir représenter la charge mentale par un scalaire. Or il n’y a pas de consensus
sur une définition de la charge mentale comme une variable unidimensionnelle qu’il serait
possible, en plus, de mesurer. En outre, on ne dispose pas de modèle physique du cerveau
humain qui permettrait de prédire le comportement humain en général. Enfin, bien que des
modèles du comportement humain ont été proposés dans des contextes particuliers, ils doivent
répondre à la question des différences inter-personnelles. En effet, chaque humain ne réagit
pas de la même façon même si les situations sont identiques. Doit-on alors concevoir des
stratégies de collaboration uniques ou personnalisées ?

Même si on a défini des concepts pour aider notre compréhension de l’humain (charge men-
tale, confiance, confiance en soi, conscience de la situation etc...), ces éléments ne sont pas
directement observables. On ne sait observer que la version subjective de ces concepts par
des questionnaires. On peut également observer directement le comportement de l’humain,
ses performances ou encore son utilisation de la machine sans l’interrompre dans ses activi-
tés. Il est aussi possible de mesurer des manifestations physiques un peu plus fines grâce à
des capteurs physiologiques plus ou moins invasifs (rythme cardiaque, mouvement des yeux,
activité électrique du cerveau etc...). Dans tous les cas, il est difficile d’observer les processus
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cognitifs qui conduisent à tel ou tel comportement.

1.2 Le problème de partage de tâches en classification

Dans cette section, on introduit le scénario de collaboration humain-machine pour lequel on
concevra la stratégie adaptative.

1.2.1 Description du scénario

Dans ce scénario de collaboration, l’équipe humain-machine doit réaliser des tâches de clas-
sification binaire d’évènements aléatoires sur la base d’un certain nombre d’informations
incomplètes. Chaque évènement ou objet peut être classé soit par la machine soit par l’opé-
rateur. On suppose que les évènements sont indépendants les uns des autres. De plus ces
évènements surviennent de manière périodique dans le temps.

Concrètement, on peut formuler la tâche de classification sous la forme d’un test d’hypothèse.
Pour chaque évènement k, la machine ou l’humain doit choisir parmi l’hypothèse H1,k (l’évè-
nement est intéressant) ou H0,k (hypothèse nulle). Lorsque le décideur choisit l’hypothèse
H1,k (respectivement H0,k) on notera sa décision Dk = 1 (respectivement Dk = 0). Son choix
se fait à partir d’informations Yk disponibles, définies comme une variable aléatoire.

Étant donné les quatre issues possibles d’une classification binaire (tableau 1.1), les capacités
d’un classificateur binaire peuvent être représentées par ses probabilités de vrais positifs
PV P := P (Dk = 1|H1,k) et de faux positifs PFP := P (Dk = 0|H0,k). On suppose que ces
probabilités ne dépendent pas du temps. À chaque issue possible de la classification (vrai
positif, faux positif, faux négatif ou vrai négatif), on associe une récompense positive ou
négative qu’on note respectivement RV P ≥ 0, RFP ≤ 0, RFN ≤ 0 et RV P ≥ 0. On supposera
de plus que RV P 6= RFN et RFP 6= RV N . Enfin un coût additionnel Rh ≤ 0 est collecté
lorsque la classification est réalisée par l’opérateur. Ce coût permet de prendre en compte
les situations où l’opérateur a d’autres tâches à accomplir que la classification d’évènement.
Ainsi, la problématique du temps perdu sur la réalisation des tâches secondaires est intégrée
dans la réalisation de la tâche principale.

Dans ce problème, le temps est divisé en périodes de travail, indexées par t. Une période
de travail correspond à N tâches de classification successives (N est constant). Au début de
chaque période de travail, la machine suggère un partage de tâche à l’opérateur, noté at,
c’est-à-dire la proportion d’objet que l’humain devrait classer pendant cette période. L’opé-
rateur a l’autorité sur la machine et décide s’il veut compléter plus ou moins de tâches que
proposé par la machine. Par exemple, un opérateur n’ayant pas confiance dans les capacités
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Tableau 1.1. Résultats possibles d’une tâche de classification binaire.

Classe réelle

Classe prédite Positif (H1,k) Négatif (H0,k)

Positif (Dk = 1) Vrai positif Faux positif

Négatif (Dk = 0) Faux négatif Vrai négatif

du classificateur automatique aura tendance à classer manuellement tous les évènements.

Remarque. Le choix du nombre N d’évènements dans une période de travail doit être fait en
fonction du scénario particulier. Si N est trop faible, on risque de brouiller l’opérateur avec
des changements de suggestion trop fréquents de la part de la machine. En revanche si N est
trop grand, on donne moins de chance à la suggestion automatique d’allocation de tâche de
prendre en compte l’état instantané de l’opérateur.

1.2.2 Justification du scénario

En premier lieu, on choisit une tâche de classification binaire car elle est suffisamment pré-
cise pour être décrite formellement. En outre, il s’agit d’un premier exemple de collaboration
relativement simple qui pourrait être complexifié par la suite selon plusieurs directions (clas-
sification en plus de deux catégories, environnement non statique etc...).

Le scénario choisi met en scène une tâche de prise de décision dans un environnement incer-
tain. Le décideur est contraint d’adopter un comportement basé sur des connaissances ou une
expertise. L’humain est connu pour être plus performant dans ce genre de tâche relativement
à ce que pourrait faire une machine (Cummings, 2014). Cependant les outils d’apprentissage
permettent de plus en plus aux machines d’aborder des problèmes de décision dans des envi-
ronnements complexes et incertains. Il est alors pertinent d’imaginer une collaboration entre
humain et machine pour des problèmes de classification d’évènements.

De plus, le cadre est suffisamment général pour englober des situations diverses. On peut
imaginer des contextes industriels comme l’identification de défauts de fabrication sur des
objets ou le classement de courrier selon deux zones géographiques. Ce scénario peut corres-
pondre également à des contextes de sécurité comme l’identification d’évènements à risque
sur un ensemble d’écrans de vidéo-surveillance ou la différentiation entre des véhicules alliés
et des véhicules hostiles sur un écran radar.
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Tableau 1.2. Notations.
p Probabilité qu’un objet soit intéressant (p = P (H1))
PV P Probabilité qu’un classificateur réalise un vrai positif
PFP Probabilité qu’un classificateur réalise un faux positif
N Nombre d’objet ou d’évènement à classer pendant une période de travail
Wt Proportion d’objet classé par l’humain pendant la période de travail t
at Proportion d’objet classé par l’humain suggéré par la machine

1.3 Objectifs de recherche

1.3.1 Développer une solution adaptative au problème de partage de tâches

On souhaite proposer une méthode de conception d’une stratégie de partage de tâches adap-
tatif. Wickens, dans (Wickens et al., 2015)[Chapitre 12], recommande qu’il faut adapter le
paramètre qui influence le plus la charge mentale de travail de l’opérateur. On a vu dans le
scénario décrit que la machine doit régulièrement proposer une répartition des tâches entre
l’humain et la machine. L’objectif est donc de rendre la suggestion de partage de tâches
adaptative.

1.3.2 Sélectionner des modèles quantitatifs de performance et de la confiance
humaine

Étant donné le contexte du scénario, on décide que la solution adaptative doit prendre en
compte deux facteurs humains susceptibles d’avoir un impact important sur les performances
de l’équipe : la charge de travail de l’humain et la confiance qu’il place dans la machine. Une
revue de littérature doit justifier ce choix. Enfin, la prise en compte de ces deux facteurs
nécessite la définition de modèles quantitatifs liant charge mentale, confiance et performance
de l’équipe.

1.3.3 Évaluer la solution adaptative

Outre la conception d’une stratégie adaptative qui prend en compte les concepts de charge
de travail et de confiance, on souhaite évaluer la pertinence de la démarche. En particulier on
cherche à comparer cette stratégie à une stratégie statique, i.e. dont la suggestion de partage
de tâches est constante. La comparaison doit se faire en terme de performance de l’équipe
à long terme mais également en terme de robustesse aux erreurs de modèle et de facilité
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d’application.

1.4 Plan du mémoire

Ce mémoire s’organise de la façon suivante. Le chapitre 2 offre une revue de littérature qui,
à la fois, place ces travaux dans leur contexte de recherche et apporte des justifications à
un certain nombre de choix. Le chapitre 3 introduit le modèle liant charge de travail et
performance humaine et apporte une première solution statique au problème de partage de
tâches. Le chapitre 4, quant à lui, présente un modèle dynamique de la confiance qui sera
ensuite utilisé dans la conception de la stratégie adaptative. On présente également dans ce
chapitre les résultats des simulations permettant d’évaluer la pertinence de l’approche choisie.
Enfin, le dernier chapitre conclut ces travaux en évoquant leurs limites et de potentielles
améliorations.
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CHAPITRE 2 REVUE DE LITTÉRATURE

Dans ce chapitre, on cherche à placer le sujet de ce mémoire dans son contexte. Cela permettra
en outre de justifier un certain nombre de points dans la démarche adoptée. En particulier,
on commencera par introduire le concept de charge de travail ainsi que des approches qui
ont été adoptées dans la littérature pour modéliser l’impact de cette charge de travail sur
les performances humaines. Dans un deuxième temps, on propose de définir ce qu’est la
confiance que place un humain dans une machine. De même, on explore les différentes façons
de modéliser ce concept psychologique. Enfin, la dernière section tache de donner une idée
au lecteur des solutions proposées dans les dernières années pour prendre en compte, dans le
design de stratégies de collaboration humain-machine, ces deux facteurs humains que sont la
confiance et la charge de travail.

2.1 La charge de travail

2.1.1 Définitions et justification

Définitions

Lorsqu’on s’intéresse au facteur humain, on a l’habitude de distinguer la charge de travail
objective de la charge mentale de travail. La charge de travail objective correspond à la
quantité de tâche qu’on demande à un humain alors que la charge mentale reflète les ressources
cognitives mobilisées par l’humain pour réaliser les tâches demandées. Évidemment, la charge
de travail objective impacte la charge mentale mais ne la caractérise pas à elle seule. Par
exemple, la personnalité, les compétences et l’attention d’un opérateur sont d’autres facteurs
influençant la charge mental d’un individu.

Impact de la charge de travail sur les performances humaines

L’article (Young et al., 2015) offre une revue des études abordant le concept de charge mentale
en ergonomie depuis leur début, dans les années 80. La charge mentale est un des concepts le
plus étudié en facteur humain. La principale motivation pour chercher à définir et mesurer la
charge mentale est l’étude de son impact sur les performances humaines. En particulier, on
cherche à prévenir les situations dans lesquelles un individu serait surchargé ou sous-chargé.
En effet, lorsqu’un opérateur est surchargé mentalement, il sera susceptible de commettre
des erreurs. À l’inverse, lorsque sa charge mentale est trop basse, cela peut provoquer des
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problèmes de perte d’attention, de perte de compétences ou encore d’ennui.

Mesurer la charge mentale de travail

De nombreuses études ont été proposées pour mesurer la charge mentale d’un individu lors-
qu’il accompli une tâche. La première solution consiste à questionner ce dernier sur son
ressenti. On accède alors à la vision subjective de la charge mentale de l’opérateur (Moray,
1982). Cette mesure ne reflète pas exactement la quantité des ressources cognitives dépensées
par l’individu mais permet tout de même des études comparatives. L’un des questionnaires
les plus répandus semble être le NASA-Task Load indeX (NASA-TLX) (Hart et Staveland,
1988). Celui-ci, originellement développé pour le domaine de l’aviation, est aujourd’hui très
largement utilisé pour évaluer la charge mentale d’un individu (Hart, 2006). La deuxième
façon de mesurer la charge mentale consiste à observer un certain nombre de manifestations
physiologiques causée par celle-ci. Il est possible d’observer, par exemple, la dilatation des
pupilles, le rythme cardiaque ou encore l’activité électrique du cerveau. (Charles et Nixon,
2019) offre une revue récente des techniques de mesure de charge mentale via l’utilisation de
capteurs physiologiques.

2.1.2 Modéliser la charge de travail

On souhaite montrer ici que divers modèles quantitatifs de la charge mentale de travail ont
été proposés dans la littérature. On peut classer ces modèles en deux catégories : les modèles
qui sont capables de prédire la charge mentale d’un individu et les modèles qui, en plus, vont
prédire les performances de cet individu.

Modèles prédisant la charge mentale

Les modèles de charge mentale varient d’abord en fonction de leur domaine d’application.
Les auteurs de (Loft et al., 2007) offrent une revue des modèles prédisant la charge mentale
dans le contexte de contrôle aérien et proposent à leur tour un autre modèle dans (Loft et al.,
2009). Par exemple, dans (Manning et al., 2002), des modèles construits par régression, sont
capables de prédire la charge mentale subjective de contrôleurs aériens à partir du nombre,
de la durée et du type de contenu des communications orales. D’autres méthodes, listées
dans (da Silva, 2014), sont utilisées dans le domaine de la conduite d’un véhicule. Wickens
a, quant à lui, proposé un modèle qui traite spécifiquement des situations où l’opérateur doit
accomplir plusieurs tâches et qui fait la distinction entre les types de ressources mobilisées
(perception visuelle, auditive, analyse, réponse verbale, manuelle etc...) (Wickens, 2008).
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Modèles prédisant les performances humaines

On cite ici quelques travaux qui ont pour objet de prédire les performances humaines en
prenant en compte l’impact de la charge de travail. Par exemple, dans (Sorkin et Woods,
1985), Sorkin et Woods proposent de modéliser les performances de classification d’un humain
en utilisant un modèle de la Théorie de la Détection du Signal et en faisant varier l’un des
paramètres du classifieur humain avec la fréquence d’apparition des éléments à traiter. Ici
cette fréquence peut s’interpréter comme la charge de travail objective de l’humain. Dans
(Rouse et al., 1993), les auteurs avancent un modèle linéaire capable de prédire la charge
mentale subjective de l’humain ainsi que son comportement. Plus récemment, les auteurs
de (Wu et Liu, 2007) proposent un modèle capable de prédire les performances de conduite
d’un individu en estimant à chaque instant leur charge mentale grâce à l’observation de
son comportement et de ses réponses à un questionnaire. Ce modèle prend également en
compte l’âge du conducteur. Enfin, une méthode estimant la charge mentale et la fiabilité
d’un opérateur grâce à ses interactions avec une machine est utilisée dans (Gregoriades et
Sutcliffe, 2008).

2.2 La confiance

2.2.1 Définitions et justifications

Un exemple

Lorsqu’une équipe de collaboration humain-machine est formée, il est fréquent que l’opérateur
ait l’autorité sur la machine. Cette autorité peut lui permettre de reprendre le contrôle manuel
en cas de doutes sur les capacités de la machine. Typiquement, un opérateur qui viendrait
d’assister à plusieurs échecs successifs d’une machine préférera, par manque de confiance,
réaliser les tâches manuellement plutôt que de continuer à les déléguer à la machine. Il est
possible alors que l’opérateur se surcharge volontairement le conduisant à faire des erreurs
alors que la machine est toujours capable de réaliser une partie des tâches. Dans cet exemple
il apparaît d’une part que le choix de l’opérateur d’avoir recours partiellement, totalement
ou pas du tout à la machine (on appellera cela la dépendance ou reliance), a un impact
significatif sur les performances de l’équipe humain-machine. D’autre part, la dépendance de
l’opérateur à la machine semble directement liée à sa confiance.
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Les facteurs de la dépendance de l’homme à la machine

Il est connu qu’une dépendance inappropriée peut avoir un impact négatif allant de la per-
formance sous-optimale (Robinette et al., 2016) à l’accident. Parasuraman et Riley classent
cet impact en deux catégories : la sous-exploitation (disuse) et la sur-exploitation (misuse)
(Parasuraman et Riley, 1997). Dans le premier cas, le problème vient du fait que l’opérateur
n’utilise pas suffisamment la machine, dans le second, l’opérateur se repose à tort sur elle. Ce
sont deux situations qu’il est préférable d’éviter lorsqu’on conçoit une stratégie de collabora-
tion. Plusieurs facteurs ont été identifiés comme influant le comportement de dépendance de
l’humain à la machine. La confiance que place un opérateur dans les capacités de la machine
apparaît comme un facteur très important (Lee et See, 2004), (Dzindolet et al., 2003). Ce-
pendant, des travaux ont mis en évidence le rôle de la confiance en soi (Lee et Moray, 1994),
la charge mentale de travail (Parasuraman et Riley, 1997), la pression temporelle (Rice et
Keller, 2009), la difficulté apparente de la tâche (Schwark et al., 2010) ou encore le style
de comportement (van den Brule et al., 2014). Les importances relatives de chacun de ces
facteurs dépendent du type de tâche demandé et de l’environnement. Certains ont proposé
des outils pour les identifier (Van Dongen et Van Maanen, 2013), (Dzindolet et al., 2001),
(Inagaki et Itoh, 2010).

Les facteurs de la confiance

Dans la littérature, on définit la confiance que place un individu dans un agent comme
la propension de cet agent à aider un individu dans la réalisation de ses objectifs dans un
environnement incertain et comportant des risques (Lee et See, 2004). Il s’agit d’un processus
psychologique qui permet de guider facilement le comportement d’un individu car il lui serait
extrêmement coûteux en ressources cognitives de prendre des décisions sans cette aide devant
des machines très complexes.

La confiance est un processus cognitif interne à un individu et est, par conséquent, diffi-
cile à mesurer. Le principal moyen d’évaluer la confiance passe par des mesures subjectives.
C’est-à-dire qu’on demande au participant de remplir un questionnaire. On peut citer par
exemple l’échelle Trust Perception Scale-HRI spécialisée dans le domaine des interactions
entre humain et robot (Schaefer, 2016), ou encore (Yagoda et Gillan, 2012a), (Park et al.,
2008), (Yagoda et Gillan, 2012b) ou (Madsen et Gregor, 2000). Le principal reproche fait
aux mesures subjectives est leur caractère invasif et incompatible avec des tâches pour les-
quelles le temps est compté. D’autres travaux tentent de mesurer la confiance par des mesures
comportementales. En particulier, dans (Kaniarasu et al., 2012), les auteurs sont capables
de détecter des changements de confiance en observant le nombre d’alarmes lancées avant
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que l’opérateur baisse le niveau d’autonomie de la machine ainsi que le temps écoulé entre la
dernière alarme et le moment où il agit ainsi. De même, dans (Freedy et al., 2007), on propose
une mesure de la confiance dite rationnelle à partir de l’observation des comportements de
l’humain et de la machine.

À la difficulté de mesurer la confiance s’ajoute celle de la complexité de ses facteurs. Hancock
et al (Hancock et al., 2011) classent ces facteurs affectant la confiance en trois catégories : les
facteurs relatifs au robot, à l’humain et à l’environnement. Parmi les éléments émanant de la
machine, on trouve la fiabilité (Sanchez et al., 2014), la lisibilité (Oduor et Wiebe, 2008), la
prédictabilité (van den Brule et al., 2014) ou encore les types d’erreurs (Dixon et al., 2007),
(Madhavan et al., 2006) . Le niveau d’automatisation a également un impact sur le poids de
ces paramètres sur la confiance (Chavaillaz et al., 2016) ainsi que le type des informations
partagées (Gao et Lee, 2006a). Parmi les facteurs environnementaux, on peut trouver entre
autre la complexité de la tâche et les risques encourus (Perkins et al., 2010). Les facteurs liés
à l’humain comprennent les particularités culturelles (Sanchez et al., 2014), la personnalité
de l’opérateur (Szalma et Taylor, 2011), son âge (McBride et al., 2010). On peut également
citer son expertise représentée par la qualité du modèle mental qu’il se fait de la machine et
de l’environnement (Wilkison, 2008) ou encore sa confiance initiale (Zhou, 2011).

2.2.2 Prédire le comportement d’un humain en modélisant la confiance

Remarques sur les modèles quantitatifs du comportement humain

Avant de concevoir une stratégie de collaboration entre humain et machine il est nécessaire
de comprendre le comportement des deux partenaires dont celui de l’humain en particulier.
Cette compréhension peut passer par des études qualitatives desquelles résultent des recom-
mandations appliquées par les professionnels. Cette compréhension peut également passer
par l’élaboration de modèles quantitatifs capable de prédire le comportement humain. Ces
modèles pourraient alors guider, avec davantage de précision que des recommandations, la
conception de stratégies de collaboration. Cependant, on a vu dans la section précédente
la diversité des facteurs influençant la dépendance d’un humain à une machine. À celle-ci
s’ajoute la diversité des facteurs impactant la confiance. De plus ces facteurs ne sont ni fa-
cilement quantifiables ni facilement observables. Parasuraman (Parasuraman, 2000) formule
donc quelques remarques sur la nature des modèles quantitatifs. D’abord il semble impos-
sible qu’un modèle de comportement humain soit pertinent dans le cas général de toutes les
situations de collaboration humain-machine. Les différents modèles qui ont été proposés dans
la littérature ne sont donc pas en compétition. De plus, certains modèles sont dits normatifs,
c’est-à-dire qu’ils se basent sur une certaine théorie de la façon dont un humain prend une
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décision. Le fait que cette théorie soit en partie fausse ou trop simpliste ne rend pas obsolète
un modèle quantitatif. Celui-ci peut tout de même guider une stratégie de collaboration qui
va dans le sens d’une amélioration des performances de l’équipe.

Des approches de modélisation du comportement de dépendance humain

La première étape pour espérer prédire la confiance d’un humain envers une machine a été
d’en comprendre tous les facteurs. Ainsi les premiers modèles de la confiance sont qualitatifs.
Par de multiples expériences réalisées dans divers contextes, on tente de dresser la liste
exhaustive des paramètres à prendre en compte si on souhaite modéliser la confiance. Ce
travail a été fait dans (Desai, 2012) dans un contexte de téléopération d’un robot mobile,
dans (Boubin et al., 2017) ou encore dans (Sanders et al., 2011).

Les premiers modèles quantitatifs ont vu le jour dans les années 90. Dans (Lee et Moray,
1992), Lee et Moray proposent un modèle linéaire dynamique de la confiance. La confiance
d’un opérateur au temps t dépend de sa confiance au temps t− 1 ainsi que des performances
et des erreurs de la machine aux temps t et t − 1. Dans (Gao et Lee, 2006b) les auteurs
proposent également un modèle explicite mais celui-ci trouve ses bases dans la théorie de la
décision humaine. Ce modèle, en plus de prédire si l’opérateur utilisera le contrôle manuel
ou automatique, décrit les processus psychologiques derrière la construction de la confiance.
L’entrée de ce modèle est une valeur, non précisée, décrivant les capacités réelles de la ma-
chine. Ce modèle a été étendu, dans (Gao et al., 2006), pour simuler une tâche où plusieurs
humains travailleraient avec une machine. Les autres modèles quantitatifs ne cherchent pas
forcément a fonder leur structure sur les théories du comportement humain.

Parmi les modèles linéaires, on peut trouver également (Xu et Dudek, 2016) qui observe le
comportement humain en plus de celui de la machine pour prédire la confiance. Dans (Li,
2020), l’état de confiance d’un humain est prédit par un filtre de Kalman dans le contexte
du contrôle d’un essaim de robot. Les entrées de ce modèle sont les interventions de l’humain
et les performances de l’algorithme de contrôle des robots. De même, (Azevedo-Sa et al.,
2020) avance un modèle estimant la confiance dans un véhicule à conduite autonome. Cette
estimation se fait grâce aux observations du mouvement des yeux du participant, de son temps
d’utilisation de la conduite automatique et de ses performances sur une tâche secondaire à
la supervision de la conduite.

Étant donné la nature aléatoire d’un certain nombre d’éléments dans un scénario de collabo-
ration humain-machine (l’environnement, le comportement de la machine, le comportement
humain, les observations etc...) et le faible nombre d’observations, des auteurs ont choisi d’uti-
liser des outils de statistique bayésienne. La confiance estimée d’un humain est représentée
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par une distribution de probabilité. Cette distribution s’affine au fur et à mesure des interac-
tions. Dans (Liu, 2020), Liu fait une revue des modèles bayésiens de la confiance humaine. On
peut citer par exemple (Guo et Yang, 2020), (Van Maanen et al., 2007) et le modèle OPTIMo
(Online Probabilistic Trust Inference Model) (Xu et Dudek, 2015) qui prédit la confiance et
les interventions d’un humain à partir des performances du robot, des interventions passées
de l’opérateur et de quelques retours sous forme de questionnaires.

Enfin une dernière approche consiste à construire un modèle de la confiance par l’apprentis-
sage d’un réseau de neurones artificiels. C’est le cas dans (Farrell et Lewandowsky, 2000) par
exemple. Les outils en apprentissage profond et apprentissage par renforcement semblent ou-
vrir la voie vers ces modèles de la confiance basés largement sur les données. Par exemple dans
(Nam et al., 2017), les auteurs cherchent à modéliser le comportement humain lors du contrôle
d’un essaim de robot. En utilisant l’apprentissage par renforcement inversé ils parviennent à
identifier les paramètres qui impactent la confiance ainsi que de modéliser quantitativement
cet impact. Les auteurs de (Soh et al., 2019) proposent et comparent des modèles bayésiens
et neuronaux. Ils concluent entre autre que ces modèles peuvent être complémentaires et
qu’une approche hybride devrait être investiguée.

Critères de choix d’un modèle

Dans (Hiatt et al., 2017), les auteurs proposent une revue des différentes techniques de mo-
délisation du comportement humain dans les contextes de collaboration humain robot. Ces
techniques sont classées en fonction de leur niveau de modélisation. Le niveau computation-
nel modélise ce que l’humain fait, le niveau algorithmique, comment il le fait et les processus
psychologiques sous-jacents et le niveau implémentationel la façon dont ces processus psy-
chologiques se réalisent physiquement. En outre, les auteurs identifient plusieurs critères qui
doivent être pris en compte dans le choix d’un modèle. Parmi ceux-ci on trouve la part du
modèle qui est apprise à partir de données, la quantité de données nécessaire à la convergence
du modèle, la présence d’une structure spécifiée «à la main», l’échelle de temps sur laquelle le
modèle réalise ses prédictions ou encore la façon dont le modèle prend en compte ses erreurs.

Ces différents critères confirment que les modèles quantitatifs proposés dans la littérature
sont aujourd’hui variés et complémentaires. La diversification des outils utilisés pour aborder
le concept de confiance humain machine montre le dynamisme de ce sujet de recherche tant
sur l’aspect de la mesure que sur celui, peut-être plus délicat, de sa modélisation.
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2.3 Conception de stratégies de collaboration humain-machine basées sur des
modèles quantitatifs

On s’intéresse ici aux diverses solutions qui ont été apportées au problème d’amélioration de
la collaboration humain-machine. Plutôt que de proposer une liste exhaustive des stratégies
de collaboration qui ont été publiées, on choisit dans cette section de citer une dizaine d’entre
elles, parmi les plus récentes, démontrant leur diversité. On s’intéresse particulièrement aux
solutions qui cherchent à maintenir une charge de travail et/ou un niveau de confiance ap-
propriés. En outre, chacune des solutions citées sont basées sur un modèle quantitatif du
comportement humain. Ces modèles sont utilisés pour prédire les performances, les décisions
ou le comportement de dépendance d’un humain à la machine.

2.3.1 Des stratégies d’allocation de contrôle (contrôle manuel ou automatique)

Une des façons d’éviter qu’un opérateur sous-exploite ou sur-exploite une machine est de
guider son choix de passer du contrôle manuel au contrôle automatique et vice versa. Certaines
stratégies consistent à avertir l’opérateur lorsque la machine considère qu’il serait mieux de
changer le contrôle d’un système. Dans (Saeidi et Wang, 2019), les auteurs utilisent des
modèles dits objectifs de la confiance et de la confiance en soi ainsi que des modèles de
performance humaine pour proposer une stratégie d’allocation dynamique de tâche. Ils testent
leur solution dans un contexte de téléopération d’un robot mobile et montrent que leur
stratégie est plus avantageuse (meilleures performances et charge mentale réduite) que celle
consistant à laisser le choix du mode de contrôle à l’opérateur seul. Dans (Wang et al., 2018),
une stratégie de contrôle est proposée concernant le choix de la trajectoire de plusieurs robots.
Cette stratégie intègre également un modèle dynamique de la confiance humaine.

2.3.2 Des stratégies de collaboration influençant le comportement de la machine
via des états dégradés

Influencer ou contraindre le choix du mode de contrôle (manuel ou automatique) permet
d’éviter directement des situations de sur-exploitation ou de sous-exploitation. C’est un
exemple d’allocation de niveau d’automatisation adaptatif. En effet, le niveau d’automa-
tisation s’adapte ici à la confiance de l’humain en la machine, la confiance de la machine
en l’humain et même de la confiance de l’humain en lui-même. Cependant, comme le décrit
(Muslim et Itoh, 2019), il n’est pas nécessaire d’adopter une stratégie d’allocation de contrôle
adaptative pour améliorer la collaboration dans une équipe humain-machine. On peut égale-
ment concevoir des stratégies adaptatives de partage de tâches mais qui ne changent pas le
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niveau d’automatisation. Par exemple, la machine peut adapter son comportement au niveau
de confiance de l’humain mais celui-ci garde toujours l’autorité sur la machine.

Parmi ces stratégies qui ne changent pas le niveau d’automatisation de la collaboration, on
trouve celles qui consistent à passer d’un état de fonctionnement normal à un état de fonction-
nement dégradé, et vice versa, en fonction du niveau de confiance estimé de l’opérateur. Par
exemple, dans la stratégie TACtiC (Trust-Aware Conservative Control) (Xu et Dudek, 2016)
(Xu, 2016), un robot mobile va altérer son comportement lorsque son superviseur humain
perd confiance en lui. Cet état de fonctionnement altéré consiste à rendre les mouvements
et les décisions du robot plus prédictibles et compréhensibles pour l’humain (vitesse réduite
et mouvements plus lisses). La confiance du superviseur humain est estimée par le modèle
OPTIMo évoqué plus haut. Dans le même esprit, dans (Sadrfaridpour, 2018), on cherche à
améliorer la collaboration dans une tâche de manipulation d’objet partagée par un humain
et un bras robotique. Lorsque la confiance de l’opérateur est au dessus d’un certain seuil, le
robot est pro actif dans le choix de la trajectoire et estime la trajectoire souhaitée par son
partenaire humain lui permettant ainsi de mieux prendre en charge les efforts lors de la ma-
nipulation. Lorsque la confiance est trop basse, le choix de la trajectoire est laissé à l’humain.
L’estimation de la confiance de l’humain est basée sur les observations des performances du
robot mais aussi de la force appliquée par l’humain sur l’objet à déplacer, interprétée comme
le désaccord entre le robot et l’humain.

2.3.3 Des stratégies de collaboration influençant le comportement de la machine
avec un impact continu de la confiance

On a vu des stratégies qui proposent un mode dégradé lorsque la confiance descend en-dessous
d’un certain seuil. Voyons ici des stratégies qui intègrent de manière continue le niveau de
confiance de l’humain dans le comportement de la machine, c’est-à-dire sans le comparer à
un simple seuil. Par exemple, dans (Chen et al., 2020), un certain nombre d’objets avec des
récompenses et des risques différents, doivent être déplacés par un bras robotique. L’opérateur
qui supervise le robot peut choisir de l’interrompre pour déplacer l’objet à sa place si il pense
que le robot va échouer. Les auteurs proposent une stratégie qui indique quel objet doit
être déplacé à partir d’un estimé de l’état de confiance de l’humain. Cette stratégie est le
résultat de la résolution d’un processus de décision markovien partiellement observable. Dans
(Saeidi et al., 2017), il est question de téléopération dans laquelle la commande du robot est
partagée entre l’humain et l’algorithme. La part du contrôle de l’algorithme est pondérée par
la confiance estimée de l’humain. De plus, cette confiance est également prise en compte dans
le retour haptique fourni à l’opérateur.
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2.3.4 Des stratégies de collaboration promouvant une charge de travail appro-
priée

Jusque là, on a évoqué des stratégies qui promeuvent principalement une confiance appropriée
de l’humain et qui, parfois, prennent en compte ses performances et l’impact de la charge de
travail sur ses performances. Les deux prochains exemple de solutions adaptatives intègrent
en particulier des modèles de la charge de travail. Dans (Srivastava et al., 2012), la machine
doit choisir le temps laissé à l’humain pour chacune des décisions qu’il doit prendre. La
conception de cette stratégie utilise des modèles décrivant la prise de décision humaine, le
compromis entre rapidité et précision ainsi que la conscience de la situation. Dans (Savla et
Frazzoli, 2011), un modèle dynamique de la charge mentale permet de concevoir une stratégie
d’affectation de tâches à un opérateur adaptée à sa charge mentale courante.

2.3.5 Des cadres de conception promouvant une confiance appropriée

Lorsqu’une solution de collaboration est proposée, elle s’inscrit en général dans un contexte
relativement particulier (manipulation d’objet, téléopération, supervision etc...). Cependant,
certains travaillent sur des méthodes de conception beaucoup plus générales. C’est le cas de
(Zhang et Lin, 2019) où les auteurs proposent de concevoir une stratégie de collaboration
humain-machine en utilisant le formalisme des POMDP. Dans un exemple, ils prennent en
compte l’humeur d’un conducteur comme un des états du POMDP montrant le caractère
adaptatif de leur solution. De même, dans (Floyd et al., 2014), un formalisme est proposé
pour permettre à une machine de choisir à chaque instant le comportement promouvant le
plus la confiance parmi un ensemble de comportement disponible. Cette méthode permet, de
plus, de prendre en compte les retours exprimés par l’humain (Floyd et al., 2015).

2.4 Conclusion de la revue de littérature

Ce chapitre a permis de mettre en lumière les points suivants. D’abord la charge de travail et
la confiance sont deux facteurs qui peuvent impacter les performances d’une équipe humain-
machine. Il semble donc important de les prendre en compte si on souhaite concevoir une
machine centrée sur l’humain. De plus, on a vu que beaucoup se sont attelés à modéliser
ses concepts, y compris de manière quantitative, en guise de premier pas vers la conception
de meilleures stratégies de collaboration. Certains de ces modèles ont d’ailleurs déjà pris
part à l’élaboration de ces stratégies. La solution proposée dans ce mémoire s’inscrit dans
cette démarche puisqu’il s’agit de proposer une stratégie de partage de tâches basée sur des
modèles quantitatifs de confiance et de charge de travail.
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L’originalité de la solution proposée dans ce mémoire réside dans la combinaison du/de
— contexte, i.e., la suggestion de partage de tâches pour des séquences de classifications,
— la prise en compte de l’impact de la charge de travail sur les performances,
— la prise en compte de la dynamique de la confiance.

En effet, ni la méthode, ni les modèles, ni le concept de partage de tâches adaptatif ne sont
à eux seuls une nouveauté dans le domaine de la collaboration humain-machine. Cependant
l’association de ces divers éléments appliqués à ce contexte constitue l’intérêt de ce mémoire.
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CHAPITRE 3 SOLUTION STATIQUE

Dans ce chapitre, une première solution statique est proposée pour répondre au problème
de partage de tâches décrit dans la section 1.2. Cette stratégie est conçue pour prendre en
compte l’impact de la charge de travail de l’opérateur sur ses performances. Pour ce faire
on modélise la relation entre performance et charge de travail en étendant les concepts de
la Théorie de la Détection du Signal (TDS), théorie régulièrement utilisée pour aborder des
problèmes de performances humaines. Il résulte du modèle de performance une stratégie
statique de partage de tâches entre humain et machine. Cette stratégie servira de point de
comparaison dans la suite de ce mémoire.

La section 3.1 introduit le modèle liant performance humaine et charge de travail. Ensuite
on discute de la façon dont on pourrait identifier les paramètres de ce modèle dans la section
3.2. Enfin on développe dans la section 3.3 la solution statique au problème de distribution
de tâche.

3.1 Un modèle de performance humaine dépendant de la charge de travail

3.1.1 Performance d’un classificateur binaire

Caractéristique de performance (ou Receiver Operating Characteristic (ROC))

La capacité d’un classificateur binaire peut être caractérisée par son taux de vrais positifs
(PV P ) et celui de faux positifs (PFP ) espérés lors d’une séquence de plusieurs classifications.
On appelle caractéristique de performance (ou Receiver Operating Characteristic (ROC))
(Fawcett, 2006) l’ensemble des points (PFP , PV P ) obtenus en faisant varier le seuil de discri-
mination du classificateur. La figure 3.1 montre des exemples de courbes ROC. Le point (0, 1)
représente un classificateur parfait. Il détecte 100% des objets intéressants et ne lance aucune
fausse alarme. Un point sur la diagonale partant de (0, 0) à (1, 1) représente un classificateur
aléatoire, i.e., qui décide de la classe d’un objet en lançant une pièce. Les courbes de la figure
3.1 sont tracées avec l’équation (3.5) avec d = 2 (trait pointillé) et d = 0.8 (trait plein).

Les courbes ROC sont utilisées comme outil graphique pour qualifier les performances en
détection de signal, classification d’évènement ou encore en diagnostique médical car il met
en évidence le compromis entre bonnes détections et fausses alarmes (Egan, 1975; Swets,
1988). Plus récemment, cet outil est souvent utilisé pour visualiser les performances des
classificateurs construits par apprentissage (Spackman, 1989).
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Figure 3.1 Exemple de courbes ROC

Il est possible de tracer la courbe ROC d’un classificateur directement à partir de données
expérimentales. Lorsque le classificateur est un opérateur humain, il peut être pertinent
d’utiliser un modèle guidant le tracé de la caractéristique de performance. L’utilisation d’un
modèle sous-jacent permet de

1. faciliter le tracé de sa caractéristique de performance en réduisant cette étape à l’iden-
tification de quelques paramètres seulement,

2. interpréter l’impact de certains paramètres comme la charge de travail de l’opérateur
sur ses performances.

Modèle proposé par la Théorie de la Détection du Signal (TDS)

Le modèle de performance humaine proposé dans ce mémoire est basé sur la Théorie de la
Détection du Signal (TDS) (Peterson et al., 1954). Cette théorie est un moyen de modéliser
et d’évaluer la capacité à détecter un signal dans un environnement bruité. Initialement les
concepts de la Théorie de la Détection du Signal (TDS) ont été appliqués à la détection
automatique de signal mais rapidement des travaux ont montré les apports de cet outil en
psychologie (Green et Swets, 1966). Les principes fondamentaux peuvent être trouvés dans
(Wickens, 2002) et (Wickens et al., 2015, Chapitre 2).

Le modèle le plus simple proposé dans la TDS est appelé modèle GVE. Reprenons le pro-
blème de classification énoncé en introduction 1.2. Pour plus de clarté on omettra l’indice k
représentant l’index d’un objet parmi une séquence de classification. On a défini Y comme
une variable aléatoire représentant les informations disponibles pour permettre au classifi-
cateur de faire son choix. Supposons que les mécanismes d’acquisition et de traitement de
l’information d’un humain transforme ce signal Y en une autre variable aléatoire I continue
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et unidimensionnelle appelée réponse interne.

Le modèle Gaussien à Variances Égales fait l’hypothèse que la réponse interne I suit la loi
N (0, 1) quand l’hypothèse H0 est vraie ou la loi N (d, 1) dans le cas de l’hypothèse H1, avec
N (µ, σ2) la loi normale de moyenne µ et de variance σ2. On notera d, un réel positif, la
sensibilité. La décision de l’humain est basée sur un seuil unique λ. Si I > λ alors la décision
sera D = 1, sinon l’humain décide D = 0 (voir la figure 3.2). Plutôt que de parler du seuil
λ dont la valeur dépend de la variable abstraite qu’est la réponse interne I, on préférera
définir le biais β représentant la propension d’un classificateur à choisir une hypothèse plutôt
qu’une autre. On définit le biais comme le rapport des probabilités que la réponse interne
corresponde au seuil λ sachant que le signal vienne des hypothèses H1 ou H0,

β = P (I = λ |H1)
P (I = λ |H0) . (3.1)

Le biais β grandit avec le seuil λ. Dans le cas du modèle GVE, il s’agit du rapport des densités
de probabilités des variables I|H1 et I|H0 suivants des lois normales, évaluées en λ. Après
calcul, on obtient

β = eλd−
1
2d

2
. (3.2)

Le modèle GVE a pour particularité de distinguer la sensibilité du décideur de son biais.
Typiquement ce modèle est capable de déterminer si des erreurs de classifications sont cau-
sées par une faible sensibilité ou un biais inapproprié. Le biais est fixé par l’opérateur mais
plusieurs facteurs peuvent l’influencer comme la perception de la fréquence de présence des
signaux et celle de l’importance relative des erreurs. Une formation peut également impacter
le biais. La sensibilité, quant à elle, peut être interprétée comme la capacité du mécanisme
de détection à distinguer les stimuli provenant du signal de ceux provenant du bruit. Plus la
sensibilité est grande, plus on peut espérer différencier facilement les signaux. Si d = 0 alors
aucun indice ne permet de guider la classification.

Tracé de la courbe ROC avec le modèle GVE

On note Φ la fonction de répartition d’une variable aléatoire X suivant la loi normale centrée
réduite, définie pour tout x ∈ R par

Φ(x) = P (X ≤ x)

= 1√
2π

∫ x

−∞
e−t

2/2dt
(3.3)
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Figure 3.2 Schéma du modèle Gaussien à Variances Égales de la Théorie de la Détection du
Signal

Dans le modèle GVE la probabilité de réaliser un vrai positif est donnée par

PV P = P (I ≥ λ |H1)

= 1− P (X + d < λ) avec X ∼ N (0, 1)

= Φ(d− λ)

(3.4)

Or on a également la probabilité de réaliser un faux positif PFP = P (I ≥ λ |H0) = Φ(−λ).
D’où l’expression de la courbe ROC résultant du modèle GVE :

PV P = Φ(d+ Φ−1(PFP )). (3.5)

La figure 3.1 montre deux courbes ROC tracées avec l’équation (3.5) pour deux différentes
valeurs de sensibilité d. Plus la sensibilité est faible plus la courbe s’aplatit contre la diagonale
(où d = 0), c’est-à-dire que le classificateur devient aléatoire.

Remarque. On pourrait supposer que la réponse interne I suive une loi logistique plutôt
qu’une loi gaussienne comme dans le modèle GVE. En remplaçant Φ par la fonction de
répartition de la loi logistique standard dans l’équation (3.5), on obtient une courbe ROC
décrite par

PV P = PFP
PFP + (1− PFP )e−d . (3.6)

La figure 3.3 montre un exemple de courbes ROC tracées en supposant que la réponse interne
suive des lois logistiques. Les courbes sont tracées avec l’équation (3.6) avec d = 2 (trait
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pointillé) et d = 0.8 (trait plein). Ce choix a l’avantage d’offrir une formulation explicite des
courbes ROC contrairement au cas gaussien. Les démonstrations mathématiques de la fin
de ce chapitre en seraient simplifiées. On décide cependant de s’en tenir au modèle gaussien
car, tel que justifié dans la TDS (Wickens, 2002), d’un point de vue empirique, les données
semblent souvent révéler des distributions gaussiennes. Ceci est appuyé par la théorie avec le
théorème central limite qui garantit que la somme de variables aléatoires indépendantes et
identiquement distribuées converge en loi vers une loi normale.

3.1.2 Impact de la charge de travail

On souhaite étendre le modèle de performance humaine donné par la TDS en prenant en
compte l’impact de la charge de travail de l’humain.

Définition de la charge de travail W

On définit la charge de travailW ∈ [0, 1] représentant la quantité de travail effectuée pendant
une période de travail. Si N objets doivent être classés pendant une période de travail et si
l’humain effectue la classification de nh objets alors la machine doit classifier les nm objets
restants (nm = N−nh). Dans la suite on utilisera régulièrement l’exposant h (respectivement
m) pour désigner une variable se rapportant à l’humain (respectivement à la machine). On
définit la charge de travail par :

W := nh

N
. (3.7)
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Figure 3.3 Exemple de courbes ROC tracées avec la loi logistique
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Impact de la charge de travail W sur la sensibilité d

Dans le cadre du modèle Gaussien à Variances Égales, trois paramètres peuvent être impactés
par la charge de travail : la sensibilité d, le critère λ et le biais β. On note que ces paramètres
sont reliés entre eux par l’équation (3.2). On cherche à introduire dans ces paramètres une
dépendance à W .

Dans (Putri et al., 2016), les auteurs évaluent l’impact de la fréquence d’apparition d’un signal
sur la performance de détection dans un environnement multi-tâche. Dans cette étude les
participants ont comme tâche primaire de détecter des alarmes dans une interface présentant
52 jauges de niveau. Deux scénarios de complexité différente sont testés (le nombre d’alarmes
est multiplié par deux entre les scénarios). Les données recueillies servent à identifier le
modèle gaussien de la TDS. Les résultats montrent que la sensibilité diminue lorsque la
quantité d’alarme à détecter augmente tandis que le biais des participants ne semble pas
significativement impacté. Bien que la tâche ainsi que l’environnement de cette étude soient
différents de ceux énoncés dans notre problème de classification binaire d’évènement, on
décide d’inclure la charge de travail dans le paramètre de sensibilité.

Dans (Sorkin et Woods, 1985), les auteurs proposent des modèles de performance humaine
dans le cas où l’opérateur doit valider ou non des alarmes lancées par un système automa-
tique. En particulier, ils proposent deux modèles reliant sensibilité de l’humain, au sens de la
TDS, et la fréquence des alarmes. Dans les deux cas, la sensibilité humaine est une fonction
décroissante de la fréquence des alarmes. Dans ce contexte, on peut supposer que la fréquence
d’apparition des alarmes s’apparente à la charge de travail telle qu’on l’a défini.

On propose le modèle linéaire suivant :

d = d(W ) = d0 + d1W. (3.8)

Ce modèle très simple est choisi pour sa facilité d’identification. Il est linéaire et ne dispose
que de deux paramètres d0 ≥ 0 et d1 ≤ 0. De plus il traduit la diminution de la sensibilité
lorsque la charge de travail augmente.

Ainsi on obtient une famille de courbes ROC indexées par la charge de travailW (figure 3.4).
Plus la charge de travail est grande plus les points (PV P , PFP ) se rapprochent de la diagonale.
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Figure 3.4 Famille de courbes ROC (équation (3.5)) indexées par la charge de travail W
(équation 3.8) avec d0 = −d1 = 4

Impact de la charge de travail W sur le biais β et le critère de décision λ

Si on considère que le biais β du classificateur humain est indépendant de la charge de travail
W comme le suggère (Putri et al., 2016), alors de l’équation (3.2) on déduit

λ(W )d(W )− 1
2d

2(W ) = ln β (3.9)

D’où, en supposant d(W ) 6= 0,

PFP (W ) = Φ
(
−
(

ln β
d(W ) + d(W )

2

))
, (3.10)

avec d(W ) donné par l’équation (3.8). Le point (PV P , PFP ) décrivant les performances d’un
opérateur se déplacerait alors sur les courbes isobiais en fonction de sa charge de travail
(figure 3.5). Quand la charge de travail devient grande, l’opérateur tendrait vers l’un des
deux comportements suivants : soit il sélectionne toujours l’hypothèse H1 (si ln β < 0), soit
il sélectionne toujours l’hypothèse nulle H0 (si ln β > 0). Si son biais est exactement égal à
1 (ln(β) = 0), alors à chaque classification, il aura autant de chance de prendre la bonne
décision que de se tromper.

Supposons que l’opérateur ait appris une règle de classification pendant une formation. Ainsi
on peut penser que sa règle de classification reste identique quelque soit sa charge de travail.
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Figure 3.5 Courbes de performance humaine isobiais

En revanche sa capacité à appliquer cette règle, elle, est susceptible d’être amoindrie quand
l’opérateur est surchargé. Du point de vue du modèle GVE, cela signifie que le critère de
décision λ est indépendant de W . Supposer λ constant est cependant incompatible avec
supposer que le biais β est constant.

On choisit finalement de supposer que la sensibilité d varie avec la charge de travail selon
(3.8) et que le critère λ reste constant. Étant donné que le taux de faux positifs ne dépend que
de λ (PFP = Φ(−λ)), cela revient à supposer que le taux de faux positifs est fixé. Le point
(PV P , PFP ) décrivant les performances d’un opérateur se déplacerait alors sur les courbes
isocritère en fonction de sa charge de travail (figure 3.6).

3.2 Calibration du modèle

Dans cette section, on souhaite aborder la question de l’identification du modèle liant per-
formance et charge de travail défini dans la section précédente. Pour ce faire, on commence
par décrire une expérience théorique permettant de récolter les données nécessaires à la cali-
bration du modèle. Ensuite, à partir de données expérimentales fictives, on montre comment
les paramètres du modèle peuvent être identifiés facilement.
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Figure 3.6 Courbes de performance humaine isocritère tracées avec le modèle GVE (3.5)
complété par la dépendance à la charge de travail W donnée par (3.8)

3.2.1 Récolte des données

Dans un double objectif de calibrer les paramètres du modèle de performance humaine et
d’en évaluer la pertinence, on cherche à récolter des données expérimentales. Le modèle que
l’on cherche à évaluer a une entrée, la charge de travail W , et deux sorties, la performance
de classification caractérisée par P h

V P et P h
FP . Les paramètres à identifier sont au nombre de

deux : d0 et d1.

Le but de l’expérience est de mesurer les performances de l’opérateur tout en faisant varier
sa charge de travail. Cependant, dans le but de tester la validité du modèle, il est nécessaire
d’introduire de la variabilité dans le comportement de l’opérateur. On cherche en particulier,
pour une charge de travail donnée, à parcourir le plus possible la courbe ROC de l’opérateur.
Pour cela il est nécessaire de l’inciter à changer son critère de classification tout en gardant la
sensibilité constante. Plusieurs méthodes sont possibles pour expérimentalement faire varier
le critère de décision d’un humain, entre autre (Wickens, 2002, Chapitre 3),

1. faire varier la fréquence d’apparition de l’évènement intéressant (p = P (H1)) : si un
évènement intéressant est très rare, l’humain aura tendance à baisser son critère et
donc augmenter son taux de fausses alarmes. À l’inverse, si l’évènement semble très
fréquent, le taux de fausses alarmes devrait être plus faible.
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2. faire varier la perception des coûts relatifs de chaque réponse (RV P , RFP , RV N et
RFN).

Les participants non experts seront davantage sensibles à la première méthode alors que les
opérateurs plus entraînés peuvent plus facilement altérer leur critère de décision suite à une
demande plus explicite.

3.2.2 Identification des paramètres

Supposons qu’une expérience a permis de récolter les points tracés sur la figure 3.7.

On rappelle que le modèle à identifier est le suivant :

PV P = Φ(d0 + d1W + Φ−1(PFP )). (3.11)

Pour simplifier l’identification des paramètres, on représente les points expérimentaux dans
le plan gaussien, c’est-à-dire qu’on applique la transformation Zx := Φ−1(x) (figure 3.8). On
note qu’il faut retirer les points égaux à 0 et 1 car Φ−1 est défini sur (0, 1). L’équation (3.11)
devient alors

ZPV P
= d0 + d1W + ZPF P

. (3.12)

Supposons qu’on dispose de n > 0 mesures, indexées par i, sous la forme (ZPV P ,i, ZPF P ,i,Wi).
Supposons de plus que ces mesures proviennent d’un même modèle entaché d’un bruit :


ZPV P ,1 − ZPF P ,1

...
ZPV P ,n − ZPF P ,n

 =


1 W1
... ...
1 Wn


d0

d1

+ ω, (3.13)

où ω est une erreur aléatoire de moyenne 0 et d’écart-type σ. Sur la figure 3.7, on a d =
[4,−4]T et σ = 0.3.
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En notant

y =


ZPV P ,1 − ZPF P ,1

...
ZPV P ,n − ZPF P ,n

 ,

H =


1 W1
... ...
1 Wn

 ,

d =
d0

d1

 ,
on formule le problème d’estimation suivant

y = Hd + ω. (3.14)

Ce problème peut être résolu par moindres carrés avec en particulier,

d̂ = (HTH)−1HTy. (3.15)

On obtient avec le jeu de données fictives d̂ = [3.09,−3.78]T (voir figure 3.9).
Remarque. La méthode d’identification présentée ici est simple et certaines précautions de-
vraient être prises si on devait l’appliquer à un vrai jeu de données. Par exemple, la trans-
formation Zx (3.12) peut être très sensible aux bruits de mesure et introduire des erreurs au
moment de l’identification des paramètres.

3.3 Une solution statique au problème de partage de tâches

3.3.1 Le problème d’optimisation statique

Maintenant que le modèle liant charge de travail et performances humaines est défini, on
formule un problème de partage de tâches exploitant ce modèle. Dans ce chapitre, on est
intéressé par une stratégie de partage de tâches statique, c’est-à-dire que le partage de tâches
ne change pas en fonction des périodes de travail.

Soit p := P (H1) (p 6= 0) la probabilité que l’objet ou l’évènement soit intéressant (hypothèse
H1). On suppose que l’opérateur réalise une proportion W de tâche pendant une période
de travail. La répartition des résultats de classification observée pendant cette période est
détaillée dans le tableau 3.1.
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Figure 3.9 Modèle de performance identifié

Étant donné les récompenses (RV P , RFP , RFN , RV N , Rh) associées à chaque issue d’une clas-
sification (section 1.2), on définit la fonction de récompense f suivante

f(W ) =

(1−W )
[
p
(
Pm
V PR

V P +
(
1− Pm

V P

)
RFN

)
+ (1− p)

(
Pm
FPR

FP +
(
1− Pm

FP

)
RV N

)]
+

W

[
p
(
P h
V P (W )RV P +

(
1− P h

V P (W )
)
RFN

)
+ (1− p)

(
P h
FP (W )RFP +

(
1− P h

FP (W )
)
RV N

)]
+

WRh

(3.16)

La stratégie de partage de tâches statique proposée dans ce chapitre consiste à suggérer à
l’opérateur d’accomplir une proportion at = W ∗ de classification quelque soit la période de
travail t. La charge de travail optimale W ∗ est le résultat de la maximisation de la fonction
de récompense instantanée f :

W ∗ = argmax
W∈[0,1]

f(W ). (3.17)
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Tableau 3.1. Résultats d’une période de travail.

Classe réelle

Classificateur Classe prédite Positif Négatif Total

Positif (1−W )pPmV P (1−W )(1− p)PmFP
Machine

Négatif (1−W )p(1− PmV P ) (1−W )(1− p)(1− PmFP )

(1−W )

Positif WpP hV P (W ) W (1− p)P hFP (W )
Humain

Négatif Wp(1− P hV P (W )) W (1− p)(1− P hFP (W ))

W

Total p (1− p) 1

3.3.2 Résultats du problème d’optimisation

Nous nous intéressons ici à la résolution du problème de maximisation statique (3.17). On
note avant tout, en développant (3.17), que le problème est équivalent à

W ∗ = argmax
W∈[0,1]

f̃(W ) (3.18)

où

f̃(W ) = W

[
p
(
P h
V P (W )− Pm

V P

)(
RV P −RFN

)
+

(1− p)
(
P h
FP (W )− Pm

FP

)(
RFP −RV N

)
+Rh

]
.

(3.19)

Intérêt d’une équipe humain-machine

Un premier résultat donne la condition suivant laquelle l’opérateur humain est bénéfique à
l’équipe.

Théorème 1. Supposons que P h
V P et P h

FP sont des fonctions continues deW . Alors f̃ atteint
son maximum W ∗ dans [0, 1].
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Supposons de plus que P h
V P et P h

FP sont différentiables en W = 0 et W = 1. Si

p
(
RV P −RFN

)(
P h
V P (0)− Pm

V P

)
+ (1− p)

(
RFP −RV N

)(
P h
FP (0)− Pm

FP

)
> |Rh|, (3.20)

alors le maximum W ∗ est dans ]0, 1]. Si, de plus,

p
(
RV P −RFN

)(
P h
V P (1)− Pm

V P

)
+ (1− p)

(
RFP −RV N

)(
P h
FP (1)− Pm

FP

)
< |Rh|, (3.21)

alors le maximum W ∗ est dans ]0, 1[.

Remarque. Puisqu’on a supposé que l’humain a un taux de faux positifs indépendant de sa
charge de travail, les conditions (3.20) et (3.21) deviennent respectivement :

(
P h
V P (0)− Pm

V P

)
> C,(

P h
V P (1)− Pm

V P

)
< C,

(3.22)

où

C :=
|Rh| − (1− p)

(
RFP −RV N

)(
P h
FP − Pm

FP

)
p
(
RV P −RFN

) . (3.23)

Ce résultat montre que former une équipe humain-machine devient utile lorsque les perfor-
mances de l’opérateur lorsqu’il est peu chargé (quand W = 0) sont suffisamment grandes
devant celles de l’algorithme et que ses performances lorsqu’il est très chargé (quand W = 1)
sont suffisamment petites devant celles de la machine.

Démonstration. Dans le but de simplifier les notations, on réécrit (3.19) :

f̃(W ) = αWP h
V P (W ) + δWP h

FP (W )− γW, (3.24)

avec

α := p
(
RV P −RFN

)
,

δ := (1− p)
(
RFP −RV N

)
,

γ := p
(
RV P −RFN

)
Pm
V P + (1− p)

(
RFP −RV N

)
Pm
FP −Rh.

La fonction f̃ est continue sur un intervalle fermé réel donc atteint son maximum dans [0, 1].
De plus,

f̃ ′(W ) = αP h
V P (W ) + δP h

FP (W ) +W
(
αP h′

V P (W ) + δP h′

FP (W )
)
− γ.

Or il suffit d’avoir f̃ ′(0) > 0 pour s’assurer que le maximum W ∗ n’est pas zéro, i.e., il suffit
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d’avoir
αP h

V P (0) + δP h
FP (0) > γ,

ce qui correspond à l’hypothèse (3.20). De même, il suffit d’avoir f̃ ′(1) < 0 pour s’assurer
que le maximum W ∗ n’est pas 1, i.e., il suffit d’avoir

αP h
V P (1) + δP h

FP (1) < γ,

ce qui correspond à l’hypothèse (3.21).

Résolution numérique du problème

On s’intéresse ici à la résolution numérique du problème (3.17) lorsque qu’on utilise le modèle
de performance décrit plus haut. Le résultat suivant montre que le problème de recherche de
maximum peut être résolu facilement par dichotomie ou par résolution de l’équation f̃ ′(W ) =
0. La figure 3.10 montre un exemple de résolution où P h

FP = Pm
FP = 0.1, d0 = −d1 = 4 et

Pm
V P = Φ(1.5 + Φ−1(Pm

FP )). On obtient alors W ∗ ≈ 0.38.

Théorème 2. Supposons que P h
V P (W ) soit donné par (3.5) et (3.8) et que P h

FP soit indé-
pendant de W . Sous les conditions du théorème 1, f̃ a un unique maximum global W ∗ dans
]0,1[, et W ∗ est l’unique solution de l’équation f̃ ′(W ) = 0.

Démonstration. Étant donné que P h′
FP (W ) = 0, l’expression de f̃ ′ devient :

f̃ ′(W ) = αP h
V P (W ) + αWP h′

V P (W )− γ + δP h
FP , (3.25)

où P h
V P (W ) = Φ(d1W +K), en notant K := d0 + Φ−1(P h

FP ).

On cherche à montrer que f̃ ′ change de signe qu’une seule fois sur ]0, 1[.

On sait du théorème 1 que f̃ ′(0) > 0 et f̃ ′(1) < 0. De plus, f̃ ′ est dérivable et

f̃ ′′(W ) = α
(
2P h′

V P (W ) +WP h′′

V P (W )
)
,

= − d1α√
2π

exp
(
−(d1W +K)2

2

)(
d2

1W
2 + d1KW − 2

)
,

:= g(W )
(
d2

1W
2 + d1KW − 2

)
,

(3.26)

où g(W ) est strictement positif (si d1 < 0). Ainsi f̃ ′′ a le même signe que le polynôme
l(W ) :=

(
d2

1W
2+d1KW−2

)
. Ce polynôme possède deux racines réellesW1 etW2 (W1 < W2)

car son discriminant ∆ = d2
1(K2 +8) est positif. Le coefficient d2

1 est positif donc le polynôme
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Figure 3.10 Maximisation de f̃ (3.19)

est d’abord positif, puis négatif puis de nouveau positif. Or l(0) = −2 < 0 donc la première
racine W1 est négative. En outre,

— si W2 ≥ 1, alors f̃ ′′ est toujours négative, donc f̃ ′ est décroissante,
— si W2 < 1, alors f̃ ′ est décroissante puis croissante sur [0, 1].

Dans les deux cas, étant donné que f̃ ′(0) > 0 et f̃ ′(1) < 0, f̃ ′ ne peut passer qu’une fois par
0 sur ]0, 1[. W ∗ est donc l’unique solution de f̃ ′(W ) = 0.

3.3.3 Conclusion

Dans ce chapitre, un modèle liant, à chaque période de travail, charge de travail W et per-
formance humaine a été introduit. Ce modèle a permis de proposer une première solution
au problème de partage de tâches dans l’équipe humain-machine. Cette stratégie simple est
la solution d’un problème statique de maximisation de récompense instantanée. On peut
espérer de cette stratégie qu’elle trouve un équilibre entre charge de travail et performance
humaine. Cependant le problème formulé pour aboutir au partage de tâches statique repose
sur une hypothèse importante : l’opérateur suit toujours les recommandations de la machine.
Autrement dit on suppose que jamais il ne choisira de réaliser plus ou moins de classifications
que suggéré par la machine. Or il a été mis en évidence (voir chapitre 2) que la confiance
entre humain et machine pouvait avoir un impact sur le choix d’un opérateur de réaliser
une tâche manuellement plutôt que de la déléguer à une machine. Cette remarque conduit à
explorer de nouvelles stratégies de partage de tâches.
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CHAPITRE 4 SOLUTION ADAPTATIVE

On a déjà mis en évidence la nécessité de prendre en compte le comportement de dépendance
à la machine de l’opérateur dans le design d’une stratégie de partage de tâches. Pour ce faire,
on a décidé de s’intéresser à l’un des principaux facteurs de la dépendance : la confiance
que place un humain dans les capacités d’une machine. La nature dynamique de la confiance
justifie la nécessité d’adopter une stratégie de collaboration adaptative, i.e., qui s’adapterait
à l’état changeant de la confiance humaine. Dans ce chapitre, on propose et teste une telle
solution.

En premier lieu, on présente dans la section 4.1 le modèle dynamique de la confiance qui est
utilisé dans la conception de la stratégie d’allocation de tâches présentée dans la section 4.2.
Ensuite, dans la section 4.3, on cherche à prendre en compte la nature non observable de la
confiance pour proposer une stratégie plus réaliste. Le reste du chapitre tente d’explorer en
simulation les bénéfices et les limitations de la solution avancée.

4.1 Un modèle dynamique de la confiance

4.1.1 Définition et dynamique de la confiance

Le modèle présenté ci-dessous est une simplification du modèle proposé par Gao et Lee
dans (Gao et Lee, 2006b). Dans cet article, les auteurs proposent un modèle dynamique et
quantitatif capable de prédire à chaque instant si un opérateur va préférer le mode manuel
au mode automatique pour réaliser une tâche de supervision de processus industriel. La
dépendance de l’humain à la machine est vu comme la différence entre la confiance que place
l’humain en les capacités de la machine et celle qu’il place en ses propres capacités.

Plusieurs simplifications ont été faites pour aboutir au modèle présenté dans ce mémoire :

1. On suppose que la confiance en soi de l’opérateur reste constante au cours du temps.
Cette hypothèse peut être valable si l’opérateur est expérimenté. Ceci étant dit, il est
tout à fait possible d’étendre le modèle proposé en prenant en compte la confiance en
soi.

2. On suppose que les performances de classification de la machines sont observables par
l’opérateur à chaque fin de périodes de travail.

3. Dans (Gao et Lee, 2006b), la prédiction du modèle est binaire (contrôle manuel ou
automatique) alors que nous cherchons plutôt à prédire le pourcentage de tâche que
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l’opérateur va compléter lui-même. Ainsi les modèles de dépendance seront un peu
différents.

Définition de l’état humain

L’état de confiance de l’opérateur au début de la période t est représenté par un couple de
réel

xht = (Tt, Bt)T , (4.1)

où Tt est appelé confiance dans la machine et Bt est l’estimation faite par l’opérateur des
capacités de la machine.

Dynamique de l’état

La dynamique de l’état xht a pour entrées l’état décrivant l’environnement à la période t, noté
xet , ainsi que la suggestion de partage de tâches de la machine at. La dynamique est donnée
par

Bt+1 = Bt + η
(
C(xet , xht , at)−Bt

)
+ wBt ,

Tt+1 = (1− µ)Tt + µBt+1 + wTt ,

= (1− µ)Tt + µ
(
Bt + η

(
C(xet , xht , at)−Bt

)
+ wBt

)
+ wTt .

(4.2)

où

wBt et wTt sont des variables aléatoires de moyenne nulle et d’écart type, respectivement,
σB et σT ,

η ∈ [0, 1] représente la transparence de l’interface. Plus η est grand, plus l’opérateur a
une bonne estimation des capacités que la machine vient de démontrer,

µ ∈ [0, 1] représente l’inertie de la confiance. Plus µ est proche de 1, plus l’opérateur
donne de l’importance aux interactions récentes par rapport aux interactions plus
anciennes,

C(xet , xht , at) ∈ R est la fonction de capacités réelles de la machine. Cette fonction
représente les performances de la machine démontrées si la machine propose un partage
de tâches at alors que l’état de l’environnement est xet et celui de l’humain, xht .

La définition de la fonction représentant les capacités réelles de la machine vu comme l’entrée
du modèle de la dynamique de la confiance dépend du scénario étudié. Il peut s’agir de la
précision avec laquelle la machine exécute sa tâche, d’une rapidité d’exécution, d’un taux
d’erreur ou encore d’un taux de succès. Dans le cas du scénario décrit dans la section 1.2, il
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est possible que l’humain prenne en compte non seulement les performances de classification
de la machine mais également sa capacité à suggérer un bon partage de tâches, comme c’est
le cas avec la définition suivante :

C(xht , at) = (1−Wt)Pm
s +WtP

h
s (Wt). (4.3)

Pm
s et P h

s sont les pourcentages de succès des classifications réalisées respectivement par la
machine et l’humain. Ils sont définis par :

Pm
s = pPm

V P + (1− p)(1− Pm
FP )

P h
s = pP h

V P (Wt) + (1− p)(1− P h
FP )

(4.4)

où P h
V P (Wt) est donné par le modèle de performance humaine décrit dans le chapitre précé-

dent (section 3.1). La fonction (4.3) représente les performances de classification de l’équipe
humain-machine au complet mais les poids relatifs à certaines erreurs (RV P , RV N ,RFP , RFN

et Rh) ne sont pas pris en compte. Cette définition sera utilisée dans le reste du mémoire.
D’autres candidats seront introduits dans la section 4.6.3.

La définition de C peut être délicate car, même si le système est complexe, elle requiert de
réduire les performances de la machine à une variable unidimensionnelle. Une étude préli-
minaire peut être nécessaire pour identifier le facteur qui représente le mieux les capacités
instantanées de la machine vues par un opérateur. On pourrait même imaginer que cette
fonction soit un peu différente suivant les opérateurs.

4.1.2 Définition de la dépendance à la machine

On cherche désormais à prédire le comportement de dépendance de l’opérateur étant donné
son état de confiance xht . Autrement dit on veut prédire le pourcentage de tâches que l’humain
va réaliser pendant une période de travail, c’est-à-dire Wt, autrement appelé la charge de
travail dans ce mémoire.

On choisit le modèle non linéaire suivant :

Wt(xht , at) = W T̄ (at)
W T̄ (at) +

(
1−W T̄ (at)

)
eν(Tt−T̄ )

, (4.5)

avec
W T̄ (at) = sat(at), (4.6)

où la fonction saturation est définie par sat(x) = max(0 + ε,min(1− ε, x)).
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On compte trois paramètres dans ce modèle :
ν ≥ 0 représente la vitesse à laquelle la charge de travail imposée par l’opérateur lui-

même, va grandir au fur et à mesure que sa confiance diminue.
T̄ ∈ R est la valeur de la confiance à laquelle l’opérateur va respecter la suggestion de la

machine si celle-ci est dans at ∈ [0 + ε, 1− ε].
ε ∈ ]0, 1], lorsque at est au-delà de l’intervalle [0 + ε, 1− ε], on estime que l’opérateur ne

va pas respecter une suggestion trop extrême (trop petite ou trop grande).
Ce modèle, illustré à la figure 4.1, traduit bien le fait que l’opérateur va davantage utiliser
la machine (i.e., Wt est faible) que sa confiance Tt est grande. De plus cette relation est
non linéaire comme le suggèrent les données expérimentales dans (Gao et Lee, 2006b; Lee et
Moray, 1994). Le modèle présenté a la particularité d’avoir introduit l’impact de la suggestion
de partage de tâches at dans la charge de travail Wt.
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Figure 4.1 Modèle de dépendance de l’humain à la machine avec ν = 5, T̄ = 0.75 et ε = 0.1

4.1.3 Remarques sur le modèle de la confiance

Le modèle proposé pour prédire le comportement de dépendance de l’opérateur à la machine
nécessite de garder en mémoire un état bidimensionnel xht = (Tt, Bt)T . La connaissance de
cet état et celle de la suggestion de partage de tâches de la machine at permettent de prédire
quelle sera la charge de travail que s’imposera l’opérateur pendant la période de travail t
(équation (4.5)). De plus, à partir de xht et at nous sommes capable de prédire l’évolution de
l’état humain, i.e., xht+1 (équation (4.2)).
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Les paramètres du modèle présenté sont au nombre de 5 seulement. De plus chacun de
ces paramètres a une interprétation. En revanche il est probable que ce modèle ne soit pas
simple à identifier dans des scénarios complexes (par exemple la définition de la fonction C).
En outre, la valeur de certains paramètres peut dépendre de l’opérateur et de sa personnalité.
En effet, dans (Gao et Lee, 2006b), certains mauvais scores de prédiction sont expliqués par
les différences de comportement individuel. Dans ce mémoire on ne propose pas de méthode
pour identifier les paramètres du modèle de la confiance.

4.2 Formulation du problème en MDP

On rappelle qu’on cherche à concevoir une stratégie de partage de tâches qui s’adapterait
à l’état de confiance de l’opérateur xht . On peut s’aider pour cela du modèle quantitatif
de la dynamique de la confiance identifié dans la section précédente ainsi que du modèle
liant charge de travail et performance humaine. En concevant cette stratégie, on cherche à
maximiser les performances de l’équipe humain-machine sur le long terme.

Ce problème de partage de tâches adaptatif peut en fait se formuler sous la forme d’un
processus de décision markovien (ou Markov Decision Process (MDP)).

4.2.1 Description

L’état du MDP comprend uniquement l’état de l’opérateur humain xht = (Tt, Bt)T . L’espace
d’état est alors S = R2. Le modèle de transition de l’état est donné par les équations (4.2).

Remarque. Si le scénario est plus complexe que celui présenté dans la section 1.2, on pourrait
augmenter l’état du MDP avec une description de l’environnement si celui-ci doit être gardé
en mémoire pour décrire les performances de l’équipe. On devrait alors obtenir un modèle
séquentiel markovien de cet état additionnel. L’état du MDP deviendrait alors st = (xht , xet )T .

L’action du MDP at correspond à la suggestion de partage de tâches formulée par la machine
à chaque début de période de travail. at est la proportion de tâche que l’opérateur devrait
accomplir selon la machine. L’espace d’action est alors A = [0, 1].

La fonction de récompense R(xht , at) immédiate est récoltée en fin de période t. Elle est
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donnée par

R(xht , at) =

(1−Wt)
[
p
(
Pm
V PR

V P +
(
1− Pm

V P

)
RFN

)
+ (1− p)

(
Pm
FPR

FP +
(
1− Pm

FP

)
RV N

)]
+

Wt

[
p
(
P h
V P (Wt)RV P +

(
1− P h

V P (Wt)
)
RFN

)
+ (1− p)

(
P h
FPR

FP +
(
1− P h

FP

)
RV N

)]
+

WtR
h,

(4.7)

conformément à la description du scénario. La charge de travail Wt dépend de xht et at selon
l’équation (4.5).

Dans un premier temps, on va supposer que l’état du MDP xht est complètement observable
mais avec une période de retard. En effet, on peut observer de manière certaine quelle a
été la charge de travail Wt que s’est imposé l’opérateur à la fin de la période t. Sachant la
suggestion de la machine at, on peut déduire Tt car la fonction Tt 7→ Wt((Tt, Bt)T , at) est
inversible (équation (4.5)). Par ailleurs, on peut imaginer que Bt soit observé directement à
partir de questionnaires à la fin de la période t. Ce retard d’une période dans l’observation
de l’état implique que la machine va suggérer un nouveau partage de tâches au début de la
période t qui dépendra de l’état xht−1, et pas de l’état xht .

On peut maintenant formuler le problème sous la forme suivante. On cherche une politique,
c’est-à-dire des fonctions πt qui à l’état xht−1 associe un partage de tâches at. On souhaite
trouver la politique qui maximise la somme amortie des récompenses espérées sur un horizon
infini, i.e.,

max
π=(π0,π1...)

E
[ ∞∑
t=1

αtR
(
xht , πt(xht−1)

)]
, (4.8)

où α ∈ [0, 1[ est le facteur d’atténuation.

4.2.2 Implémentation et résolution numérique

Résolution numérique du problème

Le package, codé en Julia, nommé POMDPs.jl (Egorov et al., 2017) disponible ici https://
github.com/JuliaPOMDP/POMDPs.jl, a été utilisé pour la résolution numérique du problème
d’optimisation. Ce package permet de définir un MDP ou un POMDP et réalise l’interface
avec divers algorithmes de résolution.

Parmi ces algorithmes, on a fait le choix d’utiliser le solveur SARSOP (Kurniawati et al.,

https://github.com/JuliaPOMDP/POMDPs.jl
https://github.com/JuliaPOMDP/POMDPs.jl
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2008) dont l’interface en Julia est disponible ici https://github.com/JuliaPOMDP/SARSOP.
jl. Cet algorithme permet de calculer une politique qui approxime la politique optimale d’un
POMDP ou d’un MDP dont les espaces d’états peuvent être relativement grands. Il s’agit
d’un solveur hors ligne dont les espaces d’état et d’action sont discrets. En conséquence ces
espaces sont discrétisés de la façon suivante : S = (−1,−0.95, . . . , 2)2 et A = (0, 0.05, . . . , 1).
Ainsi on a Card(S) = 3721 et Card(A) = 21.

Dans son calcul, l’algorithme SARSOP maintient une borne supérieure V̄ et une borne infé-
rieure V de la fonction de valeur optimale V ∗. Plus l’algorithme réalise d’itérations, plus V̄
et V se rapprochent de V ∗. La précision d’une politique approximative est définie comme la
différence entre V̄ et V . Lorsqu’on résoudra un MDP ou un POMDP, l’algorithme arrêtera
sa recherche lorsque cette précision deviendra inférieure à 1.

Valeurs des paramètres

Dans la suite, sauf mention contraire, les valeurs des paramètres utilisées sont récapitulées
dans le tableau 4.1.

Tableau 4.1. Valeurs numériques des paramètres des différents modèles.

Modèle de performance PmFP = 0.1, P hFP = 0.1, PmV P = Φ(1.5 + Φ−1(PmFP )), d0 = −d1 = 4

Modèle de confiance µ = 0.5, η = 0.5, σT = 0.1, σB = 0.1

Modèle de dépendance ν = 5, T̄ = 0.8, ε = 0.1

Fonction de récompense p = 0.5, RV P = RV N = 100, RFP = RFN = −100, Rh = 0, α = 0.95

Justifications des valeurs numériques des paramètres

Les valeurs des paramètres du modèle de performance ont été choisies de sorte à ce que
l’humain soit plus performant que la machine lorsqu’il a peu de charge de travail et moins
performant lorsqu’il est surchargé. Pour illustration, la figure 4.2 montre la relation entre
charge de travail et taux de vrais positifs lorsqu’on utilise les valeurs du tableau 4.1.

Concernant le modèle de confiance, les paramètres η et µ sont choisis égaux à 0.5 car il
s’agit de la moitié de leur intervalle de définition. Les écart-type des erreurs aléatoires sont
relativement grands car on s’attend à ce que le modèle de confiance ne soit pas très précis.

Une discussion sur un paramètre du modèle de la dépendance est offerte dans la section 4.4.1.

https://github.com/JuliaPOMDP/SARSOP.jl
https://github.com/JuliaPOMDP/SARSOP.jl
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Figure 4.2 Modèle de performance de classification de l’humain et de la machine

Enfin, on a choisi, pour le modèle de récompense, de donner la même importance respective-
ment aux succès (vrais positifs et vrais négatifs) et aux erreurs (faux positifs et faux négatifs)
de classification. De plus on n’ajoute pas de coût artificiel au travail de l’humain (Rh = 0).
Ainsi les pénalités engendrées par le travail humain ne passent que par une augmentation de
charge de travail.

4.2.3 Résultats de simulation

Application de la politique adaptative en simulation

Une fois la politique approximativement optimale calculée, on souhaite la voir en action en
simulant des interactions entre machine et humain selon notre scénario.

On simule ainsi la collaboration de l’humain et de la machine par 50 périodes de travail
successives. Le comportement de l’humain est simulé par le modèle décrit dans la section 4.1,
c’est-à-dire qu’on tire au hasard, selon la distribution de probabilité dictée par le modèle, la
transition de l’état xht à l’état xht+1 à chaque période.

La figure 4.3 montre un exemple de 50 périodes de travail lorsque la machine suggère à chaque
période un partage de tâches donné par la politique calculée en résolvant le MDP. L’état initial
de l’opérateur est xh0 = (0, 0)T , c’est-à-dire qu’il a très peu confiance en les capacités de la
machine. Sur la figure de gauche, la machine suggère, à chaque début de période, la proportion
d’objet que devrait accomplir l’opérateur (pointillés noirs). Cette suggestion est dictée par
la politique solution du MDP. Pendant la période, l’opérateur choisit d’accomplir plus ou
moins de tâche que suggéré (trait magenta). Sur la figure de droite sont tracés l’évolution de
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l’état de l’opérateur (trait plein bleu pour Tt et tirets oranges pour Bt) ainsi que les capacités
réelles de la machine C en pointillés verts.

Un point important à retenir ici est que la politique optimale selon la résolution du MDP
formule une suggestion de partage de tâches différente en fonction de l’état de l’opérateur.
Autrement dit, la politique qui maximise les récompenses de l’équipe au long terme est bien
adaptative.

Figure 4.3 Simulation appliquant la politique du MDP

Remarques sur le choix du nombre N de classifications à réaliser pendant une
période de travail

On a déjà évoqué en introduction (section 1.2) certaines précautions à prendre lorsqu’on
choisit le nombre N de classifications que doit réaliser l’équipe pendant une période de
travail. Si N est trop petit, alors, en pratique, les capacités réelles de la machine et de
l’humain seraient susceptibles de beaucoup varier d’une période de travail à une autre car les
taux de succès seraient calculés à partir d’un faible nombre de classifications. On peut alors
imaginer qu’on observerait des grandes variations sur la figure 4.3, remettant potentiellement
en cause la pertinence du partage de tâche adaptatif. À l’inverse, si N est trop grand, on
perdrait la capacité du partage de tâches adaptatif à réagir lorsque la confiance chute ou
bondit.

Comparaison des politiques adaptative et statique

On souhaite maintenant voir en quoi la stratégie adaptative est davantage bénéfique pour
l’équipe humain-machine. La figure 4.4 montre une simulation de 50 périodes de travail
lorsque la suggestion de partage de tâches est la même pour chaque période, ici at = 0.3808.
Ce partage statique des tâches est calculé selon la méthode décrite dans le chapitre 3. Il ne
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prend pas en compte la dynamique de la confiance de l’opérateur mais seulement sa charge
de travail. L’état initial de l’opérateur est aussi ici xh0 = (0, 0)T .

Figure 4.4 Simulation appliquant une politique statique

Lorsqu’on regarde les récompenses récoltées pendant les simulations précédentes, on remarque
qu’en effet la stratégie adaptative du MDP semble apporter un bénéfice par rapport à la
stratégie statique (figure 4.5). On précise que pour que la comparaison soit juste, le calcul
des récompenses obtenues est le même pour les deux stratégies (on utilise la somme atténuée
des récompenses instantanées données par (4.7)).

Figure 4.5 Récompenses cumulées amorties récoltées pendant les simulations des figures 4.3
et 4.4

Bien que cette simulation semble montrer un avantage certain à l’utilisation de la stratégie
issue de la résolution du MDP, une hypothèse pourrait remettre en question ces résultats
préliminaires. Cette hypothèse est le caractère observable de l’état de confiance xht de l’opé-
rateur.
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4.3 Formulation du problème en POMDP

On est parvenu à concevoir une stratégie de partage de tâches adaptative, qui à l’état de
confiance xht associe la suggestion d’allocation de tâche. Jusque là, on a supposé que l’état
de l’humain était complètement observable par la machine, avec une période de retard. L’ob-
servation d’un état cognitif tel que la confiance, peut se faire à travers des observations
comportementales, des questionnaires ou des mesure physiologiques. La moins invasive et
la plus transparente pour l’opérateur de ces méthodes est sans doute l’observation compor-
tementale. Cependant de telles observations ne permettent pas de connaître avec certitude
l’état interne humain.

Le cadre des MDP dispose d’une extension permettant d’inclure les situations où l’état n’est
pas complètement observé : les processus de décisions markoviens partiellement observables
(ou Partially Observed Markov Decision Process (POMDP)). Le but de cette section est
de proposer une stratégie adaptative d’allocation de tâches qui ne s’appuierait que sur des
observations comportementales de l’état de confiance de l’opérateur en formulant le problème
comme un POMDP.

4.3.1 Description

Les états ainsi que les actions du POMDP sont les même que ceux du MDP, voir la section 4.2.
La fonction de transition reste également la même (équation (4.2)), tout comme la fonction
de récompense (équation (4.7)).

Observations

À chaque fin de période de travail, la machine fait une observation de l’opérateur. Dans le
cas d’un MDP, cette observation est directement l’état xht , mais dans celui d’un POMDP, on
observe ot. Puisqu’on s’est fixé comme objectif de n’utiliser que des observations comporte-
mentales de l’opérateur, ot est défini comme étant la proportion de tâches qu’a effectivement
réalisé l’humain pendant la période t. L’espace des observations est donc O = [0, 1].

Dans un POMDP il faut également définir la fonction d’observation, qui donne la relation
entre une observation ot et l’état réel xht . Cette fonction est donnée par

ot(xht , aat ) = W T̄ (at)
W T̄ (at) + (1−W T̄ (at))eν((Tt+wo

t )−T̄ ) , (4.9)

où wot est une variable aléatoire de moyenne nulle et d’écart type σo. W T̄ (at) est défini par
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(4.6). Ce modèle des observations est cohérent avec le modèle estimant la charge de travail de
l’opérateur, utilisé dans le modèle de la dynamique de l’état (équation (4.5)). On aura pour
autant ajouté un bruit aléatoire wot , représentant les erreurs de modélisation du comportement
humain.

État de croyance

Dans un POMDP, la machine ne connaît pas parfaitement l’état xht de l’opérateur à chaque
instant mais dispose seulement d’une distribution de probabilité sur l’espace d’état, appelé
état de croyance (ou belief state), noté bt, pour choisir son action at . On a bt ∈ Π(S), où
Π(X) désigne l’ensemble des distributions de probabilité sur un ensemble X.

À chaque fois que la machine fait une observation ot de l’opérateur après avoir pris l’action
at, l’état de croyance bt est mis à jour de sorte à ce que la probabilité que l’opérateur ait
évolué dans l’état xh′ ∈ S soit

bt+1(xh′) = P (xh′ |ot, at, bt)

=
∑
xh∈S

P (xh′|xh, ot, at, bt) P (xh|ot, at, bt),

=
∑
xh∈S

P (xh′|xh, at)
P (ot|xh, at, bt) P (xh|at, bt)

P (ot|at, bt)
, avec le théorème de Bayes

= 1
P (ot|at, bt)

∑
xh∈S

P (xh′|xh, at) P (ot|xh, at) bt(xh),

(4.10)

où
— P (xh′|xh, at) est la probabilité que l’état de l’opérateur devienne xh′ à la période t+ 1

sachant qu’à la période t son état était xh et que la machine a pris la décision at,
— P (ot|xh, at) est la probabilité d’observer ot à la fin de la période t sachant que l’état

au début de la période est xh et l’action prise par la machine est at,
— bt(xh) est la probabilité que l’état de l’opérateur à la période t soit xh selon l’état de

croyance bt.

Remarque. On note que le dénominateur P (ot|at, bt) dans (4.10) peut être vu comme un
facteur de normalisation permettant en tout temps t d’avoir ∑xh∈S bt(xh) = 1.

Ainsi, la machine garde un état de croyance aussi proche possible de l’état réel de l’opérateur.

Lorsque l’opérateur et la machine se rencontrent pour la première fois, on peut aider la
machine à avoir une idée de l’état de confiance de l’opérateur, i.e., initialiser son état de
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croyance. À défaut d’indices, la machine peut définir b0 comme une distribution uniforme sur
l’ensemble des états possibles de l’opérateur.

Désormais, la résolution du POMDP doit permettre de trouver la politique, i.e., les fonctions
πt qui à chaque état de croyance bt associent une suggestion de partage de tâches at. Cette
politique devra maximiser l’espérance de la somme amortie des récompenses sur un horizon
infini :

max
π=(π0,π1...)

E
[ ∞∑
t=1

αtR
(
xht , πt(bt)

)]
, (4.11)

où α ∈ [0, 1[ est le facteur d’atténuation.

Boucle de simulation

La simulation d’une succession de périodes de travail est décrite par l’algorithme 1. La fonc-
tion observation : S × A → Π(O) associe à un état de l’opérateur xht et une suggestion
d’allocation de tâche at, la distribution de probabilité de l’observation ot de la machine.
Cette distribution est calculée à partir de (4.9). La fonction transition : S × A → Π(S)
associe à un état de l’opérateur xht et une suggestion d’allocation de tâche at, la distribution
de probabilité du nouvel état xht+1 de l’opérateur. Cette distribution est calculée à partir de
(4.2). La fonction rand(Y ) où Y ∈ Π(X) est une distribution de probabilité sur l’espace
X, tire au hasard un élément de l’espace X selon la distribution de probabilité Y . Enfin la
fonction update : Π(S)×O×A→ Π(S) donne la distribution de probabilité correspondant
au nouvel état de croyance bt+1 connaissant l’état de croyance précédent bt, l’observation ot
et l’action de la machine at. Cette fonction est donnée par (4.10).

À chaque nouvelle période de travail, la machine suggère le partage de tâches correspondant
à son état de croyance actuel b selon la politique π. Ensuite la période de travail est réalisée et
des récompenses sont collectées. Pendant ce temps, la machine observe le comportement de
l’opérateur, c’est-à-dire la portion de tâche qu’il va décider d’accomplir lui-même. La machine
va alors mettre à jour son état de croyance en prenant en compte cette dernière observation
ainsi que son état de croyance précédent. À la fin de la période, l’état réel de l’opérateur a
évolué en fonction de l’interaction qu’il vient d’avoir avec la machine. Une nouvelle période
de travail peut alors débuter.

4.3.2 Implémentation et résolution numérique

Les outils utilisés pour résoudre ce POMDP sont les même que pour le MDP (voir la section
4.2.2).
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Algorithme 1 : Simulation de n périodes de travail lorsque la machine suggère
un partage de tâches donné par la politique π en se basant sur l’observation du
comportement de l’opérateur.
1 xh ← xh0 // état réel (caché pour la machine)
2 r ← 0 // récompenses cumulées amorties
3 b← b0 // initialisation de l’état de croyance
4 pour t← 1 à n faire

// on souhaite simuler n périodes de travail
5 a← π(b) // la machine choisit un partage de tâches à suggérer selon la

politique π

6 r ← r + αtR(xh, a) // une récompense est collectée

7 o← rand
(
observation(xh, a)

)
// la machine observe le comportement de

l’opérateur pendant la période
8 b← update(b, o, a) // la machine met à jour son état de croyance en prenant en

compte sa dernière observation

9 xh ← rand
(
transition(xh, a)

)
// l’état réel de l’opérateur évolue

10 retourner r

Tout comme les espaces d’état et d’action, il a été nécessaire de discrétiser l’espace des
observations. On a alors O = (0, 0.05, . . . , 1) et Card(O) = 21.

Les valeurs numériques des paramètres des modèles sont données, sauf mention contraire,
dans le tableau 4.1. Un paramètre supplémentaire est nécessaire pour le modèle d’observation,
l’écart type de la variable aléatoire wot . Dans la suite on choisira σ0 = 0.05.

4.3.3 Résultats de simulation

Après calcul de la stratégie approximativement optimale, on décide de réaliser une simulation
de 50 périodes de travail (voir figure 4.6). Encore une fois, on remarque la stratégie optimisant
la récompense à long terme est bien une stratégie adaptative.

Dans cette simulation en particulier, la politique du POMDP a récolté une récompense totale
supérieure à celle de la politique statique (figure 4.7). Ce résultat préliminaire nous encourage
à chercher à savoir dans quels cas on obtient un tel bénéfice. On aimerait également explorer
les limites de cette approche. Les prochaines sections s’attellent à ces questions en proposant
divers expériences de simulation.
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Figure 4.6 Simulations appliquant la politique du POMDP (figures du haut) et la politique
statique (figures du bas)

4.4 Expérience 1 : Modèles parfaits

Dans cette section, on cherche à identifier les bénéfices de la stratégie du POMDP. Pour
cela, on commence par étudier le comportement de cette politique lorsque les décisions de
l’opérateur sont déterministes. Autrement dit, on retire la part d’aléatoire dans les modèles de
comportement humain (il n’y a plus de variables aléatoires wBt , wTt et wot dans, respectivement,
(4.2) et (4.9)).

4.4.1 Comportement en régime permanent

La figure 4.8 compare les comportements des stratégies statique et dynamique lorsque le
comportement de l’opérateur est déterministe. L’état initial est, pour les deux simulations,
xh0 = (1.5, 1.5)T . On constate qu’en régime permanent les deux politiques ont un comporte-
ment proche. La politique issue de la résolution du POMDP est constante avec a∞ = 0.40
contre a = 0.38 pour la politique statique. On a des récompenses totales similaires pour les
deux politiques : 1027 pour la politique du POMDP et 1022 pour la politique statique.

Si la politique statique est en effet optimale en régime permanent, on devrait avoir a∞ = W ∗,
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Figure 4.7 Récompenses cumulées amorties récoltées pendant deux simulations, l’une appli-
quant la stratégie du POMDP, l’autre appliquant la stratégie statique

oùW ∗ est la charge de travail optimale lorsque le problème est statique. De plus il faudrait que
l’opérateur réalise toujours la proportion de tâche suggérée par la machine, i.e., W∞ = a∞.
Selon (4.5), c’est le cas lorsque a∞ ∈ [0.1, 0.9] et T̄ = T∞. Or, on note qu’en régime permanent,
on doit avoir

B∞ = C∞,

T∞ = B∞.
(4.12)

Il faut donc avoir T̄ = C∞, pour que la stratégie statique soit optimale. Or C∞ = (1 −
W∞)Pm

s + W∞P
h
s (W∞). D’où la stratégie statique est optimale si W ∗ ∈ [0.1, 0.9] et T̄ =

C∗ = (1−W ∗)Pm
s + W ∗P h

s (W ∗). Il se trouve qu’ici on a choisi T̄ = 0.8 alors que C∗ = 0.8.
C’est pour cela qu’en régime permanent les deux stratégies sont équivalentes. La différence
entre a∞ = 0.4 et W ∗ = 0.38 s’explique par la discrétisation de l’espace des actions.

On peut voir que, sur la figure 4.9, lorsque T̄ 6= C∗, alors l’opérateur ne va pas suivre
exactement la recommandation de la machine en régime permanent. La stratégie issue du
POMDP prend en compte cela et adapte sa suggestion pour que toujours la charge de travail
de l’opérateur soit le plus proche possible de la charge optimale, iciW∞ = 0.36, contrairement
à la stratégie statique. La politique du POMDP obtient une récompense totale d’environ 1023
alors que celle de la politique statique descend à 956.

Cette observation peut s’interpréter de la façon suivante. Si le jugement de l’opérateur n’est
pas biaisé, c’est-à-dire si il suit les recommandations de la machine lorsque celle-ci démontre
des capacités maximales (T̄ = C∗ ), alors la stratégie statique est optimale en régime per-
manent. La stratégie issue du POMDP rajoute une constante à la suggestion de tâche par
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Figure 4.8 Simulations du régime permanent avec T̄ = C∗ = 0.8

rapport à la stratégie statique pour prendre en compte le biais quand il existe.

4.4.2 Comportement en régime transitoire

Comparons le régime transitoire des deux stratégies sur les figures 4.8, 4.9, 4.10 et 4.11.
On s’intéresse à la rapidité avec laquelle la charge de travail de l’opérateur s’approche de
sa valeur finale. Appelons Tr la période à partir de laquelle Wt rentre dans l’intervalle
[0.85W∞, 1.15W∞] et n’en sort plus.

Tableau 4.2. Comparaison de la durée du régime transitoire lorsque le comportement de
l’opérateur est déterministe.

Figure 4.8 Figure 4.9 Figure 4.10 Figure 4.11

Politique du POMDP Tr = 4 Tr = 3 Tr = 3 Tr = 2

Politique statique Tr = 5 Tr = 4 Tr = 8 Tr = 5

On compare la durée des régimes transitoires pour les deux stratégies dans le tableau 4.2. On
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Figure 4.9 Simulations du régime permanent avec T̄ = 0.6 6= C∗

remarque que bien que les conditions soient différentes (valeur du paramètre T̄ et état initial
xh0), la charge de travail se rapproche systématiquement plus vite de sa valeur finale lorsque
la politique du POMDP est appliquée. De plus, dans le cas des figures 4.8 et 4.10, les régimes
permanents sont identiques donc la différence des récompenses accumulées s’expliquent par
un régime transitoire plus rapide.

4.4.3 Effet de l’observation partielle

Jusque là, l’état de croyance initial qui guide les premières suggestions de la machine, est le
plus flou qui puisse être puisque qu’il s’agit d’une distribution uniforme sur l’ensemble des
états possibles, i.e., pour tout xh ∈ S,

b0(xh) = 1
Card(S) . (4.13)

On peut se demander à quel point l’initialisation de cette distribution a un impact sur
les premières périodes de travail. La figure 4.11 montre la même politique dans les mêmes
conditions que la figure 4.8 mis à part que l’état de croyance initial est exact, i.e., pour tout
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Figure 4.10 Simulations avec T̄ = C∗ = 0.8 et xh0 = (0, 0)T

xh ∈ S, b0(xh) = 1 si xh = xh0 ,

b0(xh) = 0 sinon.
(4.14)

On note que les premières suggestions de la machine sont alors différentes. On remarque éga-
lement que la récompense totale obtenue monte à 1041 pour la stratégie du POMDP, contre
1027 lorsque l’état de croyance était une distribution uniforme. La stratégie du POMDP
devient alors encore plus avantageuse que la stratégie statique.

Figure 4.11 Simulations où l’état de croyance initial de la machine est exact

On conclut que la qualité de l’état de croyance initial peut affecter la durée du régime
transitoire et ainsi les récompenses de l’équipe.

Pour conclure, on a vu dans cette section que, si le modèle de l’humain est parfait, la stratégie
du POMDP n’a un intérêt que pendant le régime transitoire, à condition que l’opérateur ne
soit pas biaisé dans son jugement (voir le paragraphe 4.4.1). On a vu que dans ce cas la
stratégie du POMDP est avantageuse même en régime permanent. On note toutefois que les
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différences de récompenses récoltées ne sont pas suffisamment importantes (moins de 10% de
récompenses en plus) pour que l’approche par POMDP soit vraiment pertinente.

4.5 Expérience 2 : Modèles imparfaits

On vient de discuter des cas dans lesquels la politique issue de la résolution du POMDP a
un bénéfice par rapport à la stratégie statique lorsque l’opérateur se comporte exactement
comme les modèles de performance et de confiance le prédisent. Puisque les performances de
la machine sont constantes, alors la répartition des tâches converge vers un état permanent.
Dans cette situation, les différences de récompenses récoltées ne semblent pas suffisamment
grandes pour valider l’approche par POMDP. Dans cette section, on va comparer les stratégies
statiques et adaptatives lorsque l’opérateur ne se comporte pas toujours comme le modèle de
la confiance le prédit. Cette hypothèse est beaucoup plus réaliste puisque ce modèle néglige
naturellement un certain nombre de phénomènes difficilement modélisables. Désormais on
stipule dans la définition du POMDP la partie aléatoire de la dynamique de la confiance.

4.5.1 Comparaison entre les politiques statique et adaptative

Maintenant que le comportement de l’opérateur a une part d’aléatoire, visualiser la politique
en action sur seulement une simulation ne suffit pas à conclure sur l’avantage d’une stratégie
sur une autre. Il faut pour cela, réaliser un très grand nombre de simulations.

La figure 4.12 compare les récompenses totales moyennes acquises pendant 5000 simulations
appliquant la stratégie statique ou la stratégie calculée à partir du POMDP. On voit que
la politique adaptative dispose d’un avantage certain sur la politique statique. Cet avantage
s’exprime à la fois par une moyenne des récompenses plus haute (946 contre 763 pour la
politique statique, soit près de 24% de récompenses supplémentaires) ainsi que par une plus
faible dispersion (écart-type de 21 contre 68 pour la politique statique).

4.5.2 Effets du bruit sur le suivi de l’état

Dans un POMDP, une des difficultés est de construire un état de croyance suffisamment
proche de l’état réel. Afin de visualiser la qualité de l’état de croyance, on définit la métrique
suivante :

dT (bt, xht ) =
√ ∑
T∈[0,...,1]

∑
B∈[0,...,1]

bt
(
xh = (T,B)

)
(T − Tt)2 (4.15)

dB(bt, xht ) =
√ ∑
B∈[0,...,1]

∑
T∈[0,...,1]

bt
(
xh = (T,B)

)
(B −Bt)2 (4.16)
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Figure 4.12 Récompenses totales amorties collectées dans 5000 simulations de 50 périodes de
travail

Selon cette métrique, pour l’état de confiance Tt par exemple, la différence entre une confiance
supposée T et la confiance réelle Tt compte d’autant plus que la probabilité de T selon l’état
de croyance bt est grande. Ainsi plus dT et dB sont grands plus la distribution de l’état
de croyance est éloignée de l’état réel. Aussi l’état de croyance est exact bt(xht ) = 1 si et
seulement si dT (bt, xht ) = 0 et dB(bt, xht ) = 0.

La figure 4.13 montre l’évolution des erreurs de l’état de croyance pendant la simulation de
la figure 4.6. Dans cette simulation l’état de croyance était initialisé par une distribution
uniforme sur l’espace d’état, expliquant les fortes erreurs initiales. Pendant les premières
périodes de travail, la machine construit un état de croyance plus précis. Elle n’atteint pour
autant, jamais l’état de croyance parfait du fait de la part d’aléatoire dans les observations
ainsi que dans la dynamique de xht .

4.6 Expérience 3 : Erreurs d’identification des modèles

On a vu l’intérêt d’adopter une stratégie dynamique par le gain en performance à long terme
que prédisent les simulations. La stratégie du POMDP repose essentiellement sur la vali-
dité des modèles prédisant le comportement de l’opérateur. Cette validité passe entre autre
par la capacité à calibrer les paramètres de ces modèles. Cette étape peut poser un certain
nombre de difficultés tant au niveau de la récolte de données expérimentales qu’à l’identifi-
cation numérique des modèles. Dans cette section, on souhaite explorer jusqu’à quel point
ces inévitables erreurs d’identification peuvent affecter les bénéfices de l’approche adaptative
par rapport à l’approche statique. Pour cela on réalise des séquences de 5000 simulations
de 50 périodes de travail avec xh0 = (0, 0)T . Dans certaines de ces séquences, on supposera
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Figure 4.13 Erreur de suivi de l’état de croyance, telle que défini par (4.15) et (4.16)

que certains paramètres ont mal été identifiés, introduisant une différence entre le modèle
utilisé dans le calcul de la politique optimale et celui utilisé pour simuler le comportement
de l’opérateur.

4.6.1 Erreur constante dans le modèle de performance

On s’intéresse d’abord à la robustesse de la stratégie du POMDP face à des erreurs dans
le modèle liant charge de travail et performances humaines. En particulier, on va supposer
qu’en simulation la sensibilité de l’opérateur suit

d(W ) = d0 + (d1 + kd1)W, (4.17)

au lieu de (3.8). Lorsque l’erreur k est négative, l’opérateur est plus performant que prévu,
lorsque k est positive, il l’est moins (car d1 < 0). Les courbes ROC utilisées en simulation
seront donc un peu différentes des courbes ROC utilisées pour résoudre le POMDP.

La figure 4.14 montre les récompenses moyennes et leur écart-type calculées après 5000 si-
mulations pour différentes valeurs de l’erreur kd1, où k est exprimé comme un pourcentage
d’erreur sur d1. On note que la stratégie statique est aussi impactée par cette erreur de cali-
bration car elle utilise aussi le modèle liant performance et charge de travail. Sur cette figure,
et les trois prochaines, les traits indiquent un écart type de chaque côté des moyennes.

Les résultats montrent que la stratégie du POMDP garde un avantage sur la stratégie statique
tant que k ne passe pas sous les -25% d’erreur. En deçà de cette limite les deux stratégies
semblent donner des résultats très similaires. Autrement dit, si le modèle sur estime trop
l’impact négatif de la charge de travail sur les performances humaines, alors la stratégie
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Figure 4.14 Robustesse à une erreur constante dans le modèle de performance

adaptative perd son intérêt devant une simple stratégie statique. Par ailleurs, lorsque le
modèle sous estime l’impact de la charge de travail, l’écart entre les deux stratégies s’agrandit
en faveur de la stratégie issue du POMDP.

4.6.2 Erreur dans le modèle de confiance : constantes de temps

On cherche ici à tester la robustesse de la stratégie adaptative à des erreurs dans le modèle
de la confiance humaine. Supposons ici que dans (4.2), le paramètre µ devienne µ + kµ. De
même on supposera qu’en fait η vaut η + kη. k est exprimé par un pourcentage d’erreur.

La figure 4.15 affiche les récompenses moyennes amorties et leur écart-type obtenus. Sur la
figure du haut (resp. du bas), on introduit en simulation une valeur de µ (resp. de η) différente
de celle utilisée dans le calcul du POMDP.

La figure 4.15 montre que les récompenses récoltées par la politique adaptative sont toujours
supérieures à celles récoltées par la politique statique, et ce, malgré des erreurs d’identification
des paramètres η ou µ.
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4.6.3 Erreur dans le modèle de la confiance : fonction de capacité réelle de la
machine

On a déjà évoqué la difficulté potentielle à définir la fonction représentant par un scalaire
la capacité réelle démontrée par la machine pendant une période. Voyons si une erreur de
définition de cette fonction affecte l’avantage de la stratégie dynamique. La fonction utilisée
dans la résolution du POMDP est toujours donnée par 4.3. D’autres fonctions sont utilisées
en simulations. Les candidats testés sont les suivants :

— Performances de l’équipe non biaisée : l’opérateur prend en compte la récompense
obtenue lors de la période de travail (il a intégré la relative importance des erreurs)

C1(xht , at) =
R(xht , at)−

(
min(RFN , RFP ) +Rm

)
max(RV P , RV N)−

(
min(RFN , RFP ) +Rm

) (4.18)

— Performances de la machine seule : l’opérateur mesure les capacités de la machine par
le pourcentage de bonnes classifications de la machine seule.

C2(xht , at) = (1−Wt)Pm
s , (4.19)

où Pm
s est le pourcentage de succès (vrais positifs ou vrais négatifs) de la machine

(voir l’équation (4.4)).
— Performances moyennes de la machine seule : l’opérateur ne prend en compte que les

performances moyennes de la machine, quelque soit le pourcentage de classifications
réalisées par la machine pendant la période t.

C3(xht , at) = Pm
s (4.20)

Encore une fois, on trace les récompenses moyennes obtenues en utilisant les différentes
définitions de C. On voit sur la figure 4.16 que malgré des définitions erronées de la fonction
décrivant les capacités réelles de la machine, la stratégie adaptative garde son bénéfice.

Remarque. On remarque que dans le cas de la fonction C2, les performances de l’équipe sont
grandement diminuées, surtout lorsque la politique statique est adoptée. Ceci s’explique par
le fait que la confiance de l’opérateur est faible, le conduisant ainsi à réaliser presque toutes
les tâches. Cette surcharge de travail lui fait commettre beaucoup d’erreurs. L’opérateur a
peu confiance car, selon C2, il ne juge la machine que par la quantité de tâches réussies par
elle sans prendre en compte que lui aussi participe à accomplir les tâches. Autrement dit, il
considère les bonnes classifications qu’il réalise lui-même comme des erreurs de la machine.
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Figure 4.15 Robustesse à une erreur constante dans le modèle de confiance
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Figure 4.16 Robustesse à une erreur de définition de C
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CHAPITRE 5 CONCLUSION

Ce dernier chapitre réalise une synthèse du travail proposé dans ce mémoire. On évoque les
limitations de l’approche avancée. Enfin, plusieurs pistes de réflexions sont apportées pour
guider de potentielles améliorations futures.

5.1 Synthèse des travaux

L’objectif de recherche était le suivant : améliorer les performances d’une équipe humain-
machine en adoptant une stratégie de collaboration adaptative prenant en compte certaines
caractéristiques propres à un humain.

La première étape fut la définition d’un scénario type d’interaction entre humain et machine
susceptible de servir de support au développement d’une méthode de collaboration adapta-
tive. Il a été choisi d’étudier un scénario de classifications binaires répétées réalisées soit par
la machine soit par l’humain. Cette décision de choisir qui de la machine ou de l’humain
réalise chaque classification revient à l’opérateur lui-même mais la machine peut lui suggérer
un partage de tâches. Au regard de cette tâche, deux principaux facteurs, relatifs à l’humain,
sont susceptibles d’impacter les performances de l’équipe. Ces facteurs sont d’une part l’in-
fluence de la charge de travail de l’opérateur sur ses performances de classification et d’autre
part sa propension à utiliser la machine.

Afin de guider une stratégie de partage de tâches améliorant les performances de l’équipe, on
a choisi de se baser sur des modèles quantitatifs permettant de prédire le comportement de
l’opérateur, tout en gardant en tête que ces modèles pouvaient être approximatifs. La relation
entre performance de classification et charge de travail a été modélisée par des courbes ROC
dont la forme s’inspire des modèles de la Théorie de la Détection du Signal. La dépendance
à la machine est, quant à elle, prédite par un modèle dynamique de la confiance proposé par
Gao et Lee (Gao et Lee, 2006b).

La nature dynamique du modèle de la confiance nous a conduit à formuler le problème de
suggestion de partage de tâches comme un Processus Décisionnel Markovien. De plus cet
outil a l’avantage de prendre en compte la part d’aléatoire du comportement de l’humain.
En outre, afin de prendre en compte le caractère non observable de l’état de confiance de
l’humain, on a reformulé le problème sous la forme d’un POMDP. Grâce à cette méthode,
la machine est capable de suggérer un partage de tâches à l’opérateur en prenant en compte
son état présumé de confiance.
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La présence de modèles qui peuvent être compliqués à définir et à identifier suivant l’environ-
nement nous a conduit à nous questionner sur le réel bénéfice d’une telle approche par rapport
à des stratégies plus naïves mais plus simple à mettre en place. Les simulations montrent que
la stratégie issue de la résolution du POMDP apporte un bénéfice non négligeable sur le total
des récompenses acquises sur le long terme par rapport à une stratégie d’allocation de tâche
statique (récompense moyenne augmentée de 24%) . Cet avantage s’explique par plusieurs
comportements. D’abord, la machine est capable de prendre en compte que l’opérateur peut
avoir un a priori biaisé sur les capacités de la machine. De plus, lorsque l’opérateur change
soudainement d’état de confiance (chute ou hausse non prédite), la machine est capable de
produire une suggestion de partage de tâches ajustée, maintenant ainsi une charge de travail
adaptée à l’opérateur pour que les performances de l’équipe n’en pâtissent pas trop.

Enfin nous avons exploré, toujours en simulation, la robustesse de la stratégie adaptative
face à certaines erreurs d’identification des paramètres des modèles. Les résultats montrent
que des erreurs trop importantes dans certains paramètres peuvent remettre en question la
pertinence de la stratégie adaptative. Cependant la méthode semble être plus robuste lorsque
les erreurs concernent d’autres paramètres.

5.2 Limitations de la solution

5.2.1 Variété des scénarios

On a évoqué dans les justifications du scenario de collaboration (section 1.2.2) le caractère
général de la tâche choisie. En effet, on peut imaginer beaucoup de contextes différents dans
lesquels une tâche de classification binaire répétée doit être effectuée en collaboration entre
une machine et un humain. En outre, souvent, l’humain a l’autorité sur la machine. On a
supposé que les deux principaux facteurs affectant les performances de l’équipe étaient la
charge de travail portée par l’opérateur et la confiance que ce dernier place dans les capacités
de la machine. Or, dans certains contextes de travail, d’autres facteurs mériteraient d’être
pris en compte si l’on souhaite prédire le comportement de l’opérateur, même de manière
approximative. On énumère dans la suite certains de ces facteurs.

La confiance en soi

On pourrait citer par exemple, l’impact de la confiance en soi de l’opérateur sur son com-
portement de dépendance à la machine. La confiance en soi est intégrée dans les modèles et
solutions de collaboration suivants (Gao et Lee, 2006b), (Saeidi et Wang, 2019), (Van Dongen
et Van Maanen, 2013), (Lee et Moray, 1994), (Gao et al., 2013).
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La charge mentale

Dans ce mémoire, on a défini la charge de travail comme la proportion de classifications
réalisées par l’opérateur. Dans la littérature, on distingue souvent la charge de travail telle
que définie ici, à la charge mentale. La charge mentale est une mesure subjective du coût
demandé à un humain pour compléter une tâche avec une certaine performance. Il pourrait
être alors nécessaire d’intégrer une variable décrivant la charge mentale de travail en tout
temps afin de mieux prédire les performances de l’opérateur. Diverses approches existent pour
mesurer la charge mentale d’un opérateur notamment à partir de capteurs physiologiques,
voir (Charles et Nixon, 2019) pour une revue récente.

La compréhensibilité de la machine

Imaginons que la machine soit capable d’indiquer un niveau de confiance sur chacune des
classifications qu’elle réalise, comme le permettent généralement les algorithmes de classifica-
tion construits par apprentissage. L’opérateur s’aiderait probablement de cette information
pour décider combien et quel objet il devrait classer manuellement. La stratégie de suggestion
de partage de tâches devrait alors prendre en compte également ces indices de confiance.

5.2.2 Difficulté de calibration des modèles

Les modèles utilisés dans la stratégie de partage de tâches adaptative nécessitent la calibration
de certains de leurs paramètres. Cette étape d’identification requiert la collecte de données
expérimentales. On a abordé cette étape dans le cas du modèle de performance humaine
(section 3.2) mais pas dans le cas du modèle de la confiance. En effet la calibration de ce
modèle est plus complexe pour les raisons suivantes :

1. L’entrée du modèle (la fonction C décrivant les capacités réelles de la machine comme
un réel) n’est pas clairement définie. En effet elle peut dépendre fortement du contexte
(voir les différents candidats proposés dans 4.6.3). La définition de cette fonction peut
requérir une étude préliminaire.

2. La confiance est dynamique et les suggestions de la machine ont des conséquences sur
cette dynamique.

3. Les états Bt et Tt ne sont pas directement observables. Seul le comportement de
l’opérateur l’est. Le modèle liant la dépendance de l’opérateur à son état de confiance
doit lui même être identifié.
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5.3 Améliorations futures

5.3.1 Validation expérimentales

Concernant la méthodologie adoptée dans ces travaux, la principale limitation porte sur l’ab-
sence de validation expérimentale. Dans un premier temps, une expérience doit être imaginée
pour évaluer et calibrer les modèles sélectionnés. La stratégie issue du POMDP pourra alors
être calculée. Enfin, une seconde expérience doit confronter les participants à la tâche de
collaboration adoptant la stratégie adaptative pour suggérer le partage de tâches à chaque
période. Cette expérience devra vérifier si la stratégie adaptative augmente significativement
les récompenses cumulées par rapport à la stratégie statique.

5.3.2 Étudier les effets négligés dans les modèles

L’objectif premier de la conception d’un partage de tâches adaptatif est l’amélioration des
performances à long terme. D’autres facteurs peuvent être pris en compte dans l’évaluation de
la méthode. Par exemple, il serait intéressant de s’assurer que la charge mentale de l’opérateur
reste convenable. Il faut également vérifier que le changement régulier de distribution de tâche
n’introduise pas de confusion ou d’effet de surprise pour l’opérateur. L’utilisation de cet outil
optimisant la collaboration ne doit pas non plus baisser son attention ou faire naître de la
complaisance. Dans le cas de notre scénario, donner une suggestion de partage de tâches
automatique à l’opérateur ne doit pas lui faire penser qu’il pourrait se dispenser de prêter
attention aux performances de la machine. Ceci nuirait à sa conscience de la situation. Pour
synthétiser, la solution de partage de tâches adaptatif proposée doit être évaluée à la lumière
de plusieurs facteurs humains en plus des performances de l’équipe.

5.3.3 Comparer la solutions à d’autres approches

Le faible nombre de modèles quantitatifs de la confiance dans la littérature montre la difficulté
de leur définition. Pourtant ces modèles, une fois calibrés, ont l’avantage de permettre la
conception d’une stratégie adaptative prête à l’emploi. De plus, bien que ces modèles aient
une capacité de prédiction limitée, les outils de commande stochastique permettent de gérer
cela.

Cependant, d’autres outils sont capables de concevoir une stratégie de partage de tâches qui
s’adapte à l’état d’un opérateur. En particulier, les méthodes d’apprentissage par renforce-
ment, peuvent apprendre une stratégie adaptative au cours des interactions avec l’opérateur.
Il n’est pas nécessaire de fournir de modèle prédisant le comportement d’un humain. Seules les
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données suffisent à l’optimisation de la stratégie. Néanmoins la quantité de données nécessaire
pour que les algorithmes convergent vers une solution convenable peut être très importante.

Il pourrait être intéressant de comparer l’approche par modèle et celle basée sur une boîte
noire afin de déterminer si elles aboutissent à des politiques identiques. Si on fournit des
données physiologiques aux algorithmes d’apprentissage, on pourrait s’attendre à ce que la
machine soit capable de mieux connaître l’état cognitif de l’opérateur à chaque instant avant
même qu’il ne se traduise en comportement.
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