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RESUME

Afin d'analyser la fissuration dans les structures typiques en béton, un outil de calcul appelé
EPM3D (Massicotte & Ben Ftima, 2015) a été développé a I’Ecole Polytechnique de Montréal. 11
a ensuite été amélioré pour prendre en compte la fissuration dans les structures en béton armé, en
BRF et BFUP. Cependant, cet outil ne tenait pas compte du caractére aléatoire des propriétes
mécaniques du béton inhérent a sa nature hétérogene. En effet, la plupart des paramétres d'entrée
utilisés pour établir la loi non linéaire du béton sont aléatoires et présentent une variabilité qui ne

peut étre négligée.

En outre, la vérification a 1’état limite ultime prend en compte des facteurs de résistance appliqués
aux parametres du matériau ou a la résistance ultime pour respecter une probabilité de rupture

maximale admissible; a savoir ps < ps max-

Le présent projet de recherche aborde ces deux questions et se concentre sur le cadre de fiabilité
qui sous-tend la conception a I’état limite a la base des codes modernes pour la conception en béton
renforcé de fibres. Il aborde la question de 1’utilisation des analyses probabilistes non linéaires par
¢lément finis pour la conception des structures en BRF et le probléme de transition entre 1’étape de

’analyse des éléments concrets a I’étape de la conception de structures complexes en béton.

Tout d’abord, la sous-routine probabiliste permettant de rendre aléatoires certaines propriétés
meécaniques du béton ordinaire et du béton renforcé de fibres a été développée. Celle-ci s’intégre
parfaitement au code EPM3D préexistant et permet de reproduire de maniére tres précise les

distributions normale, lognormale et la distribution de Weibull.

Par la suite, a partir de la campagne expérimentale réalisée par Sébastien Reygner sur des
éprouvettes sollicitées en traction, un modele de calibration a été développé. A partir de I’analyse
du lien de corrélation entre la variabilité entrée et le celle obtenue, une loi a pu étre établie. Il s’agit
d’une fonction affine reliant ces deux paramétres dont la pente dépend de la taille de maillage
employée, de la valeur de la section tendue et du matériau étudié. Ce modele ainsi établi permet
premierement de s’affranchir de la dépendance a la taille des éléments et deuxiemement de

reproduire la variabilité expérimentale obtenue grace aux essais de Reygner.

La validité de ce modele établi a été vérifiée grace a plusieurs exemples d’application sur une

poutre simple, des poutres croisées et une dalle simplement appuyée. Par ailleurs, ces exemples ont



Vi

permis de montrer que 1’augmentation du degré d’hyperstaticité engendre une diminution de la

dispersion de la réponse structurale.

Enfin, un cadre de fiabilité découlant de I’approche probabiliste développée dans le cadre de ce
mémoire a été introduit pour la conception des structures en BRF. 1l fournit une méthodologie pour
I’estimation des facteurs de sécurité pour chaque situation de conception (ici pour les poutres
simples, poutres croisées et dalles). Les résultats d’un nombre d’analyses non linéaires probabiliste
ont été utilisés en conjonction avec la procédure de calibration ainsi que la méthode de Monte

Carlo.
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ABSTRACT

To analyze cracking in typical concrete systems, a computational tool named EPM3D (Massicotte
& Ben Ftima, 2015) was developed at Polytechnique Montréal. It was then improved to consider
cracking in reinforced concrete, fiber-reinforced concrete, and ultra-high-performance -fiber
reinforced concrete structures. However, this tool did not consider the random nature of the
mechanical properties of concrete inherent to its heterogeneous nature. Indeed, most of the input
parameters used to establish the concrete non-linear law are random and have a variability that can

not be overlooked.

Furthermore, the verification of the ultimate limit state considers the strength factors applied to the

material parameters or the ultimate strength to meet a maximum allowable probability of failure:
pf < pf max-

This research project discusses both issues and focuses on the reliability framework underlying the
limit state design for fibre-reinforced concrete structures. It addresses the issue of the use of
probabilistic nonlinear finite element analysis for the design of FRC structures and the problem of

transition from the concrete element analysis to the design of complex concrete structures.

First, the probabilistic subroutine allowing to randomize specific mechanical properties of ordinary
concrete and fiber-reinforced concrete has been developed. This integrates perfectly with the pre-
existing EPM3D code and enables the normal, lognormal and Weibull distributions to be

reproduced very precisely.

Based on the experimental campaign carried out by Sébastien Reygner on tensile specimens, a
calibration model was developed. From the analysis of the correlation link between the variability
entered and the variability obtained, a law was established. It is an affine function linking these
two parameters whose slope depends on the mesh size used, the value of the stretched section and
the material studied. This model thus established makes it possible, firstly, to free oneself from
dependence on the size of the elements and, secondly, to reproduce the experimental variability
obtained from Reygner's tests.

Finally, a reliability framework derived from the probabilistic approach developed in this thesis
has been introduced for the design of FRC structures. It provides a methodology for the estimation

of safety factors for each design situation (here for simple beams, cross-beams and slabs). The
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results of several probabilistic non-linear analyses have been used in conjunction with the

procedure developed in Chapter 3 as well as the Monte Carlo method.
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CHAPITRE1 INTRODUCTION

1.1 Généralités

Les bétons renforcés de fibres métalliques sont de plus en plus utilisés dans diverses applications
industrielles (FRC, 2014) en raison des propriétés exceptionnelles qu’ils peuvent procurer aux
ouvrages en béton. Il y a 20 ans de cela, un effort de consolidation des acquis sur le béton renforcé
de fibres ou BRF a permis de dresser un panorama de ses différentes caracteristiques (ACI 1996)
alors que des travaux plus récents ont abouti a des recommandations nationales et internationales
(AFREM 1995, RILEM 2003, JSCE 2008, CNR-DT 204 2006, FIB 2010, CSA 2019). Ces
recommandations sont efficientes dans le cadre de la conception de structures simples et
isostatiques chargées en flexion. Cependant, celles-ci ne permettent pas de proposer des solutions
pertinentes pour les structures les plus complexes. Tel est le cas des structures hyperstatiques par

exemple.

En outre, le controle de I’ouverture des fissures est trés important pour la durabilité des ouvrages
et constitue un avantage majeur des BRF par rapport aux structures utilisant des barres d’armatures
conventionnelles. De nos jours, les recommandations de conception existantes ne sont pas en
mesure de fournir suffisamment d’informations pertinentes concernant la fissuration a I’état limite
de service. La meilleure approche pour la conception de structures en matiére de sécurité et de

développement durable consiste donc a utiliser I’analyse par éléments finis.

1.2 Probléematique

Un outil numérigue nommé EPM3D (Massicotte & Ben Ftima, 2015) a été développé a
Polytechnique Montréal afin d’analyser la fissuration des structures en béton ordinaire. Il a ensuite
été amélioré afin de prendre en compte la fissuration des structures en béton armé, en BRF ou

encore en BFUP.

Néanmoins, cet outil ne permettait pas de tenir compte du caractere aléatoire des propriétés
mécaniques du béton inhérente a sa nature hétérogéne. En effet, la plupart des paramétres d’entrée
nécessaires a 1’établissement de la loi non linéaire du béton sont aléatoires et possedent une

variabilité qui ne peut étre négligée.



Par ailleurs, la vérification a 1’état limite ultime prend en compte des facteurs de résistance
appliqués aux parametres du matériau ou a la résistance ultime pour respecter une probabilité de

rupture maximale admissible; a savoir ps < pr max-

Le présent projet de recherche adresse ces deux points évoqués et s’ intéresse au cadre de fiabilité
qui sous-tend la conception a 1’état limite a la base des codes modernes pour la conception en béton
renforcé de fibres. Il aborde la question de I’utilisation des analyses probabilistes non linéaires par
¢lément finis pour la conception des structures en BRF et le probléme de transition entre 1’étape de

I’analyse des éléments concrets a 1’étape de la conception de structures complexes en béton.

Plutét qu’un facteur de résistance spécifié comme le recommandent la plupart des codes de
conception, une méthode d'estimation du facteur de résistance global pour un probléeme de
conception donné pourrait étre fournie dans les futurs codes. Par conséquent, l'objectif de cette
étude est de mettre en avant une application possible de la méthode probabiliste développée aux
cadres de fiabilité utilisés pour I’analyse non linéaire par éléments finis dans la conception des
structures en béton. Comme on le verra plus loin dans le présent document, ni le concept général
de fiabilité impliquant le calcul de la probabilité de défaillance ni le concept de code de conception
utilisant des facteurs de charge et de résistance ne sont appropriés pour I'utilisation de I'analyse non
linéaire par éléments finis pour la conception de structures en béton. L'alternative, telle que
présentée dans ce document, étend le concept de facteur de résistance global déja introduit dans
certains codes internationaux en prenant en compte le modéle probabiliste développé dans le cadre
de ce projet de recherche couplé a la précision du calcul des éléments finis non linéaires pour

chaque probleme de conception.

1.3 Objectifs et portée du projet de recherche

Compte tenu des enjeux enonces, les quatre objectifs principaux de ce projet de maitrise sont les

suivants :

- déterminer I’influence de la variabilité des propriétés mécaniques (comportement post-
fissuration) du BRF sur le comportement de certains éléments structuraux, ainsi que de

mettre en ceuvre les lois probabilistes qui modéliseront cette variabilité;

- coder une sous-routine probabiliste qui viendrait s’ajouter au code existant d’EPM3D

permettant d’intégrer I’aspect statistique du comportement en post-fissuration du BRF;



mettre en ceuvre une nouvelle méthodologie de modélisation probabiliste rationnelle et

simple pour les structures en BRF en utilisant I’analyse non linéaire par éléments finis;

en déduire I’influence de I’hyperstaticit¢ sur les facteurs de résistance des éléments

structuraux en BRF.

1.4 Meéthodologie et organisation du mémoire

Les étapes adoptées afin d’atteindre les objectifs du projet préalablement annoncés sont les

suivantes :

1.

identifier les lois probabilistes et les paramétres d’entrée permettant de modéliser la

variabilité des propriétés mécaniques du BRF;

coder sous le logiciel FORTRAN une sous-routine permettant de modéliser cette variabilité
avec le logiciel EPM3D;

trouver le lien de corrélation entre les parameétres en entrée et les paramétres en sortie en

fonction de la taille de maillage utilisée;

appliquer le modéle trouvé dans 1’étape 3 a plusieurs types d’éléments structuraux et étudier

la dispersion de la réponse structurale obtenue en sortie;

calculer les facteurs de résistance globaux utilisés en conception en s’appuyant sur les

dispersions obtenues grace au modele probabiliste développé.

Ce mémoire est divisé en cing chapitres. Le premier chapitre présente le probléme, les objectifs, la

méthodologie et I’organisation du mémoire. Le deuxieéme chapitre explicite les connaissances

actuelles nécessaires a la compréhension du projet de mémoire. Le troisiéme chapitre présente le

modeéle permettant de rendre compte de la variabilité des proprietés mécaniques des bétons

renforcés de fibres. Le quatriéme chapitre porte sur diverses applications a de multiples éléments

structuraux. Enfin, le chapitre cing permet de résumer le travail en tirant des conclusions sur

I’ensemble des travaux réalisés ainsi que d’émettre des recommandations pour la poursuite du

projet. L’organisation du mémoire est présentée dans la Figure 1.1.
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Figure 1.1 Organigramme organisationnel du mémoire




CHAPITRE2 REVUE DE LITTERATURE

Considérant les enjeux mis en exergue par les objectifs du projet de recherche, il paraissait essentiel
d’aborder les thématiques suivantes afin d’acquérir une bonne compréhension des différents axes

de recherche présentés dans les chapitres suivants :

les bétons renforcés de fibres;

les considérations multi-échelles du béton;

I’effet d’échelle;

la modélisation probabiliste du béton;

la modélisation numérique probabiliste des BRF.

2.1 Les bétons renforceés de fibres

Au cours des derniéres décennies, plusieurs chercheurs se sont intéressés a 1’étude des bétons
renforcés de fibres en raison de leur grand potentiel. En effet, ce type de matériau est de plus en
plus utilis¢ dans le domaine des structures pour les propriétés mécaniques remarquables qu’il peut

conférer aux ouvrages en béton.

Les prochaines sous-sections porteront donc sur la description des bétons de fibres courants. Elles
présentent I’ensemble des détails liés a la technologie des bétons renforcés de fibres et plus
précisément leur formulation, les types de fibres et, finalement, le comportement mécanique en

traction.

2.1.1 Généralités

L’objectif principal de I’ajout de fibres est ’amélioration des propriétés mécaniques du béton et,
notamment, le comportement en traction. Dans les structures en béton armé, les armatures sont
employées dans le but d’optimiser les caractéristiques mécaniques. Par ailleurs, ces dernicres sont
continues et sont localisées a des endroits stratégiques permettant de conférer aux éléments
structuraux en béton la résistance et la ductilité nécessaires a I’atteinte des objectifs de performance
exiges.

Les fibres sont quant a elles discontinues et distribuées de maniére aléatoire au sein de la matrice

cimentaire. L’utilisation des fibres peut permettre d’éliminer ou encore de réduire le nombre de



barres d’armatures. Grace a celles-ci, la fissuration a 1’état de service est mieux controlée, ce qui a
pour conséquence directe I’amélioration de la durabilité des structures mais aussi ’atteinte de

performances structurales améliorées.

2.1.2 Les fibres

Dans ce paragraphe, seules les fibres en acier seront abordées au vu des travaux présentés dans les
chapitres suivants. Les bétons renforcés de fibres courants sont visés, soit ceux contenant des gros
granulats de diametre usuel (10 a 20 mm). Les formes de fibres les plus couramment utilisées sont
mises en évidence dans la Figure 2.1. Selon leur géométrie et le type de matrice cimentaire, les
fibres agissent difféeremment (Rossi, 1998). En effet :

- les fibres droites développent des contraintes de liaison a la matrice cimentaire sur toute

leur longueur, empéchant ainsi la fissure de s’ouvrir;

- les fibres ondulées peuvent étre moins longues puisque celles-ci développent des

contraintes supplémentaires dues a 1’ancrage conféré par la géométrie courbe;

- les crochets ou I’élargissement aux extrémités des fibres permettent d’améliorer leur
ancrage a la matrice, retardant de cette manicre I’arrachement des fibres de la matrice tout

en dissipant une quantité d’énergie lors du processus d’arrachement.

Par ailleurs, les fibres d’acier peuvent également avoir des revétements tel que le zinc (reconnu
pour augmenter la résistance a la corrosion) ou le laiton (permettant d’améliorer I’ancrage a la

matrice).
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Figure 2.1 Principaux profils de fibres (Di Prisco et al., 2009)
Par ailleurs, et afin d’assurer 1’efficacité des fibres au sein du béton, Naaman (2003) affirme que :

- larésistance en traction des fibres et le module d’Young doivent étre nettement supérieurs

a ceux de la matrice cimentaire (de 1’ordre du double ou du triple);

- laductilité des fibres doit &tre suffisamment grande pour que ces derniéres ne subissent pas

de rupture par abrasion ou par flexion;

- laforce de liaison entre la matrice cimentaire et les fibres doit étre supérieure a la résistance
en traction de la pate de ciment.

En outre, Snyder et Lankard (1972) et Swamy et al. (1974) ont établi un lien de corrélation entre
la maniabilité du mélange de béton et le rapport d’élancement des fibres (égal au rapport entre la

longueur et le diamétre des fibres), en effet, ils énoncent que :

- pour des rapports d’élancement identiques, ’utilisation de fibres plus courtes entraine une
meilleure maniabilite;

- pour un dosage de fibres donné, la maniabilit¢ d’un BRF diminue lorsque le rapport

d’¢élancement augmente;

- le risque de formation d’oursins de fibres augmente avec I’augmentation du rapport

d’¢lancement pour un dosage donné.

Enfin, Rossi et Richer (1987) ont démontré que I’utilisation de fibres plus courtes (2 a 13 mm)

permet de retarder 1’apparition de macrofissures, ce qui améliore la ductilité et la résistance en



traction du béton. Les fibres longues (15 a 60 mm) avec ancrage mécanique retardent quant a elles
la rupture, ce qui a pour conséquence d’augmenter la capacité portante, la ductilité en flexion et la

résistance au cisaillement.

2.1.3 Formulation des bétons renforcés de fibres

Rossi et Harrouche (1990) proposent une méthode de formulation trés générale déja utilisée pour
les bétons ordinaires (Baron & Lesage, 1965) et les bétons a haute résistance (contenant de la fumée
de silice) et qui a été adaptée aux bétons renforcés de fibres métalliques. 1l s'agit de la méthode
Baron-Lesage, mise au point dans le Laboratoire Central des Ponts et Chaussées (LCPC) et utilisée
dans la plupart des projets de recherche de Polytechnique Montréal pour optimiser les squelettes

granulaires des bétons ordinaires (Massicotte, 2004).
Cette méthode repose sur trois hypotheses clés amplement confirmées par I'expérience :

- pour un rapport Eau/Ciment fixe, le béton le plus maniable est le béton le plus compact et

sa formulation est optimale;

- la proportion idéale de granulats ne dépend pas de la nature ou du volume de la pate de

ciment;
- P’ajout de fibres métalliques n’affecte pas la validité des deux premiéres hypothéses.

Par ailleurs, pour un type et un dosage de fibres métalliques donnés, une longueur de fibres au
minimum deux fois plus grande que le plus gros granulat doit étre choisie (Rossi, 1998). Enfin, la
méthode Baron-Lesage consiste principalement a détecter la meilleure maniabilité et compacité en
faisant varier le rapport massique sable/granulats (S/G) pour une quantité de fibres donnée. En
général, le maniabilimetre est utilis€ pour optimiser le rapport S/G alors que le test d’étalement est

utilisé pour optimiser la quantité d’adjuvants.

2.1.4 Fissuration causée par sollicitation en traction

La Figure 2.2 présente un résumé du processus de fissuration des BRF soumis a de la traction

uniaxiale. Ce dernier peut étre décrit en trois étapes distinctes (Rossi et al., 2015).

1. Au cours de la premiére étape, la microfissuration diffuse se produit dans tout le volume

soumis a de la traction (1). Les fibres d’acier possédant de grandes dimensions (longueur



et diametre) par rapport a celles de fissures (ouverture de fissure) n’agissent pas sur la

formation ni sur 1’évolution de ces microfissures.

2. La seconde étape concerne la propagation des microfissures qui conduit, a terme, a
I’apparition d’une unique macrofissure et consiste ainsi en la localisation de la fissuration
(2). Comme pour la premiére étape, durant cette étape intermédiaire et breve, les fibres

d’acier n’affectent pas la propagation de ces mésofissures de maniére significative.

3. La troisieme et derniere étape concerne la propagation des macrofissures (3). Celle-ci
coincide avec la phase adoucissante du matériau. Au cours de cette étape, les fibres
transférent les efforts a travers les macrofissures, controlant de la sorte I’ouverture des

fissures et leur propagation.

Ahddd  AMAM MM

YYTIY  YYYYY  VYVYY

Tensile Stress (0)

Strain (g)}—}— Crack opening (w)

Figure 2.2 Comportement en traction uniaxiale des BRF (Daviau-Desnoyers, 2015)

Pour résumer, il est possible d’affirmer que :

- avant d’atteindre le pic de charge, seule la matrice cimentaire contribue au processus de
fissuration du BRF et les fibres métalliques sont considérées comme mécaniquement

neutres;

- apres le pic, I’action des fibres devient trés importante, notamment pour le contrdle de la

propagation des macrofissures.

Ainsi, le comportement global d’un béton renforcé de fibres résulte de la sommation de ces deux
contributions : la contribution de la matrice cimentaire en post-pic et I’effet de pontage exercé par
les fibres en pointe de fissure en post-pic (voir la Figure 2.3).
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Figure 2.3 Contribution en post-pic des différentes composantes du BRF

Les éléments structuraux rencontrés dans les ouvrages modernes telles que les poutres ou les dalles
sont genéralement soumis a de la flexion qui a son tour génére de la traction dans les zones tendues
de I’¢lément. Ainsi, ’amélioration de la résistance en flexion est principalement due a 1’apport de
ductilité amené par les fibres dans la zone tendue d’une poutre. Les fibres permettent de ralentir
I’ouverture des macrofissures, ce qui a pour effet d’augmenter la capacité portante, de réduire les

fleches pour un méme niveau de charge et d’accroitre la ductilité de la structure.

2.2 Considérations multi-échelles du béton

Cette section présente trois échelles (macroscopique, mésoscopique et microscopique) suivant

lesquelles les bétons ordinaires et bétons renforcés de fibres peuvent étre considérés.

2.2.1 Béton ordinaire

Selon Wittmann (1983), il convient de considérer les bétons ordinaires selon trois échelles

distinctes afin de les modéliser : 1’échelle macro, méso et micro (voir la Figure 2.4).
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Figure 2.4 Considérations multi-échelles du béton (Wittmann, 1983)

Tout d’abord, I’échelle macroscopique englobe toutes les notions physiques (grandeurs, éléments
constituants, mouvements, phénomenes) dont la manifestation est visible a 1'ceil nu. A ce niveau,
le matériau est considéré comme étant continu et homogéne avec des propriétés moyennes

équivalentes.

Ensuite, I’échelle mésoscopique (1072 & 10~3) prend en considération les hétérogénéités du béton
et rend la théorie des milieux continus inapplicable. Pour modéliser le béton, il faut alors tenir
compte des granulats, de la matrice cimentaire et des zones d’interface matrice-granulat, également

connue sous le nom d’ITZ (Interfacial Transition Zone).

Un exemple de modélisation mésoscopique est illustré a la Figure 2.5. Il présente un modéle connu
sous le nom de Lattice Model, formé d’un réseau de treillis ou de poutres avec des propriétés
mécaniques différentes représentant un granulat, la matrice cimentaire ou encore une zone
d’interface entre les deux. La superposition du patron hétérogéne de particules généré
aléatoirement et d’un réseau de treillis permet d’attribuer les propriétés mécaniques aux différents

éléments finis (voir les Figure 2.5a et 2.5b).
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Figure 2.5 Exemple de modeéle a I'échelle mésoscopique (Schlangen & Van Mier, 1992) : (a)
projection de la structure de grain sur le modéle de treillis; (b) définition des poutres équivalentes
aux €éléments d’agrégats; (c) exemple d’analyse; (d) exemple de résultat de la force en fonction

du déplacement

Un second exemple de modélisation mésoscopique est montré a la Figure 2.6. Les granulats sont
représentés sous la forme d’ellipsoides et sont obtenus a partir de courbes de granulométrie
permettant de caractériser leur distribution. La matrice cimentaire et la zone d’interface sont
considérées comme étant des constituants distincts. Chaque élément fini possede des propriétés
mécaniques caractéristiques de la famille a laquelle il appartient.
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Figure 2.6 Exemple de mode¢le a I’échelle mésoscopique (Unger & Eckardt, 2011)

Enfin, a I’échelle microscopique, les molécules de CSH (Calcium-Silicates-Hydrates) constitutives
de la pate de ciment sont considérées. Leurs différentes interactions avec 1’eau sont également
prises en compte, ce qui permet d’analyser I’ensemble des effets qui découlent de ces réactions

comme le fluage et le retrait par exemple.

Il parait donc clair qu’a chacune de ces échelles, différents types de paramétres d’entrée sont
envisagés pour la modélisation numérique. A titre d’exemple, un élément fini modélisé a I’échelle
macroscopique est considéré comme étant homogene, le représenter a une échelle plus petite
révélerait ses hétérogénéités et conduirait a une perte de sens des propriétés mécaniques qui lui ont
été préalablement assignées. En réalité, ces propriétés se transforment en résultats de I’analyse et
ne sont plus des paramétres d’entrée (c’est le cas par exemple pour la résistance en traction f; ou

encore I’énergie de fissuration G¢ qui sont considérées comme des paramétres d’entrée pour une

échelle de modélisation macroscopique).

En outre, le constat suivant peut-étre fait : le passage vers une échelle plus grande réduit le nombre
d’éléments nécessaires a la discrétisation de la structure, réduisant ainsi le temps de calcul de
maniére significative. Néanmoins, ce changement d’échelle se fait aux dépens de simplifications

qui peuvent parfois conduire a la suppression d’un aspect donné (Ben Ftima, 2013).
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2.2.2 Bétons renforcés de fibres

Les bétons renforces de fibres étant des matériaux composites typiques, il est important d’examiner
certains phénomenes significatifs a [’échelle ou ils se produisent. En considérant leur

microstructure, les BRF peuvent étre modélises suivant trois niveaux distincts.

Tout d’abord, pour les BRF a I’échelle microscopique, des modeles analytiques ou numériques ont
¢été développés afin de pouvoir décrire I’arrachement d’une unique fibre intégrée a la matrice avec
une inclinaison aléatoire (Zhan & Meschke, 2013). L’exemple le plus simple a considérer est celui
de la fibre droite qui ne posséde pas d’inclinaison par rapport au plan de la fissure. Le processus
d’arrachement dans ce cas de figure est divisé en trois étapes : une premiere phase ou la fibre est
encore liée a la matrice, une deuxiéme phase de détachement et enfin une phase d’arrachement

(voir la Figure 2.7).

(a) | 2
L. e Fou T4
— tf‘* Debonding
'tn'lh:.'.'l.'
L. Ly flifding
(b) ‘ To
- e F.u Bonded
[ |
. < -
L ‘ 50 8| Speyr £
L L, (c)

Figure 2.7 Arrachement d’une fibre droite non inclinée : (a) phase de détachement (Zhan &
Meschke, 2013)

Le fait de considérer une fibre inclinée par rapport au plan de la fissure implique un niveau de
complexité supplémentaire causé par la contrainte de frottement et la déformation plastique dues a
la pression latérale exercée par I’interface avec la matrice. Fantilli et Vallini (2007) ont élabore un
modele analytique afin de rendre compte du comportement des fibres inclinées. Le modele pour

I’arrachement est calibré, dans un premier temps, avec les parameétres propres a I’interface fibre-
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matrice alors que dans un second temps, un algorithme est utilisé pour générer le diagramme force-

déplacement pour la fibre droite avec un angle d’inclinaison quelconque (Zhan & Meschke, 2013).

Les fibres avec des crochets aux extrémités possédent une plus grande ductilité lorsque ces
dernieres sont arrachées. Néanmoins, en raison du comportement local hautement non linéaire des
extrémités crochues et de la portion de la matrice qui les entoure, ainsi qu’en raison de la
complexité des interactions matrice-fibre, il n’existe que trés peu de modéles analytiques décrivant
le comportement de ce type de fibre (Alwan et al., 1999). Pour pouvoir mettre en application cette
formulation analytique, des modéles numériques par éléments finis ont été développes sur le
logiciel ABAQUS (Hibbitt et al., 2014).

Ensuite, afin de pouvoir étudier les BRF a une échelle mésoscopique, il faut considérer un volume
statistiquement représentatif du matériau soumis a un chargement en traction. Initialement, toutes
les fibres sont encore bien reliées a la matrice de béton et ces deux composants ont un
comportement linéaire élastique (Zhan & Meschke, 2013). L’augmentation de la contrainte en
traction méne a une initiation de la microfissuration au sein du volume élémentaire représentatif,
ou VER, au niveau des points de faiblesses (défauts). A mesure que la charge augmente, ces
microfissures s’ouvrent. Néanmoins, et contrairement a un béton ordinaire, 1’ouverture est

contrdlée par la force de pontage exercée par les fibres qui traversent ces microfissures.

La force de pontage o/ en fonction de 1’ouverture de fissure w est donnée par la relation suivante
(Zhan & Meschke, 2013) :

of = %ZZF(Z, 6, w) 2.1)

ou A°" désigne la section transversale du VER, z et 6 désignent respectivement la position et
I’orientation de chacune des fibres alors que F correspond a la force unitaire développée par une

fibre calculée grace au modele présenté dans la section 2.1.1.2.

A 1’échelle macroscopique, la modélisation du béton fibré peut étre réalisée & I’aide du concept
d’énergie de fissuration déja utilis¢€ pour le béton conventionnel. Ainsi, I’effet de pontage des fibres
est indirectement modélisé via I’utilisation d’une énergie de fissuration Gy associée aux fibres qui

est beaucoup plus importante que celle associée a la matrice cimentaire (Figure 2.3).



16

Dans ce travail, la modélisation du béton de fibres métalliques est réalisée a 1’échelle mésoscopique
en raison des difficultés numériques associées a la prise en compte explicite des fibres pour des
gros modeéles numériques (ex : modéle de dalle). Toutefois, la variabilité aléatoire de 1’orientation
des fibres a un impact direct sur les caractéristiques mécaniques macroscopiques tel que 1’énergie
de fissuration et ne peut donc étre ignorée. Il est donc important d’utiliser une approche probabiliste
pour I’analyse numérique a 1’échelle macroscopique plutdt qu’une approche déterministe, tel que
décrit dans la section 2.4 plus loin. De plus, le passage d’une échelle mésoscopique a une échelle
macroscopique ne doit pas se faire au risque de filtrer ou d’ignorer de phénomeénes physiques
importants tel que ’effet d’échelle. Il est donc important de comprendre I’origine de cet effet et la

facon de le considérer selon une approche macroscopique.

2.3 L’effet d’échelle

En mécanique des solides, I’effet d’échelle est communément défini comme étant 1’influence de la
dimension caracteristique de la structure étudiée D sur la contrainte nominale gy lorsque deux

structures présentant une similitude géométrique sont comparées (Bazant, 1999).

Griffith (1921) a été I’un des instigateurs des travaux de recherche sur le phénoméne d’effet
d’échelle. En effet, celui-ci a montré que la résistance mécanique des fibres de verre augmentait
lorsque leur diametre diminuait. Il en a déduit que « la faiblesse des solides isotropes ... est due a
la présence de discontinuités ou de défauts ... La résistance effective des matériaux pourrait étre
multipliée par 10 ou par 20 si ces défauts étaient éliminés ». A la suite de cette découverte majeure,
plusieurs auteurs se sont intéressés a ’effet d’échelle d’origine statistique. Peirce (1926), Tippett
(1925) et Von Mises (1936) ont ensuite formulé la théorie du maillon faible ainsi que celle des
valeurs extrémes. Weibull (1939) a finalisé la théorie du maillon faible qui a ainsi donné lieu a une

loi de probabilité portant son nom.

L’effet d’échelle peut également étre d’origine déterministe appelé aussi énergétique, tel que 1’a
identifié Bazant (1984). Il est alors dii a une libération d’une quantité importante d’énergie
lorsqu’une grande fissure ou une grande zone d’élaboration de la fissuration (FPZ) se développe

avant que la charge maximale ne soit atteinte.
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Dans cette section, les différents modéles qui ont tenté de reproduire I’effet d’échelle statistique ou
encore la combinaison des effets déterministes et statistiques seront présentés. Cette partie
s’achévera par une synthése recensant les principales caractéristiques des différentes méthodes

présentées.

2.3.1 Effet d’échelle d’origine statistique

Dans cette partie, nous commencerons par expliquer les fondements de la théorie de Weibull en
introduisant tout d’abord le mod¢le de maillon faible, puis nous présenterons le modeéle développé

par Rossi et Ulm (1997) découlant de cette méme théorie.
2.3.1.1 Le modéle de Weibull

2.3.1.1.1 Le principe de base

Considérons une structure unidimensionnelle constituée de plusieurs éléments placés en série.
Cette chaine de N maillons (représentées par des éléments de volume) se rompt au niveau de
I’élément le moins résistant. Weibull (1939) suppose que les résistances de chacun des éléments

de la chaine constituent des variables aléatoires indépendantes.
La probabilité de survie d’un élément de volume V' sous une contrainte o est égale a :

P;(V,0) = Py(0g > 0) (2.2)
Avec oy désignant la résistance de I’élément.

Etant donné que la rupture d’un élément constitue un événement indépendant, la probabilité de

survie de deux éléments de volumes V et V' sous une contrainte ¢ vaut :
Ps(V+V' 0) =P(V,0).Ps(V', o) (2.3)

Finalement, la densité de probabilité de rupture correspondant a un état de contrainte uniforme

appelée distribution de Weibull s’écrit sous la forme suivante (Lamon, 2016) :
P(V,0) = 0pour o < gy, (2.4)

o— oy

P(V,0) =1—exp [—%.( >m] pour g > gy, (2.5)

Op
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m, g, et g, constituent des parametres empiriques caractéristiques du matériau ainsi que de la

microstructure (Bazant & Planas, 1997).

Le parametre de forme m est sans dimension (généralement appelé module de Weibull) et est
représentatif de la dispersion. En effet, plus ce dernier augmente, plus la dispersion au sein des
éléments de volume diminue (voir Figure 2.8). Le paramétre m serait également dépendant de la
taille du spécimen étudié (Lamon, 2016). Selon Weibull (1939), g, est un paramétre d’échelle
proportionnel a la moyenne de la résistance, a,, constitue la limite inférieure de la résistance (i.e.
la valeur de la contrainte lorsque la probabilité de la rupture vaut 0). Néanmoins, étant donné qu’il
est trés difficile d’obtenir la valeur de o,, expérimentalement et qu’il existe une grande incertitude

quant a la valeur obtenue, o,, est souvent prise comme étant égale a 0 (Lamon, 2016).

g

Figure 2.8 Tracé de P- ¢ : Distribution statistique des valeurs de contrainte pour différentes

valeurs du module de Weibull(m, < m;) (Lamon, 2016)

Dans 1’équation (2.5), o est une contrainte de traction pure. Dans le cas d’une sollicitation
multiaxiale de la structure étudiée, Weibull (1939) considere que la compression et le cisaillement
n’ont pas d’influence sur la probabilité de rupture et que cette derniere est uniquement causée par
la composante normale en traction de la sollicitation o,,. Par ailleurs, Barnett (1975) et Freudenthal
(1968) ont introduit une approche simple, souvent utilisée, permettant de traiter les cas de
contraintes multiaxiales uniformes dans le cadre de la théorie de Weibull. Ils supposent que les

contraintes principales en traction sont indépendantes et n’interagissent pas entre elles.

La loi de puissance développée par Weibull (1939) constitue une approximation satisfaisante de la
répartition des plus petites résistances en traction. Il s’agit d’un modéle relativement simple, mais
qui présente toutefois certaines limites remettant en jeu sa capacité a prédire le comportement de
structures aux géométries complexes et soumises a des contraintes multiaxiales comme 1’ont

souligné plusieurs auteurs (Bazant & Planas, 1997; Lamon, 2016).
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2.3.1.1.2 Approche du volume statistiquement représentatif (VSR)

Le volume statistiquement représentatif de Weibull est un modéle basé sur la théorie du maillon
faible, celui-ci a été développé afin de tenir compte de la diminution de la résistance en traction
des matériaux fragiles et quasi-fragiles. Plusicurs modéles qui tentent de reproduire 1’effet
d’échelle sont tirés de cette théorie (Quinn (2003a, 2003b), Kuguel (1961), Mazars (1984)). Selon
Lamon (2016), la notion de volume élémentaire sert & comparer la résistance a la rupture de
structures de volumes distincts soumises a differents états de contrainte ou de modes de chargement
(sollicitation en traction, en flexion pure, en flexion 3 points ou 4 points). Le volume
statistiquement représentatif désigne un volume équivalent (du méme matériau) soumis a une
contrainte uniforme égale au maximum des contraintes principales, définie comme 6,4, (Omax =
max(o;, 6y, 6477)), €t qui posséde la méme probabilité de rupture que le volume total de la structure

(voir la Figure 2.9).

Direct tension

Figure 2.9 Le concept de volume élémentaire représentatif (Wu et al., 2012)

En se basant sur la théorie du maillon faible, la résistance en traction s’écrit sous la forme suivante :

Vo

f't = fejrer (V_E)l/m (2.6)

ft/ref €LV constituent des paramétres d’entrée correspondant a la structure prise comme référence
et fi/rer €St la résistance en traction du volume V;, associé a un volume de référence qui désigne

généralement un spécimen normalisé (par exemple cylindrique ou prismatique) ou encore le plus

petit specimen de la campagne expérimentale.
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Le volume statistiquement représentatif I/ dépend du module de Weibull, du champ de contrainte

et du volume total V de la structure étudiée, il s’écrit sous la forme :
m
o;(x,y,2
Vg = f <M> A4 (2_7)
Gmax

Avec o; la premiére contrainte principale dans le cas d’un chargement élastique (o; > o;; > oyy)).

La probabilité de rupture d’un volume s’écrit alors sous la forme (Lamon, 2016) :

P(o,V)=1—exp [— (G::")m %] = P(Opgr Vi) (2.8)

Ainsi, le volume V; soumis a la contrainte o,,,,, est statistiguement équivalent a V sous o(x, y, z).
Pour une contrainte uniaxiale, le volume élémentaire représentatif variede 0 a V. Aussi Vy =V en
cas de sollicitation en traction pure alors que IV = 0 en cas de compression. Ainsi, la valeur de Vj
est proportionnelle a la sévérité de 1’état de contrainte auquel est soumis la structure qui, quant a
lui, gouverne la valeur de la probabilité d’existence d’un défaut ou hétérogénéité critique menant

a la rupture de la structure étudiée (Lamon, 2016).

2.3.1.1.3 Approche du volume fortement sollicité (VFS)

Certaines approches du volume statistiquement représentatif (Weibull effective volume) utilisent le
concept du volume fortement sollicité VFS (Highly Stressed Volume), initialement développé par
Kuguel (1961). Ce modele-ci est basé sur le fait que dans le cas de rupture en traction de matériaux
fragiles (dont le béton fait partie), il n’est pas nécessaire d’analyser ce qu’il se passe dans I’entiereté
du volume du spécimen, mais uniquement dans la région la plus critique, autrement dit la région
soumise a la plus forte contrainte (Torrent, 1977). Le VFS est ainsi défini comme étant le volume
au sein duquel la contrainte en traction dépasse 90 a 95% de o,,4,. En réalité, cela constitue
également la zone critique et par conséquent on suppose que la fissure conduisant a la rupture se
développera quelque part dans ce volume-ci (Torrent & Brooks, 1985). La forme adoptée par le
volume fortement sollicité est mise en évidence pour différents exemples de tests dans la Figure
2.10.

Plusieurs travaux (Durelli et Parks (1962); Kuguel (1961); Torrent (1977)) suggérent 1’existence

d’une relation entre f; et le VFS qui s’écrit sous la forme suivante :

fl = BV-¢ (2.9)
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avec V le volume fortement sollicité (en cm?), alors que B et a sont deux paramétres déterminés
de maniére empirique. Le paramétre B correspond a la résistance en traction d’un VFS d’un
centimetre cube, a est une mesure de la sensibilité du matériau étudié au changement au sein du

volume fortement sollicité.

e
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(¢} Flexure with four-point loading  (f) Ring test

Figure 2.10 Exemples de volumes fortement sollicités pour différents test (Torrent & Brooks,
1985)

Torrent et Brooks (1985) ont démontré que 1’approche du VFS n’est pas strictement applicable a
la corrélation ou a la prédiction des valeurs de résistance a la traction obtenues a partir de différentes
méthodes d’essai, en particulier lorsqu’elles conduisent a des distributions de contraintes tres
différentes dans le spécimen. Cela peut €tre attribué au fait que 1’approche ne tient pas pleinement
compte de la croissance progressive des microfissures avant la rupture. Méme si une bonne
corrélation peut parfois étre obtenue entre f; et le VFS (Torrent, 1977), ces corrélations ne sont
pas pertinentes puisque les valeurs des parameétres obtenues dépendent principalement de
I’ensemble particulier d’essais concernés et, par conséquent, elles ne sont pas des propriétés

intrinséques du matériau et ne peuvent étre utilisées pour les prévisions de résistance.
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2.3.1.2 Le modéle de Rossi

Tout comme le modele de Weibull dont elle est issue, la méthode développée par Rossi et al. (1994

(b)) s’inscrit dans les effets d’échelle d’origine statistique.

2.3.1.2.1 Lien entre effet d’échelle et résistance en traction du béton

Pour des spécimens soumis a la traction, Rossi et al. (1994 (b)) ont développé une loi permettant

de décrire I'impact de I’effet d’échelle sur f,. Cette loi permet de relier les caractéristiques de la
fonction de distribution de f’, (moyenne et écart-type) au rapport entre le volume du specimen et

le volume du plus gros granulat (Rossi et al., 1994 (a); Rossi & Richer, 1987; Rossi et al., 1994
(b); Tailhan et al., 2010).

Cette méthode dissocie deux facteurs déterminant la distribution de la résistance en traction du

béton. Premierement, il est supposé que f”, est directement reliée a la qualité de la pate de ciment,
car ¢’est a cet endroit que se situent les points de faiblesse : porosité, microfissures et contraintes
initiales. Ce premier facteur est associé a la résistance en compression. En effet, plus f'. est élevé,
plus le matériau est homogeéne et plus les caractéristiques mécaniques du matériau deviennent
proches de celles des granulats. L’effet d’échelle devient ainsi négligeable lorsque f'. est
important. Le deuxieme facteur est la quantité de la pate de ciment, celle-ci étant prise en compte
par le biais du rapport entre le volume du spécimen et le volume du plus gros granulat. Rossi et al.
(1994 (b)) résument la théorie a travers les équations suivantes :

fl=a (%f)_b (2.10)

a=6,5

b=025-36 x103f .+ 1,3 x 10752

V. -B
% =A (V—S) (2.11)
t A
A =035

B=45%x10"24+45x10"3f'.—1,8x107°
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ol f; et o désignent respectivement la moyenne et 1’écart-type de la résistance en traction, Vs
représente le volume du spécimen étudié, et V, le volume du plus gros granulat. Les coefficients a,
A,b et B ont été déterminés par analyse inverse a partir de résultats et d’observations

expérimentales.

2.3.1.2.2 Lien entre effet d’échelle et module de Young

Rossi et al. (1994 (b)) consideére que la valeur moyenne du module de Young ne dépend pas du
volume du spécimen tandis que 1’écart-type est une fonction décroissante de Vs et de f'. tel que

montré dans les équations ci-apres :

g _ (VS)_d (2.12)
E =C .
c=0,15
d=016+27x1073f", — 3,4 x 1076f"2

Selon Rossi et al. (1994 (b)), la dispersion du module de Young est liée au fait que le module de
Young de la pate et des granulats sont différents. Plus le spécimen est de petite taille, plus E devient
proche de celui de la pate seule ou des granulats seuls, et c'est donc le ratio des volumes qui va
gouverner cette dispersion. Par ailleurs, pour deux échantillons identiques, le module d"Young en

compression est égal au module de Young en traction (Rossi et al., 1994 (b)).

En ce qui concerne les BRF, la variance obtenue expérimentalement est inférieure a la variance
calculée a I’aide des équations (2.11) et (2.12). Ceci s’expliquerait par le fait que les fibres agissent
comme des renforts au niveau des zones de faiblesse de la matrice. Ceci n’est vrai que dans le cas
ou les fibres sont distribuées de maniére uniforme dans la matrice, dans le cas ou la répartition n’est
pas homogeéne, cela aurait pour conséquence d’augmenter 1’hétérogénéité de la pate et donc la

dispersion des caractéristiques mécaniques du béton étudié.

Finalement, il est important de mentionner que le modéle de Weibull ainsi que les théories qui en
résultent revétent une importance particuliére pour les matériaux fragiles. Dans le cas de matériaux
quasi-fragiles tel que le béton ou quasi-ductiles tel que le BRF, I’effet d’échelle appelé déterministe
ou énergétique devient important et la considération simultanée des deux sources d’effet d’échelle

devient nécessaire.
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2.3.2 Considération de I’effet d’échelle déterministe

L’effet d’échelle appelé déterministe provient de la dissipation de 1’énergie au niveau du front de
la fissure d’ou son appellation d’effet d’échelle énergétique par certains auteurs. Il est considéré
comme étant la source la plus importante d’effet d’échelle pour les matériaux quasi-fragiles ou

quasi-ductiles tel que le béton ordinaire ou le BRF.

2.3.2.1 Le modele de Bazant

Bazant (1999) a commencé par développer une loi d’effet d’échelle (size effect law), dérivée de
I’analyse de 1’énergie dissipée, pour les structures avec entailles dites de type 2, qui contiennent
des entailles de taille supérieure a celle de la FPZ. Dans cette situation, Bazant (1984) estime que
I’effet d’échelle d’origine statistique est négligeable. La loi représentant le lien entre spécimens de

petites et de grandes tailles s’écrit sous la forme :

_ B'ft,ref

D
1+p

on (2.13)

ou B et D, sont des coefficients déterminés de maniere expérimentale. Par ailleurs, Saouma et al.
(2003) et Saouma et Fava (2006) ont pu développer une formulation analytique du paramétre B
qui repose sur des facteurs d’intensité de la contrainte locale et des contraintes cohésives. Ils ont
également établi une approche basee sur la notion de fractale inspirée de la loi d’effet d’échelle

créée par Bazant (1984).

Cette équation permet de tracer la courbe servant de transition entre 1’asymptote horizontale pour
les petits spécimens et 1’asymptote inclinée de pente —1/2 pour les spécimens plus grands (dans

le graphique représentant log o)y en fonction de log D (voir la Figure 2.11(a)).

L’effet d’échelle de type 1 (énergetique-statistique ou uniquement statistique, dépendamment de
la contrainte appliquée) est observé pour des structures non entaillées dites a géométrie positive,
pour lesquelles la rupture survient aussitot qu’une macrofissure s’initie au niveau d’une surface
lisse. Néanmoins, la contribution de I’effet d’échelle d’origine statistique est négligeable pour les
structures de petite taille, dont le volume n’est pas suffisamment grand en comparaison avec la

taille de la FPZ. Ainsi, dans le cas des spécimens soumis a un effet d’échelle énergétique-
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statistique, les structures de plus grande taille sont définies par une asymptote de pente -n/m sur un

graphique représentant log o, en fonction de log D (voir la Figure 2.11(b)).

Pour conclure, pour les structures dites de type 1, les lois d’effet d’échelle s’écrivent de la fagon

suivante :

1- Pour I’effet d’échelle d’origine énergétique exclusivement :

1

fro(14522-) (214)
oN = freo — :
N D+1,
2- Pour I’effet d’échelle d’origine énergétique et statistique a la fois :
1
™m T
- ( s )m + TP (2.15)
w=rle\\t50) YDy, '

avec f,.., la résistance nominale de structures de tres grande taille, D, la longueur approximative
de la FPZ, L, une caractéristique du matériau permettant de controler la transition vers I’asymptote
horizontale et [ la longueur caractéristique statistique faisant référence a la variabilité spatiale de

la probabilité de rupture (BaZant et al., 2007).

log o,

(b) log D

(a)

Figure 2.11 Représentation de la dépendance entre oy et la dimension D de la structure : (a)
structure comportant une entaille profonde : effet d’échelle de type 2 (b) structure ne comportant
pas d'entaille : effet d’échelle de type 1 (Hoover & Bazant, 2014)
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2.3.2.2 Le modeéle de Mazars

Mazars et al. (1991) est parvenu a combiner les deux types d’effet d’échelle (statistique et
déterministe) dans un seul modéle d’endommagement non-local continu (non local continuous

damage mechanics).

2.3.2.2.1 Modéle basé sur le seuil initial d’endommagement

Tout d’abord, 1’approche adoptée pour décrire I’initiation de 1’endommagement procéde de la
théorie de Weibull. Mazars (1986) s’intéresse au seuil initial d’endommagement &5,. Dans le cas
du béton, I’auteur définit ce seuil comme étant 1’état ou la déformation en tension a atteint la limite
& = gp. Le paramétre &, appelé déformation équivalente, représente la déformation en traction
accumulée dans le matériau. L’auteur suppose que les défauts initiaux commencent a se propager
sous forme de vides ou de fissures lorsque les déformations en traction ont atteint un seuil. Ainsi
I’initiation des dommages est donc une fonction de €. L’équation constitutive s’écrit sous la forme

suivante :
c=(1-D)A:e 0<D<1 (2.16)

ou A représente le tenseur du module élastique et D est la variable représentant I’endommagement.
L’auteur suppose que I’endommagement se fait de maniere isotrope et donc que ce parametre peut
étre exprimée sous la forme d’un scalaire variant de 0 (matériau sain) a 1 (matériau endommagg).

La loi d’évolution de I’endommagement en traction (i=t) et en compression (i=c) est égale a :

_ _ EDo(l—Ai) _ A; .o~
D;=1 - P # 0si &y > epg (2.17)

ou &, désigne la déformation équivalente locale maximale.

Par ailleurs, Mazars et al. (1991) énoncent que la probabilité qu un dommage ne soit pas initié dans

un volume AV (avec AV = r.8V) est égale a :
P4 (&,AV) = exp[—rP4 (& 6V)] (2.18)

Des exigences sont liées a la formulation ci-dessus :

1. pour des valeurs infiniment grandes de &, le volume &V doit obligatoirement étre

endommagé; dans ce cas-la, P;(&,6V) = 1;
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2. pour des déformations équivalentes inférieures a une constante (par exemple &pg,
caractéristique du matériau), le volume 8V ne sera pas endommagé et une expression

possible de I’endommagement est :
Pi(&,8V) = k(& — epg)™éV (2.19)

L’¢quation (2.18) est fortement inspirée de la théorie de Weibull. Néanmoins, il existe une
différence notable avec cette derniere. Dans 1’approche de Mazars, le modele du maillon faible de
Weibull est utilisé pour décrire I’initiation de I’endommagement et non la résistance ultime du

matériau qui dépend d’autres phénomenes tels que la redistribution de la contrainte.

2.3.2.2.2 Modele d’endommagement a deux échelles

Une fois I’endommagement initié, il faut décrire son évolution. L’évolution de I’endommagement,
due a la propagation de microfissures lorsque le matériau est sollicité en traction, est décrite grace
a une variable d’état scalaire, non-locale, représentant la perte en rigidité du béton. Cela peut étre
réalisé en calculant la valeur de & en fonction de I’état d’un volume représentatif. Cette approche
est qualifiée comme étant a deux échelles car celle-ci intégre des informations provenant de deux
échelles distinctes : 1’¢chelle du volume élémentaire, dans laquelle les contraintes et les
déformations sont determinées de maniere habituelle, et I’échelle du volume représentatif, dans
laquelle I’endommagement est défini en fonction de I’hétérogénéité du matériau et de ’interaction

entre les microfissures (Saouridis & Mazars, 1992).

La seule modification apportée a la formulation du modéle concerne la loi sur I’évolution de

I’endommagement :
D = f(&,) # 0si &, > ep avec f(&,) définie comme dans 1’équation (2.16)

_ [ Vpg(x —s)édv

~ TVpgG—s)av (2.20)

<

L’équation (2.20) introduit une nouvelle inconnue : g(x — s) qui est une fonction de pondération
représentant 1’intensité de 1’interaction entre le point considéré de coordonnée x, les points de
coordonnée s qui sont situés a son voisinage et le volume représentatif V;,. La courbe de g(x — s)
est de type gaussienne (voir la Figure 2.12) qui tient compte de I, la longueur caractéristique (plus
généralement denommeée longueur interne pour un milieu non local), et qui est une propriété du

matériau reliée a la taille maximale de I’agrégat tel que 2lp = 3@ ax-
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Figure 2.12 Mod¢le d’endommagement a deux échelles (Saouridis & Mazars, 1992)

Gréace a une comparaison entre les résultats expérimentaux et les résultats numériques, Saouridis
et Mazars (1992) ont montré que 1I’approche dite a deux échelles permet de décrire I’effet d’échelle
sur les spécimens entaillés et représente bien en ce sens 1’aspect déterministe. Au contraire, dans
le cas de spécimens non entaillés ou I’effet d’échelle statistique prévaut sur I’effet d’échelle
déterministe, il faudrait combiner 1’approche a deux échelles avec le modele d’initiation de

I’endommagement.

2.3.2.3 Le modeéle de Sellier et Millard

Le modéle proposé par Sellier et Millard (2014) permet de prédire les déclenchements successifs
dans un élément susceptible de fissurer a plusieurs reprises : par exemple un élément structural de
grande dimension avec des fibres ou des armatures et dont la matrice est fragile. Cette nouvelle
approche permet également de redistribuer les contraintes aux alentours de la zone fissurée. La
conséquence directe de cette nouvelle formulation est que la rupture de la structure n’est pas liée a
la rupture de son maillon le plus faible mais seulement a celle qui se produit au niveau du volume
statistiquement représentatif qui dépend dans le modéle de Sellier et Millard (2013) d’une longueur

dite d’autocorrélation.

La probabilité de fissuration locale est caractérisée par une moyenne et un écart-type qui sont

associés a un volume sollicité de référence comme dans la théorie classique de Weibull.
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Néanmoins, il existe une distinction qui est importante et qui fait ’originalité de ce mode¢le : le

volume de référence dépend du temps de chargement. En effet, si ce temps est élevé, comme dans

le cas des chargements quasi-statiques par exemple, la résistance locale qui est prise comme

référence diminue car la probabilité que les liaisons moléculaires passent momentanément par un

minimum énergétique augmente (Sellier & Millard, 2014). Par ailleurs, les auteurs précisent que

cette théorie est indépendante du type de fissuration utilisé.

Le paramétre P (M, t) désigne la probabilité pour qu’un point M, situé dans un volume V et d’age

t, puisse transmettre une contrainte o (M, t). Cette probabilité est soumise a deux conditions.

1-

11 faut que le point matériel ait survécu jusqu’au temps t, ce qui est représenté par I’équation

suivante qui fait intervenir 1’historique du point M :

dt
1_[ ( Plfref,tref (M' T))tref
dt€e(o,t]

Pirer (M, 1) = (2.21)
11 faut que le voisinage du point M ait également survécu jusqu’au temps t afin d’assurer la
transmission de la contrainte. Le voisinage immédiat du point M est caractérisé par la
fonction de pondération probabiliste ¥ (voir Figure 2.13) qui dépend du point x considéré
et de la longueur d’autocorrélation .. En effet, dans le cas ou le matériau possede des
propriétés auto-corrélées, ce qui est le cas du béton, si la rupture a lieu dans une zone, il
faut suffisamment s’¢loigner de cette derniere pour pouvoir retomber sur un endroit ou le

matériau est capable de reprendre la contrainte o.
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Figure 2.13 Fonction d'atténuation du poids probabiliste (Sellier & Millard, 2014)
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Sellier et Millard (2013) stipulent enfin que cette méthode reste déterministe, méme si elle est basée
sur une théorie probabiliste, puisque la solution obtenue est représentative du mode de fissuration
le plus vraisemblable et donc que cette derniére ne requiére pas d’utiliser un algorithme de Monte

Carlo alors qu’un seul calcul suffit, ce qui engendrerait un gain de temps trés important.

2.3.2.4 Le modeéle de Ben Ftima et Massicotte

Ben Ftima et Massicotte (2015) ont développé une approche simplifiée permettant de tenir compte
des deux sources d’effet d’échelle, déterministe et statistique, et qui est bien adaptée au contexte
de modélisation macroscopique du béton. Ils considérent que pour un matériau quasi-fragile, 1’ effet
d’échelle statistique affecte principalement la phase d’initiation de la fissure et donc la résistance
en traction f; et que I’effet d’échelle déterministe affecte la phase de propagation de fissure

macroscopique et est pris en compte par 1’énergie de fissuration.

L’aspect déterministe est modélisé implicitement par le biais de 1’énergie de fissuration Gy selon
une approche de fissuration diffuse ou I’endommagent est distribué sur toute la hauteur de
1’élément fini. En ce qui concerne 1’effet d’échelle d’origine statistique, celui-Ci est pris en compte
en faisant varier la résistance en traction f; en fonction de la dimension caractéristique D de
I’¢lément structural a I’aide d’une loi exponentielle décroissante inspirée de la distribution de
Weibull. L expression suivante est ainsi utilisée pour renseigner la valeur de f; pour les modéles
par éléments finis :

fi = O-SJJT’C (1?—0)_% (2.22)

avec ngy la similitude dimensionnelle de la structure (ex ng = 2 pour une similitude 2D) et m le
module de Weibull pris égal a 24 pour le béton. 1l est important de noter que ce modele se distingue
de ceux présentés précédemment par sa simplicité et par le nombre relativement faible de

parametres d’entrée qu’il nécessite.

2.3.3 Synthese

Le Tableau 2.1 contient une synthése de I’ensemble des méthodes, et de leurs différentes

caractéristiques.
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Tableau 2.1 Résumé des différentes approches de modélisation de 1’effet d’échelle

Nom du modeéle Effet d’échelle Effet d’échelle Nombre de
statistique statistique-énergétique  parameétres d’entrée
Modele de Weibull v X 1
(1939)
Modéle de Rossi (1987) v X 2
Modele de Bazant v v 5
(1999)
Modele de Mazars V4 V4 3
(1992)
Modele de Sellier et V4 V4 2
Millard (2014)
Modéle de Ben Ftima et N4 N4 2

Massicotte (2015)

Méme si la considération de I’effet d’échelle statistique demeure importante pour les matériaux
quasi-fragiles (ex : béton) et les éléments de grande dimension (e.g. poutre de plus de 1 m de
profondeur), son importance demeure questionnable dans le cas de matériau quasi-ductile (ex :
BRF) et pour les éléments structuraux de petite dimension (ex : dalle de 150 mm). Ainsi, la
considération du concept d’énergie de fissuration lors de la modélisation non linéaire
macroscopique de dalles en BRF pourrait s’avérer suffisante pour uniquement tenir compte de
I’effet d’échelle déterministe ou énergétique. Toutefois, et tel que mentionné précédemment dans
la section 2.2, il est primordial d’inclure dans cette modélisation 1’aspect probabiliste li¢ a

I’orientation aléatoire des fibres.

2.4 Modélisation probabiliste du béton

Dans le cadre de ’analyse non linéaire par éléments finis, de nombreux parametres d’entrée
(propriétés du matériau, dimensions géometriques, charges appliquées) sont généralement requis.
Ces derniers possédent le plus souvent une variabilité aléatoire qui ne peut étre négligée. Dans cette
section, les probabilistes utilisées dans la sous-routine d’EPM3D seront d’abord présentées, le
concept de fiabilité des structures sera ensuite abordé, enfin, plusieurs exemples de modélisations

probabilistes par éléments finis du béton seront détailles.
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2.4.1 Lois probabilistes utilisees

La loi normale, la loi lognormale et la loi de Weibull sont les trois distributions aléatoires les plus
couramment utilisées dans la littérature pour représenter la variabilité spatiale du béton ordinaire
et des bétons renforcés de fibres également. Cette partie comportera une description de ces trois
lois probabilistes et explicitera les raisons pour lesquelles celles-ci sont particulierement adaptées
a la modélisation de la variabilité spatiale des propriétés mécaniques des bétons ordinaires et des

bétons renforcés de fibres.

2.4.1.1 Loi Normale

Cette partie établira le cadre théorique de la loi normale, également appelée loi Gaussienne. Elle
explicitera aussi les raisons pour lesquelles cette distribution a été utilisée dans la sous-routine
probabiliste développée dans le cadre de cette maitrise pour modéliser la variabilité des propriétés

mécaniques du béton.

La loi normale fait partie des distributions les plus couramment utilisées en statistiques et théorie
des probabilités et recouvre un trés large éventail d’applications (Balakrishnan et al., 2019). Tout
d’abord, la fonction de densité de probabilité de la loi normale s’écrit de la maniére suivante (Voir
la Figure 2.14) :

_(x—w)?
e %) | —o<x <+ (2.23)

f(X)=Gm

avec u la moyenne de la distribution et o 1’écart-type.

Comme le montre la Figure 2.14, 68% de I’aire sous la courbe (et donc des issues obtenues en
sortie d’une loi normale) se situe dans I’intervalle [u — o; 1 + a], 95% de ’aire sous la courbe se
situe au sein de I’intervalle [u — 20; u + 20|, et enfin, 99,7% de I’aire se situe dans [u — 30; u +
30].
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Figure 2.14 Fonction de densité de probabilité de la loi normale (Balakrishnan et al., 2019)

Par ailleurs, la loi normale tronquée (pas de valeurs négatives) a souvent été utilisée dans 1’étude
des aspects probabilistes de la défaillance des matériaux hétérogenes et fragiles (Rossi et al., 1994
(b)).

Rossi et Richer (1987), Rossi et al. (1994 (a)) et Rossi et al. (1994 (b)) ont développé et mis en
ceuvre une procédure numérique prenant en compte les aspects statistiques de I’hétérogénéité des
bétons. Pour cela, ils ont mené de nombreuses campagnes expérimentales de traction directe sur
des spécimens cylindrigues, et ce dans le but de définir la distribution statistique de la résistance
en traction. lls ont ainsi réussi a démontrer que la loi normale tronquée et la loi de Weibull
correspondaient aux distributions mesurées de maniére expérimentale. En effet, des tests
statistiques (utilisation de la droite de Henri et de la méthode du x2) ont été mis en application afin
de vérifier que les distributions expérimentales obtenues suivent bien la loi normale théorique. Ceci

a été validé pour des bétons dont la résistance en compression variait entre 35 MPa et 130 MPa.

En outre, dans le cadre d’une étude numérique par éléments finis de I’effet d’échelle statistique de
poutres en béton ordinaire soumises a de la flexion 3 points, Syroka-Korol et al. (2013) affectent
aux ¢léments finis des valeurs de résistance a la traction sous forme d’un champ aléatoire
spatialement corrélés décrits par une distribution normale tronquée. Les auteurs affirment
également que la distribution Gaussienne tronquée est largement utilisée pour décrire la probabilité

de défaillance des spécimens de bétons de petites et moyennes tailles. Par contre, pour les grands
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échantillons de béton, la fonction de distribution de Weibull est généralement privilégiée (Bazant
& Planas, 1997; Syroka-Korol et al., 2013).

En ce qui concerne les bétons renforcés de fibres, Li et al. (2018) ont développé un modéle
probabiliste pour saisir la variabilité du comportement en traction des BRF. Afin de représenter
I’hétérogénéité de la microstructure du matériau, tous les paramétres micromécaniques (longueur
des fibres, diametre des fibres, module élastique des fibres, résistance des fibres, pourcentage
volumique des fibres, module d’Young de la matrice cimentaire, etc.) sont considérés comme des

variables aléatoires suivant une distribution normale tronquée.

2.4.1.2 Loi Lognormale

Cette sous-section comportera la définition du cadre théorique de la loi lognormale et explicitera
les raisons pour lesquelles celle-ci fait partie des distributions utilisées dans la sous-routine
probabiliste d’EPM3D.

Comme mentionné dans le paragraphe précédent, la loi normale fait partie des distributions les plus
importantes et les plus utilisées dans le domaine des statistiques et de la théorie des probabilités.
Néanmoins, il existe plusieurs situations pratiques dans lesquelles le logarithme d’une variable
aléatoire X suit une distribution normale. Ainsi, X suit une loi lognormale de paramétres u et o2 si
la variable aléatoire Y = In(X) obéit a une distribution normale N(u, c?). La phrase précédente

peut-étre abrégée a 1’aide de la formulation mathématique suivante : X~LN (u, 62).

La fonction de densité de probabilité de cette loi s’écrit de la maniere suivante (Balakrishnan et al.,
2019) :

1 (InG) = 7
f(X) = mexp l— Tl , x>0 (2.24)

Les parametres u et o de la variable aléatoire X peuvent étre exprimés en fonction de 1’espérance

et 1’écart-type (Balakrishnan et al., 2019) :

u=1In(EX)- %02 (2.25)

(2.26)

0% =1n (1 + —Var(X) >

(EC0)*
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Figure 2.15 Fonction de densité de probabilité de la loi lognormale pour différentes valeurs des

paramétres u et o (Balakrishnan et al., 2019)

La Figure 2.15 met en avant la fonction de densité de probabilité de la distribution lognormale pour
trois choix de parametres distincts : (i) u =leto =1 (ii)u=0eto =1 (iii)u =0eto = 0.5.
La caractéristique commune aux trois courbes de la figure est I’asymmétrie (la fonction de densité
a une queue plus longue a I’extrémité droite du graphique), celle-ci est d’autant plus prononcée

pour les distributions pour lesquelles le parametre o est élevé.

Par ailleurs, nous avons fait le choix d’utilisation de cette loi dans la sous-routine probabiliste car
celle-ci a ét¢ employée par divers auteurs dans le but de modéliser ’aspect probabiliste du
comportement des bétons ordinaires et des BRF. Par exemple, Colliat et al. (2007) se sont intéressés
a ’aspect probabiliste de 1’effet d’échelle pour les structures en béton ordinaire. Pour ce faire, ils
ont considéré que la limite élastique o, et I’écart e, entre la contrainte maximale o et o,
constituaient la principale source d’incertitude, ces deux parameétres étaient ainsi modélisés par des

variables aléatoires corrélées suivant la loi lognormale.

En ce qui concerne les bétons renforcés de fibres, Rossi et al. (2015), Tailhan et al. (2013) et
Tailhan et al. (2015a) ont développé un modéle de fissuration discrete avec une composante
macroscopique lorsque la localisation se produit. Dans cette approche, la valeur de 1’énergie de
post-fissuration est considérée comme un parametre probabiliste obéissant a une fonction de

distribution de type lognormale.
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Etant donné que ce projet de maitrise se focalise principalement sur les bétons renforcés de fibres
et que le paramétre qui a été considéré comme principale source d’incertitude est I’énergie de post-
fissuration, la loi lognormale sera particulierement utilisée dans les exemples d’applications qui

seront présentés en détail dans les sections qui apparaissent plus loin dans ce chapitre.

2.4.1.3 Loide Weibull

Cette sous-section suivra une trame identique a celle des paragraphes précédents. Il existe plusieurs
mod¢les physiques a 1’origine de la distribution statistique de Weibull, ces derniers aident
généralement a interpréter la loi probabiliste et a sélectionner les bons ensembles de données
empiriques. Le modele physique le plus ancien et le plus représentatif de la distribution de Weibull
est basé sur la théorie des valeurs extrémes (Rinne, 2008), il s’agit de la théorie du maillon faible
(consulter la Section 2.3.1 pour de plus amples détails), qui a été largement utilisée pour expliquer
le phénomeéne de rupture des matériaux fragiles et quasi-fragiles tels que le béton. Cette théorie
consiste en un systéeme physique composé de n unités identiques d’éléments connectés en série, le
systeme est fonctionnel tant que les n unités ne sont pas défaillantes, et celui-ci devient non

fonctionnel a la premiére rupture qui survient au sein d’une de ces unités.
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Figure 2.16 Fonction de densité de probabilité de la loi de Weibull pour différentes valeurs du

facteur de localisation a (Rinne, 2008)

La répartition, introduite a 1’origine par Weibull (1939), dépend de trois parametres. La fonction

de densité de probabilité est donnée par 1I’équation suivante (Rinne, 2008):
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c

fx(xla,b,c) = E(x ; a)c_l exp {— (x ; a)c},x >a (2.27)

Le premier parametre a (voir la Figure 2.16) est généralement appelé origine ou seuil. D’un point

de vue statistique, il est désigné par le terme de facteur de localisation, le faire varier tout en

maintenant les deux autres données b et ¢ constantes aura pour effet de translater la courbe de

densité de probabilité selon I’axe des abscisses.
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Figure 2.17 Fonction de densité de probabilité de la loi de Weibull pour différentes valeurs du

facteur d’échelle b (Rinne, 2008)

Le second paramétre b est appelé facteur d’échelle (voir la Figure 2.17). Le fait de modifier b tout
en maintenant a et ¢ constants modifie la fonction de densité de probabilité verticalement (suivant

I’axe des ordonnées). L’augmentation de ce facteur entraine une compression ou encore une
réduction de la densité de probabilité.
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Figure 2.18 Fonction de densité de probabilité de la loi de Weibull pour différentes valeurs de
pentes (Rinne, 2008)

Enfin, le troisiéme et dernier parametre est désigné par le terme de pente. D’un point de vue
statistique, celui-ci représente un facteur de forme. En effet, la variation de ce dernier entraine une
modification, assez drastique dans certains cas (voir la Figure 2.18), de la courbe de densité de

probabilité.

Le fait de neutraliser I'un des trois parametres, en fixant a =0 ou b =1 ou encore c =1,
transforme la loi de Weibull en une distribution a deux parametres. Dans le cadre de la sous-routine
probabiliste d’EPM3D, il a été choisi de fixer la valeur du parameétre a a 0. Il s’agit de la forme la
plus utilisée en statistique et théorie des probabilités. Cette forme est particulierement adaptée pour
le cadre d’utilisation prévu par le code développé puisque la rupture peut se produire pour
n’importe quel élément dont la résistance est comprise entre 0 et un intervalle supérieur déterminé

par les deux autres parameétres de la distribution.

Dans le cadre de 1’étude des bétons ordinaires, Rossi et Richer (1987), Rossi et al. (1994 (a)) et
Rossi et al. (1994 (b)) ont mené plusieurs campagnes expérimentales de traction directe dans le but
de determiner la distribution statistique de la résistance a la traction. Ils en concluent que la loi de
Weibull correspond bien aux distributions expérimentales mesurées et se révéle particuliérement
adaptée pour I’étude des cas de rupture fragile. Syroka-Korol et al. (2013) se sont intéressés a
I’étude du phénomene d’effet d’échelle probabiliste pour les structures en béton ordinaire

présentant une similarité géometrique. La campagne expérimentale menée a permis de montrer que
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la résistance a la traction prenait la forme de champs aléatoires spatialement corrélés décrits par
une distribution gaussienne tronquée. Néanmoins, cette méme résistance a subi une transition

progressive de la loi normale vers la loi de Weibull pour les spécimens de plus grande taille.

Pour les bétons renforces de fibres, Tailhan et al. (2013), Tailhan et al. (2015b) et Rossi et al. (2015)
ont développé un modéle probabiliste de fissuration discréte utilisant des éléments de contact dans
lequel les propriétés mécaniques sont des champs aléatoires suivant la loi de Weibull.

Ainsi, et comme il est possible de le constater au travers des exemples présentés plus haut et du
paragraphe 2.3.1, la loi de Weibull est particuliérement adaptée pour la modélisation de 1’aspect
probabiliste du comportement des matériaux fragiles et quasi-fragiles tels que les bétons ordinaires
et les BRF.

2.4.2 Présentation du concept de la fiabilité des structures

Cette sous-section décrit le concept geneéral de la fiabilité des structures, présenté a la Figure 2.19.
Etant donné une fonction aléatoire de résistance R et une fonction aléatoire de charge U, la fonction

aléatoire Z = R — U est alors appelée fonction d’état limite.

Ici, R dépend des variables aléatoires de résistance entrées (par exemple les propriétés du béton) et
U des variables de charge renseignées (par exemple la charge appliquée au modéle). Le paramétre
Z pourrait désigner la résistance a la flexion ou au cisaillement (fonction d’état limite ultime) ou
encore une limite de fleche ou de largeur de fissure a ne pas dépasser (fonction d’état limite de

service).

Une mesure de la fiabilité de cette fonction d’état limite est la probabilité de défaillance qui est

definie comme p; = p(R — U < 0). Une autre mesure possible de cette caractéristique est I’indice
de fiabilité g = Za—m (avec Z,,, désignant la moyenne et g, 1I’écart-type de Z). Pour le cas particulier
Z

de distributions normales indépendantes R et U, il est possible de montrer que (Ben Ftima &
Massicotte, 2012) :

pr = ¢(—=B) (2.28)

avec ¢ la fonction de répartition de la loi normale (moyenne nulle et variance unitaire).
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Compte-tenu d’une probabilité de défaillance maximale py ,,4,0u d’un indice de fiabilité minimum
requis Bmin pOUr la structure, et connaissant les lois des variables aléatoires R et U, une conception
donnée peut étre classifiée comme étant conservatrice, optimale ou encore dangereuse (voir la
Figure 2.19 (b)).
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]
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LEVEL 2 : B> Brin B = Bmin B < Brin
LEVEL 3: P; < Pf_max Ps= l:'f_max P> Pi_max

(b)
Figure 2.19 Concept général de la fiabilité des structures (Ben Ftima & Massicotte, 2012)

Selon Melchers et Beck (2018), trois niveaux différents de techniques de mesures de la fiabilité
peuvent étre utilisés en fonction du seuil de précision (Figure 2.19 (b)). Les méthodes appartenant
au niveau 3 sont des méthodes exactes visant a estimer la probabilité de défaillance d’une structure
en utilisant des modeles probabilistes précis (Ben Ftima & Massicotte, 2012). Cette approche
nécessite la connaissance exacte des distributions probabilistes des paramétres d’entrée. En
I’absence de telles informations, le niveau 2 peut €tre utilisé afin d’estimer I’indice de fiabilité et
la probabilité nominale de défaillance en utilisant I’équation (2.28). Dans cette situation, seuls la
moyenne et le coefficient de variation sont requis et les calculs sont effectués en supposant des
distributions normales. Pour le niveau 1, les facteurs de securité partiels peuvent étre utilises
comme une extension quasi-probabiliste de I’approche traditionnelle du facteur de sécurité : c’est
I’approche considérée par les codes modernes de conception aux états limites. Les techniques
suivantes ont été utilisées dans la littérature pour la propagation de I’incertitude et I’analyse

probabiliste : les méthodes par éléments finis probabilistes, les méthodes de simulations (par
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exemple la méthode de Monte Carlo ou encore la méthode du Latin hypercube) et les méthodes
d’estimation par points (ex : Ben Ftima et Massicotte (2012)).

Les facteurs de securité y. utilisés pour trouver la valeur de résistance de conception R, sont

exprimés au travers la relation suivante :

R
R; = _m
Ye (2.29)
Ve = PR

avec R,, la valeur moyenne de la résistance, a = 0,75 + 0,06 la fonction de séparation et V le

coefficient de variation de R.

2.4.3 Exemples de modélisations probabilistes de béton

Comme mentionné précédemment, il existe une multitude de facteurs qui entrent en compte dans
I’évaluation de la fiabilité d’une structure. Dans cette sous-section, seules les propriétés

mécaniques du béton seront considérees.

Une des approches les plus simples a implémenter afin de rendre compte de la variabilité spatiale
des caractéristiques mécaniques du béton ordinaire consiste a attribuer a chaque volume de matiére
des propriétés (par exemple f{ et E dans le cas de Rossi et Richer (1987)) suivant une distribution
probabiliste donnée, et ensuite a effectuer une simulation numérique grace a un logiciel d’éléments
finis. Une autre méthode consiste a considérer une distribution de défaut dans le volume étudié. Le
comportement global est ainsi la somme du comportement élastique-fragile de chacun de ces
défauts. Rossi et al. (1994 (a)) utilisent un modele par éléments finis triangulaires avec des éléments
de contact infiniment fins. Le module de Young E est distribué de maniére aléatoire sur les
éléments massifs du maillage en utilisant une fonction de répartition qui dépend du rapport entre
le volume des éléments et le volume du plus gros grain. La valeur critique de la résistance a la
traction f; est affectée aux éléments de contact et suit une fonction de distribution qui dépend du

volume total des deux ¢léments de volume adjacents a 1’élément de contact (voir la Figure 2.20).
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Figure 2.20 Modéle numérique probabiliste utilisé pour représenter le comportement du béton
(Rossi et al., 1994 (b))

Carmeliet et de Borst (1995) ont utilisé la méthode de discrétisation dite du point médian. Elle
consiste a discrétiser le champ aléatoire au niveau du centroide x. de chacun des volumes V, qui
constituent I’ensemble du spécimen a étudier. La déformation initiale d’endommagement &p,, est
ainsi aléatoirement distribuée sur I’ensemble des points x,. et cette distribution est représentée par
un champ aléatoire non gaussien qui dépend de trois parameétres qui sont déterminés a I’aide d’une
analyse inverse a partir de résultats expérimentaux. Une fonction d’autocorrélation est introduite

afin de prendre en compte I’influence de points de faiblesses sur leur entourage proche.

Tang et al. (2011) ont modifié la loi de Weibull en y ajoutant une fonction de corrélation spatiale.
Ils ont étudié les effets de la longueur de corrélation 8 sur la résistance en compression : avec une
valeur plus petite de 6, ils observent une plus grande dispersion de la branche post-pic de la courbe
force-déplacement et des patrons de fissuration des modeles simulés; néanmoins, les valeurs
moyennes de la résistance ne connaissent pas de changement important si les mémes paramétres

d’entrée de la loi de Weibull sont utilisés.

Colliat et al. (2007) considerent la limite élastique o, et I’écart e, entre la contrainte maximale o
et o, comme les principales sources d’incertitude. Le module d’Young et I’énergie de fissuration

sont considérées comme étant des quantités déterministes. Selon la théorie de Weibull, il aurait

fallu modéliser cet ensemble de propriétés par deux champs aléatoires non corrélés. Néanmoins,
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les auteurs font le choix de les considérer comme des champs corrélés (donc non indépendants).

La distribution choisie est la loi lognormale.

Comme la diminution de la résistance a la traction lors de I’augmentation du volume sollicité est
associé a I’hétérogénéité du matériau, Weibull (1939) a développé le concept de maillon faible qui
¢établit une relation entre le volume de la structure étudiée et sa résistance moyenne, qu’on appelle
effet d’échelle. Ainsi, dans les modéles de simulation par ¢léments finis, il est nécessaire de
modéliser cette variabilité spatiale conduisant au processus de localisation. Certains auteurs
(Colliat et al., 2007; Syroka-Korol et al., 2013; Voiechovsky, 2007) ont développé des outils
permettant d’utiliser les champs aléatoires dans le but de reproduire I’effet d’échelle pour les
matériaux quasi-fragiles. Votechovsky (2007) a montré que le fait de modéliser la variabilité
spatiale de la résistance locale des matériaux représente bien la partie statistique de 1’effet
d’échelle. En outre, Colliat et al. (2007) ont démontré que 1’approche probabiliste utilisant les
champs aléatoires corrélées est capable de relier la mécanique de I’endommagement continu pour

les petites structures et la mécanique de rupture linéaire élastique (LEFM).

2.4.4 Synthese

La génération de champs aléatoires discrets implique de nombreuses difficultés tel que le choix des
paramétres aléatoires, la méthode probabiliste, la loi probabiliste ou encore la fonction et la
longueur d’autocorrélation dans certains cas. Le Tableau 2.2 présente un bref résume des

caractéristiques des champs aléatoires utilisés pour décrire I’hétérogénéité des bétons ordinaires.
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Tableau 2.2 Synthése des méthodes utilisées pour modéliser I’hétérogénéité du béton

Auteur

Meéthode de
simulation

Loi probabiliste

Paramétres
variables

Fonction

d’autocorrélation

Carmeliet et de

Méthode du point

Loi non normale

Déformation initiale

x2
exp —ﬁ

Borst (1995) médian (Midpoint d’endommagement
method)
l=5mm
Colliat et al. Méthode de Loi lognormale Limite élastique ; exp (_ f)
(2007) Karhunen-Loéve écart entre la l
contrainte maximale [l=10cm
et la limite élastique
Rossi et al. Méthode de Loi normale ou fi etE X
(1994 (b)) Monte-Carlo Loi de Weibull
Vorechovsky Méthode de Loi normale K, x?
(2007) I’hypercube latin e\~ 1z
[=8cm
Syroka-Korol Méthode de Loi normale fi x?
et al. (2013) I’hypercube latin X\ =72
I=5cm

2.5 Modélisation numérique probabiliste des bétons renforcés de

fibres

La modélisation la variabilité spatiale des propriétés mécaniques des bétons renforcés de fibres

introduit un niveau de complexité supplémentaire. En effet, les fibres constituent une entité

totalement indépendante de la matrice cimentaire du point de vue des caractéristiques mécaniques

et de la distribution spatiale.

Dobrilla et al. (2018) ont cherché a déterminer la propagation de I’incertitude des paramétres

d’entrée du mode¢le dans la réponse globale et locale d’un spécimen en traction. 1ls ont choisi pour

cela la méthode de Monte-Carlo.
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Figure 2.21 (a) Spécimen contenant une fibre horizontale; (b) Les déplacements dans la direction
X; (c) La distribution de la contrainte en traction au sein du spécimen (Ibrahimbegovic, 2009;
Rukavina et al., 2019)

Les parameétres suivant une distribution probabiliste sont : le module tangent de la réponse a
I’arrachement de la fibre, le module de durcissement et le coefficient permettant de relier la
résistance ultime a la valeur de 1’énergie de fissuration. Ces trois paramétres, qui sont considérés
comme étant indépendants, suivent une loi Béta dont les caractéristiques sont déterminées a partir

d’essais expérimentaux.

Rossi et al. (1994 (b)) ont créé un premier modéle qui consistait & introduire une force de rappel
qui dépend de la largeur de I’ouverture. Cela était réalisé en imposant au point de Gauss une
contrainte normale qui était fonction du déplacement normal de I’élément de contact ouvert.

Néanmoins, ce modele présente plusieurs limites et imperfections.

- Premiéerement, la modélisation du comportement post-fissuration n’est pas efficace du point

de vue numérique.

- La représentation de la re-fermeture des fissures n’est pas réaliste d’un point de vue
physique : seule I’action des fibres vis-a-vis des déplacements normaux des levres de la
fissure est prise en compte, leur action n’est pas prise en compte pour les déplacements

tangentiels. En outre, cette re-fermeture se fait sans ouverture résiduelle.

- Il existe un probleme de convergence lorsque trop d’éléments de contact s’ouvrent

simultanément.

Rossi et al. (2015) ont par conséquent developpé un nouveau modele pour les bétons renforcés de

fibres. Il s’agit d’un mélange entre un modeéle discret avec des éléments de contact auxquels on
g g
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attribue aléatoirement une valeur de f; (en pré-pic) et entre un modele macroscopique
d’endommagement avec une attribution aléatoire de I’énergie de fissuration (en post-pic), comme

on peut le voir sur la Figure 2.22.

Contrainta normals

N\

Déplacament normal \ e
M orribre Naimbre

Fasmstance an rackon Emene postissuralion

Figure 2.22 Exemple de la nouvelle loi proposée pour décrire I'évolution de la contrainte normale
en fonction du déplacement normal a I'élément de contact (Rossi et al., 2015)

Pour résumer, avant le pic, le béton se comporte comme un béton ordinaire et les fibres sont
mécaniquement neutres. Apres le pic, I’effet des fibres devient bien plus important, et en particulier

dans le contrdle de la propagation de la macrofissure.

Li et al. (2018) modélisent la variabilité du béton grace a une approche multi-échelle. Ils
caractérisent le BRF par les trois phases microstructurales qui le constituent a savoir : la fibre, la
matrice et I’interface fibre/matrice. Un ensemble de paramétres micromécaniques est utilisé pour
décrire ces trois phases, ces parametres sont considérés comme des variables aléatoires. Cette
variabilité a I’échelle microscopique influe la capacité de pontage des fibres et les propriétés de
fissuration de la matrice (échelle méso) qui a leur tour régissent le comportement a 1’échelle
macroscopique : I’allure de la courbe contrainte-déformation, la distribution de la largeur des

fissures et la distribution de I’espacement des fissures (voir la Figure 2.23 ).
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Figure 2.23 Approche multi-échelle de modélisation de la variabilité des BRF en tension (Li et
al., 2018)

Vorechovsky et al. (2013) se sont également intéresses dans certains travaux a la résistance des
bétons renforcés de fibres. Pour cela, les auteurs ont supposé que la position et 1’orientation des
fibres étaient aléatoires dans les spécimens. En exploitant la fraction volumétrique des fibres, la
géométrie des fibres et de 1’échantillon et les propriétés de I’interface avec la matrice, 1’auteur
parvient a obtenir une évaluation de la force totale aléatoire au niveau de la fissure. Ces données
sont ensuite réutilisées dans 1’estimation de la résistance a la traction de 1’ensemble du matériau.
Le Tableau 2.3 présente un bref résumé des caractéristiques des champs aléatoires utilisés pour

décrire I’hétérogénéité et parfois I’effet d’échelle pour les bétons ordinaires.



48

Tableau 2.3 Syntheése des méthodes utilisées pour modéliser I’hétérogénéité des BRF

Auteur Méthode de Loi probabiliste Parametres variables Fonction
simulation d’autocorrélation
Dobrilla et al. Méthode de Loi Béta module tangent du béton; X
(2018) Monte-Carlo module de durcissement;

coefficient reliant résistance
ultime a la valeur de 1’énergie
de fissuration

Rossi et al. Méthode de Loi lognormale et fi et Gy X
(2015) Monte-Carlo loi de Weibull
Li et al. (2018) Méthode de Loi normale, 14 paramétres au total X
Monte-Carlo uniforme et loi de
Weibull
Vorechovsky Méthode de Loi binomiale Position et orientation des X
et al. (2013) I’hypercube latin fibres

2.6 Conclusion

Par souci de faisabilité, il a été décidé dans ce mémoire d’étudier les éléments en BRF a une échelle
macroscopique. Contrairement au béton ordinaire, le béton renforcé de fibres présente une plus
grande ductilité en post-pic qui est due a I’action de pontage des fibres. On suppose ainsi que 1’effet
d’échelle énergétique sera prépondérant dans les analyses et que [’utilisation du concept de
I’énergie de fissuration sera suffisante. Afin de tenir compte de la variabilité aléatoire des fibres,
des analyses de Monte-Carlo seront réalisées a 1’échelle du matériau et de 1’élément d’une fagon
similaire a Rossi et al. (2015). Toutefois, I’action de pontage due aux fibres sera prise en compte
implicitement via une énergie de fissuration associée aux fibres qui est beaucoup plus grande que
I’énergie de fissuration associée a la matrice cimentaire. Cette approche présente une plus grande
simplicité puisque seulement le coefficient de variation et la valeur moyenne de 1’énergie de
fissuration associée aux fibres seront requis lors de simulations des éléments en BRF. Cependant,
une étape de calibration a 1’échelle du matériau est requise avec cette approche afin de s’assurer
que le schéma numérique reproduise la méme variabilité a 1’échelle matériau peu importe la taille

du maillage. Cet aspect important sera détaillé dans le chapitre 3 suivant.
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CHAPITRE3 MODELISATION DE LA VARIABILITE SPATIALE DES
BETONS RENFORCES DE FIBRES

En raison de sa microstructure, des phénomeénes physiques qui se produisent lors du durcissement
(contraintes initiales, retrait de séchage, porosité due a I’hydratation) ainsi que de la distribution
non uniforme des fibres dans le cas des BRF, le béton est un matériau hautement hétérogene. Cette
caractéristique peut expliquer certains aspects du comportement mécanique de ce matériau tels que
le passage de la microfissuration diffuse a la localisation d’une macrofissure et le phénoméne
d’effet d’échelle. Dans ce chapitre, nous présenterons 1’approche numérique qui a été développée

pour modéliser 1’aspect statistique de cette hétérogénéité du béton.

L’implémentation de cette sous-routine probabiliste dans le logiciel EPM3D (Massicotte & Ben
Ftima, 2015) est présentée dans un premier temps. Ensuite, un cas d’application de cette sous-
routine sur une éprouvette en traction dans le logiciel ABAQUS (Hibbitt et al., 2014) sera étudie.
Le but de cet exercice est de mettre en place un modéle de calibration qui permet de relier la

dispersion fournie en entrée par 1’utilisateur et celle obtenue en sortie.

Enfin, un exemple de modeéle sous MATLAB d’un prisme en traction sera présenté. Le but de cette
modeélisation est de pouvoir prédire d’une autre maniére la relation entre les paramétres d’entrée

de la loi probabiliste utilisée et les résultats obtenus en sortie.

3.1 Implémentation de la sous-routine probabiliste sous EPM3D

3.1.1 Présentation

Le logiciel ABAQUS est utilisé dans le contexte de ce projet pour étudier I’impact de la variabilite
spatiale du béton renforcé de fibres sur des os sollicités en traction et des poutres soumises a de la
flexion 3 points. Les analyses effectuées dans le logiciel ABAQUS sont de type Explicit alors que
I’aspect probabiliste de la variabilité est pris en compte grace au modele de béton non linéaire
EPM3D (Bouzaiene & Massicotte, 1997).

3.1.1.1 ABAQUS

ABAQUS est un logiciel de calcul par éléments finis faisant partie de la nouvelle génération

d’outils numériques non linéaires.
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Pour ABAQUS/STANDARD, la résolution du probléme se fait par itérations successives en
calculant a chaque incrément la matrice tangente du systéme afin de résoudre I’équation suivante
(Ben Ftima, 2013) :

P-1=0 (3.1)

avec P le vecteur des forces externes et I le vecteur des forces internes aux nceuds. Les deux
méthodes de résolution les plus couramment utilisées sont la méthode de la longueur d’arc
également appelée méthode de Riks et la méthode de Newton-Raphson (Bouzaiene & Massicotte,
1997).

Néanmoins, ce type de résolution devient tres complexe lorsque la taille du modéle augmente ou
que la fissuration est amorcée (Ben Ftima, 2013). Pour remédier a ce probleme, la résolution avec

ABAQUS/EXPLICIT a été proposée. Celle-ci est basée sur la résolution de 1’équation suivante :
Mii=P—1 (3.2)

avec ii le vecteur des accélérations nodales et M la matrice de masse modale. Dans le cas ou
I’application de la charge s’effectue de maniere trés graduelle, le vecteur des accélérations est
quasi-nul et I’équation peut ainsi étre résolue de maniére quasi-statique. Enfin, un des avantages
principaux du module explicite d’ABAQUS est sa compatibilité avec la loi de comportement non
linaire du béton ordinaire, armé et renforcé de fibres EPM3D qui a été développée a Polytechnique

Montréal.

3.1.1.2 EPM3D

Cette section présente un récapitulatif de la modélisation non linéaire des bétons grace au logiciel
EPM3D. Le modéle de béton EPM3D, pour Endommagement Progressif Multiaxial
Tridimensionnel, permet de simuler le comportement du béton (ordinaire, armé et renforcé de

fibres) sous une charge multiaxiale.

En compression, le modéle obéit a une formulation tridimensionnelle incrémentale tangente (dite
hypo-élastique) proposée par Bouzaiene et Massicotte (1997). Dans le domaine des contraintes
principales, le comportement du béton en compression est modélisé dans chaque direction a 1’aide
d’une courbe uniaxiale équivalente (voir la Figure 3.1). Un paramétre d’endommagement scalaire

dénoté A est par ailleurs utilisé afin de quantifier la dégradation cumulée en compression du béton.
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Par ailleurs, ce mod¢ele permet également de tenir compte de 1’anisotropie, de la dégradation du
module élastique sous chargement et déchargement en compression, du point de transition séparant
le comportement ductile et le comportement fragile du béton, ainsi que de 1’expansion
volumétrique inélastique. En pré-pic, la surface de rupture est définie soit par le modéle de Willam
et Warnke (1975) a cinq parameétres ou le modele de Hsieh et al. (1982) & quatre parameétres. En
post-pic, le principe de conservation de 1’énergic de fissuration est utilisé afin d’assurer

I’objectivité du maillage lors de I’adoucissement en compression.
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Figure 3.1 Courbe uniaxiale de la contrainte en fonction de la déformation pour un élément en

compression (Massicotte & Ben Ftima, 2015)

D’aprés la Figure 3.1, la pente adoucissante en post-pic E; dépend de la longueur caractéristique

h. de I’élément fini :

Ej=————+F (3.3)

La constante § (unités de déplacement) est déterminée expérimentalement a partir de tests sur des
cylindres soumis a de la compression. Par ailleurs, et a partir de la Figure 3.1, il est possible de

definir la relation liant Gf_,, a 6:

1
Gr—y =58 —yDf' (3.4)

En traction, EPM3D adopte une approche macroscopique de fissuration par bande. Le béton en

pré-pic possede un comportement quasi-linéaire caractérisé par une déformation homogéne. En
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outre, comme pour la compression, une modification a été effectuée en post-pic afin d’éliminer la
dépendance a la taille du maillage (voir la Figure 3.2).
G

| R ——

| !

Eq. 2.7 1

G,/ h,

E

Figure 3.2 Courbe typique de la contrainte en fonction de la déformation pour un élément en

traction : béton non armé (Massicotte & Ben Ftima, 2015)

Suite a I’initiation d’une fissure, le matériau entame une phase adoucissante caractérisée par une
réduction de la résistance jusqu’a atteindre un état de déformation ultime pour lequel la fissure ne
peut plus transmettre aucune contrainte de traction (voir la Figure 3.2). Pour le béton ordinaire, un
modeéle de raidissement en traction est par ailleurs utilisé pour les zones de béton situées a proximité

des armatures afin de représenter 1’interaction entre I’acier et le béton.

Dans le cas particulier des bétons renforcés de fibres, il est possible a 1’utilisateur d’EPM3D de
faire le choix entre 3 types de courbes de la contrainte en fonction de 1’ouverture de fissure (voir

la Figure 3.3) :
- une fonction exponentielle décroissante (C54=1);
- un polynéme de degré cing (C3¢=2);

- des portions de droites affines reliées entre elles, dans ce cas-ci, I’utilisateur peut choisir les
coordonnées des différents points servant d’éléments de jointure entre les différents

segments de droites (C35=3).
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Figure 3.3 Définition des constantes relatives au béton renforcé de fibres

Les constantes Cs; a Cs, sont a définir par 1’utilisateur et représentent les paramétres d’entrées des

trois lois permettant de modéliser le comportement du BRF en post-fissuration.
3.1.2 Implémentation du modeéle probabiliste

3.1.2.1 Principe

Cette sous-partie décrit le principe général de la sous-routine probabiliste qui a été développée dans
EPM3D dans le cadre de cette maitrise recherche, ainsi que ses différentes caractéristiques.
L’écriture du code a été initiée en 2012 par David Conciatori, alors associé de recherche au GRS.

Ce projet de recherche s’inscrit donc dans la continuité des travaux amorcés par ce dernier.

Tout d’abord, dans cette nouvelle version du modele de béton EPM3D, il est désormais possible
de faire varier la valeur de la résistance a la traction f; ainsi que la valeur de la résistance a la
compression f, selon une loi normale, une loi de Weibull ou encore une loi lognormale.
L’utilisateur d’EPM3D, lorsqu’il définit la loi de son béton, a le choix de la distribution probabiliste
ainsi que de la moyenne et de 1’écart-type de celle-ci. Celui-ci peut également décider de faire

varier uniqguement £ ou £, les deux simultanément, ou aucune des deux propriétés.
Pour le cas particulier des bétons de fibres, les hypotheses suivantes ont été adoptées.

1. On considére que le comportement quasi-linéaire (qui correspond a la portion pré-pic de la
courbe de la contrainte en fonction de la déformation) demeure déterministe. C’est-a-dire

que cette portion de courbe ne varie pas d’une simulation a une autre (lorsque les parametres
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de la loi de béton EPM3D demeurent inchangées entre les deux simulations). Cette
hypothese est propre a la présente étude, le but étant d’isoler le comportement probabiliste

de la portion post-fissuration.

2. Laportion post-pic de la courbe de contrainte en fonction de 1’ouverture de fissure peut étre
décomposée en deux sous-parties (voir la Figure 2.3) : premiérement la contribution de la
matrice cimentaire (courbe adoucissante) qui demeure déterministe (pour des raisons
similaires a celles de la partie élastique), et deuxiemement la contribution des fibres qui est
aléatoire et varie suivant une loi (normale, lognormale, ou Weibull) préalablement choisie

par I’utilisateur.

Par ailleurs, dans le cas des BRF, la sous-routine probabiliste n’a été programmée que pour le cas
ou le comportement en post-pic est de type 3 (C55=3, consulter la section précédente). L’utilisateur
fait le choix des coordonnées des 7 points servant a relier les différentes portions de droites
constituant la courbe de contrainte en fonction de I’ouverture de fissure (voir la Figure 3.3). Ces 7
points initialement entrés par 'utilisateur servent a calculer la valeur moyenne de I’énergie de
fissuration Gy (uniquement celle attribuable & 1’action des fibres, la partie attribuable a la matrice
cimentaire demeurant déterministe), ce dernier doit également choisir un écart-type. Des valeurs
aleatoires de G sont ensuite générées en fonction de la distribution choisie par 'utilisateur et des
parametres de la loi sélectionnés. Enfin, a partir de chacune des valeurs de G, génerées
aléatoirement, les 7 points servant a définir la courbe de contrainte-ouverture de fissure sont

recalculés comme le montre la Figure 3.4 (voir la Section 3.1.2.2 pour le détail des calculs).
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Figure 3.4 Principe de modélisation de la variabilité des BRF

Le processus décrit plus haut est réalisé pour chaque point de Gauss en amont de toute simulation
sur ABAQUS. Ainsi, si I'utilisateur fait le choix d’une modélisation probabiliste pour une des
propriétés mécaniques (f;, f; ou Gy dans le cas d’un BRF), une valeur aléatoire de la distribution
(tout en respectant la moyenne et 1’écart-type spécifiés par 1’utilisateur) sera affectée a chacun des
points d’intégration de chaque élément de volume du maillage (voir la Figure 3.5). Dans le schéma

de la Figure 3.5, il est supposé qu’il n’y ait qu’un seul point d’intégration par élément de volume.

et Elément de volume
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Figure 3.5 Modele probabiliste développé dans EPM3D
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3.1.2.2 Présentation du code

Cette sous-section contient une description du code de la sous-routine probabiliste développée dans
le cadre de ce projet de maitrise (consulter I’Annexe A pour I’ensemble du code). Il est important

de mentionner que cette sous-routine a été écrite en langage FORTRAN.

Pour les bétons ordinaires, la résistance a la traction et/ou la résistance a la compression peut suivre
une distribution normale, lognormale, de Weibull ou encore ne pas subir de traitement probabiliste.
Si Iutilisateur fait le choix d’un traitement probabiliste, ce dernier doit fournir les caractéristiques
de la loi, a savoir la moyenne et 1’écart-type. Dans ce cas-ci, pour chaque point d’intégration, un
tirage uniforme et aléatoire est effectué et un nombre entre 0 et 1 est généré. Ce nombre sert ensuite
a calculer la propriété mécanique (f, et/ou f;) qui suit la distribution choisie grace a la méthode
dite inverse cumulée. La Figure 3.6 résume le principe de fonctionnement général de cette sous-

routine pour un béton ordinaire.

Parameétres d’entrée : moyenne Choix de la loi probabiliste suivie Affectation & chacun des points
de f, écart-type de f, moyenne de par f. et f; : loi normale — loi d’intégration d*une valeur de f et
fi. écart-type de f lognormale - loi de Weibull de f; suivant la loi probabiliste
choisie

Figure 3.6 Principe de fonctionnement de la sous-routine probabiliste pour un béton ordinaire

Pour les bétons renforcés de fibres, et pour une loi de comportement post-pic de type 3, il est
possible de faire varier 1’énergie de post-fissuration, en plus de la résistance en traction et en
compression. L utilisateur fournit les coordonnées des 7 points (ouverture de fissure en abscisse et
contrainte en ordonnée) servant a relier les portions de segments entre eux. L aire sous la courbe
est ainsi calculée, cette aire de référence sert de moyenne pour la distribution probabiliste, la valeur
de I’écart-type doit étre renseignée par 1’utilisateur. Tel qu’indiqué précédemment, la contribution
de la matrice est considérée comme étant déterministe dans le cadre de ce mémoire et seule 1’action
des fibres est soumise a un champ aléatoire. Ainsi, pour chaque point d’intégration, un tirage
aléatoire est effectué et un nombre entre 0 et 1 est généré. Ce nombre sert a calculer 1’énergie de
post-fissuration (celle uniquement due a 1’action des fibres) suivant la distribution choisie grace a
la méthode dite inverse cumulée. Une fois cette valeur genérée, il est possible de recalculer les
coordonnées des 7 points permettant de définir la loi de comportement en post-fissuration du béton

en effectuant I’opération suivante pour chacune des contraintes pour i allantde 24 7 :
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aléatoire initial
_ Gf,fibres + Gf,béton (3 10)
0i = —initial + G initial Oiinitial .
f.fibres f.béton

Avec Gﬁ?{},’;‘ﬁ;e la valeur de 1’énergie de post-fissuration générée grace a la loi probabiliste pour
un point de Gauss donné; G}’}‘fg%s la valeur moyenne calculée a 1’aide des coordonnées des 7 points
initialement entrées par I'utilisateur et G{'}ay la contribution du béton qui demeure déterministe
et qui est également calculée grace aux coordonnées initialement fournies par I’utilisateur.

La Figure 3.7 permet de bien résumer le principe de fonctionnement de la sous-routine dans le cas
d’un BRF. Le paramétre o;(;—, 7, désigne la valeur aléatoire affectée a chacun des points

d’intégration et 0; iniriqi(i=2..7) FePrésente la valeur initialement donnée par I’utilisateur.

Le point de coordonnées (w4, g;) est considéré comme constant et ne suit pas de loi probabiliste

afin de s’assurer que la valeur de sa contrainte soit inférieure a la valeur de la résistance en traction.

Paramétres d’entrée : 0y ;,;piq; 2
07,iniciar (valeurs des contraintes en
post-pic) ainsi que wy 4 w; (valeurs

des ouvertures de fissures), écart-

type sur
Y
Choix de la loi probabiliste suivie par la
Calcul de I*aire sous la courbe Soustraction de la contribution nouvelle aire 7'/, loi normale — loi
représentant la somme de la du béton a I"aire totale lognormale - loi de Weibull et génération
contribution de la matrice en béton et initial initial initial aléatoire

Gr rivres = Gfrotal — Gf béron d*une valeur GF 5557 pour chaque point
d*mtégration

initial

des fibres G¢'p g1

Ad

Recalcul de ¢, 3 o, en faisant pour i allant
gaiéatoire . initial
f.fibres f.bétan

tnitial initial Oiinitial

dela7: 0 ring =
4 Gr fibresTOf béton

Figure 3.7 Principe de fonctionnement de la sous-routine probabiliste pour un béton renforcé de

fibres

En outre, les valeurs d’ouvertures de fissures (w, & w-) sont considérées comme constantes (celles-
ci demeurent égales aux valeurs initialement entrées par ’utilisateur) et ne varient pas d’un point

de Gauss a un autre ni d’une simulation a une autre.
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Ainsi, seule la contrainte post-fissuration associée a la contribution des fibres est considérée

probabiliste. Ce choix qui a été fait peut-étre justifié par le fait que le comportement en post-pic est

essentiellement attribuable a 1’action des fibres. En effet, il est désormais connu et accepté qu’une

grande majorité des BRF possedent un processus de fissuration qui peut étre décrit

schématiquement par trois étapes générales.

1. Tout d’abord, une microfissuration diffuse a lieu dans tout le volume du matériau sollicité

en tension. Les fibres d’acier, qui possédent des dimensions (longueur et diameétre)
importantes par rapport a celles des fissures (ouverture de fissure), n’ont pas de réel effet

sur la formation et la propagation de ces microfissures.

La deuxiéme étape concerne la propagation des microfissures et conduit a I’apparition de
macrofissures. Les fissures faisant office de « transition » peuvent étre qualifiées de
mésofissures. Comme pour la premiere étape, les fibres en acier n’affectent pas la

propagation de ces fissures méso-scopiques de maniere significative.

La troisieme et derniere étape concerne la propagation des macrofissures. Celle-ci coincide
avec la phase adoucissante du matériau. Au cours de cette étape, les fibres vont transférer
I’effort a travers la macrofissure, contr6lant ainsi 1’ouverture des fissures et leur

propagation.

Pour résumer, il est possible d’affirmer que :

en pré-pic et avant que la charge maximale en traction soit atteinte, seule la matrice
cimentaire contribue au processus de fissuration du BRF et les fibres sont alors considérées

comme mécaniquement neutres.

apres le pic, Deffet des fibres devient trés important, notamment pour controler la

propagation des macrofissures.

3.1.3 Vérifications

Une fois cette sous-routine programmeée, il est nécessaire d’effectuer des vérifications afin de

s’assurer du bon fonctionnement de cette derni¢re avant de pouvoir I’intégrer au code EPM3D

préexistant. Pour ce faire, une premiére vérification des valeurs directement retournées par le code

programmé en FORTRAN a été réalisée grace au logiciel Microsoft Visual Studio. Une fois celle-
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ci complétée avec succes, une seconde verification sur un cube en compression modélisée sur
ABAQUS a été effectuée.

3.1.3.1 Vérification de la programmation sur FORTRAN

Cette sous-section contiendra I’ensemble des vérifications qui ont été réalisées pour le code

programmé en FORTRAN gréace au logiciel Microsoft Visual Studio.
Les étapes qui ont été suivies pour réaliser cette vérification peuvent étre résumeée en quatre points.

1. Pour chacune des trois lois probabilistes (loi normale, lognormale et de Weibull) et pour
chacune des propriétés mécaniques suivant une approche probabiliste (résistance en
compression, en traction et énergie de post-fissuration pour les BRF), les valeurs sont

générées pour 1’équivalent de 100 000 points d’intégration.

2. Gréace a un post-traitement effectué dans Excel, il a été possible de tracer le nuage de points
représentant le nombre d’occurrence en fonction de la valeur (pour une propriété mécanique

et une loi probabiliste données).

3. La courbe théorique de la fonction de densité de probabilité de la loi en question est

également représentée sur le méme graphique.

4. La derniére étape consiste a analyser la concordance entre le nuage de points représentant
les données obtenues en sortie du code FORTRAN et la courbe théorique de la loi

probabiliste.

Vérification pour la loi normale :

Premiérement, pour la loi normale, la premiére vérification a été réalisée pour la résistance en
traction f;. La Figure 3.8 met en exergue la fonction de densité de probabilité théorique pour une

- by 7 by _, _ 7 _ 7 \
loi normale avec pour parameétres une moyenne égale a f . = 2,33 MPa et un ecart-type égal a
o = 0,233 MPa soit un coefficient de variation de 10%. La concordance entre ces deux densités
de probabilités est parfaite, ce qui montre que le code renvoie bien les valeurs adéquates pour cette

combinaison-ci ( f{ est modélisée par une distribution Gaussienne).
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Figure 3.8 Comparaison de la courbe de la fonction de probabilité de la loi normale théorique et

des données renvoyées par le code FORTRAN pour la résistance en traction

La Figure 3.9 permet de comparer la densite de probabilité théorique et celle retournée par le code
FORTRAN pour la résistance en compression suivant une loi normale avec pour paramétres
d’entrée la moyenne égale a f', = —50 MPa, un écart type qui vaut 0 = 5 MPa soit un coefficient
de variation d’une valeur de 10%. De méme, et comme le met en évidence la Figure 3.9, la
concordance est tres bonne entre les données théoriques et les données renvoyées par le code
FORTRAN.

Il est important de mentionner que la loi utilisée dans le code FORTRAN est une loi normale
tronquée. De maniére plus générale, une loi tronquée désigne une loi ou 1’on ne garde que les
tirages sur un intervalle défini. En ce qui concerne la sous-routine probabiliste d’EPM3D, une
troncature est effectuée pour les valeurs strictement négatives pour la distribution normale. Etant
donné que les valeurs de la résistance en compression sont strictement négatives, ces derniéres sont
traitées par le code en valeur absolue, et elles sont multipliées a la toute fin par —1 avant d’étre
affectées a leurs points d’intégration respectifs. Comme la loi normale est parfaitement symétrique
(fonction de densité de probabilité paire), cette inversion (multiplication par —1) n’est pas visible

dans la Figure 3.9.
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Figure 3.9 Comparaison de la courbe de la fonction de probabilité de la loi normale théorique et

des données renvoyées par le code FORTRAN pour la résistance en compression

Vérification pour la loi lognormale :

Les Figure 3.10 et Figure 3.11 mettent en avant les données renvoyées par la sous-routine
probabiliste (pour la résistance en traction et en compression) ainsi que la courbe théorique de la
fonction de densité de probabilité pour la distribution lognormale. II est possible d’en déduire que

le nuage de points obtenu en sortie du code concorde bien avec la loi probabiliste théorique.
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Figure 3.10 Comparaison de la courbe de la fonction de probabilité de la loi lognormale théorique

et des données renvoyées par le code FORTRAN pour la résistance en traction

Il est important de mentionner que la distribution lognormale est asymétrique (celle-ci est plus
étendue du coté droit). Etant donné que cette loi ne renvoie que des valeurs positives, il était
nécessaire de traiter les valeurs de résistance en compression en valeur absolue et d’ajouter un
facteur multiplicatif de valeur —1 avant leur affectation aux points d’intégration. C’est pour cette
raison qu’une « inversion » est observée dans la Figure 3.11 par rapport a la Figure 3.10 (par rapport

a I’axe vertical passant par I’extremum de la fonction de densité de probabilité).
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Figure 3.11 Comparaison de la courbe de la fonction de probabilité de la loi lognormale théorique
et des données renvoyées par le code FORTRAN pour la résistance en compression

Vérification pour la loi de Weibull

En ce qui concerne la loi de Weibull, une approche de vérification similaire a celle des lois normale
et lognormale a été adoptée pour les résistances en compression et en traction. Les Figure 3.12 et
Figure 3.13 mettent en exergue la concordance des valeurs obtenues en sortie du code en

FORTRAN et des courbes théoriques des fonctions de densité de probabiliteé.
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Figure 3.12 Comparaison de la courbe de la fonction de probabilité de la loi de Weibull théorique
et des données renvoyées par le code FORTRAN pour la résistance en traction

Comme pour la loi lognormale, la loi de Weibull renvoie des valeurs strictement positives. Pour
pouvoir faire varier les valeurs de la résistance en compression suivant cette distribution, il était
nécessaire de les traiter en valeur absolue et de multiplier les valeurs en sortie par —1 avant de les
affecter a leurs points d’intégration respectifs. Une « inversion » peut ainsi étre observée dans la
Figure 3.13 par rapport a la Figure 3.12 (par rapport a I’axe vertical passant par I’extremum de la

fonction de densité de probabilité).
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Figure 3.13 Comparaison de la courbe de la fonction de probabilité de la loi de Weibull théorique

et des données renvoyées par le code FORTRAN pour la résistance en compression

Vérification pour les bétons renforcés de fibres

L’approche probabiliste pour les bétons renforcés de fibres étant différente de celles employées
pour I’obtention des valeurs de résistance en traction et en compression, une €tape supplémentaire
était nécessaire pour effectuer le processus de vérification. En effet, étant donné que la sous-routine
probabiliste renvoie les valeurs des coordonnées g;—; - et w;—, -, il a fallu recalculer la valeur de

I’aire sous la courbe (sur Excel) afin d’obtenir les valeurs des énergies de fissuration en sortie.

Une fois cette étape réalisée, il a été possible de comparer la courbe théorique de la distribution
normale avec les valeurs de 1’énergie de fissuration obtenues grace a la sous-routine comme montré
sur la Figure 3.14. 11 est possible d’en déduire que le code renvoie des valeurs de moyenne et

d’écart-type en adéquation avec la loi et les paramétres spécifiés en entrée.
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Figure 3.14 Comparaison de la courbe de la fonction de probabilité de la loi normale theorique et
des données renvoyées par le code FORTRAN pour I’énergie de fissuration des bétons renforcés
de fibres

La Figure 3.15 met en évidence la concordance des résultats lorsque la loi lognormale est choisie,
dans ce cas de figure-ci, la « déviation » se retrouve du c6té droit, en effet, il n’y a pas d’inversion

car les données traitées pour I’énergie de fissuration sont positives.
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Figure 3.15 Comparaison de la courbe de la fonction de probabilité de la loi lognormale théorique
et des données renvoyeées par le code FORTRAN pour 1’énergie de fissuration des bétons

renforcés de fibres

Enfin, la Figure 3.16 montre également la correspondance exacte entre les valeurs théoriques et
celles obtenues grace a la sous-routine. Encore une fois, aucune inversion n’est observée puisque

les données d’entrée sont positives.
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Figure 3.16 Comparaison de la courbe de la fonction de probabilité de la loi de Weibull théorique
et des données renvoyeées par le code FORTRAN pour 1’énergie de fissuration des bétons

renforcés de fibres

En conclusion, sur une base d’analyse de 100 000 simulations au niveau d’un point d’intégration,
cette vérification sur Microsoft Visual Studio a permis de prouver la justesse des résultats obtenus
en sortie puisque ceux-ci concordent parfaitement avec les courbes théoriques obtenues et ceux
pour les trois propriétés mécaniques suivant un traitement probabiliste (f;, f;' et G¢) ainsi que pour

les trois distributions probabilistes codées (loi normale, loi lognormale et loi de Weibull).

3.1.3.2 Vérification de ’implémentation sur un cube

Une fois I’étape de la vérification immédiate du code complétée, il a été possible d’intégrer la sous-
routine au code préexistant et d’implémenter cette nouvelle version sur ABAQUS. Cette sous-
section présente 1’étape de vérification qui a été réalisée sur le logiciel d’analyse par éléments finis

ABAQUS pour un cube en BRF soumis a un effort de compression.

Des vérifications pour les valeurs de résistance en traction et en compression ont été réalisées pour
un béton ordinaire mais ne seront pas présentées dans cette sous-partie. En effet, etant donné que

ce projet de maitrise se focalise sur 1’é¢tude des BRF, seules les vérifications de 1’énergie de
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fissuration seront abordées dans cette section. Par ailleurs, des vérifications pour la loi normale et
la loi de Weibull ont été effectués mais seront omises de ce paragraphe qui se focalisera sur I’étude

de la loi lognormale.

La Figure 3.18 présente les résultats obtenus pour une des valeurs de la contrainte en post-pic (a5).
L’option d’ABAQUS permettant de lisser les couleurs en effectuant un moyennage a été
désélectionnée au premier abord afin de bien visualiser la répartition des résultats qui présente une
distribution aléatoire.

SOWS7

(Ava: 0%)
+8.,691e+00
+8.095e+00
+7.500e+00
+6.,905e+00
+6.310e+00
+3.715e+00
+5.120e+00
+4.525e+00
+3.929e+00
+3.334e+00
+2,739e+00
+2.144e+00
+1.549e+00

Figure 3.17 Valeurs de traction résiduelle (en MPa) pour un cube en BRF sollicité en traction

pour un déplacement imposé de 5 mm

Les valeurs des coordonnées des contraintes de traction résiduelles ont été récupérées pour chaque
point d’intégration a chaque incrément de déplacement imposé. Une étape de post-traitement
supplémentaire a été réalisée sur Excel afin de pouvoir calculer 1’énergie de fissuration attribuée a
chacun des éléments. La Figure 3.18 compare la courbe théorique de la fonction de densité de

probabilité et les valeurs de G, calculées grace aux données de contraintes renvoyeées par
ABAQUS.
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Figure 3.18 Comparaison de la courbe de la fonction de probabilité de la loi lognormale et des
valeurs calculées a partir des données renvoyées par le logiciel ABAQUS

Ainsi, le nuage de point suit I’allure de la courbe théorique, par ailleurs, la moyenne et 1’ écart-type

concordent bien avec les paramétres de la loi lognormale entrés par I’utilisateur.

Néanmoins, il subsiste un écart entre la courbe théorique et les valeurs renvoyées par ABAQUS,
ceci est probablement di :

- aux différents arrondis faits lors des différentes étapes de calcul internes au logiciel
d’éléments finis et qui engendre une propagation des incertitudes a I’origine des légers

écarts observés;

- au nombre de points générés par ABAQUS beaucoup plus faible qui peut expliquer les
imprécisions observées sur la Figure 3.18 (1000 points correspondant aux 1000 éléments

versus 100 000 pour la vérification effectuée avec le code FORTRAN directement)

3.1.4 Stratégie d’utilisation

Le processus de Vvérification présenté plus haut indique que la programmation des lois probabilistes

a été correctement implémentée dans EPM3D. Reste maintenant a choisir 1’approche privilégiée
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pour son utilisation pour modéliser le comportement d’éléments en béton renforcés de fibres, des
spécimens d’essais matériaux (os, prisme en flexion, dalle circulaire) a I’é1ément structural (poutre,

dalles, etc.).

L’objectif est de reproduire les phénoménes physiques des BRF, tout en se limitant au
comportement en traction dans le cadre de ce mémoire, en considérant des propriétés probabilistes
du BRF de telle sorte a ce que la modélisation soit indépendante de la taille du maillage choisi.

Les travaux de Rossi et al. (2015) et de Bélanger (2000) ont permis de démontrer que, d’un point
de vue structural pour des éléments en BRF, la moyenne de la résistance ne varie pas en fonction
de la taille des élements. En revanche, la dispersion des résultats varie avec la taille, augmentant
avec la diminution de la taille des éléments structuraux. Ainsi, pour modéliser un volume donné en
éléments finis, la moyenne de 1’énergie de fissuration devrait étre invariable en regard de la taille
des éléments alors que le coefficient de variation devra étre plus élevé pour un maillage fin que
pour celui d’un maillage plus grossier. Deux stratégies peuvent étre adoptées pour déterminer les

valeurs d’entrées : une approche analytique et une autre basée sur la calibration.

Rossi et al. (2015) ont adopté une approche basée sur la calibration dans laquelle il reproduit les
résultats d’essais de traction avec des maillages d’¢éléments finis de différentes tailles afin de
déterminer, par calcul inverse, des lois permettant de déterminer les propriétés d’entrée selon la
taille de I’élément. Cette approche présente 1’avantage de permettre d’¢éliminer 1’hypothese de non-
corrélation entre les propriétés d’éléments adjacents. En effet, comme physiquement la résistance
d’un élément n’est pas indépendante de celle de 1’¢élément voisin (une fibre pouvant traverser
plusieurs €léments selon la taille respective des fibres et du maillage), I’utilisation d’une calibration
sur des essais réels offre 1’avantage de représenter adéquatement le comportement d’un volume de
BRF sans aller dans des modeles de grande complexité. Cependant, pour étre valide, une telle

approche requiere un grand nombre d’analyses non linéaires par éléments finis pour la calibration.

L’approche analytique vise a obtenir les mémes résultats hors d’un environnement d’éléments finis
considérant que la calibration en traction directe se fait sur un élément ou il est supposé que tous
les ¢léments subissent le méme allongement. L’avantage d’une telle approche est qu’elle est

beaucoup moins exigeante numériquement.



72

3.2 Modélisation probabiliste d’une éprouvette en traction avec
EPM3D

Cette section présente le cas d’application de la sous-routine probabiliste EPM3D a un os soumis
a un effort de traction. L’ objectif principal de cette partie est de développer un modéle simplifié
permettant de relier les caractéristiques de la loi probabiliste entrées par 1’utilisateur et celles
obtenues en sortie de 1’analyse (moyenne et coefficient de variation) en fonction de la taille de

maillage employée.

Tout d’abord, la campagne expérimentale sur laquelle se basent les simulations, le modele
ABAQUS ainsi que I’étude paramétrique réalisée seront présentés. Ensuite, 1’étude de convergence
du coefficient de variation et 1’analyse de I’'impact de la taille du maillage sur les parametres
statistiques seront présentés ainsi que le modele qui en découle seront présentés de maniére
détaillée. Enfin, cette partie s’achévera par 1’analyse des patrons de fissuration qui ont pu étre

observés dans les différentes analyses.

3.2.1 Campagne expérimentale utilisée

Cette sous-section présente la campagne expérimentale sur laquelle se basent I’ensemble des

simulations du mode¢le d’application de I’os en traction sur ABAQUS.

Il s’agit d’essais qui ont été réalisés au sein du laboratoire de Structures de Polytechnique Montréal
par Sébastien Reygner (2016). Le but de cette campagne expérimentale était d’évaluer I’influence
du dosage en fibres sur le comportement du béton renforcé de fibres en traction directe. Trois
formulations de BRF ont été testées mais on ne s’intéressera qu’au BRF70-80kg. La matrice
cimentaire utilisee pour effectuer les essais a été élaborée de telle sorte a optimiser ’insertion et
I’orientation des fibres. La résistance en compression minimale visée pour le béton €tait de fep5; =
70 MPa. Les fibres utilisées pour réaliser le mélange possédent un élancement de 55, avec une
longueur égale a 30 mm et un diametre valant 0,55 mm. Le Tableau 3.1 détaille la formulation du

matériau.
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Tableau 3.1 Composition du béton étudié

Composition Dosage

Fibres (Dramix ZP-305) 80 kg/m?

Ciment 650 kg/m3
Eau 171,60 kg/m3
Superplastifiant (Plastol6200EXT) 38,36 kg/m3
Sable 1 (Grossier Man) 163,47 kg/m3
Sable 2 (Fin Naturel) 653,88 kg/m?
Pierre (2.5-10 Gr. St F) 602,92 kg/m?

Des essais de caractérisation sur des éprouvettes cylindriques ont été réalises afin de déterminer les
caractéristiques mécaniques du matériau. Trois essais de compression et une mesure du module
d’¢élasticité et du coefficient de poisson ont été effectués. Les résultats de ces essais sont présentés

dans le Tableau 3.2.

Tableau 3.2 Propriétés mécaniques du béton étudié

Propriétés E oy f cmoy Vinoy

39268 MPa 93,1 MPa 0,206

La géométrie et les mensurations des spécimens d’os sont présentés dans la Figure 3.19. L’essai de
caractérisation consiste a solliciter en traction ce spécimen-ci entierement fait en béton. Comme
montré sur la Figure 3.19, chaque spécimen consiste en une plaque de béton de 50 mm d’épaisseur

ayant une section centrale réduite de dimension constante afin que la rupture puisse y étre localisee.
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Figure 3.19 Mensurations de 1’éprouvette utilisée pour les essais de traction directe

Les extrémités plus larges permettent le serrage de 1’os entre les machoires de la presse ce qui
permet d’encastrer 1’os a ses deux extrémités par une application d’une pression de
6,89 MPa (1000 psi). Le chargement se fait par le biais du plateau supérieur de la presse, en
imposant un déplacement contrélé. Quatre capteurs LVDT sont fixés sur les spécimens, deux
d’entre eux sont situés sur la partie centrale plus étroite et servent a mesurer les déplacements au
niveau de la section réduite et les deux autres sont positionnés sur les parties les plus larges et sont
1a pour s’assurer du bon déroulement de 1’essai. Par ailleurs, les montages ont été réalisés avec
précaution afin d’éviter de créer de la flexion ou de la torsion lors de la mise en place du spécimen

et de I’essai de caractérisation, ce qui viendrait parasiter les résultats observés.

La Figure 3.20 présente les courbes de contrainte en fonction de 1’ouverture de fissure pour les six

spécimens qui ont été testés ainsi que la courbe moyenne de ces mesures (voir la Figure 3.21).
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Figure 3.20 Courbes de la contrainte en fonction de I'ouverture de fissure pour les six spécimens

de la campagne expérimentale

Un ajustement de cette courbe moyenne a ensuite été réalisé afin de déterminer les coordonnées
des sept points qui doivent étre introduits afin de définir la loi de béton probabiliste sur EPM3D.
L’aire sous les six courbes représentant les énergies de fissuration ont également été calculées afin
de pouvoir en déduire I’écart-type également nécessaire a I’établissement de la loi probabiliste sous

EPM3D.

——Courbe moyenne des 6 essais BRF70-80kg

—Courbe de fitting (Input Abaqus)

0 0.5 1 1,5 2 25 3 35 4 45 5

w (mm)

Figure 3.21 Ajustement réalisé avec la courbe moyenne de la contrainte en fonction de

I'ouverture de fissure
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3.2.2 Présentation du modéle sur ABAQUS

Le modele par éléments finis généré pour les simulations numériques respecte parfaitement les
mensurations ainsi que la géométrie exacte des spécimens utilisés pour la campagne expérimentale.
Les conditions aux limites considérées pour le modele d’éléments finis sont représentées dans la
Figure 3.22.

& Déplacement 3]
T impose t

100

300 50

VT_' _]V _<g

X z [mm

Figure 3.22 Conditions aux limites du modele éléments finis de I'essai de I'0s en traction

La loi de comportement du BRF est directement déduite des résultats de la sous-section précedente,

I’ensemble de ces paramétres sont résumés dans le Tableau 3.3.
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Tableau 3.3 Paramétres du modele EPM3D pour le BRF 70-80 kg

Compression Traction
i (MPa) 93,1 Pré pic Post pic
Général fi (MPa) 4,037  Contrainte (MPa) Ouv. Fissure (mm)
E, (MPa) 29268 o, = 3,56 w; = 0,049
v(-) 0,2 a; = 3,76 w, = 0,12
Env. rupture Willam-Warnke o; = 3,17 wz = 0,35
T, =172 w, = 0,71
o; = 1,11 ws = 1,075
s = 0,56 wg = 1,995
0,=0 w, = 4,285

Le Tableau 3.4 détaille quels parametres sont déterministes et quels parameétres sont probabilistes.
Les moyennes des parameétres suivant une distribution aléatoire sont indiquées dans le Tableau
3.3: d;—,_7. Pour le coefficient de variation, ils ne sont pas précises car ces derniers seront sujet a

modification selon ce qui est étudié.

Tableau 3.4 Parametres probabilistes et déterministes

Paramétres déterministes Paramétres probabilistes suivant une loi lognormale

! !
forftEo 01, Wi—1 7 Oi=2..7

3.2.3 Etude paramétrique

Dans cette section, une étude paramétrique a été réalisée afin d’analyser les biais éventuels qui
pourraient étre introduits par certains parametres tels que le type de maillage utilisé,
I’amortissement, la fréquence du filtre passe-bas ou encore la loi probabiliste utilisée. L’ensemble
des impacts de ces parametres seront étudiés et analyseés séparément dans les sous-sections

suivantes.
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3.2.3.1 Type de maillage utilisé

Cette sous-section présente I’influence du type de maillage utilisé sur les résultats renvoyés par
ABAQUS. Les trois types de maillage qui ont été testés sont présentés dans la Figure 3.23 :

- le maillage (a) est hexaédrique, il a été construit « manuellement » grace a des partitions au

niveau des changements de sections;

- le maillage (b) est également hexaédrique, il a été obtenu grace a 1’algorithme de génération
de maillage d’ABAQUS « Medial Axis »;

- le maillage (c) est tétraédrique, ce dernier est egalement automatiqguement généré par
ABAQUS.

En outre, pour des parametres en entrée identiques :

- les allures de courbes de la contrainte en fonction du déplacement sont identiques pour les

trois maillages;
- la valeur moyenne de I’énergie de fissuration est égale pour les trois maillages;

- les coefficients de variations obtenus différent quant a eux d’un maillage a un autre, ce qui

semble logique, puisque le nombre d’¢éléments change suivant le maillage sélectionné;

- le temps de calcul le plus court est obtenu avec le maillage (b) a I’opposé du maillage (c)

qui donne les temps d’analyse les plus longs.
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Figure 3.23 Les trois types de maillage utilisés : (a) Maillage tétraédrique manuel (b) Maillage

tétraédrique optimisé (c) Maillage hexaédrique

Par ailleurs, pour ce qui est des maillages tétraédriques, le modele (b) est préférable au modele (a)
en raison de 1’absence des éléments distordus dans les coins. En effet, la qualité d’un maillage est
quantifiée grace au ratio entre la plus grande et la plus petite longueur, ce dernier reflete la
distorsion des éléments, plus celui-ci est proche de 1, plus le maillage est jugé comme étant de
bonne qualité. Ces éléments permettent d’obtenir un incrément de temps plus petit dans ABAQUS
Explicit. Le maillage (b) semble ainsi étre le plus adapte car celui-ci permet d’avoir des temps de
simulation faibles, en comparaison avec les deux autres maillages, et ces éléments possédent peu
de distorsion en comparaison avec le maillage (a). Pour la suite des analyses, le maillage (b) sera

utilisé.
3.2.3.2 Utilisation d’un amortissement

Dans cette sous-section, I’influence de I’amortissement est étudiée. En effet, I’amortissement est
une composante importante d’un systeme mécanique. Le mouvement du systéme n’étant pas
perpétuel, il est important de prendre en compte la perte d’énergie résultant des forces de résistance
qui s’opposent au mouvement (telles que la résistance de I’air, les mouvements microstructuraux,

etc.).

Tout d’abord, une analyse modale a été réalisée afin de calculer les fréquences naturelles et les

déformées modales de 1’éprouvette. En effet, ABAQUS permet de calculer :

- les fréquences naturelles ou de résonance (valeurs propres) du modéle.
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- les déplacements relatifs de la géomeétrie lorsque le modéle vibre a ces fréquences.

En ce qui concerne le modéle de 1’0s en traction, il faut trouver le mode fondamental associé a
I’allongement. En effet, la fréquence a considérer est celle de la déformée modale qui se rapproche
le plus du mode de sollicitation auquel on s’intéresse, ici I’allongement puisque 1’éprouvette est
sollicitée en traction. Une valeur de foiongement = 1133 Hz est ainsi obtenue par le biais de
I’analyse modale. L’amortissement dit de « Rayleigh » disponible sur ABAQUS se décompose en
deux parties : la premiére composante représentée par le biais du coefficient a permet d’amortir
les gammes de fréquences inférieures (dépendantes de la masse) et la seconde désignée par le terme

B les gammes supérieures (dépendantes de la rigidité).

Dans le cadre de 1’os en traction étudi€, seule la composante proportionnelle a la masse sera
considérée, les coefficients de I’amortissement de « Rayleigh » renseignés dans ABAQUS sont

donc :

{a = 4T. fanongement-§ = 41 X 1133 X 0,05 = 711 (3.11)

g=0
Le facteur & désigne le ratio d’amortissement que 1’on considére comme étant égal a 5%. Afin
d’¢étudier I’influence de I’introduction ou non d’un amortissement dit de « Rayleigh » sur les études
probabilistes, deux modéles sans et avec amortissement ont été comparés pour les trois tailles de
maillage suivantes: 25 mm, 10 mm et 5mm. Les parameétres entrés, y compris ceux de la
composante probabiliste d’EPM3D sont identiques pour toutes les simulations, indépendamment
de la taille de maillage et de I’introduction ou non de I’amortissement de « Rayleigh ». Le nombre
de simulations qui ont été réalisées pour chaque cas de figure s’éléve a 50. Les résultats obtenus

sont résumeés dans le Tableau 3.5 ci-dessous.
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Tableau 3.5 Comparaison des ratios de moyennes (en %) et des coefficients de variation pour des

éprouvettes avec différentes tailles de maillage avec ou sans amortissement

Présence d’un amortissement Absence d’un amortissement
Taille des éléments (en mm) Moyenneg,, ;e COViortie Moyennes,, ;e COVisortie
Moyenneenyse COVentrée Moyennecp;yse COVentree
25 107 140 108 130
10 104 68 108 65
5 104 48 105 46

D’apres le Tableau 3.5, et pour toutes les tailles d’éléments, 1’introduction d’un amortissement a

pour effet :

- de tres léegerement diminuer le ratio entre la moyenne obtenue en sortie et la moyenne

entrée.

- d’augmenter de peu le ratio entre le coefficient de variation en sortie et le coefficient de

variation en entrée.

Ainsi, et étant donné que I’amortissement n’a pas d’influence majeure sur les résultats de 1’analyse
probabiliste, celui-ci sera conservé pour la suite des simulations qui seront effectuées sur le modéle
de I’éprouvette en traction. Par ailleurs, I’introduction d’un tel paramétre rend le modele plus
représentatif de ce qui se passe dans la réalité et constitue un filtre naturel aux oscillations associées
aux analyses explicites. Dans ce qui suit, il a été aussi envisagé d’utiliser un filtre artificiel, mais
seulement en phase de post-traitement des résultats, toujours dans 1’objectif d’avoir des courbes de

résultats plus lisses et plus faciles a interpréter.

3.2.3.3 Fréquence du filtre passe-bas employée

Dans ce paragraphe, I’influence de la fréquence du filtre « Butterworth » utilisée en post-traitement
est analysée. Tout d’abord, le filtre « Butterworth » présent dans ABAQUS est un filtre passe-bas
généralement utilisé dans le post-traitement des données obtenues en sortie afin d’éliminer le bruit
de haute fréquence qui se manifeste généralement sous la forme d’oscillations reliées a la nature

quasi-statique de I’analyse explicite.

Ainsi, dans la Figure 3.24, la courbe de force en fonction du temps est filtrée a plusieurs fréquences
différentes allant de 10 a 500 Hz. La courbe obtenue a la suite d’un filtrage a f = 500 Hz semble

étre la plus adaptée et la plus représentative du signal d’origine.
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Figure 3.24 Courbes de la force en fonction du temps pour différentes fréquences du filtre
Butterworth

En outre, les courbes filtrées aux fréquences valant 500, 600, 700, 1000 et 1250 Hz possedent des
allures quasi-identiques. Ainsi, et afin de pouvoir les comparer, un calcul des énergies de

fissuration en pré et post-pic a été effectué. Les résultats obtenus sont présentés dans la Figure 3.25.
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Figure 3.25 Valeurs des énergies de fissuration (élastique et en post-pic) pour différentes

fréquences du filtre Butterworth
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En ce qui concerne I’énergie de post-fissuration, les écarts de valeurs entre les différentes
fréquences ne dépassent pas 1% de la valeur totale moyenne de 1’énergie. Néanmoins, pour la
partie élastique, les écarts sont un peu plus importants (aux alentours de 20% de la valeur
moyenne), la fréquence conservée pour la suite des analyses est f = 1250 Hz, étant donné que
celle-ci permet de minimiser 1’écart de la valeur de 1’énergie en pré-pic entre la courbe filtrée et le

signal brut.

3.2.34 Ktude de ’influence de la loi probabiliste utilisée

La sous-routine probabiliste a été implémentée de telle sorte a pouvoir choisir entre trois lois
probabilistes distinctes : la loi normale, la loi lognormale et la loi de Weibull. Dans cette partie,
I’influence de la loi choisie sera étudiée. Pour ce faire, des séries de dix analyses ont été lancées
avec des parameétres d’entrée identiques a I’exception de la distribution probabiliste qui différe

d’une série a une autre.

Il est important de mentionner que la campagne expérimentale sur laquelle est basé cet exemple
d’application n’est composée que de six essais de traction. Il est donc possible de calculer la
moyenne et le coefficient de variation des énergies de fissuration des essais de traction directes de
ces six éprouvettes mais le nombre d’essais est insuffisant pour pouvoir identifier la distribution la

plus adéquate.

La Figure 3.26 met en avant le ratio entre les moyennes en sortie et la moyenne entrée en fonction
du nombre d’analyses pour différentes distributions probabilistes et différentes tailles d’éléments.
Sur un tres grand nombre d’analyses, les courbes représentées sur la Figure 3.26 tendraient vers la
méme valeur de ratio puisque la moyenne qui est entrée est identique pour toutes les séries de
simulations. Néanmoins, étant donné que nos observations se basent uniquement sur des séries de
10 simulations, des différences existent. En effet, la loi lognormale présente les résultats les plus
grands en termes de ratio de moyennes, ceci pourrait s’expliquer par 1’allure de cette distribution
asymétrique avec une déviation vers la droite. A 1’opposé, la distribution de Weibull posséde les

ratios les plus bas en raison d’une déviation de sa fonction de densité de probabilité vers la gauche.
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Figure 3.26 Ratio entre la moyenne calculée et la moyenne expérimentale en fonction du nombre

d’analyses entrée pour différentes lois probabilistes et pour différentes tailles de maillage

La Figure 3.27 met en exergue le ratio entre le coefficient de variation en sortie sur le coefficient
de variation en entrée en fonction du nombre d’analyses pour différentes distributions probabilistes
et différentes tailles de maillages. A premier abord, les ratios des COV semblent converger vers la
méme valeur, quel que soit la loi ou la taille de maillage. Néanmoins, la Figure 3.27 ne permet pas
de réellement tirer des conclusions en raison du nombre d’analyses insuffisants (consulter la section

suivante pour I’étude de convergence).
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Figure 3.27 Ratio entre le coefficient de variation calculé et le coefficient de variation
expérimental entré en fonction du nombre d’analyses pour différentes lois probabilistes et pour

différentes tailles de maillage

Finalement, et afin de pouvoir comparer nos résultats a ceux de Rossi et al. (2015), la loi

lognormale a été choisie pour la suite des simulations.

3.2.4 Etude de convergence sur le coefficient de variation employé

L’intérét principal de I’exemple d’application de la sous-routine probabiliste a 1I’os en traction est
de trouver la corrélation entre les paramétres d’entrée (moyenne et écart-type) de la distribution
(dans notre cas la loi lognormale) et la taille des éléments utilisés (cette étude détaillée sera
présentée dans la sous-section suivante). Pour ce faire, les études se basaient au départ sur des
séries de cinquante simulations. Cependant, ces séries possédaient une mauvaise répétabilité, en
effet, deux séries aux parameétres d’entrée identiques (incluant la taille de maillage) ne renvoyaient
pas la méme valeur de moyenne et de coefficient de variation en sortie. C’est pour cette raison
qu’une étude de convergence s’est avérée nécessaire afin de déterminer le seuil minimal d’analyses

a effectuer afin d’assurer la répétabilité d’une série avec des paramétres d’entrée donnés.

Afin de réaliser cette étude, le ratio entre la moyenne en sortie et la moyenne en entrée ainsi que le
ratio entre le coefficient de variation en entrée et le coefficient de variation en sortie en fonction

du nombre de simulations sont analyses.

Par ailleurs, il est important de préciser qu’a la éniéme simulation, la nouvelle moyenne ou le

nouveau COV sont calculés en prenant en compte les (n — 1) simulations précédentes. Si sur dix
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simulations consécutives les ratios de moyenne et de COV ne varient pas de plus de 5% par rapport

aux dix simulations précédentes, on considere alors qu’il y a convergence.

La Figure 3.28 présente 1’étude de convergence réalisée pour 1’éprouvette maillée a 1’aide
d’éléments de taille 25 mm. La convergence de la moyenne se fait aux alentours de 150
simulations. En effet, a partir de ce seuil, 1’écart entre les différents ratios obtenus ne dépasse pas
2%. Pour ce qui est du ratio des coefficients de variation, a partir d’un seuil de 255 analyses, les

écarts entre toutes les valeurs de ratios ne dépassent pas 5%.
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Figure 3.28 Ratio entre le coefficient de variation calculé et le coefficient de variation
expérimental entré et ratio entre la moyenne calculée et la moyenne expérimental entrée en

fonction du nombre de simulations réalisées (maillage de 25 mm)

Pour les éléments de taille 16 mm, la Figure 3.29 montre que la convergence de la moyenne est
beaucoup plus rapide que pour le maillage de 25 mm, & partir de 20 simulations environ. A partir
de ce seuil-1a, I’écart entre les différents ratios obtenus ne dépasse pas 5%. Pour ce qui est du ratio
des coefficients de variation, 1’écart entre toutes les valeurs de ratios obtenus ne dépasse pas 5%

au-dela de 100 simulations.
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Figure 3.29 Ratio entre le coefficient de variation calculé et le coefficient de variation
expéerimental entreé et ratio entre la moyenne calculée et la moyenne expérimental entrée en

fonction du nombre de simulations réalisées (maillage de 16 mm)

Pour des éléments de taille 10 mm, et comme le montre la Figure 3.30, une convergence des deux

types de ratio est observée pour un nombre de simulations supérieur ou égal a 80.
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Figure 3.30 Ratio entre le coefficient de variation calculé et le coefficient de variation
expérimental entré et ratio entre la moyenne calculée et la moyenne expérimental entrée en

fonction du nombre de simulations réalisees (maillage de 10 mm)

Pour les modeéles avec une taille de maillage égale a 5 mm, en raison des temps de calcul trés
importants (environ 4h pour une unique analyse en utilisant 6 ceeurs), I’étude de convergence s’est
basée sur 50 simulations uniquement. Comme le montre la Figure 3.31, une convergence de la

valeur moyenne est observée a partir de 20 simulations environ. En effet, a partir de ce seuil-la,
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I’écart entre les différents ratios ne dépasse pas 2%. Pour ce qui est des ratios des coefficients de

variation, a partir d’un seuil de 30 analyses, 1’écart entre les différentes valeurs ne dépasse pas 3%.
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Figure 3.31 Ratio entre le coefficient de variation calculé et le coefficient de variation
expéerimental entreé et ratio entre la moyenne calculée et la moyenne expérimental entrée en

fonction du nombre de simulations réalisées (maillage de 5 mm)

Le Tableau 3.6 ci-dessous résume 1’ensemble des résultats de cette étude de convergence. Celui-Ci
présente le seuil minimal d’analyses a réaliser afin d’assurer la convergence en fonction de la taille

des éléments utilisés.

Tableau 3.6 Résumé de I'étude de convergence pour le modéle de I'éprouvette en traction

Taille des éléments (mm) Nombre minimal d’analyses pour assurer la
convergence
5 30
10 80
16 100
25 150

Cette étude de convergence permet de mettre en avant la tendance suivante : les spécimens
possédant des élements de plus petite taille convergent plus rapidement. Autrement dit, le seuil

minimal d’analyses requises pour assurer la convergence baisse avec 1a taille du maillage. En effet,



89

le nombre d’éléments constituant 1’éprouvette augmente lorsque la taille du maillage diminue. Pour
une analyse donnée, la population « représentative » de la loi probabiliste choisie est plus grande,
la distribution ainsi reproduite par les éléments finis est d’autant plus similaire a la courbe de
densité de probabilité théorique, ce qui confére plus de répétabilité aux éprouvettes possédant une

plus petite taille de maillage et leur assure donc une convergence plus rapide.
3.2.5 Etude de I’impact de la taille maillage sur la dispersion obtenue

3.2.5.1 Meéthodologie et résultats obtenus avec EPM3D

Cette sous-partie comprend 1’étude de 1’impact de la taille du maillage sur les caractéristiques de

la distribution obtenue en sortie. L’analyse réalisée dans cette sous-section a pour objectif :
- premierement, de trouver le lien de corrélation entre le COV en entrée et le COV en sortie;

- deuxiemement, et une fois ce lien établi, trouver les parameétres a renseigner en entrée afin
d’obtenir en sortie les paramétres escomptés qui correspondent a la moyenne et au
coefficient de variation expérimentaux (dans le cadre de ce mémoire, il s’agit des
parametres calculés a partir des résultats de la campagne expérimentale de Sébastien

Reygner).

Il est important de rappeler que 1’é¢tude porte sur la variabilité de 1’énergie de fissuration des BRF,

la distribution choisie pour cette modélisation probabiliste est la loi lognormale.

La Figure 3.32 met en avant la géométrie de I’éprouvette sur laquelle se base cette méthode de

calibration. S désigne la section tendue et vaut 5000 mm?.

S (mm)

Figure 3.32 Géométrie de I’éprouvette sur laquelle se base la méthode de calibration



90

Premiérement, concernant la moyenne de la distribution, les différentes séries d’analyses sur
ABAQUS ont permis de montrer que cette derniére ne variait pas en fonction de la taille de maillage
des ¢léments utilisés. En effet, et quel que soit la taille des éléments finis de 1’éprouvette, la

moyenne renseignée en entrée est égale a la moyenne obtenue en sortie.

Ensuite, pour ce qui est de 1I’étude des coefficients de variation, il est primordial de rappeler que
pour chacune des séries d’analyses, le seuil minimal (qui est fonction de la taille du maillage)

permettant d’assurer la convergence des résultats a été respecté.

Pour chaque taille d’¢léments, la procédure qui a été suivie pour pouvoir obtenir les courbes de la

Figure 3.33 peut étre décomposeée en différentes etapes.

1. Pour la premiére série d’analyses, le coefficient de variation qui a été renseigné au départ

. . - . N . cov 4
est égal au COV visé (le COV expérimental), ce qui correspond a un ratio —=22< = 100%
visé
en abscisse. Il faut noter que la moyenne demeure inchangée, étant donné que celle-ci ne
dépend pas de la taille de maillage et que la moyenne obtenue en sortie est environ égale a

celle renseignée en entrée.

2. En fonction du ratio obtenu en sortie, une nouvelle série d’analyses est lancée avec un

. , , ) . COVgprei .
nouveau COV en entrée. Le but étant d’obtenir un ratio —22¢ = 100% en sortie.

visé
3. L’ensemble des points obtenus pour chaque taille d’éléments permettent de tracer des
courbes de tendances faisant le lien entre le COV, e €1 le COVgprrie- CeS cOUrbes

permettent de trouver le coefficient de variation & renseigner en entrée afin d’obtenir en

sortie le COV souhaité, correspondant au COV expérimental du matériau.
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Figure 3.33 Courbe du COV obtenu en fonction du COV entré en fonction de la taille du maillage

Comme le montre la Figure 3.33, les fonctions reliant les ratios des COV en entrée et en sortie

semblent étre des droites affines.

3.25.2 Modéle

Ainsi, une loi trés simple a été dégagée a partir des tendances observées, il s’agit d’un modéele de
fonctions linéaires, les coefficients directeurs de ces droites linéaires dépendent de la taille du
maillage m et de la section de I’éprouvette notée S ainsi que du matériau étudié (voir la Figure 3.34
et la Figure 3.32).

COVsortie

(en %)
COVvisé

Y

100 %o~ nmrmsrmsmaropmmsmanmnspanmnnn e e

> COVentré

(en %)
COVvisé

Figure 3.34 Modeéle permettant de relier la dispersion a la taille du maillage pour I'éprouvette en

traction
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Cette nouvelle loi permettant de relier les ratios obtenus en sortie et les ratios renseignés en entrée

peut s’exprimer de la maniére suivante :
COVsortie = a X COVenere (3.12)
avec .
a = f(m,S, matériau) (3.13)

a désigne le coefficient directeur des différentes droites linéaires (celui-ci dépend de la taille du

maillage), m la taille du maillage en mm et S la section de 1’éprouvette tendue en mm?2.

L’analyse des coefficients directeur obtenus pour les différentes tailles de maillage a permis de

dégager la relation suivante :

a(mq, S, matériau) my

a(m,, S, matériau) ~ m,

m; et m, désignant deux tailles de maillage différentes (par exemple, m; = 25 mm et m, =

5 mm).

En effet, il existe un lien de proportionnalité évident entre le coefficient directeur a des différentes

courbes et entre la taille de maillage employée.

Par ailleurs, on considérera pour la suite que a(25,S, BRF70 —80kg) ~ 1. Autrement dit, pour

le BRF considéré (BRF70 — 80kg) , la section sollicitée en traction (S = 5000 mm?) le maillage

de 25 mm donne un ratio $2Xsertie & 100% pour un ratio EVentré — 100,

visé visé
Néanmoins, il est important de mentionner que ce modeéle constitue une approximation des droites
obtenues sur ABAQUS, il s’agit en effet d’une simplification des tendances observées. Il faudrait
faire plus de séries d’analyses afin d’augmenter la précision des droites obtenues et ainsi pouvoir
créer un modele plus raffiné permettant de représenter I’impact de la taille de maillage sur la

dispersion.

Cette nouvelle loi établie constitue la base pour tous les exemples d’application qui seront présentés
dans le Chapitre 4. En effet, étant donné que cette loi permet de reproduire la variabilité réellement
observée pour les éprouvettes en traction (variabilité qui a été mesurée expérimentalement), le fait

de I’appliquer a d’autres ¢éléments structuraux (poutres ou dalles par exemple) permettra d’obtenir
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la variabilité qui aurait réellement été obtenue expérimentalement lors de campagnes d’essais (Voir

la Figure 3.35).

En effet, I’étape 1 dite de calibration (qui vient tout juste d’étre présentée) permet de reproduire la
variabilité du matériau (celle observée expérimentalement) pour tous les types de maillage sur 1’os
en traction. Le fait d’appliquer cette méthode 1a a d’autres structures qui possédent les mémes
caractéristiques que 1’os (section tendue et matériau identiques) permet de recréer la méme

variabilité a 1’échelle du matériau et d’obtenir en sortie la variabilité de la structure.

Etape 1 : Calibration qui a lieu a ’échelle du matériau

ENTREE ] ,
SIMULATION MODELE DE
a - > , 5 PROBABILISTE A . S
# Section tendue de I’éprouvette S (mm?) L’ AIDE D’EPM3D CALIBRATION
» Modéle de droite affines
# Plusieurs tailles de maillages reliant COV,pppse €t
COVsortie

F cov(Gy)et Wf 1ssus de la campagne
expérimentale permettant de caractériser
le matériau

= Veiller au respect de la convergence
des résultats

-‘>\ # Analyses de type Monte-Carlo

Etape 2 : Application i Iéchelle de la structure

ENTREE -
REPONSE

= Section tendue S {m“l:] égﬂle a celle de SIMULATION PROBABILISTE .'i STRUCTURALE
l'éprouvene utilisée pour la calibration L’AIDE D’EPM3D (.OUPLE AU
MODELE DE CALIBRATION # COVsopyie correspond a
la variabilité qui aurait

été obtenue
expérimentalement

F cov(Gy) et q 1ssus de la campagne
experimentale de caractérisation du
matériau (essais en traction directe par
exemple)

Figure 3.35 Méthodologie d'analyse probabiliste rationnelle pour les BRF
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CHAPITRE4 APPLICATION AUX ELEMENTS STRUCTURAUX

Ce chapitre présente des exemples d’application a des éléments de structures en BRF (poutre,
poutres croisées et dalle) afin de démontrer la faisabilité et la validité de I’approche probabiliste
développée et programmée, a 1’échelle des éléments structuraux. La variabilité de la charge
maximale a I’échelle de 1’¢lément est étudiée pour une variabilit¢ donnée a 1’échelle matériau, ainsi
que I’influence de plusieurs facteurs tels que la section de I’élément, le raffinement du maillage et

le degré d’hyperstaticité.

4.1 Modéle d’une poutre soumise a de la flexion 3 points

Dans cette partie, le modéle de la poutre soumise a la flexion 3 points est détaillé. Tout d’abord,
I’ensemble des caractéristiques ayant permis de construire ce dernier sur ABAQUS sont présentées.
Ensuite, une étude de la dispersion en fonction de plusieurs paramétres est présentée. Enfin, cette
section est cléturée par une analyse des différents patrons de fissuration qui ont été obtenus lors

des analyses probabilistes.

4.1.1 Présentation du modele

Le matériau utilisé pour la poutre est un béton renforcé de fibres. Ses propriétés ont été introduites
dans ABAQUS via la sous-routine probabiliste programmeée dans EPM3D présentée dans le
Chapitre 3. Elles sont tirées des résultats expérimentaux présentés a la section 3.3.1.1 (consulter
les Tableau 3.3 et Tableau 3.4). Pour les plaques d’acier, celles-ci sont modélisées d’une fagcon
déterministe par un acier de module élastique E = 200 000 MPa et avec un coefficient de Poisson
v = 0,3. La géométrie, le déplacement imposé ainsi que les conditions aux limites sont montrés

dans la Figure 4.1.
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Déplacement imposé
L/2 = 1800 b=15
Y
h =200
% 7 b= 400\
< L = 3600 ! [mm]

Figure 4.1 Géomeétrie, déplacement et conditions aux limites du modéle par éléments finis de la

poutre en flexion 3 points

La modélisation de la géomeétrie de la poutre a été réalisée dans ABAQUS/EXxplicit et est présentée
a la Figure 4.2.

Plaque d’application du
déplacement

Plaques d’appui

Figure 4.2 Modélisation de la poutre en flexion 3 points sur ABAQUS (Modéle 1)

La poutre est fixée aux trois plaques par le biais d’une contrainte Tie (pleine compatibilité des
déformations entre les surfaces en contact). Les conditions aux limites montrées a la Figure 4.1
sont imposées aux lignes médianes des deux plaques d’appui (dans le sens de la largeur de la
poutre). Un deplacement de 15 mm est imposé au niveau de la ligne mediane de la plaque
supérieure. Une amplitude de type Smooth Step a été appliquée a ce déplacement. En ce qui
concerne le maillage, des éléments Explicit 3D Stress hexaédriques linéaires a intégration réduite
et au contrdle de Hourglass par Relax stiffness (C3D8R) ont été utilisés pour modeliser les eléments

en béton et en acier. En effet, dans ABAQUS, une petite quantité d’énergie artificielle est introduite
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dans le modéle pour controler la propagation de ces modes et éviter le phénomeéne de hourglassing

(déformations aux contraintes nulles).

Un second modele sera également étudié dans cette section (voir la Figure 4.3), il s’agit d’une
variante de la premiére poutre possédant les mémes caractéristiques et paramétres d’entrée. La
seule difféerence réside dans la valeur de la largeur de la poutre : en effet, le premier modéle posséde
une largeur b = 400 mm tandis que pour le second, celle-ci vaut b = 50 mm. Le Tableau 4.1
résume les dimensions des deux modéles de poutres étudiés dans cette section. Les propriétés de

matériaux correspondent a celles trouvées dans le Chapitre 3 ( Tableau 3.3 et Tableau 3.4).

Plaque d’application du
déplacement

|

Plaques d’appui

Figure 4.3 Modélisation de la poutre en flexion 3 points sur ABAQUS (Modéle 2)

Tableau 4.1 Résumé des caractéristiques des deux modéles de poutres

Dimensions Modeéle 1 Modeéle 2
Hauteur h (mm) 200 200
Largeur b (mm) 400 50

Portée L (mm) 3600 3600
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4.1.2 Influence de la section de la poutre sur le coefficient de variation

Afin de minimiser les oscillations dues a la nature quasi-statique de ’analyse et de faciliter
I’interprétation des résultats en termes de variabilité de la charge maximale, un filtre de type
Butterworth a été utilisé pour tous les signaux bruts issus de ’analyse. Tel que montré a la Figure
4.4, I'utilisation d’un filtre Butterworth (f = 50 Hz) permet d’adoucir les résultats et donne une

courbe filtrée similaire a une moyenne mobile de la courbe brute.

3,5

Courbe_brute
Courbe_filtrée

2,5

Charge (KN)

0 2 4 6 8 10 12 14
Fléche (mm)

Figure 4.4 Courbe de la charge en kN en fonction de la fleche en mm

Dans ce qui suit, une comparaison entre les modéles 1 et 2 de poutres présentées a la section
précédente sera réalisée afin d’analyser I’impact du changement de section sur la variabilité de la
charge maximale R,,,,. Pour ce faire, deux séries de 10 analyses ont été réalisées pour chacun des

deux modeles de poutres (voir la Figure 4.5).
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Figure 4.5 (a) Résultats des courbes de la charge en fonction de la fleche pour le modele 1 de
poutre (section 400 mm x 200 mm) (b) Résultats des courbes de la charge en fonction de la

fleche pour le modele 2 de poutre (section 50 mm x 200 mm)

Le maillage utilisé pour réaliser ces deux séries d’analyses est de taille 25 mm. Visuellement, une
plus grande dispersion est observée pour les maximas de charge de la plus petite poutre (consulter
la Figure 4.5 (b)). Le Tableau 4.2 montre aussi que I’influence de changement de section sur la
valeur de f, est faible. Cette derniére a été calculée en utilisant la méthode simplifiée de la norme
CSA-S6 (voir la Figure 4.6).

8 ff:ECECSfJC

CL/ /
L TSFRC: g, =g,

h fi = Yefr — Two-step model
f+ = Yefem — One-step model

THFRC: & <g,
ft = min[YFfFu ;fcrm}

.
]
m

3 f

) El‘ ]cr

Figure 4.6 Comportement en flexion des poutres en BRF (CSA, 2019)
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Tableau 4.2 Moyennes et coefficients de variation de la charge maximale R,,,, pour les deux

modeles de poutre

Aire A de la section tendue fwu (MPa) cov(R,,qx) cov(Wpg)
(mm?)
40000 3,51 2,72% 10%
5000 3,66 4,4% 9%

Les résultats présentés dans le tableau permettent de confirmer les observations faites a partir de la
Figure 4.5. En effet, plus la taille de la poutre est importante, plus le coefficient de variation de la
charge maximale atteinte est petit, et donc, plus la dispersion est faible. Il est important de

mentionner que le COV en entrée est égal a 20% pour les deux analyses.

D’un point de vue purement probabiliste, cette tendance pourrait s’expliquer par le fait que la plus
grande poutre posseéde plus d’éléments finis (¢tant donné que la taille de maillage est identique
pour les deux modeéles), ce qui augmente la population représentative de la loi théorique que 1’on
cherche a modéliser et offre ainsi une meilleure répétabilité et donc une dispersion moindre entre
les différentes analyses. Ce résultat est conforme aux résultats issus de littérature. En effet, d’aprés
Rossi et al. (1994 (a)), le coefficient de variation est inversement proportionnel au volume du
spécimen étudié.

Finalement, dans la suite de cette section, le modéle de poutre 2 sera plus amplement étudié car
celui-ci possede la méme section tendue que 1’éprouvette en traction présentée dans le Chapitre 3.
En effet, étant donné que la poutre est soumise a de la flexion, une approximation est réalisée, celle-
ci consiste a dire que la moitié inférieure de la poutre est en traction tandis que la seconde moitié
supérieure est en compression. La section totale est égale a S = 10 000 mm?, donc ’aire de la
section tendue vaut Sigerion = 5000 mm?, qui est égale a la section de 1’éprouvette étudiée dans

le chapitre précédent.

Par ailleurs, le Tableau 4.2 présente le coefficient de variation du travail externe W total (incluant
la partie élastique), qui est égale a la charge multipliée par le déplacement. Le COV ne varie pas

selon la section de la poutre étudiée. Le sens physique derriere ce constat reste a déterminer.
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4.1.3 Validation de I’approche probabiliste développée

Le but de cette sous-section est de prouver la validité de 1’approche probabiliste développée dans

le Chapitre 3 en I’appliquant au modéle 2 de la poutre en flexion.

4.1.3.1 Conditions d’analyse et hypotheses

Cette sous-section contient I’ensemble des hypotheses sur lesquelles repose 1’analyse présentée

dans cette partie.

1. Etant donné que la méthode de calibration développée dans le Chapitre 3 dépend de la
section tendue (consulter I’Equation (3.13)), il est important que la poutre posséde la méme
section tendue que 1’éprouvette étudiée dans le chapitre précédent, soit S = 5000 mm?,
afin que les lois qui ont été développées puissent étre applicables. On suppose donc que la
moitié inférieure de la poutre est en traction tandis que la seconde moitié supérieure est en

compression.

2. Comme mentionné dans les paragraphes précédents, la poutre étudiée possede les mémes
propriétés de matériau que 1’éprouvette du Chapitre 3. Cette condition est importante

puisque la méthode de calibration développée n’est valide que pour un seul matériau, le

BRF70-80kg (voir Equation (3.13)).

3. Comme évoqué précédemment, on considérera pour la suite que a(25,S,BRF70 —

COVentrs COVsortie

= 100%, un ratio

visé visé

80kg) ~ 1. Autrement dit pour un ratio = 100% est

obtenu pour un maillage de taille 25 mm.

4.1.3.2 Analyse des résultats

Deux tailles d’éléments différentes sont testées pour le modeéle 2 de poutre : 25 mm et 12,5 mm.
Tous les autres paramétres demeurent inchangés. Comme pour la section précedente, des séries de

dix analyses sont réalisées pour chacun des deux modeles.

Les Figure 4.7 (a) et Figure 4.7 (b) présentent les résultats des courbes de la charge en fonction de
la fleche pour les deux tailles d’éléments finis. La poutre posseédant un maillage de taille égale a

25 mm possede une dispersion plus grande des valeurs de charge maximale, la valeur moyenne
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semble quant a elle indépendante de la taille des éléments employés. Ces observations concordent

parfaitement avec celles qui ont été faites pour le modele de I’éprouvette en traction.
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Figure 4.7 (a) Résultats des courbes de la charge en fonction de la fleche pour une taille de
maillage de 25 mm (série 1) b) Résultats des courbes de la charge en fonction de la fleche pour

une taille de maillage de 12,5 mm (série 2)

Le Tableau 4.3 récapitule les résultats de moyennes et de COV en fonction de la taille de maillage.
Effectivement, ce dernier confirme la tendance mise en avant par les courbes de la Figure 4.7 : le

coefficient de variation augmente avec la taille des éléments.

Par ailleurs, le Tableau 4.3 présente le coefficient de variation de Wy total (incluant la partie
élastique). Le COV diminue avec la taille des éléments utilisés. L’explication derriére ce constat

reste néanmoins a échafauder.

Tableau 4.3 Moyennes et coefficients de variation de la charge maximale R,,,, pour différentes

tailles de maillage

Taille de maillage (mm) R ax(kKN) cov(Rax) cov(Wpg)
25 3,2 4,4% 9%
12,5 3,4 0,7% 4,4%

D’un point de vue purement probabiliste, ceci pourrait s’expliquer par le fait que le nombre
d’éléments augmente avec la diminution de la taille de maillage. Ainsi, la distribution obtenue avec
une taille de maillage valant 12,5 mm (série 2) est d’autant plus proche de la distribution théorique
(en raison du nombre d’éléments plus éleve), ce qui a pour effet la réduction de la dispersion entre

les différentes analyses de la série. Par ailleurs, la tendance observée pour la variation de la
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dispersion de la charge maximale des poutres en flexion 3 points est similaire a celle constatée pour

I’énergie de fissuration des éprouvettes en traction étudiées dans le Chapitre 3.

On présume que la relation entre le coefficient de variation en entrée et le coefficient de variation

en sortie est linéaire, a I’identique du mode¢le de 1’éprouvette en traction présenté dans le Chapitre

3.

Afin de Vvérifier la cohérence de ce modéle présuppose, deux séries d’essais différentes sont
étudiées. Tout d’abord, la série notée 1 dans le Tableau 4.4 désigne le modeéle avec une taille de
maillage égale a 25 mm, celle-ci sera prise comme série de référence, et donc le COV obtenu en
sortie correspond au coefficient que I’on aurait obtenu expérimentalement, d’aprés 1’hypothése 3
du paragraphe précédent.

a(12.5,5,BRF70-80kg) _ 12,5

—=. Il faudrait donc introduire un COV deux fois
a(25,5,BRF70—80kg) 25

D’aprés 1’équation (3.13),
plus important pour le modele avec un maillage de 12,5 mm afin d’obtenir une dispersion identique

a celle des analyses réalisées avec des éléments de 25 mm.

Ce résultat est confirmé par le Tableau 4.4. En effet, pour un COV,pte(m = 12,5) =
2 X COVypire(m = 25), une valeur de COVs,,+; €nviron identique est obtenue pour les deux tailles

de maillage (séries 1 et 3).

Tableau 4.4 Moyennes et coefficients de variation en entrée et sortie de la charge maximale pour

les trois séries d’analyses

Série 1 (section Série 2 (section Série 3 (section
400 x 200) 50 x 200) 50 x 200)
(m=25 mm) (m=12,5 mm) (m=12,5 mm)
Gt moyen en entrée (en N/mm?) 4,6 4,6 4,6
R4 (en kN) 3,2 3,5 3,3
Coefficient de variation de Gt en entrée 20% 20% 40%
cov(R0x) 4,4% 0,7% 3,9%
cov(Wpg) 9% 4,4% 14%

La série numéro 3 met en avant le fait qu’il est possible de s’affranchir de I’influence de la taille
de maillage sur le coefficient de variation obtenu en sortie en modulant le COV entré a I’aide du

modele énoncé dans les paragraphes précédents (voir le Tableau 4.4).
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4.1.4 Analyse des patrons de fissuration

La Figure 4.8 présente les patrons de fissuration obtenus pour la poutre avec un maillage de taille
12,5 mm. Afin de pouvoir capturer les differentes fissures, il a fallu déterminer la fenétre de

valeurs d’ouvertures de fissures que 1’on souhaitait observer. Pour ce faire, I’intervalle inférieur a
PN . , . \ . , . 01 . .
été fixé a 0 et I’intervalle supérieur a une valeur qui est égale a — (avec m la taille du maillage en

mm). En effet, ’ceil humain ne peut pas détecter de fissures dont 1’ouverture est inférieure a
0,1 mm. Ce choix-ci a également été fait dans toutes les sections suivantes ou les patrons de
fissuration ont été analysés.

Premiérement, il existe une variabilité de ces patrons-la inhérente au caractere aléatoire de
I’analyse. En effet, les coordonnées de la courbe post-pic des différents points d’intégration sont
soumises a une loi lognormale. Ainsi, I’emplacement des éléments faibles au sein de la poutre,
ceux possédant une énergie de post-fissuration plus basse, différe d’une analyse a une autre, d’ou
les différences des patrons mises en avant par la Figure 4.8. Par ailleurs, il est important de

mentionner que ces captures ont été réalisées au dernier incrément de temps.
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Figure 4.8 Différents patrons de fissurations obtenus pour la poutre avec un maillage de taille
12,5 mm
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La Figure 4.9 montre les différentes courbes de charge en fonction de la fléche pour la poutre avec
des éléments de taille 12,5 mm.
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— ANO07
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— ANO09

= ANI0

0 2 4 6 8 10 12 14 16
fléche (mm)

Figure 4.9 Résultats des courbes de la charge en fonction de la fleche pour une taille de maillage
de 12,5 mm

I1 est possible d’établir un lien de corrélation entre le comportement en post-pic des poutres pour
chacune des analyses et le nombre de macrofissures visibles sur la Figure 4.8. Sur cette figure, les
¢léments colorés en rouge possedent une ouverture de fissure de 1’ordre du dixieme de millimetre
pouvant étre considérés comme une macrofissure, les éléments dans les tons verts possédent quant
a eux une ouverture de 1’ordre du milliéme de millimétre pouvant étre considérés comme des

microfissures.

Les Figure 4.8 (a) et (b) correspondent respectivement aux poutres des analyses 3 et 10 dont les
courbes de charge en fonction de la fleche sont représentées dans la Figure 4.9. Ces deux poutres
possédent relativement peu de macrofissures comparées aux deux autres vignettes (c) et (d)
correspondant respectivement aux analyses 5 et 4. Comme le met en exergue la Figure 4.9, les
poutres présentant le plus de multi-fissuration au dernier incrément de 1’analyse sont celles qui

possédent une meilleure résistance et ductilité post-pic.

Cette tendance est également observée pour les patrons montrés a la Figure 4.10, la seule différence

avec les poutres précédentes est la taille des élements qui est de 25 mm cette fois-ci.
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Figure 4.10 Différents patrons de fissurations obtenus pour la poutre avec un maillage de taille

25 mm

Les poutres (b) et (d) de la Figure 4.10 sont celles qui possédent le nombre le moins éleve de
macrofissures. Ces dernieres correspondent respectivement aux analyses 2 et 9 de la Figure 4.5 (b)
qui démontrent un comportement plus fragile que les analyses 1 et 3 qui correspondent aux patrons

(a) et (c) respectivement.

Ainsi, d’apres toutes les observations mises en avant, il est possible d’établir un lien clair entre la
multi-fissuration d’une poutre en BRF et entre sa resistance. Cette conclusion semble par ailleurs

étre validée pour les deux tailles de maillage utilisées dans ce chapitre.

4.2 Modele de deux poutres croisées soumises a la flexion trois points

4.2.1 Présentation du modele

Ce paragraphe présente le modéle des poutres croisées soumises a de la flexion 3 points. La Figure

4.11 présente la géométrie de celui-ci tel que modélisé dans ABAQUS.
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déplacement

|

Plaques d’appui

\.

Figure 4.11 Modélisation de la poutre croisée en flexion 3 points sur ABAQUS

Des propriétés de matériau identiques a la section précédente sont utilisées. Par ailleurs, ['unique

taille de maillage utilisée dans ces analyses est égale a 25 mm.

Les conditions aux frontieres (voir la Figure 4.1), le déplacement imposé, les différentes
mensurations (section et portée) ainsi que le type de maillage sont également identiques au modele

précédent de la poutre en flexion 3 points.

4.2.2 Analyse des resultats

La Figure 4.12 montre les résultats des courbes de charge en fonction de la fleche pour les poutres
croisées. Cette derniére serait a comparer avec la Figure 4.5 (b). En évaluant les allures des courbes
présentes sur ces deux figures, il est possible d’en déduire que les poutres croisées présentent une
plus faible dispersion au niveau du pic de charge maximale par rapport au modeéle de la poutre
simple.
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Figure 4.12 Résultats des courbes de la charge en fonction de la fleche pour une taille de maillage

de 25 mm

Cette tendance est confirmée par les résultats du Tableau 4.5. En effet, le COV obtenu en sortie de
la série d’analyses des poutres croisées est environ deux fois moins élevé que celui de la série
d’analyses de la poutre « simple ». En ce qui concerne la moyenne, celle obtenue en sortie du
modele des poutres croisées est environ deux fois plus élevé, ce qui semble concorder avec la
géomeétrie de la structure étudiée.

Tableau 4.5 Moyennes et coefficients de variation en entrée et sortie de la charge maximale pour

les deux modeles : poutre simple et poutres croisées

Rmax (kN) cov(Rmax)
Poutre simple 3,2 4,4%
Poutres croisées 6,3 2,5%

Ainsi, il est clair d’aprés ces résultats que 1’augmentation de I’hyperstaticité favorise la

redistribution des efforts et permet donc de diminuer la dispersion de la réponse structurale.

4.2.3 Analyse des patrons de fissuration

Comme le montre la Figure 4.13, il existe une variabilité des patrons de fissuration inhérente a la
nature probabiliste des analyses lancées sur ABAQUS. En revanche, cette fois-ci il est difficile de

distinguer les différents degres de fissuration atteints lors du dernier incrément (fleche atteinte de
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15 mm). Ceci pourrait s’expliquer par la variabilité beaucoup moins importante des courbes de
charge en fonction de la fleche, comme le montre la Figure 4.12. En effet les portions de courbes

en post-pic semblent beaucoup plus resserrées.

LE, Max. Principal LE, Max. Principal

(Avg: 0%

Figure 4.13 Différents patron de fissuration obtenus pour les poutres croisées avec un maillage de

taille 25 mm

Néanmoins, il est possible de dire que le modele montré a la Figure 4.13 (d) correspondant a
I’analyse 2 sur la Figure 4.12 présente le plus grand nombre de macrofissures. Il s’agit également
de I’analyse présentant le meilleur comportement en termes de résistance et de ductilité, comme le

montre la Figure 4.12.

Cette observation confirme encore une fois la tendance dégagée dans la section 4.1.5 : la multi-

fissuration est directement liée a la résistance-ductilité de 1’élément structural.
4.3 Modele de la dalle simplement appuyée

4.3.1 Présentation du modele

Les mémes proprietés de matériaux des sections précédentes sont utilisées.
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Une condition de contact sans frottement est imposée entre la dalle et la plaque d’assise du dessous
pour permettre aux coins de daller de se soulever. Un déplacement de 25 mm est imposé au centre
de la plaque supérieure (voir la Figure 4.14). Les autres conditions aux limites sont montrées sur
la méme figure. Les différentes mensurations des éléments composant le modele sont présentées a
la Figure 4.15.

Plaque d’assise bloquée en

. ) . translation dans les trois
Point bloqu_e en translation directions x, y et z
suivant X

N 4
\‘f"

v X
L.z

Plaque d’application du
déplacement Point bloqué en translation
suivantx et z

Figure 4.14 Modélisation de la dalle simplement appuyée sur ABAQUS

Plague d’assise
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I3 >
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h=]
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254 y

200
t / 3650

4000

4009

Figure 4.15 Dimensions des différents éléments constituant le modéle
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4.3.2 Analyse des resultats

La Figure 4.16 montre en avant les courbes de la charge en fonction de la fleche pour la dalle
simplement supportée. En comparaison avec les résultats obtenus pour les modeles de poutre, il est
possible d’en déduire que le modele de la dalle présente une variabilité nettement inférieure en ce

qui concerne le pic de charge maximale.

450
400 =
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Figure 4.16 Résultats des courbes de la charge en fonction de la fleche pour une taille de maillage

de 25 mm

Cette tendance est confirmée par les résultats du Tableau 4.6, en effet, le COV obtenue en sortie
de la série d’analyses de la dalle est environ quinze fois moins ¢élevé que celui de la série d’analyses

de la poutre « simple » et environ huit fois moins élevé que celui des poutres croisées.

Tableau 4.6 Moyennes et coefficients de variation de la charge maximale pour tous les modéles

Rmax (kN) Cov(Rmax)
Poutre simple 3,2 4,4%
Poutres croisées 6,3 2,5%

Dalle simplement supportée 4359 0,3%
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Les résultats de dalle confirment ainsi que 1’augmentation de I’hyperstaticité permet de diminuer

la dispersion de la réponse structurale.

4.3.3 Analyse du patron de fissuration

A I’opposé des modéles de la poutre simple et des poutres croisées, il a été difficile de distinguer
I’effet de variabilité sur le patron de fissuration de dalle. Cette observation semble étre en accord

avec la dispersion tres faible des courbes de la charge en fonction de la fleche (voir la Figure 4.16).
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Figure 4.17 Patron de fissuration obtenu pour la dalle avec un maillage de 25 mm

Par ailleurs, la Figure 4.18 et la Figure 4.19 présentent respectivement le déplacement que subit la
dalle et les réactions exercées par la plaque support a I’issue de I’analyse (déplacement imposé qui

vaut 25 mm).
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Figure 4.18 Déformée de la dalle
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Figure 4.19 Dalle avec les vecteurs de force de contact
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4.4 Calcul des facteurs de résistance

Une fois la variabilité de la réponse structurale connue (COV (R,,4x)), il est possible de calculer le
facteur de sécurité du coté résistance, en utilisant le principe des approches semi-probabilistes
décrites dans le chapitre 2 (Niveau 1 de la Figure 2.19).

Le facteur de sécurité du coté résistance y ¢ est utilisé pour calculer la valeur de « conception » R,
a partir de la résistance moyenne de la structure R,,,. Dans le cas des analyses faites par les éléments
finis, on peut considérer I’approximation : R,, = R, Le calcul du facteur de sécurité nécessite
une donnée issue du code, et qui correspond a la probabilité de défaillance maximale acceptable

Df max Ou a I’indice de fiabilit¢ minimum S, requis.

Le paramétre R est processus aléatoire qui représente la résistance réelle de la structure, il est
fonction de nombreuses variables aléatoires d’entrée. Dans le cadre de ce projet, R dépend

uniquement de G, qui suit une distribution lognormale.

L’équation de base utilisée dans la conception s’écrit :
Ry = U, (4.1)
En supposant que R et U suivent une loi lognormale et que les coefficients de variation sont
relativement petits (inférieurs a 30%), MacGregor (1976) a réécrit 1’équation (4.1) sous la forme :
Rne PaVr > U, ePeVu (4.2)
avec a la fonction de séparation, a = 0,75 + 0,06. Dans le cadre de cette étude, a est pris égal a
0,80. Le facteur de résistance globale est alors égal a :
y© = e PaVr (4.3)

On considere un indice de fiabilité £,,;,, de 3,72 (ce qui correspond a une probabilité pr,q, =
10™*, typique pour les ruptures ductiles d’éléments). Il est possible alors de calculer les facteurs
de résistance pour les différents éléments structuraux considérés dans les sections précédentes. Le

Tableau 4.7 résume les résultats.
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Tableau 4.7 Valeurs des coefficients de variation de la résistance et du coefficient global de

résistance en fonction du modeéle considéré

Modele Coefficient de variation en sortie y©
Vg (en %)
Matériau (BRF70-80kg) 20% 0,55
Poutre simple 3,9% 0,89
Poutres croisées 2,5% 0,93
Dalle simplement appuyée 0,3% 0,99

A partir du Tableau 4.7, il est possible de tirer les conclusions suivantes :

- le fait de se baser sur la dispersion du matériau et non sur celle de la structure étudiee

introduit un conservatisme assez important au niveau du coefficient de résistance global y¢;

- y©augmente avec le degré d’hyperstaticité.
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CHAPITRES CONCLUSION

5.1 Rappel des objectifs

Les objectifs du mémoire étaient de :

déterminer les effets de la variabilité des caractéristiques mécaniques du béton fibré sur le
comportement de certains éléments structuraux, ainsi que de mettre en ceuvre les lois

probabilistes qui modéliseraient cette variabilité;
coder et intégrer la sous-routine probabiliste a EPM3D;

mettre en ceuvre une nouvelle méthodologie de modélisation probabiliste rationnelle et

simple pour les structures en BRF en utilisant I’analyse non linéaire par éléments finis;

en déduire I’influence de I’hyperstaticité sur les facteurs de résistance des €léments

structuraux en BRF.

5.2 Conclusions

Les conclusions de ce rapport de mémoire sont scindées en trois parties : le bilan de la sous-routine

probabiliste d’EPM3D, les conclusions relatives a I’analyse de la dispersion en sortie en fonction

de la variabilité renseignée en entrée, et enfin les conclusions relatives aux divers exemples

d’application et a la méthode d’estimation des facteurs de résistance.

5.2.1 Sous-routine probabiliste d’EPM3D

Les différentes conclusions tirées par rapport au développement de la sous-routine probabiliste

d’EPM3D sont les suivantes.

Le modele développe qui est basé sur une approche statistiqgue du comportement physique

du béton s’intégre parfaitement au code d’EPM3D préexistant.

Cette approche probabiliste pourrait étre appliquée aux bétons ordinaires (en faisant varier
f¢{ et f/) ou aux bétons fibrés (en prenant I’énergie de fissuration Gy comme variable
aléatoire). Ce travail de recherche s’est focalis¢ sur les BRF et I’ensemble des conclusions

énoncées au travers des points suivants sont reliées a ces derniers.
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- Cette sous-routine parvient a reproduire de maniere trés précise les lois probabilistes
théoriques : ceci a pu étre Vvérifié par le biais du code FORTRAN directement exécuté dans
Microsoft Visual Basic, et également sur un modele de cube et d’éprouvette en traction sur
ABAQUS.

- L’utilisation de cette sous-routine demeure relativement simple pour 'utilisateur puisque
cette derniére nécessite uniquement : (1) la moyenne et le COV de 1’énergie de fissuration
du BRF étudié qui peuvent étre tires des essais effectués lors d’une campagne
expérimentale et (2) I’application du modéle permettant de relier la dispersion fournie en

entrée et celle obtenue en sortie.

- L’étude de convergence de la moyenne et du COV obtenus en sortie a permis de mettre en
avant la tendance suivante : (1) le seuil minimal d’analyses pour converger varie en fonction
de la taille des eéléments finis utilisés ; (2) les spécimens maillés a 1’aide d’éléments de plus
petite taille convergent plus rapidement, autrement dit, le seuil minimal d’analyses requises
pour assurer la convergence baisse avec la taille du maillage; (3) la convergence est atteinte

plus rapidement pour la moyenne que pour le coefficient de variation.

- Le modele développé est probabiliste, néanmoins, une seule simulation demeure
déterministe. Il est donc requis d’effectuer un grand nombre de simulations pour faire
ressortir I’aspect probabiliste. La sous-routine doit ainsi étre utilisée en conjonction avec la
méthode simulation de Monte-Carlo, le nombre d’analyses requises dépend du seuil de

convergence qui, a son tour, dépend de la taille de maillage, tel qu’évoqué précédemment.

- La corrélation entre les éléments adjacents n’a pas ét¢ considérée. En effet, cette hypothese
a €té rejetée car le but du projet était de modéliser la variabilité a 1’échelle macroscopique
et non méso ou microscopique. Ainsi, I’introduction d’une fonction et d’une longueur

d’autocorrélation ne semblait pas nécessaire.

5.2.2 Analyse de la variabilité obtenue

Tout d’abord, il semble important de rappeler que I’ensemble des conclusions tirées dans ce
paragraphe se basent sur un BRF70-80kg et sur la campagne expérimentale réalisée par Sébastien
Reygner. Les constats qui ont pu étre tirés de I’analyse de la variabilité obtenue en sortie peuvent

étre résumes au travers des points suivants.
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Pour le mode¢le de I’éprouvette en traction, la moyenne de I’énergie de fissuration obtenue
en sortie est égale a celle fournie en entrée. Elle est par ailleurs indépendante de la taille de

maillage employee.

En ce qui concerne le coefficient de variation, la valeur obtenue en sortie difféere de celle
introduite en entrée. De plus, cette derniere est fonction de la taille des éléments finis. En
effet, pour une valeur identique du COV fournie en entrée, la valeur obtenue en sortie

augmente avec la taille des éléments.

A partir de I’analyse du lien de corrélation entre le COV entré et le COV obtenu pour le
modele des éprouvettes en traction, une loi a pu étre établie. 11 s’agit d’une fonction affine
reliant ces deux paramétres dont la pente dépend de la taille de maillage employée, de la
section tendue et du matériau étudié. Ce modele ainsi établi permet premierement de
s’affranchir de la dépendance a la taille des éléments et deuxiémement de reproduire la

variabilité expérimentale obtenue gréace a la campagne expérimentale de Reygner.

La validité de ce modele établi a été vérifiée grace a un exemple d’application sur des
poutres en flexion trois points. L’application de ce dernier a permis de reproduire la
variabilité exacte du matériau et ainsi d’obtenir la dispersion qui aurait été obtenue si une

campagne expérimentale avait été réalisée pour ces poutres soumises a la flexion.

L’influence de la taille des poutres a pu étre étudiée : plus la taille de la poutre est
importante, plus le coefficient de variation de la charge maximale atteinte est petit et donc

plus la dispersion est faible.

Les analyses effectuées sur un modéle de poutres croisées et de dalle simplement appuyée
ont permis de montrer que l’augmentation du degré d’hyperstaticit¢ engendre une

diminution de la dispersion de la réponse structurale.

Une variabilité des patrons de fissuration a été observée pour les modéles de poutres simples
et de poutres croisées. Par ailleurs, I’analyse de ces derniers a permis d’établir un lien clair

entre la capacité de multi-fissuration des structures et entre leur ductilité.

A ’opposé, aucune variabilité au niveau des patrons de fissuration n’a été relevée pour les
éprouvettes en traction et pour les dalles simplement appuyées. Pour le modele des os en

traction, ce constat est attribuable aux conditions aux limites qui ne permettaient pas
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d’imposer un déplacement uniforme tout au long du spécimen, ce gradient de déplacement
causait une localisation de la fissure au niveau du changement de section, car c’est a cet
endroit que le déplacement imposé était le plus important. Pour les dalles, I’hyperstatisme
de la structure diminue considérablement la dispersion de la réponse en sortie, ce qui
confere un aspect déterministe au phénoméne de localisation des macrofissures, et ce,

malgré la variabilité des propriétés mécaniques renseignées en entrée.

5.2.3 Méthode d’estimation des facteurs de sécurité

L’utilisation des facteurs de résistance dans les codes suppose implicitement une certaine

distribution de la résistance, ce qui ne donne qu’une marge de sécurité nominale.

Un cadre de fiabilité découlant de I’approche probabiliste développée dans le cadre de ce mémoire
a été introduit pour la conception des structures en BRF. Il fournit une méthodologie pour
I’estimation des facteurs de sécurité pour chaque situation de conception (ici pour les poutres
simples, poutres croisées et dalles). Les résultats d’un nombre d’analyses non linéaires
probabilistes ont été utilisés en conjonction avec la procédure développée dans le Chapitre 3 ainsi

gue la méthode de Monte Carlo.

La méthodologie présentée dans le présent document peut étre facilement incorporée dans les futurs
codes de conception. Elle ouvre la voie a I’identification de programmes existants et futurs qui
permettent de passer du matériau aux échelles structurelles et servent a déterminer la variabilité de
la réponse structurale et les coefficients de sécurité qui en découlent. En outre, le couplage des
connaissances entre les domaines expérimentaux et analytiques, a 1’échelle des matériaux et des
structures, peut contribuer a optimiser la conception des structures dans le contexte des

préoccupations croissantes en matiére de securité et de développement durable.

5.3 Recommandations

Les recommandations qui pourraient étre faites pour la poursuite de ce projet sont résumées au

travers des points suivants.

1. Le modeéle de calibration ainsi que les divers exemples d’application ont été réalisés pour
un BRF70-80kg. Il faudrait étudier I’impact de changement du matériau (plusieurs BRF)

sur le modéle de calibration développé dans le Chapitre 3 ainsi que sur les différentes
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conclusions qui ont été tirées. Il serait intéressant d’étudier un BFUP au lieu d’un BRF et

d’analyser 1’influence d’un tel changement.

Les conditions aux limites de 1’éprouvette en traction doivent étre modifiées afin de
supprimer le gradient de déplacement et pouvoir observer la variabilité des patrons de

fissuration.

Les différentes variabilités obtenues pour les poutres ainsi que les dalles doivent étre
comparees aux dispersions obtenues expérimentalement (Bastien, 2002; Bélanger, 2000;
De Broucker, 2013; De Montaignac de Chauvance, 2011) afin de prouver la validité du

modele probabiliste proposé dans le cadre de ce mémoire.

La variabilité de la matrice cimentaire devrait étre prise en compte en considérant f; et E
comme étant aléatoires. En effet, dans le cadre de ce projet de recherche, les coordonnées
des deux premiers points de la portion post-pic de la courbe de contrainte en fonction de

I’ouverture de fissure ont délibérément été considérées comme étant fixes.

Le dédoublement des faisceaux de courbes observé pour un maillage de taille 25 mm, qui
résulte d’un probléme purement numérique, pourrait étre résolu en imposant un unique plan

de fissuration.

La variabilité des ouvertures de fissures en post-pic devrait également étre prise en en
compte. Cette derniere a été programmeée mais les résultants ne sont pas probants pour le

moment.

Les lois probabilistes adoptées pour modéliser I’hétérogénéité du BRF ne tiennent pas
compte du mode de fabrication, les effets de parois (qui orientent les fibres) ainsi que les
éventuels obstacles (qui créent des zones sans fibres) ont été negligés. Il serait intéressant
de les considérer et d’analyser leur impact sur la variabilité de la réponse structurale obtenue

en sortie.

L’influence de la géométrie des élements (hexaedriques vs tétraédriques) sur la dispersion

de la réponse doit étre étudiée de maniére plus approfondie.
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ANNEXE A CODE DE LA SOUS-ROUTINE PROBABILISTE D’EPM3D

Cette annexe présente le code de la sous-routine probabiliste qui a été développée et intégrée dans
EPM3D.

31 o Subroutine ppale

3: IMPFLICIT DOUBLE PRECISION (&-H,O0-EZ)
33 | cM Khadija 17 01 2020

34 DIMENSION FROP(cZ2)

35 DIMENSION IP(-)

36 DIMENSION WRO1(>7)

37 DIMENSION WLO2(57)

38 DIMENSION JCPET ()

35 | CM Khadija 11 0% 2019

40 PROP(3)=-50.0d0 !fc'

41 PROP(S)=4.540 !ft!'

42 PROP(c)=0.085d0 !GE

43 PROP(58)=001.0d0 !Type de loi probabiliste
44 PROP(59)=5.0d0 !Variabilité de fc!

5 PROF (c0) 'Variabilité de ft'

3] PROP(c1)=0.0085d0 !Variabilité de Gf ou de S1 suivant la valeur de Iloi
47 PROP(c2)=0.2 !wvariabilité de Gf pour un BRF
48 CM Khadija 24 09 2019 Partie pour la variabilité de la courbe post-pic d'un BRF
49 PROP(51)=3.7d0 !5l
51 PROFP (52) 152
51 PROP (5° 153
52 PROP (54) '54
53 PROP (55 '55
54 PROP (5¢ '56
55 PROP (57 ) =0 157
56 PROP (44} =0 'wl
57 PROP (45 w2
58 PROP (4¢ 0.75 'w3
59 PROP(47)=1.2d0 'wd
6l PROP (45) 'w5
61 PROP (45 'wo
62 PROP (50} w7




B e e e e e e I« W~ W o, W« ‘s T« 01}
BN N SR PR O R e RS = R I N IV O}

-1
(=TT

D ST IS PU R R

[=JTea=]

=

[Nl I R e ' o B o = R ' R

3%}

126

CM Khadija 25 10 2018 Calcul de Gf totale (mé&thode des trapezes)
B1=PROP (44) * (FROP(S)+FROP (51} )} *0 . 540
B2=(PROP(45)=PROF(44)) * (PROP (51)+PROP(52)) *0
B3=(PROP (4c)-FROP (45) ) * (PROP (52)+PROP (53)) *0
24=(PROF(47)-PROP(4c) ) * (PROP(52)+PROE(54) ) *U
L5=(PROP(42)=PROP(47) ) * (PROP (54)4+PROP(Z5) ) *C
RE=(PROP (4%) =PROF (45) ) * (PROP (55) +PROP (5¢) ) *0
LT7=(PROP(50)=FROP (45)) * (PROF ( +PROE(S7)) *0
AT=R1+R24+B3+R44+A5+R6+2T

CM Khadija_ 25 10 2018 Soustraction de la contribution du béton
Ab=0_5c0%PROP(5) * ( (PROF (5) *PROF (44) ) / (PROP (5) =PROFP(51)))
Rmoy=RAt-Bb
WRITE(c,*) 'Lmoy=', Rmoy
WRITE (©,*) 'At=', At
WRITE(F,*) '2b=', Bb
IF(l)=int (PROP(SE) /100

IP () =int ((PROP(55)=IF(1)*1 0
y=IP(1)*100.d0

IP(:)=int ((PRCP(5C 10))

CM Khadija 11 09 2019

JCPT=(/0,0,0/)

Iloi=l
CM Khadija 08_10 2018

DO 333 IK=l,3
=] IF(IP(IK) .NE. 0) THEN
CM MBF ADD 10 2 2014

LP = IFP(IE)

c WRITE (6,*) 'BRRIVEE AU POINT 0, IPAS=', IPAS, ' ITER=',ITER

Q IF(SOMME .eq. zero .or. totaltime .eq. dt) THEN
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95
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99
100
101
102
103
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137
138
L3
140
141
142
143
144
145
l4e
147
148
149
150
151
152

CM MBF 10 2 2014

CM MBF 10 2 2014

CM_DEL Khadija 25 10 2019

=| IF (IK .EQ. 1)

FPC=XX
WRITE (¢, *)
=| ELSEIF (IK .EQ

FPT=XX
WRITE (¢, *)
= ELSEIF (IK .EQ
E IF (Iloi .
WAO2 (5
Gf=XX
WRITE (
ELSE
WAO2 (5

= IF (XX

CM_DEL_KRhadija_25 10 2019

HCM _DEL_Khadija 25 10 2019
c IF

ELS

del khadija
VAR

e NN NN eIy

END

WRITE (¢, *)

c CALL RANDOM SEED()

=| IF (IK .EQ. 1) THEN

XX = PROP(3)

SX = PROP(5%)
=) ELSEIF (IK .EQ. 2) THEN

XX = PROB(5)

SX = PROP(60)
= ELSEIF (IK .EQ. 3) THEN
E IF (Iloi .EQ. 0) THEN

XX = PROF(¢)
L SX=PROP (¢1)
=| ELSE
XX=Emoy

S¥X=PROF (c2)

c XX = PROP(51)
- END IF
CM DEL Khadija 25 10 2019
c SX = PROP(61)
ENDIF
CM MEDI BF REM 10 2 2014 LF = IP(IK)

CALL PROBAB (XX,SX,LP,JCET,IK)

THEN

WROZ(S5)=KX

'BRRIVEE AU POINT 1,
. 2) THEN

Xx="', XX

WROZ (S0)=KX

'BRRIVEE AU POINT 2,
. 3) THEN
EgZ. () THEN
TYy=K¥X

Xx="', XX

6,%) 'BRRIVEE AU POINT 3, XX=', XX
7) =KX
£, WR02(57)

'G
.NE. 0.D0) THEN

C S51=XX
Bi=XX
WRITE (21,*)

‘Ri=', Al

(LP.EQ.1) THEN
XMOY=PROP (51) !CM Khadija
EIF (LP.EQ.2) THEN
XMOY=EXP (PROP (51) +0.5d0*PROP (61) **2)
ELSEIF (LP.EQ.3) THEN
WE=(PROP(61) /PROP(51)) ** (-1.086d0)
WL=PROP (51) /GAMMA (1+ (1/WK) )
KMOY=WL* (LOG (2.d0) ** (1.d0/WEK) )
XMOY=PROP (51) * (LOG(2.D0) ** (1.D0O/PROP (61) )} )
IABILITE GF NON NUL
WRITE (1, *) XMOY
IF

espérance de la loi normale
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'médiane de la loi de weibull
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155
156
157
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159
160
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164
165
166
167
168
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170
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176
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211
212
213

CADD DC_2014 01 16 D
CM_DEL_Khadija 25 10 2018

Lc IF (XMOY.EQ.0.D0) THEN
= IF (Emoy.EQ.0.D0) THEN
+ 57, XMOY=0'

L ENDIF

CADD DC_2014 01 16 F
CM_DEL_Khadija 25 10 2018

51=PROP(51)
S2=PROP (52) *Ri/Emoy
53=PROP (52) *Ri /Amoy

S4=PROP(54) *Ri/Emoy
S55=PROP ) *Bi/Emoy
S6=PROP(5¢) *Ai/BEmoy
ST=PROP(57) *Bi/BEmoy
WRITE(C,*) 'Zmov='",6 EmMOyY
WRITE(C,*) , 51
, 52
, 53
, 54
, 55
WRITE(C,*) , 56
WRITE(c,*) 'S7 57

52=PROP (52) *31/XMOY

EHe
c 53=PROP(53) *51/¥XMOY
c S54=PROP (54) *31/¥XMOY
c 55=PROP (55) *51/¥XMOY
c 56=PROP (56) *51/¥XMOY
c S7=PROP(57) *51/¥XMOY
[o! WRITE(6,*) 'Temps=',totaltime, 'Boucle 1,
FC + ', §3=',53,', S4=',54,',55=',85,",
i ENDIF
WRITE (¢ ,*) 'RERIVEE AU POINT 3, ¥XX=', XX
ENDIF
ENDIF
ELSE
= IF (IKE .EQ. 1) THEN
WRO2(55)= WR01(55)
FPC=WRO02 (55)
= ELSEIF (IK .E(Q. Z) THEN

WROZ (S6)= WROL1(5C)

FPT=WRO02 (5¢)

= ELSEIF (IK .E(Q. 3) THEN

g IF (Iloi .EQ. 0) THEN
WRO2(57)= WRO1(57)
GE=WROZ2(57)

ELSE

CM MEDI BF MOD 10 2 2014 indice 54 charge a 57
WROZ2(57)= WRO1(57)

— IF (51 .NE. 0.DU) THEN

S1=Wa02 (57)

IF (LF .EQ. 1) THEN
KXMOY=PROP (51)
ELSEIF (LP.E(.2) THEN

XMOY=EXP (FROP (51} +0
ELSEIF (LP.E(.3) THEN

XMOY=PROP (5 1) * (LOG(2.D0) ** (1. DO/PROP(c1)))

c VARIABILITE GF NON NUL
c WRITE (1, *) XMOY
ENDIF

WRITE(C,*) 'ATTENTION: ERREUR SUR 5Z R

O*PROP(C1) **2)

128

52=',582,
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214 J]CADD_DC_2 014 01 16 D

215 IF (XMCY.EQ.O.DU) THEN

216 WRITE(-,*) 'ATTENTION: ERREUR SUR S2 A
217 + 57, XMOY=0'

218 - ENDIF

219 CADD DC 2014 01 16 F

220 S2=FROFP (52) *31/¥XMOY

221 S3=PROP ( *31 /¥XMOY

222 S54=PROP (54) *S1/XMOY

223 S5=PROP ( *31/XMOY

224 SG=PROP (5¢) *S51/XMOY

225 537=FROP (57) *31/¥XMOY

226 c WRITE (1,*) 'Temps=',totaltime, 'Boucle 2, S1=', S51,', 52=',52,
227 c + ', §3=',83,', S4=',s4,',85=',85,"', sSe=',86,', sS7=',57
228 - ENDIF

229 ENDIF

230 - ENDIF

231 - ENDIF

232 EHCM MEDI BF REM 10 2 2014 ELSE

233 | CM MEDI BF REM 10 2 2014 IF (IK .EQ. 1) THEN

234 CM MEDI BF REM 10 2 2014 FEC = PROP (3)

235 |CM MEDI BF REM 10 2 2014 ELSEIF (IK .EQ. 2) THEN

236 |CM MEDI BF REM 10 2 2014 FET = PROP (5)

237 |CM MEDI BF REM 10 2 2014 ELSEIF (IK .EQ. 3) THEN

238 CM MEDI _BF REM 10 2 2014 Gf = PROP (6)

239 |CM MEDI BF REM 10 2 2014 ENDIF

240

241 ENDIF

242

243 CONTINUE

244 CM DC ADD BLOC 05.07.2012 début

245 o IF (JCPT(.) .GT. () THEN

246 WRITE(C,*) 'ATTENTION: LA LOI NCRMALE DU PARAMETRE FC EST

247 - * TRONQUEE, NOMBRE DE POINTS TRONQUES: ', JCPT(l), ' SUR ', km
248 H ELSEIF (JCPT(Z) .5T. ) THEN

249 WRITE(-,*) 'ATTENTION: LA LOI NCRMALE DU PARRMETRE FT EST

250 - * TRONQUEE, NOMBRE DE PCINTS TRONQUES: ', JCPT(2), ' SUR ',km
251 Ho ELSEIF (JCPT(:) .GT. () THEN

252 WRITE(c,*) 'ATTENTICN: LA LOI NOEMALE DU PARAMETEE GF EST

253 * TRONQUEE, NOMBRE DE PCINTS TRONQUES: ', JCPT(3), ' SUR ',km
254 - ENDIF

255 CM DC ADD BLOC 05.07.2012 fin

256

257 CONTAINS

258

259

260 CC S0US-ROUTINES ADDITICNNELLES

261
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262 ©OcC DC

263 C DC SOUS-ROUTINE QUI FAIT UN TIRAGE ALEATOIRE UNIFORME ENTRE 0 ET 1
264 C DC

265 FC SUBROUTINE PROBAB (XX,YY,ZE,S5X,SY,S5%,LP,JCPT1,JCPT2,JCPT3) CM DC DEL LINE 16.08.2012
266 © SUBROUTINE FROBAB (XX,SX,LE,JCET,IK)

267 C DC

268 CM MB ADD 29.07.2012 : implicit none, integer et real enleves, include 'vaba param.inc' ajoutee
269 c IMPLICIT DOUBLE PRECISION (R-H,0-Z)

270 !include 'vaba param.inc'

271 HCM MB REM 25.07.2012 IMPLICIT NCNE

272 CM MB REM 25.07.2012 INTEGER I,J,JCPT1,JCPT2,JCPT3,LP

273 CM MB REM 25.07.2012 REAL XX,YY,Z%Z,5X,5Y,S5%,PP,RR,AM,AS

274 C DC

275 C DC ITERATION SUR LES PARAMETRES FROBABILISTES

276 C DC 1.FC'

277 C DC 2_FT!

278 C DC 3.GF

279 c DO I=1,3 CM DC DEL LINE 16.08.2012

280 FCM DC ADD LINE 16.08.2012

281 DIMENSION JCPT(3)

282 I=IK

283 RR=0.d0

284 ©H DO WHILE (RR .EQ. 0.d0)

285 ?

286 CALL RANDOM NUMBER (ER)

287 WRITE (&, *) 'ATTENTION: RE=',RR

288 C DC IL FAUT QUE RR SOIT DIFFERENT DE 0 ET DE 1
289 C DC SI CELA ARRIVE, RELANCER LA GENERATION DE NBRE ALEATOIRE

290 © IF (RR .EQ. 0.d0) THEN

291 WRITE(C,*) 'ATTENTICN: TIRAGE RLEATOIRE=0, S5I CELA
292 * SURVIENT DE NOMBREUSES FOIS, POSSIBILITE QUE L&A LOI
263 - * UNIFORME NE SOIT PLUS UNIFORME'

294 © ELSEIF (RR .EQ. ..d0) THEN

295 WRITE(:,*) 'ATTENTION: TIRAGE ALEATOIRE=1, SI CELA
296 * SURVIENT DE NOMBREUSES FOIS, POSSIBILITE QUE LA LOI
297 * UNIFORME NE SOIT PLUS UNIFORME'

298 - ENDIF

299 - END DO

300 PP=RR

301 WRITE(F,*) 'RR',RR

302 |cC DC LP: CHOIX DE LA LOI PROB (1. NORMAL, 2. LOGNORMAL, 3. WEIBULL)
303 H IF (I .EQ. 1) THEN

304 AM=-XX

305 BS=5X

306 | WRITE(:,*) 'SX',BS

307 o ELSEIF (I .EQ. 2) THEN

308 BM=XX

309 - B5=5X

310 H ELSEIF (I .EC. 2) THEN

311 BM=XX

312 BS=5X

313 | ENDIF

314 o IF (LP.EQ..) THEN

315 C DC AM: MOYENNE
31le C DC BS: ECRRT-TYPE, TOUJOURS SUPERIEUR A 0

317 H IF (&S .LE. 0.d0) THEN

318 WRITE(C,*) 'ERREUR: ECART-TYPE (PRARRMETRE DE LA LOI NORMAELE)
319 * DOIT ETRE SUPERIEUR A 0

320 !CALL XPLB EXIT

321 - ENDIF

322 CALL NOEMINVIT (FP,REM, LS)

323 C DC ATTENTION SI Y INFERIEUR OU EGAL 2 0, IL FAUT REITERER LE PROCESSUS
324 C DC CELA DONNE UNE LOI NORMALE TRONQUEE) VOIR JCPT1 A JCPT3

325 [of IF (I .EQ. 1) THEN CM DC DEL LINE 16.08.2012
326 H IF (PP .LE. (0.d0) THEN

327 c JCPT1=JCPT1+1 CM DC DEL LINE 16.08.2012
328 JCET (I)=JCPT(I)+1

E END IF



330
331
332
333
334
335
336
337
338

339
340
341
342
343
344
345
346
347

T T+
nnNnOoOOonNOoono

9]

DC

C DC
C DC

ELSE

ELSE

ENDI

ELSEIF
AM:
LS:

ENDI

IF (I .EQ. 2) THEN CM
IF (PP .LE. 0.d0) THEN
JCPT2=JCPT2+1 CM DC

END IF CM DC DEL LINE 16.

IF (I .EQ. 3) THEN CM DC
IF (PP .LE. 0.d0) THEN

DC DEL LINE 16.08.2012

CM DC DEL LINE 16.08.2012
DEL LINE 16.085.2012
08.2012

DEL LINE 16.085.2012

CM DC DEL LINE 16.08.2012

JCPT3=JCPT3+1 CM DC DEL LINE 16.08.2012

END IF CM DC DEL LINE 1lé6.

F

(LP.EQ.2) THEN
LAMBDA

0§.2012

ECRRT-TYPE, TOUJOURS SUPERIEUR & 0O
IF (AS .LE. 0.d0) THEN
WRITE(c,*) 'ERREUR: KSI (PRRAMETRE DE LA LOI LOGNCRMARLE)

DOIT ETRE SUPERIEUR A ('
CALL XPLB EXIT
F

CALL LOGNORMINVIT (PP,REM,AS)

ELSEIF (LP.EQ.Z) THEN

AM: LAMBDA,

TOUJOURS SUPERIEUR A 0

131

LS: K, TOUJOURS SUPERIEUR & 0O
IF (M .LE. 0.d0) THEN
WRITE(c,*) 'ERREUR: LAMBDA (PRRAMETEE DE LA LOI DE WEIBULL)
DOIT ETRE SUPERIEUR A 0O
CALL XPLB EXIT
ENDIF
IF (AS .LE. (.d0) THEN
WRITE (&,*) 'ERREUR: K (PRERLMETRE DE LA LOI WEIBULL) DOIT
ETRE SUPERIEUR R 0O°
CALL XPLB EXIT
ENDIF
CALL WEIBULLINV (PP, RM, AS)
ENDIF
IF (I .EQ. 1) THEN
X¥=-PP !'fc' est négatif, par contre le tirage se fait dans la partie positive
ELSE
KX=PP
ENDIF
ELSEIF (I .EQ. 2) THEN CM DC DEL LINE 1l6.08.2012
YY=PP CM DC DEL LINE 16.08.2012
ELSEIF (I .EQ. 3) THEN CM DC DEL LINE 16.08.2012
ZZ=PP CM DC DEL LINE 16.08.2012
END DO CM DC DEL LINE 16.08.2012
END
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Bc Do
c pe
C DC
Lc pe

CM MB
c

CM MB
CM MB

=)

FC DC
C DC
C DC
FC DC

=
CM MB
c
CM MB
CM MB
CM MB

{THT

s RN NN NN NSNS

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

ZCADD_Dc_z 014 01 16 D
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SOUS-ROUTINE QUI CALCULE LA LOI INVERSE CUMULEE DE WEIBULL

SUBROUTINE WEIBULLINV (PP ,EM, LS)

ADD 29.07.2012 : implicit none, integer et real enleves, include 'vaba param.inc' ajoutee
IMPLICIT DOUBLE PRECISION (A-H,0-2)

!include 'vaba param.inc'

REM 25.07.2012 IMPLICIT NCNE
REM 25.07.2012 REAL PP,RM,RAS,AP
LP=PP
CADD DC_2014 01 16 D
IF (RS .EQ. 0.D0) THEN
WRITE{G,*) 'ATTENTION: PP nul division par zero, AS=0'
ENDIF

CADD DC_2014 01 _16_F
CADD KHADIJA 2019 10 08

WE=(RS/RM) ** (-1 05cd0)

WL= AM/GEMMA (_+(1/WK))

PP=WL* (-LOG (. .d0=RF)) ** (1 d0/WEK)
END

SOUS-ROUTINE QUI CALCULE LA LCI NORMALE INVERSE CUMULEE

SUBROUTINE NOEMINVIT (PP ,EM,AS)

ADD 25.07.2012 : implicit none, integer et real enleves, include 'vaba param.inc' ajout
IMPLICIT DOUBLE PRECISION (R-H,OQ-Z)

!include 'vaba param.inc'

REM 25.07.2012 IMPLICIT NONE
REM 29.07.2012 INTEGER IPOS
REM 29.07.2012 RERL REM,AS, PP, P,ERROR, RER, BER, RX, RXOLD,RX2, FX, FXCOLD, FX2, EROLD
ERROR=100.D0
P=FF
A¥=AM
IPOS=0
DO WHILE (ERROR .GT. 0.00000001d0)

ERRCOR: PRECISION SUR P
LE CRALCUL DE RX SE FRIT EN DEUX ETAPES
ETAPE 1: BRX=MOYENNE+N*ECART-TYPE
BAVEC N=1,2,3,... JUSQUE CE QUE ARX SOIT BORNE
CE QUI SIGNIFIE QUE LORSQUE P SE SITUE BORNE PAR
FX (A¥) ET FXOLD(RAXOLD), ALORS LE PROGRAMME PASSE
L L'ETRPE 2
ETAPE 2: BX EST OBTENU PAR L'EQUATICON D'UNE DRCITE QUI EST
BCORNEE A L'ETRAPE 1 ET QUI INTERCEPTE P
S5I IPOS=0: PREMIERE ITERATICN
5I IPOS=1: ETRFE 1, RVEC P>0.5
5I IPOS=-1: ETRPE 1, RAVEC P<0.5
S5I IPOS=2: ETRPE 2
5I IPOS=3: C'EST QUE LA SOLUTICN EXACTE EST TROUVEE
IPOSCLD=IPOS
IF (IPOS.NE.Z) THEN

IF (A5 .EQ. U.D0U) THEN
WRITE (€,*) 'ATTENTION: FX nul division par zero, AS=0"'
ENDIF

CADD DC_2014 01 16 F

FX=0.5d0% (1. d0+ERF ( (AX-RM) / (RS* (2.d0**0 _5d0))))
ENDIF
IF (IF0CS.E(Q.Z) THEN

[\JCADLLDCJ 014 01 16 D
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B IF (&S .EQ. 0.D0) THEN
WRITE(G,*) 'ARTTENTION: FX2 nul division par zero, AS=0'
ENDIF
= IF ((FX-FXOLD) .EQ. 0.D0) THEN
WRITE(c,*) 'ATTENTION: A¥X2 nul division par zero,
+ FX-FXOLD=0"
ENDIF

CADD DC_2014 01 16 F
LY 2=(A¥-RYXOLD) * (P-FXOLD) / (FX-FXOLD) +AXOLD
FK2=0. 5c0% (1. A0+ERF ((AX2-AM) / (RS* (2. d0%*0.540))))
=i IF (P.GT.FX2) THEN
FXOLD=FX2
- AXOLD=AX2
=i ELSEIF (P.LT.FX2) THEN
FX=FX2
B BH=R¥HZ
=i ELSE

IPOS=3

BX=R¥2

FX=FX2

- ENDIF

= ELSEIF (P.GT.FX) THEN

E IF (IP0OS.EQ.-1) THEN
IPOS=2
BX2=LX
FX2=FX
RX=R¥OLD
FX=FXOLD
B¥OLD=RX2

- FXOLD=FX2

= ELSE

RXOLD=RX

FXOLD=FX

RX=RX+AS

IPOS=_

- END IF

= ELSEIF(P.LT.FX) THEN

IF (IPCS.EQ.l) THEN

IPOS=="
= ELSE
L¥OLD=RX
FXOLD=FX
L¥=RL¥-L5S
IPOS=-1
- ENDIF
El ELSE
IPOS="
- ENDIF
CADD DC_2014 01 16 D
= IF (P .EQ. 0.D0) THEN
WRITE (6,*) 'ATTENTION: RER et BER nul division par
+ zero, P=0'
ENDIF
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CADD DC 2014 01 16 F

AFER=ABS (FX-F) /P
BER=ABS (FXOLD-P) /P
EROLD=ERRCR
IF (AER.LT.BER) THEN
ERROR=AER
ELSE
ERROR=BER
ENDIF
IF (ERCLD.E(.ERRCR) THEN
IF (IPOSCOLD.EQ.Z) THEN
LPROV=ABS (FX2-F)
IF (RPROV .LT.

134

ERROR=(.D0
ENDIF
ENDIF
- ENDIF
El IF (IPCS.E(Q.3) THEN
ERROR=0 .00
- ENDIF
- END DO
= IF (IP0OS.E(Q.3) THEN
PP=RX
ELSEIF (RER.LT.BER) THEN
PP=LX
ELSE
PP=RXOLD
ENDIF
END
HL DU
C DC
C DC SOUS-ROUTINE QUI CALCULE LA LOI LOGNCEMALE INVERSE CUMULEE
~C DC
=] SUBROUTINE LOGNORMINVIT (PP,AM,LS)
CM MB ADD 2%.07.2012 : implicit none, integer et real enleves, include 'vaba param.inc' ajoutee
c IMPLICIT DOUBLE PRECISTION(A-H,O-8)
!include 'wvaba param.inc'
EHCM MB REM 29%.07.2012 IMPLICIT NONE
CM MB REM 29.07.2012 INTEGER IPOS
CM MB REM 29.07.2012 RERL. AM, RS, PP, P,ERROR,AER, BER, A¥X, AXOLD, A¥2, FX, FXOLD, FX2,BM,BS,
FCM MB REM 2%.07.2012 * EROLD
ERROR=100 .00
P=FP
BM= LOG(AM)-0.5d0*LOG {1+ (AS** 20 /AM** 20
BS=(LOG (1 dl+ (RS** 20 /BM**200) ) ) **0 . 5o
HC DEL_EE BM=EXP (BM+0.5d0*R35**2)
C DEL KE BS=(BM**2% (EXP (ARS**2)-1d0) ) **0.5d0
C DC VERIFICATICN TOUJOURS OBSERVEE QU'IL N'Y A PAS DE VALEUR NEGATIVE OU 0 DANS LA RACINE, BS
FC DC CAR EST TOUJOURS AS**2>0
L¥=LM
C DEL KE LX=BM
IP0S=0
= DO WHILE (ERROR .GT. 0.00000001d40)
EC DC ERROR: PRECISION SUR P
C DC LE CALCUL DE AX SE FAIT EN DEUX ETAPES
C DC ETEPE 1: BX=MOYENNE+N*ECRRT-TYPE
C DC LVEC N=1,2,3,... JUSQUE CE QUE RX SOIT BORNE
C DC CE QUI SIGNIFIE QUE LORSQUE P SE SITUE BORNE PAR
C DC FX(A¥) ET FXOLD(RXOLD), ALORS LE PROGRAMME PASSE
C DC B L'ETRPE 2
C DC L MOYENNE EST BM ET L'ECART-TYPE EST BS, ELLE EST
C DC CRALCULEE CI-DESSUS AVEC LAMBDA ET EKSI, PARAMETRES
C DC DE LA LOI LOGNORMALE
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C DC ETRPE 2: RX EST CBTENU PAR L'EQUATION D'UNE DROITE QUI EST

C DC BORNEE B L'ETRAPE 1 ET QUI INTERCEPTE P

C DC 5I IP0sS=0: PREMIERE ITERATION

C DC 5I IPCS=1: ETAPE 1, RVEC P>0.5

C DC SI IPOS=-1: ETRPE 1, RVEC P<0.5

C DC S5I IPOS=2: ETAPE 2

C DC 5I IP0S=3: C'EST QUE LA SOLUTICN EXACTE EST TROUVEE
IPOSOLD=IPOS3

IF (IPOS.NE.Z) THEN
CARDD DC_2014 01 16 D
IF (A5 .EQ. (0.D0) THEN
WRITE(c,*) 'ATTENTION: FX nul division par
+ zero, AS=0'
ENDIF
CADD DC_2014 01 16 _F
F¥=0.5d0% (1. d04ERF ( (LOG (AX) -BM) / (BS* (2. d0**] 54
CM_DEL KE F¥=0.5d0* (1.d0+ERF ( (LOG (BX) -EM) / (B5* (2
ENDIF
IF (IPOS.ECQ.Z) THEN
CARDD DC_2014 01 16 D
IF (AS .EQ. 0.D0) THEN
WRITE(G,*) 'ARTTENTION: FX2 nul division par

+ zero, AS=0"
ENDIF
IF ((FX-FXOLD) .EQ. 0.D0) THEN
WRITE(c,*) 'ATTENTICN: AXZ2 nul diwvision par
+ zero, FX-FXOLD=0"
ENDIF

CADD DC_2014 01 16 F
B¥2=(B¥-AXOLD) * (P-FXOLD) / (FX-FXOLD) +AX0LD

FX2=0_500% (1 . d0+ERF ((LOG(RX2) -BM) / (BS* (2. d0**0_.540))))
CM DEL KE FX2=0.5d0* (1.d0+ERF ( (LOG (ARX2) -RM) / (AS* (2.d0**0.5d0))))
IF (P.GT.FXZ) THEN
FXOLD=FX2
B¥OLD=RX2
ELSEIF (P.LT.FXZ2) THEN
FE=FX2
BX=R¥2
ELSE
IPOS=3
B¥=R¥2
FX=FX2
ENDIF

ELSEIF (P.GT.FX) THEN

IF (IPOS.EQ.-1) THEN
IPOS=
BX2=RY
FX2=FX
BX=AXOLD
FX=FXOLD
BXOLD=RX2
FXOLD=FX2

ELSE
BXOLD=RAX
FXOLD=FX
AX=RX+AS

C DEL KE BX=RX+BS

IPOS=1

ENDIF

ELSEIF(P.LT.FX) THEN

IF (IPOS.EQ..) THEN
IPOS=

ELSE
BXOLD=RAX
FXOLD=FX
RX=RX-BS

C DEL KE RX=RX-BS

o)

.d0**0.5d0))))
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IPOS=-1
- ENDIF
= ELSE
IPOS=3
- ENDIF
CRDD DC 2014 01 16 D
= IF (P .EgQ. 0.D0) THEN
WRITE (6, *) 'ATTENTION: AER et BER nul division par

+ zero, P=0"

ENDIF

CADD DC_2014 01 16 F
AER=ABS (FX-F) /P
BER=ABS (FXOLD-P) /P
ERCLD=ERRCR

= IF (AER.LT.BER) THEN

E ERROR=AER

= ELSE

ERROR=BER

- ENDIF

= IF (ERCLD.E(.ERRCR) THEN

IF (IPOSOLD.E(Q.Z) THEN

LPROV=ABS (FX2-F)

= IF (RPROV .LT. J000100) THEN
ERROR=0.D0
ENDIF
ENDIF
- ENDIF
= IF (IPCS.EQ.3) THEN
ERROR=0 .00
- ENDIF
- END DO
= IF (IPCS.E(Q.Z) THEN
PP=RX
ELSEIF (AER.LT.BER) THEN
PP=RX
ELSE
PP=RXOLD
ENDIF
END
END
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ANNEXE B ANALYSE DES PATRONS DE FISSURATION DE
L’EPROUVETTE SOLLICITEE EN TRACTION

Cette sous-section comprend une analyse des différents patrons de fissurations observés pour les

analyses probabilistes.

Premiérement, en analysant les courbes de contraintes en fonction du déplacement pour les
éprouvettes possédant des éléments de taille 25 mm (voir la Figure B.1), il est possible de constater
la présence de deux fuseaux distincts de courbes, et ce indépendamment de la valeur des paramétres
d’entrée (moyenne et coefficient de variation). Il est par ailleurs important de noter que 1’ajout d’un

amortissement n’a pas d’influence sur ces deux faisceaux de courbes.

5 T T T T T T T T T

N w RS

Contrainte sigma [MPa]

s

0 0.5 1 1.5 2 2.5 3 3:5 4 4.5 5}
Déplacement [mm]

Figure B.1 Courbes de la contrainte en fonction du déplacement pour un os en traction soumis a

une loi probabiliste lognormale (maillage de 25 mm)

Cette distinction nette entre deux faisceaux de courbes est également presente pour les os en

traction possedant des éléments de taille 16 mm (voir la Figure B.2).
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N 0 »
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Contrainte sigma [MPa]
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o
wn

0 0.5 1 1.5 2 25 3 35 4 45 5
Déplacement [mm]

Figure B.2 Courbes de la contrainte en fonction du déplacement pour un os en traction soumis a

une loi probabiliste lognormale (maillage de 16 mm)

Pour les éléments de taille 10 mm, la séparation entre les deux faisceaux de courbes est également

présente, comme le montre la Figure B.3.

5 T T T Y T T T T T

N w s

Contrainte sigma post-pic [MPa]

L ——

o
*
-
L
.
=
.
=

05 1 1.5 2 2.5 3 35 4 45 5
Déplacement post-pic [mm)]

Figure B.3 Courbes de la contrainte en fonction du déplacement pour un os en traction soumis a

une loi probabiliste lognormale (maillage de 10 mm)
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I1 est possible de noter que I’écart entre ces deux faisceaux s’amoindrit a mesure que la taille du
maillage diminue, jusqu’a disparaitre totalement pour les éléments finis mesurant 5 mm, tel que le

montre la Figure B.4.

N w £

Contrainte sigma post-pic [MPa]

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Déplacement post-pic [mm]
Figure B.4 Courbes de la contrainte en fonction du déplacement pour un os en traction soumis a

une loi probabiliste lognormale (maillage de 5 mm)

Afin de pouvoir identifier I’origine de ces deux fuseaux de courbes, les patrons de fissurations des

différentes éprouvettes ont été examinés. Nous en sommes parvenus aux analyses suivantes :

Le faisceau de courbes supérieur, autrement dit celui qui posséde en moyenne les énergies de
fissuration les plus élevées correspond a type de fissuration dit « oblique ». En effet, et comme le
montrent les Figures B.5 (a) et B.6 (), les éléments qui fissurent ne se situent pas sur la méme

rangée mais sur deux lignes différentes.

Le second faisceau, celui qui possedent les énergies de fissuration les plus faibles correspond a un
patron de fissuration dit « droit ». Dans ce cas-ci, les éléments qui fissurent se situent sur la méme

rangee comme le mettent en avant les Figures B.5 (b) et B.6 (b).
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Figure B.5 Patron de fissuration pour un os en traction avec un maillage de 25 mm : (a)

Fissuration oblique (b) Fissuration droite

Seules les captures des éprouvettes avec des éléments de taille 25 et 10 mm sont montrés mais les
os avec des éléments finis de taille 16 mm exhibent ces deux types de patrons de fissurations
également a I’opposé des éléments de taille 5mm, qui eux ne fissurent que sur une rangée
uniquement. Et c’est pour cette raison qu’il n’existe qu’un seul fuseau de courbes de contrainte-

déplacement pour ces éléments.

006: Job3_M10_LOGNORMALE 0db  ABaqus/Expict 6.14-1  Tue May

COB: Job1 M10_LOGNORMALE odb. Abacus/Explicit 6.14-1  Tue May 12 231:0:22

dﬂ&muﬁnmbvmw.ﬂm_ G

(a) (b)

Figure B.6 Patron de fissuration pour un os en traction avec un maillage de 10 mm : (a)

Fissuration oblique (b) Fissuration droite
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La Figure B.7 met en exergue les ratios entre la moyenne obtenue en sortie des simulations et la
moyenne expérimentale visée en fonction de la taille des éléments utilisés pour mailler 1’0s. Les
patrons de fissuration obliques possédent un ratio des moyennes plus éleve, ceci concorde
parfaitement avec ’allure des courbes de contrainte en fonction de la déformation. En effet, le
fuseau des courbes supérieur correspond aux fissures obliques, d’ou le ratio de moyennes supérieur.
Une analyse analogue peut étre faite pour les os possédant une fissure droite, le fuseau des courbes

de contrainte-déformation est plus bas, ce qui explique le ratio des moyennes moins éleve.

180

160 ol .
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E 120 < e | Toutes fissures confondues
2 ———— s - -
; - - o - - —--
g " T .
2 100 B S e o B — ') Fissures obliques
= < . ) ..
o ® Taille 25 - toutesles fissures | e . .
s ) Fissures droites
E Taille 10 : toutes les fissures -
w
g 60 Taille 5 : toutes les fissures
S
-
- Taille 25 : fissures droites
40
Taille 25 : fissures obligues
2 Taille 10 : fissures droites
® Taille 10 : fissures obliques
0
] 5 10 13 20 25 30

Taille de I'élément du maillage

Figure B.7 Ratio entre la moyenne de 1’énergie de fissuration calculée et la moyenne

expérimentale selon le type de fissuration

La Figure B.8 présente le ratio entre les coefficients de variation obtenus en sortie des simulations
et le coefficient de variation expérimental visé en fonction de la taille des éléments de maillage. Il
y a deux nuages de points distincts pour chacun des deux types de patrons de fissuration. Par
ailleurs, les ratios des coefficients de variation pour ces deux types de fissuration sont moins éleveés
que lorsqu’on considére I’ensemble des courbes. Ceci semble logique car la dispersion d’un fuseau

de courbes a la fois est inférieure a la dispersion de 1’ensemble des courbes.
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i | Toutes fissures confondues
i Fissures obliques

I~ 1 Fissures droites

Figure B.8 Ratio entre le coefficient de variation de 1’énergie de fissuration calculé et le

coefficient de variation expérimental selon le type de fissuration

En outre, il est intéressant de constater qu’étant donné que les courbes de contraintes en fonction

du déplacement se scindent en deux fuseaux distincts correspondant a deux types de patrons de

fissurations, il est possible de séparer les valeurs des énergies de fissurations en deux populations

distinctes ¢galement. Ainsi, I’unique distribution lognormale qui est renseignée en entrée donne

lieu a une distribution bimodale, chacun des modes est constitu¢ d’une loi lognormale possédant

une moyenne et un écart-type ou COV différents des parameétres d’entrée de la loi initialement

entrée. La Figure B.9 présente la distribution bimodale de 1’énergie de fissuration pour le maillage

de taille 25 mm.
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12

Figure B.9 Distribution bimodale de 1’énergie de fissuration (maillage de 25 mm)

La Figure B.10 met également en avant la distribution bimodale pour un maillage de 10 mm. Il est

important de noter qu’un resserrement des deux fonctions de densités de probabilités

représentatives des deux types de fissurations est observé pour les éléments de 10 mm. Cette

observation concorde bien avec les constats faits pour les courbes de contrainte en fonction du

déplacement : I’écart entre les deux fuseaux de courbes diminue a mesure que la taille des éléments

finis diminue.

30
25
20
15

10

Nombre d'occurrences sur 100
simulations

® Fissures droites
Fissures obliques

s Colirbe théorique
fissures droites
Courbe théorique
fissures obliques

Valeur de I'énergie de fissuration

Figure B.10 Distribution bimodale de 1’énergie de fissuration (maillage de 10 mm)
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Il serait intéressant de réaliser des analyses supplémentaires en ce sens afin de déterminer

I’influence de la taille du maillage sur la distribution bimodale obtenue en sortie.

D’autre part, en analysant I’emplacement des fissures sur les os, il a été constaté que la rupture se
produisait dans la plupart des cas (90% du temps) au méme endroit (au niveau du changement de
section). Cette observation n’étant pas en concordance avec le caractére aléatoire des propriétes
mécaniques au sein des os instauré grace a la sous-routine probabiliste, une investigation a été
mené sur des spécimens prismatiques. Le choix s’est porté sur des spécimens prismatiques afin
d’¢éliminer I’effet de concentration de contraintes induit par le changement de section qui pourrait
rendre déterministe I’emplacement de la fissure. Bien que la forme des éprouvettes ait ét¢ modifice,
les conditions aux frontieres ainsi que les parametres de la loi du béton demeurent inchangés par

rapport au mode¢le initial de 1’os.

Dans ce qui suit, une procédure a été adoptée afin de vérifier si la fissuration se produit bien a
I’endroit du minimum de 1’énergie de fissuration. Sur la Figure B.11, une premiére prospection
visuelle est réalisée. Pour cela, sur la Figure B.11 (a), les valeurs des énergies de fissuration sont
affichées pour chacun des éléments, néanmoins, il est difficile de trouver I’emplacement du

minimum de 1’énergie afin de pouvoir le comparer avec I’emplacement de la fissure sur la Figure

B.11 (b).

00B; Job-1.0db  Abaqus/Exphclt 6141 Thu Aug 13 10:57:0% Eastrn Day !+ Time 2020 OD8: Job-1.0db  Absqus/Exphoit 6.14-1  ThuAug 13 10:57:6:
|

: Session Step, Step for Viewsr non: tent fields
Sn».”&mw.m -persis!

Figure B.11 Prisme sollicité en traction : (a) Valeurs des énergies de fissuration initiales (b)
Localisation de la fissure
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Pour cette raison, les valeurs moyennes des énergies de fissuration ont été calculées par tranche et
les résultats sont présentés dans le Tableau B.1. Le minimum vaut 3,4 N/mm et est situé a la
deuxieme ligne en partant du haut. Pour ce prisme, la fissure se produit au niveau de la premiere
ligne en partant du haut comme le montre la Figure B.11 (b). Ainsi, la fissuration ne se produit pas

au niveau du minimum de ’énergie de fissuration.

Tableau B.1 Valeurs de 1’énergie de fissuration par tranche pour un prisme soumis a la traction

Numeéro de ligne (haut vers le bas) Moyenne Coefficient de variation
1 4,1 20
2 3,4 15,8
3 4,2 28
4 4,0 22
5 3,8 19
6 3,9 25
7 4,0 20
8 4,0 12
9 4,4 28
10 4,3 27
11 3,5 21
12 4,2 25

Malgré le fait que la quasi-totalité des analyses présentaient des patrons de fissurations situés sur
la ligne supérieure du prisme, certaines simulations se distinguaient par des fissures différentes.
Dans ce qui suit, ces patrons ont été analysés afin d’étudier la relation entre 1’endroit du prisme ou
la localisation de la fissure a lieu et I’emplacement de 1’énergie de fissuration minimale. Pour ce

faire, la démarche présentée plus haut a ainsi été reproduite.

Pour le prisme présenté dans la Figure B.12, la localisation de la fissure a lieu au niveau de la
deuxiéme ligne en partant du haut. Encore une fois, il n’est pas possible visuellement de déceler
I’endroit du minimum d’énergie de fissuration. Pour cette raison, les moyennes des énergies ont

été calculées par tranche et les résultats sont présentés dans le Tableau B.2.
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Figure B.12 Prisme sollicité en traction : (a) Localisation de la fissure (b) Valeurs des énergies de

fissuration initiales

Le minimum de I’énergie de fissuration par tranche vaut 3,4 N/mm et est situé au niveau de la
huitieme ligne en partant du bas, ce qui ne concorde pas du tout avec la localisation de la fissure

retournée a I’issue de 1’analyse sur ABAQUS.

Tableau B.2 Valeurs de I'énergie de fissuration par tranche pour un prisme soumis a la traction

Numéro de ligne (haut vers le bas) Moyenne de I’énergie de fissuration Coefficient de variation
1 4,2 28%
2 4,2 23%
3 4,3 24%
4 3,6 14%
5 4,7 31%
6 4,4 26%
7 3,6 20%
8 3,4 31%
9 3,7 30%
10 3,5 28%
11 3,9 23%
12 4,0 21%

La Figure B.13 (a) ci-dessous met en avant un autre patron de fissuration (la fissure semble étre
localisée au niveau de la cinquieéme ligne en partant du haut). Encore une fois, I’inspection visuelle

des énergies de fissurations ne permet pas de repérer 1’endroit ou est localisé le minimum d’énergie
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et il est donc impossible a partir de la Figure B.13 (b) de faire le lien entre la localisation de la

fissure et les allocations aléatoires des énergies de fissuration.

0DB; Job-4.0db  Abaqus/Exphait 6.14-1  Thu Aug 13 11:31:49 East
008; Job-d.0db  Abaqus/Explicit 6.14-1  Thu Aug 13 11:31

ssion Step, Step for Viewer non-persistent fieids
ame

Step: Step-1
Increment  8653: Step Time = 5.0000E-02
Primary Var- SO\

Figure B.13 Prisme sollicité en traction : (a) Valeurs des énergies de fissuration initiales (b)

Localisation de la fissure

Pour cette raison, le Tableau B.3 présente les moyennes de 1’énergie de fissuration par tranche. Le
minimum est situé au niveau de la quatriéme ligne en partant du haut, ce qui ne concorde encore

une fois pas avec I’emplacement de la macrofissure sur le prisme.
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Tableau B.3 Valeurs de 1’énergie de fissuration par tranche pour un prisme soumis a la traction

Numeéro de ligne (haut vers le bas) Moyenne de I’énergie de fissuration Coefficient de variation
1 5,4 38%
2 6 26%
3 4,85 34%
4 4,1 23%
5 51 12%
6 4,6 31%
7 5,8 37%
8 51 30%
9 4,9 15%

10 5,2 22%
11 5,2 33%
12 53 33%

Cette procédure permettant de vérifier si la rupture se produit bien a I’endroit du minimum
d’énergie de fissuration a également été suivie pour la seconde version de la sous-routine
probabiliste. En effet, il s’agit de la version permettant d’intégrer une variabilité supplémentaire

pour les ouvertures de fissures, en plus de celle des contraintes.

A Tl’identique de la premiére version de la sous-routine probabiliste, la majorité des prismes
présentaient une fissure située au niveau de la premiére ligne en partant du haut. La Figure B.14
(a) met en exergue les valeurs des énergies de fissuration initialement allouée. Il n’est pas possible
de détecter visuellement la localisation de la tranche possédant I’énergie de fissuration la plus
basse. C’est pour cela que le Tableau B.4 présente les valeurs des moyennes des énergies de

fissuration par tranche.
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Figure B.14 Prisme sollicité en traction : (a) Valeurs des énergies de fissuration initiales (b)

Localisation de la fissure

Le minimum est localisé au niveau de la troisieme et quatriéme ligne en partant du haut et vaut
3,5 N/mm. Encore une fois, I’emplacement de ce minimum ne coincide pas avec I’endroit ou est

localisé la macrofissure.

Tableau B.4 Valeurs de 1’énergie de fissuration par tranche pour un prisme a la traction

Numeéro de ligne (haut vers le bas) Moyenne de I’énergie de fissuration Coefficient de variation
1 4,0 14%
2 4,0 25%
3 3,5 23%
4 3,5 16%
5 4,8 49%
6 4,1 32%
7 4,3 16%
8 4,6 34%
9 4,0 31%
10 4,3 17%
11 4,7 27%

3,6 28%

[uy
N
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Ainsi, d’apres les résultats obtenus ci-dessus, il n’existe pas de lien de corrélation entre la
localisation des différentes fissures et I’emplacement du minimum d’énergie. L’allocation des
énergies de fissuration est aléatoire et suit une distribution lognormale, mais la localisation de la
fissure semble étre déterministe. Ceci s’explique en réalit¢ par la nature des conditions aux

frontiéres qui sont imposées a I’éprouvette.

En effet, le déplacement imposé a la face supérieure de I’os crée un gradient de déplacement qui
engendre un déplacement plus important au niveau de la partie supérieure de 1’éprouvette (ou du
prisme). Ceci engendre donc une localisation de la fissuration au niveau du changement de section

dans la grande majorité des analyses.

COE Job10_MES_LOFROPMALE odb Asbequs/Smoliol 6o1d4-1 Mon M

EP-DVI-EXPLICIT, Loas 1= appias duning =5 st2p by an apcled unfar
3 250 Step Time = 2.0002E-02
ar 1,107

var U Deformation Seals Factor +1.000=+00

Figure B.15 Valeur du déplacement imposé a 1’éprouvette en traction
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ANNEXE C APPROCHE ANALYTIQUE DE MODELISATION D’UN
PRISME EN TRACTION SOUS MATLAB

Cette section présente le programme préliminaire qui a été développé sur MATLAB dans le but de
modéliser des prismes en BRF soumis a un effort de traction. Le prisme modélisé possede des
mensurations qui demeureront constantes pour toutes les simulations : une hauteur de 300 mm,
une largeur de 100 mm et une épaisseur de 50 mm. Ces dimensions correspondent a celles des 0s

testés au laboratoire de Structures de Polytechnique pour les BFUP mais aussi pour les BRF.

C.1 Méthode par tranche

La premiére méthode a été nommée méthode « par tranche » car celle-ci se base sur I’hypothése

suivante : la fissuration a lieu uniquement suivant des plans perpendiculaires a 1’axe de chargement.

C.1.1 Fonctionnalités

Cette premiere approche sur MATLAB, appelée méthode par tranche, permet de réaliser les actions

suivantes :

1. subdivision du prisme en éléments de taille définie par 1’utilisateur (25 mm, 10 mm ou

encore 5 mm);

2. affectation des valeurs d’énergie de fissuration aux différents éléments du maillage suivant
la distribution choisie (dans ce cas-ci la loi lognormale) et suivant les paramétres d’entrée

de la loi (moyenne et écart-type);
3. calcul du Cff,tmnche : I’énergie de fissuration moyenne par tranche (voir la figure 3.25).
4. renvoi de la valeur du minimum des G ;qnche, que I’on notera min(Gy rranche ) ;

5. répétition des étapes 2, 3 et 4 N fois, un nombre fixé par 1’utilisateur, afin d’obtenir une

distribution des minimums des énergies de fissuration moyennes par tranche.



152

| | | |
1 1 1 1
1 1 1 1
G 1 1 1 1
ftranchel /r——-—z——-—-/l-————/':——-—
/1 7 /1 /1
/ 1 1 1 1
Gftranckez /i_-_-_ﬁ:__-_-ﬁ: ————— /1:_ k=
L L
L /. L VA
G oranches 1 1 1 |
ftranche /:--—-—7:——-—-/:—-___/:.____
/o /o /o /o
| | | |
1 1 T T
Gftrancke4 /:—-—-—;:——-—7:—-—__ﬁ'.____
v L
th‘am:heS [ LU A AR
N A 4
7 /£y /£ /)
¢ I I P S
ftranche6 ! 1 '_ __' _ ! L
'n 1 /:_ 7
/1 /0 /1 /1
YA | | |
. T I T
ftranche7 Y anten it sl eabe iy ey bl
T A I T
/S VA VA L
G [} [} [} [}
ftranche8 /———7‘-——71———)____
/ / / 4
/ Va /

Figure C.1 Méthode de calcul des énergies de fissuration moyennes par tranche sur un échantillon

prismatique
C.1.2 But

La nouvelle distribution des énergies de fissuration moyennes minimales par tranche
min(G_f,tmnche) obtenue grace au code MATLAB possede des toutes nouvelles caractéristiques :
une nouvelle moyenne et un nouvel écart-type (ou coefficient de variation) différents des
paramétres de la loi d’entrée et éventuellement une nouvelle distribution (différente de la loi

lognormale).

Le but de cette analyse est donc de caractériser cette nouvelle variable aléatoire et de trouver le lien
de corrélation reliant les parametres initialement entrés et les parametres obtenus en sortie du code
MATLAB (voir la Figure C.2).
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Donné MATLAB :
UHI]_EES en I o _ G
entrée: Gr onrree €t | en . min (G tranche)
et
COVentrée
COVmin(’gﬁtrmwhej

Figure C.2 But du code MATLAB développé

Un second objectif visé par cette analyse est de trouver les valeurs a renseigner en entrée du code
(moyenne Gr enerse €t coefficient de variation COV,pr¢.) afin d’obtenir les valeurs visées par
I’utilisateur en sortie, correspondant aux moyennes et coefficients de variation expérimentaux qui

ont été obtenus lors de campagnes d’essais de traction directe sur des os par exemple.

Généralement, la rupture pour un prisme en traction survient au niveau de la section la plus critique,
et donc par conséquent celle possédant I’énergie de fissuration la moins élevée. Ainsi, 1’utilité de
ce programme réside dans le fait de pouvoir analyser le lien existant entre le comportement global
du matériau (représenté par la distribution en entrée) et le comportement des sections critiques
(représenté par la distribution en sortie, puisqu’il s’agit de la distribution des minimums des
moyennes des énergies de fissuration par tranche). Cela dit, il est important de rappeler que ce
raisonnement repose sur une hypothése simplificatrice majeure qui est de considérer que la
fissuration se produit suivant des plans de rupture parfaitement perpendiculaires a I’axe de

chargement.

C.1.3 Analyse des résultats obtenus

Premiérement, la Figure C.3 présente les fonctions de densité de probabilité pour les trois tailles
de maillage utilisées (25 mm, 10 mm et 5 mm) alors que le Tableau C.1 donne les valeurs
numériques. Pour chacun des 10 000 tirages réalisés, la valeur retenue pour chaque analyse
correspond a celle de la tranche de résistance minimale. Une comparaison des densités entrées et
obtenues a été réalisé afin de décider si la loi de la distribution obtenue en sortie a été modifiée ou
non. Cette derniére ne semble pas avoir changée puisqu’elle concorde bien avec la courbe théorique

de la loi lognormale.
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—— Liste_G{_min data
e Loi_normale

= Loi_lognormale

Taille
croissante
du maillage

4
I
I
I
I
I
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Figure C.3 Fonctions de densité de probabilité des énergies de fissuration minimales renvoyées

par le code MATLAB en fonction de la taille du maillage (10 000 itérations)

Tableau C.1 Energie de fissuration G¢ (N/mm) minimale d’une tranche obtenues grace au code
MATLAB en fonction de la taille de maillage

Taille du COVenentree COV en sortie Moyenne en Moyenne en

maillage entree sortie
25 100% 38% 4,6 N/mm 3,18 N/mm
10 100% 28% 4,6 N/mm 2,91 N/mm
5 100% 25% 4,6 N/mm 2,72 N/mm

Comme le montrent la Figure C.3 ainsi que le Tableau C.1, la moyenne en sortie diminue avec la
taille du maillage (pour des parametres d’entrée identiques). Cette observation peut s’expliquer par
le fait que diminuer la taille de maillage augmente le nombre d’éléments dans le volume : 96
éléments pour un maillage de 25 mm, 1500 eléments pour une taille de 10 mm et enfin 12 000

éléments pour les plus petits éléments mesurant 5 mm. Ainsi, le nombre de points « échantillonnés
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» dans I’intervalle couvert par la fonction de densité de probabilité augmente avec la diminution
de la taille des é1éments finis. Donc, d’un point de vue purement statistique, 1’étendue couverte par
les valeurs des énergies de fissuration est plus grande et la probabilité de tomber sur des valeurs
extrémes est ainsi plus importante. Etant donné que 1’on récupére a chaque itération le minimum
des moyennes d’énergie de fissuration par tranche, la moyenne globale de toutes ces valeurs tend

a diminuer lorsqu’on augmente le nombre d’éléments présents dans le prisme.

En outre, la Figure C.3 ainsi que le Tableau C.1 mettent en avant la tendance suivante : le
coefficient de variation obtenu en sortie diminue avec la taille du maillage. D’un point de vue
purement statistique, le nombre de valeurs d’énergies de fissuration augmente avec la diminution
de la taille des éléments, la probabilité de tomber sur des valeurs extrémes devient plus importante,
et étant donné que seules les moyennes minimales par tranche sont gardées, un « resserrement »
autour des valeurs minimales se produit, ce qui explique la diminution de la valeur du coefficient

de variation.

Néanmoins, ces observations ne sont pas cohérentes du point de vue de la physique. En effet, la
moyenne devrait logiqguement étre indépendante de la taille du maillage alors que le coefficient de
variation devrait augmenter lorsque la taille du maillage diminue. En effet, plus la taille d’un
élément est importante, plus ce dernier posséde des caractéristiques mécaniques représentatives du
comportement global du matériau. Un élément de petite taille pourrait au contraire étre situé au
niveau d’une zone poreuse, ou encore au niveau de I’interface entre un granulat et la matrice
cimentaire et par conséquent posséder une faible résistance mécanique. Il pourrait au contraire étre
situé au niveau d’une fibre idéalement orientée par rapport a la direction d’application de la charge
et dans ce cas-ci étre doté de propriétés mécaniques remarquables. La moyenne, quant a elle, doit
étre indépendante de la taille de maillage utilisée puisqu’elle est représentative du comportement

global de la structure étudiée.

D’autre part, et comme le Tableau C.1 le montre, la moyenne entrée est supérieure & la moyenne

obtenue en sortie, et ce quelle que soit la taille de maillage utilisée.

- Du point de vue de la théorie des probabilités, ceci est tout a fait logique puisque 1’on
récupere a la sortie le minimum des moyennes des énergies de fissuration calculées par
tranche. La valeur moyenne de cette distribution-la est naturellement inférieure a la

moyenne introduite en entrée.
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D’un point de vue physique, la tendance observée parait également cohérente. En effet, il
s’agit de la distribution de I’énergie de fissuration des sections critiques qui est obtenue en
sortie. En entrée, la distribution fournie représente le comportement global du matériau qui
posséde naturellement une résistance moyenne supérieure a celle des sections critiques, et
donc une moyenne d’énergie de fissuration plus élevée que celle des plans au sein desquels

se produit la fissuration.

Le coefficient de variation entré est également supérieur au coefficient de variation obtenu en

sortie.

Du point de vue purement statistique, cette observation s’explique par le fait qu’un
moyennage par tranche est réalisée dans un premier temps, ce qui a tendance a diminuer la
dispersion et donc le coefficient de variation. Dans un second temps, on ne garde que les
valeurs minimales de ces moyennes ce qui resserre davantage la distribution obtenue en

sortie et diminue d’autant plus le coefficient de variation de cette derniére.

Physiquement, cette observation est cohérente avec le fait que la variabilité que 1’on
retrouve au sein du matériau dans sa globalité est supérieure a la variabilité au sein des

sections critiques sujettes a la fissuration uniguement.

Par ailleurs, I’influence du nombre d’itérations ou expériences sur la valeur de la moyenne et du

coefficient de variation obtenus en sortie a été étudiée. Des tests ont ainsi été effectués pour un
nombre d’expériences égal a 10,100,10 000,100 000 et 1 000 000. Pour des valeurs d’entrée

identiques, les valeurs des paramétres en sortie demeurent constantes pour un nombre de

simulations supérieur a 100. Il suffit donc d’avoir des distributions avec 100 valeurs de

min (Gy ¢rancne) Puisqu’au-deld de ce seuil, il y a convergence des valeurs des moyennes et

coefficients de variation obtenus en sortie.

D’un autre c6té, nous avons étudié¢ I’influence de I’augmentation de la valeur du coefficient de

variation entré COV,,:»se, tout en gardant la moyenne fixe, sur les valeurs de la moyenne et du

coefficient de variation de la distribution en sortie ( min (Gf ¢rancne) )-

L’augmentation du COV,,;,¢. @ pour effet la diminution de la moyenne de la distribution
obtenue en sortie. Ceci est cohérent puisque 1’augmentation de la valeur du coefficient de

variation a pour effet d’accroitre la dispersion autour de la moyenne et donc « d’éloigner »
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les extremums. Les valeurs minimales sont d’autant plus petites, ce qui a pour impact de

diminuer la moyenne de la distribution en sortie.

- L’accroissement du COV,,,;r¢. a également pour effet d’augmenter la valeur du COV obtenu
en sortie. Ceci pourrait s’expliquer par le fait que la dispersion des valeurs des énergies de
fissuration est plus grande, et donc que la dispersion des valeurs des minimums des valeurs

moyennes des énergies de fissuration par tranche soit plus grande par conséquent.

Pour finir, I’impact de ’augmentation de la moyenne entrée Gy eneree (tout en gardant COVeperse

constant) a été étudié. Cela a eu pour effet :
- D’augmentation de la valeur du coefficient de variation de la distribution en sortie.

- Taccroissement de la valeur de la moyenne de la distribution en sortie : en effet,
I’augmentation de la moyenne entrée entraine une translation de la courbe de densité de
probabilité vers la droite, ce qui a pour effet de décaler la « queue » de celle-ci vers la droite

¢galement et donc d’augmenter la valeur des minimums d’énergie de fissuration.

Par ailleurs, le fait d’augmenter la valeur de 1’écart-type donné en entrée tout en gardant la moyenne
en entrée fixe a pour impact de diminuer la valeur de la moyenne en sortie, quant a 1’écart-type en
sortie, son évolution n’est pas monotone : celui-ci tend a croitre au départ, jusqu’a une valeur qui

est fonction de la taille des éléments puis décroit.

Le fait d’augmenter la moyenne introduite en entrée avec un écart-type demeurant fixe a pour

impact d’augmenter la valeur de la moyenne et de 1’écart-type obtenus en sortie.

C.1.4 Recommandations

Supposons que I’on se base sur une campagne expérimentale de traction directe sur des prismes.
Celle-ci permet d’obtenir une distribution expérimentale des énergies de fissuration ayant les
caractéristiques suivantes : celle-ci suit une distribution lognormale et posséde une moyenne G_f,exp

et un coefficient de variation COV,y,.

Afin que la distribution obtenue en sortie du code MATLAB puisse avoir les mémes
caractéristiques que la distribution expérimentale (moyenne et coefficient de variation en sortie
égaux a la moyenne et coefficient de variation en entrée), et en se basant sur les analyses et

explications de la section précédente, il faudrait que :
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- la moyenne donnée en entrée soit supérieure a Gf,exp.
- le coefficient de variation entré soit également supérieur a la valeur de COV,,,,.

- le coefficient de variation spécifié en entrée soit d’autant plus grand que les éléments du

maillage sont de petite taille, et ce afin d’assurer une cohérence d’un point de vue physique.

C.1.5 Problémes et limites rencontrés

Un des buts initiaux du code était de trouver les valeurs a donner en entrée afin d’obtenir des valeurs
précises en sortie qui correspondraient aux données d’une campagne expérimentale que I’on vise

a reproduire.

Ainsi, un algorithme secondaire a été cod¢ afin d’effectuer une itération sur les valeurs entrées afin
de les corriger automatiquement dans le but de parvenir aux valeurs visées en sortie. Comme la
moyenne et le coefficient de variation semblent interdépendants, le code permettait d’intégrer ces
deux paramétres a la fois (voir la Figure C.4). Malheureusement, les valeurs ne convergeaient pas
et il a été impossible d’obtenir les valeurs a spécifier en entrée. Il a donc été difficile d’identifier
une loi pour relier la moyenne en entrée et la moyenne en sortie et le coefficient de variation en

entrée et en sortie.
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Initialisation :
- C_OVini!:ial
= Gf initial
Parameétres
renseignés par
Putilisateur : Traitement par le code
— COVyise principal (méthode par L
— Gf pisé Itération :
fivisé tranche ) B
—Ap (pas ) C:OVL'nitial _7COVini.tial +Ap
= COVinitial Gpinitial = Gf,initiar T AP
= Gf initial
Sortie :
- Cstor'tie :
SiCOVypptie = COV,iga - Gf,sortie Si CLOVsortie '_’ticOVvisé
; et Gﬁsortie &2 Gf,uisé

et Gf,surtie = Gﬁvisé

Fin et renvoi des
valeurs initiales :
- CpVinitiaI

= Gfinitial

Figure C.4 Fonctionnement de l'algorithme itératif permettant d'obtenir les parametres d'entrée

Une piste d’amélioration possible pour cet algorithme itératif serait de ne pas faire subir a la
moyenne et au coefficient de variation la méme évolution, a savoir la méme valeur de pas Ap mais
plutét de trouver un pas positif ou négatif qui dépendent de la valeur obtenue en sortie a chaque

nouvelle itération.

C.2 Méthode du patron de fissuration donnant I’énergie minimale

Cette section présente une variante du code expliqué dans le paragraphe précédent. En effet, dans
la partie précédente, la fissuration avait toujours lieu suivant un plan parfaitement perpendiculaire
a I’axe de chargement. Cette nouvelle méthode permet de considérer un patron de rupture

permettant de minimiser 1’énergie de fissuration.

C.2.1 Fonctionnalités

Les différentes étapes réalisées par ce nouveau code peuvent étre résumée de la maniére suivante.

1. Le prisme est subdivisé en éléments de taille définie par I'utilisateur (25 mm, 10 mm ou

encore 5 mm).
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Affectation des valeurs d’énergie de fissuration aux différents éléments du maillage suivant
la distribution choisie (dans ce cas-ci la loi lognormale) et suivant les paramétres d’entrée

de la loi (moyenne et écart-type).

La premiere colonne située a I’extréme gauche (composée des éléments 1 a 8 dans la Figure
C.5) est parcourue et 1’élément possédant 1’énergie de fissuration la plus faible et
sélectionné. 1l est supposé que la fissuration est amorcée au niveau de cet élément, dans le
cas ou il existe plusieurs rangées d’éléments dans la profondeur du prisme, tous ceux qui

sont alignés avec 1’élément qui fissure vont également se fissurer.

Les énergies des ¢léments adjacents a 1’élément fissuré sont examinées et celui parmi ces
trois possédant 1’énergie la moins élevée est considéré comme étant fissuré (dans la Figure
C.5, I’élément 3 fissure dans la premiére colonne, les éléments adjacents 10, 11 et 12 sont
examinés et c’est I’élément 12 qui a I’énergie la moins élevée qui est sujet a une rupture

par conséquent).
L’étape 2 est ensuite réitérée pour chaque colonne.

Une fois I’ensemble des colonnes parcourues, la moyenne de 1’énergie de fissuration de ce
patron est calculée (moyenne sur tous les éléments ayant fissurés), elle sera notée
Gf,patron,min-

Les etapes 2, 3 et 4, 5 et 6 sont réitérées N fois (ce nombre est fixé par ’utilisateur) afin

d’obtenir la distribution des minimums des énergies de fissuration moyennes.
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Figure C.5 Méthode du patron de fissuration a énergie minimale sur un échantillon prismatique

C.2.2 But

Cette nouvelle approche posséde trois buts distincts.

Premiérement, et comme pour la premicre approche par tranche, I’'un des objectifs est de
caractériser cette nouvelle variable aléatoire retournée par le programme et de trouver un
lien de corrélation entre les parametres initialement entrés et les parametres obtenus en
sortie du code MATLAB.

Un second objectif visé par le code est de trouver les valeurs a donner en entrée du code
(moyenne G_f,entrée et coefficient de variation COV,,,;¢.) afin d’obtenir les valeurs visées
par ['utilisateur en sortie, correspondant aux moyennes et coefficients de variation
expérimentaux qui ont été obtenus lors de campagnes d’essais de traction directe sur des 0S

par exemple.
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- Le troisieme et dernier objectif est d’analyser si le type de patron de fissuration choisi (plan
parfaitement perpendiculaire a I’axe de chargement versus chemin minimisant 1’énergie de

fissuration) a un impact sur les résultats obtenus.

C.2.3 Analyse des résultats obtenus

Les tendances des résultats obtenus sont similaires a celles de la méthode par tranche tel qu’illustré

sur la Figure C.6 et selon les valeurs numériques montrées au Tableau C.2.

En analysant la Figure C.6, il est possible d’en déduire que la loi probabiliste n’a pas été modifiée.
En effet, la densité de probabilité obtenue en sortie concorde bien avec celle de la courbe théorique

de la loi lognormale.

Liste_Gf_min data
w— LOI_NOrmale
el — LOI_weibull

Loi_lognormale

mean_Gf min =
4.71876158460493

>> ecart_type Gf min

ecart_type Gf min =
0.290466620279219

4
>> mean_Gf_min
mean_Gf _min = | Taille
1.69741168266518 .
| croissante

>> ecart_type Gf min i
du maillage

ecart_type Gf min =
0.0743091811434538

>> mean_Gf_min

mean_Gf min =
0.838178169655334

>> ecart_type_Gf _min

ecart_type Gf min =
0.0263497115097942

Figure C.6 Fonctions de densité de probabilité des energies de fissuration minimales renvoyées

par le code MATLAB en fonction de la taille du maillage

La Figure C.6 ainsi que le Tableau C.2 permettent de mettre en exergue les tendances suivantes,

les explications de ces observations étant identiques a celles de la méthode par tranche présentée
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précédemment : la moyenne et le coefficient de variation en sortie diminuent lorsque la taille du

maillage diminue (pour des paramétres d’entrée identiques).

Tableau C.2 Energie de fissuration Gr (N/mm) minimale d’une tranche obtenues grace au code
MATLAB en fonction de la taille de maillage

Taille du COVenentree COV en sortie Moyenne en Moyenne en

maillage entrée sortie
25 100% 28% 4,6 N/mm 4,72 N/mm
10 100% 7% 4,6 N/mm 1,70 N/mm
5 100% 2% 4,6 N/mm 0,83 N/mm

D’autre part, et comme le Tableau C.2 le montre, la moyenne et le coefficient de variation entrés
sont supérieurs a la moyenne et au coefficient de variation obtenus en sortie, et ce quelle que soit

la taille de maillage utilisée (consulter la section 3.2.1.3 pour davantage de détails).

Par ailleurs, I’influence du nombre d’itérations ou expériences sur la valeur de la moyenne et du
coefficient de variation obtenus en sortie a été étudiée. Des tests ont ainsi été effectués pour un
nombre d’expériences égal a 10,100,10 000,100 000 et 1 000 000. Pour des valeurs d’entrée
identiques, les valeurs des parametres en sortie demeurent constantes pour un nombre de
simulations supérieur a 1000. Il suffit donc d’avoir des distributions avec 1000 valeurs de
G_f,patmn,min puisqu’au-dela de ce seuil, il y a convergence des valeurs des moyennes et

coefficients de variation obtenus en sortie.

D’un autre c6té, nous avons étudié I’influence de 1’augmentation de la valeur du coefficient de
variation entré COV,,,:¢e, tout en gardant la moyenne fixe, sur les valeurs de la moyenne et du

coefficient de variation de la distribution en sortie (Gf,patron,min)-

- L’augmentation du COV,,;,¢. a pour effet la diminution de la moyenne de la distribution
obtenue en sortie. Ceci est cohérent puisque 1’augmentation de la valeur du coefficient de
variation a pour effet d’accroitre la dispersion autour de la moyenne et donc « d’éloigner »
les extremums. Les valeurs minimales sont d’autant plus petites, ce qui a pour impact de

diminuer la moyenne de la distribution en sortie.
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- L’accroissement du COV,,;r¢. a €également pour effet d’augmenter la valeur du COV obtenu
en sortie. Ceci pourrait s’expliquer par le fait que la dispersion des valeurs des énergies de
fissuration est plus grande, et donc que la dispersion des valeurs des minimums des valeurs

moyennes des énergies de fissuration par tranche soit plus grande par consequent.

Pour finir, ’impact de 1’augmentation de la moyenne entrée G_f,e,mée (tout en gardant COVp¢1¢e

constant) a été étudié. Cela a eu pour effet :
- P’augmentation de la valeur du coefficient de variation de la distribution en sortie.

- Dlaccroissement de la valeur de la moyenne de la distribution en sortie. En effet,
I’augmentation de la moyenne entrée entraine une translation de la courbe de densité de
probabilité vers la droite, ce qui a pour effet de décaler la « queue » de celle-ci vers la droite

¢galement et donc d’augmenter la valeur des minimums d’énergie de fissuration.

Par ailleurs, le fait d’augmenter la valeur de 1’écart-type donné en entrée tout en gardant la moyenne
en entrée fixe a pour impact de diminuer la valeur de la moyenne en sortie, quant a 1’écart-type en
sortie, son évolution n’est pas monotone (celui-Ci tend & croitre au départ, jusqu’a une valeur qui

est fonction de la taille des éléments puis décroit).

Le fait d’augmenter la moyenne fournie en entrée avec un écart-type demeurant fixe a pour impact

d’augmenter la valeur de la moyenne et de 1’écart-type obtenus en sortie.

C.2.4 Comparaison entre les deux approches de modélisation

Dans cette sous-section, une comparaison entre les deux approches de modélisation qui ont été

présentées est réalisée.

Tout d’abord, d’aprés la Figure C.7 et la Figure C.8, les constats suivants peuvent étre faits pour

les deux approches de modélisation :

- lamoyenne varie linéairement en fonction de la taille de maillage, lorsque le coefficient de

variation est maintenu constant.

- le coefficient de variation varie de maniere linéaire également en fonction de la taille de

maillage lorsque la moyenne est maintenue fixe.

Un modéle pourrait ainsi étre développé pour établir un lien de corrélation entre la moyenne et le

COV en entrée et en sortie qui dépendrait de la taille de maillage et de la section de I’éprouvette.
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Par ailleurs, il est important de noter que la Figure C.7 a été obtenue en gardant le COV fixe (égal
a 20%). De méme, la moyenne (égale a la moyenne de 1’énergic de fissuration obtenue

expérimentalement) demeure fixe pour la Figure C.8.

5
y=0.1961x - 0,1977
4,5

4

35 y=0.0218x +2.6454

.....v-———--——"‘—""—"._-..

3

2,5

2

15 ~—@— Méthode tranche

1 Méthode patron
-------- Linéaire (Méthode tranche )

Valeur de la moyenne en sortie (N/mm)

0,5 s .
! Linéaire (Méthode patron )

0 5 10 15 20 25 30
Taille du maillage (en mm)
Figure C.7 Valeur de la moyenne obtenue en sortie en fonction de la taille des éléments pour les

deux approches de modélisation

D’aprés la Figure C.7, les moyennes obtenues en sortie pour le modele du patron de fissuration
sont inférieures a celles retournées par la méthode par tranche pour des tailles d’éléments
inférieures & 16 mm environ. Cette observation pourrait s’expliquer par le fait que la méthode du
patron de fissuration accorde plus de « liberté » en raison de la petite taille des éléments et donc du
plus grand choix de chemins possiblement empruntables. De cette fagon, cette méthode permet de
réellement sélectionner le chemin permettant de minimiser 1’énergie de fissuration. Au-dela de
16 mm, les éléments deviennent trop grands, et la méthode du patron devient moins efficace que

la méthode par tranche en termes de sélection des énergies minimales.
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Figure C.8 Valeur du coefficient de variation obtenu en sortie en fonction de la taille des

éléments pour les deux approches de modélisation

Enfin, les coefficients de variation renvoyés par la méthode du patron de fissuration sont inférieurs
a ceux obtenus grace a la méthode par tranche. Cette tendance pourrait éventuellement s’expliquer
par le fait que la méthode du patron confére plus de liberté dans le choix du patron (jusqu’a une
certaine taille d’éléments, comme mentionné plus haut), les chemins ainsi sélectionnés par cette
approche permettent 1I’obtention des énergies les plus basses, de telle sorte a minimiser la dispersion

entre ces derniéres.

En conclusion, les deux approches ne concordent pas avec la réalité. Ces derniéres sont donc a

améliorer, notamment en suivant les recommandations stipulées dans le paragraphe C.1.4.



