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RÉSUMÉ 

Afin d'analyser la fissuration dans les structures typiques en béton, un outil de calcul appelé 

EPM3D (Massicotte & Ben Ftima, 2015) a été développé à l’École Polytechnique de Montréal. Il 

a ensuite été amélioré pour prendre en compte la fissuration dans les structures en béton armé, en 

BRF et BFUP. Cependant, cet outil ne tenait pas compte du caractère aléatoire des propriétés 

mécaniques du béton inhérent à sa nature hétérogène. En effet, la plupart des paramètres d'entrée 

utilisés pour établir la loi non linéaire du béton sont aléatoires et présentent une variabilité qui ne 

peut être négligée.  

En outre, la vérification à l’état limite ultime prend en compte des facteurs de résistance appliqués 

aux paramètres du matériau ou à la résistance ultime pour respecter une probabilité de rupture 

maximale admissible; à savoir 𝑝𝑓 ≤ 𝑝𝑓 𝑚𝑎𝑥. 

Le présent projet de recherche aborde ces deux questions et se concentre sur le cadre de fiabilité 

qui sous-tend la conception à l’état limite à la base des codes modernes pour la conception en béton 

renforcé de fibres. Il aborde la question de l’utilisation des analyses probabilistes non linéaires par 

élément finis pour la conception des structures en BRF et le problème de transition entre l’étape de 

l’analyse des éléments concrets à l’étape de la conception de structures complexes en béton. 

Tout d’abord, la sous-routine probabiliste permettant de rendre aléatoires certaines propriétés 

mécaniques du béton ordinaire et du béton renforcé de fibres a été développée. Celle-ci s’intègre 

parfaitement au code EPM3D préexistant et permet de reproduire de manière très précise les 

distributions normale, lognormale et la distribution de Weibull. 

Par la suite, à partir de la campagne expérimentale réalisée par Sébastien Reygner sur des 

éprouvettes sollicitées en traction, un modèle de calibration a été développé. À partir de l’analyse 

du lien de corrélation entre la variabilité entrée et le celle obtenue, une loi a pu être établie. Il s’agit 

d’une fonction affine reliant ces deux paramètres dont la pente dépend de la taille de maillage 

employée, de la valeur de la section tendue et du matériau étudié. Ce modèle ainsi établi permet 

premièrement de s’affranchir de la dépendance à la taille des éléments et deuxièmement de 

reproduire la variabilité expérimentale obtenue grâce aux essais de Reygner. 

La validité de ce modèle établi a été vérifiée grâce à plusieurs exemples d’application sur une 

poutre simple, des poutres croisées et une dalle simplement appuyée. Par ailleurs, ces exemples ont 
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permis de montrer que l’augmentation du degré d’hyperstaticité engendre une diminution de la 

dispersion de la réponse structurale.   

Enfin, un cadre de fiabilité découlant de l’approche probabiliste développée dans le cadre de ce 

mémoire a été introduit pour la conception des structures en BRF. Il fournit une méthodologie pour 

l’estimation des facteurs de sécurité pour chaque situation de conception (ici pour les poutres 

simples, poutres croisées et dalles). Les résultats d’un nombre d’analyses non linéaires probabiliste 

ont été utilisés en conjonction avec la procédure de calibration ainsi que la méthode de Monte 

Carlo. 
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ABSTRACT 

To analyze cracking in typical concrete systems, a computational tool named EPM3D (Massicotte 

& Ben Ftima, 2015) was developed at Polytechnique Montréal. It was then improved to consider 

cracking in reinforced concrete, fiber-reinforced concrete, and ultra-high-performance -fiber 

reinforced concrete structures. However, this tool did not consider the random nature of the 

mechanical properties of concrete inherent to its heterogeneous nature. Indeed, most of the input 

parameters used to establish the concrete non-linear law are random and have a variability that can 

not be overlooked.  

Furthermore, the verification of the ultimate limit state considers the strength factors applied to the 

material parameters or the ultimate strength to meet a maximum allowable probability of failure: 

𝑝𝑓 ≤ 𝑝𝑓 𝑚𝑎𝑥. 

This research project discusses both issues and focuses on the reliability framework underlying the 

limit state design for fibre-reinforced concrete structures. It addresses the issue of the use of 

probabilistic nonlinear finite element analysis for the design of FRC structures and the problem of 

transition from the concrete element analysis to the design of complex concrete structures. 

First, the probabilistic subroutine allowing to randomize specific mechanical properties of ordinary 

concrete and fiber-reinforced concrete has been developed. This integrates perfectly with the pre-

existing EPM3D code and enables the normal, lognormal and Weibull distributions to be 

reproduced very precisely.   

Based on the experimental campaign carried out by Sébastien Reygner on tensile specimens, a 

calibration model was developed. From the analysis of the correlation link between the variability 

entered and the variability obtained, a law was established. It is an affine function linking these 

two parameters whose slope depends on the mesh size used, the value of the stretched section and 

the material studied. This model thus established makes it possible, firstly, to free oneself from 

dependence on the size of the elements and, secondly, to reproduce the experimental variability 

obtained from Reygner's tests. 

Finally, a reliability framework derived from the probabilistic approach developed in this thesis 

has been introduced for the design of FRC structures. It provides a methodology for the estimation 

of safety factors for each design situation (here for simple beams, cross-beams and slabs). The 



viii 

 

results of several probabilistic non-linear analyses have been used in conjunction with the 

procedure developed in Chapter 3 as well as the Monte Carlo method.  
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CHAPITRE 1 INTRODUCTION 

1.1 Généralités 

Les bétons renforcés de fibres métalliques sont de plus en plus utilisés dans diverses applications 

industrielles (FRC, 2014) en raison des propriétés exceptionnelles qu’ils peuvent procurer aux 

ouvrages en béton. Il y a 20 ans de cela, un effort de consolidation des acquis sur le béton renforcé 

de fibres ou BRF a permis de dresser un panorama de ses différentes caractéristiques (ACI 1996) 

alors que des travaux plus récents ont abouti à des recommandations nationales et internationales 

(AFREM 1995, RILEM 2003, JSCE 2008, CNR-DT 204 2006, FIB 2010, CSA 2019). Ces 

recommandations sont efficientes dans le cadre de la conception de structures simples et 

isostatiques chargées en flexion. Cependant, celles-ci ne permettent pas de proposer des solutions 

pertinentes pour les structures les plus complexes. Tel est le cas des structures hyperstatiques par 

exemple.  

En outre, le contrôle de l’ouverture des fissures est très important pour la durabilité des ouvrages 

et constitue un avantage majeur des BRF par rapport aux structures utilisant des barres d’armatures 

conventionnelles. De nos jours, les recommandations de conception existantes ne sont pas en 

mesure de fournir suffisamment d’informations pertinentes concernant la fissuration à l’état limite 

de service. La meilleure approche pour la conception de structures en matière de sécurité et de 

développement durable consiste donc à utiliser l’analyse par éléments finis. 

1.2 Problématique  

Un outil numérique nommé EPM3D (Massicotte & Ben Ftima, 2015) a été développé à 

Polytechnique Montréal afin d’analyser la fissuration des structures en béton ordinaire. Il a ensuite 

été amélioré afin de prendre en compte la fissuration des structures en béton armé, en BRF ou 

encore en BFUP.  

Néanmoins, cet outil ne permettait pas de tenir compte du caractère aléatoire des propriétés 

mécaniques du béton inhérente à sa nature hétérogène. En effet, la plupart des paramètres d’entrée 

nécessaires à l’établissement de la loi non linéaire du béton sont aléatoires et possèdent une 

variabilité qui ne peut être négligée. 
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Par ailleurs, la vérification à l’état limite ultime prend en compte des facteurs de résistance 

appliqués aux paramètres du matériau ou à la résistance ultime pour respecter une probabilité de 

rupture maximale admissible; à savoir 𝑝𝑓 ≤ 𝑝𝑓 𝑚𝑎𝑥. 

Le présent projet de recherche adresse ces deux points évoqués et s’intéresse au cadre de fiabilité 

qui sous-tend la conception à l’état limite à la base des codes modernes pour la conception en béton 

renforcé de fibres. Il aborde la question de l’utilisation des analyses probabilistes non linéaires par 

élément finis pour la conception des structures en BRF et le problème de transition entre l’étape de 

l’analyse des éléments concrets à l’étape de la conception de structures complexes en béton. 

Plutôt qu’un facteur de résistance spécifié comme le recommandent la plupart des codes de 

conception, une méthode d'estimation du facteur de résistance global pour un problème de 

conception donné pourrait être fournie dans les futurs codes. Par conséquent, l'objectif de cette 

étude est de mettre en avant une application possible de la méthode probabiliste développée aux 

cadres de fiabilité utilisés pour l’analyse non linéaire par éléments finis dans la conception des 

structures en béton. Comme on le verra plus loin dans le présent document, ni le concept général 

de fiabilité impliquant le calcul de la probabilité de défaillance ni le concept de code de conception 

utilisant des facteurs de charge et de résistance ne sont appropriés pour l'utilisation de l'analyse non 

linéaire par éléments finis pour la conception de structures en béton. L'alternative, telle que 

présentée dans ce document, étend le concept de facteur de résistance global déjà introduit dans 

certains codes internationaux en prenant en compte le modèle probabiliste développé dans le cadre 

de ce projet de recherche couplé à la précision du calcul des éléments finis non linéaires pour 

chaque problème de conception. 

1.3 Objectifs et portée du projet de recherche  

Compte tenu des enjeux énoncés, les quatre objectifs principaux de ce projet de maîtrise sont les 

suivants : 

- déterminer l’influence de la variabilité des propriétés mécaniques (comportement post-

fissuration) du BRF sur le comportement de certains éléments structuraux, ainsi que de 

mettre en œuvre les lois probabilistes qui modéliseront cette variabilité; 

- coder une sous-routine probabiliste qui viendrait s’ajouter au code existant d’EPM3D 

permettant d’intégrer l’aspect statistique du comportement en post-fissuration du BRF; 
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- mettre en œuvre une nouvelle méthodologie de modélisation probabiliste rationnelle et 

simple pour les structures en BRF en utilisant l’analyse non linéaire par éléments finis; 

- en déduire l’influence de l’hyperstaticité sur les facteurs de résistance des éléments 

structuraux en BRF. 

1.4 Méthodologie et organisation du mémoire  

Les étapes adoptées afin d’atteindre les objectifs du projet préalablement annoncés sont les 

suivantes : 

1. identifier les lois probabilistes et les paramètres d’entrée permettant de modéliser la 

variabilité des propriétés mécaniques du BRF; 

2. coder sous le logiciel FORTRAN une sous-routine permettant de modéliser cette variabilité 

avec le logiciel EPM3D; 

3. trouver le lien de corrélation entre les paramètres en entrée et les paramètres en sortie en 

fonction de la taille de maillage utilisée; 

4. appliquer le modèle trouvé dans l’étape 3 à plusieurs types d’éléments structuraux et étudier 

la dispersion de la réponse structurale obtenue en sortie; 

5. calculer les facteurs de résistance globaux utilisés en conception en s’appuyant sur les 

dispersions obtenues grâce au modèle probabiliste développé. 

 

Ce mémoire est divisé en cinq chapitres. Le premier chapitre présente le problème, les objectifs, la 

méthodologie et l’organisation du mémoire. Le deuxième chapitre explicite les connaissances 

actuelles nécessaires à la compréhension du projet de mémoire. Le troisième chapitre présente le 

modèle permettant de rendre compte de la variabilité des propriétés mécaniques des bétons 

renforcés de fibres. Le quatrième chapitre porte sur diverses applications à de multiples éléments 

structuraux. Enfin, le chapitre cinq permet de résumer le travail en tirant des conclusions sur 

l’ensemble des travaux réalisés ainsi que d’émettre des recommandations pour la poursuite du 

projet. L’organisation du mémoire est présentée dans la Figure 1.1. 
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Figure 1.1 Organigramme organisationnel du mémoire 
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CHAPITRE 2 REVUE DE LITTÉRATURE 

Considérant les enjeux mis en exergue par les objectifs du projet de recherche, il paraissait essentiel 

d’aborder les thématiques suivantes afin d’acquérir une bonne compréhension des différents axes 

de recherche présentés dans les chapitres suivants :  

- les bétons renforcés de fibres; 

- les considérations multi-échelles du béton; 

- l’effet d’échelle; 

- la modélisation probabiliste du béton; 

- la modélisation numérique probabiliste des BRF. 

2.1 Les bétons renforcés de fibres  

Au cours des dernières décennies, plusieurs chercheurs se sont intéressés à l’étude des bétons 

renforcés de fibres en raison de leur grand potentiel. En effet, ce type de matériau est de plus en 

plus utilisé dans le domaine des structures pour les propriétés mécaniques remarquables qu’il peut 

conférer aux ouvrages en béton.  

Les prochaines sous-sections porteront donc sur la description des bétons de fibres courants. Elles 

présentent l’ensemble des détails liés à la technologie des bétons renforcés de fibres et plus 

précisément leur formulation, les types de fibres et, finalement, le comportement mécanique en 

traction. 

2.1.1 Généralités  

L’objectif principal de l’ajout de fibres est l’amélioration des propriétés mécaniques du béton et, 

notamment, le comportement en traction. Dans les structures en béton armé, les armatures sont 

employées dans le but d’optimiser les caractéristiques mécaniques. Par ailleurs, ces dernières sont 

continues et sont localisées à des endroits stratégiques permettant de conférer aux éléments 

structuraux en béton la résistance et la ductilité nécessaires à l’atteinte des objectifs de performance 

exigés.  

Les fibres sont quant à elles discontinues et distribuées de manière aléatoire au sein de la matrice 

cimentaire. L’utilisation des fibres peut permettre d’éliminer ou encore de réduire le nombre de 
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barres d’armatures. Grâce à celles-ci, la fissuration à l’état de service est mieux contrôlée, ce qui a 

pour conséquence directe l’amélioration de la durabilité des structures mais aussi l’atteinte de 

performances structurales améliorées. 

2.1.2 Les fibres  

Dans ce paragraphe, seules les fibres en acier seront abordées au vu des travaux présentés dans les 

chapitres suivants. Les bétons renforcés de fibres courants sont visés, soit ceux contenant des gros 

granulats de diamètre usuel (10 à 20 mm). Les formes de fibres les plus couramment utilisées sont 

mises en évidence dans la Figure 2.1. Selon leur géométrie et le type de matrice cimentaire, les 

fibres agissent différemment (Rossi, 1998). En effet :  

- les fibres droites développent des contraintes de liaison à la matrice cimentaire sur toute 

leur longueur, empêchant ainsi la fissure de s’ouvrir;  

- les fibres ondulées peuvent être moins longues puisque celles-ci développent des 

contraintes supplémentaires dues à l’ancrage conféré par la géométrie courbe; 

- les crochets ou l’élargissement aux extrémités des fibres permettent d’améliorer leur 

ancrage à la matrice, retardant de cette manière l’arrachement des fibres de la matrice tout 

en dissipant une quantité d’énergie lors du processus d’arrachement. 

Par ailleurs, les fibres d’acier peuvent également avoir des revêtements tel que le zinc (reconnu 

pour augmenter la résistance à la corrosion) ou le laiton (permettant d’améliorer l’ancrage à la 

matrice). 
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Figure 2.1 Principaux profils de fibres (Di Prisco et al., 2009) 

Par ailleurs, et afin d’assurer l’efficacité des fibres au sein du béton, Naaman (2003) affirme que : 

- la résistance en traction des fibres et le module d’Young doivent être nettement supérieurs 

à ceux de la matrice cimentaire (de l’ordre du double ou du triple); 

- la ductilité des fibres doit être suffisamment grande pour que ces dernières ne subissent pas 

de rupture par abrasion ou par flexion; 

- la force de liaison entre la matrice cimentaire et les fibres doit être supérieure à la résistance 

en traction de la pâte de ciment. 

En outre, Snyder et Lankard (1972) et Swamy et al. (1974) ont établi un lien de corrélation entre 

la maniabilité du mélange de béton et le rapport d’élancement des fibres (égal au rapport entre la 

longueur et le diamètre des fibres), en effet, ils énoncent que :  

- pour des rapports d’élancement identiques, l’utilisation de fibres plus courtes entraîne une 

meilleure maniabilité; 

- pour un dosage de fibres donné, la maniabilité d’un BRF diminue lorsque le rapport 

d’élancement augmente; 

- le risque de formation d’oursins de fibres augmente avec l’augmentation du rapport 

d’élancement pour un dosage donné.  

Enfin, Rossi et Richer (1987) ont démontré que l’utilisation de fibres plus courtes (2 à 13 mm) 

permet de retarder l’apparition de macrofissures, ce qui améliore la ductilité et la résistance en 
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traction du béton. Les fibres longues (15 à 60 mm) avec ancrage mécanique retardent quant à elles 

la rupture, ce qui a pour conséquence d’augmenter la capacité portante, la ductilité en flexion et la 

résistance au cisaillement. 

2.1.3 Formulation des bétons renforcés de fibres  

Rossi et Harrouche (1990) proposent une méthode de formulation très générale déjà utilisée pour 

les bétons ordinaires (Baron & Lesage, 1965) et les bétons à haute résistance (contenant de la fumée 

de silice) et qui a été adaptée aux bétons renforcés de fibres métalliques. Il s'agit de la méthode 

Baron-Lesage, mise au point dans le Laboratoire Central des Ponts et Chaussées (LCPC) et utilisée 

dans la plupart des projets de recherche de Polytechnique Montréal pour optimiser les squelettes 

granulaires des bétons ordinaires (Massicotte, 2004).  

Cette méthode repose sur trois hypothèses clés amplement confirmées par l'expérience :  

- pour un rapport Eau/Ciment fixe, le béton le plus maniable est le béton le plus compact et 

sa formulation est optimale; 

- la proportion idéale de granulats ne dépend pas de la nature ou du volume de la pâte de 

ciment; 

- l’ajout de fibres métalliques n’affecte pas la validité des deux premières hypothèses. 

Par ailleurs, pour un type et un dosage de fibres métalliques donnés, une longueur de fibres au 

minimum deux fois plus grande que le plus gros granulat doit être choisie (Rossi, 1998). Enfin, la 

méthode Baron-Lesage consiste principalement à détecter la meilleure maniabilité et compacité en 

faisant varier le rapport massique sable/granulats (S/G) pour une quantité de fibres donnée. En 

général, le maniabilimètre est utilisé pour optimiser le rapport S/G alors que le test d’étalement est 

utilisé pour optimiser la quantité d’adjuvants. 

2.1.4 Fissuration causée par sollicitation en traction  

La Figure 2.2 présente un résumé du processus de fissuration des BRF soumis à de la traction 

uniaxiale. Ce dernier peut être décrit en trois étapes distinctes (Rossi et al., 2015). 

1. Au cours de la première étape, la microfissuration diffuse se produit dans tout le volume 

soumis à de la traction (1). Les fibres d’acier possédant de grandes dimensions (longueur 
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et diamètre) par rapport à celles de fissures (ouverture de fissure) n’agissent pas sur la 

formation ni sur l’évolution de ces microfissures. 

2. La seconde étape concerne la propagation des microfissures qui conduit, à terme, à 

l’apparition d’une unique macrofissure et consiste ainsi en la localisation de la fissuration 

(2). Comme pour la première étape, durant cette étape intermédiaire et brève, les fibres 

d’acier n’affectent pas la propagation de ces mésofissures de manière significative.  

3. La troisième et dernière étape concerne la propagation des macrofissures (3). Celle-ci 

coïncide avec la phase adoucissante du matériau. Au cours de cette étape, les fibres 

transfèrent les efforts à travers les macrofissures, contrôlant de la sorte l’ouverture des 

fissures et leur propagation. 

 

Figure 2.2 Comportement en traction uniaxiale des BRF (Daviau-Desnoyers, 2015) 

Pour résumer, il est possible d’affirmer que : 

- avant d’atteindre le pic de charge, seule la matrice cimentaire contribue au processus de 

fissuration du BRF et les fibres métalliques sont considérées comme mécaniquement 

neutres; 

- après le pic, l’action des fibres devient très importante, notamment pour le contrôle de la 

propagation des macrofissures.  

Ainsi, le comportement global d’un béton renforcé de fibres résulte de la sommation de ces deux 

contributions : la contribution de la matrice cimentaire en post-pic et l’effet de pontage exercé par 

les fibres en pointe de fissure en post-pic (voir la Figure 2.3).  
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Figure 2.3 Contribution en post-pic des différentes composantes du BRF 

Les éléments structuraux rencontrés dans les ouvrages modernes telles que les poutres ou les dalles 

sont généralement soumis à de la flexion qui à son tour génère de la traction dans les zones tendues 

de l’élément. Ainsi, l’amélioration de la résistance en flexion est principalement due à l’apport de 

ductilité amené par les fibres dans la zone tendue d’une poutre. Les fibres permettent de ralentir 

l’ouverture des macrofissures, ce qui a pour effet d’augmenter la capacité portante, de réduire les 

flèches pour un même niveau de charge et d’accroître la ductilité de la structure.  

 

2.2 Considérations multi-échelles du béton 

Cette section présente trois échelles (macroscopique, mésoscopique et microscopique) suivant 

lesquelles les bétons ordinaires et bétons renforcés de fibres peuvent être considérés. 

2.2.1 Béton ordinaire 

Selon Wittmann (1983), il convient de considérer les bétons ordinaires selon trois échelles 

distinctes afin de les modéliser : l’échelle macro, méso et micro (voir la Figure 2.4).  
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Figure 2.4 Considérations multi-échelles du béton (Wittmann, 1983) 

Tout d’abord, l’échelle macroscopique englobe toutes les notions physiques (grandeurs, éléments 

constituants, mouvements, phénomènes) dont la manifestation est visible à l'œil nu. À ce niveau, 

le matériau est considéré comme étant continu et homogène avec des propriétés moyennes 

équivalentes. 

Ensuite, l’échelle mésoscopique (10−2 à 10−3) prend en considération les hétérogénéités du béton 

et rend la théorie des milieux continus inapplicable. Pour modéliser le béton, il faut alors tenir 

compte des granulats, de la matrice cimentaire et des zones d’interface matrice-granulat, également 

connue sous le nom d’ITZ (Interfacial Transition Zone). 

Un exemple de modélisation mésoscopique est illustré à la Figure 2.5. Il présente un modèle connu 

sous le nom de Lattice Model, formé d’un réseau de treillis ou de poutres avec des propriétés 

mécaniques différentes représentant un granulat, la matrice cimentaire ou encore une zone 

d’interface entre les deux. La superposition du patron hétérogène de particules généré 

aléatoirement et d’un réseau de treillis permet d’attribuer les propriétés mécaniques aux différents 

éléments finis (voir les Figure 2.5a et 2.5b).  
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Figure 2.5 Exemple de modèle à l'échelle mésoscopique (Schlangen & Van Mier, 1992) : (a) 

projection de la structure de grain sur le modèle de treillis; (b) définition des poutres équivalentes 

aux éléments d’agrégats; (c) exemple d’analyse; (d) exemple de résultat de la force en fonction 

du déplacement 

Un second exemple de modélisation mésoscopique est montré à la Figure 2.6. Les granulats sont 

représentés sous la forme d’ellipsoïdes et sont obtenus à partir de courbes de granulométrie 

permettant de caractériser leur distribution. La matrice cimentaire et la zone d’interface sont 

considérées comme étant des constituants distincts. Chaque élément fini possède des propriétés 

mécaniques caractéristiques de la famille à laquelle il appartient. 
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Figure 2.6 Exemple de modèle à l’échelle mésoscopique (Unger & Eckardt, 2011) 

Enfin, à l’échelle microscopique, les molécules de CSH (Calcium-Silicates-Hydrates) constitutives 

de la pâte de ciment sont considérées. Leurs différentes interactions avec l’eau sont également 

prises en compte, ce qui permet d’analyser l’ensemble des effets qui découlent de ces réactions 

comme le fluage et le retrait par exemple.  

Il paraît donc clair qu’à chacune de ces échelles, différents types de paramètres d’entrée sont 

envisagés pour la modélisation numérique. À titre d’exemple, un élément fini modélisé à l’échelle 

macroscopique est considéré comme étant homogène, le représenter à une échelle plus petite 

révélerait ses hétérogénéités et conduirait à une perte de sens des propriétés mécaniques qui lui ont 

été préalablement assignées. En réalité, ces propriétés se transforment en résultats de l’analyse et 

ne sont plus des paramètres d’entrée (c’est le cas par exemple pour la résistance en traction 𝑓𝑡
′ ou 

encore l’énergie de fissuration 𝐺𝑓 qui sont considérées comme des paramètres d’entrée pour une 

échelle de modélisation macroscopique).  

En outre, le constat suivant peut-être fait : le passage vers une échelle plus grande réduit le nombre 

d’éléments nécessaires à la discrétisation de la structure, réduisant ainsi le temps de calcul de 

manière significative. Néanmoins, ce changement d’échelle se fait aux dépens de simplifications 

qui peuvent parfois conduire à la suppression d’un aspect donné (Ben Ftima, 2013). 
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2.2.2 Bétons renforcés de fibres   

Les bétons renforcés de fibres étant des matériaux composites typiques, il est important d’examiner 

certains phénomènes significatifs à l’échelle où ils se produisent. En considérant leur 

microstructure, les BRF peuvent être modélisés suivant trois niveaux distincts. 

Tout d’abord, pour les BRF à l’échelle microscopique, des modèles analytiques ou numériques ont 

été développés afin de pouvoir décrire l’arrachement d’une unique fibre intégrée à la matrice avec 

une inclinaison aléatoire (Zhan & Meschke, 2013). L’exemple le plus simple à considérer est celui 

de la fibre droite qui ne possède pas d’inclinaison par rapport au plan de la fissure. Le processus 

d’arrachement dans ce cas de figure est divisé en trois étapes : une première phase où la fibre est 

encore liée à la matrice, une deuxième phase de détachement et enfin une phase d’arrachement 

(voir la Figure 2.7 ). 

 

Figure 2.7 Arrachement d’une fibre droite non inclinée : (a) phase de détachement (Zhan & 

Meschke, 2013) 

Le fait de considérer une fibre inclinée par rapport au plan de la fissure implique un niveau de 

complexité supplémentaire causé par la contrainte de frottement et la déformation plastique dues à 

la pression latérale exercée par l’interface avec la matrice. Fantilli et Vallini (2007) ont élaboré un 

modèle analytique afin de rendre compte du comportement des fibres inclinées. Le modèle pour 

l’arrachement est calibré, dans un premier temps, avec les paramètres propres à l’interface fibre-
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matrice alors que dans un second temps, un algorithme est utilisé pour générer le diagramme force-

déplacement pour la fibre droite avec un angle d’inclinaison quelconque (Zhan & Meschke, 2013).  

Les fibres avec des crochets aux extrémités possèdent une plus grande ductilité lorsque ces 

dernières sont arrachées. Néanmoins, en raison du comportement local hautement non linéaire des 

extrémités crochues et de la portion de la matrice qui les entoure, ainsi qu’en raison de la 

complexité des interactions matrice-fibre, il n’existe que très peu de modèles analytiques décrivant 

le comportement de ce type de fibre (Alwan et al., 1999). Pour pouvoir mettre en application cette 

formulation analytique, des modèles numériques par éléments finis ont été développés sur le 

logiciel ABAQUS (Hibbitt et al., 2014). 

Ensuite, afin de pouvoir étudier les BRF à une échelle mésoscopique, il faut considérer un volume 

statistiquement représentatif du matériau soumis à un chargement en traction. Initialement, toutes 

les fibres sont encore bien reliées à la matrice de béton et ces deux composants ont un 

comportement linéaire élastique (Zhan & Meschke, 2013). L’augmentation de la contrainte en 

traction mène à une initiation de la microfissuration au sein du volume élémentaire représentatif, 

ou VER, au niveau des points de faiblesses (défauts). À mesure que la charge augmente, ces 

microfissures s’ouvrent. Néanmoins, et contrairement à un béton ordinaire, l’ouverture est 

contrôlée par la force de pontage exercée par les fibres qui traversent ces microfissures. 

La force de pontage  𝜎𝑓 en fonction de l’ouverture de fissure 𝑤 est donnée par la relation suivante 

(Zhan & Meschke, 2013) :  

𝜎𝑓 =
1

𝐴𝑐𝑟
∑ ∑ 𝐹(𝑧, 𝜃, w)

𝜃𝑧

(2.1) 

où 𝐴𝑐𝑟 désigne la section transversale du VER, 𝑧 et 𝜃 désignent respectivement la position et 

l’orientation de chacune des fibres alors que 𝐹  correspond à la force unitaire développée par une 

fibre calculée grâce au modèle présenté dans la section 2.1.1.2.  

À l’échelle macroscopique, la modélisation du béton fibré peut être réalisée à l’aide du concept 

d’énergie de fissuration déjà utilisé pour le béton conventionnel. Ainsi, l’effet de pontage des fibres 

est indirectement modélisé via l’utilisation d’une énergie de fissuration 𝐺𝑓 associée aux fibres qui 

est beaucoup plus importante que celle associée à la matrice cimentaire (Figure 2.3). 
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Dans ce travail, la modélisation du béton de fibres métalliques est réalisée à l’échelle mésoscopique 

en raison des difficultés numériques associées à la prise en compte explicite des fibres pour des 

gros modèles numériques (ex : modèle de dalle). Toutefois, la variabilité aléatoire de l’orientation 

des fibres a un impact direct sur les caractéristiques mécaniques macroscopiques tel que l’énergie 

de fissuration et ne peut donc être ignorée. Il est donc important d’utiliser une approche probabiliste 

pour l’analyse numérique à l’échelle macroscopique plutôt qu’une approche déterministe, tel que 

décrit dans la section 2.4 plus loin. De plus, le passage d’une échelle mésoscopique à une échelle 

macroscopique ne doit pas se faire au risque de filtrer ou d’ignorer de phénomènes physiques 

importants tel que l’effet d’échelle. Il est donc important de comprendre l’origine de cet effet et la 

façon de le considérer selon une approche macroscopique. 

 

2.3 L’effet d’échelle  

En mécanique des solides, l’effet d’échelle est communément défini comme étant l’influence de la 

dimension caractéristique de la structure étudiée 𝐷 sur la contrainte nominale 𝜎𝑁 lorsque deux 

structures présentant une similitude géométrique sont comparées (Bažant, 1999). 

Griffith (1921) a été l’un des instigateurs des travaux de recherche sur le phénomène d’effet 

d’échelle. En effet, celui-ci a montré que la résistance mécanique des fibres de verre augmentait 

lorsque leur diamètre diminuait. Il en a déduit que « la faiblesse des solides isotropes … est due à 

la présence de discontinuités ou de défauts … La résistance effective des matériaux pourrait être 

multipliée par 10 ou par 20 si ces défauts étaient éliminés ». À la suite de cette découverte majeure, 

plusieurs auteurs se sont intéressés à l’effet d’échelle d’origine statistique. Peirce (1926), Tippett 

(1925) et Von Mises (1936) ont ensuite formulé la théorie du maillon faible ainsi que celle des 

valeurs extrêmes. Weibull (1939) a finalisé la théorie du maillon faible qui a ainsi donné lieu à une 

loi de probabilité portant son nom.  

L’effet d’échelle peut également être d’origine déterministe appelé aussi énergétique, tel que l’a 

identifié Bažant (1984). Il est alors dû à une libération d’une quantité importante d’énergie 

lorsqu’une grande fissure ou une grande zone d’élaboration de la fissuration (FPZ) se développe 

avant que la charge maximale ne soit atteinte. 



17 

 

Dans cette section, les différents modèles qui ont tenté de reproduire l’effet d’échelle statistique ou 

encore la combinaison des effets déterministes et statistiques seront présentés. Cette partie 

s’achèvera par une synthèse recensant les principales caractéristiques des différentes méthodes 

présentées.  

2.3.1 Effet d’échelle d’origine statistique  

Dans cette partie, nous commencerons par expliquer les fondements de la théorie de Weibull en 

introduisant tout d’abord le modèle de maillon faible, puis nous présenterons le modèle développé 

par Rossi et Ulm (1997) découlant de cette même théorie. 

2.3.1.1 Le modèle de Weibull  

2.3.1.1.1 Le principe de base  

Considérons une structure unidimensionnelle constituée de plusieurs éléments placés en série. 

Cette chaîne de N maillons (représentées par des éléments de volume) se rompt au niveau de 

l’élément le moins résistant. Weibull (1939) suppose que les résistances de chacun des éléments 

de la chaîne constituent des variables aléatoires indépendantes. 

La probabilité de survie d’un élément de volume 𝑉 sous une contrainte 𝜎 est égale à :  

𝑃𝑆(𝑉, 𝜎) = 𝑃𝑉(𝜎𝑅 > 𝜎) (2.2) 

Avec 𝜎𝑅 désignant la résistance de l’élément.  

Étant donné que la rupture d’un élément constitue un évènement indépendant, la probabilité de 

survie de deux éléments de volumes 𝑉 et 𝑉′ sous une contrainte 𝜎 vaut :  

𝑃𝑆(𝑉 + 𝑉′, 𝜎) = 𝑃𝑆(𝑉, 𝜎). 𝑃𝑆(𝑉′, 𝜎) (2.3) 

Finalement, la densité de probabilité de rupture correspondant à un état de contrainte uniforme 

appelée distribution de Weibull s’écrit sous la forme suivante (Lamon, 2016) :  

𝑃(𝑉, 𝜎) = 0 𝑝𝑜𝑢𝑟 𝜎 ≤ 𝜎𝑢 (2.4) 

𝑃(𝑉, 𝜎) = 1 − exp [−
𝑉

𝑉0
. (

𝜎 − 𝜎𝑢

𝜎0
)

𝑚

] 𝑝𝑜𝑢𝑟 𝜎 > 𝜎𝑢 (2.5) 
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𝑚, 𝜎𝑢 et 𝜎0 constituent des paramètres empiriques caractéristiques du matériau ainsi que de la 

microstructure (Bazant & Planas, 1997).  

Le paramètre de forme 𝑚 est sans dimension (généralement appelé module de Weibull) et est 

représentatif de la dispersion. En effet, plus ce dernier augmente, plus la dispersion au sein des 

éléments de volume diminue (voir Figure 2.8). Le paramètre 𝑚 serait également dépendant de la 

taille du spécimen étudié (Lamon, 2016). Selon Weibull (1939), 𝜎0 est un paramètre d’échelle 

proportionnel à la moyenne de la résistance, 𝜎𝑢 constitue la limite inférieure de la résistance (i.e. 

la valeur de la contrainte lorsque la probabilité de la rupture vaut 0). Néanmoins, étant donné qu’il 

est très difficile d’obtenir la valeur de 𝜎𝑢 expérimentalement et qu’il existe une grande incertitude 

quant à la valeur obtenue, 𝜎𝑢 est souvent prise comme étant égale à 0 (Lamon, 2016). 

 

Figure 2.8 Tracé de P- 𝜎 : Distribution statistique des valeurs de contrainte pour différentes 

valeurs du module de Weibull(𝑚2 < 𝑚1) (Lamon, 2016) 

Dans l’équation (2.5), 𝜎 est une contrainte de traction pure. Dans le cas d’une sollicitation 

multiaxiale de la structure étudiée, Weibull (1939) considère que la compression et le cisaillement 

n’ont pas d’influence sur la probabilité de rupture et que cette dernière est uniquement causée par 

la composante normale en traction de la sollicitation σ𝑛. Par ailleurs, Barnett (1975) et Freudenthal 

(1968) ont introduit une approche simple, souvent utilisée, permettant de traiter les cas de 

contraintes multiaxiales uniformes dans le cadre de la théorie de Weibull. Ils supposent que les 

contraintes principales en traction sont indépendantes et n’interagissent pas entre elles.  

La loi de puissance développée par Weibull (1939) constitue une approximation satisfaisante de la 

répartition des plus petites résistances en traction. Il s’agit d’un modèle relativement simple, mais 

qui présente toutefois certaines limites remettant en jeu sa capacité à prédire le comportement de 

structures aux géométries complexes et soumises à des contraintes multiaxiales comme l’ont 

souligné plusieurs auteurs (Bazant & Planas, 1997; Lamon, 2016). 
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2.3.1.1.2 Approche du volume statistiquement représentatif (VSR) 

Le volume statistiquement représentatif de Weibull est un modèle basé sur la théorie du maillon 

faible, celui-ci a été développé afin de tenir compte de la diminution de la résistance en traction 

des matériaux fragiles et quasi-fragiles. Plusieurs modèles qui tentent de reproduire l’effet 

d’échelle sont tirés de cette théorie (Quinn (2003a, 2003b), Kuguel (1961), Mazars (1984)). Selon 

Lamon (2016), la notion de volume élémentaire sert à comparer la résistance à la rupture de 

structures de volumes distincts soumises à différents états de contrainte ou de modes de chargement 

(sollicitation en traction, en flexion pure, en flexion 3 points ou 4 points). Le volume 

statistiquement représentatif désigne un volume équivalent (du même matériau) soumis à une 

contrainte uniforme égale au maximum des contraintes principales, définie comme σ𝑚𝑎𝑥 (σ𝑚𝑎𝑥 =

𝑚𝑎𝑥(σ𝐼 , σ𝐼𝐼 , σ𝐼𝐼𝐼)), et qui possède la même probabilité de rupture que le volume total de la structure 

(voir la Figure 2.9).  

 

Figure 2.9 Le concept de volume élémentaire représentatif (Wu et al., 2012) 

En se basant sur la théorie du maillon faible, la résistance en traction s’écrit sous la forme suivante : 

𝑓′𝑡 = 𝑓𝑡/𝑟𝑒𝑓 (
𝑉0

𝑉𝐸
)

1/𝑚

(2.6) 

𝑓𝑡/𝑟𝑒𝑓 et 𝑉0 constituent des paramètres d’entrée correspondant à la structure prise comme référence 

et 𝑓𝑡/𝑟𝑒𝑓 est la résistance en traction du volume 𝑉0 associé à un volume de référence qui désigne 

généralement un spécimen normalisé (par exemple cylindrique ou prismatique) ou encore le plus 

petit spécimen de la campagne expérimentale.  
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Le volume statistiquement représentatif 𝑉𝐸 dépend du module de Weibull, du champ de contrainte 

et du volume total 𝑉 de la structure étudiée, il s’écrit sous la forme : 

𝑉𝐸 = ∫ (
σ𝐼(𝑥, 𝑦, 𝑧)

σ𝑚𝑎𝑥
)

𝑚

𝑑𝑉 (2.7) 

Avec σ𝐼 la première contrainte principale dans le cas d’un chargement élastique (σ𝐼 > σ𝐼𝐼 > σ𝐼𝐼𝐼). 

La probabilité de rupture d’un volume s’écrit alors sous la forme (Lamon, 2016) : 

                                     𝑃(σ, 𝑉) = 1 − 𝑒𝑥𝑝 [− (
σ𝑚𝑎𝑥

σ0
)

𝑚 𝑉𝐸

𝑉0
] = 𝑃(σ𝑚𝑎𝑥, 𝑉𝐸)                                 (2.8) 

Ainsi, le volume 𝑉𝐸 soumis à la contrainte σ𝑚𝑎𝑥 est statistiquement équivalent à 𝑉 sous σ(𝑥, 𝑦, 𝑧). 

Pour une contrainte uniaxiale, le volume élémentaire représentatif varie de 0 à 𝑉. Aussi 𝑉𝐸 = 𝑉 en 

cas de sollicitation en traction pure alors que 𝑉 = 0 en cas de compression. Ainsi, la valeur de 𝑉𝐸 

est proportionnelle à la sévérité de l’état de contrainte auquel est soumis la structure qui, quant à 

lui, gouverne la valeur de la probabilité d’existence d’un défaut ou hétérogénéité critique menant 

à la rupture de la structure étudiée (Lamon, 2016).  

2.3.1.1.3 Approche du volume fortement sollicité (VFS) 

Certaines approches du volume statistiquement représentatif (Weibull effective volume) utilisent le 

concept du volume fortement sollicité VFS (Highly Stressed Volume), initialement développé par 

Kuguel (1961). Ce modèle-ci est basé sur le fait que dans le cas de rupture en traction de matériaux 

fragiles (dont le béton fait partie), il n’est pas nécessaire d’analyser ce qu’il se passe dans l’entièreté 

du volume du spécimen, mais uniquement dans la région la plus critique, autrement dit la région 

soumise à la plus forte contrainte (Torrent, 1977). Le VFS est ainsi défini comme étant le volume 

au sein duquel la contrainte en traction dépasse 90 à 95% de σ𝑚𝑎𝑥. En réalité, cela constitue 

également la zone critique et par conséquent on suppose que la fissure conduisant à la rupture se 

développera quelque part dans ce volume-ci (Torrent & Brooks, 1985). La forme adoptée par le 

volume fortement sollicité est mise en évidence pour différents exemples de tests dans la Figure 

2.10.  

Plusieurs travaux (Durelli et Parks (1962); Kuguel (1961); Torrent (1977)) suggèrent l’existence 

d’une relation entre 𝑓𝑡
′ et le VFS qui s’écrit sous la forme suivante : 

𝑓𝑡
′ = 𝐵𝑉−𝑎 (2.9) 
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avec 𝑉 le volume fortement sollicité (en cm3), alors que 𝐵 et 𝑎 sont deux paramètres déterminés 

de manière empirique. Le paramètre 𝐵 correspond à la résistance en traction d’un VFS d’un 

centimètre cube, 𝑎 est une mesure de la sensibilité du matériau étudié au changement au sein du 

volume fortement sollicité. 

 

Figure 2.10 Exemples de volumes fortement sollicités pour différents test (Torrent & Brooks, 

1985) 

Torrent et Brooks (1985) ont démontré que l’approche du VFS n’est pas strictement applicable à 

la corrélation ou à la prédiction des valeurs de résistance à la traction obtenues à partir de différentes 

méthodes d’essai, en particulier lorsqu’elles conduisent à des distributions de contraintes très 

différentes dans le spécimen. Cela peut être attribué au fait que l’approche ne tient pas pleinement 

compte de la croissance progressive des microfissures avant la rupture. Même si une bonne 

corrélation peut parfois être obtenue entre 𝑓𝑡
′ et le VFS (Torrent, 1977), ces corrélations ne sont 

pas pertinentes puisque les valeurs des paramètres obtenues dépendent principalement de 

l’ensemble particulier d’essais concernés et, par conséquent, elles ne sont pas des propriétés 

intrinsèques du matériau et ne peuvent être utilisées pour les prévisions de résistance. 
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2.3.1.2 Le modèle de Rossi  

Tout comme le modèle de Weibull dont elle est issue, la méthode développée par Rossi et al. (1994 

(b)) s’inscrit dans les effets d’échelle d’origine statistique. 

2.3.1.2.1 Lien entre effet d’échelle et résistance en traction du béton  

Pour des spécimens soumis à la traction, Rossi et al. (1994 (b)) ont développé une loi permettant 

de décrire l’impact de l’effet d’échelle sur 𝑓′
𝑡
. Cette loi permet de relier les caractéristiques de la 

fonction de distribution de 𝑓′
𝑡
 (moyenne et écart-type) au rapport entre le volume du spécimen et 

le volume du plus gros granulat (Rossi et al., 1994 (a); Rossi & Richer, 1987; Rossi et al., 1994 

(b); Tailhan et al., 2010).  

Cette méthode dissocie deux facteurs déterminant la distribution de la résistance en traction du 

béton. Premièrement, il est supposé que 𝑓′
𝑡
 est directement reliée à la qualité de la pâte de ciment, 

car c’est à cet endroit que se situent les points de faiblesse : porosité, microfissures et contraintes 

initiales. Ce premier facteur est associé à la résistance en compression. En effet, plus 𝑓′𝑐 est élevé, 

plus le matériau est homogène et plus les caractéristiques mécaniques du matériau deviennent 

proches de celles des granulats. L’effet d’échelle devient ainsi négligeable lorsque 𝑓′𝑐 est 

important. Le deuxième facteur est la quantité de la pâte de ciment, celle-ci étant prise en compte 

par le biais du rapport entre le volume du spécimen et le volume du plus gros granulat. Rossi et al. 

(1994 (b)) résument la théorie à travers les équations suivantes :  

𝑓𝑡
′̅ = 𝑎 (

𝑉𝑆

𝑉𝐴
)

−𝑏

(2.10) 

𝑎 = 6,5 

𝑏 = 0,25 − 3,6 × 10−3𝑓′𝑐 + 1,3 × 10−5𝑓′𝑐
2 

𝜎

𝑓𝑡
′̅

= 𝐴 (
𝑉𝑆

𝑉𝐴
)

−𝐵

(2.11) 

𝐴 = 0,35  

𝐵 = 4,5 × 10−2 + 4,5 × 10−3𝑓′𝑐 − 1,8 × 10−5 
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où 𝑓𝑡
′̅ et 𝜎 désignent respectivement la moyenne et l’écart-type de la résistance en traction, 𝑉𝑆 

représente le volume du spécimen étudié, et 𝑉𝐴 le volume du plus gros granulat. Les coefficients 𝑎, 

𝐴, 𝑏 et 𝐵 ont été déterminés par analyse inverse à partir de résultats et d’observations 

expérimentales. 

2.3.1.2.2 Lien entre effet d’échelle et module de Young  

Rossi et al. (1994 (b)) considère que la valeur moyenne du module de Young ne dépend pas du 

volume du spécimen tandis que l’écart-type est une fonction décroissante de 𝑉𝑆 et de 𝑓′𝑐 tel que 

montré dans les équations ci-après : 

𝜎

𝐸̅
= 𝑐 (

𝑉𝑆

𝑉𝐴
)

−𝑑

(2.12) 

𝑐 = 0,15 

𝑑 = 0,16 + 2,7 × 10−3𝑓′𝑐 − 3,4 × 10−6𝑓′𝑐
2 

Selon Rossi et al. (1994 (b)), la dispersion du module de Young est liée au fait que le module de 

Young de la pâte et des granulats sont différents. Plus le spécimen est de petite taille, plus 𝐸 devient 

proche de celui de la pâte seule ou des granulats seuls, et c'est donc le ratio des volumes qui va 

gouverner cette dispersion. Par ailleurs, pour deux échantillons identiques, le module d'Young en 

compression est égal au module de Young en traction (Rossi et al., 1994 (b)).  

En ce qui concerne les BRF, la variance obtenue expérimentalement est inférieure à la variance 

calculée à l’aide des équations (2.11) et (2.12). Ceci s’expliquerait par le fait que les fibres agissent 

comme des renforts au niveau des zones de faiblesse de la matrice. Ceci n’est vrai que dans le cas 

où les fibres sont distribuées de manière uniforme dans la matrice, dans le cas où la répartition n’est 

pas homogène, cela aurait pour conséquence d’augmenter l’hétérogénéité de la pâte et donc la 

dispersion des caractéristiques mécaniques du béton étudié. 

Finalement, il est important de mentionner que le modèle de Weibull ainsi que les théories qui en 

résultent revêtent une importance particulière pour les matériaux fragiles. Dans le cas de matériaux 

quasi-fragiles tel que le béton ou quasi-ductiles tel que le BRF, l’effet d’échelle appelé déterministe 

ou énergétique devient important et la considération simultanée des deux sources d’effet d’échelle 

devient nécessaire. 
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2.3.2 Considération de l’effet d’échelle déterministe 

L’effet d’échelle appelé déterministe provient de la dissipation de l’énergie au niveau du front de 

la fissure d’où son appellation d’effet d’échelle énergétique par certains auteurs. Il est considéré 

comme étant la source la plus importante d’effet d’échelle pour les matériaux quasi-fragiles ou 

quasi-ductiles tel que le béton ordinaire ou le BRF. 

2.3.2.1 Le modèle de Bazant  

Bažant (1999) a commencé par développer une loi d’effet d’échelle (size effect law), dérivée de 

l’analyse de l’énergie dissipée, pour les structures avec entailles dites de type 2, qui contiennent 

des entailles de taille supérieure à celle de la FPZ. Dans cette situation, Bažant (1984) estime que 

l’effet d’échelle d’origine statistique est négligeable. La loi représentant le lien entre spécimens de 

petites et de grandes tailles s’écrit sous la forme :  

𝜎𝑁 =
𝐵. 𝑓𝑡,𝑟𝑒𝑓

√1 +
𝐷
𝐷0

(2.13)
 

où 𝐵 et 𝐷0 sont des coefficients déterminés de manière expérimentale. Par ailleurs, Saouma et al. 

(2003) et Saouma et Fava (2006) ont pu développer une formulation  analytique du paramètre 𝐵 

qui repose sur des facteurs d’intensité de la contrainte locale et des contraintes cohésives. Ils ont 

également établi une approche basée sur la notion de fractale inspirée de la loi d’effet d’échelle 

créée par Bažant (1984). 

Cette équation permet de tracer la courbe servant de transition entre l’asymptote horizontale pour 

les petits spécimens et l’asymptote inclinée de pente −1/2 pour les spécimens plus grands (dans 

le graphique représentant log 𝜎𝑁 en fonction de log 𝐷 (voir la Figure 2.11(a)).  

L’effet d’échelle de type 1 (énergétique-statistique ou uniquement statistique, dépendamment de 

la contrainte appliquée) est observé pour des structures non entaillées dites à géométrie positive, 

pour lesquelles la rupture survient aussitôt qu’une macrofissure s’initie au niveau d’une surface 

lisse. Néanmoins, la contribution de l’effet d’échelle d’origine statistique est négligeable pour les 

structures de petite taille, dont le volume n’est pas suffisamment grand en comparaison avec la 

taille de la FPZ. Ainsi, dans le cas des spécimens soumis à un effet d’échelle énergétique-
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statistique, les structures de plus grande taille sont définies par une asymptote de pente -n/m sur un 

graphique représentant log 𝜎𝑁 en fonction de log 𝐷 (voir la Figure 2.11(b)). 

Pour conclure, pour les structures dites de type 1, les lois d’effet d’échelle s’écrivent de la façon 

suivante :  

1- Pour l’effet d’échelle d’origine énergétique exclusivement : 

𝜎𝑁 = 𝑓𝑟∞ (1 +
𝑟𝐷𝑏

𝐷̅ + 𝑙𝑝

)

1
𝑟

(2.14) 

2- Pour l’effet d’échelle d’origine énergétique et statistique à la fois : 

𝜎𝑁 = 𝑓𝑟∞ ((
𝑙𝑠

𝑙𝑠 + 𝐷
)

𝑟𝑛
𝑚

+
𝑟𝐷𝑏

𝐷̅ + 𝑙𝑝

)

1
𝑟

(2.15) 

avec 𝑓𝑟∞ la résistance nominale de structures de très grande taille, 𝐷𝑏 la longueur approximative 

de la FPZ, 𝑙𝑝 une caractéristique du matériau permettant de contrôler la transition vers l’asymptote 

horizontale et 𝑙𝑠 la longueur caractéristique statistique faisant référence à la variabilité spatiale de 

la probabilité de rupture (Bažant et al., 2007).  

 

 

Figure 2.11 Représentation de la dépendance entre 𝜎𝑁 et la dimension 𝐷 de la structure : (a) 

structure comportant une entaille profonde : effet d’échelle de type 2 (b) structure ne comportant 

pas d'entaille : effet d’échelle de type 1 (Hoover & Bažant, 2014) 
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2.3.2.2 Le modèle de Mazars  

Mazars et al. (1991) est parvenu à combiner les deux types d’effet d’échelle (statistique et 

déterministe) dans un seul modèle d’endommagement non-local continu (non local continuous 

damage mechanics). 

2.3.2.2.1  Modèle basé sur le seuil initial d’endommagement  

Tout d’abord, l’approche adoptée pour décrire l’initiation de l’endommagement procède de la 

théorie de Weibull. Mazars (1986) s’intéresse au seuil initial d’endommagement 𝜀𝐷. Dans le cas 

du béton, l’auteur définit ce seuil comme étant l’état où la déformation en tension a atteint la limite 

𝜀̃ = 𝜀𝐷. Le paramètre 𝜀̃, appelé déformation équivalente, représente la déformation en traction 

accumulée dans le matériau. L’auteur suppose que les défauts initiaux commencent à se propager 

sous forme de vides ou de fissures lorsque les déformations en traction ont atteint un seuil. Ainsi 

l’initiation des dommages est donc une fonction de 𝜀̃. L’équation constitutive s’écrit sous la forme 

suivante : 

𝜎 = (1 − 𝐷)Λ: 𝜀                               0 < 𝐷 < 1 (2.16) 

où Λ représente le tenseur du module élastique et 𝐷 est la variable représentant l’endommagement. 

L’auteur suppose que l’endommagement se fait de manière isotrope et donc que ce paramètre peut 

être exprimée sous la forme d’un scalaire variant de 0 (matériau sain) à 1 (matériau endommagé). 

La loi d’évolution de l’endommagement en traction (i=t) et en compression (i=c) est égale à : 

𝐷𝑖 = 1 −
𝜀𝐷0(1−𝐴𝑖)

𝜀̃𝑀
−

𝐴𝑖

exp[𝐵𝑖(𝜀̃𝑀−𝜀𝐷0)]
≠ 0 𝑠𝑖 𝜀𝑀̃ > 𝜀𝐷0 (2.17)  

où 𝜀𝑀̃ désigne la déformation équivalente locale maximale. 

Par ailleurs, Mazars et al. (1991) énoncent que la probabilité qu’un dommage ne soit pas initié dans 

un volume Δ𝑉 (avec Δ𝑉 = 𝑟. 𝛿𝑉) est égale à : 

                                                                    𝑃𝑛𝑑(𝜀̃, Δ𝑉) = 𝑒𝑥𝑝[−𝑟𝑃𝑑(𝜀̃, δ𝑉)]                                     (2.18) 

Des exigences sont liées à la formulation ci-dessus : 

1. pour des valeurs infiniment grandes de 𝜀̃, le volume δ𝑉 doit obligatoirement être 

endommagé; dans ce cas-là,  𝑃𝑑(𝜀̃, δ𝑉) = 1; 
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2. pour des déformations équivalentes inférieures à une constante (par exemple 𝜀𝐷0, 

caractéristique du matériau), le volume δ𝑉 ne sera pas endommagé et une expression 

possible de l’endommagement est :  

𝑃𝑑(𝜀̃, 𝛿𝑉) = 𝑘(𝜀̃ − 𝜀𝐷0)𝑚𝛿𝑉 (2.19) 

L’équation (2.18) est fortement inspirée de la théorie de Weibull. Néanmoins, il existe une 

différence notable avec cette dernière. Dans l’approche de Mazars, le modèle du maillon faible de 

Weibull est utilisé pour décrire l’initiation de l’endommagement et non la résistance ultime du 

matériau qui dépend d’autres phénomènes tels que la redistribution de la contrainte. 

2.3.2.2.2 Modèle d’endommagement à deux échelles  

Une fois l’endommagement initié, il faut décrire son évolution. L’évolution de l’endommagement, 

due à la propagation de microfissures lorsque le matériau est sollicité en traction, est décrite grâce 

à une variable d’état scalaire, non-locale, représentant la perte en rigidité du béton. Cela peut être 

réalisé en calculant la valeur de 𝜀̃ en fonction de l’état d’un volume représentatif. Cette approche 

est qualifiée comme étant à deux échelles car celle-ci intègre des informations provenant de deux 

échelles distinctes : l’échelle du volume élémentaire, dans laquelle les contraintes et les 

déformations sont déterminées de manière habituelle, et l’échelle du volume représentatif, dans 

laquelle l’endommagement est défini en fonction de l’hétérogénéité du matériau et de l’interaction 

entre les microfissures (Saouridis & Mazars, 1992).  

La seule modification apportée à la formulation du modèle concerne la loi sur l’évolution de 

l’endommagement : 

 𝐷 = 𝑓(𝜀𝑀̃
̅̅̅̅ ) ≠ 0 si 𝜀𝑀̃

̅̅̅̅ > 𝜀𝐷0 avec 𝑓(𝜀𝑀̃
̅̅̅̅ ) définie comme dans l’équation (2.16) 

𝜀𝑀̃
̅̅̅̅ =

∫ 𝑉𝐷𝑔(𝑥 − 𝑠)𝜀̃𝑑𝑉

∫ 𝑉𝐷𝑔(𝑥 − 𝑠)𝑑𝑉
(2.20) 

L’équation (2.20) introduit une nouvelle inconnue : 𝑔(𝑥 − 𝑠) qui est une fonction de pondération 

représentant l’intensité de l’interaction entre le point considéré de coordonnée 𝑥, les points de 

coordonnée 𝑠 qui sont situés à son voisinage et le volume représentatif 𝑉𝐷. La courbe de 𝑔(𝑥 − 𝑠) 

est de type gaussienne (voir la Figure 2.12) qui tient compte de 𝑙𝐷 , la longueur caractéristique (plus 

généralement dénommée longueur interne pour un milieu non local), et qui est une propriété du 

matériau reliée à la taille maximale de l’agrégat tel que 2𝑙𝐷 = 3𝜙𝑚𝑎𝑥. 
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Figure 2.12 Modèle d’endommagement à deux échelles (Saouridis & Mazars, 1992) 

Grâce à une comparaison entre les résultats expérimentaux et les résultats numériques, Saouridis 

et Mazars (1992) ont montré que l’approche dite à deux échelles permet de décrire l’effet d’échelle 

sur les spécimens entaillés et représente bien en ce sens l’aspect déterministe. Au contraire, dans 

le cas de spécimens non entaillés où l’effet d’échelle statistique prévaut sur l’effet d’échelle 

déterministe, il faudrait combiner l’approche à deux échelles avec le modèle d’initiation de 

l’endommagement. 

2.3.2.3 Le modèle de Sellier et Millard  

Le modèle proposé par Sellier et Millard (2014) permet de prédire les déclenchements successifs 

dans un élément susceptible de fissurer à plusieurs reprises : par exemple un élément structural de 

grande dimension avec des fibres ou des armatures et dont la matrice est fragile. Cette nouvelle 

approche permet également de redistribuer les contraintes aux alentours de la zone fissurée. La 

conséquence directe de cette nouvelle formulation est que la rupture de la structure n’est pas liée à 

la rupture de son maillon le plus faible mais seulement à celle qui se produit au niveau du volume 

statistiquement représentatif qui dépend dans le modèle de Sellier et Millard (2013) d’une longueur 

dite d’autocorrélation. 

La probabilité de fissuration locale est caractérisée par une moyenne et un écart-type qui sont 

associés à un volume sollicité de référence comme dans la théorie classique de Weibull. 
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Néanmoins, il existe une distinction qui est importante et qui fait l’originalité de ce modèle : le 

volume de référence dépend du temps de chargement. En effet, si ce temps est élevé, comme dans 

le cas des chargements quasi-statiques par exemple, la résistance locale qui est prise comme 

référence diminue car la probabilité que les liaisons moléculaires passent momentanément par un 

minimum énergétique augmente (Sellier & Millard, 2014). Par ailleurs, les auteurs précisent que 

cette théorie est indépendante du type de fissuration utilisé. 

Le paramètre 𝑃𝑉
𝑆(𝑀, 𝑡) désigne la probabilité pour qu’un point M, situé dans un volume 𝑉 et d’âge 

𝑡, puisse transmettre une contrainte 𝜎(𝑀, 𝑡). Cette probabilité est soumise à deux conditions. 

1- Il faut que le point matériel ait survécu jusqu’au temps 𝑡, ce qui est représenté par l’équation 

suivante qui fait intervenir l’historique du point M :  

𝑃𝑉𝑟𝑒𝑓
𝑆 (𝑀, 𝑡) = ∏ (

𝑑𝜏∈[0,𝑡]

𝑃𝑉𝑟𝑒𝑓,𝑡𝑟𝑒𝑓
𝑆 (𝑀, 𝜏))

𝑑𝜏
𝑡𝑟𝑒𝑓 (2.21) 

2- Il faut que le voisinage du point M ait également survécu jusqu’au temps 𝑡 afin d’assurer la 

transmission de la contrainte. Le voisinage immédiat du point M est caractérisé par la 

fonction de pondération probabiliste 𝜓 (voir Figure 2.13) qui dépend du point 𝑥 considéré 

et de la longueur d’autocorrélation 𝑙𝑐. En effet, dans le cas où le matériau possède des 

propriétés auto-corrélées, ce qui est le cas du béton, si la rupture a lieu dans une zone, il 

faut suffisamment s’éloigner de cette dernière pour pouvoir retomber sur un endroit où le 

matériau est capable de reprendre la contrainte 𝜎. 

 

Figure 2.13 Fonction d'atténuation du poids probabiliste (Sellier & Millard, 2014) 
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Sellier et Millard (2013) stipulent enfin que cette méthode reste déterministe, même si elle est basée 

sur une théorie probabiliste, puisque la solution obtenue est représentative du mode de fissuration 

le plus vraisemblable et donc que cette dernière ne requière pas d’utiliser un algorithme de Monte 

Carlo alors qu’un seul calcul suffit, ce qui engendrerait un gain de temps très important. 

2.3.2.4 Le modèle de Ben Ftima et Massicotte  

Ben Ftima et Massicotte (2015) ont développé une approche simplifiée permettant de tenir compte 

des deux sources d’effet d’échelle, déterministe et statistique, et qui est bien adaptée au contexte 

de modélisation macroscopique du béton. Ils considèrent que pour un matériau quasi-fragile, l’effet 

d’échelle statistique affecte principalement la phase d’initiation de la fissure et donc la résistance 

en traction 𝑓𝑡
′ et que l’effet d’échelle déterministe affecte la phase de propagation de fissure 

macroscopique et est pris en compte par l’énergie de fissuration. 

L’aspect déterministe est modélisé implicitement par le biais de l’énergie de fissuration 𝐺𝑓 selon 

une approche de fissuration diffuse où l’endommagent est distribué sur toute la hauteur de 

l’élément fini. En ce qui concerne l’effet d’échelle d’origine statistique, celui-ci est pris en compte 

en faisant varier la résistance en traction 𝑓𝑡
′ en fonction de la dimension caractéristique D de 

l’élément structural à l’aide d’une loi exponentielle décroissante inspirée de la distribution de 

Weibull. L’expression suivante est ainsi utilisée pour renseigner la valeur de 𝑓𝑡
′ pour les modèles 

par éléments finis :  

𝑓𝑡
′ = 0.5√𝑓′

𝑐
(

𝐷

150
)

−
𝑛𝑑
𝑚

(2.22) 

avec 𝑛𝑑 la similitude dimensionnelle de la structure (ex 𝑛𝑑 = 2 pour une similitude 2D) et 𝑚 le 

module de Weibull pris égal à 24 pour le béton. Il est important de noter que ce modèle se distingue 

de ceux présentés précédemment par sa simplicité et par le nombre relativement faible de 

paramètres d’entrée qu’il nécessite. 

2.3.3 Synthèse  

Le Tableau 2.1 contient une synthèse de l’ensemble des méthodes, et de leurs différentes 

caractéristiques. 
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Tableau 2.1 Résumé des différentes approches de modélisation de l’effet d’échelle 

Nom du modèle Effet d’échelle 

statistique 

Effet d’échelle 

statistique-énergétique 

Nombre de 

paramètres d’entrée 

Modèle de Weibull 

(1939) 
✓ x 1 

Modèle de Rossi (1987) ✓ x 2 

Modèle de Bazant 

(1999) 
✓ ✓ 5 

Modèle de Mazars 

(1992) 
✓ ✓ 3 

Modèle de Sellier et 

Millard (2014) 
✓ ✓ 2 

Modèle de Ben Ftima et 

Massicotte (2015) 
✓ ✓ 2 

 

Même si la considération de l’effet d’échelle statistique demeure importante pour les matériaux 

quasi-fragiles (ex : béton) et les éléments de grande dimension (e.g. poutre de plus de 1 m de 

profondeur), son importance demeure questionnable dans le cas de matériau quasi-ductile (ex : 

BRF) et pour les éléments structuraux de petite dimension (ex : dalle de 150 mm). Ainsi, la 

considération du concept d’énergie de fissuration lors de la modélisation non linéaire 

macroscopique de dalles en BRF pourrait s’avérer suffisante pour uniquement tenir compte de 

l’effet d’échelle déterministe ou énergétique. Toutefois, et tel que mentionné précédemment dans 

la section 2.2, il est primordial d’inclure dans cette modélisation l’aspect probabiliste lié à 

l’orientation aléatoire des fibres. 

2.4 Modélisation probabiliste du béton  

Dans le cadre de l’analyse non linéaire par éléments finis, de nombreux paramètres d’entrée 

(propriétés du matériau, dimensions géométriques, charges appliquées) sont généralement requis. 

Ces derniers possèdent le plus souvent une variabilité aléatoire qui ne peut être négligée. Dans cette 

section, les probabilistes utilisées dans la sous-routine d’EPM3D seront d’abord présentées, le 

concept de fiabilité des structures sera ensuite abordé, enfin, plusieurs exemples de modélisations 

probabilistes par éléments finis du béton seront détaillés. 
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2.4.1 Lois probabilistes utilisées  

La loi normale, la loi lognormale et la loi de Weibull sont les trois distributions aléatoires les plus 

couramment utilisées dans la littérature pour représenter la variabilité spatiale du béton ordinaire 

et des bétons renforcés de fibres également. Cette partie comportera une description de ces trois 

lois probabilistes et explicitera les raisons pour lesquelles celles-ci sont particulièrement adaptées 

à la modélisation de la variabilité spatiale des propriétés mécaniques des bétons ordinaires et des 

bétons renforcés de fibres. 

2.4.1.1 Loi Normale  

Cette partie établira le cadre théorique de la loi normale, également appelée loi Gaussienne. Elle 

explicitera aussi les raisons pour lesquelles cette distribution a été utilisée dans la sous-routine 

probabiliste développée dans le cadre de cette maîtrise pour modéliser la variabilité des propriétés 

mécaniques du béton.  

La loi normale fait partie des distributions les plus couramment utilisées en statistiques et théorie 

des probabilités et recouvre un très large éventail d’applications (Balakrishnan et al., 2019). Tout 

d’abord, la fonction de densité de probabilité de la loi normale s’écrit de la manière suivante (voir 

la Figure 2.14) :  

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

(2𝜎2)  ,           − ∞ < 𝑥 < +∞ (2.23) 

avec 𝜇 la moyenne de la distribution et 𝜎 l’écart-type.  

Comme le montre la Figure 2.14, 68% de l’aire sous la courbe (et donc des issues obtenues en 

sortie d’une loi normale) se situe dans l’intervalle [𝜇 − 𝜎; 𝜇 + 𝜎], 95% de l’aire sous la courbe se 

situe au sein de l’intervalle [𝜇 − 2𝜎; 𝜇 + 2𝜎], et enfin, 99,7% de l’aire se situe dans [𝜇 − 3𝜎; 𝜇 +

3𝜎]. 
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Figure 2.14 Fonction de densité de probabilité de la loi normale (Balakrishnan et al., 2019) 

Par ailleurs, la loi normale tronquée (pas de valeurs négatives) a souvent été utilisée dans l’étude 

des aspects probabilistes de la défaillance des matériaux hétérogènes et fragiles (Rossi et al., 1994 

(b)). 

Rossi et Richer (1987), Rossi et al. (1994 (a)) et Rossi et al. (1994 (b)) ont développé et mis en 

œuvre une procédure numérique prenant en compte les aspects statistiques de l’hétérogénéité des 

bétons. Pour cela, ils ont mené de nombreuses campagnes expérimentales de traction directe sur 

des spécimens cylindriques, et ce dans le but de définir la distribution statistique de la résistance 

en traction. Ils ont ainsi réussi à démontrer que la loi normale tronquée et la loi de Weibull 

correspondaient aux distributions mesurées de manière expérimentale. En effet, des tests 

statistiques (utilisation de la droite de Henri et de la méthode du 𝜒2) ont été mis en application afin 

de vérifier que les distributions expérimentales obtenues suivent bien la loi normale théorique. Ceci 

a été validé pour des bétons dont la résistance en compression variait entre 35 𝑀𝑃𝑎 et 130 𝑀𝑃𝑎.  

En outre, dans le cadre d’une étude numérique par éléments finis de l’effet d’échelle statistique de 

poutres en béton ordinaire soumises à de la flexion 3 points, Syroka-Korol et al. (2013) affectent 

aux éléments finis des valeurs de résistance à la traction sous forme d’un champ aléatoire 

spatialement corrélés décrits par une distribution normale tronquée. Les auteurs affirment 

également que la distribution Gaussienne tronquée est largement utilisée pour décrire la probabilité 

de défaillance des spécimens de bétons de petites et moyennes tailles. Par contre, pour les grands 
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échantillons de béton, la fonction de distribution de Weibull est généralement privilégiée (Bazant 

& Planas, 1997; Syroka-Korol et al., 2013). 

En ce qui concerne les bétons renforcés de fibres, Li et al. (2018) ont développé un modèle 

probabiliste pour saisir la variabilité du comportement en traction des BRF. Afin de représenter 

l’hétérogénéité de la microstructure du matériau, tous les paramètres micromécaniques (longueur 

des fibres, diamètre des fibres, module élastique des fibres, résistance des fibres, pourcentage 

volumique des fibres, module d’Young de la matrice cimentaire, etc.) sont considérés comme des 

variables aléatoires suivant une distribution normale tronquée. 

2.4.1.2 Loi Lognormale 

Cette sous-section comportera la définition du cadre théorique de la loi lognormale et explicitera 

les raisons pour lesquelles celle-ci fait partie des distributions utilisées dans la sous-routine 

probabiliste d’EPM3D.  

Comme mentionné dans le paragraphe précédent, la loi normale fait partie des distributions les plus 

importantes et les plus utilisées dans le domaine des statistiques et de la théorie des probabilités. 

Néanmoins, il existe plusieurs situations pratiques dans lesquelles le logarithme d’une variable 

aléatoire 𝑋 suit une distribution normale. Ainsi, 𝑋  suit une loi lognormale de paramètres 𝜇 et 𝜎2 si 

la variable aléatoire 𝑌 = ln(𝑋) obéit à une distribution normale 𝑁(𝜇, 𝜎2). La phrase précédente 

peut-être abrégée à l’aide de la formulation mathématique suivante : 𝑋~𝐿𝑁(𝜇, 𝜎2). 

La fonction de densité de probabilité de cette loi s’écrit de la manière suivante (Balakrishnan et al., 

2019) :  

𝑓(𝑥) =
1

𝜎𝑥√2𝜋
exp [−

(ln(𝑥) − 𝜇)2

2𝜎2
] ,   𝑥 > 0 (2.24) 

Les paramètres 𝜇 et 𝜎 de la variable aléatoire 𝑋 peuvent être exprimés en fonction de l’espérance 

et l’écart-type (Balakrishnan et al., 2019) :  

                                                                  𝜇 = ln (𝐸(𝑋) −
1

2
𝜎2                                                             (2.25) 

𝜎2 = ln (1 +
𝑉𝑎𝑟(𝑋)

(𝐸(𝑋))
2) (2.26) 
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Figure 2.15 Fonction de densité de probabilité de la loi lognormale pour différentes valeurs des 

paramètres 𝜇 et 𝜎 (Balakrishnan et al., 2019) 

La Figure 2.15 met en avant la fonction de densité de probabilité de la distribution lognormale pour 

trois choix de paramètres distincts : (i) 𝜇 = 1 et 𝜎 = 1 (ii) 𝜇 = 0 et 𝜎 = 1 (iii) 𝜇 = 0 et 𝜎 = 0.5. 

La caractéristique commune aux trois courbes de la figure est l’asymmétrie (la fonction de densité 

à une queue plus longue à l’extrémité droite du graphique), celle-ci est d’autant plus prononcée 

pour les distributions pour lesquelles le paramètre 𝜎 est élevé.  

Par ailleurs, nous avons fait le choix d’utilisation de cette loi dans la sous-routine probabiliste car 

celle-ci a été employée par divers auteurs dans le but de modéliser l’aspect probabiliste du 

comportement des bétons ordinaires et des BRF. Par exemple, Colliat et al. (2007) se sont intéressés 

à l’aspect probabiliste de l’effet d’échelle pour les structures en béton ordinaire. Pour ce faire, ils 

ont considéré que la limite élastique 𝜎𝑦 et l’écart 𝑒𝑓 entre la contrainte maximale 𝜎𝑓 et 𝜎𝑦 

constituaient la principale source d’incertitude, ces deux paramètres étaient ainsi modélisés par des 

variables aléatoires corrélées suivant la loi lognormale. 

En ce qui concerne les bétons renforcés de fibres, Rossi et al. (2015), Tailhan et al. (2013) et 

Tailhan et al. (2015a) ont développé un modèle de fissuration discrète avec une composante 

macroscopique lorsque la localisation se produit. Dans cette approche, la valeur de l’énergie de 

post-fissuration est considérée comme un paramètre probabiliste obéissant à une fonction de 

distribution de type lognormale.  
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Étant donné que ce projet de maîtrise se focalise principalement sur les bétons renforcés de fibres 

et que le paramètre qui a été considéré comme principale source d’incertitude est l’énergie de post-

fissuration, la loi lognormale sera particulièrement utilisée dans les exemples d’applications qui 

seront présentés en détail dans les sections qui apparaissent plus loin dans ce chapitre. 

2.4.1.3 Loi de Weibull 

Cette sous-section suivra une trame identique à celle des paragraphes précédents. Il existe plusieurs 

modèles physiques à l’origine de la distribution statistique de Weibull, ces derniers aident 

généralement à interpréter la loi probabiliste et à sélectionner les bons ensembles de données 

empiriques. Le modèle physique le plus ancien et le plus représentatif de la distribution de Weibull 

est basé sur la théorie des valeurs extrêmes (Rinne, 2008), il s’agit de la théorie du maillon faible 

(consulter la Section 2.3.1 pour de plus amples détails), qui a été largement utilisée pour expliquer 

le phénomène de rupture des matériaux fragiles et quasi-fragiles tels que le béton. Cette théorie 

consiste en un système physique composé de 𝑛 unités identiques d’éléments connectés en série, le 

système est fonctionnel tant que les 𝑛 unités ne sont pas défaillantes, et celui-ci devient non 

fonctionnel à la première rupture qui survient au sein d’une de ces unités. 

 

Figure 2.16 Fonction de densité de probabilité de la loi de Weibull pour différentes valeurs du 

facteur de localisation 𝑎 (Rinne, 2008) 

La répartition, introduite à l’origine par Weibull (1939), dépend de trois paramètres. La fonction 

de densité de probabilité est donnée par l’équation suivante (Rinne, 2008):  
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                                   𝑓𝑋(𝑥|𝑎, 𝑏, 𝑐) =
𝑐

𝑏
(

𝑥 − 𝑎

𝑏
)

𝑐−1

𝑒𝑥𝑝 {− (
𝑥 − 𝑎

𝑏
)

𝑐

} , 𝑥 ≥ 𝑎                              (2.27) 

Le premier paramètre 𝑎 (voir la Figure 2.16) est généralement appelé origine ou seuil. D’un point 

de vue statistique, il est désigné par le terme de facteur de localisation, le faire varier tout en 

maintenant les deux autres données 𝑏 et 𝑐 constantes aura pour effet de translater la courbe de 

densité de probabilité selon l’axe des abscisses. 

 
Figure 2.17 Fonction de densité de probabilité de la loi de Weibull pour différentes valeurs du 

facteur d’échelle 𝑏 (Rinne, 2008) 

Le second paramètre 𝑏 est appelé facteur d’échelle (voir la Figure 2.17). Le fait de modifier 𝑏 tout 

en maintenant 𝑎 et 𝑐 constants modifie la fonction de densité de probabilité verticalement (suivant 

l’axe des ordonnées). L’augmentation de ce facteur entraîne une compression ou encore une 

réduction de la densité de probabilité. 
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Figure 2.18 Fonction de densité de probabilité de la loi de Weibull pour différentes valeurs de 

pentes (Rinne, 2008) 

Enfin, le troisième et dernier paramètre est désigné par le terme de pente. D’un point de vue 

statistique, celui-ci représente un facteur de forme. En effet, la variation de ce dernier entraîne une 

modification, assez drastique dans certains cas (voir la Figure 2.18), de la courbe de densité de 

probabilité. 

Le fait de neutraliser l’un des trois paramètres, en fixant 𝑎 = 0 ou 𝑏 = 1 ou encore 𝑐 = 1, 

transforme la loi de Weibull en une distribution à deux paramètres. Dans le cadre de la sous-routine 

probabiliste d’EPM3D, il a été choisi de fixer la valeur du paramètre 𝑎 à 0. Il s’agit de la forme la 

plus utilisée en statistique et théorie des probabilités. Cette forme est particulièrement adaptée pour 

le cadre d’utilisation prévu par le code développé puisque la rupture peut se produire pour 

n’importe quel élément dont la résistance est comprise entre 0 et un intervalle supérieur déterminé 

par les deux autres paramètres de la distribution.  

Dans le cadre de l’étude des bétons ordinaires, Rossi et Richer (1987), Rossi et al. (1994 (a)) et 

Rossi et al. (1994 (b)) ont mené plusieurs campagnes expérimentales de traction directe dans le but 

de déterminer la distribution statistique de la résistance à la traction. Ils en concluent que la loi de 

Weibull correspond bien aux distributions expérimentales mesurées et se révèle particulièrement 

adaptée pour l’étude des cas de rupture fragile. Syroka-Korol et al. (2013) se sont intéressés à 

l’étude du phénomène d’effet d’échelle probabiliste pour les structures en béton ordinaire 

présentant une similarité géométrique. La campagne expérimentale menée a permis de montrer que 
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la résistance à la traction prenait la forme de champs aléatoires spatialement corrélés décrits par 

une distribution gaussienne tronquée. Néanmoins, cette même résistance a subi une transition 

progressive de la loi normale vers la loi de Weibull pour les spécimens de plus grande taille.  

Pour les bétons renforcés de fibres, Tailhan et al. (2013), Tailhan et al. (2015b) et Rossi et al. (2015) 

ont développé un modèle probabiliste de fissuration discrète utilisant des éléments de contact dans 

lequel les propriétés mécaniques sont des champs aléatoires suivant la loi de Weibull. 

Ainsi, et comme il est possible de le constater au travers des exemples présentés plus haut et du 

paragraphe 2.3.1, la loi de Weibull est particulièrement adaptée pour la modélisation de l’aspect 

probabiliste du comportement des matériaux fragiles et quasi-fragiles tels que les bétons ordinaires 

et les BRF. 

2.4.2 Présentation du concept de la fiabilité des structures  

Cette sous-section décrit le concept général de la fiabilité des structures, présenté à la Figure 2.19. 

Étant donné une fonction aléatoire de résistance 𝑅 et une fonction aléatoire de charge 𝑈, la fonction 

aléatoire 𝑍 = 𝑅 − 𝑈  est alors appelée fonction d’état limite.  

Ici, 𝑅 dépend des variables aléatoires de résistance entrées (par exemple les propriétés du béton) et 

𝑈 des variables de charge renseignées (par exemple la charge appliquée au modèle). Le paramètre 

𝑍 pourrait désigner la résistance à la flexion ou au cisaillement (fonction d’état limite ultime) ou 

encore une limite de flèche ou de largeur de fissure à ne pas dépasser (fonction d’état limite de 

service). 

Une mesure de la fiabilité de cette fonction d’état limite est la probabilité de défaillance qui est 

définie comme 𝑝𝑓 = 𝑝(𝑅 − 𝑈 ≤ 0). Une autre mesure possible de cette caractéristique est l’indice 

de fiabilité 𝛽 =
𝑍𝑚

𝜎𝑍
 (avec 𝑍𝑚 désignant la moyenne et 𝜎𝑍 l’écart-type de 𝑍). Pour le cas particulier 

de distributions normales indépendantes 𝑅 et 𝑈, il est possible de montrer que (Ben Ftima & 

Massicotte, 2012) :  

𝑝𝑓 = 𝜙(−𝛽) (2.28) 

avec 𝜙 la fonction de répartition de la loi normale (moyenne nulle et variance unitaire).  
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Compte-tenu d’une probabilité de défaillance maximale 𝑝𝑓 𝑚𝑎𝑥ou d’un indice de fiabilité minimum 

requis 𝛽𝑚𝑖𝑛 pour la structure, et connaissant les lois des variables aléatoires 𝑅 et 𝑈, une conception 

donnée peut être classifiée comme étant conservatrice, optimale ou encore dangereuse (voir la 

Figure 2.19 (b)). 

 

Figure 2.19 Concept général de la fiabilité des structures (Ben Ftima & Massicotte, 2012) 

Selon Melchers et Beck (2018), trois niveaux différents de techniques de mesures de la fiabilité 

peuvent être utilisés en fonction du seuil de précision (Figure 2.19 (b)). Les méthodes appartenant 

au niveau 3 sont des méthodes exactes visant à estimer la probabilité de défaillance d’une structure 

en utilisant des modèles probabilistes précis (Ben Ftima & Massicotte, 2012). Cette approche 

nécessite la connaissance exacte des distributions probabilistes des paramètres d’entrée. En 

l’absence de telles informations, le niveau 2 peut être utilisé afin d’estimer l’indice de fiabilité et 

la probabilité nominale de défaillance en utilisant l’équation (2.28). Dans cette situation, seuls la 

moyenne et le coefficient de variation sont requis et les calculs sont effectués en supposant des 

distributions normales. Pour le niveau 1, les facteurs de sécurité partiels peuvent être utilisés 

comme une extension quasi-probabiliste de l’approche traditionnelle du facteur de sécurité : c’est 

l’approche considérée par les codes modernes de conception aux états limites. Les techniques 

suivantes ont été utilisées dans la littérature pour la propagation de l’incertitude et l’analyse 

probabiliste : les méthodes par éléments finis probabilistes, les méthodes de simulations (par 
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exemple la méthode de Monte Carlo ou encore la méthode du Latin hypercube) et les méthodes 

d’estimation par points (ex : Ben Ftima et Massicotte (2012)). 

Les facteurs de sécurité 𝛾𝐺 utilisés pour trouver la valeur de résistance de conception 𝑅𝑑 sont 

exprimés au travers la relation suivante :  

{
𝑅𝑑 =

𝑅𝑚

𝛾𝐺

𝛾𝐺 = 𝑒𝛽𝛼𝑉𝑅

(2.29) 

avec 𝑅𝑚 la valeur moyenne de la résistance, 𝛼 = 0,75 ± 0,06 la fonction de séparation et 𝑉𝑅 le 

coefficient de variation de 𝑅.  

2.4.3 Exemples de modélisations probabilistes de béton 

Comme mentionné précédemment, il existe une multitude de facteurs qui entrent en compte dans 

l’évaluation de la fiabilité d’une structure. Dans cette sous-section, seules les propriétés 

mécaniques du béton seront considérées. 

Une des approches les plus simples à implémenter afin de rendre compte de la variabilité spatiale 

des caractéristiques mécaniques du béton ordinaire consiste à attribuer à chaque volume de matière 

des propriétés (par exemple 𝑓𝑡
′ et 𝐸 dans le cas de Rossi et Richer (1987)) suivant une distribution 

probabiliste donnée, et ensuite à effectuer une simulation numérique grâce à un logiciel d’éléments 

finis. Une autre méthode consiste à considérer une distribution de défaut dans le volume étudié. Le 

comportement global est ainsi la somme du comportement élastique-fragile de chacun de ces 

défauts. Rossi et al. (1994 (a)) utilisent un modèle par éléments finis triangulaires avec des éléments 

de contact infiniment fins. Le module de Young 𝐸 est distribué de manière aléatoire sur les 

éléments massifs du maillage en utilisant une fonction de répartition qui dépend du rapport entre 

le volume des éléments et le volume du plus gros grain. La valeur critique de la résistance à la 

traction 𝑓𝑡
′ est affectée aux éléments de contact et suit une fonction de distribution qui dépend du 

volume total des deux éléments de volume adjacents à l’élément de contact (voir la Figure 2.20).  
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Figure 2.20 Modèle numérique probabiliste utilisé pour représenter le comportement du béton 

(Rossi et al., 1994 (b)) 

Carmeliet et de Borst (1995) ont utilisé la méthode de discrétisation dite du point médian. Elle 

consiste à discrétiser le champ aléatoire au niveau du centroïde 𝑥𝑐 de chacun des volumes 𝑉𝑒 qui 

constituent l’ensemble du spécimen à étudier. La déformation initiale d’endommagement 𝜀𝐷0 est 

ainsi aléatoirement distribuée sur l’ensemble des points 𝑥𝑐 et cette distribution est représentée par 

un champ aléatoire non gaussien qui dépend de trois paramètres qui sont déterminés à l’aide d’une 

analyse inverse à partir de résultats expérimentaux. Une fonction d’autocorrélation est introduite 

afin de prendre en compte l’influence de points de faiblesses sur leur entourage proche.  

Tang et al. (2011) ont modifié la loi de Weibull en y ajoutant une fonction de corrélation spatiale. 

Ils ont étudié les effets de la longueur de corrélation 𝜃 sur la résistance en compression : avec une 

valeur plus petite de 𝜃, ils observent une plus grande dispersion de la branche post-pic de la courbe 

force-déplacement et des patrons de fissuration des modèles simulés; néanmoins, les valeurs 

moyennes de la résistance ne connaissent pas de changement important si les mêmes paramètres 

d’entrée de la loi de Weibull sont utilisés. 

Colliat et al. (2007) considèrent la limite élastique 𝜎𝑦 et l’écart 𝑒𝑓 entre la contrainte maximale 𝜎𝑓 

et 𝜎𝑦 comme les principales sources d’incertitude. Le module d’Young et l’énergie de fissuration 

sont considérées comme étant des quantités déterministes. Selon la théorie de Weibull, il aurait 

fallu modéliser cet ensemble de propriétés par deux champs aléatoires non corrélés. Néanmoins, 
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les auteurs font le choix de les considérer comme des champs corrélés (donc non indépendants). 

La distribution choisie est la loi lognormale. 

Comme la diminution de la résistance à la traction lors de l’augmentation du volume sollicité est 

associé à l’hétérogénéité du matériau, Weibull (1939) a développé le concept de maillon faible qui 

établit une relation entre le volume de la structure étudiée et sa résistance moyenne, qu’on appelle 

effet d’échelle. Ainsi, dans les modèles de simulation par éléments finis, il est nécessaire de 

modéliser cette variabilité spatiale conduisant au processus de localisation. Certains auteurs 

(Colliat et al., 2007; Syroka-Korol et al., 2013; Vořechovský, 2007) ont développé des outils 

permettant d’utiliser les champs aléatoires dans le but de reproduire l’effet d’échelle pour les 

matériaux quasi-fragiles. Vořechovský (2007) a montré que le fait de modéliser la variabilité 

spatiale de la résistance locale des matériaux représente bien la partie statistique de l’effet 

d’échelle. En outre, Colliat et al. (2007) ont démontré que l’approche probabiliste utilisant les 

champs aléatoires corrélées est capable de relier la mécanique de l’endommagement continu pour 

les petites structures et la mécanique de rupture linéaire élastique (LEFM). 

2.4.4 Synthèse  

La génération de champs aléatoires discrets implique de nombreuses difficultés tel que le choix des 

paramètres aléatoires, la méthode probabiliste, la loi probabiliste ou encore la fonction et la 

longueur d’autocorrélation dans certains cas. Le Tableau 2.2 présente un bref résumé des 

caractéristiques des champs aléatoires utilisés pour décrire l’hétérogénéité des bétons ordinaires. 
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Tableau 2.2 Synthèse des méthodes utilisées pour modéliser l’hétérogénéité du béton 

Auteur Méthode de 

simulation 

Loi probabiliste Paramètres 

variables  

Fonction 

d’autocorrélation 

Carmeliet et de 

Borst (1995) 

Méthode du point 

médian (Midpoint 

method) 

Loi non normale Déformation initiale 

d’endommagement exp (−
𝑥2

2𝑙2
) 

𝑙 = 5 𝑚𝑚 

Colliat et al. 

(2007) 

Méthode de 

Karhunen-Loève 

Loi lognormale  Limite élastique ; 

écart entre la 

contrainte maximale 

et la limite élastique 

exp (−
𝑥

𝑙
) 

𝑙 = 10 𝑐𝑚 

Rossi et al. 

(1994 (b)) 

Méthode de 

Monte-Carlo 

Loi normale ou 

Loi de Weibull 

𝑓𝑡
′ et 𝐸 

 

x 

Vořechovský 

(2007) 

Méthode de 

l’hypercube latin 
Loi normale  𝐾1 

 
𝑒𝑥𝑝 (−

𝑥2

𝑙2
) 

𝑙 = 8 𝑐𝑚 

Syroka-Korol 

et al. (2013) 

Méthode de 

l’hypercube latin 

Loi normale  𝑓𝑡
′ 

𝑒𝑥𝑝 (−
𝑥2

2𝑙2
) 

𝑙 = 5 𝑐𝑚 

 

2.5 Modélisation numérique probabiliste des bétons renforcés de 

fibres  

La modélisation la variabilité spatiale des propriétés mécaniques des bétons renforcés de fibres 

introduit un niveau de complexité supplémentaire. En effet, les fibres constituent une entité 

totalement indépendante de la matrice cimentaire du point de vue des caractéristiques mécaniques 

et de la distribution spatiale.  

Dobrilla et al. (2018) ont cherché à déterminer la propagation de l’incertitude des paramètres 

d’entrée du modèle dans la réponse globale et locale d’un spécimen en traction. Ils ont choisi pour 

cela la méthode de Monte-Carlo. 
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Figure 2.21 (a) Spécimen contenant une fibre horizontale; (b) Les déplacements dans la direction 

x; (c) La distribution de la contrainte en traction au sein du spécimen (Ibrahimbegovic, 2009; 

Rukavina et al., 2019) 

Les paramètres suivant une distribution probabiliste sont : le module tangent de la réponse à 

l’arrachement de la fibre, le module de durcissement et le coefficient permettant de relier la 

résistance ultime à la valeur de l’énergie de fissuration. Ces trois paramètres, qui sont considérés 

comme étant indépendants, suivent une loi Bêta dont les caractéristiques sont déterminées à partir 

d’essais expérimentaux. 

Rossi et al. (1994 (b)) ont créé un premier modèle qui consistait à introduire une force de rappel 

qui dépend de la largeur de l’ouverture. Cela était réalisé en imposant au point de Gauss une 

contrainte normale qui était fonction du déplacement normal de l’élément de contact ouvert. 

Néanmoins, ce modèle présente plusieurs limites et imperfections. 

- Premièrement, la modélisation du comportement post-fissuration n’est pas efficace du point 

de vue numérique.  

- La représentation de la re-fermeture des fissures n’est pas réaliste d’un point de vue 

physique : seule l’action des fibres vis-à-vis des déplacements normaux des lèvres de la 

fissure est prise en compte, leur action n’est pas prise en compte pour les déplacements 

tangentiels. En outre, cette re-fermeture se fait sans ouverture résiduelle. 

- Il existe un problème de convergence lorsque trop d’éléments de contact s’ouvrent 

simultanément. 

Rossi et al. (2015) ont par conséquent développé un nouveau modèle pour les bétons renforcés de 

fibres. Il s’agit d’un mélange entre un modèle discret avec des éléments de contact auxquels on 
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attribue aléatoirement une valeur de 𝑓𝑡
′ (en pré-pic) et entre un modèle macroscopique 

d’endommagement avec une attribution aléatoire de l’énergie de fissuration (en post-pic), comme 

on peut le voir sur la Figure 2.22.  

 

Figure 2.22 Exemple de la nouvelle loi proposée pour décrire l'évolution de la contrainte normale 

en fonction du déplacement normal à l'élément de contact (Rossi et al., 2015) 

Pour résumer, avant le pic, le béton se comporte comme un béton ordinaire et les fibres sont 

mécaniquement neutres. Après le pic, l’effet des fibres devient bien plus important, et en particulier 

dans le contrôle de la propagation de la macrofissure.  

Li et al. (2018) modélisent la variabilité du béton grâce à une approche multi-échelle. Ils 

caractérisent le BRF par les trois phases microstructurales qui le constituent à savoir : la fibre, la 

matrice et l’interface fibre/matrice. Un ensemble de paramètres micromécaniques est utilisé pour 

décrire ces trois phases, ces paramètres sont considérés comme des variables aléatoires. Cette 

variabilité à l’échelle microscopique influe la capacité de pontage des fibres et les propriétés de 

fissuration de la matrice (échelle méso) qui à leur tour régissent le comportement à l’échelle 

macroscopique : l’allure de la courbe contrainte-déformation, la distribution de la largeur des 

fissures et la distribution de l’espacement des fissures (voir la Figure 2.23 ). 
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Figure 2.23 Approche multi-échelle de modélisation de la variabilité des BRF en tension (Li et 

al., 2018) 

Vorechovský et al. (2013) se sont également intéressés dans certains travaux à la résistance des 

bétons renforcés de fibres. Pour cela, les auteurs ont supposé que la position et l’orientation des 

fibres étaient aléatoires dans les spécimens. En exploitant la fraction volumétrique des fibres, la 

géométrie des fibres et de l’échantillon et les propriétés de l’interface avec la matrice, l’auteur 

parvient à obtenir une évaluation de la force totale aléatoire au niveau de la fissure. Ces données 

sont ensuite réutilisées dans l’estimation de la résistance à la traction de l’ensemble du matériau. 

Le Tableau 2.3 présente un bref résumé des caractéristiques des champs aléatoires utilisés pour 

décrire l’hétérogénéité et parfois l’effet d’échelle pour les bétons ordinaires. 
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Tableau 2.3 Synthèse des méthodes utilisées pour modéliser l’hétérogénéité des BRF 

Auteur Méthode de 

simulation 

Loi probabiliste Paramètres variables  Fonction 

d’autocorrélation 

Dobrilla et al. 

(2018) 

Méthode de 

Monte-Carlo 

Loi Bêta module tangent du béton; 

module de durcissement; 

coefficient reliant résistance 

ultime à la valeur de l’énergie 

de fissuration 

x 

Rossi et al. 

(2015) 

Méthode de 

Monte-Carlo 

Loi lognormale et 

loi de Weibull 
𝑓𝑡

′ et 𝐺𝑓 

 

 

x 

Li et al. (2018) Méthode de 

Monte-Carlo 

Loi normale, 

uniforme et loi de 

Weibull 

14 paramètres au total x 

Vorechovský 

et al. (2013) 

Méthode de 

l’hypercube latin 
Loi binomiale Position et orientation des 

fibres 
x 

 

2.6 Conclusion 

Par souci de faisabilité, il a été décidé dans ce mémoire d’étudier les éléments en BRF à une échelle 

macroscopique. Contrairement au béton ordinaire, le béton renforcé de fibres présente une plus 

grande ductilité en post-pic qui est due à l’action de pontage des fibres. On suppose ainsi que l’effet 

d’échelle énergétique sera prépondérant dans les analyses et que l’utilisation du concept de 

l’énergie de fissuration sera suffisante. Afin de tenir compte de la variabilité aléatoire des fibres, 

des analyses de Monte-Carlo seront réalisées à l’échelle du matériau et de l’élément d’une façon 

similaire à Rossi et al. (2015). Toutefois, l’action de pontage due aux fibres sera prise en compte 

implicitement via une énergie de fissuration associée aux fibres qui est beaucoup plus grande que 

l’énergie de fissuration associée à la matrice cimentaire. Cette approche présente une plus grande 

simplicité puisque seulement le coefficient de variation et la valeur moyenne de l’énergie de 

fissuration associée aux fibres seront requis lors de simulations des éléments en BRF. Cependant, 

une étape de calibration à l’échelle du matériau est requise avec cette approche afin de s’assurer 

que le schéma numérique reproduise la même variabilité à l’échelle matériau peu importe la taille 

du maillage. Cet aspect important sera détaillé dans le chapitre 3 suivant.  

  



49 

 

CHAPITRE 3 MODÉLISATION DE LA VARIABILITÉ SPATIALE DES 

BÉTONS RENFORCÉS DE FIBRES  

En raison de sa microstructure, des phénomènes physiques qui se produisent lors du durcissement 

(contraintes initiales, retrait de séchage, porosité due à l’hydratation) ainsi que de la distribution 

non uniforme des fibres dans le cas des BRF, le béton est un matériau hautement hétérogène. Cette 

caractéristique peut expliquer certains aspects du comportement mécanique de ce matériau tels que 

le passage de la microfissuration diffuse à la localisation d’une macrofissure et le phénomène 

d’effet d’échelle. Dans ce chapitre, nous présenterons l’approche numérique qui a été développée 

pour modéliser l’aspect statistique de cette hétérogénéité du béton.  

L’implémentation de cette sous-routine probabiliste dans le logiciel EPM3D (Massicotte & Ben 

Ftima, 2015) est présentée dans un premier temps. Ensuite, un cas d’application de cette sous-

routine sur une éprouvette en traction dans le logiciel ABAQUS (Hibbitt et al., 2014) sera étudié. 

Le but de cet exercice est de mettre en place un modèle de calibration qui permet de relier la 

dispersion fournie en entrée par l’utilisateur et celle obtenue en sortie.  

Enfin, un exemple de modèle sous MATLAB d’un prisme en traction sera présenté. Le but de cette 

modélisation est de pouvoir prédire d’une autre manière la relation entre les paramètres d’entrée 

de la loi probabiliste utilisée et les résultats obtenus en sortie.  

3.1 Implémentation de la sous-routine probabiliste sous EPM3D 

3.1.1 Présentation  

Le logiciel ABAQUS est utilisé dans le contexte de ce projet pour étudier l’impact de la variabilité 

spatiale du béton renforcé de fibres sur des os sollicités en traction et des poutres soumises à de la 

flexion 3 points. Les analyses effectuées dans le logiciel ABAQUS sont de type Explicit alors que 

l’aspect probabiliste de la variabilité est pris en compte grâce au modèle de béton non linéaire 

EPM3D (Bouzaiene & Massicotte, 1997). 

3.1.1.1 ABAQUS 

ABAQUS est un logiciel de calcul par éléments finis faisant partie de la nouvelle génération 

d’outils numériques non linéaires.  
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Pour ABAQUS/STANDARD, la résolution du problème se fait par itérations successives en 

calculant à chaque incrément la matrice tangente du système afin de résoudre l’équation suivante 

(Ben Ftima, 2013) :  

𝑃 − 𝐼 = 0 (3.1) 

avec 𝑃 le vecteur des forces externes et 𝐼 le vecteur des forces internes aux nœuds. Les deux 

méthodes de résolution les plus couramment utilisées sont la méthode de la longueur d’arc 

également appelée méthode de Riks et la méthode de Newton-Raphson (Bouzaiene & Massicotte, 

1997).  

Néanmoins, ce type de résolution devient très complexe lorsque la taille du modèle augmente ou 

que la fissuration est amorcée (Ben Ftima, 2013). Pour remédier à ce problème, la résolution avec 

ABAQUS/EXPLICIT a été proposée. Celle-ci est basée sur la résolution de l’équation suivante :  

𝑀𝑢̈ = 𝑃 − 𝐼 (3.2) 

avec 𝑢̈ le vecteur des accélérations nodales et 𝑀 la matrice de masse modale. Dans le cas où 

l’application de la charge s’effectue de manière très graduelle, le vecteur des accélérations est 

quasi-nul et l’équation peut ainsi être résolue de manière quasi-statique. Enfin, un des avantages 

principaux du module explicite d’ABAQUS est sa compatibilité avec la loi de comportement non 

linéaire du béton ordinaire, armé et renforcé de fibres EPM3D qui a été développée à Polytechnique 

Montréal. 

3.1.1.2 EPM3D  

Cette section présente un récapitulatif de la modélisation non linéaire des bétons grâce au logiciel 

EPM3D. Le modèle de béton EPM3D, pour Endommagement Progressif Multiaxial 

Tridimensionnel, permet de simuler le comportement du béton (ordinaire, armé et renforcé de 

fibres) sous une charge multiaxiale. 

En compression, le modèle obéit à une formulation tridimensionnelle incrémentale tangente (dite 

hypo-élastique) proposée par Bouzaiene et Massicotte (1997). Dans le domaine des contraintes 

principales, le comportement du béton en compression est modélisé dans chaque direction à l’aide 

d’une courbe uniaxiale équivalente (voir la Figure 3.1). Un paramètre d’endommagement scalaire 

dénoté 𝜆 est par ailleurs utilisé afin de quantifier la dégradation cumulée en compression du béton. 
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Par ailleurs, ce modèle permet également de tenir compte de l’anisotropie, de la dégradation du 

module élastique sous chargement et déchargement en compression, du point de transition séparant 

le comportement ductile et le comportement fragile du béton, ainsi que de l’expansion 

volumétrique inélastique. En pré-pic, la surface de rupture est définie soit par le modèle de Willam 

et Warnke (1975) à cinq paramètres ou le modèle de Hsieh et al. (1982) à quatre paramètres. En 

post-pic, le principe de conservation de l’énergie de fissuration est utilisé afin d’assurer 

l’objectivité du maillage lors de l’adoucissement en compression. 

 

Figure 3.1 Courbe uniaxiale de la contrainte en fonction de la déformation pour un élément en 

compression (Massicotte & Ben Ftima, 2015) 

D’après la Figure 3.1, la pente adoucissante en post-pic 𝐸𝑑 dépend de la longueur caractéristique 

ℎ𝑐 de l’élément fini : 

𝐸𝑑 = −
ℎ𝑐

𝛿
𝑓′

𝑐

−
ℎ𝑐

𝐸0

(3.3)
 

La constante 𝛿 (unités de déplacement) est déterminée expérimentalement à partir de tests sur des 

cylindres soumis à de la compression. Par ailleurs, et à partir de la Figure 3.1, il est possible de 

définir la relation liant 𝐺𝑓−𝛾 à 𝛿:  

𝐺𝑓−𝛾 =
1

2
𝛿(1 − 𝛾2)𝑓′

𝑐
(3.4) 

En traction, EPM3D adopte une approche macroscopique de fissuration par bande. Le béton en 

pré-pic possède un comportement quasi-linéaire caractérisé par une déformation homogène. En 
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outre, comme pour la compression, une modification a été effectuée en post-pic afin d’éliminer la 

dépendance à la taille du maillage (voir la Figure 3.2). 

 

Figure 3.2 Courbe typique de la contrainte en fonction de la déformation pour un élément en 

traction : béton non armé (Massicotte & Ben Ftima, 2015) 

Suite à l’initiation d’une fissure, le matériau entame une phase adoucissante caractérisée par une 

réduction de la résistance jusqu’à atteindre un état de déformation ultime pour lequel la fissure ne 

peut plus transmettre aucune contrainte de traction (voir la Figure 3.2). Pour le béton ordinaire, un 

modèle de raidissement en traction est par ailleurs utilisé pour les zones de béton situées à proximité 

des armatures afin de représenter l’interaction entre l’acier et le béton. 

Dans le cas particulier des bétons renforcés de fibres, il est possible à l’utilisateur d’EPM3D de 

faire le choix entre 3 types de courbes de la contrainte en fonction de l’ouverture de fissure (voir 

la Figure 3.3) : 

- une fonction exponentielle décroissante (𝐶36=1); 

- un polynôme de degré cinq (𝐶36=2); 

- des portions de droites affines reliées entre elles, dans ce cas-ci, l’utilisateur peut choisir les 

coordonnées des différents points servant d’éléments de jointure entre les différents 

segments de droites (𝐶36=3). 



53 

 

 

Figure 3.3 Définition des constantes relatives au béton renforcé de fibres 

Les constantes 𝐶37 à 𝐶50 sont à définir par l’utilisateur et représentent les paramètres d’entrées des 

trois lois permettant de modéliser le comportement du BRF en post-fissuration. 

3.1.2 Implémentation du modèle probabiliste  

3.1.2.1 Principe  

Cette sous-partie décrit le principe général de la sous-routine probabiliste qui a été développée dans 

EPM3D dans le cadre de cette maîtrise recherche, ainsi que ses différentes caractéristiques. 

L’écriture du code a été initiée en 2012 par David Conciatori, alors associé de recherche au GRS. 

Ce projet de recherche s’inscrit donc dans la continuité des travaux amorcés par ce dernier. 

Tout d’abord, dans cette nouvelle version du modèle de béton EPM3D, il est désormais possible 

de faire varier la valeur de la résistance à la traction 𝑓𝑡
′ ainsi que la valeur de la résistance à la 

compression 𝑓𝑐
′ selon une loi normale, une loi de Weibull ou encore une loi lognormale. 

L’utilisateur d’EPM3D, lorsqu’il définit la loi de son béton, a le choix de la distribution probabiliste 

ainsi que de la moyenne et de l’écart-type de celle-ci. Celui-ci peut également décider de faire 

varier uniquement 𝑓𝑡
′ ou 𝑓𝑐

′, les deux simultanément, ou aucune des deux propriétés. 

Pour le cas particulier des bétons de fibres, les hypothèses suivantes ont été adoptées. 

1. On considère que le comportement quasi-linéaire (qui correspond à la portion pré-pic de la 

courbe de la contrainte en fonction de la déformation) demeure déterministe. C’est-à-dire 

que cette portion de courbe ne varie pas d’une simulation à une autre (lorsque les paramètres 
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de la loi de béton EPM3D demeurent inchangées entre les deux simulations). Cette 

hypothèse est propre à la présente étude, le but étant d’isoler le comportement probabiliste 

de la portion post-fissuration. 

2. La portion post-pic de la courbe de contrainte en fonction de l’ouverture de fissure peut être 

décomposée en deux sous-parties (voir la Figure 2.3) : premièrement la contribution de la 

matrice cimentaire (courbe adoucissante) qui demeure déterministe (pour des raisons 

similaires à celles de la partie élastique), et deuxièmement la contribution des fibres qui est 

aléatoire et varie suivant une loi (normale, lognormale, ou Weibull) préalablement choisie 

par l’utilisateur.  

Par ailleurs, dans le cas des BRF, la sous-routine probabiliste n’a été programmée que pour le cas 

où le comportement en post-pic est de type 3 (𝐶36=3, consulter la section précédente). L’utilisateur 

fait le choix des coordonnées des 7 points servant à relier les différentes portions de droites 

constituant la courbe de contrainte en fonction de l’ouverture de fissure (voir la Figure 3.3). Ces 7 

points initialement entrés par l’utilisateur servent à calculer la valeur moyenne de l’énergie de 

fissuration 𝐺𝑓 (uniquement celle attribuable à l’action des fibres, la partie attribuable à la matrice 

cimentaire demeurant déterministe), ce dernier doit également choisir un écart-type. Des valeurs 

aléatoires de 𝐺𝑓 sont ensuite générées en fonction de la distribution choisie par l’utilisateur et des 

paramètres de la loi sélectionnés. Enfin, à partir de chacune des valeurs de 𝐺𝑓 générées 

aléatoirement, les 7 points servant à définir la courbe de contrainte-ouverture de fissure sont 

recalculés comme le montre la Figure 3.4 (voir la Section 3.1.2.2 pour le détail des calculs).  
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Figure 3.4 Principe de modélisation de la variabilité des BRF 

Le processus décrit plus haut est réalisé pour chaque point de Gauss en amont de toute simulation 

sur ABAQUS. Ainsi, si l’utilisateur fait le choix d’une modélisation probabiliste pour une des 

propriétés mécaniques (𝑓𝑡
′, 𝑓𝑐

′ ou 𝐺𝑓 dans le cas d’un BRF), une valeur aléatoire de la distribution 

(tout en respectant la moyenne et l’écart-type spécifiés par l’utilisateur) sera affectée à chacun des 

points d’intégration de chaque élément de volume du maillage (voir la Figure 3.5). Dans le schéma 

de la Figure 3.5, il est supposé qu’il n’y ait qu’un seul point d’intégration par élément de volume. 

 

Figure 3.5 Modèle probabiliste développé dans EPM3D 
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3.1.2.2 Présentation du code 

Cette sous-section contient une description du code de la sous-routine probabiliste développée dans 

le cadre de ce projet de maîtrise (consulter l’Annexe A pour l’ensemble du code). Il est important 

de mentionner que cette sous-routine a été écrite en langage FORTRAN. 

Pour les bétons ordinaires, la résistance à la traction et/ou la résistance à la compression peut suivre 

une distribution normale, lognormale, de Weibull ou encore ne pas subir de traitement probabiliste. 

Si l’utilisateur fait le choix d’un traitement probabiliste, ce dernier doit fournir les caractéristiques 

de la loi, à savoir la moyenne et l’écart-type. Dans ce cas-ci, pour chaque point d’intégration, un 

tirage uniforme et aléatoire est effectué et un nombre entre 0 et 1 est généré. Ce nombre sert ensuite 

à calculer la propriété mécanique (𝑓𝑐
′ et/ou 𝑓𝑡

′) qui suit la distribution choisie grâce à la méthode 

dite inverse cumulée. La Figure 3.6 résume le principe de fonctionnement général de cette sous-

routine pour un béton ordinaire. 

 

Figure 3.6 Principe de fonctionnement de la sous-routine probabiliste pour un béton ordinaire 

Pour les bétons renforcés de fibres, et pour une loi de comportement post-pic de type 3, il est 

possible de faire varier l’énergie de post-fissuration, en plus de la résistance en traction et en 

compression. L’utilisateur fournit les coordonnées des 7 points (ouverture de fissure en abscisse et 

contrainte en ordonnée) servant à relier les portions de segments entre eux. L’aire sous la courbe 

est ainsi calculée, cette aire de référence sert de moyenne pour la distribution probabiliste, la valeur 

de l’écart-type doit être renseignée par l’utilisateur. Tel qu’indiqué précédemment, la contribution 

de la matrice est considérée comme étant déterministe dans le cadre de ce mémoire et seule l’action 

des fibres est soumise à un champ aléatoire. Ainsi, pour chaque point d’intégration, un tirage 

aléatoire est effectué et un nombre entre 0 et 1 est généré. Ce nombre sert à calculer l’énergie de 

post-fissuration (celle uniquement due à l’action des fibres) suivant la distribution choisie grâce à 

la méthode dite inverse cumulée. Une fois cette valeur générée, il est possible de recalculer les 

coordonnées des 7 points permettant de définir la loi de comportement en post-fissuration du béton 

en effectuant l’opération suivante pour chacune des contraintes pour 𝑖 allant de 2 à 7 :  
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𝜎𝑖 =
𝐺𝑓,𝑓𝑖𝑏𝑟𝑒𝑠

𝑎𝑙é𝑎𝑡𝑜𝑖𝑟𝑒 + 𝐺𝑓,𝑏é𝑡𝑜𝑛
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝐺𝑓,𝑓𝑖𝑏𝑟𝑒𝑠
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝐺𝑓,𝑏é𝑡𝑜𝑛

𝑖𝑛𝑖𝑡𝑖𝑎𝑙
× 𝜎𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (3.10) 

Avec 𝐺𝑓,𝑓𝑖𝑏𝑟𝑒𝑠
𝑎𝑙é𝑎𝑡𝑜𝑖𝑟𝑒 la valeur de l’énergie de post-fissuration générée grâce à la loi probabiliste pour 

un point de Gauss donné; 𝐺𝑓,𝑓𝑖𝑏𝑟𝑒𝑠
𝑖𝑛𝑖𝑡𝑖𝑎𝑙  la valeur moyenne calculée à l’aide des coordonnées des 7 points 

initialement entrées par l’utilisateur et 𝐺𝑓,𝑏é𝑡𝑜𝑛
𝑖𝑛𝑖𝑡𝑖𝑎𝑙  la contribution du béton qui demeure déterministe 

et qui est également calculée grâce aux coordonnées initialement fournies par l’utilisateur. 

La Figure 3.7 permet de bien résumer le principe de fonctionnement de la sous-routine dans le cas 

d’un BRF. Le paramètre 𝜎𝑖(𝑖=2…7) désigne la valeur aléatoire affectée à chacun des points 

d’intégration et 𝜎𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑖=2…7) représente la valeur initialement donnée par l’utilisateur. 

Le point de coordonnées (𝑤1, 𝜎1) est considéré comme constant et ne suit pas de loi probabiliste 

afin de s’assurer que la valeur de sa contrainte soit inférieure à la valeur de la résistance en traction. 

 

Figure 3.7 Principe de fonctionnement de la sous-routine probabiliste pour un béton renforcé de 

fibres 

En outre, les valeurs d’ouvertures de fissures (𝑤2 à 𝑤7) sont considérées comme constantes (celles-

ci demeurent égales aux valeurs initialement entrées par l’utilisateur) et ne varient pas d’un point 

de Gauss à un autre ni d’une simulation à une autre.  
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Ainsi, seule la contrainte post-fissuration associée à la contribution des fibres est considérée 

probabiliste. Ce choix qui a été fait peut-être justifié par le fait que le comportement en post-pic est 

essentiellement attribuable à l’action des fibres. En effet, il est désormais connu et accepté qu’une 

grande majorité des BRF possèdent un processus de fissuration qui peut être décrit 

schématiquement par trois étapes générales. 

1. Tout d’abord, une microfissuration diffuse a lieu dans tout le volume du matériau sollicité 

en tension. Les fibres d’acier, qui possèdent des dimensions (longueur et diamètre) 

importantes par rapport à celles des fissures (ouverture de fissure), n’ont pas de réel effet 

sur la formation et la propagation de ces microfissures. 

2. La deuxième étape concerne la propagation des microfissures et conduit à l’apparition de 

macrofissures. Les fissures faisant office de « transition » peuvent être qualifiées de 

mésofissures. Comme pour la première étape, les fibres en acier n’affectent pas la 

propagation de ces fissures méso-scopiques de manière significative. 

3. La troisième et dernière étape concerne la propagation des macrofissures. Celle-ci coïncide 

avec la phase adoucissante du matériau. Au cours de cette étape, les fibres vont transférer 

l’effort à travers la macrofissure, contrôlant ainsi l’ouverture des fissures et leur 

propagation. 

Pour résumer, il est possible d’affirmer que :  

- en pré-pic et avant que la charge maximale en traction soit atteinte, seule la matrice 

cimentaire contribue au processus de fissuration du BRF et les fibres sont alors considérées 

comme mécaniquement neutres. 

- après le pic, l’effet des fibres devient très important, notamment pour contrôler la 

propagation des macrofissures. 

3.1.3 Vérifications  

Une fois cette sous-routine programmée, il est nécessaire d’effectuer des vérifications afin de 

s’assurer du bon fonctionnement de cette dernière avant de pouvoir l’intégrer au code EPM3D 

préexistant. Pour ce faire, une première vérification des valeurs directement retournées par le code 

programmé en FORTRAN a été réalisée grâce au logiciel Microsoft Visual Studio. Une fois celle-
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ci complétée avec succès, une seconde vérification sur un cube en compression modélisée sur 

ABAQUS a été effectuée. 

3.1.3.1 Vérification de la programmation sur FORTRAN  

Cette sous-section contiendra l’ensemble des vérifications qui ont été réalisées pour le code 

programmé en FORTRAN grâce au logiciel Microsoft Visual Studio.  

Les étapes qui ont été suivies pour réaliser cette vérification peuvent être résumée en quatre points. 

1. Pour chacune des trois lois probabilistes (loi normale, lognormale et de Weibull) et pour 

chacune des propriétés mécaniques suivant une approche probabiliste (résistance en 

compression, en traction et énergie de post-fissuration pour les BRF), les valeurs sont 

générées pour l’équivalent de 100 000 points d’intégration. 

2. Grâce à un post-traitement effectué dans Excel, il a été possible de tracer le nuage de points 

représentant le nombre d’occurrence en fonction de la valeur (pour une propriété mécanique 

et une loi probabiliste données). 

3. La courbe théorique de la fonction de densité de probabilité de la loi en question est 

également représentée sur le même graphique. 

4. La dernière étape consiste à analyser la concordance entre le nuage de points représentant 

les données obtenues en sortie du code FORTRAN et la courbe théorique de la loi 

probabiliste. 

Vérification pour la loi normale : 

Premièrement, pour la loi normale, la première vérification a été réalisée pour la résistance en 

traction 𝑓𝑡
′. La Figure 3.8 met en exergue la fonction de densité de probabilité théorique pour une 

loi normale avec pour paramètres une moyenne égale à 𝑓′
𝑡

̅̅ ̅̅ = 2,33 𝑀𝑃𝑎  et un écart-type égal à 

𝜎 = 0,233 𝑀𝑃𝑎 soit un coefficient de variation de 10%. La concordance entre ces deux densités 

de probabilités est parfaite, ce qui montre que le code renvoie bien les valeurs adéquates pour cette 

combinaison-ci ( 𝑓𝑡
′ est modélisée par une distribution Gaussienne). 
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Figure 3.8 Comparaison de la courbe de la fonction de probabilité de la loi normale théorique et 

des données renvoyées par le code FORTRAN pour la résistance en traction 

La Figure 3.9 permet de comparer la densité de probabilité théorique et celle retournée par le code 

FORTRAN pour la résistance en compression suivant une loi normale avec pour paramètres 

d’entrée la moyenne égale à 𝑓′𝑐
̅̅ ̅̅ = −50 𝑀𝑃𝑎, un écart type qui vaut 𝜎 = 5 𝑀𝑃𝑎  soit un coefficient 

de variation d’une valeur de 10%. De même, et comme le met en évidence la Figure 3.9, la 

concordance est très bonne entre les données théoriques et les données renvoyées par le code 

FORTRAN.  

Il est important de mentionner que la loi utilisée dans le code FORTRAN est une loi normale 

tronquée. De manière plus générale, une loi tronquée désigne une loi où l’on ne garde que les 

tirages sur un intervalle défini. En ce qui concerne la sous-routine probabiliste d’EPM3D, une 

troncature est effectuée pour les valeurs strictement négatives pour la distribution normale. Étant 

donné que les valeurs de la résistance en compression sont strictement négatives, ces dernières sont 

traitées par le code en valeur absolue, et elles sont multipliées à la toute fin par −1 avant d’être 

affectées à leurs points d’intégration respectifs. Comme la loi normale est parfaitement symétrique 

(fonction de densité de probabilité paire), cette inversion (multiplication par −1) n’est pas visible 

dans la Figure 3.9.  
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Figure 3.9 Comparaison de la courbe de la fonction de probabilité de la loi normale théorique et 

des données renvoyées par le code FORTRAN pour la résistance en compression 

Vérification pour la loi lognormale : 

Les Figure 3.10 et Figure 3.11 mettent en avant les données renvoyées par la sous-routine 

probabiliste (pour la résistance en traction et en compression) ainsi que la courbe théorique de la 

fonction de densité de probabilité pour la distribution lognormale. Il est possible d’en déduire que 

le nuage de points obtenu en sortie du code concorde bien avec la loi probabiliste théorique. 
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Figure 3.10 Comparaison de la courbe de la fonction de probabilité de la loi lognormale théorique 

et des données renvoyées par le code FORTRAN pour la résistance en traction 

Il est important de mentionner que la distribution lognormale est asymétrique (celle-ci est plus 

étendue du côté droit). Étant donné que cette loi ne renvoie que des valeurs positives, il était 

nécessaire de traiter les valeurs de résistance en compression en valeur absolue et d’ajouter un 

facteur multiplicatif de valeur −1 avant leur affectation aux points d’intégration. C’est pour cette 

raison qu’une « inversion » est observée dans la Figure 3.11 par rapport à la Figure 3.10 (par rapport 

à l’axe vertical passant par l’extremum de la fonction de densité de probabilité). 



63 

 

 

Figure 3.11 Comparaison de la courbe de la fonction de probabilité de la loi lognormale théorique 

et des données renvoyées par le code FORTRAN pour la résistance en compression 

Vérification pour la loi de Weibull 

En ce qui concerne la loi de Weibull, une approche de vérification similaire à celle des lois normale 

et lognormale a été adoptée pour les résistances en compression et en traction. Les Figure 3.12 et 

Figure 3.13 mettent en exergue la concordance des valeurs obtenues en sortie du code en 

FORTRAN et des courbes théoriques des fonctions de densité de probabilité. 
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Figure 3.12 Comparaison de la courbe de la fonction de probabilité de la loi de Weibull théorique 

et des données renvoyées par le code FORTRAN pour la résistance en traction 

Comme pour la loi lognormale, la loi de Weibull renvoie des valeurs strictement positives. Pour 

pouvoir faire varier les valeurs de la résistance en compression suivant cette distribution, il était 

nécessaire de les traiter en valeur absolue et de multiplier les valeurs en sortie par −1 avant de les 

affecter à leurs points d’intégration respectifs. Une « inversion » peut ainsi être observée dans la 

Figure 3.13 par rapport à la Figure 3.12 (par rapport à l’axe vertical passant par l’extremum de la 

fonction de densité de probabilité).  
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Figure 3.13 Comparaison de la courbe de la fonction de probabilité de la loi de Weibull théorique 

et des données renvoyées par le code FORTRAN pour la résistance en compression 

Vérification pour les bétons renforcés de fibres  

L’approche probabiliste pour les bétons renforcés de fibres étant différente de celles employées 

pour l’obtention des valeurs de résistance en traction et en compression, une étape supplémentaire 

était nécessaire pour effectuer le processus de vérification. En effet, étant donné que la sous-routine 

probabiliste renvoie les valeurs des coordonnées 𝜎𝑖=1…7 et 𝑤𝑖=1…7, il a fallu recalculer la valeur de 

l’aire sous la courbe (sur Excel) afin d’obtenir les valeurs des énergies de fissuration en sortie.  

Une fois cette étape réalisée, il a été possible de comparer la courbe théorique de la distribution 

normale avec les valeurs de l’énergie de fissuration obtenues grâce à la sous-routine comme montré 

sur la Figure 3.14. Il est possible d’en déduire que le code renvoie des valeurs de moyenne et 

d’écart-type en adéquation avec la loi et les paramètres spécifiés en entrée. 



66 

 

 

Figure 3.14 Comparaison de la courbe de la fonction de probabilité de la loi normale théorique et 

des données renvoyées par le code FORTRAN pour l’énergie de fissuration des bétons renforcés 

de fibres 

La Figure 3.15 met en évidence la concordance des résultats lorsque la loi lognormale est choisie, 

dans ce cas de figure-ci, la « déviation » se retrouve du côté droit, en effet, il n’y a pas d’inversion 

car les données traitées pour l’énergie de fissuration sont positives. 
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Figure 3.15 Comparaison de la courbe de la fonction de probabilité de la loi lognormale théorique 

et des données renvoyées par le code FORTRAN pour l’énergie de fissuration des bétons 

renforcés de fibres 

Enfin, la Figure 3.16 montre également la correspondance exacte entre les valeurs théoriques et 

celles obtenues grâce à la sous-routine. Encore une fois, aucune inversion n’est observée puisque 

les données d’entrée sont positives. 

 



68 

 

 

 

Figure 3.16 Comparaison de la courbe de la fonction de probabilité de la loi de Weibull théorique 

et des données renvoyées par le code FORTRAN pour l’énergie de fissuration des bétons 

renforcés de fibres 

En conclusion, sur une base d’analyse de 100 000 simulations au niveau d’un point d’intégration, 

cette vérification sur Microsoft Visual Studio a permis de prouver la justesse des résultats obtenus 

en sortie puisque ceux-ci concordent parfaitement avec les courbes théoriques obtenues et ceux 

pour les trois propriétés mécaniques suivant un traitement probabiliste (𝑓𝑡
′, 𝑓𝑐

′ et 𝐺𝑓) ainsi que pour 

les trois distributions probabilistes codées (loi normale, loi lognormale et loi de Weibull). 

3.1.3.2 Vérification de l’implémentation sur un cube  

Une fois l’étape de la vérification immédiate du code complétée, il a été possible d’intégrer la sous-

routine au code préexistant et d’implémenter cette nouvelle version sur ABAQUS. Cette sous-

section présente l’étape de vérification qui a été réalisée sur le logiciel d’analyse par éléments finis 

ABAQUS pour un cube en BRF soumis à un effort de compression.  

Des vérifications pour les valeurs de résistance en traction et en compression ont été réalisées pour 

un béton ordinaire mais ne seront pas présentées dans cette sous-partie. En effet, étant donné que 

ce projet de maîtrise se focalise sur l’étude des BRF, seules les vérifications de l’énergie de 
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fissuration seront abordées dans cette section. Par ailleurs, des vérifications pour la loi normale et 

la loi de Weibull ont été effectués mais seront omises de ce paragraphe qui se focalisera sur l’étude 

de la loi lognormale. 

La Figure 3.18 présente les résultats obtenus pour une des valeurs de la contrainte en post-pic (𝜎2). 

L’option d’ABAQUS permettant de lisser les couleurs en effectuant un moyennage a été 

désélectionnée au premier abord afin de bien visualiser la répartition des résultats qui présente une 

distribution aléatoire.  

 

Figure 3.17 Valeurs de traction résiduelle (en MPa) pour un cube en BRF sollicité en traction 

pour un déplacement imposé de 5 mm 

Les valeurs des coordonnées des contraintes de traction résiduelles ont été récupérées pour chaque 

point d’intégration à chaque incrément de déplacement imposé. Une étape de post-traitement 

supplémentaire a été réalisée sur Excel afin de pouvoir calculer l’énergie de fissuration attribuée à 

chacun des éléments. La Figure 3.18 compare la courbe théorique de la fonction de densité de 

probabilité et les valeurs de 𝐺𝑓 calculées grâce aux données de contraintes renvoyées par 

ABAQUS.  
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Figure 3.18 Comparaison de la courbe de la fonction de probabilité de la loi lognormale et des 

valeurs calculées à partir des données renvoyées par le logiciel ABAQUS 

Ainsi, le nuage de point suit l’allure de la courbe théorique, par ailleurs, la moyenne et l’écart-type 

concordent bien avec les paramètres de la loi lognormale entrés par l’utilisateur.  

Néanmoins, il subsiste un écart entre la courbe théorique et les valeurs renvoyées par ABAQUS, 

ceci est probablement dû : 

- aux différents arrondis faits lors des différentes étapes de calcul internes au logiciel 

d’éléments finis et qui engendre une propagation des incertitudes à l’origine des légers 

écarts observés;  

- au nombre de points générés par ABAQUS beaucoup plus faible qui peut expliquer les 

imprécisions observées sur la Figure 3.18 (1000 points correspondant aux 1000 éléments 

versus 100 000 pour la vérification effectuée avec le code FORTRAN directement) 

3.1.4 Stratégie d’utilisation  

Le processus de vérification présenté plus haut indique que la programmation des lois probabilistes 

a été correctement implémentée dans EPM3D. Reste maintenant à choisir l’approche privilégiée 
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pour son utilisation pour modéliser le comportement d’éléments en béton renforcés de fibres, des 

spécimens d’essais matériaux (os, prisme en flexion, dalle circulaire) à l’élément structural (poutre, 

dalles, etc.).  

L’objectif est de reproduire les phénomènes physiques des BRF, tout en se limitant au 

comportement en traction dans le cadre de ce mémoire, en considérant des propriétés probabilistes 

du BRF de telle sorte à ce que la modélisation soit indépendante de la taille du maillage choisi.  

Les travaux de Rossi et al. (2015) et de Bélanger (2000) ont permis de démontrer que, d’un point 

de vue structural pour des éléments en BRF, la moyenne de la résistance ne varie pas en fonction 

de la taille des éléments. En revanche, la dispersion des résultats varie avec la taille, augmentant 

avec la diminution de la taille des éléments structuraux. Ainsi, pour modéliser un volume donné en 

éléments finis, la moyenne de l’énergie de fissuration devrait être invariable en regard de la taille 

des éléments alors que le coefficient de variation devra être plus élevé pour un maillage fin que 

pour celui d’un maillage plus grossier. Deux stratégies peuvent être adoptées pour déterminer les 

valeurs d’entrées : une approche analytique et une autre basée sur la calibration. 

Rossi et al. (2015) ont adopté une approche basée sur la calibration dans laquelle il reproduit les 

résultats d’essais de traction avec des maillages d’éléments finis de différentes tailles afin de 

déterminer, par calcul inverse, des lois permettant de déterminer les propriétés d’entrée selon la 

taille de l’élément. Cette approche présente l’avantage de permettre d’éliminer l’hypothèse de non-

corrélation entre les propriétés d’éléments adjacents. En effet, comme physiquement la résistance 

d’un élément n’est pas indépendante de celle de l’élément voisin (une fibre pouvant traverser 

plusieurs éléments selon la taille respective des fibres et du maillage), l’utilisation d’une calibration 

sur des essais réels offre l’avantage de représenter adéquatement le comportement d’un volume de 

BRF sans aller dans des modèles de grande complexité. Cependant, pour être valide, une telle 

approche requière un grand nombre d’analyses non linéaires par éléments finis pour la calibration. 

L’approche analytique vise à obtenir les mêmes résultats hors d’un environnement d’éléments finis 

considérant que la calibration en traction directe se fait sur un élément où il est supposé que tous 

les éléments subissent le même allongement. L’avantage d’une telle approche est qu’elle est 

beaucoup moins exigeante numériquement. 
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3.2 Modélisation probabiliste d’une éprouvette en traction avec 

EPM3D 

Cette section présente le cas d’application de la sous-routine probabiliste EPM3D à un os soumis 

à un effort de traction. L’objectif principal de cette partie est de développer un modèle simplifié 

permettant de relier les caractéristiques de la loi probabiliste entrées par l’utilisateur et celles 

obtenues en sortie de l’analyse (moyenne et coefficient de variation) en fonction de la taille de 

maillage employée. 

Tout d’abord, la campagne expérimentale sur laquelle se basent les simulations, le modèle 

ABAQUS ainsi que l’étude paramétrique réalisée seront présentés. Ensuite, l’étude de convergence 

du coefficient de variation et l’analyse de l’impact de la taille du maillage sur les paramètres 

statistiques seront présentés ainsi que le modèle qui en découle seront présentés de manière 

détaillée. Enfin, cette partie s’achèvera par l’analyse des patrons de fissuration qui ont pu être 

observés dans les différentes analyses. 

3.2.1 Campagne expérimentale utilisée  

Cette sous-section présente la campagne expérimentale sur laquelle se basent l’ensemble des 

simulations du modèle d’application de l’os en traction sur ABAQUS.  

Il s’agit d’essais qui ont été réalisés au sein du laboratoire de Structures de Polytechnique Montréal 

par Sébastien Reygner (2016). Le but de cette campagne expérimentale était d’évaluer l’influence 

du dosage en fibres sur le comportement du béton renforcé de fibres en traction directe. Trois 

formulations de BRF ont été testées mais on ne s’intéressera qu’au BRF70-80kg. La matrice 

cimentaire utilisée pour effectuer les essais a été élaborée de telle sorte à optimiser l’insertion et 

l’orientation des fibres. La résistance en compression minimale visée pour le béton était de 𝑓𝑐28𝑗 =

70 𝑀𝑃𝑎. Les fibres utilisées pour réaliser le mélange possèdent un élancement de 55, avec une 

longueur égale à 30 𝑚𝑚 et un diamètre valant 0,55 𝑚𝑚. Le Tableau 3.1 détaille la formulation du 

matériau. 
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Tableau 3.1 Composition du béton étudié 

Composition Dosage 

Fibres (Dramix ZP-305) 80 𝑘𝑔/𝑚3 

Ciment 650 𝑘𝑔/𝑚3 

Eau 171,60 𝑘𝑔/𝑚3 

Superplastifiant (Plastol6200EXT) 38,36 𝑘𝑔/𝑚3 

Sable 1 (Grossier Man) 163,47 𝑘𝑔/𝑚3 

Sable 2 (Fin Naturel) 653,88 𝑘𝑔/𝑚3 

Pierre (2.5-10 Gr. St F) 602,92 𝑘𝑔/𝑚3 

 

Des essais de caractérisation sur des éprouvettes cylindriques ont été réalisés afin de déterminer les 

caractéristiques mécaniques du matériau. Trois essais de compression et une mesure du module 

d’élasticité et du coefficient de poisson ont été effectués. Les résultats de ces essais sont présentés 

dans le Tableau 3.2. 

 

Tableau 3.2 Propriétés mécaniques du béton étudié 

Propriétés 𝑬𝒎𝒐𝒚 𝒇𝒄,𝒎𝒐𝒚
′  𝝂𝒎𝒐𝒚 

 39268 𝑀𝑃𝑎 93,1 𝑀𝑃𝑎 0,206 

 

La géométrie et les mensurations des spécimens d’os sont présentés dans la Figure 3.19. L’essai de 

caractérisation consiste à solliciter en traction ce spécimen-ci entièrement fait en béton. Comme 

montré sur la Figure 3.19, chaque spécimen consiste en une plaque de béton de 50 𝑚𝑚 d’épaisseur 

ayant une section centrale réduite de dimension constante afin que la rupture puisse y être localisée.  
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Figure 3.19 Mensurations de l’éprouvette utilisée pour les essais de traction directe  

Les extrémités plus larges permettent le serrage de l’os entre les mâchoires de la presse ce qui 

permet d’encastrer l’os à ses deux extrémités par une application d’une pression de 

6,89 𝑀𝑃𝑎 (1000 𝑝𝑠𝑖). Le chargement se fait par le biais du plateau supérieur de la presse, en 

imposant un déplacement contrôlé. Quatre capteurs LVDT sont fixés sur les spécimens, deux 

d’entre eux sont situés sur la partie centrale plus étroite et servent à mesurer les déplacements au 

niveau de la section réduite et les deux autres sont positionnés sur les parties les plus larges et sont 

là pour s’assurer du bon déroulement de l’essai. Par ailleurs, les montages ont été réalisés avec 

précaution afin d’éviter de créer de la flexion ou de la torsion lors de la mise en place du spécimen 

et de l’essai de caractérisation, ce qui viendrait parasiter les résultats observés.  

La Figure 3.20 présente les courbes de contrainte en fonction de l’ouverture de fissure pour les six 

spécimens qui ont été testés ainsi que la courbe moyenne de ces mesures (voir la Figure 3.21). 
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Figure 3.20 Courbes de la contrainte en fonction de l'ouverture de fissure pour les six spécimens 

de la campagne expérimentale 

Un ajustement de cette courbe moyenne a ensuite été réalisé afin de déterminer les coordonnées 

des sept points qui doivent être introduits afin de définir la loi de béton probabiliste sur EPM3D. 

L’aire sous les six courbes représentant les énergies de fissuration ont également été calculées afin 

de pouvoir en déduire l’écart-type également nécessaire à l’établissement de la loi probabiliste sous 

EPM3D. 

 

Figure 3.21 Ajustement réalisé avec la courbe moyenne de la contrainte en fonction de 

l'ouverture de fissure 
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3.2.2 Présentation du modèle sur ABAQUS 

Le modèle par éléments finis généré pour les simulations numériques respecte parfaitement les 

mensurations ainsi que la géométrie exacte des spécimens utilisés pour la campagne expérimentale. 

Les conditions aux limites considérées pour le modèle d’éléments finis sont représentées dans la 

Figure 3.22.  

   

Figure 3.22 Conditions aux limites du modèle éléments finis de l'essai de l'os en traction 

La loi de comportement du BRF est directement déduite des résultats de la sous-section précédente, 

l’ensemble de ces paramètres sont résumés dans le Tableau 3.3.  
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Tableau 3.3 Paramètres du modèle EPM3D pour le BRF 70-80 kg 

Compression  Traction 

𝑓𝑐
′ (𝑀𝑃𝑎) 93,1  Pré pic                            Post pic 

Général   𝑓𝑡
′ (𝑀𝑃𝑎) 4,037 Contrainte (MPa) Ouv. Fissure (mm)  

𝐸0 (𝑀𝑃𝑎) 29268   𝜎1 = 3,56 𝑤1 = 0,049 

𝜈(−) 0,2   𝜎2̅̅ ̅ = 3,76 𝑤2 = 0,12 

Env. rupture Willam-Warnke   𝜎3̅̅ ̅ = 3,17 𝑤3 = 0,35 

    𝜎4̅̅ ̅ = 1,72 𝑤4 = 0,71 

    𝜎5̅̅ ̅ = 1,11 𝑤5 = 1,075 

    𝜎6̅̅ ̅ = 0,56 𝑤6 = 1,995 

    𝜎7̅̅ ̅ = 0 𝑤7 = 4,285 

 

Le Tableau 3.4 détaille quels paramètres sont déterministes et quels paramètres sont probabilistes. 

Les moyennes des paramètres suivant une distribution aléatoire sont indiquées dans le Tableau 

3.3 : 𝜎𝑖=2…7. Pour le coefficient de variation, ils ne sont pas précisés car ces derniers seront sujet à 

modification selon ce qui est étudié. 

Tableau 3.4 Paramètres probabilistes et déterministes 

Paramètres déterministes Paramètres probabilistes suivant une loi lognormale 

𝒇𝒄
′ , 𝒇𝒕

′ , 𝑬𝟎, 𝝈𝟏, 𝒘𝒊=𝟏..𝟕 𝜎𝑖=2…7 

 

3.2.3 Étude paramétrique 

Dans cette section, une étude paramétrique a été réalisée afin d’analyser les biais éventuels qui 

pourraient être introduits par certains paramètres tels que le type de maillage utilisé, 

l’amortissement, la fréquence du filtre passe-bas ou encore la loi probabiliste utilisée. L’ensemble 

des impacts de ces paramètres seront étudiés et analysés séparément dans les sous-sections 

suivantes. 
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3.2.3.1 Type de maillage utilisé  

Cette sous-section présente l’influence du type de maillage utilisé sur les résultats renvoyés par 

ABAQUS. Les trois types de maillage qui ont été testés sont présentés dans la Figure 3.23 : 

- le maillage (a) est hexaédrique, il a été construit « manuellement » grâce à des partitions au 

niveau des changements de sections; 

- le maillage (b) est également hexaédrique, il a été obtenu grâce à l’algorithme de génération 

de maillage d’ABAQUS « Medial Axis »; 

- le maillage (c) est tétraédrique, ce dernier est également automatiquement généré par 

ABAQUS.  

En outre, pour des paramètres en entrée identiques :  

- les allures de courbes de la contrainte en fonction du déplacement sont identiques pour les 

trois maillages; 

- la valeur moyenne de l’énergie de fissuration est égale pour les trois maillages; 

- les coefficients de variations obtenus diffèrent quant à eux d’un maillage à un autre, ce qui 

semble logique, puisque le nombre d’éléments change suivant le maillage sélectionné; 

- le temps de calcul le plus court est obtenu avec le maillage (b) à l’opposé du maillage (c) 

qui donne les temps d’analyse les plus longs.   
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Figure 3.23 Les trois types de maillage utilisés : (a) Maillage tétraédrique manuel (b) Maillage 

tétraédrique optimisé (c) Maillage hexaédrique 

Par ailleurs, pour ce qui est des maillages tétraédriques, le modèle (b) est préférable au modèle (a) 

en raison de l’absence des éléments distordus dans les coins. En effet, la qualité d’un maillage est 

quantifiée grâce au ratio entre la plus grande et la plus petite longueur, ce dernier reflète la 

distorsion des éléments, plus celui-ci est proche de 1, plus le maillage est jugé comme étant de 

bonne qualité. Ces éléments permettent d’obtenir un incrément de temps plus petit dans ABAQUS 

Explicit. Le maillage (b) semble ainsi être le plus adapté car celui-ci permet d’avoir des temps de 

simulation faibles, en comparaison avec les deux autres maillages, et ces éléments possèdent peu 

de distorsion en comparaison avec le maillage (a). Pour la suite des analyses, le maillage (b) sera 

utilisé. 

3.2.3.2 Utilisation d’un amortissement  

Dans cette sous-section, l’influence de l’amortissement est étudiée. En effet, l’amortissement est 

une composante importante d’un système mécanique. Le mouvement du système n’étant pas 

perpétuel, il est important de prendre en compte la perte d’énergie résultant des forces de résistance 

qui s’opposent au mouvement (telles que la résistance de l’air, les mouvements microstructuraux, 

etc.). 

Tout d’abord, une analyse modale a été réalisée afin de calculer les fréquences naturelles et les 

déformées modales de l’éprouvette. En effet, ABAQUS permet de calculer :  

- les fréquences naturelles ou de résonance (valeurs propres) du modèle.  
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- les déplacements relatifs de la géométrie lorsque le modèle vibre à ces fréquences. 

En ce qui concerne le modèle de l’os en traction, il faut trouver le mode fondamental associé à 

l’allongement. En effet, la fréquence à considérer est celle de la déformée modale qui se rapproche 

le plus du mode de sollicitation auquel on s’intéresse, ici l’allongement puisque l’éprouvette est 

sollicitée en traction. Une valeur de 𝑓𝑎𝑙𝑙𝑜𝑛𝑔𝑒𝑚𝑒𝑛𝑡 = 1133 𝐻𝑧 est ainsi obtenue par le biais de 

l’analyse modale. L’amortissement dit de « Rayleigh » disponible sur ABAQUS se décompose en 

deux parties : la première composante représentée par le biais du coefficient 𝛼 permet d’amortir 

les gammes de fréquences inférieures (dépendantes de la masse) et la seconde désignée par le terme 

𝛽 les gammes supérieures (dépendantes de la rigidité). 

Dans le cadre de l’os en traction étudié, seule la composante proportionnelle à la masse sera 

considérée, les coefficients de l’amortissement de « Rayleigh » renseignés dans ABAQUS sont 

donc :  

{
𝛼 = 4𝜋. 𝑓𝑎𝑙𝑙𝑜𝑛𝑔𝑒𝑚𝑒𝑛𝑡. 𝜉 = 4𝜋 × 1133 × 0,05 = 711

𝛽 = 0
(3.11) 

Le facteur 𝜉 désigne le ratio d’amortissement que l’on considère comme étant égal à 5%. Afin 

d’étudier l’influence de l’introduction ou non d’un amortissement dit de « Rayleigh » sur les études 

probabilistes, deux modèles sans et avec amortissement ont été comparés pour les trois tailles de 

maillage suivantes : 25 𝑚𝑚, 10 𝑚𝑚 et 5 𝑚𝑚. Les paramètres entrés, y compris ceux de la 

composante probabiliste d’EPM3D sont identiques pour toutes les simulations, indépendamment 

de la taille de maillage et de l’introduction ou non de l’amortissement de « Rayleigh ». Le nombre 

de simulations qui ont été réalisées pour chaque cas de figure s’élève à 50. Les résultats obtenus 

sont résumés dans le Tableau 3.5 ci-dessous. 
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Tableau 3.5 Comparaison des ratios de moyennes (en %) et des coefficients de variation pour des 

éprouvettes avec différentes tailles de maillage avec ou sans amortissement 

 Présence d’un amortissement Absence d’un amortissement  

Taille des éléments (en mm) 𝑀𝑜𝑦𝑒𝑛𝑛𝑒𝑠𝑜𝑟𝑡𝑖𝑒

𝑀𝑜𝑦𝑒𝑛𝑛𝑒𝑒𝑛𝑡𝑟é𝑒

 
𝐶𝑂𝑉𝑠𝑜𝑟𝑡𝑖𝑒

𝐶𝑂𝑉𝑒𝑛𝑡𝑟é𝑒

 
𝑀𝑜𝑦𝑒𝑛𝑛𝑒𝑠𝑜𝑟𝑡𝑖𝑒

𝑀𝑜𝑦𝑒𝑛𝑛𝑒𝑒𝑛𝑡𝑟é𝑒

 
𝐶𝑂𝑉𝑠𝑜𝑟𝑡𝑖𝑒

𝐶𝑂𝑉𝑒𝑛𝑡𝑟é𝑒

 

𝟐𝟓  107 140 108 130 

𝟏𝟎 104 68 108 65 

𝟓 104 48 105 46 

D’après le Tableau 3.5, et pour toutes les tailles d’éléments, l’introduction d’un amortissement a 

pour effet : 

- de très légèrement diminuer le ratio entre la moyenne obtenue en sortie et la moyenne 

entrée.  

- d’augmenter de peu le ratio entre le coefficient de variation en sortie et le coefficient de 

variation en entrée. 

Ainsi, et étant donné que l’amortissement n’a pas d’influence majeure sur les résultats de l’analyse 

probabiliste, celui-ci sera conservé pour la suite des simulations qui seront effectuées sur le modèle 

de l’éprouvette en traction. Par ailleurs, l’introduction d’un tel paramètre rend le modèle plus 

représentatif de ce qui se passe dans la réalité et constitue un filtre naturel aux oscillations associées 

aux analyses explicites. Dans ce qui suit, il a été aussi envisagé d’utiliser un filtre artificiel, mais 

seulement en phase de post-traitement des résultats, toujours dans l’objectif d’avoir des courbes de 

résultats plus lisses et plus faciles à interpréter. 

3.2.3.3 Fréquence du filtre passe-bas employée  

Dans ce paragraphe, l’influence de la fréquence du filtre « Butterworth » utilisée en post-traitement 

est analysée. Tout d’abord, le filtre « Butterworth » présent dans ABAQUS est un filtre passe-bas 

généralement utilisé dans le post-traitement des données obtenues en sortie afin d’éliminer le bruit 

de haute fréquence qui se manifeste généralement sous la forme d’oscillations reliées à la nature 

quasi-statique de l’analyse explicite. 

Ainsi, dans la Figure 3.24, la courbe de force en fonction du temps est filtrée à plusieurs fréquences 

différentes allant de 10 à 500 𝐻𝑧. La courbe obtenue à la suite d’un filtrage à 𝑓 = 500 𝐻𝑧 semble 

être la plus adaptée et la plus représentative du signal d’origine. 
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Figure 3.24 Courbes de la force en fonction du temps pour différentes fréquences du filtre 

Butterworth 

En outre, les courbes filtrées aux fréquences valant 500, 600, 700, 1000 et 1250 𝐻𝑧 possèdent des 

allures quasi-identiques. Ainsi, et afin de pouvoir les comparer, un calcul des énergies de 

fissuration en pré et post-pic a été effectué. Les résultats obtenus sont présentés dans la Figure 3.25. 

 

Figure 3.25 Valeurs des énergies de fissuration (élastique et en post-pic) pour différentes 

fréquences du filtre Butterworth 
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En ce qui concerne l’énergie de post-fissuration, les écarts de valeurs entre les différentes 

fréquences ne dépassent pas 1% de la valeur totale moyenne de l’énergie. Néanmoins, pour la 

partie élastique, les écarts sont un peu plus importants (aux alentours de 20% de la valeur 

moyenne), la fréquence conservée pour la suite des analyses est 𝑓 = 1250 𝐻𝑧, étant donné que 

celle-ci permet de minimiser l’écart de la valeur de l’énergie en pré-pic entre la courbe filtrée et le 

signal brut. 

3.2.3.4 Étude de l’influence de la loi probabiliste utilisée  

La sous-routine probabiliste a été implémentée de telle sorte à pouvoir choisir entre trois lois 

probabilistes distinctes : la loi normale, la loi lognormale et la loi de Weibull. Dans cette partie, 

l’influence de la loi choisie sera étudiée. Pour ce faire, des séries de dix analyses ont été lancées 

avec des paramètres d’entrée identiques à l’exception de la distribution probabiliste qui diffère 

d’une série à une autre. 

Il est important de mentionner que la campagne expérimentale sur laquelle est basé cet exemple 

d’application n’est composée que de six essais de traction. Il est donc possible de calculer la 

moyenne et le coefficient de variation des énergies de fissuration des essais de traction directes de 

ces six éprouvettes mais le nombre d’essais est insuffisant pour pouvoir identifier la distribution la 

plus adéquate. 

La Figure 3.26 met en avant le ratio entre les moyennes en sortie et la moyenne entrée en fonction 

du nombre d’analyses pour différentes distributions probabilistes et différentes tailles d’éléments. 

Sur un très grand nombre d’analyses, les courbes représentées sur la Figure 3.26 tendraient vers la 

même valeur de ratio puisque la moyenne qui est entrée est identique pour toutes les séries de 

simulations. Néanmoins, étant donné que nos observations se basent uniquement sur des séries de 

10 simulations, des différences existent. En effet, la loi lognormale présente les résultats les plus 

grands en termes de ratio de moyennes, ceci pourrait s’expliquer par l’allure de cette distribution 

asymétrique avec une déviation vers la droite. À l’opposé, la distribution de Weibull possède les 

ratios les plus bas en raison d’une déviation de sa fonction de densité de probabilité vers la gauche. 
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Figure 3.26 Ratio entre la moyenne calculée et la moyenne expérimentale en fonction du nombre 

d’analyses entrée pour différentes lois probabilistes et pour différentes tailles de maillage 

La Figure 3.27 met en exergue le ratio entre le coefficient de variation en sortie sur le coefficient 

de variation en entrée en fonction du nombre d’analyses pour différentes distributions probabilistes 

et différentes tailles de maillages. À premier abord, les ratios des COV semblent converger vers la 

même valeur, quel que soit la loi ou la taille de maillage. Néanmoins, la Figure 3.27 ne permet pas 

de réellement tirer des conclusions en raison du nombre d’analyses insuffisants (consulter la section 

suivante pour l’étude de convergence). 
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Figure 3.27 Ratio entre le coefficient de variation calculé et le coefficient de variation 

expérimental entré en fonction du nombre d’analyses pour différentes lois probabilistes et pour 

différentes tailles de maillage 

Finalement, et afin de pouvoir comparer nos résultats à ceux de Rossi et al. (2015), la loi 

lognormale a été choisie pour la suite des simulations. 

3.2.4 Étude de convergence sur le coefficient de variation employé  

L’intérêt principal de l’exemple d’application de la sous-routine probabiliste à l’os en traction est 

de trouver la corrélation entre les paramètres d’entrée (moyenne et écart-type) de la distribution 

(dans notre cas la loi lognormale) et la taille des éléments utilisés (cette étude détaillée sera 

présentée dans la sous-section suivante). Pour ce faire, les études se basaient au départ sur des 

séries de cinquante simulations. Cependant, ces séries possédaient une mauvaise répétabilité, en 

effet, deux séries aux paramètres d’entrée identiques (incluant la taille de maillage) ne renvoyaient 

pas la même valeur de moyenne et de coefficient de variation en sortie. C’est pour cette raison 

qu’une étude de convergence s’est avérée nécessaire afin de déterminer le seuil minimal d’analyses 

à effectuer afin d’assurer la répétabilité d’une série avec des paramètres d’entrée donnés. 

Afin de réaliser cette étude, le ratio entre la moyenne en sortie et la moyenne en entrée ainsi que le 

ratio entre le coefficient de variation en entrée et le coefficient de variation en sortie en fonction 

du nombre de simulations sont analysés.  

Par ailleurs, il est important de préciser qu’à la énième simulation, la nouvelle moyenne ou le 

nouveau COV sont calculés en prenant en compte les (𝑛 − 1) simulations précédentes. Si sur dix 
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simulations consécutives les ratios de moyenne et de COV ne varient pas de plus de 5% par rapport 

aux dix simulations précédentes, on considère alors qu’il y a convergence. 

La Figure 3.28 présente l’étude de convergence réalisée pour l’éprouvette maillée à l’aide 

d’éléments de taille 25 𝑚𝑚. La convergence de la moyenne se fait aux alentours de 150 

simulations. En effet, à partir de ce seuil, l’écart entre les différents ratios obtenus ne dépasse pas 

2%. Pour ce qui est du ratio des coefficients de variation, à partir d’un seuil de 255 analyses, les 

écarts entre toutes les valeurs de ratios ne dépassent pas 5%. 

 

Figure 3.28 Ratio entre le coefficient de variation calculé et le coefficient de variation 

expérimental entré et ratio entre la moyenne calculée et la moyenne expérimental entrée en 

fonction du nombre de simulations réalisées (maillage de 25 𝑚𝑚) 

Pour les éléments de taille 16 𝑚𝑚, la Figure 3.29 montre que la convergence de la moyenne est 

beaucoup plus rapide que pour le maillage de 25 𝑚𝑚, à partir de 20 simulations environ. À partir 

de ce seuil-là, l’écart entre les différents ratios obtenus ne dépasse pas 5%. Pour ce qui est du ratio 

des coefficients de variation, l’écart entre toutes les valeurs de ratios obtenus ne dépasse pas 5% 

au-delà de 100 simulations. 
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Figure 3.29 Ratio entre le coefficient de variation calculé et le coefficient de variation 

expérimental entré et ratio entre la moyenne calculée et la moyenne expérimental entrée en 

fonction du nombre de simulations réalisées (maillage de 16 𝑚𝑚) 

Pour des éléments de taille 10 𝑚𝑚, et comme le montre la Figure 3.30, une convergence des deux 

types de ratio est observée pour un nombre de simulations supérieur ou égal à 80. 

 

Figure 3.30 Ratio entre le coefficient de variation calculé et le coefficient de variation 

expérimental entré et ratio entre la moyenne calculée et la moyenne expérimental entrée en 

fonction du nombre de simulations réalisées (maillage de 10 𝑚𝑚) 

Pour les modèles avec une taille de maillage égale à 5 𝑚𝑚, en raison des temps de calcul très 

importants (environ 4h pour une unique analyse en utilisant 6 cœurs), l’étude de convergence s’est 

basée sur 50 simulations uniquement. Comme le montre la Figure 3.31, une convergence de la 

valeur moyenne est observée à partir de 20 simulations environ. En effet, à partir de ce seuil-là, 
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l’écart entre les différents ratios ne dépasse pas 2%. Pour ce qui est des ratios des coefficients de 

variation, à partir d’un seuil de 30 analyses, l’écart entre les différentes valeurs ne dépasse pas 3%. 

 

Figure 3.31 Ratio entre le coefficient de variation calculé et le coefficient de variation 

expérimental entré et ratio entre la moyenne calculée et la moyenne expérimental entrée en 

fonction du nombre de simulations réalisées (maillage de 5 𝑚𝑚) 

Le Tableau 3.6 ci-dessous résume l’ensemble des résultats de cette étude de convergence. Celui-ci 

présente le seuil minimal d’analyses à réaliser afin d’assurer la convergence en fonction de la taille 

des éléments utilisés. 

Tableau 3.6 Résumé de l'étude de convergence pour le modèle de l'éprouvette en traction 

Taille des éléments (mm) Nombre minimal d’analyses pour assurer la 

convergence 

𝟓 30 

𝟏𝟎 80 

𝟏𝟔 100 

𝟐𝟓 150 

 

Cette étude de convergence permet de mettre en avant la tendance suivante : les spécimens 

possédant des éléments de plus petite taille convergent plus rapidement. Autrement dit, le seuil 

minimal d’analyses requises pour assurer la convergence baisse avec la taille du maillage. En effet, 
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le nombre d’éléments constituant l’éprouvette augmente lorsque la taille du maillage diminue. Pour 

une analyse donnée, la population « représentative » de la loi probabiliste choisie est plus grande, 

la distribution ainsi reproduite par les éléments finis est d’autant plus similaire à la courbe de 

densité de probabilité théorique, ce qui confère plus de répétabilité aux éprouvettes possédant une 

plus petite taille de maillage et leur assure donc une convergence plus rapide. 

3.2.5 Étude de l’impact de la taille maillage sur la dispersion obtenue  

3.2.5.1 Méthodologie et résultats obtenus avec EPM3D 

Cette sous-partie comprend l’étude de l’impact de la taille du maillage sur les caractéristiques de 

la distribution obtenue en sortie. L’analyse réalisée dans cette sous-section a pour objectif :  

- premièrement, de trouver le lien de corrélation entre le COV en entrée et le COV en sortie; 

- deuxièmement, et une fois ce lien établi, trouver les paramètres à renseigner en entrée afin 

d’obtenir en sortie les paramètres escomptés qui correspondent à la moyenne et au 

coefficient de variation expérimentaux (dans le cadre de ce mémoire, il s’agit des 

paramètres calculés à partir des résultats de la campagne expérimentale de Sébastien 

Reygner). 

Il est important de rappeler que l’étude porte sur la variabilité de l’énergie de fissuration des BRF, 

la distribution choisie pour cette modélisation probabiliste est la loi lognormale. 

La Figure 3.32 met en avant la géométrie de l’éprouvette sur laquelle se base cette méthode de 

calibration. 𝑆 désigne la section tendue et vaut 5000 𝑚𝑚2.  

  

Figure 3.32 Géométrie de l’éprouvette sur laquelle se base la méthode de calibration 
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Premièrement, concernant la moyenne de la distribution, les différentes séries d’analyses sur 

ABAQUS ont permis de montrer que cette dernière ne variait pas en fonction de la taille de maillage 

des éléments utilisés. En effet, et quel que soit la taille des éléments finis de l’éprouvette, la 

moyenne renseignée en entrée est égale à la moyenne obtenue en sortie. 

Ensuite, pour ce qui est de l’étude des coefficients de variation, il est primordial de rappeler que 

pour chacune des séries d’analyses, le seuil minimal (qui est fonction de la taille du maillage) 

permettant d’assurer la convergence des résultats a été respecté. 

Pour chaque taille d’éléments, la procédure qui a été suivie pour pouvoir obtenir les courbes de la 

Figure 3.33 peut être décomposée en différentes étapes.  

1. Pour la première série d’analyses, le coefficient de variation qui a été renseigné au départ 

est égal au COV visé (le COV expérimental), ce qui correspond à un ratio  
𝐶𝑂𝑉𝑒𝑛𝑡𝑟é

𝐶𝑂𝑉𝑣𝑖𝑠é
= 100% 

en abscisse. Il faut noter que la moyenne demeure inchangée, étant donné que celle-ci ne 

dépend pas de la taille de maillage et que la moyenne obtenue en sortie est environ égale à 

celle renseignée en entrée. 

2. En fonction du ratio obtenu en sortie, une nouvelle série d’analyses est lancée avec un 

nouveau COV en entrée. Le but étant d’obtenir un ratio  
𝐶𝑂𝑉𝑠𝑜𝑟𝑡𝑖𝑒

𝐶𝑂𝑉𝑣𝑖𝑠é
= 100% en sortie. 

3. L’ensemble des points obtenus pour chaque taille d’éléments permettent de tracer des 

courbes de tendances faisant le lien entre le 𝐶𝑂𝑉𝑒𝑛𝑡𝑟é et le 𝐶𝑂𝑉𝑠𝑜𝑟𝑡𝑖𝑒. Ces courbes 

permettent de trouver le coefficient de variation à renseigner en entrée afin d’obtenir en 

sortie le COV souhaité, correspondant au COV expérimental du matériau. 
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Figure 3.33 Courbe du COV obtenu en fonction du COV entré en fonction de la taille du maillage 

Comme le montre la Figure 3.33, les fonctions reliant les ratios des COV en entrée et en sortie 

semblent être des droites affines.  

3.2.5.2 Modèle  

Ainsi, une loi très simple a été dégagée à partir des tendances observées, il s’agit d’un modèle de 

fonctions linéaires, les coefficients directeurs de ces droites linéaires dépendent de la taille du 

maillage 𝑚 et de la section de l’éprouvette notée 𝑆 ainsi que du matériau étudié (voir la Figure 3.34 

et la Figure 3.32).  

 

Figure 3.34 Modèle permettant de relier la dispersion à la taille du maillage pour l'éprouvette en 

traction 



92 

 

Cette nouvelle loi permettant de relier les ratios obtenus en sortie et les ratios renseignés en entrée 

peut s’exprimer de la manière suivante :  

𝐶𝑂𝑉𝑠𝑜𝑟𝑡𝑖𝑒 = 𝑎 × 𝐶𝑂𝑉𝑒𝑛𝑡𝑟é (3.12) 

avec :  

𝑎 = 𝑓(𝑚, 𝑆, 𝑚𝑎𝑡é𝑟𝑖𝑎𝑢) (3.13) 

𝑎 désigne le coefficient directeur des différentes droites linéaires (celui-ci dépend de la taille du 

maillage), 𝑚 la taille du maillage en 𝑚𝑚 et 𝑆 la section de l’éprouvette tendue en 𝑚𝑚2.  

L’analyse des coefficients directeur obtenus pour les différentes tailles de maillage a permis de 

dégager la relation suivante :  

𝑎(𝑚1, 𝑆, 𝑚𝑎𝑡é𝑟𝑖𝑎𝑢)

𝑎(𝑚2, 𝑆, 𝑚𝑎𝑡é𝑟𝑖𝑎𝑢)
≈

𝑚1

𝑚2
 

𝑚1 et 𝑚2 désignant deux tailles de maillage différentes (par exemple, 𝑚1 = 25 𝑚𝑚 et 𝑚2 =

5 𝑚𝑚).  

En effet, il existe un lien de proportionnalité évident entre le coefficient directeur 𝑎 des différentes 

courbes et entre la taille de maillage employée. 

Par ailleurs, on considérera pour la suite que 𝑎(25, 𝑆, 𝐵𝑅𝐹70 − 80𝑘𝑔) ≈ 1. Autrement dit, pour 

le BRF considéré (𝐵𝑅𝐹70 − 80𝑘𝑔) , la section sollicitée en traction (S = 5000 mm2) le maillage 

de 25 mm donne un ratio 
𝐶𝑂𝑉𝑠𝑜𝑟𝑡𝑖𝑒

𝐶𝑂𝑉𝑣𝑖𝑠é
≈ 100% pour un ratio 

𝐶𝑂𝑉𝑒𝑛𝑡𝑟é

𝐶𝑂𝑉𝑣𝑖𝑠é
= 100%. 

Néanmoins, il est important de mentionner que ce modèle constitue une approximation des droites 

obtenues sur ABAQUS, il s’agit en effet d’une simplification des tendances observées. Il faudrait 

faire plus de séries d’analyses afin d’augmenter la précision des droites obtenues et ainsi pouvoir 

créer un modèle plus raffiné permettant de représenter l’impact de la taille de maillage sur la 

dispersion. 

Cette nouvelle loi établie constitue la base pour tous les exemples d’application qui seront présentés 

dans le Chapitre 4. En effet, étant donné que cette loi permet de reproduire la variabilité réellement 

observée pour les éprouvettes en traction (variabilité qui a été mesurée expérimentalement), le fait 

de l’appliquer à d’autres éléments structuraux (poutres ou dalles par exemple) permettra d’obtenir 
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la variabilité qui aurait réellement été obtenue expérimentalement lors de campagnes d’essais (voir 

la Figure 3.35).  

En effet, l’étape 1 dite de calibration (qui vient tout juste d’être présentée) permet de reproduire la 

variabilité du matériau (celle observée expérimentalement) pour tous les types de maillage sur l’os 

en traction. Le fait d’appliquer cette méthode là à d’autres structures qui possèdent les mêmes 

caractéristiques que l’os (section tendue et matériau identiques) permet de recréer la même 

variabilité à l’échelle du matériau et d’obtenir en sortie la variabilité de la structure. 

 

 

Figure 3.35 Méthodologie d'analyse probabiliste rationnelle pour les BRF 
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CHAPITRE 4 APPLICATION AUX ÉLÉMENTS STRUCTURAUX 

Ce chapitre présente des exemples d’application à des éléments de structures en BRF (poutre, 

poutres croisées et dalle) afin de démontrer la faisabilité et la validité de l’approche probabiliste 

développée et programmée, à l’échelle des éléments structuraux. La variabilité de la charge 

maximale à l’échelle de l’élément est étudiée pour une variabilité donnée à l’échelle matériau, ainsi 

que l’influence de plusieurs facteurs tels que la section de l’élément, le raffinement du maillage et 

le degré d’hyperstaticité. 

4.1 Modèle d’une poutre soumise à de la flexion 3 points  

Dans cette partie, le modèle de la poutre soumise à la flexion 3 points est détaillé. Tout d’abord, 

l’ensemble des caractéristiques ayant permis de construire ce dernier sur ABAQUS sont présentées. 

Ensuite, une étude de la dispersion en fonction de plusieurs paramètres est présentée. Enfin, cette 

section est clôturée par une analyse des différents patrons de fissuration qui ont été obtenus lors 

des analyses probabilistes.   

4.1.1 Présentation du modèle  

Le matériau utilisé pour la poutre est un béton renforcé de fibres. Ses propriétés ont été introduites 

dans ABAQUS via la sous-routine probabiliste programmée dans EPM3D présentée dans le 

Chapitre 3. Elles sont tirées des résultats expérimentaux présentés à la section 3.3.1.1 (consulter 

les Tableau 3.3 et Tableau 3.4). Pour les plaques d’acier, celles-ci sont modélisées d’une façon 

déterministe par un acier de module élastique 𝐸 = 200 000 𝑀𝑃𝑎 et avec un coefficient de Poisson 

𝜐 = 0,3. La géométrie, le déplacement imposé ainsi que les conditions aux limites sont montrés 

dans la Figure 4.1.  

 



95 

 

 

Figure 4.1 Géométrie, déplacement et conditions aux limites du modèle par éléments finis de la 

poutre en flexion 3 points 

La modélisation de la géométrie de la poutre a été réalisée dans ABAQUS/Explicit et est présentée 

à la Figure 4.2. 

 

Figure 4.2 Modélisation de la poutre en flexion 3 points sur ABAQUS (Modèle 1) 

La poutre est fixée aux trois plaques par le biais d’une contrainte Tie (pleine compatibilité des 

déformations entre les surfaces en contact). Les conditions aux limites montrées à la Figure 4.1 

sont imposées aux lignes médianes des deux plaques d’appui (dans le sens de la largeur de la 

poutre). Un déplacement de 15 𝑚𝑚 est imposé au niveau de la ligne médiane de la plaque 

supérieure. Une amplitude de type Smooth Step a été appliquée à ce déplacement. En ce qui 

concerne le maillage, des éléments Explicit 3D Stress hexaédriques linéaires à intégration réduite 

et au contrôle de Hourglass par Relax stiffness (C3D8R) ont été utilisés pour modéliser les éléments 

en béton et en acier. En effet, dans ABAQUS, une petite quantité d’énergie artificielle est introduite 
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dans le modèle pour contrôler la propagation de ces modes et éviter le phénomène de hourglassing 

(déformations aux contraintes nulles).  

Un second modèle sera également étudié dans cette section (voir la Figure 4.3), il s’agit d’une 

variante de la première poutre possédant les mêmes caractéristiques et paramètres d’entrée. La 

seule différence réside dans la valeur de la largeur de la poutre : en effet, le premier modèle possède 

une largeur 𝑏 = 400 𝑚𝑚 tandis que pour le second, celle-ci vaut 𝑏 = 50 𝑚𝑚. Le Tableau 4.1 

résume les dimensions des deux modèles de poutres étudiés dans cette section. Les propriétés de 

matériaux correspondent à celles trouvées dans le Chapitre 3 ( Tableau 3.3 et Tableau 3.4). 

 

 

Figure 4.3 Modélisation de la poutre en flexion 3 points sur ABAQUS (Modèle 2) 

 

Tableau 4.1 Résumé des caractéristiques des deux modèles de poutres 

Dimensions Modèle 1 Modèle 2 

Hauteur 𝒉 (𝒎𝒎) 200 200 

Largeur 𝒃 (𝒎𝒎) 400 50 

Portée 𝑳 (𝒎𝒎) 3600 3600 
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4.1.2 Influence de la section de la poutre sur le coefficient de variation 

Afin de minimiser les oscillations dues à la nature quasi-statique de l’analyse et de faciliter 

l’interprétation des résultats en termes de variabilité de la charge maximale, un filtre de type 

Butterworth a été utilisé pour tous les signaux bruts issus de l’analyse. Tel que montré à la Figure 

4.4, l’utilisation d’un filtre Butterworth (f = 50 Hz) permet d’adoucir les résultats et donne une 

courbe filtrée similaire à une moyenne mobile de la courbe brute.  

 

 

Figure 4.4 Courbe de la charge en 𝑘𝑁 en fonction de la flèche en 𝑚𝑚 

Dans ce qui suit, une comparaison entre les modèles 1 et 2 de poutres présentées à la section 

précédente sera réalisée afin d’analyser l’impact du changement de section sur la variabilité de la 

charge maximale 𝑅𝑚𝑎𝑥. Pour ce faire, deux séries de 10 analyses ont été réalisées pour chacun des 

deux modèles de poutres (voir la Figure 4.5).  
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Figure 4.5 (a) Résultats des courbes de la charge en fonction de la flèche pour le modèle 1 de 

poutre (section 400 𝑚𝑚 × 200 𝑚𝑚) (b) Résultats des courbes de la charge en fonction de la 

flèche pour le modèle 2 de poutre (section 50 𝑚𝑚 × 200 𝑚𝑚) 

Le maillage utilisé pour réaliser ces deux séries d’analyses est de taille 25 𝑚𝑚. Visuellement, une 

plus grande dispersion est observée pour les maximas de charge de la plus petite poutre (consulter 

la Figure 4.5 (b)). Le Tableau 4.2 montre aussi que l’influence de changement de section sur la 

valeur de 𝑓𝑡𝑢 est faible. Cette dernière a été calculée en utilisant la méthode simplifiée de la norme 

CSA-S6 (voir la Figure 4.6). 

 

Figure 4.6 Comportement en flexion des poutres en BRF (CSA, 2019) 
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Tableau 4.2 Moyennes et coefficients de variation de la charge maximale 𝑅𝑚𝑎𝑥 pour les deux 

modèles de poutre 

Aire A de la section tendue 

(𝒎𝒎𝟐) 

𝒇𝒕𝒖 (MPa)  𝒄𝒐𝒗(𝑹𝒎𝒂𝒙) 𝒄𝒐𝒗(𝑾𝑬) 

𝟒𝟎 𝟎𝟎𝟎 3,51 2,72% 10% 

𝟓𝟎𝟎𝟎 3,66 4,4% 9% 

 

Les résultats présentés dans le tableau permettent de confirmer les observations faites à partir de la 

Figure 4.5. En effet, plus la taille de la poutre est importante, plus le coefficient de variation de la 

charge maximale atteinte est petit, et donc, plus la dispersion est faible. Il est important de 

mentionner que le COV en entrée est égal à 20% pour les deux analyses. 

D’un point de vue purement probabiliste, cette tendance pourrait s’expliquer par le fait que la plus 

grande poutre possède plus d’éléments finis (étant donné que la taille de maillage est identique 

pour les deux modèles), ce qui augmente la population représentative de la loi théorique que l’on 

cherche à modéliser et offre ainsi une meilleure répétabilité et donc une dispersion moindre entre 

les différentes analyses. Ce résultat est conforme aux résultats issus de littérature. En effet, d’après 

Rossi et al. (1994 (a)), le coefficient de variation est inversement proportionnel au volume du 

spécimen étudié. 

Finalement, dans la suite de cette section, le modèle de poutre 2 sera plus amplement étudié car 

celui-ci possède la même section tendue que l’éprouvette en traction présentée dans le Chapitre 3. 

En effet, étant donné que la poutre est soumise à de la flexion, une approximation est réalisée, celle-

ci consiste à dire que la moitié inférieure de la poutre est en traction tandis que la seconde moitié 

supérieure est en compression. La section totale est égale à 𝑆 = 10 000 𝑚𝑚2, donc l’aire de la 

section tendue vaut 𝑆𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 5000 𝑚𝑚2, qui est égale à la section de l’éprouvette étudiée dans 

le chapitre précédent. 

Par ailleurs, le Tableau 4.2 présente le coefficient de variation du travail externe 𝑾𝑬 total (incluant 

la partie élastique), qui est égale à la charge multipliée par le déplacement. Le COV ne varie pas 

selon la section de la poutre étudiée. Le sens physique derrière ce constat reste à déterminer. 



100 

 

4.1.3 Validation de l’approche probabiliste développée 

Le but de cette sous-section est de prouver la validité de l’approche probabiliste développée dans 

le Chapitre 3 en l’appliquant au modèle 2 de la poutre en flexion. 

4.1.3.1 Conditions d’analyse et hypothèses  

Cette sous-section contient l’ensemble des hypothèses sur lesquelles repose l’analyse présentée 

dans cette partie. 

1. Étant donné que la méthode de calibration développée dans le Chapitre 3 dépend de la 

section tendue (consulter l’Équation (3.13)), il est important que la poutre possède la même 

section tendue que l’éprouvette étudiée dans le chapitre précédent, soit 𝑆 = 5000 𝑚𝑚2, 

afin que les lois qui ont été développées puissent être applicables. On suppose donc que la 

moitié inférieure de la poutre est en traction tandis que la seconde moitié supérieure est en 

compression. 

2. Comme mentionné dans les paragraphes précédents, la poutre étudiée possède les mêmes 

propriétés de matériau que l’éprouvette du Chapitre 3. Cette condition est importante 

puisque la méthode de calibration développée n’est valide que pour un seul matériau, le 

BRF70-80kg (voir Équation (3.13)). 

3. Comme évoqué précédemment, on considérera pour la suite que 𝑎(25, 𝑆, 𝐵𝑅𝐹70 −

80𝑘𝑔) ≈ 1. Autrement dit pour un ratio 
𝐶𝑂𝑉𝑒𝑛𝑡𝑟é

𝐶𝑂𝑉𝑣𝑖𝑠é
= 100%, un ratio 

𝐶𝑂𝑉𝑠𝑜𝑟𝑡𝑖𝑒

𝐶𝑂𝑉𝑣𝑖𝑠é
= 100% est 

obtenu pour un maillage de taille 25 𝑚𝑚. 

4.1.3.2 Analyse des résultats  

Deux tailles d’éléments différentes sont testées pour le modèle 2 de poutre : 25 𝑚𝑚 et 12,5 𝑚𝑚. 

Tous les autres paramètres demeurent inchangés. Comme pour la section précédente, des séries de 

dix analyses sont réalisées pour chacun des deux modèles. 

Les Figure 4.7 (a) et Figure 4.7 (b) présentent les résultats des courbes de la charge en fonction de 

la flèche pour les deux tailles d’éléments finis. La poutre possédant un maillage de taille égale à 

25 𝑚𝑚 possède une dispersion plus grande des valeurs de charge maximale, la valeur moyenne 
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semble quant à elle indépendante de la taille des éléments employés. Ces observations concordent 

parfaitement avec celles qui ont été faites pour le modèle de l’éprouvette en traction. 

 

Figure 4.7 (a) Résultats des courbes de la charge en fonction de la flèche pour une taille de 

maillage de 25 𝑚𝑚 (série 1) b) Résultats des courbes de la charge en fonction de la flèche pour 

une taille de maillage de 12,5 𝑚𝑚 (série 2) 

Le Tableau 4.3 récapitule les résultats de moyennes et de COV en fonction de la taille de maillage. 

Effectivement, ce dernier confirme la tendance mise en avant par les courbes de la Figure 4.7 : le 

coefficient de variation augmente avec la taille des éléments.  

Par ailleurs, le Tableau 4.3 présente le coefficient de variation de 𝑊𝐸 total (incluant la partie 

élastique). Le COV diminue avec la taille des éléments utilisés. L’explication derrière ce constat 

reste néanmoins à échafauder.  

Tableau 4.3 Moyennes et coefficients de variation de la charge maximale 𝑅𝑚𝑎𝑥 pour différentes 

tailles de maillage 

Taille de maillage (𝒎𝒎) 𝑹𝒎𝒂𝒙
̅̅ ̅̅ ̅̅ ̅(𝒌𝑵) 𝒄𝒐𝒗(𝑹𝒎𝒂𝒙) 𝒄𝒐𝒗(𝑾𝑬) 

𝟐𝟓 3,2 4,4% 9% 

𝟏𝟐, 𝟓 3,4 0,7% 4,4% 

 

D’un point de vue purement probabiliste, ceci pourrait s’expliquer par le fait que le nombre 

d’éléments augmente avec la diminution de la taille de maillage. Ainsi, la distribution obtenue avec 

une taille de maillage valant 12,5 𝑚𝑚 (série 2) est d’autant plus proche de la distribution théorique 

(en raison du nombre d’éléments plus élevé), ce qui a pour effet la réduction de la dispersion entre 

les différentes analyses de la série. Par ailleurs, la tendance observée pour la variation de la 
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dispersion de la charge maximale des poutres en flexion 3 points est similaire à celle constatée pour 

l’énergie de fissuration des éprouvettes en traction étudiées dans le Chapitre 3. 

On présume que la relation entre le coefficient de variation en entrée et le coefficient de variation 

en sortie est linéaire, à l’identique du modèle de l’éprouvette en traction présenté dans le Chapitre 

3.  

Afin de vérifier la cohérence de ce modèle présupposé, deux séries d’essais différentes sont 

étudiées. Tout d’abord, la série notée 1 dans le Tableau 4.4 désigne le modèle avec une taille de 

maillage égale à 25 𝑚𝑚, celle-ci sera prise comme série de référence, et donc le COV obtenu en 

sortie correspond au coefficient que l’on aurait obtenu expérimentalement, d’après l’hypothèse 3 

du paragraphe précédent. 

D’après l’équation (3.13), 
𝑎(12.5,𝑆,𝐵𝑅𝐹70−80𝑘𝑔)

𝑎(25,𝑆,𝐵𝑅𝐹70−80𝑘𝑔)
=

12,5

25
. Il faudrait donc introduire un COV deux fois 

plus important pour le modèle avec un maillage de 12,5 𝑚𝑚 afin d’obtenir une dispersion identique 

à celle des analyses réalisées avec des éléments de 25 𝑚𝑚.  

Ce résultat est confirmé par le Tableau 4.4. En effet, pour un 𝐶𝑂𝑉𝑒𝑛𝑡𝑟é(𝑚 = 12,5) ≈

2 × 𝐶𝑂𝑉𝑒𝑛𝑡𝑟é(𝑚 = 25), une valeur de 𝐶𝑂𝑉𝑠𝑜𝑟𝑡𝑖𝑒 environ identique est obtenue pour les deux tailles 

de maillage (séries 1 et 3). 

Tableau 4.4 Moyennes et coefficients de variation en entrée et sortie de la charge maximale pour 

les trois séries d’analyses 

 Série 1 (section 

𝟒𝟎𝟎 × 𝟐𝟎𝟎) 

(m=25 mm) 

Série 2 (section 

𝟓𝟎 × 𝟐𝟎𝟎) 

(m=12,5 mm) 

Série 3 (section 

𝟓𝟎 × 𝟐𝟎𝟎) 

(m=12,5 mm) 

Gf moyen en entrée (𝒆𝒏 𝑵/𝒎𝒎𝟐) 4,6 4,6 4,6 

𝑹̅𝒎𝒂𝒙 (𝒆𝒏 𝒌𝑵) 3,2 3,5 3,3 

Coefficient de variation de Gf en entrée 20% 20% 40% 

𝒄𝒐𝒗(𝑹𝒎𝒂𝒙) 4,4% 0,7% 3,9% 

𝒄𝒐𝒗(𝑾𝑬) 9% 4,4% 14% 

 

La série numéro 3 met en avant le fait qu’il est possible de s’affranchir de l’influence de la taille 

de maillage sur le coefficient de variation obtenu en sortie en modulant le COV entré à l’aide du 

modèle énoncé dans les paragraphes précédents (voir le Tableau 4.4). 
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4.1.4 Analyse des patrons de fissuration  

La Figure 4.8 présente les patrons de fissuration obtenus pour la poutre avec un maillage de taille 

12,5 𝑚𝑚. Afin de pouvoir capturer les différentes fissures, il a fallu déterminer la fenêtre de 

valeurs d’ouvertures de fissures que l’on souhaitait observer. Pour ce faire, l’intervalle inférieur a 

été fixé à 0 et l’intervalle supérieur à une valeur qui est égale à 
0,1

𝑚
 (avec m la taille du maillage en 

mm). En effet, l’œil humain ne peut pas détecter de fissures dont l’ouverture est inférieure à 

0,1 𝑚𝑚. Ce choix-ci a également été fait dans toutes les sections suivantes où les patrons de 

fissuration ont été analysés. 

Premièrement, il existe une variabilité de ces patrons-là inhérente au caractère aléatoire de 

l’analyse. En effet, les coordonnées de la courbe post-pic des différents points d’intégration sont 

soumises à une loi lognormale. Ainsi, l’emplacement des éléments faibles au sein de la poutre, 

ceux possédant une énergie de post-fissuration plus basse, diffère d’une analyse à une autre, d’où 

les différences des patrons mises en avant par la Figure 4.8. Par ailleurs, il est important de 

mentionner que ces captures ont été réalisées au dernier incrément de temps. 

 

Figure 4.8 Différents patrons de fissurations obtenus pour la poutre avec un maillage de taille 

12,5 𝑚𝑚  
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La Figure 4.9 montre les différentes courbes de charge en fonction de la flèche pour la poutre avec 

des éléments de taille 12,5 𝑚𝑚. 

 

Figure 4.9 Résultats des courbes de la charge en fonction de la flèche pour une taille de maillage 

de 12,5 𝑚𝑚  

Il est possible d’établir un lien de corrélation entre le comportement en post-pic des poutres pour 

chacune des analyses et le nombre de macrofissures visibles sur la Figure 4.8. Sur cette figure, les 

éléments colorés en rouge possèdent une ouverture de fissure de l’ordre du dixième de millimètre 

pouvant être considérés comme une macrofissure, les éléments dans les tons verts possèdent quant 

à eux une ouverture de l’ordre du millième de millimètre pouvant être considérés comme des 

microfissures.   

Les Figure 4.8 (a) et (b) correspondent respectivement aux poutres des analyses 3 et 10 dont les 

courbes de charge en fonction de la flèche sont représentées dans la Figure 4.9. Ces deux poutres 

possèdent relativement peu de macrofissures comparées aux deux autres vignettes (c) et (d) 

correspondant respectivement aux analyses 5 et 4. Comme le met en exergue la Figure 4.9, les 

poutres présentant le plus de multi-fissuration au dernier incrément de l’analyse sont celles qui 

possèdent une meilleure résistance et ductilité post-pic. 

Cette tendance est également observée pour les patrons montrés à la Figure 4.10, la seule différence 

avec les poutres précédentes est la taille des éléments qui est de 25 𝑚𝑚 cette fois-ci. 
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Figure 4.10 Différents patrons de fissurations obtenus pour la poutre avec un maillage de taille 

25 𝑚𝑚 

Les poutres (b) et (d) de la Figure 4.10 sont celles qui possèdent le nombre le moins élevé de 

macrofissures. Ces dernières correspondent respectivement aux analyses 2 et 9 de la Figure 4.5 (b) 

qui démontrent un comportement plus fragile que les analyses 1 et 3 qui correspondent aux patrons 

(a) et (c) respectivement.  

Ainsi, d’après toutes les observations mises en avant, il est possible d’établir un lien clair entre la 

multi-fissuration d’une poutre en BRF et entre sa résistance. Cette conclusion semble par ailleurs 

être validée pour les deux tailles de maillage utilisées dans ce chapitre.  

4.2 Modèle de deux poutres croisées soumises à la flexion trois points  

4.2.1 Présentation du modèle  

Ce paragraphe présente le modèle des poutres croisées soumises à de la flexion 3 points. La Figure 

4.11 présente la géométrie de celui-ci tel que modélisé dans ABAQUS. 
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Figure 4.11 Modélisation de la poutre croisée en flexion 3 points sur ABAQUS 

Des propriétés de matériau identiques à la section précédente sont utilisées. Par ailleurs, l’unique 

taille de maillage utilisée dans ces analyses est égale à 25 𝑚𝑚. 

Les conditions aux frontières (voir la Figure 4.1), le déplacement imposé, les différentes 

mensurations (section et portée) ainsi que le type de maillage sont également identiques au modèle 

précédent de la poutre en flexion 3 points.  

4.2.2 Analyse des résultats  

La Figure 4.12 montre les résultats des courbes de charge en fonction de la flèche pour les poutres 

croisées. Cette dernière serait à comparer avec la Figure 4.5 (b). En évaluant les allures des courbes 

présentes sur ces deux figures, il est possible d’en déduire que les poutres croisées présentent une 

plus faible dispersion au niveau du pic de charge maximale par rapport au modèle de la poutre 

simple. 
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Figure 4.12 Résultats des courbes de la charge en fonction de la flèche pour une taille de maillage 

de 25 𝑚𝑚 

Cette tendance est confirmée par les résultats du Tableau 4.5. En effet, le COV obtenu en sortie de 

la série d’analyses des poutres croisées est environ deux fois moins élevé que celui de la série 

d’analyses de la poutre « simple ». En ce qui concerne la moyenne, celle obtenue en sortie du 

modèle des poutres croisées est environ deux fois plus élevé, ce qui semble concorder avec la 

géométrie de la structure étudiée. 

Tableau 4.5 Moyennes et coefficients de variation en entrée et sortie de la charge maximale pour 

les deux modèles : poutre simple et poutres croisées 

 𝑹𝒎𝒂𝒙
̅̅ ̅̅ ̅̅ ̅ (kN) 𝒄𝒐𝒗(𝑹𝒎𝒂𝒙) 

Poutre simple 3,2 4,4% 

Poutres croisées 6,3 2,5% 

 

Ainsi, il est clair d’après ces résultats que l’augmentation de l’hyperstaticité favorise la 

redistribution des efforts et permet donc de diminuer la dispersion de la réponse structurale. 

4.2.3 Analyse des patrons de fissuration  

Comme le montre la Figure 4.13, il existe une variabilité des patrons de fissuration inhérente à la 

nature probabiliste des analyses lancées sur ABAQUS. En revanche, cette fois-ci il est difficile de 

distinguer les différents degrés de fissuration atteints lors du dernier incrément (flèche atteinte de 
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15 mm). Ceci pourrait s’expliquer par la variabilité beaucoup moins importante des courbes de 

charge en fonction de la flèche, comme le montre la Figure 4.12. En effet les portions de courbes 

en post-pic semblent beaucoup plus resserrées. 

 

Figure 4.13 Différents patron de fissuration obtenus pour les poutres croisées avec un maillage de 

taille 25 𝑚𝑚 

Néanmoins, il est possible de dire que le modèle montré à la Figure 4.13 (d) correspondant à 

l’analyse 2 sur la Figure 4.12 présente le plus grand nombre de macrofissures. Il s’agit également 

de l’analyse présentant le meilleur comportement en termes de résistance et de ductilité, comme le 

montre la Figure 4.12. 

Cette observation confirme encore une fois la tendance dégagée dans la section 4.1.5 : la multi-

fissuration est directement liée à la résistance-ductilité de l’élément structural.   

4.3 Modèle de la dalle simplement appuyée  

4.3.1 Présentation du modèle  

Les mêmes propriétés de matériaux des sections précédentes sont utilisées. 
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Une condition de contact sans frottement est imposée entre la dalle et la plaque d’assise du dessous 

pour permettre aux coins de daller de se soulever. Un déplacement de 25 𝑚𝑚 est imposé au centre 

de la plaque supérieure (voir la Figure 4.14). Les autres conditions aux limites sont montrées sur 

la même figure. Les différentes mensurations des éléments composant le modèle sont présentées à 

la Figure 4.15. 

 

Figure 4.14 Modélisation de la dalle simplement appuyée sur ABAQUS 

 

Figure 4.15 Dimensions des différents éléments constituant le modèle 
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4.3.2 Analyse des résultats  

La Figure 4.16 montre en avant les courbes de la charge en fonction de la flèche pour la dalle 

simplement supportée. En comparaison avec les résultats obtenus pour les modèles de poutre, il est 

possible d’en déduire que le modèle de la dalle présente une variabilité nettement inférieure en ce 

qui concerne le pic de charge maximale. 

 

Figure 4.16 Résultats des courbes de la charge en fonction de la flèche pour une taille de maillage 

de 25 𝑚𝑚 

Cette tendance est confirmée par les résultats du Tableau 4.6, en effet, le COV obtenue en sortie 

de la série d’analyses de la dalle est environ quinze fois moins élevé que celui de la série d’analyses 

de la poutre « simple » et environ huit fois moins élevé que celui des poutres croisées. 

 

Tableau 4.6 Moyennes et coefficients de variation de la charge maximale pour tous les modèles 

 𝑹𝒎𝒂𝒙
̅̅ ̅̅ ̅̅ ̅ (kN) 𝒄𝒐𝒗(𝑹𝒎𝒂𝒙)  

Poutre simple 3,2 4,4% 

Poutres croisées 6,3 2,5% 

Dalle simplement supportée 435,9 0,3% 
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Les résultats de dalle confirment ainsi que l’augmentation de l’hyperstaticité permet de diminuer 

la dispersion de la réponse structurale. 

4.3.3 Analyse du patron de fissuration  

À l’opposé des modèles de la poutre simple et des poutres croisées, il a été difficile de distinguer 

l’effet de variabilité sur le patron de fissuration de dalle. Cette observation semble être en accord 

avec la dispersion très faible des courbes de la charge en fonction de la flèche (voir la Figure 4.16). 

 

Figure 4.17 Patron de fissuration obtenu pour la dalle avec un maillage de 25 𝑚𝑚 

Par ailleurs, la Figure 4.18 et la Figure 4.19 présentent respectivement le déplacement que subit la 

dalle et les réactions exercées par la plaque support à l’issue de l’analyse (déplacement imposé qui 

vaut 25 𝑚𝑚). 
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Figure 4.18 Déformée de la dalle 

 

 

Figure 4.19 Dalle avec les vecteurs de force de contact 
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4.4 Calcul des facteurs de résistance  

Une fois la variabilité de la réponse structurale connue (COV (𝑅𝑚𝑎𝑥)), il est possible de calculer le 

facteur de sécurité du coté résistance, en utilisant le principe des approches semi-probabilistes 

décrites dans le chapitre 2 (Niveau 1 de la Figure 2.19).  

Le facteur de sécurité du coté résistance 𝛾𝑐 est utilisé pour calculer la valeur de « conception » 𝑅𝑑 

à partir de la résistance moyenne de la structure 𝑅𝑚. Dans le cas des analyses faites par les éléments 

finis, on peut considérer l’approximation :  𝑅𝑚 ≈ 𝑅𝑚𝑎𝑥. Le calcul du facteur de sécurité nécessite 

une donnée issue du code, et qui correspond à la probabilité de défaillance maximale acceptable 

𝑝𝑓 𝑚𝑎𝑥 ou à l’indice de fiabilité minimum 𝛽𝑚𝑖𝑛 requis.  

Le paramètre 𝑅 est processus aléatoire qui représente la résistance réelle de la structure, il est 

fonction de nombreuses variables aléatoires d’entrée. Dans le cadre de ce projet, 𝑅 dépend 

uniquement de 𝐺𝑓 qui suit une distribution lognormale. 

L’équation de base utilisée dans la conception s’écrit : 

𝑅𝑑 ≥ 𝑈𝑑 (4.1) 

En supposant que 𝑅 et 𝑈 suivent une loi lognormale et que les coefficients de variation sont 

relativement petits (inférieurs à 30%), MacGregor (1976) a réécrit l’équation (4.1) sous la forme :  

𝑅𝑚𝑒−𝛽𝛼𝑉𝑅 ≥ 𝑈𝑚𝑒𝛽𝛼𝑉𝑈 (4.2) 

avec 𝛼 la fonction de séparation,  𝛼 = 0,75 ± 0,06. Dans le cadre de cette étude, 𝛼 est pris égal à 

0,80. Le facteur de résistance globale est alors égal à :  

𝛾𝑐 = 𝑒−𝛽𝛼𝑉𝑅 (4.3) 

On considère un indice de fiabilité 𝛽𝑚𝑖𝑛 de 3,72 (ce qui correspond à une probabilité 𝑝𝑓𝑚𝑎𝑥 =

10−4, typique pour les ruptures ductiles d’éléments). Il est possible alors de calculer les facteurs 

de résistance pour les différents éléments structuraux considérés dans les sections précédentes.  Le 

Tableau 4.7 résume les résultats. 
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Tableau 4.7 Valeurs des coefficients de variation de la résistance et du coefficient global de 

résistance en fonction du modèle considéré 

Modèle Coefficient de variation en sortie 

𝑽𝑹 (en %) 

𝜸𝒄 

Matériau (BRF70-80kg) 20% 0,55 

Poutre simple 3,9% 0,89 

Poutres croisées 2,5% 0,93 

Dalle simplement appuyée 0,3% 0,99 

 

À partir du Tableau 4.7, il est possible de tirer les conclusions suivantes :  

- le fait de se baser sur la dispersion du matériau et non sur celle de la structure étudiée 

introduit un conservatisme assez important au niveau du coefficient de résistance global 𝛾𝑐; 

- 𝛾𝑐 augmente avec le degré d’hyperstaticité.  
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CHAPITRE 5 CONCLUSION 

5.1 Rappel des objectifs  

Les objectifs du mémoire étaient de : 

- déterminer les effets de la variabilité des caractéristiques mécaniques du béton fibré sur le 

comportement de certains éléments structuraux, ainsi que de mettre en œuvre les lois 

probabilistes qui modéliseraient cette variabilité; 

- coder et intégrer la sous-routine probabiliste à EPM3D; 

- mettre en œuvre une nouvelle méthodologie de modélisation probabiliste rationnelle et 

simple pour les structures en BRF en utilisant l’analyse non linéaire par éléments finis; 

- en déduire l’influence de l’hyperstaticité sur les facteurs de résistance des éléments 

structuraux en BRF. 

5.2 Conclusions  

Les conclusions de ce rapport de mémoire sont scindées en trois parties : le bilan de la sous-routine 

probabiliste d’EPM3D, les conclusions relatives à l’analyse de la dispersion en sortie en fonction 

de la variabilité renseignée en entrée, et enfin les conclusions relatives aux divers exemples 

d’application et à la méthode d’estimation des facteurs de résistance. 

5.2.1 Sous-routine probabiliste d’EPM3D 

Les différentes conclusions tirées par rapport au développement de la sous-routine probabiliste 

d’EPM3D sont les suivantes.  

- Le modèle développé qui est basé sur une approche statistique du comportement physique 

du béton s’intègre parfaitement au code d’EPM3D préexistant.  

- Cette approche probabiliste pourrait être appliquée aux bétons ordinaires (en faisant varier 

𝑓𝑡
′ et 𝑓𝑐

′) ou aux bétons fibrés (en prenant l’énergie de fissuration 𝐺𝑓 comme variable 

aléatoire). Ce travail de recherche s’est focalisé sur les BRF et l’ensemble des conclusions 

énoncées au travers des points suivants sont reliées à ces derniers. 
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- Cette sous-routine parvient à reproduire de manière très précise les lois probabilistes 

théoriques : ceci a pu être vérifié par le biais du code FORTRAN directement exécuté dans 

Microsoft Visual Basic, et également sur un modèle de cube et d’éprouvette en traction sur 

ABAQUS. 

- L’utilisation de cette sous-routine demeure relativement simple pour l’utilisateur puisque 

cette dernière nécessite uniquement : (1) la moyenne et le COV de l’énergie de fissuration 

du BRF étudié qui peuvent être tirés des essais effectués lors d’une campagne 

expérimentale et (2) l’application du modèle permettant de relier la dispersion fournie en 

entrée et celle obtenue en sortie. 

- L’étude de convergence de la moyenne et du COV obtenus en sortie a permis de mettre en 

avant la tendance suivante : (1) le seuil minimal d’analyses pour converger varie en fonction 

de la taille des éléments finis utilisés ; (2) les spécimens maillés à l’aide d’éléments de plus 

petite taille convergent plus rapidement, autrement dit, le seuil minimal d’analyses requises 

pour assurer la convergence baisse avec la taille du maillage; (3) la convergence est atteinte 

plus rapidement pour la moyenne que pour le coefficient de variation. 

- Le modèle développé est probabiliste, néanmoins, une seule simulation demeure 

déterministe. Il est donc requis d’effectuer un grand nombre de simulations pour faire 

ressortir l’aspect probabiliste. La sous-routine doit ainsi être utilisée en conjonction avec la 

méthode simulation de Monte-Carlo, le nombre d’analyses requises dépend du seuil de 

convergence qui, à son tour, dépend de la taille de maillage, tel qu’évoqué précédemment. 

- La corrélation entre les éléments adjacents n’a pas été considérée. En effet, cette hypothèse 

a été rejetée car le but du projet était de modéliser la variabilité à l’échelle macroscopique 

et non méso ou microscopique. Ainsi, l’introduction d’une fonction et d’une longueur 

d’autocorrélation ne semblait pas nécessaire.  

5.2.2 Analyse de la variabilité obtenue  

Tout d’abord, il semble important de rappeler que l’ensemble des conclusions tirées dans ce 

paragraphe se basent sur un BRF70-80kg et sur la campagne expérimentale réalisée par Sébastien 

Reygner. Les constats qui ont pu être tirés de l’analyse de la variabilité obtenue en sortie peuvent 

être résumés au travers des points suivants. 
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- Pour le modèle de l’éprouvette en traction, la moyenne de l’énergie de fissuration obtenue 

en sortie est égale à celle fournie en entrée. Elle est par ailleurs indépendante de la taille de 

maillage employée.  

- En ce qui concerne le coefficient de variation, la valeur obtenue en sortie diffère de celle 

introduite en entrée. De plus, cette dernière est fonction de la taille des éléments finis. En 

effet, pour une valeur identique du COV fournie en entrée, la valeur obtenue en sortie 

augmente avec la taille des éléments. 

- À partir de l’analyse du lien de corrélation entre le COV entré et le COV obtenu pour le 

modèle des éprouvettes en traction, une loi a pu être établie. Il s’agit d’une fonction affine 

reliant ces deux paramètres dont la pente dépend de la taille de maillage employée, de la 

section tendue et du matériau étudié. Ce modèle ainsi établi permet premièrement de 

s’affranchir de la dépendance à la taille des éléments et deuxièmement de reproduire la 

variabilité expérimentale obtenue grâce à la campagne expérimentale de Reygner. 

- La validité de ce modèle établi a été vérifiée grâce à un exemple d’application sur des 

poutres en flexion trois points. L’application de ce dernier a permis de reproduire la 

variabilité exacte du matériau et ainsi d’obtenir la dispersion qui aurait été obtenue si une 

campagne expérimentale avait été réalisée pour ces poutres soumises à la flexion. 

- L’influence de la taille des poutres a pu être étudiée : plus la taille de la poutre est 

importante, plus le coefficient de variation de la charge maximale atteinte est petit et donc 

plus la dispersion est faible. 

- Les analyses effectuées sur un modèle de poutres croisées et de dalle simplement appuyée 

ont permis de montrer que l’augmentation du degré d’hyperstaticité engendre une 

diminution de la dispersion de la réponse structurale.   

- Une variabilité des patrons de fissuration a été observée pour les modèles de poutres simples 

et de poutres croisées. Par ailleurs, l’analyse de ces derniers a permis d’établir un lien clair 

entre la capacité de multi-fissuration des structures et entre leur ductilité. 

- À l’opposé, aucune variabilité au niveau des patrons de fissuration n’a été relevée pour les 

éprouvettes en traction et pour les dalles simplement appuyées. Pour le modèle des os en 

traction, ce constat est attribuable aux conditions aux limites qui ne permettaient pas 
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d’imposer un déplacement uniforme tout au long du spécimen, ce gradient de déplacement 

causait une localisation de la fissure au niveau du changement de section, car c’est à cet 

endroit que le déplacement imposé était le plus important. Pour les dalles, l’hyperstatisme 

de la structure diminue considérablement la dispersion de la réponse en sortie, ce qui 

confère un aspect déterministe au phénomène de localisation des macrofissures, et ce, 

malgré la variabilité des propriétés mécaniques renseignées en entrée.  

5.2.3 Méthode d’estimation des facteurs de sécurité  

L’utilisation des facteurs de résistance dans les codes suppose implicitement une certaine 

distribution de la résistance, ce qui ne donne qu’une marge de sécurité nominale.  

Un cadre de fiabilité découlant de l’approche probabiliste développée dans le cadre de ce mémoire 

a été introduit pour la conception des structures en BRF. Il fournit une méthodologie pour 

l’estimation des facteurs de sécurité pour chaque situation de conception (ici pour les poutres 

simples, poutres croisées et dalles). Les résultats d’un nombre d’analyses non linéaires 

probabilistes ont été utilisés en conjonction avec la procédure développée dans le Chapitre 3 ainsi 

que la méthode de Monte Carlo. 

La méthodologie présentée dans le présent document peut être facilement incorporée dans les futurs 

codes de conception. Elle ouvre la voie à l’identification de programmes existants et futurs qui 

permettent de passer du matériau aux échelles structurelles et servent à déterminer la variabilité de 

la réponse structurale et les coefficients de sécurité qui en découlent. En outre, le couplage des 

connaissances entre les domaines expérimentaux et analytiques, à l’échelle des matériaux et des 

structures, peut contribuer à optimiser la conception des structures dans le contexte des 

préoccupations croissantes en matière de sécurité et de développement durable. 

5.3 Recommandations  

Les recommandations qui pourraient être faites pour la poursuite de ce projet sont résumées au 

travers des points suivants. 

1. Le modèle de calibration ainsi que les divers exemples d’application ont été réalisés pour 

un BRF70-80kg. Il faudrait étudier l’impact de changement du matériau (plusieurs BRF) 

sur le modèle de calibration développé dans le Chapitre 3 ainsi que sur les différentes 
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conclusions qui ont été tirées. Il serait intéressant d’étudier un BFUP au lieu d’un BRF et 

d’analyser l’influence d’un tel changement.  

2.  Les conditions aux limites de l’éprouvette en traction doivent être modifiées afin de 

supprimer le gradient de déplacement et pouvoir observer la variabilité des patrons de 

fissuration.  

3. Les différentes variabilités obtenues pour les poutres ainsi que les dalles doivent être 

comparées aux dispersions obtenues expérimentalement (Bastien, 2002; Bélanger, 2000; 

De Broucker, 2013; De Montaignac de Chauvance, 2011) afin de prouver la validité du 

modèle probabiliste proposé dans le cadre de ce mémoire. 

4. La variabilité de la matrice cimentaire devrait être prise en compte en considérant 𝑓𝑡
′ et 𝐸 

comme étant aléatoires. En effet, dans le cadre de ce projet de recherche, les coordonnées 

des deux premiers points de la portion post-pic de la courbe de contrainte en fonction de 

l’ouverture de fissure ont délibérément été considérées comme étant fixes.  

5. Le dédoublement des faisceaux de courbes observé pour un maillage de taille 25 𝑚𝑚, qui 

résulte d’un problème purement numérique, pourrait être résolu en imposant un unique plan 

de fissuration.  

6. La variabilité des ouvertures de fissures en post-pic devrait également être prise en en 

compte. Cette dernière a été programmée mais les résultants ne sont pas probants pour le 

moment. 

7. Les lois probabilistes adoptées pour modéliser l’hétérogénéité du BRF ne tiennent pas 

compte du mode de fabrication, les effets de parois (qui orientent les fibres) ainsi que les 

éventuels obstacles (qui créent des zones sans fibres) ont été négligés. Il serait intéressant 

de les considérer et d’analyser leur impact sur la variabilité de la réponse structurale obtenue 

en sortie. 

8. L’influence de la géométrie des éléments (hexaédriques vs tétraédriques) sur la dispersion 

de la réponse doit être étudiée de manière plus approfondie. 
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ANNEXE A  CODE DE LA SOUS-ROUTINE PROBABILISTE D’EPM3D 

Cette annexe présente le code de la sous-routine probabiliste qui a été développée et intégrée dans 

EPM3D. 
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ANNEXE B  ANALYSE DES PATRONS DE FISSURATION DE 

L’ÉPROUVETTE SOLLICITÉE EN TRACTION  

Cette sous-section comprend une analyse des différents patrons de fissurations observés pour les 

analyses probabilistes. 

Premièrement, en analysant les courbes de contraintes en fonction du déplacement pour les 

éprouvettes possédant des éléments de taille 25 𝑚𝑚 (voir la Figure B.1), il est possible de constater 

la présence de deux fuseaux distincts de courbes, et ce indépendamment de la valeur des paramètres 

d’entrée (moyenne et coefficient de variation). Il est par ailleurs important de noter que l’ajout d’un 

amortissement n’a pas d’influence sur ces deux faisceaux de courbes. 

 

Figure B.1 Courbes de la contrainte en fonction du déplacement pour un os en traction soumis à 

une loi probabiliste lognormale (maillage de 25 𝑚𝑚) 

 

Cette distinction nette entre deux faisceaux de courbes est également présente pour les os en 

traction possédant des éléments de taille 16 𝑚𝑚 (voir la Figure B.2).  
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Figure B.2 Courbes de la contrainte en fonction du déplacement pour un os en traction soumis à 

une loi probabiliste lognormale (maillage de 16 𝑚𝑚) 

Pour les éléments de taille 10 𝑚𝑚, la séparation entre les deux faisceaux de courbes est également 

présente, comme le montre la Figure B.3. 

 

Figure B.3 Courbes de la contrainte en fonction du déplacement pour un os en traction soumis à 

une loi probabiliste lognormale (maillage de 10 𝑚𝑚) 
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Il est possible de noter que l’écart entre ces deux faisceaux s’amoindrit à mesure que la taille du 

maillage diminue, jusqu’à disparaître totalement pour les éléments finis mesurant 5 𝑚𝑚, tel que le 

montre la Figure B.4. 

 

 

Figure B.4 Courbes de la contrainte en fonction du déplacement pour un os en traction soumis à 

une loi probabiliste lognormale (maillage de 5 𝑚𝑚) 

Afin de pouvoir identifier l’origine de ces deux fuseaux de courbes, les patrons de fissurations des 

différentes éprouvettes ont été examinés. Nous en sommes parvenus aux analyses suivantes : 

Le faisceau de courbes supérieur, autrement dit celui qui possède en moyenne les énergies de 

fissuration les plus élevées correspond à type de fissuration dit « oblique ». En effet, et comme le 

montrent les Figures B.5 (a) et B.6 (a), les éléments qui fissurent ne se situent pas sur la même 

rangée mais sur deux lignes différentes. 

Le second faisceau, celui qui possèdent les énergies de fissuration les plus faibles correspond à un 

patron de fissuration dit « droit ». Dans ce cas-ci, les éléments qui fissurent se situent sur la même 

rangée comme le mettent en avant les Figures B.5 (b) et B.6 (b). 
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Figure B.5 Patron de fissuration pour un os en traction avec un maillage de 25 𝑚𝑚 : (a) 

Fissuration oblique (b) Fissuration droite 

Seules les captures des éprouvettes avec des éléments de taille 25 et 10 𝑚𝑚 sont montrés mais les 

os avec des éléments finis de taille 16 𝑚𝑚 exhibent ces deux types de patrons de fissurations 

également à l’opposé des éléments de taille 5 𝑚𝑚, qui eux ne fissurent que sur une rangée 

uniquement. Et c’est pour cette raison qu’il n’existe qu’un seul fuseau de courbes de contrainte-

déplacement pour ces éléments. 

 

 

Figure B.6 Patron de fissuration pour un os en traction avec un maillage de 10 𝑚𝑚 : (a) 

Fissuration oblique (b) Fissuration droite 
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La Figure B.7 met en exergue les ratios entre la moyenne obtenue en sortie des simulations et la 

moyenne expérimentale visée en fonction de la taille des éléments utilisés pour mailler l’os. Les 

patrons de fissuration obliques possèdent un ratio des moyennes plus élevé, ceci concorde 

parfaitement avec l’allure des courbes de contrainte en fonction de la déformation. En effet, le 

fuseau des courbes supérieur correspond aux fissures obliques, d’où le ratio de moyennes supérieur. 

Une analyse analogue peut être faite pour les os possédant une fissure droite, le fuseau des courbes 

de contrainte-déformation est plus bas, ce qui explique le ratio des moyennes moins élevé.   

 

Figure B.7 Ratio entre la moyenne de l’énergie de fissuration calculée et la moyenne 

expérimentale selon le type de fissuration 

La Figure B.8 présente le ratio entre les coefficients de variation obtenus en sortie des simulations 

et le coefficient de variation expérimental visé en fonction de la taille des éléments de maillage. Il 

y a deux nuages de points distincts pour chacun des deux types de patrons de fissuration. Par 

ailleurs, les ratios des coefficients de variation pour ces deux types de fissuration sont moins élevés 

que lorsqu’on considère l’ensemble des courbes. Ceci semble logique car la dispersion d’un fuseau 

de courbes à la fois est inférieure à la dispersion de l’ensemble des courbes. 
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Figure B.8 Ratio entre le coefficient de variation de l’énergie de fissuration calculé et le 

coefficient de variation expérimental selon le type de fissuration 

En outre, il est intéressant de constater qu’étant donné que les courbes de contraintes en fonction 

du déplacement se scindent en deux fuseaux distincts correspondant à deux types de patrons de 

fissurations, il est possible de séparer les valeurs des énergies de fissurations en deux populations 

distinctes également. Ainsi, l’unique distribution lognormale qui est renseignée en entrée donne 

lieu à une distribution bimodale, chacun des modes est constitué d’une loi lognormale possédant 

une moyenne et un écart-type ou COV différents des paramètres d’entrée de la loi initialement 

entrée. La Figure B.9 présente la distribution bimodale de l’énergie de fissuration pour le maillage 

de taille 25 𝑚𝑚. 
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Figure B.9 Distribution bimodale de l’énergie de fissuration (maillage de 25 𝑚𝑚) 

 

La Figure B.10 met également en avant la distribution bimodale pour un maillage de 10 𝑚𝑚. Il est 

important de noter qu’un resserrement des deux fonctions de densités de probabilités 

représentatives des deux types de fissurations est observé pour les éléments de 10 𝑚𝑚. Cette 

observation concorde bien avec les constats faits pour les courbes de contrainte en fonction du 

déplacement : l’écart entre les deux fuseaux de courbes diminue à mesure que la taille des éléments 

finis diminue.   

 

Figure B.10 Distribution bimodale de l’énergie de fissuration (maillage de 10 𝑚𝑚) 
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Il serait intéressant de réaliser des analyses supplémentaires en ce sens afin de déterminer 

l’influence de la taille du maillage sur la distribution bimodale obtenue en sortie. 

D’autre part, en analysant l’emplacement des fissures sur les os, il a été constaté que la rupture se 

produisait dans la plupart des cas (90% du temps) au même endroit (au niveau du changement de 

section). Cette observation n’étant pas en concordance avec le caractère aléatoire des propriétés 

mécaniques au sein des os instauré grâce à la sous-routine probabiliste, une investigation a été 

mené sur des spécimens prismatiques. Le choix s’est porté sur des spécimens prismatiques afin 

d’éliminer l’effet de concentration de contraintes induit par le changement de section qui pourrait 

rendre déterministe l’emplacement de la fissure. Bien que la forme des éprouvettes ait été modifiée, 

les conditions aux frontières ainsi que les paramètres de la loi du béton demeurent inchangés par 

rapport au modèle initial de l’os. 

Dans ce qui suit, une procédure a été adoptée afin de vérifier si la fissuration se produit bien à 

l’endroit du minimum de l’énergie de fissuration. Sur la Figure B.11, une première prospection 

visuelle est réalisée. Pour cela, sur la Figure B.11 (a), les valeurs des énergies de fissuration sont 

affichées pour chacun des éléments, néanmoins, il est difficile de trouver l’emplacement du 

minimum de l’énergie afin de pouvoir le comparer avec l’emplacement de la fissure sur la Figure 

B.11 (b). 

 

Figure B.11 Prisme sollicité en traction : (a) Valeurs des énergies de fissuration initiales (b) 

Localisation de la fissure 
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Pour cette raison, les valeurs moyennes des énergies de fissuration ont été calculées par tranche et 

les résultats sont présentés dans le Tableau B.1.  Le minimum vaut 3,4 𝑁/𝑚𝑚 et est situé à la 

deuxième ligne en partant du haut. Pour ce prisme, la fissure se produit au niveau de la première 

ligne en partant du haut comme le montre la Figure B.11 (b). Ainsi, la fissuration ne se produit pas 

au niveau du minimum de l’énergie de fissuration. 

Tableau B.1 Valeurs de l’énergie de fissuration par tranche pour un prisme soumis à la traction 

Numéro de ligne (haut vers le bas) Moyenne Coefficient de variation 

𝟏 4,1 20 

𝟐 3,4 15,8 

𝟑 4,2 28 

𝟒 4,0 22 

𝟓 3,8 19 

𝟔 3,9 25 

𝟕 4,0 20 

𝟖 4,0 12 

𝟗 4,4 28 

𝟏𝟎 4,3 27 

𝟏𝟏 3,5 21 

𝟏𝟐 4,2 25 

 

Malgré le fait que la quasi-totalité des analyses présentaient des patrons de fissurations situés sur 

la ligne supérieure du prisme, certaines simulations se distinguaient par des fissures différentes. 

Dans ce qui suit, ces patrons ont été analysés afin d’étudier la relation entre l’endroit du prisme où 

la localisation de la fissure a lieu et l’emplacement de l’énergie de fissuration minimale. Pour ce 

faire, la démarche présentée plus haut a ainsi été reproduite. 

Pour le prisme présenté dans la Figure B.12, la localisation de la fissure a lieu au niveau de la 

deuxième ligne en partant du haut. Encore une fois, il n’est pas possible visuellement de déceler 

l’endroit du minimum d’énergie de fissuration. Pour cette raison, les moyennes des énergies ont 

été calculées par tranche et les résultats sont présentés dans le Tableau B.2. 
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Figure B.12 Prisme sollicité en traction : (a) Localisation de la fissure (b) Valeurs des énergies de 

fissuration initiales 

Le minimum de l’énergie de fissuration par tranche vaut 3,4 𝑁/𝑚𝑚 et est situé au niveau de la 

huitième ligne en partant du bas, ce qui ne concorde pas du tout avec la localisation de la fissure 

retournée à l’issue de l’analyse sur ABAQUS. 

Tableau B.2 Valeurs de l'énergie de fissuration par tranche pour un prisme soumis à la traction 

Numéro de ligne (haut vers le bas) Moyenne de l’énergie de fissuration Coefficient de variation 

𝟏 4,2 28% 

𝟐 4,2 23% 

𝟑 4,3 24% 

𝟒 3,6 14% 

𝟓 4,7 31% 

𝟔 4,4 26% 

𝟕 3,6 20% 

𝟖 3,4 31% 

𝟗 3,7 30% 

𝟏𝟎 3,5 28% 

𝟏𝟏 3,9 23% 

𝟏𝟐 4,0 21% 

 

La Figure B.13 (a) ci-dessous met en avant un autre patron de fissuration (la fissure semble être 

localisée au niveau de la cinquième ligne en partant du haut). Encore une fois, l’inspection visuelle 

des énergies de fissurations ne permet pas de repérer l’endroit où est localisé le minimum d’énergie 



147 

 

et il est donc impossible à partir de la Figure B.13 (b) de faire le lien entre la localisation de la 

fissure et les allocations aléatoires des énergies de fissuration. 

 

 

Figure B.13 Prisme sollicité en traction : (a) Valeurs des énergies de fissuration initiales (b) 

Localisation de la fissure 

Pour cette raison, le Tableau B.3 présente les moyennes de l’énergie de fissuration par tranche. Le 

minimum est situé au niveau de la quatrième ligne en partant du haut, ce qui ne concorde encore 

une fois pas avec l’emplacement de la macrofissure sur le prisme. 
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Tableau B.3 Valeurs de l’énergie de fissuration par tranche pour un prisme soumis à la traction 

Numéro de ligne (haut vers le bas) Moyenne de l’énergie de fissuration Coefficient de variation 

𝟏 5,4 38% 

𝟐 6 26% 

𝟑 4,85 34% 

𝟒 4,1 23% 

𝟓 5,1 12% 

𝟔 4,6 31% 

𝟕 5,8 37% 

𝟖 5,1 30% 

𝟗 4,9 15% 

𝟏𝟎 5,2 22% 

𝟏𝟏 5,2 33% 

𝟏𝟐 5,3 33% 

 

Cette procédure permettant de vérifier si la rupture se produit bien à l’endroit du minimum 

d’énergie de fissuration a également été suivie pour la seconde version de la sous-routine 

probabiliste. En effet, il s’agit de la version permettant d’intégrer une variabilité supplémentaire 

pour les ouvertures de fissures, en plus de celle des contraintes.  

À l’identique de la première version de la sous-routine probabiliste, la majorité des prismes 

présentaient une fissure située au niveau de la première ligne en partant du haut. La Figure B.14 

(a) met en exergue les valeurs des énergies de fissuration initialement allouée. Il n’est pas possible 

de détecter visuellement la localisation de la tranche possédant l’énergie de fissuration la plus 

basse. C’est pour cela que le Tableau B.4 présente les valeurs des moyennes des énergies de 

fissuration par tranche. 
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Figure B.14 Prisme sollicité en traction : (a) Valeurs des énergies de fissuration initiales (b) 

Localisation de la fissure 

 

Le minimum est localisé au niveau de la troisième et quatrième ligne en partant du haut et vaut 

3,5 𝑁/𝑚𝑚. Encore une fois, l’emplacement de ce minimum ne coïncide pas avec l’endroit où est 

localisé la macrofissure. 

Tableau B.4 Valeurs de l’énergie de fissuration par tranche pour un prisme à la traction 

Numéro de ligne (haut vers le bas) Moyenne de l’énergie de fissuration Coefficient de variation 

𝟏 4,0 14% 

𝟐 4,0 25% 

𝟑 3,5 23% 

𝟒 3,5 16% 

𝟓 4,8 49% 

𝟔 4,1 32% 

𝟕 4,3 16% 

𝟖 4,6 34% 

𝟗 4,0 31% 

𝟏𝟎 4,3 17% 

𝟏𝟏 4,7 27% 

𝟏𝟐 3,6 28% 
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Ainsi, d’après les résultats obtenus ci-dessus, il n’existe pas de lien de corrélation entre la 

localisation des différentes fissures et l’emplacement du minimum d’énergie. L’allocation des 

énergies de fissuration est aléatoire et suit une distribution lognormale, mais la localisation de la 

fissure semble être déterministe. Ceci s’explique en réalité par la nature des conditions aux 

frontières qui sont imposées à l’éprouvette. 

En effet, le déplacement imposé à la face supérieure de l’os crée un gradient de déplacement qui 

engendre un déplacement plus important au niveau de la partie supérieure de l’éprouvette (ou du 

prisme). Ceci engendre donc une localisation de la fissuration au niveau du changement de section 

dans la grande majorité des analyses.  

 

 

Figure B.15 Valeur du déplacement imposé à l’éprouvette en traction 
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ANNEXE C  APPROCHE ANALYTIQUE DE MODÉLISATION D’UN 

PRISME EN TRACTION SOUS MATLAB  

Cette section présente le programme préliminaire qui a été développé sur MATLAB dans le but de 

modéliser des prismes en BRF soumis à un effort de traction. Le prisme modélisé possède des 

mensurations qui demeureront constantes pour toutes les simulations : une hauteur de 300 𝑚𝑚, 

une largeur de 100 𝑚𝑚 et une épaisseur de 50 𝑚𝑚. Ces dimensions correspondent à celles des os 

testés au laboratoire de Structures de Polytechnique pour les BFUP mais aussi pour les BRF. 

C.1 Méthode par tranche  

La première méthode a été nommée méthode « par tranche » car celle-ci se base sur l’hypothèse 

suivante : la fissuration a lieu uniquement suivant des plans perpendiculaires à l’axe de chargement.  

C.1.1 Fonctionnalités  

Cette première approche sur MATLAB, appelée méthode par tranche, permet de réaliser les actions 

suivantes :  

1. subdivision du prisme en éléments de taille définie par l’utilisateur (25 𝑚𝑚, 10 𝑚𝑚 ou 

encore 5 𝑚𝑚); 

2. affectation des valeurs d’énergie de fissuration aux différents éléments du maillage suivant 

la distribution choisie (dans ce cas-ci la loi lognormale) et suivant les paramètres d’entrée 

de la loi (moyenne et écart-type); 

3. calcul du 𝐺̅𝑓,𝑡𝑟𝑎𝑛𝑐ℎ𝑒 : l’énergie de fissuration moyenne par tranche (voir la figure 3.25). 

4. renvoi de la valeur du minimum des 𝐺̅𝑓,𝑡𝑟𝑎𝑛𝑐ℎ𝑒, que l’on notera min(𝐺̅𝑓,𝑡𝑟𝑎𝑛𝑐ℎ𝑒) ; 

5. répétition des étapes 2, 3 et 4 𝑁 fois, un nombre fixé par l’utilisateur, afin d’obtenir une 

distribution des minimums des énergies de fissuration moyennes par tranche. 
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Figure C.1 Méthode de calcul des énergies de fissuration moyennes par tranche sur un échantillon 

prismatique 

C.1.2 But  

La nouvelle distribution des énergies de fissuration moyennes minimales par tranche 

min(𝐺̅𝑓,𝑡𝑟𝑎𝑛𝑐ℎ𝑒) obtenue grâce au code MATLAB possède des toutes nouvelles caractéristiques : 

une nouvelle moyenne et un nouvel écart-type (ou coefficient de variation) différents des 

paramètres de la loi d’entrée et éventuellement une nouvelle distribution (différente de la loi 

lognormale).  

Le but de cette analyse est donc de caractériser cette nouvelle variable aléatoire et de trouver le lien 

de corrélation reliant les paramètres initialement entrés et les paramètres obtenus en sortie du code 

MATLAB (voir la Figure C.2). 
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Figure C.2 But du code MATLAB développé  

Un second objectif visé par cette analyse est de trouver les valeurs à renseigner en entrée du code 

(moyenne 𝐺̅𝑓,𝑒𝑛𝑡𝑟é𝑒 et coefficient de variation  𝐶𝑂𝑉𝑒𝑛𝑡𝑟é𝑒) afin d’obtenir les valeurs visées par 

l’utilisateur en sortie, correspondant aux moyennes et coefficients de variation expérimentaux qui 

ont été obtenus lors de campagnes d’essais de traction directe sur des os par exemple.   

Généralement, la rupture pour un prisme en traction survient au niveau de la section la plus critique, 

et donc par conséquent celle possédant l’énergie de fissuration la moins élevée. Ainsi, l’utilité de 

ce programme réside dans le fait de pouvoir analyser le lien existant entre le comportement global 

du matériau (représenté par la distribution en entrée) et le comportement des sections critiques 

(représenté par la distribution en sortie, puisqu’il s’agit de la distribution des minimums des 

moyennes des énergies de fissuration par tranche). Cela dit, il est important de rappeler que ce 

raisonnement repose sur une hypothèse simplificatrice majeure qui est de considérer que la 

fissuration se produit suivant des plans de rupture parfaitement perpendiculaires à l’axe de 

chargement. 

C.1.3 Analyse des résultats obtenus  

Premièrement, la Figure C.3 présente les fonctions de densité de probabilité pour les trois tailles 

de maillage utilisées (25 𝑚𝑚, 10 𝑚𝑚 et 5 𝑚𝑚) alors que le Tableau C.1 donne les valeurs 

numériques. Pour chacun des 10 000 tirages réalisés, la valeur retenue pour chaque analyse 

correspond à celle de la tranche de résistance minimale. Une comparaison des densités entrées et 

obtenues a été réalisé afin de décider si la loi de la distribution obtenue en sortie a été modifiée ou 

non. Cette dernière ne semble pas avoir changée puisqu’elle concorde bien avec la courbe théorique 

de la loi lognormale.  
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Figure C.3 Fonctions de densité de probabilité des énergies de fissuration minimales renvoyées 

par le code MATLAB en fonction de la taille du maillage (10 000 itérations) 

 

Tableau C.1 Énergie de fissuration Gf (N/mm) minimale d’une tranche obtenues grâce au code 

MATLAB en fonction de la taille de maillage 

Taille du 

maillage 

COV en entrée COV en sortie Moyenne en 

entrée 

Moyenne en 

sortie 

𝟐𝟓 100% 38% 4,6 𝑁/𝑚𝑚 3,18 𝑁/𝑚𝑚 

𝟏𝟎 100% 28% 4,6 𝑁/𝑚𝑚 2,91 𝑁/𝑚𝑚 

𝟓 100% 25% 4,6 𝑁/𝑚𝑚 2,72 𝑁/𝑚𝑚 

 

Comme le montrent la Figure C.3 ainsi que le Tableau C.1, la moyenne en sortie diminue avec la 

taille du maillage (pour des paramètres d’entrée identiques). Cette observation peut s’expliquer par 

le fait que diminuer la taille de maillage augmente le nombre d’éléments dans le volume : 96 

éléments pour un maillage de 25 𝑚𝑚, 1500 éléments pour une taille de 10 𝑚𝑚 et enfin 12 000 

éléments pour les plus petits éléments mesurant 5 𝑚𝑚. Ainsi, le nombre de points « échantillonnés 
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» dans l’intervalle couvert par la fonction de densité de probabilité augmente avec la diminution 

de la taille des éléments finis. Donc, d’un point de vue purement statistique, l’étendue couverte par 

les valeurs des énergies de fissuration est plus grande et la probabilité de tomber sur des valeurs 

extrêmes est ainsi plus importante. Étant donné que l’on récupère à chaque itération le minimum 

des moyennes d’énergie de fissuration par tranche, la moyenne globale de toutes ces valeurs tend 

à diminuer lorsqu’on augmente le nombre d’éléments présents dans le prisme.  

En outre, la Figure C.3 ainsi que le Tableau C.1 mettent en avant la tendance suivante : le 

coefficient de variation obtenu en sortie diminue avec la taille du maillage. D’un point de vue 

purement statistique, le nombre de valeurs d’énergies de fissuration augmente avec la diminution 

de la taille des éléments, la probabilité de tomber sur des valeurs extrêmes devient plus importante, 

et étant donné que seules les moyennes minimales par tranche sont gardées, un « resserrement » 

autour des valeurs minimales se produit, ce qui explique la diminution de la valeur du coefficient 

de variation.  

Néanmoins, ces observations ne sont pas cohérentes du point de vue de la physique. En effet, la 

moyenne devrait logiquement être indépendante de la taille du maillage alors que le coefficient de 

variation devrait augmenter lorsque la taille du maillage diminue. En effet, plus la taille d’un 

élément est importante, plus ce dernier possède des caractéristiques mécaniques représentatives du 

comportement global du matériau. Un élément de petite taille pourrait au contraire être situé au 

niveau d’une zone poreuse, ou encore au niveau de l’interface entre un granulat et la matrice 

cimentaire et par conséquent posséder une faible résistance mécanique. Il pourrait au contraire être 

situé au niveau d’une fibre idéalement orientée par rapport à la direction d’application de la charge 

et dans ce cas-ci être doté de propriétés mécaniques remarquables. La moyenne, quant à elle, doit 

être indépendante de la taille de maillage utilisée puisqu’elle est représentative du comportement 

global de la structure étudiée. 

D’autre part, et comme le Tableau C.1 le montre, la moyenne entrée est supérieure à la moyenne 

obtenue en sortie, et ce quelle que soit la taille de maillage utilisée. 

- Du point de vue de la théorie des probabilités, ceci est tout à fait logique puisque l’on 

récupère à la sortie le minimum des moyennes des énergies de fissuration calculées par 

tranche. La valeur moyenne de cette distribution-là est naturellement inférieure à la 

moyenne introduite en entrée. 
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- D’un point de vue physique, la tendance observée paraît également cohérente. En effet, il 

s’agit de la distribution de l’énergie de fissuration des sections critiques qui est obtenue en 

sortie. En entrée, la distribution fournie représente le comportement global du matériau qui 

possède naturellement une résistance moyenne supérieure à celle des sections critiques, et 

donc une moyenne d’énergie de fissuration plus élevée que celle des plans au sein desquels 

se produit la fissuration. 

Le coefficient de variation entré est également supérieur au coefficient de variation obtenu en 

sortie. 

- Du point de vue purement statistique, cette observation s’explique par le fait qu’un 

moyennage par tranche est réalisée dans un premier temps, ce qui a tendance à diminuer la 

dispersion et donc le coefficient de variation. Dans un second temps, on ne garde que les 

valeurs minimales de ces moyennes ce qui resserre davantage la distribution obtenue en 

sortie et diminue d’autant plus le coefficient de variation de cette dernière. 

- Physiquement, cette observation est cohérente avec le fait que la variabilité que l’on 

retrouve au sein du matériau dans sa globalité est supérieure à la variabilité au sein des 

sections critiques sujettes à la fissuration uniquement. 

Par ailleurs, l’influence du nombre d’itérations ou expériences sur la valeur de la moyenne et du 

coefficient de variation obtenus en sortie a été étudiée. Des tests ont ainsi été effectués pour un 

nombre d’expériences égal à 10, 100, 10 000, 100 000 et 1 000 000. Pour des valeurs d’entrée 

identiques, les valeurs des paramètres en sortie demeurent constantes pour un nombre de 

simulations supérieur à 100. Il suffit donc d’avoir des distributions avec 100 valeurs de 

min (𝐺̅𝑓,𝑡𝑟𝑎𝑛𝑐ℎ𝑒) puisqu’au-delà de ce seuil, il y a convergence des valeurs des moyennes et 

coefficients de variation obtenus en sortie. 

D’un autre côté, nous avons étudié l’influence de l’augmentation de la valeur du coefficient de 

variation entré 𝐶𝑂𝑉𝑒𝑛𝑡𝑟é𝑒, tout en gardant la moyenne fixe, sur les valeurs de la moyenne et du 

coefficient de variation de la distribution en sortie ( min (𝐺̅𝑓,𝑡𝑟𝑎𝑛𝑐ℎ𝑒) ). 

- L’augmentation du 𝐶𝑂𝑉𝑒𝑛𝑡𝑟é𝑒  a pour effet la diminution de la moyenne de la distribution 

obtenue en sortie. Ceci est cohérent puisque l’augmentation de la valeur du coefficient de 

variation a pour effet d’accroître la dispersion autour de la moyenne et donc « d’éloigner » 



157 

 

les extremums. Les valeurs minimales sont d’autant plus petites, ce qui a pour impact de 

diminuer la moyenne de la distribution en sortie. 

- L’accroissement du 𝐶𝑂𝑉𝑒𝑛𝑡𝑟é𝑒 a également pour effet d’augmenter la valeur du 𝐶𝑂𝑉 obtenu 

en sortie. Ceci pourrait s’expliquer par le fait que la dispersion des valeurs des énergies de 

fissuration est plus grande, et donc que la dispersion des valeurs des minimums des valeurs 

moyennes des énergies de fissuration par tranche soit plus grande par conséquent. 

Pour finir, l’impact de l’augmentation de la moyenne entrée 𝐺̅𝑓,𝑒𝑛𝑡𝑟é𝑒 (tout en gardant 𝐶𝑂𝑉𝑒𝑛𝑡𝑟é𝑒 

constant) a été étudié. Cela a eu pour effet : 

- l’augmentation de la valeur du coefficient de variation de la distribution en sortie.  

- l’accroissement de la valeur de la moyenne de la distribution en sortie : en effet, 

l’augmentation de la moyenne entrée entraîne une translation de la courbe de densité de 

probabilité vers la droite, ce qui a pour effet de décaler la « queue » de celle-ci vers la droite 

également et donc d’augmenter la valeur des minimums d’énergie de fissuration.  

Par ailleurs, le fait d’augmenter la valeur de l’écart-type donné en entrée tout en gardant la moyenne 

en entrée fixe a pour impact de diminuer la valeur de la moyenne en sortie, quant à l’écart-type en 

sortie, son évolution n’est pas monotone : celui-ci tend à croître au départ, jusqu’à une valeur qui 

est fonction de la taille des éléments puis décroît. 

Le fait d’augmenter la moyenne introduite en entrée avec un écart-type demeurant fixe a pour 

impact d’augmenter la valeur de la moyenne et de l’écart-type obtenus en sortie. 

C.1.4 Recommandations  

Supposons que l’on se base sur une campagne expérimentale de traction directe sur des prismes. 

Celle-ci permet d’obtenir une distribution expérimentale des énergies de fissuration ayant les 

caractéristiques suivantes : celle-ci suit une distribution lognormale et possède une moyenne 𝐺̅𝑓,𝑒𝑥𝑝 

et un coefficient de variation 𝐶𝑂𝑉𝑒𝑥𝑝. 

Afin que la distribution obtenue en sortie du code MATLAB puisse avoir les mêmes 

caractéristiques que la distribution expérimentale (moyenne et coefficient de variation en sortie 

égaux à la moyenne et coefficient de variation en entrée), et en se basant sur les analyses et 

explications de la section précédente, il faudrait que :  
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- la moyenne donnée en entrée soit supérieure à 𝐺̅𝑓,𝑒𝑥𝑝. 

- le coefficient de variation entré soit également supérieur à la valeur de 𝐶𝑂𝑉𝑒𝑥𝑝. 

- le coefficient de variation spécifié en entrée soit d’autant plus grand que les éléments du 

maillage sont de petite taille, et ce afin d’assurer une cohérence d’un point de vue physique. 

C.1.5 Problèmes et limites rencontrés  

Un des buts initiaux du code était de trouver les valeurs à donner en entrée afin d’obtenir des valeurs 

précises en sortie qui correspondraient aux données d’une campagne expérimentale que l’on vise 

à reproduire. 

Ainsi, un algorithme secondaire a été codé afin d’effectuer une itération sur les valeurs entrées afin 

de les corriger automatiquement dans le but de parvenir aux valeurs visées en sortie. Comme la 

moyenne et le coefficient de variation semblent interdépendants, le code permettait d’intégrer ces 

deux paramètres à la fois (voir la Figure C.4). Malheureusement, les valeurs ne convergeaient pas 

et il a été impossible d’obtenir les valeurs à spécifier en entrée. Il a donc été difficile d’identifier 

une loi pour relier la moyenne en entrée et la moyenne en sortie et le coefficient de variation en 

entrée et en sortie. 
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Figure C.4 Fonctionnement de l'algorithme itératif permettant d'obtenir les paramètres d'entrée 

Une piste d’amélioration possible pour cet algorithme itératif serait de ne pas faire subir à la 

moyenne et au coefficient de variation la même évolution, à savoir la même valeur de pas Δ𝑝 mais 

plutôt de trouver un pas positif ou négatif qui dépendent de la valeur obtenue en sortie à chaque 

nouvelle itération.  

C.2 Méthode du patron de fissuration donnant l’énergie minimale  

Cette section présente une variante du code expliqué dans le paragraphe précédent. En effet, dans 

la partie précédente, la fissuration avait toujours lieu suivant un plan parfaitement perpendiculaire 

à l’axe de chargement. Cette nouvelle méthode permet de considérer un patron de rupture 

permettant de minimiser l’énergie de fissuration. 

C.2.1 Fonctionnalités  

Les différentes étapes réalisées par ce nouveau code peuvent être résumée de la manière suivante.   

1. Le prisme est subdivisé en éléments de taille définie par l’utilisateur (25 𝑚𝑚, 10 𝑚𝑚 ou 

encore 5 𝑚𝑚). 
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2. Affectation des valeurs d’énergie de fissuration aux différents éléments du maillage suivant 

la distribution choisie (dans ce cas-ci la loi lognormale) et suivant les paramètres d’entrée 

de la loi (moyenne et écart-type). 

3. La première colonne située à l’extrême gauche (composée des éléments 1 à 8 dans la Figure 

C.5) est parcourue et l’élément possédant l’énergie de fissuration la plus faible et 

sélectionné. Il est supposé que la fissuration est amorcée au niveau de cet élément, dans le 

cas où il existe plusieurs rangées d’éléments dans la profondeur du prisme, tous ceux qui 

sont alignés avec l’élément qui fissure vont également se fissurer.  

4. Les énergies des éléments adjacents à l’élément fissuré sont examinées et celui parmi ces 

trois possédant l’énergie la moins élevée est considéré comme étant fissuré (dans la Figure 

C.5, l’élément 3 fissure dans la première colonne, les éléments adjacents 10, 11 et 12 sont 

examinés et c’est l’élément 12 qui a l’énergie la moins élevée qui est sujet à une rupture 

par conséquent). 

5. L’étape 2 est ensuite réitérée pour chaque colonne. 

6. Une fois l’ensemble des colonnes parcourues, la moyenne de l’énergie de fissuration de ce 

patron est calculée (moyenne sur tous les éléments ayant fissurés), elle sera notée 

𝐺̅𝑓,𝑝𝑎𝑡𝑟𝑜𝑛,𝑚𝑖𝑛. 

7. Les étapes 2, 3 et 4, 5 et 6 sont réitérées 𝑁 fois (ce nombre est fixé par l’utilisateur) afin 

d’obtenir la distribution des minimums des énergies de fissuration moyennes. 



161 

 

 

Figure C.5 Méthode du patron de fissuration à énergie minimale sur un échantillon prismatique 

C.2.2 But 

Cette nouvelle approche possède trois buts distincts. 

- Premièrement, et comme pour la première approche par tranche, l’un des objectifs est de 

caractériser cette nouvelle variable aléatoire retournée par le programme et de trouver un 

lien de corrélation entre les paramètres initialement entrés et les paramètres obtenus en 

sortie du code MATLAB. 

- Un second objectif visé par le code est de trouver les valeurs à donner en entrée du code 

(moyenne 𝐺̅𝑓,𝑒𝑛𝑡𝑟é𝑒 et coefficient de variation  𝐶𝑂𝑉𝑒𝑛𝑡𝑟é𝑒) afin d’obtenir les valeurs visées 

par l’utilisateur en sortie, correspondant aux moyennes et coefficients de variation 

expérimentaux qui ont été obtenus lors de campagnes d’essais de traction directe sur des os 

par exemple. 



162 

 

- Le troisième et dernier objectif est d’analyser si le type de patron de fissuration choisi (plan 

parfaitement perpendiculaire à l’axe de chargement versus chemin minimisant l’énergie de 

fissuration) a un impact sur les résultats obtenus. 

C.2.3 Analyse des résultats obtenus   

Les tendances des résultats obtenus sont similaires à celles de la méthode par tranche tel qu’illustré 

sur la Figure C.6 et selon les valeurs numériques montrées au Tableau C.2.  

En analysant la Figure C.6, il est possible d’en déduire que la loi probabiliste n’a pas été modifiée. 

En effet, la densité de probabilité obtenue en sortie concorde bien avec celle de la courbe théorique 

de la loi lognormale. 

 

Figure C.6 Fonctions de densité de probabilité des énergies de fissuration minimales renvoyées 

par le code MATLAB en fonction de la taille du maillage 

La Figure C.6 ainsi que le Tableau C.2 permettent de mettre en exergue les tendances suivantes, 

les explications de ces observations étant identiques à celles de la méthode par tranche présentée 
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précédemment : la moyenne et le coefficient de variation en sortie diminuent lorsque la taille du 

maillage diminue (pour des paramètres d’entrée identiques). 

Tableau C.2 Énergie de fissuration GF (N/mm) minimale d’une tranche obtenues grâce au code 

MATLAB en fonction de la taille de maillage 

Taille du 

maillage 

COV en entrée COV en sortie Moyenne en 

entrée 

Moyenne en 

sortie 

𝟐𝟓 100% 28% 4,6 𝑁/𝑚𝑚 4,72 𝑁/𝑚𝑚 

𝟏𝟎 100% 7% 4,6 𝑁/𝑚𝑚 1,70 𝑁/𝑚𝑚 

𝟓 100% 2% 4,6 𝑁/𝑚𝑚 0,83 𝑁/𝑚𝑚 

 

D’autre part, et comme le Tableau C.2 le montre, la moyenne et le coefficient de variation entrés 

sont supérieurs à la moyenne et au coefficient de variation obtenus en sortie, et ce quelle que soit 

la taille de maillage utilisée (consulter la section 3.2.1.3 pour davantage de détails).  

Par ailleurs, l’influence du nombre d’itérations ou expériences sur la valeur de la moyenne et du 

coefficient de variation obtenus en sortie a été étudiée. Des tests ont ainsi été effectués pour un 

nombre d’expériences égal à 10, 100, 10 000, 100 000 et 1 000 000. Pour des valeurs d’entrée 

identiques, les valeurs des paramètres en sortie demeurent constantes pour un nombre de 

simulations supérieur à 1000. Il suffit donc d’avoir des distributions avec 1000 valeurs de 

𝐺̅𝑓,𝑝𝑎𝑡𝑟𝑜𝑛,𝑚𝑖𝑛 puisqu’au-delà de ce seuil, il y a convergence des valeurs des moyennes et 

coefficients de variation obtenus en sortie. 

D’un autre côté, nous avons étudié l’influence de l’augmentation de la valeur du coefficient de 

variation entré 𝐶𝑂𝑉𝑒𝑛𝑡𝑟é𝑒, tout en gardant la moyenne fixe, sur les valeurs de la moyenne et du 

coefficient de variation de la distribution en sortie (𝐺̅𝑓,𝑝𝑎𝑡𝑟𝑜𝑛,𝑚𝑖𝑛). 

- L’augmentation du 𝐶𝑂𝑉𝑒𝑛𝑡𝑟é𝑒  a pour effet la diminution de la moyenne de la distribution 

obtenue en sortie. Ceci est cohérent puisque l’augmentation de la valeur du coefficient de 

variation a pour effet d’accroître la dispersion autour de la moyenne et donc « d’éloigner » 

les extremums. Les valeurs minimales sont d’autant plus petites, ce qui a pour impact de 

diminuer la moyenne de la distribution en sortie. 
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- L’accroissement du 𝐶𝑂𝑉𝑒𝑛𝑡𝑟é𝑒 a également pour effet d’augmenter la valeur du 𝐶𝑂𝑉 obtenu 

en sortie. Ceci pourrait s’expliquer par le fait que la dispersion des valeurs des énergies de 

fissuration est plus grande, et donc que la dispersion des valeurs des minimums des valeurs 

moyennes des énergies de fissuration par tranche soit plus grande par conséquent. 

Pour finir, l’impact de l’augmentation de la moyenne entrée 𝐺̅𝑓,𝑒𝑛𝑡𝑟é𝑒 (tout en gardant 𝐶𝑂𝑉𝑒𝑛𝑡𝑟é𝑒 

constant) a été étudié. Cela a eu pour effet : 

- l’augmentation de la valeur du coefficient de variation de la distribution en sortie.  

- l’accroissement de la valeur de la moyenne de la distribution en sortie. En effet, 

l’augmentation de la moyenne entrée entraîne une translation de la courbe de densité de 

probabilité vers la droite, ce qui a pour effet de décaler la « queue » de celle-ci vers la droite 

également et donc d’augmenter la valeur des minimums d’énergie de fissuration.  

Par ailleurs, le fait d’augmenter la valeur de l’écart-type donné en entrée tout en gardant la moyenne 

en entrée fixe a pour impact de diminuer la valeur de la moyenne en sortie, quant à l’écart-type en 

sortie, son évolution n’est pas monotone (celui-ci tend à croître au départ, jusqu’à une valeur qui 

est fonction de la taille des éléments puis décroît). 

Le fait d’augmenter la moyenne fournie en entrée avec un écart-type demeurant fixe a pour impact 

d’augmenter la valeur de la moyenne et de l’écart-type obtenus en sortie. 

C.2.4 Comparaison entre les deux approches de modélisation   

Dans cette sous-section, une comparaison entre les deux approches de modélisation qui ont été 

présentées est réalisée. 

Tout d’abord, d’après la Figure C.7 et la Figure C.8, les constats suivants peuvent être faits pour 

les deux approches de modélisation :  

- la moyenne varie linéairement en fonction de la taille de maillage, lorsque le coefficient de 

variation est maintenu constant. 

- le coefficient de variation varie de manière linéaire également en fonction de la taille de 

maillage lorsque la moyenne est maintenue fixe. 

Un modèle pourrait ainsi être développé pour établir un lien de corrélation entre la moyenne et le 

COV en entrée et en sortie qui dépendrait de la taille de maillage et de la section de l’éprouvette.  
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Par ailleurs, il est important de noter que la Figure C.7 a été obtenue en gardant le COV fixe (égal 

à 20%). De même, la moyenne (égale à la moyenne de l’énergie de fissuration obtenue 

expérimentalement) demeure fixe pour la Figure C.8. 

 

Figure C.7 Valeur de la moyenne obtenue en sortie en fonction de la taille des éléments pour les 

deux approches de modélisation 

D’après la Figure C.7, les moyennes obtenues en sortie pour le modèle du patron de fissuration 

sont inférieures à celles retournées par la méthode par tranche pour des tailles d’éléments 

inférieures à 16 𝑚𝑚 environ. Cette observation pourrait s’expliquer par le fait que la méthode du 

patron de fissuration accorde plus de « liberté » en raison de la petite taille des éléments et donc du 

plus grand choix de chemins possiblement empruntables. De cette façon, cette méthode permet de 

réellement sélectionner le chemin permettant de minimiser l’énergie de fissuration. Au-delà de 

16 𝑚𝑚, les éléments deviennent trop grands, et la méthode du patron devient moins efficace que 

la méthode par tranche en termes de sélection des énergies minimales. 
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Figure C.8 Valeur du coefficient de variation obtenu en sortie en fonction de la taille des 

éléments pour les deux approches de modélisation 

Enfin, les coefficients de variation renvoyés par la méthode du patron de fissuration sont inférieurs 

à ceux obtenus grâce à la méthode par tranche. Cette tendance pourrait éventuellement s’expliquer 

par le fait que la méthode du patron confère plus de liberté dans le choix du patron (jusqu’à une 

certaine taille d’éléments, comme mentionné plus haut), les chemins ainsi sélectionnés par cette 

approche permettent l’obtention des énergies les plus basses, de telle sorte à minimiser la dispersion 

entre ces dernières. 

En conclusion, les deux approches ne concordent pas avec la réalité. Ces dernières sont donc à 

améliorer, notamment en suivant les recommandations stipulées dans le paragraphe C.1.4. 

 


