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RÉSUMÉ

Les patients souffrant d’insuffisance rénale terminale ont besoin de recourir à une thérapie de
substitution rénale pour pallier au dysfonctionnement de leur reins, en effet, ceux-ci n’assurent
plus correctement leur fonction vitale de purification du sang. En comparaison avec l’option
de dialyse à laquelle un patient a recours par défaut, la transplantation rénale est une solution
plus viable à long terme, tant en termes de contraintes quotidiennes qu’en termes de chances
de survie. Toutefois, un patient recevant une proposition de greffe de rein est confronté à
un dilemme, dans lequel il doit choisir entre accepter l’offre, ou bien la refuser et patienter
jusqu’à une prochaine offre tout en restant sous dialyse. Au Québec, la décision résulte
d’un commun accord entre le patient et son néphrologue au terme de la Prise de Décision
Participative (PDP).

Le nombre de patients atteints d’insuffisance rénale terminale au Canada était de presque
42 000 en 2013, et a augmenté de 35% entre 2009 et 2018 ce qui soulève une réelle question
médicale, mais aussi économique étant donné que la dialyse est une solution bien plus dis-
pendieuse que la transplantation rénale. Par ailleurs, la donation d’organe après décès est la
pratique la plus répandue, en comparaison à la donation du vivant, et cette tendance est en
hausse.

L’attribution de reins en provenance de donneurs décédés est générallement assurée par des
institutions gouvernementales de santé publique. Transplant Quebec (TQ) est l’institution
provinciale qui en est reponsable au Québec. Notre travail se concentre sur le système
d’attribution général de TQ (excluant les listes d’attente prioritaires) qui concerne la majorité
des patients. Une fois qu’un patient reçoit une offre de greffe, il peut soit l’accepter, soit
la refuser au terme de la PDP. D’un côté, un rein de moindre qualité (qui dépend de
l’âge du donneur, des antécédents médicaux, etc.) pourrait motiver un refus de l’offre et
l’attente d’une prochaine proposition. De l’autre, les temps d’attente peuvent être longs, et
les perspectives d’une prochaine offre, et en particulier d’une meilleure offre, réduites.

Par conséquent, la décision peut être difficile à prendre, d’autant plus que le patient manque
d’informations compréhensibles pour la documenter. En effet, les outils d’aide à la décision
actuels requièrent un certain savoir médical pour être correctement utilisés. De plus, ces outils
ne fournissent pas d’informations personnalisées pour un patient en particulier, mais plutôt
des résultats généraux à l’échelle d’un système d’attribution entier. Par ailleurs, les travaux
actuels visent souvent à répondre aux enjeux de l’allocateur d’organes, comme l’optimisation
des coûts et des ressources, plutôt qu’à faire des enjeux d’un patient pris individuellement une
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priorité. Ainsi, le développement d’outils appropriés d’aide à la décision pourrait grandement
aider les patients lors de la PDP.

Nous considérons la situation dans laquelle un patient reçoit une offre de greffe. Au cours
de sa réflexion lors de la PDP, il peut procéder à une simple disjonction de cas. D’une part,
qu’arrive-t-il s’il accepte l’offre ? D’autre part, qu’arrive-t-il s’il la refuse ? Notre objectif
est de fournir des informations pertinentes et compréhensibles afin d’aider le patient à se
représenter la situation dans laquelle il refuserait l’offre.

Premièrement, l’outil d’aide à la décision développé doit être en mesure de donner des prédic-
tions personnalisées de temps d’attentes pour le patient, qui seront facilement interprétables.
Le premier temps à prédire est le temps d’attente avant qu’une prochaine offre soit faite au
patient. Ce temps est appelé Temps avant Prochaine Offre (TPO). Aussi, l’outil doit fournir
le temps d’attente avant qu’un rein de meilleure qualité que le rein actuel soit proposé au
patient. On appelle ce temps Temps avant Prochaine Meilleure Offre (TPMO). Le TPMO
est plus utile au patient que le TPO étant donné que la principale motivation pour décliner
l’offre actuelle est d’en espérer une meilleure prochainement.

Deuxièmement, nous proposons de modéliser l’arrivée des reins dans le système d’attribution
par un Processus Ponctuel Marqué (PPM), que nous caractérisons à l’aide de sa Fonction
d’Intensité Conditionnelle (FIC). Ce cadre mathématique permet de modéliser à la fois le
temps d’occurence et la marque (qualité du rein) des événements d’intérêt (arrivée d’un rein).
Dans notre solution, l’hypothèse de stationnarité est formulée concernant les temps d’arrivée
des reins ainsi que leur qualité, afin de concevoir un modèle simple et interprétable. La
fonction d’intensité du processus d’arrivée des reins est supposée constante (comme dans un
processus de Poisson homogène) et la distribution de leur qualité est supposée stationnaire.
Les paramètres du modèle sont estimés en utilisant une reconstitution de l’historique des
offres passées faites au patient avant l’offre initiale, ce qui permet une grande personnalisation
des prédictions du modèle. Le PPM fournit des prédictions des temps d’attentes à l’échelle
d’un patient, notamment une borne supérieure du temps d’attente au bout duquel le patient
aura reçu une offre avec 95% de certitude. La modélisation de la qualité dans le PPM est
utilisée pour procéder à une filtration du processus, afin de considérer uniquement les offres
de meilleure qualité que l’offre actuelle. De cette manière, nous avons accès aux mêmes
prédictions pour le TPMO que pour le TPO.

Enfin, la solution développée est testée et ajustée sur des données réelles provenant du système
d’attribution de TQ. Les résultats montrent que notre modèle donne de meilleurs résultats
en termes de pouvoir de prédiction que des solutions concurrentes ayant les mêmes objectifs,
à la fois pour le TPO et pour le TPMO. Par exemple, le Pourcentage d’Erreur Absolu
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Moyen (PEAM) sur l’ensemble test avec notre modèle est inférieur de 25.5% à celui obtenu
avec un processus de Poisson non marqué pour les prédictions du TPO, et de 22.3% pour les
prédictions du TPMO. De la même manière, nous observons une amélioration du PEAM de
respectivement 37.2% et 70.7% avec notre modèle par rapport à une méthode de prédiction
basique (qui consiste à donner un temps d’attente moyen calculé sur l’ensemble des patients
du jeu de données). En outre, notre méthode a montré la cohérence de ses performances d’un
ensemble de données à un autre, entre l’ensemble de validation et l’ensemble de test.

Au delà des résultats obtenus, l’approche du PPM qui a été développée et appliquée pour
répondre à notre problématique présente une grande adaptabilité ainsi que des possiblités
d’amélioration. Un travail futur pourrait par exemple considérer un modèle de PPM plus
avancé qui serait défini par une FIC constante par morceaux.
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ABSTRACT

End-Stage Kidney Disease (ESKD) is a medical condition in which kidneys can no longer
ensure their vital blood purification function, forcing patients to resort to renal replacement
therapy. Compared to the default dialysis option, kidney transplantation is a more viable
long-term solution both in terms of daily constraints and survival outcomes. Nonetheless, a
patient receiving a kidney transplant offer is facing a dilemma, where he needs to decide to
accept it or not with the help of his nephrologist during the Shared Decision Making (SDM).

The number of ESKD patients across Canada was nearly 42,000 by the end of 2013, and
has increased by 35% between 2009 and 2018, accounting for a real medical and economical
issue as the dialysis treatment is far more expensive than the transplantation. In parallel,
Deceased Donor Kidney Transplant (DDKT) is the most common kidney transplant option,
compared to the Living Donor Kidney Transplant (LDKT) alternative, and the tendency is
amplifying.

The deceased donor kidneys distribution is generally ensured by governmental health care
institutions. Transplant Quebec (TQ) is the provincial institution responsible for this at-
tribution to ESKD patients on waiting lists in Quebec. This work focuses on the general
attribution list that includes the majority of patients. Once a patient is proposed a kidney,
he can either accept it or refuse it at the end of the SDM. On the one hand, a low-quality
kidney (age of donor, medical conditions, etc.) could motivate the patient to refuse an offer
and wait for a better one. On the other hand, waiting times can be long and the perspectives
of a future offer can be poor, especially a better one.

The decision can be difficult to make and patients lack understandable information to inform
their reflection. Indeed, existing decision-aid tools involve medical knowledge and health
education to be used correctly, which poses the problem of interpretation for the patient.
Furthermore, they do not provide personalized information but give results that refer to an
entire attribution system instead. Also, the existing works often stand for the allocator’s
stakes, like minimizing costs or optimizing resources, rather than making the individual
patient the main priority. Thus, the development of appropriate decision-aid tools could
help patients during SDM.

We consider the situation where a given patient on the general waiting list is being proposed
an initial kidney offer. To help the patient during the SDM, a simple case disjunction can
be done. On the one hand, what happens if he accepts the kidney? On the other hand,
what happens if he declines it? We aim to provide relevant and helpful elements to help the
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patient picture the situation if he was to say no to the kidney proposal.

First, the objective of the designed decision-aid tool is to provide highly understandable and
personalized expected waiting times to the patient. The tool has to predict the time before
another kidney offer is proposed to the patient. This waiting time is referred to as Time
before Next Offer (TNO). Furthermore, the tool has to give the time the patient will have
to wait before an offer with a better kidney quality than the current one. This waiting time
is referred to as Time before Next Better Offer (TNBO). TNBO is more relevant than TNO
since the main reason that motivates declining the current offer is the expectation of a better
one.

Second, we propose the Marked Point Process (MPP) approach to model the arrival of
kidneys in the attribution system, and we characterize the process by defining its Conditional
Intensity Function (CIF). This stochastic framework enables to model both times and marks
(kidney qualities) of events (arrivals of kidneys). In this work, the stationarity assumption
is made about the times of arrivals of kidneys and their qualities, in order to devise a simple
model. The rate of kidney arrivals is constant (like in a homogeneous Poisson process) and
the associated quality distribution is stationary. Parameters of the model are inferred using
a reconstruction of the history of the patient’s past offers before the initial offer, which
enables highly personalized predictions. The MPP model gives access to a one-patient scaled
expectation of TNO, including an upper bound of the time by which an offer would have
occurred with a 95% confidence (the confidence level is customizable). The quality aspect of
the MPP is used to carry out a process thinning, which only considers kidney arrivals with
a better quality than the current one. This way, we can access the same type of predictions
for TNBO and for TNO.

Finally, the developed solution is tuned and tested on real attribution system records fur-
nished by TQ. The results demonstrate that the proposed model outperforms competing
solutions with same objectives in terms of predictive power, both on TNO and TNBO is-
sues. Based on the Mean Absolute Percentage Error (MAPE) score on the test set, our MPP
model outperforms an unmarked Poisson process method by 25.5% for TNO problem and
by 22.3% for TNBO problem. Moreover, we respectively observe a MAPE decrease of 37.2%
and 70.7% when using our model instead of a baseline policy (a basic statistic that averages
waiting times of all patients in the dataset). Additionally, our method proves to be consistent
in terms of performances between validation set and test set.

Beyond the computational results, the MPP framework that has been set to address this prob-
lem provides high flexibility and possibilities of model enhancement. A piecewise-constant
defined CIF could be considered to achieve a more advanced MPP model in future research.
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CHAPTER 1 INTRODUCTION

1.1 Renal replacement therapy

Human kidneys are vital organs that purify blood. In the number of two, several different
reasons can cause one or both to start being dysfunctional. When their blood purification
function ceases to be efficient enough, patients need to resort to a renal replacement therapy.

The Canadian Blood Services refer to this stage of disease as End-Stage Kidney Disease
(ESKD), and define it as “a condition in which the kidneys are permanently impaired and can
no longer function normally to maintain life” [3]. According to [3], nearly 42,000 Canadians
were affected by this condition at the end of 2013. Moreover, according to a more recent
study from the Canadian Organ Replacement Register, the number of Canadians living with
ESKD has increased by 35% between 2009 and 2018 [4]. The possible treatment of this
condition is renal replacement therapy, which is divided into transplantation and dialysis.

Dialysis is not a long-term solution, since it involves permanent, regular and long sessions
to purify the patient’s blood with the help of a dialysis machine. This solution poses heavy
constraints on the daily life of the patient. Furthermore, the other renal replacement ther-
apy option, transplantation, generally has better patient outcomes than dialysis. Indeed,
statistics presented in the 2019 report [4] claim that 50.6% of patients on peritoneal dialysis
survived at least 5 years, against 81.3% for patients who received a kidney from a deceased
donor. The second option of kidney transplantation is the field of interest of this research.

Kidney transplants can be of two different types. On the one hand, the kidney donor can
be alive, so-called Living Donor Kidney Transplant (LDKT). This type of transplant mostly
comes from patient’s relatives or friends willing to give their organ. Nonetheless, donor and
recipient may be not compatible. In this case, exchange programs give the possibility to two
willing donors to exchange their recipient, so that two compatible pairs can be created. The
optimization of exchange programs has been addressed in several works, like [5] or [6].

On the other hand, the kidney donor can be deceased, so-called Deceased Donor Kidney
Transplant (DDKT). In Canada, deceased donation is more frequent than alive donation,
as it accounts for 60% of total transplants [3]. Additionally, this tendency is amplifying as a
44% increase in the number of deceased donors from 2005 to 2014 has been reported by [7],
while the number of living donors has only raised by 10%. DDKT can occur in case of cardiac
death of the donor, which is Donation after Cardiac Death, or in case of neurological death,
which is Donation after Neurological Death. In both cases, the kidney is retrieved and enters



2

a distribution system that aims to propose it to ESKD patients waiting for a transplant.

Kidney distribution systems are generally part of a governmental health care system, often at
a regional scale. Policies that define the attribution process differ from one system to another.
Also, medical considerations have to be taken into account in the attribution process (donor-
recipient compatibility, blood-type, etc.). This work will focus on the distribution system
in Canada, and especially in Quebec. Transplant Quebec (TQ) is the provincial health
care organism responsible for the attribution of organs from deceased donors. The whole
attribution system is composed of several priority layers in terms of patient condition (renal
emergency, pediatric patients, etc.). Patients on the general attribution list have the lowest
priority, and can wait for a long time before receiving an offer. The attribution system for
the general waiting list is based on a score ranking function that attributes a score for each
patient and ranks them in order of their estimated priority. The scoring function used by
TQ takes into account two criteria: utility and justice. The simultaneous objectives are to
be fair (minimizing waiting time) and efficient (maximizing survival).

1.2 Kidney offer and patient’s decision

When the attribution system finally makes a kidney proposal to a patient, the immediate
question for the patient is either to accept it or decline it. This decision can pose a dilemma.
Indeed, all kidneys are not of the same quality, and the acceptance of a quick offer with a
low-quality kidney means increasing risks that complications occur after the graft. Clinical
risks indices, like Kidney Donor Risk Index (KDRI) [8], aim to provide an estimation of a
kidney quality based on several characteristics of both donor and recipient. In some cases,
waiting for a better kidney coming from a younger and healthier donor could be beneficial
for the patient. This is the reason why a patient on the waiting list is always offered the
possibility to refuse a kidney proposal. In fact, the decision to accept or refuse the offer is
the result of a systematic Shared Decision Making (SDM), involving both the patient and his
nephrologist. During this process, the patient is expected to reflect on the opportunities and
possible outcomes, and the doctor is there to help him but not to impose a choice, he has
to provide details and knowledge to inform the patient’s reflection. SDM involves a greater
participation and responsibility on the patient side, which improves both outcomes of graft
and satisfaction of the patient according to [9, 10].

However, in order to decide, patients lack understandable information. Indeed, existing
decision-aid tools involve medical knowledge and health education to be interpreted correctly.
Furthermore, they do not provide personalized information but give results that are scaled to
an entire attribution system instead. Also, the existing works often stand for the allocator’s
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stakes, like minimizing costs or optimizing resources, rather than making the individual
patient the main priority.

To help the patient during the SDM, a simple case disjunction can be done. On the one hand,
what happens if he accepts the kidney? On the other hand, what happens if he declines it?
In line with [1], this thesis aims to provide relevant elements to help the patient picture the
situation if he was to say no to the kidney proposal.

1.3 Research objectives and methodology

We consider the situation where a given patient on the general scoring waiting list is being
proposed an initial kidney offer. We want to inform him about his perspectives if he was to
decline it.

The first objective is to predict the time before another kidney offer is proposed to the patient.
This waiting time is referred to as Time before Next Offer (TNO).

Assume a measure that evaluates the quality of a kidney for a given receiving patient (the
KDRI quality index will be used during the thesis). The higher the quality is, the higher
survival perspectives are for the recipient.

The second objective is to predict the time the patient will have to wait before an offer with
a better kidney quality than the current one. This waiting time is referred to as Time before
Next Better Offer (TNBO). This waiting time is more relevant than TNO since the main
reason that motivates declining the current offer is the expectation of a better one.

The development of a tool capable of predicting those waiting times implies mathematical
modeling of the times of kidney arrivals in the attribution system, as well as their qualities.
We apply the Marked Point Process (MPP) approach for modeling, since MPPs are stochastic
processes providing a convenient framework that enables to model both times and marks
(kidney qualities) of events (arrivals of kidneys). We make the stationarity assumption
about the times of arrival of kidneys and their qualities in order to devise a simple model.
It means that the rate of kidney arrivals is constant (as for a homogeneous Poisson process)
and the associated quality distribution is stationary. We infer parameters of the model on
a reconstruction of the history of patient’s past offers before the initial offer. Finally, the
developed model is adjusted, validated and tested on real attribution system records provided
by TQ.

It is worth precising that even if the main objective of the tool is to inform a patient when
he receives a kidney offer, the solution can be used at any other time as soon as the patient
is on the waiting list. Hence, the decision-aid tool can also be used to inform patient about
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possible coming offers when he enlists, or to re evaluate his perspectives in between offers.

1.4 Thesis outline

This thesis starts with a literature review about kidney transplantation and decision-aid
in Chapter 2. Examples in the literature using MPP models in health care will also be
discussed. Then, Chapter 3 introduces the mathematical grounds required to develop our
solution. Next, Chapter 4 is dedicated to explaining the links between this thesis and the
work in [1]. Chapter 5 presents the mathematical modeling of the problem we solve, and
how we apply the MPP approach. Chapter 6 describes experiments we carried out to build
the model according to the theory of the previous chapter, and how we validated it. It also
includes the final results on test sets. Finally, we conclude the thesis in Chapter 7 with a
summary of the work, and by discussing its limitations and some future research directions.



5

CHAPTER 2 LITERATURE REVIEW

Kidney transplantation is an important part of renal replacement therapy that raises a lot
of issues and presents various research possibilities. The work conducted in this thesis is
part of a larger research that aims at addressing the kidney transplant problem in a larger
extent by providing useful instruments to inform the SDM. The research has been split
into two main questions that a patient and his nephrologist would have to answer in order
to make a decision. On the one hand, there is the Yes question which mainly deals with
survival analysis, since the objective is to predict what will happen if the patient accepts the
graft. On the other hand, the No question consists in predicting what happens if the patient
declines the graft. Then, we refer to the project that embraces both issues as the Yes-No
question. This thesis focuses on the second question.

Many works addressing the Yes question can be cited, from [8] which is widely used clinically
and designs a risk index based on a traditional Cox regression, to the research conducted
in [11, 12] that uses a more cutting-edge approach of artificial neural networks. Despite
survival analysis is not the subject of the current thesis, the reader can refer to the literature
review conducted in [1] to learn more about this first issue. It might be relevant to understand
more globally the stakes of the Yes-No question.

Regarding the No question, several approaches can be considered to inform the SDM. The
solution we develop is a decision-aid tool that aims to provide relevant elements to help the
patient picture the situation if he was to say no to the kidney proposal. The intent we pursue
is to inform him about his future opportunities of graft proposal, by providing in particular
the expected time to a next offer, or to a next better offer.

Answering the No question is basically a decision-making issue. Decision-aid applied to
clinical and health care system is an abundant topic that has been studied many times in
the literature.

2.1 Decision-Aid

Decision-aid is a major issue in health care, and several issues concerning organ transplant
are the subject of research works in the literature. In different research fields, patients are
included at different degrees in the organ attribution process, and the stakes and objectives
are not the same.

A first field considers the problem from the allocator’s side. The goal is to properly optimize
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the attribution system, so that the patients have the best offers. Many different studies use
Markov decision processes for liver transplantation, like [13], [14] [15] and [16]. In [16] for
instance, partially observable Markov decision processes are employed to predict the patient’s
decision. In this type of problem, the strategy adopted is often to predict the behavior of
patients in order to find the best allocation policy. In this thesis, we adopt a completely
different perspective, as we predict the waiting list behavior to inform the patient about his
future perspectives. However, designing a device capable of correctly predicting patients’
preferences is a mean to learn what is important to patients and help to develop a decision-
aid tool. Moreover, finding best allocation policies is not always equivalent to reducing costs
and optimizing efficiency. The work [17] develops a discrete model of the kidney allocation
process in the U.S. to prove the need of modifying the policy. Indeed, it demonstrates that
the initial policy leads to risks of increasing waiting lists, resulting in future incapacity to
treat patients.

A second field in decision-aid research aims at forecasting the effect of a policy modification on
the size of the waiting list. The article [18] addresses the problem of predicting the behavior
of the renal transplant waiting list in the Valencian community1, with the help of a discrete
event simulation model that quantifies fluctuations of the waiting list. The objective here is
to evaluate the consequences of the policy modification on a current system as a whole, but
predicting an individual patient’s waiting time is not considered. The point of view adopted
is still on the policy-maker side.

A third field of research in decision-aid aims at optimizing the decisions of the patients. In
the existing literature, the so-called secretary problem has been adapted to find the solution
to what type of kidney a patient should accept after a given waiting time. This problem has
been originally presented in [19]. It involves a series of candidates that arrive at random times
to get different positions in a firm, and different rewards are given to candidates in terms of
their position. Improvements of this problem have been achieved by [20] and [21]. The former
paper finds the optimal strategy for the secretary problem using dynamic programming, and
discusses the modeling of the horizons with uniform and Erlang distributions. The latter
paper adapts the secretary problem to the kidney transplant to figure out how demanding
regarding the kidney quality a patient should be as time goes. According to the results,
the longer his waiting time is, the less a patient should be demanding. However, this work
only gives average estimations that could be useful for an entire allocation system, instead
of individual advice.

Finally, the fourth field of research aims at forecasting an informed decision of the patient.
1Autonomous region of Spain with its own health care system.
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The work of this thesis belongs to this field, with the objective of providing individual
decision-aid tool to a patient. The authors of [22] design an algorithm that provides useful
information that can help a patient in his decision process, including the probability of a
3-year survival if he accepts the current kidney graft, and the probability of a 3-year survival
if he declines it. One of the interesting aspects of the solution is that, to compute final out-
come probabilities, it takes into account the potential happening of events while the patient
is in the waiting list (death, removal of waiting list, etc.). The decision-aid tool tends to
suggest the acceptance of relatively high-risk kidneys for some patients, which could be seen
as an interesting unusual advice. Nonetheless, the information provided to the patient in [22]
still poses the question of interpretation of probabilities for a patient. Also, even if kidney
qualities are taken into account in the model, this aspect does not appear explicitly in the
information provided to the patient.

In conclusion, even if the decision-aid topic applied to organ transplant is abundant in the
literature, only a few works take the patient’s side and provide an individual personalized
instrument to help the patient before other stakeholders.

2.2 Marked Point Process in health care systems

The solution we propose in this thesis is based on a MPP modeling. Indeed, this stochastic
process characterized by the Conditional Intensity Function (CIF) approach turns out to
provide a framework with powerful modeling capabilities. Plenty of applications of this
methodology can be found in the literature. We focus on research studies applied to the
health care system.

The article [23] proposes a medical tool to help assess the severity of illness of patients in
Intensive Care Unit (ICU). The study deals with the electronic health records (physiological
signals, lab test results, procedural events, etc.) as a temporal stream of events with a MPP
model to capture temporal dependencies among all these different types of data. The CIF
used for the MPP model is a piecewise-constant conditional intensity, which means the rate of
the process (which influences events arrival frequency) is piecewise constant. The developed
model improves the hospitality mortality prediction over traditional ICU scoring systems.

Still with the objective of exploiting clinical data to reveal their patterns and behaviors,
a functional MPP model for lupus data is proposed in [24]. The work incorporates the
use of functional data analysis in a joint estimation of both the intensity function of the
MPP and the intensity of the marks. The model is applied to data from 22 lupus patients
consisting of times of flares in symptom severity combined with a quantitative assessment
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of the severity. The methodology helps demonstrate that a rapid decrease in drug dose is
significantly associated with a decrease in flare frequency. In this example, the MPP approach
reveals to doctors a behavior of the disease, which could have been difficult to detect from a
human perspective.

An advanced MPP model is proposed in [25] to tackle limitations of simpler point process
models like Cox or Hawkes processes, which are commonly used for risk prediction in health
care. The article introduces wavelet reconstruction networks, which is a multivariate point
process with a sparse wavelet reconstruction kernel to model rate functions from marked,
timestamped data. The method shows the ability to capture quasi-periodic events that
could be used to measure adherence and forecast risk of complications for diabetes patients.
Moreover, this advanced MPP model outperforms the competing aforementioned classical
models. This work demonstrates that modifying an existing MPP model to a more advanced
one can lead to a solution enhancement.

Another example of MPP approach applied to behavior modeling in health area is given
in [26]. The method aims to relate neural spiking activity to spiking history, neural ensemble,
and extrinsic covariate effects. To take into account the dependencies in the model, the
logarithm of the CIF is defined as a linear combination of functions that depend of the
covariates. Tests have proved that the developed model could capture the simultaneous
effects of multiple covariates, as well as assess their relative importance. We can see from
this example that the flexibility of the MPP framework allows to formulate elaborate models
that are able to take into account several covariates to predict the behavior of one dependent
variable.

Consequently, the MPP approach is suitable to many problems applied in the health care
system, but it has not been applied to the kidney transplant problem yet. In this thesis, we
use this methodology to model the arrival of kidneys in the attribution system of TQ. More
precisely, we provide a one-patient scaled personalized model of it. For a given patient, we
learn the MPP model that describes the arrival of kidney offers that are proposed to him,
including the modeling of kidney qualities (which is achieved by using the marked aspect of
the MPP).

2.3 Predicting next kidney offer for a kidney transplant candidate declining
current one

Finally, this thesis is mainly built on the groundwork set by the work of Weller [1], entitled
‘Predicting next kidney offer for a kidney transplant candidate declining current one’, and
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that also aims to answer the No question.

Our objective is to pursue the research by focusing on fixing and improving some limitations
of the solution in [1]. As a consequence, Chapter 4 is dedicated to explaining the links
between both works, summarizing both solutions, and explaining the contribution of the
current work. Chapter 4 is an extended literature review of thesis [1], a summary of the
current thesis, and can be seen as giving a good global overview of the current thesis.
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CHAPTER 3 MATHEMATICAL GROUNDS

This chapter introduces all the mathematical grounds that will be used throughout the thesis.
For this, we first introduce a simple type of stochastic process, the Poisson process. Then,
we present a more general type of stochastic process that also includes marks in the arrival
process, the MPP. MPPs are described using the CIF approach. The reader can feel free to
read this chapter at his convenience, and come later pick the information he needs.

3.1 Poisson process

This section gives the definition of a Poisson process and reminds some of major properties of
this type of stochastic process. The reader can find here everything he needs to understand
what is been developed in the thesis. Nevertheless, further details can be found in reference
books [27–29].

Definition 3.1 (Counting process). Let τ0, τ1, τ2 . . . be some positive random variables. Let
Tn = ∑n−1

j=0 τj for n ≥ 1 and fix T0 = 0. Finally, let

N(t) = max{n ≥ 0 : Tn ≤ t}

for t ≥ 0. In other words,

N(t) =



0 if T0 ≤ t < T1

1 if T1 ≤ t < T2

2 if T2 ≤ t < T3
...

n if Tn ≤ t < Tn+1
...

Concerning the meaning of the variables,
. The random variables T1, T2, . . . represent the time of occurrence of the events.
. The random variables τ0, τ1, . . . represent the time between each occurrences (or the
waiting times, or also the interevent times), i.e. τn stands for the time the counting
process remained in its nth state (n events occurred).

. The integer-valued random variable N(t) represents the number of occurrences during
the interval [0, t].

. Finally, the stochastic process {N(t), t ≥ 0} is called a counting process.
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Definition 3.2 (Poisson process). A Poisson process is a counting process with independent
and identically distributed waiting times according to the exponential distribution Exp(λ).
The parameter λ > 0 is the rate of the Poisson process.

Remark 3.1. The last definition is one among three possible definitions of the Poisson process.
�

Remark 3.2. It is possible to switch from the times of occurrences T1, T2, . . . to the interevent
times τ0, τ1, . . . and reciprocally. Indeed, on the one hand

Tn =
n−1∑
j=0

τj, ∀n ≥ 1.

And on the other hand,
τn = Tn+1 − Tn, ∀n ∈ N.

�

Proposition 3.1. If {N(t), t ≥ 0} is a Poisson process with exponential distribution of rate
λ > 0, then

N(t) ∼ Poisson(λt).

Proof. Refer to [27] (p.302) for a proof. �

The following property aims to give a formula to infer the rate of the Poisson process (Méléard
[30])

Proposition 3.2 (Inference). The rate λ of the Poisson process {N(t), t ≥ 0} is equal to

λ =
a.s

lim
t→+∞

N(t)
t

, (3.1)

where a.s is the almost sure convergence. As explained in Definition 3.1, N(t) counts the
total number of events up to time t.

The Equation (3.1) gives an asymptotic result. In practice, if we observe the process for a
finite time horizon denoted as ∆T > 0, then we get the estimator λ̂ of the rate

λ̂ = N(∆T )
∆T . (3.2)

The next theorem supports that a Poisson process can be decomposed into two sub-processes
in terms of a classification of the events it counts.
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Theorem 3.1 (Poisson process decomposition). Let {N(t), t ≥ 0} be a Poisson process, with
rate λ > 0. Let be the probabilities p1, p2 ∈ ]0, 1[ such that p1 + p2 = 1. Let assume

1. Each event of the process can be classified as type 1 or as type 2.
2. At each occurrence, there is a probability p1 that the event is of type 1, and there is a

probability p2 that the event is of type 2.
3. Event classifications are mutually independent, and independent of the time.

Then, we have
{N1(t), t ≥ 0} is a homogeneous Poisson process with rate λ1 = p1λ

{N2(t), t ≥ 0} is a homogeneous Poisson process with rate λ2 = p2λ
,

where {N1(t), t ≥ 0} and {N2(t), t ≥ 0} count the events of type 1 and type 2, respectively.
Moreover, the two processes are independent.

Proof. This theorem is presented in Lefebvre [27] (p.307), where a detailed proof can be
found. �

The following property supports that any Poisson process can undergo a normalization to be
turned into a unit rate Poisson process.

Proposition 3.3 (Normalized Poisson process). Let {N(t), t ≥ 0} be a Poisson process with
rate λ > 0. Let T be the random variable that stands for the waiting time between two
consecutive events.
The point process defined with the interevent time variable Z = λ T is a unit rate Poisson
process, i.e. has a rate equal to 1. It involves in particular that Z ∼ Exp(1).

Proof. Assume the hypotheses of the property. We define the random variable Z = λT , we
will find its distribution by computing its Cumulative Distribution Function (CDF). First,
the CDF of the exponentially distributed variable T is

∀t ≥ 0, FT (t) = P(T ≤ t) =
∫ t

0
fT (u) du =

∫ t

0
λe−λu du = 1− e−λt.

Then, for z ≥ 0, the CDF of the variable Z is

FZ(z) = P(Z ≤ z) = P(λT ≤ z) = P(T ≤ z/λ) = FT (z/λ) = 1− e−z.
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Hence, we are able to identify that FZ : z 7→ 1 − e−1×z. We recognize the CDF of an
exponential variable with unit rate λZ = 1. Therefore, by uniqueness of the CDF of a
distribution

Z = λT ∼ Exp(λZ = 1).

Consider a new point process that we define by choosing Z as the unique interevent time
variable, which means all interevent time variables are distributed like Z. Then, since the
interevent time variables are exponentially and equally distributed, we know that this process
is necessarily a Poisson process [27]. In this case, the rate of the process is the rate of the
distribution of Z, that is to say λZ = 1. In conclusion, the new process we defined is a
Poisson process with rate 1. �

3.2 Marked Point Process

A temporal point process is basically a list of times of events. Many real phenomena produce
data that can be represented as a temporal point pattern. For instance, occurrences of
earthquakes, traffic accidents, and arrivals at an ATM, or storms. What these examples
all have in common is that the number of events as well as their time of occurrence are
random, which makes them inherently nondeterministic. Such phenomenon can be modeled
mathematically by a stochastic process, a point process, which is a mathematical tool that
enables us to study the phenomena, and predict future events for instance. We use the term
point to mention that an event is considered to be instantaneous, and thus can be represented
as a point on the time line.

In such phenomena, there is often more information associated to an event than just its
time of occurrence. We call them marks. For an earthquake, the mark could be defined
as its magnitude (a real positive number). Taking into account a relevant mark into the
model makes it possible to have a complete modeling that deals with all the aspects of the
phenomenon we are interested in. Such a model is called a MPP.

3.2.1 The MPP and the History

To illustrate the principle of MPP and explain how we can store its past activity in a list, we
take the example of the earthquakes presented in Figure 3.1. For each event, an earthquake,
there is an associated mark, the magnitude of it. If we record the events for a while until the
nth one, we get the history up to the present time t, denoted as Ht = {(tj, κj)}1≤j≤n, with
chronologically ordered times t1 < t2 < ... < tn < t (2 events cannot happen simultaneously).

The Figure 3.1 shows how the activity of the MPP can be stored in a simple list of ordered
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2 measures per event :

➢ Time = time of the event : day time of earthquake → 

➢ Mark = quantity associated with the event : Magnitude →

Earthquakes example

History

Figure 3.1 MPP and History: earthquakes (graph from [2])

pairs that includes times and marks. This is called the history of the process. Times are
strictly positive numbers tj > 0 that represent the time elapsed since the origin of times
(usually taken as the beginning of the history). The mark space, denoted by M, can be many
different types of spaces, depending on the nature of the mark we consider. In this example,
the magnitude is a strictly positive number, M = R∗+.

Remark 3.3 (History Ht and Htn). Despite that for some MPP, the distinction between Ht

and Htn can be useful, we are not considering it in this work. Consider a given time t > 0
and the n events that happened so far at the times t1 < t2 < ... < tn < t, the history Ht and
Htn are equal. Indeed, since no events happened since the nth one at tn, the history Ht up
to time t records the same events as the history Htn that is only up to time tn.
To simplify notation, we prefer to use the notation Ht when it is possible, to spare defining
the number n of recorded events and the time tn of the last event.

3.2.2 The Conditional Intensity Function approach

There are several ways of dealing with MPPs. In this work, we select the CIF approach,
which is based on the so-called function that defines entirely the MPP. This method offers
many advantages, including its simple applicability, its high flexibility to define a model, and
the convenient possibility of doing simulations. The CIF characterizes both times and marks
of the events.

Definition 3.3 (Conditional Intensity Function). The CIF function, which is denoted by λ∗,
is the product of two functions

λ∗ : R+ ×M→ R+ ; (t, κ) 7→ λ∗(t, κ) = λ∗G(t)f ∗(κ|t), (3.3)
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where

. λ∗G : R+ → R+ ; t 7→ λ∗G(t) is the Ground Intensity Function (GIF) of the process. It
is the instantaneous rate of the process, proportional to the probability of an event to
occur around t, given the history Ht of the events. Indeed, for an infinitesimal time
interval dt, we have

λ∗G(t)dt = E [N([t, t+ dt]) |Ht] ,

where N(A) denotes the number of points occuring in an interval A.
The GIF is the factor of the CIF that describes the rate at which events occur over
time, it can be seen as the mean number of events in a small region conditional on
the past. The unit of the GIF is in number of events per time unit, that is to say
[Time Unit ]−1.

. f ∗ : R+ × M → R+ ; (t, κ) 7→ f ∗(κ|t) = f ∗(κ | t,Ht) is the Conditional Density
Function (CoDF) of the mark κ associated with the point t. It specifies the distribution
of the mark κ given t and the history Ht.

Remark 3.4 (Star notation). For the CIF λ∗, the GIF λ∗G and the mark CoDF f ∗, we are using
the star exponent notation ∗ as in [31] and [32]. This notation reminds that these functions
are conditional on the past history Ht. Also, this notation is useful to distinguish these MPP
functions from others functions or parameters. For instance, we will not confound the CIF
function λ∗ with the parameter denoted as λ that will be frequently used in this memoir. �

The GIF and the CoDF must be chosen carefully so that they reflect properly the behavior
and properties of the phenomenon we are modeling. The choice often results in an extended
analysis of the data, as well as tests to define the CIF correctly.

For the GIF, we can either decide to define directly a function especially designed for our
purpose, or we can also choose a particular interevent time distribution by specifying the
CoDF of the time of the next event f(t|Ht) and its corresponding CDF F (t|Ht). Indeed, we
can switch from one to the other using the following relation that defines the GIF.

Definition 3.4 (Ground Intensity Function (GIF) definition). For a given t > 0, we consider
the history Ht up to the time t. The GIF function is defined as

λ∗G(t) = f(t|Ht)
1− F (t|Ht)

, (3.4)

where f(t|Ht) is the CoDF of the time before next event, and F (t|Ht) the corresponding
CDF.
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Remark 3.5 (Time of the next event distribution). For a given time t > 0, we denote as
f(t|Ht) the CoDF of the time of the next event, and as F (t|Ht) its corresponding CDF. Like
the CIF, these functions are conditional to the history Ht of the process up to the considered
time t. Although, it must be noted that these functions are not densities of the absolute
time t but instead characterize the next interevent time τn elapsed since last event at time
tn. Indeed,

. f(t|Ht) = fτn(t− tn|Htn), it is the CoDF of the next interevent time τn.

. F (t|Ht) = Fτn(t− tn|Htn), it is the CDF of the next interevent time τn.

This notation is useful to avoid manipulating simultaneously the absolute times tj and the
interevent times τj, but also spare the definition of the last nth event at tn (similarly to
remark 3.3 about history notation). �

Example 3.1 (GIF for a homogeneous Poisson process). We consider a simple example of
an unmarked process. In this case, only times of occurrence of the events are taken into
account. Moreover, the CIF degenerates into the GIF since no mark CoDF is used.
The GIF of a homogeneous Poisson process with rate λ > 0 can be found using the Definition
3.4. For this type of process, we know that the interevent variables all follow an exponential
distribution Exp(λ). We can then compute the resulting GIF using the relation (3.4). For a
given t > 0, we consider the history Htn up to the last event at tn < t, then

λ∗G(t) = f(t|Htn)
1− F (t|Htn) = λe−λ(t−tn)

1− {1− e−λ(t−tn)}
= λ. (3.5)

The GIF of the homogeneous Poisson process is constant, and is in fact the rate of the
process. It is understandable since λ is exactly the parameter than dictates the frequency of
arrival of the events. �

The GIF and the mark CoDF we chose depend on parameters, like every probabilistic dis-
tribution, that we will have to estimate during the resolving process. We denote by ΘG

the parameters of the GIF (where ‘G’ stands for ‘Ground’), and ΘM the parameters of the
mark CoDF (where ‘M ’ stands for ‘Mark’). We refer to all the model parameters using
Θ = (ΘG,ΘM).

3.2.3 Inference

Once the model is defined, the aim is to infer its parameters Θ = (ΘG,ΘM). To do this,
there are a lot of different possibilities. In the CIF approach, the likelihood function has a
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quite simple expression. It usually leads to choose convenient inference methods that use this
expression, such as the Maximum Likelihood Estimation (MLE) or the Bayesian inference.

3.2.3.1 Likelihood function

In order to find the expression of the likelihood that involves the CIF, we need to introduce
first the integrated Ground Intensity Function (iGIF).

Definition 3.5 (integrated Ground Intensity Function (iGIF)). For t > 0, the iGIF is, by
its inherent definition, given by

Λ∗(t) =
∫ t

0
λ∗G(s)ds. (3.6)

Then, the likelihood function can be expressed in terms of the CIF and of the iGIF we just
defined.

Proposition 3.4 (Likelihood expression with CIF). Given a marked point pattern
HT = ((t1, κ1), ..., (tn, κn)) on [0, T )×M, the likelihood function is given by

L =
 n∏
j=1

λ∗(tj, κj)
 exp(−Λ∗(T )). (3.7)

In the case of an unmarked point process, the CIF degenerates to the GIF. Then, for a given
point pattern HT = (t1, . . . , tn, ) on [0, T ), the likelihood function is

L =
 n∏
j=1

λ∗G(tj)
 exp(−Λ∗(T )). (3.8)

Proof. The reader can refer to [33] for a proof. �

3.2.3.2 Estimation

Based on the expression of the likelihood function, we can obtain an estimation of the process
parameters using, for instance, the MLE method. However, it is rare to be able to find the
maximum analytically, by canceling the derivative, as soon as the likelihood function becomes
too complex. One of the situation where the expression of the likelihood function L is simple
enough to do so is for the homogeneous Poisson process.

Example 3.2 (Homogeneous Poisson process). In this unmarked case, the intensity function
is constant: λ∗G(t) = λ > 0, where λ is called the rate of the process (computed in Example
3.1). The unit of this rate is the number of events per time unit (for instance, number of
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events per day). For T > 0 and the corresponding observation interval [0, T ) where n events
happened, we use the expression in Equation (3.8) to calculate the likelihood

L =
 n∏
j=1

λ∗G(tj)
 exp(−Λ∗(T )) =

 n∏
j=1

λ

 exp(−
∫ T

0
λds) = λn exp(−λT ).

This expression can easily be differentiated in terms of the only parameter λ, and canceled
to find the maximum

∂

∂λ
L = nλn−1 exp(−λT )− λnT exp(−λT ) = (n− λT )λn−1 exp(−λT ).

So, since all the other factors are non null, we have

∂

∂λ
L = 0 ⇐⇒ n− λT = 0.

Then, we get the MLE estimator
λ̂MLE = n

T
. (3.9)

It is worth noting it proves that the MLE estimator matches the estimation of the rate
proposed in Equation 3.2 (since n = N(T )). �

More generally, we will have to cancel the score equation to estimate the model parameters
when using the MLE method. It means canceling the partial derivatives of the likelihood
function in terms of all the different parameters. In the case of a MPP, we have to solve the
system 

∂
∂ΘGL = 0
∂

∂ΘML = 0
(3.10)

in order to find the MLE estimators for the parameters: Θ̂G

MLE
and Θ̂M

MLE
. If we cannot

find analytically the estimates, we can use numerical methods to obtain them. We can quote
Newton-Raphson in the case of maximizing the likelihood, or even Markov Chain Monte
Carlo for approximating the posterior distribution in a Bayesian approach.

3.2.4 Predictions

Once we got the MPP defined, including the parameters, we can use this model to study the
natural phenomenon it describes. The possibilities it offers are various. Not exhaustively,
we can be interested in particular values that characterize the phenomenon, called summary
statistics, as well as in running simulations for a given particular environment, in order to
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observe possible scenarios. We will see that we can predict the information we need in two
main ways. On the one hand, explicit formulations that give exact predictions, and on the
other hand, simulations that give empirical predictions.

3.2.4.1 Exact prediction

Many quantities can be calculated explicitly from the CIF, such as the probability of getting
no events in a future time interval, or the mean waiting time to the next event. For example
in the unmarked case, by choosing a specifically designed GIF, we can define an entirely
new model of process. In this case, the distribution of interevent times will probably not be
a known distribution, and will probably not have a simple analytical expression. Then, to
predict the probability of a certain event to happen, we have to use the GIF directly. The
following proposition links the expression of the GIF, with, on the one hand, the CoDF of
the time of next event given the history, and, on the other hand, the CDF of the time of next
event given the history.

Proposition 3.5 (GIF reverse relation). The reverse relation of the GIF definition (3.4) is
given by

f(t|Htn) = λ∗G(t) exp
(
−
∫ t

tn
λ∗G(s) ds

)
(3.11)

or
F (t|Htn) = 1− exp

(
−
∫ t

tn
λ∗G(s) ds

)
, (3.12)

where tn is the time of the last event before time t.

Proof. A proof of the property is provided in [33]. �

Example 3.3 (Homogeneous Poisson process). Let be a homogeneous Poisson process with
rate λ > 0. Assume that we want to know the probability that no event happens for a time
period T̃ > 0. In this case, there is no event since the beginning of the history at the initial
time t0 = 0, then the history Ht0 is empty. For the time of first event t1 > 0, we want to
know the probability of the event

{
t1 > T̃

}
.

Using the GIF inverse relation of proposition 3.5, we have that

P(t1 > T̃ ) = P(t1 ≤ T̃ ) = 1− F (T̃ |Ht0) =
(3.12)

1−
(

1− exp
(
−
∫ T̃

t0=0
λ∗G(s) ds

))

= exp
(
−
∫ T̃

0
λ ds

)
= exp

(
−λT̃

)
.

We find the same result using the property of a Poisson process. The random number of
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events N(T̃ ) during a time T̃ follows a Poisson distribution Poi(λT̃ ) (refer to Property 3.1).
We remind the Poisson distribution for a random variable X ∼ Poi(λ̃),

P(X = k) = λ̃k

k! exp(−λ̃), ∀k ∈ N.

Then, we can compute that

P(t1 > T̃ ) = P(N(T̃ ) = 0) = (λT̃ )0

0! exp(−λT̃ ) = exp(−λT̃ ).

�

3.2.4.2 Simulation

Simulations of point processes can be useful in many ways, as explained in the following
points related by [33]:

• What a point pattern looks like: We can simulate several scenarios for a given model
and set of parameters. This will provide helpful information about the pattern of the
point process.

• Prediction: We can simulate the future from a specific situation. Taking into account
the history in the CIF makes it easy to specify a particular situation and generate a
possible future from it.

• Model checking: We can use a subset of the data to fit the model, for instance the first
half of data, and then simulate the second half and compare it to the real data we have
left.

• Summary statistics: We can retrieve empirical summary statistics from simulation. It
is certainly the most interesting possibility it offers. We give more details on this point
in what comes next.

Indeed, simulation is a possible way to obtain characteristic values of the process, which can
be really useful in some cases. Even if exact explicit results can be found by calculus, it may
not be possible all the time. In the case either the CIF or the summary statistic wanted
is particularly complex, it may not be possible to get a closed form of the statistic. The
solution is to approximate it by running simulation.

For example, the mean number of events in a given time interval may not be available on
closed form for a complicated model, but we can then approximate it by the average number



21

of points in a large number of simulations Nsim.

Simulation turns out to be fairly easy when the CIF is specified, which is always the case in
the CIF approach we are developing. The CIF offers two major different approaches for sim-
ulating a point process; the inverse method and Ogata’s modified thinning algorithm. Both
are generalizations of similar methods for simulation of inhomogeneous Poisson processes.

Simulation procedure. To simulate a process means in concrete terms to simulate its
events, throughout time, starting from the time origin 0, in an incremental way. The first
event to be simulated (t1, κ1) is composed of its time t1 and its corresponding mark κ1.
Assume that we already have the time t1, then simulating the corresponding mark κ1 is not
difficult. Indeed, the mark CoDF is then totally defined

∀κ ∈M, f ∗(κ|t1) = f ∗(κ | t1,Ht1), (3.13)

where both t1 and the history Ht1 up to the current time t1 are completely known.
The random conditioning elements of the density function in Equation (3.13) being observed,
we can simply draw the mark κ1 from it, at random. This is clear how this reasoning can be
extended for the simulation of any later mark κj.

The less obvious part of simulation is how to simulate the time t1 of the event. It is fair
to wonder how to choose it. The GIF is not of the same nature as the mark CoDF, the
former is not a Probability Density Function (PDF) while the later is, and consequently, we
cannot just draw a time from it. In Example 3.2 for instance, the GIF is a real number:
λ∗G(t) = λ > 0.

As a result, the real difficulty when performing simulation is to find a way to simulate correctly
the times of the events. Both the aforementioned methods, namely the inverse method and
Ogata’s modified thinning algorithm, are especially designed to answer that issue. In this
section, we explain the general idea and the main property of the inverse method. To learn
more about the Ogata’s modified thinning algorithm, refer to [34].

A simulation method: the inverse method. To understand how this method works, we
need to introduce first the fundamental property the method is based on, presented in [33].

Proposition 3.6 (Inverse method). If (si)i∈Z is a unit rate Poisson process on R, and
ti = Λ∗−1(si), then (ti)i∈Z is a point process with GIF λ∗G(ti).

According to proposition 3.6, the basic idea in the inverse method is simulating a unit rate
Poisson process (this is just a series of independent exponentially distributed random vari-
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ables with mean one) and transforming it into the desired point process using the iGIF (see
Definition 3.5). The name of the method comes from the essential use of the inverse Λ∗−1 of
the iGIF.

Indeed, to perform the transformation, we need either to have access to the closed form of
Λ∗−1, or find each ti by searching for a t̃ such that Λ( t̃ ) = si. If the first option is not
possible, the second one can always be achieved in practice since the iGIF is a continuous
and monotonically increasing function (the result is guaranteed by the intermediate value
theorem).

3.2.5 MPP methodology recap

As a recap, all the steps to follow in order to conduct the whole MPP methodology are
summarized in Figure 3.2.

→ GIF

→ mark CDF

Data
History

To infer To get

→ Interesting figures 
      (Expected waiting times,  
      conditional expected time, … )

→ Exact theoretical results 

→ Empirical results via simulation

CIF

Results

Figure 3.2 Steps of MPP methodology using CIF
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CHAPTER 4 GOING BEYOND [1]

In this section, we explain how the current work is based on previous work by Weller [1],
and in which extent it improves some of its limitations. We adopt a high-level vision of
both works in order to have a good overall understanding, without entering too much into
mathematical details. This chapter can be seen as an extended literature review focusing on
the links between the current thesis and the research conducted in [1].

4.1 Original Research

In the decision-making that results from a kidney offer, the developed solution aims at an-
swering two main emerging issues.

• TNO problem: to predict the time before another kidney is proposed to the patient.
Independently of the quality of the offer.

• TNBO problem: to predict the time before a better kidney (than the current proposed
one) is proposed to the patient.

If the TNO issue is non negligible, and is somehow necessary to lay the groundwork for the
general mathematical modeling of the problem, the most relevant issue is the TNBO one.
Indeed, for a patient who has been waiting for a kidney transplant for months, the only reason
to decline the current kidney offer is the expectation of a better offer soon. We explain to
what extent work conducted in [1] answers both issues.

4.1.1 Predict the Time before Next Offer

We consider the problem for one patient x0, who is proposed a kidney from donor y0 at time
t0 with a kidney quality of q0 (quality given by the KDRI measure). We refer to this offer as
the "initial offer" (x0, y0, t0, q0).

Building the History The main idea is to look at the past activity of the patient to infer
the behavior (frequency, quality, etc.) of kidney proposals he receives. To achieve it, we
would need the real patient history, for over one year at least, with all the proposed kidney
offers. However, not all the information we need is available due to the nature of the data
(recently enlisted patients for instance, or incomplete information). Then, the idea is to create
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a pseudo-history H from the available data we have, which would tend to represent the real
history during a ∆T > 0 period of time before the initial offer at time t0. For this purpose,
we retrieve from data all kidney arrivals and corresponding waiting lists chronologically. The
jth waiting list on the history is denoted as wj. For each waiting list wj, we denote as

. yj the corresponding donor.

. tj the time of the offer.

. qj the quality of the offer for our initial patient x0 (this is computed by a function that
takes as inputs yj and x0).

Note that in a waiting list wj, patients are ordered according to their score, computed with
a scoring function that is supposed to order them fairly in terms of different factors (medical
priority, time on the waiting list, etc.). The first patient on the waiting list is the one with
the highest priority, as a result he is the first one the kidney is proposed to. If he declines
the offer, the kidney is proposed to the second patient on the waiting list, and so on.

● Retrieve Rank last offer Rmax

● Remove incompatible offers

● Rmax > r  ⇔ eligible

Figure 4.1 History Building (figures from [1])

Once we retrieved all the waiting lists, we need to determine for which ones the patients x0

would have received a transplant offer. That is to say, for each waiting list wj that occurred
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at time tj, we need to determine if the initial patient x0 would have had received the offer or
not, in the situation he would have been active in the attribution system at that time. The
history building procedure is depicted in Figure 4.1. For each kidney arrival,

• We remove incompatible/non eligible offers for x0. Every removed kidney turns orange
in Figure 4.1.

• We compute the rank of last offer Rmax
j that corresponds to the highest rank for which

a patient on wj got an offer. This is the rank of the last patient who got the offer.

• We compute, using the scoring function, the rank rj of x0 if he was in wj.

• We remove offers when rj > Rmax
j , since that means the position of x0 in the waiting

list is too low to be offered the kidney.

After this procedure, we got the history H = {(tj, qj)}j for the initial patient x0.

Remark 4.1. According to previous notations from Section 3.2, we should write Ht0 for the
history. However, the history is quite always up to the initial time t0 in this problem. Then,
we omit the subscript and simply use the notation H to stand for Ht0 . �

Fitting the Poisson process Concerning the theoretical aspect, what we want to use is a
stochastic process that models the arrival of the eligible kidney offers for the patient x0. The
work achieved in [1] brings explanations, proofs and justifications to support the use of the
Poisson process. In such a process, the random variables that represent waiting times between
two consecutive events (arrival of kidney) are all independent and equally distributed (refer
to Section 3.1). We denote as τ the random variable corresponding to one of the interevent
time (one is enough since they all are equally distributed). Then, τ ∼ Exp(λ), where λ > 0
is called the rate of the process. The expected value is E [τ ] = 1/λ. The higher the rate is,
the smaller the expectation is, i.e. the more rapidly an event occurs on average.

The Poisson process is entirely defined by the knowledge of its rate λ, which is the quantity
we want to evaluate. We use the approximation formula from Equation (3.1) applied on the
history H of the patient that has a finite time horizon ∆T

λ = Noffer

∆T , (4.1)

where Noffer = Card(H) is the number of events (or offers) on H.

Predicting waiting times Once we have the rate of the process, we can predict char-
acteristic values of the process that are relevant to solve our problem, like waiting times.
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Former work [1] brings theoretical support and explicitly evaluates these quantities. The
process we fit represents the arrival of kidneys, regardless of their qualities, thus the values
we can predict are almost exclusively concerning the next arrival of a kidney, without any
condition on its quality. Two important figures among them are

• Expected waiting time before next offer: E [τ ] = 1/λ.

• Customized level confidence interval for the estimated time before next offer. In other
words, for a confidence level α ∈ [0, 1] the solution provides the time tα before which
there is a α probability of getting an offer.

4.1.2 Predicting the Time before Next Better Offer

The issue here is to predict the time before the next better offer, i.e., an offer with quality
q+ > q0. The proposed TNBO solution does not differ a lot from the TNO solution. Indeed,
only one simple step, the thinning of the history, is added to the existing TNO solution.
Then, the steps of the TNBO solution are in this order

1. Building the history.

2. Thinning the history. (This is the additional step that we detail below).

3. Fitting the Poisson process.

4. Predicting waiting times.

Thinning the history This step consists in taking the freshly created history to simply
remove all the offers for which qj ≤ q0, i.e. offers for which the kidney quality is less than the
desired quality. An example of thinning with 10 offers on the history is displayed in Figure 4.2.
The original history before thinning is on the left, and the thinned one is represented on the
right. In the end, there are 4 offers left out of 10 originally.

After this, we run the next steps exactly as before, but on the new thinned history H̃ instead
of H. The rationale behind this is that we kept only the better offers than the initial one, so
we now have a history corresponding to the arrival of the better offers, and the corresponding
smaller Poisson process rate. According to this, the predictions we are able to do now (in
step 4. ‘Predicting waiting times’) could be used to answer TNBO problem.



27

Thinning

Figure 4.2 Thin the history

4.1.3 Remarks

For simplification purpose, we spared many details about the method from [1]. Further
explanations can be found in the thesis of Weller [1]. Although, we give some important
remarks below

• Building the pseudo history H from the available data is not quite obvious in reality.
It involves knowledge of the attribution system used by TQ (refer to Chapter 3 in [1]),
but also making assumptions and choices. Indeed, most of the times we do not have
all the information we need to reconstruct a one hundred percent faithful history.

• Different methods to build the history had been developed in [1], namely: Past waiting
list, Current waiting list and Eligibility relaxation. As best performances were obtained
by the Past waiting list method, we chose this one to illustrate the history building.

• Notation: We use λ to refer to the process rate instead of the µ notation from [1].
Indeed, µ is commonly used to refer to a variable expectation, and it could lead to confu-
sion. For instance, for an exponentially distributed random variableX ∼ Exp(λ), E [X] =
µ = 1/λ.

4.1.4 Gap left to fill

The work conducted in [1] constitutes a solid groundwork that addresses the No question
issue. It provides theory, methodology as well as relevant and usable results that enables
to device the desired decision-aid tool to inform a patient on his perspectives if he was to
decline the current offer.
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While TNO issue is completely addressed, limitations still remain concerning the TNBO
solution. The current thesis focuses on the TNBO issue since the main reason that motivates
a patient’s refusal of a current kidney offer is the expectation of a better one.

4.2 Predicting waiting times based on Marked Point Process

In this section, we present from a high level point of view the new solution we develop in this
work. The details of the mathematical modeling are presented in the dedicated Chapter 5.

This thesis uses the groundwork laid by [1] as a foundation, and the main objective is to
answer the TNBO issue. The mathematical frame we use is the MPP methodology that is
presented in Section 3.2. In this new approach, we do not design a different specific solution
for each problem (TNO/TNBO). Instead, we provide a theoretical frame that includes quality
aspect from the beginning, and that makes it possible to answer both issues at the same time.

4.2.1 Marked Point Process applied to kidney offer

In this section, the MPP methodology presented in Section 3.2 is applied to the kidney offer
problem. This is the new solution developed in this thesis. As in Section 4.1.1, the reasoning
is developed with one initial patient x0 and the corresponding initial offer (x0, y0, t0, q0).

Building new targets We need to build new targets from available data, in order to
retrieve times before next better offers. Those times are the real times we can observe in the
data, which enables us to check the model validity. In the previous work [1], datasets only
include time before next offer, which does not give the possibility to verify model performances
for TNBO predictions.

The Figure 4.3 represents an example of the problem we had with former dataset targets.
‘Data 1’ and ‘Data 2’ refer to one row in the former research dataset. Each data consists
of two direct consecutive offers (for the same patient), which does not take into account for
instance the case a better offer is not the consecutive one but the one after this. We remind
that in this figure, the quality q is the KDRI index quality, which is a risk index: a lower
value of q means a better kidney quality for the patient.

Building the history For all the data processing part that is required to build the history,
previous work from [1] was kept as is: we used the Past waiting list algorithm detailed in
Section 4.1.1. The procedure enables to build the history H = {(tj, qj)}1≤j≤Noffer

for the
initial patient x0.
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Figure 4.3 Build the new targets

Fitting the MPP To solve the problem, we apply the MPP methodology presented in
Section 3.2. The main point is to treat simultaneously times and marks of the event, which
are respectively the time tj of arrival of an eligible kidney and its quality qj. For this reason,
the marks are now denoted as qj to refer to quality (instead of the generic notation κj used
so far).

As explained earlier, an essential point of the method is the relevant choice of the GIF and
the mark CoDF. Concerning the GIF λ∗G(t), which specifies the arrival of the kidney, we use
the theoretical groundwork developed in [1]. Then, we also consider a Poisson process with
rate λ > 0. In this case, the GIF of the model is equal to

λ∗G(t) = λ. (4.2)

Regarding the mark CoDF f ∗(q|t), an analysis is carried out on the quality marks on the
histories of patients to choose the best probability distribution for the model. The assump-
tions of our model imply the considered distributions to be independent of the history H,
and more especially stationary. After a comparative study, the distribution that proved to
be a relevant choice is the Weibull distribution W(θ1, θ2), with parameters θ1, θ2 > 0. The
corresponding mark CoDF is then, for a given t > 0,

∀q ≥ 0, f ∗(q|t) = fQ(q) = θ1

θ2

(
q

θ2

)θ1−1
exp

{
−
(
q

θ2

)θ1}
. (4.3)

The next step is to estimate the model parameters. To infer the GIF parameter λ, the first
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estimator to be tested was λ̂1 = Noffer
∆T , the same as in [1] and which was presented earlier

in Equation (4.1). However, after experiments and tests, a more efficient estimator giving
better results was designed as

λ̂2 = Noffer∑Noffer
j=1 τj

, (4.4)

where the sample {τj}1≤j≤Noffer
is the observed waiting time between two consecutive offers

on the history H of the patient.
Fitting the mark CoDF parameters (θ1, θ2) is achieved with the help of classical inference
methods carried out on the history of past qualities offers {qj}1≤j≤Noffer

, as for instance the
MLE method.

Predicting waiting times When all the MPP is well-defined, we can deduce from it
unknown characteristic figures we are interested in to answer the kidney problem. With the
theoretical frame we set and associated computation, we can retrieve expected waiting time
before next offer as well as expected waiting times before next better offer. Since the CIF
includes the quality aspect, it is possible to set conditions concerning quality, as for example
setting a minimum threshold for the future kidney quality to come.
To answer the TNBO issue, we want to predict the time t+ before a next offer better than the
initial one, i.e. an offer such that q+ > q0. Mathematical results support that the original
MPP can be thinned to become a new MPP which new process rate equals to

λ+ = P(Q > q0)λ. (4.5)

The new process, which counts the arrival of better kidney than the current one, is a thinned
process derived from the original one. The thinning factor is P(Q > q0) =

∫+∞
q0

fQ(q) dq,
which is computed using the mark CoDF fQ that was fitted earlier. We can notice that the
higher the kidney quality has to be, the more important the thinning is, and the smaller the
resulting rate λ+ is.

Steps recovered from previous work The different steps of the implemented MPP
methodology are shown in Figure 4.4. Difference is made between steps taken from Weller [1],
and new developed steps. As explained earlier, the processing step to build history is retrieved
from the past research work, whereas the mathematical steps and framework that come next
are not.



31

Build history Fit MPP Results

Infer PredictProcessData

From Previous Project New Steps

Figure 4.4 Methodology steps

4.2.2 Addressing limitations

The current research handles the kidney problem with a new perspective, which enables to
tackle limitations that were encountered before. We draw up a list of improvements. From
a global point of view, we can say that

• Concerning the TNO problem: We selected and retrieved from former work some rele-
vant, correct and well justified parts. This constitutes a solid groundwork for building
the new method.
• For the TNBO problem: The new solution is oriented towards answering this issue

since this is the most relevant problem to solve for a patient.

Concerning more precise points to address limitations in TNBO issue,

• The current thesis provides a rigorous theoretical frame that supports the method we
develop.
• The quality aspect is fully integrated in the probabilistic model, and has its own distri-

bution, the mark CoDF. The quality aspect does not longer summarize to descriptive
statistics.
• With MPP method, all the information about quality is included into the quality

distribution parameters, the ones we fit using the history. The method is compact, as
working with the full history is no longer necessary.
• With the fitted quality distribution, it is possible to modify the minimum quality

threshold easily and as many times as wanted. The method is flexible and adaptable.
Simulation on higher quality expectancy can be performed.
• No history thinning is performed when solving TNBO problem, but instead a direct

thinning of the process by using the CIF. In this case, the number of eligible offers
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stays the same on histories of patients. The method reduces existing problems with
low priority patients for who no offers would have remain otherwise after the history
thinning.
• The fact that the history remains in its entirety, so it can all be used to fit the CIF,

does not cause any information loss.
• A work on data processing and dataset building has been done in order to retrieve the

true next better offers. Hence, the method validation is possible.
• The method is flexible for potential future modifications: For instance, it is possible

to create a more complex process GIF as well as to change the mark CoDF (e.g.
adding dependence between events and marks). When the process CIF is not an exact
distribution, empirical results can still be obtained easily from simulation. With the
MPP framework, various modifications are possible.

4.2.3 Computational results

Methodologically, the MPP method we develop enables to address some limitations left un-
solved in [1]. We give in this section a quick summary of main computational results to show
that improvements have been made in practice too. Experiments using both the previous
method from [1] and the new one have been run in order to compare performances when
predicting waiting times. Extended details about experiments setups and results are given
later in the dedicated Chapter 6. The new MPP method is referred to as Method 2 and
competing method from [1] is referred to as Method 1.

Concerning the TNO problem, the new rate estimator λ̂2 gives better results than the one λ̂1

used in Method 1. For histories with horizon ∆T = 1000 days (' 3 years), the discriminative
power, measured with Concordance Index (C-index) (refer to Definition 6.2), is virtually the
same from one method to another. However, we note a significant 34.2% Mean Absolute
Percentage Error (MAPE) (error score, refer to Definition 6.1 for details) increase when
using the previous estimator λ̂1 instead of the new estimator λ̂2, meaning new predictions
are closer to real observed values. Equivalently, to go from Method 1 to Method 2 represents
a 25.5% drop in the error score.

For the TNBO problem, the method described in Section 4.1.2 was implemented in order to
be compared with the new MPP method. Concerning C-index (meant to evaluate predictive
power of an estimator, refer to Definition 6.2 for details), Method 1 and Method 2 give
almost the same percentage of good ordering for the patients (based on the observed time),
we note a slightly better performance with MPP Method, more precisely a 2.4% increase
of classifying rate. We have respectively C-index of 63.8 % against 65.3%. Nonetheless, for
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the error indicator, we can also note a relevant MAPE drop of 22.3% when using Method 2
instead of Method 1. The predictions of Method 2 are better than those of Method 1.

We recap figures from the comparison of the main computational results in Table 4.1.

Table 4.1 Methods performances comparison (on test set)

Method MAPE C-index
TNO - Method 1 → Method 2 - 25.5% +0.6%

TNBO - Method 1 → Method 2 MPP - 22.3% +2.4%

In conclusion, in line with the same objectives as [1], the MPP methodology we developed
provides a significant improvement for the prediction of waiting times for kidney transplant
patients.
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CHAPTER 5 MPP MODELING FOR TIME BEFORE NEXT BETTER
OFFER

This chapter details how the MPP methodology presented in Section 3.2 applies to the kidney
transplant problem, and what the next steps are in order to have predictions for our problem.

Remark 5.1 (Prior reading). From this point, global knowledge of the problem, its stakes and
the kidney attribution system of TQ are assumed. To make sure the reader have this knowl-
edge, references, including references to previous work [1], have been provided throughout
Chapters 1, 2 and 4. Most importantly, the Chapter 4 consists of a summary of both previous
thesis [1] and current work methods. The summary is meant to give an overall understanding
and cannot go into details. For this reason, only final solutions are introduced in Chapter
4. The details of the approach carried out to obtain them are presented thoroughly in this
chapter. �

5.1 Marked point process based kidney offer problem

In this section, we explain how we applied the previously detailed MPP method to our
problem. We first introduce the main elements of the problem we try to solve and set up a
model frame with mathematical notation. In a second phase, we apply the chosen approach to
tackle the problem, which uses the CIF. This involves making decisions about the formulation
of this function and its properties, in particular choosing the GIF and the mark CoDF.

5.1.1 Problem components modeling and notations

We need to set variable and parameter notations that stand for essentials elements of the
problem that we already partially introduced in Chapter 4.

• Sets: P is the set of patients, D stands for the set of possible donors. A patient is
denoted as x ∈ P , and a donor as y ∈ D.
• Times are real numbers in R.
• Kidney qualities are denoted as q ∈ ΩQ, where ΩQ is the definition domain of the

quality (ΩQ = R+ in the case of the KDRI quality).
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5.1.1.1 General modeling of attribution process

We explain first the general modeling of the kidney arrival process, without focusing on a
particular initial patient. The variables we introduce are the same for all patients. For that
reason, we add the exponent “0” to all variable notations (e.g., T 0

n), to remind they are the
earliest general variables.

• Let (T 0
n)n∈N be the random process in R+ describing the random times of arrival of

kidneys in the attribution system from an initial time T 0
0 = 0.

• Let (Y 0
n )n∈N be the sequence of random variables in D describing the random donors

arriving at times T 0
n , for n ∈ N.

We have also global model assumptions and their resulting properties. Namely,

Assumption 5.1 (Poisson arrival of donors). We assume kidney donors are arriving on the
market following a homogeneous Poisson point process of rate parameter λ0 > 0 at times
(T 0

n)n∈N, with T 0
0 = 0.

This assumption means (refer to Section 3.1):

• The interevent times τ 0
n = T 0

n+1 − T 0
n are i.i.d., ∀n ∈ N. We have a stationary process

with identically distributed interevent times. It means the distribution of the waiting
times does not change over time.

• Each interevent time τ 0
n = T 0

n+1 − T 0
n follows an exponential distribution Exp(λ0),

∀n ∈ N.

Others assumptions are made in the model, concerning the arrival of donors:

Assumption 5.2. The distribution of the type of incoming kidneys is independent of time:
the Y 0

n are i.i.d., ∀n ∈ N.

Assumption 5.3. The type of incoming donor is independent of its time of arrival: Y 0
n and

T 0
n are independent, ∀n ∈ N.

Remark 5.2 (Model assumptions). To build this general framework, we are using the same
ground theory than the previous work in [1], with the objective to build something on top of it.
Then, we are passing on extended details and justifications about this general framework and
its assumptions, which can be found in [1]. To give an example, the validity of Assumption
5.1 is verified in Section 5.3 of [1]. �
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5.1.1.2 Modeling next eligible offer

In this work, the aim is to answer a particular question: predict waiting times from a given
patient and initial offer. Thus, from now on, we consider the problem for one patient x0 ∈ P ,
who is proposed a kidney from the donor y0 ∈ D, at the time t0 > 0, with a kidney quality
of q0 ∈ ΩQ (quality given by the KDRI indicator). We refer to this offer as the “initial offer”
(x0, y0, t0, q0).
When we study the problem for the given patient x0, the donors arrival process is not the
same as the general process of last Section 5.1.1.1, since, for example, not all donors are
compatible with the aforementioned patient x0. We give below the notation for the resulting
variables and processes, the same ones as before but without the exponent notation “0”.

• Let (Tn)n∈N be the random process in R+ describing the random times of arrival of
eligible donors on the transplant system from an initial time T0 = 0.

• Let (Yn)n∈N be the sequence of random variables in D describing the random eligible
donors arriving at times Tn, for n ∈ N.

• Since we have the characteristics of the patient x0, we can also now introduce the
quality of the kidney.
Let (Qn)n∈N be the random process in ΩQ describing the random kidney qualities
arriving at times Tn, for n ∈ N. For n ∈ N, the quality Qn is the quality of the donor’s
Yn kidney, given our initial patient x0.

• We denote the interevent times as τn = Tn+1 − Tn,∀n ∈ N. For n ∈ N, the interevent
time τn represents the time the MPP spent on its nth state, that is to say the time
elapsed with n events in total in the history. We can speak of the state of the process
because the MPP we use is also a counting process; the events do not happen simulta-
neously so we can count, over the course of time, the total number of events that have
occurred since the beginning.

Basically, studying the problem for an initial offer results in the thinning of the general arrival
process. Only a certain proportion of original donors are eligible for x0. The new process is
still a Poisson process, and if we denote as D∗ the subset of D that stands for the eligible
donors, then the new rate can be expressed as

λ = λ0 × P(Y 0
1 ∈ D∗). (5.1)
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For an extended explanation and proof of the process thinning, we refer to [1] (See Chapter
4, p.29-31). Though, these theoretical specifications are meant to give the high level steps of
the modeling, and also justify where the results come from. In this memoir, we directly start
with the thinned process of eligible donors arrival (Tn)n∈N without considering the earliest
process (T 0

n)n∈N anymore. Then, for the process (Tn)n∈N, we were able to give the following
interesting key property.

Proposition 5.1 (Poisson arrival of eligible donors). The arrival of eligible kidney donors
is following a homogeneous Poisson point process of rate parameter λ > 0 at times (Tn)n∈N,
with T0 = 0.

And since we have a Poisson process, it means naturally it has the same properties we stated
before for the earliest Poisson process. Namely,

• The interevent times τn = Tn+1 − Tn are i.i.d., ∀n ∈ N. We have a stationary process
with identically distributed interevent times. It means the distribution of the waiting
times does not depend on the time being.
• Each interevent time τn = Tn+1−Tn follows an exponential distribution Exp(λ), ∀n ∈ N.

In the problem of kidney graft, we want to know the distribution of the waiting time before
the arrival of the next eligible donor, and the characteristics of this donor, particularly in
order to compute the corresponding quality of the kidney. Hence, we need to introduce
relevant notations:

• We denote as T = T1 the time of the next event (starting to count after the initial
event at t0, the initial offer for the concerned patient x0). Moreover, the time of the
first event equals the first interevent time, T = T1 = T1 − 0 = T1 − T0 = τ0.
• We denote as Y = Y1 the first eligible donor to arrive.
• We denote as Q = Q1 the kidney quality of the donor Y1.
• We denote as {(Tn, Qn)}n∈N the MPP describing arrival of events and associated quality.

5.1.2 Building the history of the process

We explain the way we build the pseudo-history of the MPP by retrieving past waiting lists
from data. We already explained the process in Chapter 4 (Section 4.1.1). We still summarize
quickly the steps to follow, to remind the reader of the notations we use.

The main idea is to look at the past activity of the patient to infer the behavior (frequency,
quality, etc.) of the kidney proposals he receives. In order to do so, we build the history of
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the process for our patient x0. To have all the methodology steps detailed, please refer to
Section 4.1.1. We look at a ∆T time horizon in the past to build the history for the time
period [t0 −∆T, t0]. We get all waiting lists, chronologically ordered, and we denote the jth

one as wj. Each one corresponds to the arrival of a donor (a kidney). For each waiting list
wj, we denote as
• yj ∈ D the corresponding donor.
• tj > 0 the time of the offer.
• qj ∈ ΩQ the quality of the offer for our initial patient x0 (this is a function whose inputs

are yj and x0).

Then, we filter the history to only keep eligible offers for our patient. After this procedure,
detailed in Section 4.1.1 and depicted in Figure 4.1, we get the history H = {(tj, qj)}1≤j≤Noffer

that is made of Noffer events in total. H represents the history of the MPP for the initial
patient x0. (See also Remark 4.1 for the notation H instead of Ht0).

Remark 5.3 (Notation). The history is composed of past events and marks. Those observa-
tions are denoted with small letters by opposition to capital letters notation used for random
variables. The capital letters notation can be used for upcoming events (after time t0), or
for theoretical manipulation of a MPP object (in proofs).
Moreover, the history H represents the past of the MPP we are interested in, which is the
arrival of donors and qualities {(Tn, Qn)}n∈N. When we solve the problem, at time t0, we
already know the MPP events up to this moment, so we consider random variables (and their
capital letter notations) only from the initial time T0 = t0. As for instance the time T . �

Remark 5.4 (Time origin). We generally consider t0 as the origin of times for the random
MPP to begin with. In this case, T0 = t0 = 0 and all times Tn represent elapsed times since
t0. �

5.1.3 Ground Intensity Function: the rate of the process

Concerning the GIF λ∗G(t) that specifies the arrival times of the kidneys, we use the results
discussed in Section 5.1.1. Then, we consider a Poisson process of rate λ > 0, which is a
simple process with interesting properties. The GIF of this particular type of process has
been calculated in Example 3.1. Equation (3.5) gives

∀t > 0, λ∗G(t) = λ. (5.2)

Then, the model’s GIF is constant and matches the rate of the Poisson process λ. It corre-
sponds to the model parameter ΘG = λ discussed earlier in Section 3.2.2.
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The case of the Poisson process is a special one, since it implies first memorylessness. Indeed,
exponentially distributed interevent times are memoryless, since the exponential distribution
is. In addition to this independence between the event times, it also means we do not have
to take account of the past in the waiting time distribution. Stochastically speaking, the
process of arrival restarts from zero at each new event [27]. Then, the previous distribution
notation given the history (in Definition 3.4 and Remark 3.5) can be simplified as follows

∀t > tn, f(t|Htn) = fτn(t), (5.3)

where τn is the waiting time before the next event after the n previous ones at t1, ..., tn.
Moreover, the Poisson process also implies that the distributions of all the waiting times
are equal (the times are equally distributed). Thus, we can simply use the first interevent
distribution fτ0 to stand for all the interevent times distributions. T = T1 = τ0 being the
first interevent time, we get

∀j ≥ 1, fτj = fτ0 = fT , with ∀ t > 0, fT (t) = λe−λt. (5.4)

The knowledge of the distribution fT of the interevent times is a major convenience for all
the predictions we want to make from the model. It results in simplified calculus and closed
form predictions, as we will see in Section 5.2

5.1.4 Mark Conditional Density Function: the quality of kidney

For each event at tj, there is an associated mark κj. In our problem, the mark is the quality
qj of the kidney: κj = qj. For this reason, the marks are now denoted as qj to refer to quality
(instead of the generic notation κj used so far), which is more explicit.
Marks are drawn from the mark CoDF. This function f ∗(q | t) = f ∗(q | t,Ht) can theoretically
depend on the time of the event (t), but also on the past events and marks (Ht). We need
to specify these dependence relations. We can deduce from the model we built that in our
case, there is no dependency between times and marks.

Proposition 5.2. The quality of incoming kidney is independent of its time of arrival: Qn

and Tn are independent, ∀n ∈ N.

Proof. For n ∈ N, the quality Qn is the quality of the donor’s kidney Yn, given our initial
patient x0. Then, Qn is a measurable function of the random variable Yn. In the specific
case of the KDRI quality we can compute using its function fKDRI , we can write: Qn =
fKDRI(Yn, x0). Moreover, Yn and Tn are independent (according to assumption 5.3). Then,



40

we can use the result about independence and function composition given in [27] (p.28) to
conclude in this case Qn and Tn are also independent. �

The immediate consequence is the independence between the time of an event t and the
associated quality q. Then, the mark CoDF can be simplified in this way

f ∗(q | t) = f ∗(q | �t,Ht) = f ∗(q |Ht).

But more importantly, we can prove that the incoming quality has no dependence on the
history at all.

Proposition 5.3. The quality of incoming kidney is independent of the past times and marks,
i.e. does not depend on the history.

Proof. Let n, j ∈ N, so that n > j. On the one hand, according to assumption 5.2, Yn and
Yj are independent. The corresponding kidney qualities can be written as a functions of
the donors. In the case of the KDRI quality: Qn = fKDRI(Yn, x0) and Qj = fKDRI(Yj, x0).
Then, in the same way as in the proof of proposition 5.2, we can conclude Qn and Qj are
independent.

On the other hand, the model assumption 5.3 means that the donor Yn does not depend on
the time Tn of its arrival. Consequently, it seems very reasonable to assume that Yn does
not depend neither on any past time of arrival of previous donors. Indeed, to consider this
dependence before the dependence between Yn and Tn would be somehow illogical, one can
say the first assumption is stronger than the second. Then, the assumption 5.3 involves also
that Yn and Tj are independent. As a result, using again the result of independence from [27]
(p.28), we can conclude that Qn and Tj are independent. �

Consequently, the function f ∗ we use in the model can be simplified, to not depend on the
past, so it can be written depending only on the value q of the mark:

f ∗(q | t) = f ∗(q |��Ht ) = f ∗(q).

In this case, the mark CoDF is characterized as a stationary distribution. Therefore, we
can choose a regular distribution that matches well the distribution of data. Taking into
account all the simplifications, we will mostly use the more explicit notation fQ to refer to
the distribution of the quality, fQ(q) = f ∗(q), except sometimes in theoretical calculus.



41

5.1.4.1 Candidate quality distributions

In order to choose the best law for the model, we did an analysis on the quality data points
of patients histories. We consider three candidates distributions in total. The distribution
should fit well the marks, so it should match the basic characteristics of the marks. In the
work, we use the KDRI index as the quality marks, which is a positive quantity. Then, the
distribution should correspond to a positive variable. As a first step, we try the Gamma and
the Weibull distributions.

Gamma distribution. We try Gamma distribution Γ(θ1, θ2) for different reasons:

• Histograms show that quality distributions throughout different histories are wave
shaped and present a maximum.
• The curve is not symmetric.
• The position of the maximum can vary from the beginning of the curve to the half of

the curve. The spread and length of the tail can deviate too.
• Due to its high flexibility, Gamma law can be adapted to various curve shapes from

one patient to another.

Weibull distribution. Weibull distribution W(θ1, θ2) is also considered for the quality
distribution:

• The Weibull law looks a lot like Gamma distribution, so it is also coherent to test it in
light of previously pinpointed elements that justify the test of the Gamma distribution.
• The difference in effect between the 2 laws can be revealed by looking at their PDFs.

Ignoring all the normalizing constants:

For Gamma, ∀x ≥ 0, f(x) ∝ xθ1−1 exp
(
− x
θ2

)
. (5.5)

For Weibull, ∀x ≥ 0, f(x) ∝ xθ1−1 exp
(
−
(
x

θ2

)θ1)
. (5.6)

As we can see from this, the probability density function for the Weibull distribution
has the possibility to drop off much more quickly (for θ1 > 1) or slowly (for θ1 < 1)
than the Gamma distribution. In the case where θ1 = 1, both distributions reduce to
the exponential distribution, with parameter θ2 = E [X], if X is the associated random
variable.
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We plot the PDF of the two laws for different sets of parameters in Figure 5.1, to show
flexibility and possibilities they represent in general.
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Figure 5.1 PDFs of Gamma and Weibull for different set of parameters

To better illustrate the difference between Gamma and Weibull distributions, we plot the
PDF of both distributions with the same set of parameters. In Figure 5.2, for a given row,
we fixed the scale parameter θ2, and changed the shape parameter θ1 to observe the behavior
of the curves. We kept the exact same scale for the coordinate system to compare plots more
easily.

Weibull law seems more capable of reaching a maximum anywhere, and seems to present more
diversified forms. In particular, we can observe the possibilities offered by the θ1 exponent
inside the exponential in Weibull PDF. This exponent allows Weibull distribution to reach a
more intense and earlier maximum than Gamma distribution, which presents a more flattened
curve.
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Figure 5.2 Comparison of Gamma and Weibull PDFs characteristics

Lognormal distribution. We consider also the Lognormal distribution that is denoted
as Lognormal(θ1, θ2), with parameters θ1 ∈ R and θ2 > 0. This probability law is the
distribution of a continuous variable whose logarithm is normally distributed. That is to say,
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if X ∼ Lognormal(θ1, θ2), then Y = ln(X) ∼ N (θ1, θ2). The corresponding PDF is

∀x ≥ 0, f(x) = 1
x
√

2πθ2
exp

{
−(ln x− θ1)2

2θ2

}
. (5.7)

We can simplify the expression by ignoring all the normalizing constants, as we did for
Gamma and Weibull distributions.

∀x ≥ 0, f(x) ∝ x−1 exp
{
−(ln x)2 − 2θ1 ln x

2θ2

}
∝ x−1 exp

{
−(ln x)2

2θ2
+ θ1

θ2
ln x

}

∝ x−1 exp

−
(

ln x√
2θ2

)2
 exp

(
θ1

θ2
ln x

)

∝ x−1 exp

−
(

ln x√
2θ2

)2
x θ1θ2 .

In the end, we get the non-normalized expression

∀x ≥ 0, f(x) ∝ x
θ1
θ2
−1 exp

−
(

ln x√
2θ2

)2
 . (5.8)

The variable inside the exponential is a power of ln x, instead of a power of x as in the two
other distributions. The factor in front of the exponential is a power of x, but it depends
on both distribution parameters θ1 and θ2, unlike for the two other distributions, where the
exponent depends only on their shape parameter θ1.
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Figure 5.3 PDFs of Lognormal for different set of parameters.
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This new candidate distribution can offer flexibility as well, as we show in Figure 5.3, when
varying the parameters setting. The kind of shape we can obtain is quite diversified and
seems as various as for Weibull distribution.

5.1.4.2 Selected quality distribution

After carrying out the selection procedures and experiments that are detailed in Section 6.4,
we kept the Weibull distribution W(θ1, θ2), with parameters θ1, θ2 > 0. The corresponding
mark CoDF of the MPP is then

fQ(q) = f ∗(q|t) = θ1

θ2

(
q

θ2

)θ1−1
exp

{
−
(
q

θ2

)θ1}
. (5.9)

The parameters of the Weibull distribution are the mark parameters of the model: ΘM =
(θ1, θ2).

5.1.5 Inference

The objective now is to infer the parameters of the model from the data. We have to estimate
the parameter vector Θ = (ΘG,ΘM) = (λ, {θ1, θ2}). In order to do so, we need to compute
the likelihood of the process, given its history H = {(tj, qj)}1≤j≤Noffer

on the time window
[t0 −∆T, t0]. It is important to clarify the fact that when we handle the process described
by the history, we consider the origin of time to be t0 −∆T , so in the new time coordinates
the history is recorded on [0,∆T ]. This is the usual way to deal with it, since in this way
both computations and notations are easier.
For all ongoing Section 5.1.5, we define N = Noffer to simplify notation in calculations.

5.1.5.1 Likelihood

We start with the expression of the likelihood given by the proposition 3.4

L =
 N∏
j=1

λ∗(tj, qj)
 exp {−Λ∗(∆T )} .

We explicit the decomposition of the CIF,

L =
 N∏
j=1

λ∗G(tj)f ∗(qj|tj)
 exp

(
−
∫ ∆T

0
λ∗G(s)ds

)
.



46

Then, we replace the theoretical generic notations by the corresponding expressions of the
model

L =
 N∏
j=1

λfQ(qj)
 exp

(
−
∫ ∆T

0
λds

)
= λN

 N∏
j=1

fQ(qj)
 exp(−λ∆T ).

We can rearrange the expression so we have a product of two decorrelated factors LΘG and
LΘM , that respectively depend on the GIF parameter ΘG = λ and on the mark CoDF
parameters ΘM = (θ1, θ2)

L = λN exp(−λ∆T )︸ ︷︷ ︸
LΘG

 N∏
j=1

fQ(qj)


︸ ︷︷ ︸
LΘM

= LΘG(ΘG|t1, ..., tN) LΘM (ΘM |q1, ..., qN). (5.10)

5.1.5.2 Maximum Likelihood Estimation

Once we get the expression of the likelihood, we can find the MLE estimator by searching
the maximum of the function. We have to solve the system of score equations

(S) :


∂

∂ΘGL = 0
∂

∂ΘML = 0

We replace L by its expression (5.10) we just found, the system becomes

(S) ⇐⇒

LΘM
∂

∂ΘGLΘG(ΘG|t1, ..., tN) = 0

LΘG
∂

∂ΘMLΘM (ΘM |q1, ..., qN) = 0

Since neither the likelihood LΘG nor LΘM are null, we have

(S) ⇐⇒


∂

∂ΘGLΘG(ΘG|t1, ..., tN) = 0 (EG)
∂

∂ΘMLΘM (ΘM |q1, ..., qN) = 0 (EM)

Solving the system is equivalent to solving both equations independently: (EG) to find the
maximum of LΘG , and (EM) to find the maximum of LΘM .

For the first equation (EG), we can rewrite it

(EG) : ∂

∂ΘG

LΘG(ΘG|t1, ..., tN) = ∂

∂λ

[
λN exp(−λ∆T )

]
= 0.

We recognize the equation we solved previously for the homogeneous Poisson process in
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Example 3.2. Then, we get the same result as in Equation (3.9)

Θ̂G

MLE
= λ̂MLE = N

∆T .

To finish to solve the system (S), we still have to solve the equation (EM). We start by
identifying that LΘM = ∏N

j=1 fQ(qj) is the likelihood function of the sample (q1, .., qN) of the
qualities, which are i.i.d. and follow the distribution W(θ1, θ2).
At the same time, we can rewrite the left-hand side of equation (EM) as follows

∂

∂ΘM

LΘM (ΘM |q1, ..., qN) = ∇ΘM [LΘM (ΘM |q1, ..., qN)] =
 ∂
∂θ1
LΘM (ΘM |q1,...,qN )

∂
∂θ2
LΘM (ΘM |q1,...,qN )

 .
Therefore, to solve the equation (EM) is equivalent to solve the system (SM) we define below

(EM) : ∂

∂ΘM

LΘM (ΘM |q1, ..., qN) = 0 ⇐⇒ (SM) :


∂
∂θ1
LΘM (ΘM |q1,...,qN ) = 0

∂
∂θ2
LΘM (ΘM |q1,...,qN ) = 0

We notice that the system (SM) leads to maximizing the likelihood in terms of all its param-
eters, which is exactly as same as performing the MLE method.
Knowing this, and the fact that LΘM is the likelihood of a Weibull W(θ1, θ2) sample, we can
conclude that solving (EM) is equivalent to finding the MLE estimators of the parameters of
the Weibull distribution W(θ1, θ2).
It is possible to find the expression of the estimated parameters in the literature, but in
practice we directly use packages already implemented in R/Python language [35] and [36],
which include MLE method for Weibull distribution.

In conclusion, we proved that the estimator Θ̂MLE is composed of

• The MLE estimator of LΘG , for the rate of the process: Θ̂G

MLE
= λ̂MLE.

• The MLE estimator of LΘM , for the quality distribution: Θ̂M

MLE
= (̂θ1, θ2)

MLE

.

Remark 5.5 (Notation). From now on, we use the notation λ̂1 = λ̂MLE to refer to the
estimator of the parameter ΘG = λ of the process GIF, also known as rate of the process.
This estimator is the same one as the one used in prior work [1]. �

5.1.5.3 Introducing another rate estimator λ̂2

Throughout our experiments, we noticed that the estimator λ̂1, the MLE, presented some
limitations. In order to change the way we estimate the rate λ of the process, we propose a
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new estimation method, referred to as Method 2, that is based on the estimator λ̂2.

Definition 5.1 (Method 2 estimator λ̂2). The Method 2 estimator of the process rate is

λ̂2 = 1
1
N

∑N
j=1 τj

, (5.11)

where

. The {τj}0≤j≤N are the observed interevent waiting times between 2 consecutive offers
on the history H of the patient, ∀j ∈ 0, ..., N , τj = tj+1− tj. (The first interevent time
τ0 does not appear in the expression (5.11) of λ̂2).

. The number of eligible offers on the history is N = Noffer.

. We take as a convention the time tN+1 = ∆T as the end of the history, which corre-
sponds to the time of initial offer, so that τN = tN+1 − tN = ∆T − tN does represent
the last interevent waiting time.

So far, the estimator was λ̂1 = Noffer
∆T . It is a temporal mean, similar to a frequency, composed

of the number of events divided by the timespan during which we count the events. In the
new method we consider, we use instead the mean of the observed interevent waiting times
in the history: 1

N

∑N
j=1 τj . The estimated rate λ̂2 is the reciprocal of this mean, which gives

the right unit: [Time Unit ]−1.

We give an illustration of a patient history in Figure 5.4 to understand better the meaning
of all time notations.

...

Initial Offer =
End of History

Figure 5.4 A patient history H



49

5.1.5.4 Intuitive explanation

We are reasoning for one initial offer in all the calculation part, especially for mathematical
proofs. For the initial patient, we have the history H we built, with the eligible offers that
were proposed to the patient. We retrieve all the times {τj}1≤j≤N between 2 consecutive
offers. The rationale that supports the coherence of the new estimator is that the mean
τ̄N = 1

N

∑N
j=1 τj of these times is supposed to tend (for a large sample {τj}1≤j≤N , i.e. for a

large number N of eligible offers in the history) to the expected waiting time before the next
offer E [T ]. Indeed, it is well known that for a sample mean such as τ̄N and an i.i.d. sample
{τj}1≤j≤N ,

E [τ̄N ] = E

 1
N

N∑
j=1

τj

 = 1
N

N∑
j=1

E [τj] =
i.i.d.

1
N

N∑
j=1

E [τ1] = E [τ1] .

Since the interevent time T before next event is also distributed like the time τ1 (both are
interevent time variables of the process), we get

E [τ̄N ] = E [τ1] = E [T ] = 1
λ
,

where the last equality comes from the exponential distribution of interevent waiting times
of a Poisson process. This result is one of the consequences of the fundamental law of large
number [37] (p.104), which also gives the almost sure convergence of τ̄N to its expected value
1
λ
. Based on that, it seems fair to assume that the inverse of this quantity, the estimator
λ̂2 = 1

τ̄N
, converges to the inverse of the limit, which is exactly λ̂2 −→

N→∞
λ.

However, if this intuition is helpful to find the expression of λ̂2 in the first place, it needs to
be proven rigorously. Beyond the fact that the point convergence is a required property for
an estimator, it is necessary to check other properties to conclude to its relevance.

5.1.5.5 Mathematical validity

In this section, we prove the mathematical validity of this new estimation method for the
process rate λ as below

• We first determine the bias of the estimator. We prove the estimator to be a little
biased, but asymptotically unbiased.
• We compute the variance and the Mean Square Error (MSE) of the estimator. We

prove that the new estimator is consistent.
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For all the following mathematical proofs, we may refer to λ̂2 simply as λ̂ in calculus, in order
to simplify notations.

Proposition 5.4 (Bias of of the estimator λ̂2).
The bias of the estimator λ̂2 is

Bias
[
λ̂2
]

= λ

N − 1 . (5.12)

Which means λ̂2 is asymptotically unbiased.

Proof. We use λ̂ to refer to the estimator λ̂2. We suppose that the size of the sample is
N ≥ 2. Then,

E
[
λ̂
]

= E
[

1
1
N

∑N
j=1 τj

]
= N E

[
1∑N
j=1 τj

]
= N E

g
 N∑
j=1

τj

 ,
where, g(x) = 1

x
, ∀x > 0. Moreover, the τ1, ..., τN are independent and equally distributed

since ∀j, τj ∼ Exp(λ). Hence, by property (See [27] p.145), we have that

N∑
j=1

τj ∼ Γ(N, λ),

where Γ(N, λ) stands for the Gamma distribution with shape parameter N and scale pa-
rameter λ. Also, we have that for a variable Z ∼ Γ(N, λ), the variable g(Z) = 1/Z ∼
Inv-Gamma(N, λ) according to [38]. In this case, we can calculate the composed expectation

E [g(Z)] = λ

N − 1 .

Using this intermediate result, we finally get the expected value of the estimator

E
[
λ̂
]

= N E [g(Z)] = N

N − 1λ.

As a consequence, we can determine the bias of the estimator

Bias
[
λ̂
]

= E
[
λ̂
]
− λ = N

N − 1λ− λ = 1
N − 1λ.

The estimator has a positive bias, proportional to the true value of λ, so its expected value
is greater than λ. But the bias decreases with the size N of the sample, and can rapidly be
insignificant. Indeed,

Bias
[
λ̂
]

= 1
N − 1λ −→N→∞

0.
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The estimator is said to be asymptotically unbiased. �

In practice, as soon as we get a sample of size N ≥ 21, we have a good upper bound on the
relative error

Relative Error =
E
[
λ̂
]
− λ

λ
=
Bias

[
λ̂
]

λ
=

1
N−1λ

λ
= 1
N − 1 ≤

1
21− 1 = 5%.

Proposition 5.5 (Variance of the estimator λ̂2).
The variance of the estimator λ̂2 is

Var
[
λ̂2
]

= N2

(N − 1)2(N − 2)λ
2. (5.13)

Proof. We use λ̂ to refer to the estimator λ̂2. We suppose that the size of the sample is
N ≥ 3. The variance of any random variable can be decomposed in this way

Var
[
λ̂
]

= E
[
λ̂ 2
]
− E

[
λ̂
]2
.

We compute the two terms that compose the variance.

. We already computed E
[
λ̂
]
earlier, so the second term equals E

[
λ̂
]2

= ( N
N−1)2λ2.

. For the second momentum, E
[
λ̂ 2
]

= N2 E

( 1∑N

j=1 τj

)2
 = N2 E

[
g
(∑N

j=1 τj
)]
,

where, g(x) = 1
x2 , ∀x > 0. Moreover, the τ1, ..., τN are independent and equally distributed

since ∀j, τj ∼ Exp(λ). Hence, by property (See [27] p.145), we have that

N∑
j=1

τj ∼ Γ(N, λ).

Also, we have that for a variable Z ∼ Γ(N, λ), the variable 1/Z ∼ Inv-Gamma(N, λ). In this
case, we can calculate the moment of second order of 1/Z using the formula given in [38]

E [g(Z)] = E
[ 1
Z2

]
= λ2

(N − 1)(N − 2) .

Hence, we get the the second momentum E
[
λ̂ 2
]

= N2

(N−1)(N−2)λ
2.
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Using both transitional results, we finally get

Var
[
λ̂
]

= N2

(N − 1)(N − 2)λ
2 −

(
N

N − 1

)2
λ2

= N2 [(N − 1)− (N − 2)]
(N − 1)2(N − 2) = N2

(N − 1)2(N − 2)λ
2.

�

Proposition 5.6 (MSE and consistency of the estimator λ̂2).
The MSE of the estimator λ̂2 is

MSE(λ̂2) = N + 2
(N − 1)(N − 2)λ

2. (5.14)

Furthermore, MSE(λ̂2) −→
N→∞

0 which means that λ̂2 is a consistent estimator of the process
rate λ.

Proof. We use λ̂ to refer to the estimator λ̂2. Using the values of the bias and the variance
we determined, we can compute the MSE of our estimator as

MSE(λ̂) =
(
Bias

[
λ̂
])2

+ Var
[
λ̂
]

=
( 1
N − 1λ

)2
+ N2

(N − 1)2(N − 2)λ
2

= N2 +N − 2
(N − 1)2(N − 2)λ

2 = (N − 1)(N + 2)
(N − 1)2(N − 2)λ

2 = N + 2
(N − 1)(N − 2)λ

2 −→
N→∞

0.

A MSE that tends to 0 is equivalent to the consistency of the estimator (it can be proved
with the squeeze theorem using Markov inequality for the upper bound, the lower bound
being 0 [39]). Consequently, we can say that λ̂ is a consistent estimator of λ. �

In conclusion, we proved that this estimator is appropriate to estimate the rate of the process.
Furthermore, we will show in the experiments Section 6.3.2 that its expression is really
coherent when compared to Method 1 estimator. More importantly, we will also illustrate
how it addresses some problems we could have encountered with Method 1.
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5.2 Marked Point Process predictions

Once we got the MPP defined, including the estimations of the parameters, we can use it
to study properties and characteristic values of the process. In our case, we are interested
in summary statistics like the expected waiting time before next offer E [T ], the expected
waiting time before next better offer E [T |Q > q0], and also confidence intervals for both
these values.
Firstly, we will show how to get exact results from the MPP we fit. And secondly, we will
explain how to use simulation to get empirical results and in what situation it can be relevant.

5.2.1 Exact prediction: Time before Next Offer

In this part, we are only interested in the time before the next event happens, T . As explained
previously in Chapter 4, we do not need the quality part of the MPP method to answer that
question, referred to as TNO. The expected TNO is the expectation of T ∼ Exp(λ). For an
exponentially distributed variable, the expected value denoted as µ is given by (cf. [40])

µ = E [T ] = 1
λ
. (5.15)

To estimate this expectation, we use the estimator λ̂1 of the rate we found in Section 5.1.5.2.
This gives us the prediction µ̂ of the expected TNO

µ̂ = Ê [T ] = 1
λ̂1

= ∆T
Noffer

, (5.16)

with Noffer = Card(H), the number of offers in the history.

Concerning confidence intervals for the prediction, for α ∈ ]0, 1[ a level of confidence, we
want to find an upper bound for the waiting time T . Then, we search for an interval with
form CIα =

[
0, t̃α

]
, so that we have P(T ∈ CIα) = α. Consequently, we can write

α = P(T ∈ CIα) = P(0 ≤ T ≤ t̃α) = FT (t̃α).

We can conclude that t̃α is the α-quantile of the exponential distribution Exp(λ) of T , which
is denoted as qαE(λ). Consequently,

CIα =
[
0, qαE(λ)

]
. (5.17)

To compute the quantile in practice, we simply use λ̂1 as an estimation of λ.



54

5.2.2 Exact prediction: Time before Next Better Offer

In this section, the objective is to determine the time before the next better offer happens.
This involves using both the rate of the process and the quality aspect of the MPP method
to answer the question, referred to as TNBO.
Let T+ be the random variable corresponding to T |Q > q0, that is to say, the time before a
next better offer. By using the definition of an event-conditioned density function, we can
write the expected waiting time before next better offer as

E
[
T+
]

= E [T |Q > q0] =
∫ +∞

0
t fT |Q>q0(t) dt =

∫ +∞

0
t

fT (t)
P(Q > q0) dt (5.18)

= 1
P(Q > q0)

∫ +∞

0
t fT (t) dt︸ ︷︷ ︸
E[T ]

= E [T ]
P(Q > q0) . (5.19)

For the exponentially distributed time T+, we have the relation E [T+] = 1/λ+ that links the
expected value to the exponential parameter λ+ > 0 (see relation (5.15)). As a consequence,
the rate λ+ of the new process defined by the interevent time T+ is

λ+ = 1
E [T+] = P(Q > q0) 1

E [T ] = P(Q > q0)λ. (5.20)

We can see how the new rate λ+ is proportional to the original rate λ. Then, the new process
defined by T+, the one that counts the arrival of better kidney than the current one, is a
thinned process derived from the original one. The thinning factor is λ+/λ = P(Q > q0). As
a result, the higher the quality threshold q0 is for the next offer to come, the more important
the thinning of the process is.
The Equation (5.20) shows that in order to approximate λ+, it is necessary to have an
estimation for each one of the two following quantities

. The original rate λ.

. The thinning factor P(Q > q0). Let us denote it as ρ+ = P(Q > q0), so we can rewrite
the thinning relation (5.20) as

λ+ = ρ+λ. (5.21)

Concerning the approximation of the original rate λ, we use the MLE estimator λ̂1 we found
in Section 5.1.5.2

λ̂1 = Noffer

∆T . (5.22)
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Concerning the thinning factor ρ+, we can first rewrite it in terms of the quality CDF FQ

ρ+ = P(Q > q0) =
∫ +∞

q0
fQ(q) dq = 1− FQ(q0). (5.23)

Hence, we can estimate ρ+ by the following estimator ρ̂+

ρ̂+ = 1− F≈Q (q0), (5.24)

where the approximation F≈Q (of the real FQ) is the CDF corresponding to the quality dis-
tribution of the MPP we fitted earlier in Section 5.1.5.2. That is to say, F≈Q is the CDF of

the Weibull distribution with parameters Θ̂M

MLE
= (̂θ1, θ2)

MLE

.

Finally, combining the two estimations from Equation (5.22) and Equation (5.24), we can
rewrite Equation (5.21) to get the estimator λ̂+ of the rate λ+ of the thinned process as

λ̂+ = ρ̂+ λ̂1 =
(
1− F≈Q (q0)

) Noffer

∆T . (5.25)

In the same way we did in equation 5.16 for the prediction µ̂ of the TNO, the predicted
waiting TNBO is given by the following estimator

µ̂+ = Ê [T+] = 1
λ̂+

= 1
ρ̂+ λ̂1

= 1
1− F≈Q (q0)

∆T
Noffer

. (5.26)

For the confidence intervals of the prediction, this is exactly the same situation as for Equation
(5.17), but with the thinned rate λ+ instead

CIα =
[
0, qαE(λ+)

]
, (5.27)

with qαE(λ+) the α-quantile of the exponential distribution Exp(λ+). To compute it in practice,
we simply replace λ+ by its estimation λ̂+.

Remark 5.6 (KDRI quality). We passed on this detail in this section, but in the specific case
of the KDRI indicator being the quality, the smaller the KDRI is, the better the quality is.
Then, to have a better offer, we need to filter so that q+, KDRI < qKDRI0 . Hence, the thinning
factor is in reality

P(Q > q0) = P(QKDRI < qKDRI0 ) =
∫ qKDRI0

0
fQKDRI (q) dq = FQKDRI (qKDRI0 ).

However, to avoid any confusion, we keep using the more meaningful former notation, in
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which a better quality is a higher quality: q+ > q0.
To be more specific, when detailing a calculus for the particular case of KDRI quality for
instance, we will add the corresponding exponent notation: QKDRI . �

5.2.2.1 Mathematical proof of thinning via process decomposition

The proof we brought previously in Section 5.2.2 is sufficient if we are just interested in the
next event at T+, since we found its distribution. However, this does not stand for the next
interevent waiting times that come after T+, and neither for the nature of the new process
we create.
Then, we want to prove rigorously that thinning the original process as we did really results
in a Poisson process, with new rate λ+, and with the interevent waiting time T+. To do so,
we apply the Poisson process decomposition property detailed in Theorem 3.1.

Proposition 5.7 (Poisson process decomposition applied to kidney offer problem). The
point process denoted as {N+(t), t ≥ 0} that counts only the events such that Q > q0, is a
homogeneous Poisson process of rate λ+ = ρ+λ. Its interevent waiting time is the variable
T+ = T |Q > q0 and follows the exponential distribution Exp(λ+).

Proof. Let {N(t), t ≥ 0} be the general Poisson process of rate λ > 0 that represents the
arrivals of kidney offers. The marked events it counts are the arrivals of eligible donors for
patient x0, that is to say each offer wj. We define the types introduced in proposition 3.1 as
follows:

• Type 1 corresponds to the events for which Q > q0.
• Type 2 corresponds to the other events, the ones for which Q ≤ q0.

Because of propositions 5.2 and 5.3, the quality of the incoming kidney is independent of the
time being, as well as of the past times and marks. Then, events are classified, independently
of the other events, and independently of the time, as follows:

• Type 1 with a probability p1 = P (Q > q0).
• Type 2 with a probability p2 = P

(
Q > q0

)
= 1− p1.

As a consequence, the hypotheses of the proposition 3.1 are fulfilled and we get the result:
{N1(t), t ≥ 0} is a homogeneous Poisson process with rate λ1 = p1λ, which counts the events
for which Q > q0.
In fact, the type-1 events process {N1(t), t ≥ 0} matches the definition of {N+(t), t ≥ 0}
given in the property statement. They both count the same events, so they are the same
process in reality. In parallel, we remind of the notation ρ+ = P (Q > q0) = p1. Then, we
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have the first part of the result: {N+(t), t ≥ 0} is a homogeneous Poisson process of rate
λ+ = λ1 = p1λ = ρ+λ.

In addition, we have (by definition) that the time before next better offer T+ = T |Q > q0

is exactly the first interevent waiting time of the process {N+(t), t ≥ 0}. Since in a Poisson
process all interevent waiting times are i.i.d., this proves the second part of the result: the
interevent waiting time of {N+(t), t ≥ 0} is the variable T+ = T |Q > q0 ∼ Exp(λ+). �

In conclusion, the proposition 5.7 proves we can still use a Poisson process to model the
arrivals of next better offers. Furthermore, it proves also the validity of previous Section
5.2.2 results. Namely, we can estimate the rate of the thinned process {N+(t), t ≥ 0} with
the relation (5.25)

λ̂+ = ρ̂+ λ̂1 =
(
1− F≈Q (q0)

) Noffer

∆T .

And consequently, it is possible to give as a prediction of the waiting TNBO the estimator
from Equation (5.26)

µ̂+ = Ê [T+] = 1
1− F≈Q (q0)

∆T
Noffer

.

Remark 5.7. In this section, we clearly made a difference between the real value of a quantity
and the estimator we use to approximate it. For instance, the true value of the process
rate λ and the estimator λ̂1. This was necessary to distinguish one from the other in this
theoretical section where mathematical results are proven. However, in others section for
which this distinction is not essential, we will directly use the notation that refers to the true
quantity, e.g. λ to refer to the rate of the process, even if in practice we do not know its
value and use instead the corresponding estimator λ̂1. This remark particularly applies in
the following Section 5.2.2.2. �

5.2.2.2 Illustration: example of thinned Poisson process

To illustrate the principle of the thinning, we apply it for one of the patients. In this example,
the rate of the original process is λ = 0.059, and the thinning factor is ρ+ = P(Q > q0) =
0.351. Hence, we can compute the new rate λ+ = 0.059 × 0.351 = 0.0207. We recap the
figures in Table 5.1, where we add the corresponding expected waiting time before next event,
for both original and thinned processes.

The Figure 5.5 displays the distribution of the quality, and represents the thinning factor as
the area under the curve on the left side of the red vertical line (remember we chose KDRI
quality, the smaller the better, as reminded in remark 5.6). The quality distribution is the
Weibull law W(θ1, θ2) with parameter vector (θ1, θ2) = (3.62, 1.70).
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Table 5.1 Thinning process: example for one patient

CAN_ID λ ρ+ = P(Q > q0) λ+ E [T ] E [T+]
255 0.059 0.351 0.0207 17 48
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Figure 5.5 Quality distribution and thinning factor

The distribution of the waiting time T before next offer (before thinning), and the resulting
distribution of the waiting time T+ before next better offer (after thinning) are shown in
Figure 5.6. The two vertical dashed lines represent the respective expected values E [T ] and
E [T+] of the waiting times. Naturally, we can see that the one from the thinned process is
larger than the original one. For later use, we indicate also that the 95% confidence interval
for the time T (defined in Equation (5.17)) is CI95% = [0, 50.7].

5.2.3 Simulation

With the model we developed we do not necessarily need simulation, since the model already
enables us to find closed form results directly through theoretical calculus. Also, since in
our case we have access to the exact distribution of the next interevent times (all i.i.d. for a
Poisson process), we could simulate each event through a simple draw from the exponential
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Figure 5.6 Waiting time for original and thinned Poisson process

distribution Exp(λ) followed by the draw of the corresponding quality from the mark CoDF,
as explained in Section 3.2.4.2.

However, these options are not always possible in other models. Simulation is useful in many
others less special cases, including if we were to modify the model’s GIF or mark CoDF,
which could happen if we wanted to bring improvements to the current model. For that
reason, we see in this section how we can find empirically quite the same results as with
closed form calculus.

5.2.3.1 Application of the inverse method

To perform simulation, we resort to the inverse method presented in Section 3.2.4.2. To use
the proposition 3.6 and be able to perform the time transformation, we need to find the
inverse Λ∗−1 of the iGIF. With the current MPP model, we can have access to its closed
form. First, for t̃ > 0, the expression of the iGIF is

Λ∗(t̃ ) =
∫ t̃

0
λ∗G(s)ds =

∫ t̃

0
λ ds = λ t̃. (5.28)
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The expression of Λ∗ and of its inverse Λ∗−1 are linked with the following fundamental relation

∀ t̃, s̃ ∈ R+ , Λ∗( t̃ ) = s̃ ⇐⇒ t̃ = Λ∗−1( s̃ ). (5.29)

Then, to find the inverse function of Λ∗, we work on its expression until we isolate the variable
t̃ and express it in terms of a function of s̃. Let t̃, s̃ ∈ R+, using the expression in Equation
(5.28)

Λ∗( t̃ ) = s̃ ⇐⇒ λ t̃ = s̃ ⇐⇒ t̃ = s̃

λ
. (5.30)

Hence, we are able to identify the inverse GIF as the function

Λ∗−1 : R+ → R+ ; s̃ 7→ s̃

λ
. (5.31)

Once we have the function Λ∗−1, we are able to apply the inverse method. The algorithm 1
describes the simulation procedure step by step.

Algorithm 1: Simulation of a MPP by inverse method
Input: Time limit T̃ of the simulation.

1. Initialization: Set t = 0, s0 = 0 and j = 1.

2. While t < T̃ do
(a) Generate sj = sj−1 + νj−1, where νj−1 ∼ Exp(1).
(b) Calculate corresponding time: t = Λ∗−1(sj) = sj/λ.
(c) If t < T̃ then

• Time of the event: tj = t

• Mark of the event: generate qj ∼ W(θ1, θ2).
• j = j + 1

3. Output: the simulated history Hs = {(t1, q1), (t2, q2), . . .}.

Some points to consider about the procedure:

• At some point, the simulation has to stop. Hence, there is a time limit T̃ > 0 to set. As
soon as one of the simulated times tj reaches it, the simulation stops. As a result, the
duration of the history is fixed, but not the total number of events in it. This number
is random and differs from one simulation to another.
• We remind the times sj and tj are absolute ones, it means they count elapsed time since

the origin of the history, by opposition to interevent times. To simulate the time sj of
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the jth event (see step 2.(a) of the algorithm 1), we draw first the interevent time νj−1

from an Exp(1) distribution, and then compute the corresponding time sj = sj−1+νj−1.
• The output of the algorithm is the history we just simulated, denoted as Hs. As we

just mentioned, its total length differs from one simulation to another.
• The value of the model parameters, namely ΘG = λ and ΘM = (θ1, θ2), are approxi-

mated with their respective estimators, the ones we fitted using H during the inference
part (refer to Section 5.1.5.2).

We repeat the simulation procedure of the algorithm 1 to simulate a large given number Nsim

of histories, resulting in a final sample of histories
{
Hs,k

}
1≤k≤Nsim

.

The idea now is to compute an average value, over all the histories, of an unknown charac-
teristic value of the MPP we are interested in, like the mean quality of the kidney offers. We
proceed as follows

• Choose an unknown parameter/characteristic value of the MPP we want to estimate.
The real value of the quantity we want is denoted as z. In our example, we take
z = E [Q].

• Choose an estimator of the unknown quantity z, we denote it as Z. Like all summary
statistics, Z is a function of the data we have access to, for a given history H, Z =
function(H). In our example, we can chose Z to be the basic sample mean

Z = 1
N

N∑
j=1

qj, (5.32)

with N = Card(H) the length of the history.

• We compute the statistic Z for all the simulated histories. For k ∈ 1, . . . , Nsim, let Zk
be the corresponding summary statistic computed on the simulated history Hs,k. In
our example, the Equation (5.32) becomes

Zk = 1
Nk

Nk∑
j=1

qkj , (5.33)

with Nk = Card(Hs,k) the length of the history, and qkj the jth quality of the history.

• Then, we average the statistics over all the histories by computing the sample mean

Z̄ = 1
Nsim

Nsim∑
k=1

Zk. (5.34)



62

With an adequate number of simulations Nsim, the statistic Z̄ is a good approximation of
the unknown characteristic value z we want to infer. In the case of the example we took, it
means Z̄ is a good approximation of the quality expectation z = E [Q].

Remark 5.8 (Proof outline: validity of estimator Z̄). The mathematical validity of the esti-
mator Z̄ could be proved with the law of large number for instance (law of large number in
the case of different distributions, [37] p.104). Indeed, the (Zk)k are always mutually inde-
pendent, since they each come from a different simulation k. The result in [37] states:
If the series of the variances ∑+∞

k=1 Var [Zk] /k2 is convergent, then

1
Nsim

Nsim∑
k=1

(Zk − E [Zk]) −→
a.s.

0, (5.35)

where a.s. stands for the almost sure convergence (a type of convergence used for random
variables).

We will not prove the general validity of the estimator Z̄ for any summary statistic Z, but
show its validity in usual cases. Indeed, the hypothesis of the series convergence is true almost
all the time with an usual statistic Z. Let us take the example of Z being the mean quality:
Zk are defined in Equation (5.33). Then, knowing that all the qualities qkj are independent
and equally distributed as the variable Q

∀k ∈ 1, . . . , Nsim, Var [Zk] = 1
N2
k

Var

Nk∑
j=1

qkj

 =
i.i.d.

1
N2
k

Nk∑
j=1

Var
[
qkj
]

=
i.i.d.

1
N2
k

Nk∑
j=1

Var [Q] = Var [Q]
Nk

.

So, the series of variances has as a general term

Var [Zk]
k2 = Var [Q]

Nk

1
k2 ≤ Var [Q] 1

k2 = O
( 1
k2

)
.

That proves the convergence of the series, by asymptotic comparison with the general term
1/k2 of a convergent Riemann series (exponent 2 > 1). In parallel,

∀k ∈ 1, . . . , Nsim, E [Zk] = 1
Nk

Nk∑
j=1

E
[
qkj
]

= 1
Nk

Nk∑
j=1

E [Q] = E [Q] .
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Hence, the result of Equation (5.35) is rewritten as

1
Nsim

Nsim∑
k=1

(Zk − E [Q]) = Z̄ − E [Q] −→
a.s.

0.

In conclusion, this last result proves that Z̄ is a relevant estimator, since it converges to
the expected value we are searching for. Moreover, the almost sure convergence means
the estimator is strongly consistent. This type of consistency involves in particular the
estimator Z̄ to be asymptotically unbiased. In this particular case, the estimator Z̄ is not
only asymptotically unbiased, but it is unbiased for any value of Nsim, as we prove as follows

E
[
Z̄
]

= 1
Nsim

Nsim∑
k=1

E [Zk] = 1
Nsim

Nsim∑
k=1

E [Q] = E [Q]⇐⇒ Bias
[
Z̄
]

= E
[
Z̄
]
− E [Q] = 0.

�

5.2.3.2 An example of simulation

We take again the example presented in Section 5.2.2.2. In this example, we fitted the MPP
and then accessed exact predictions since, with the current MPP model, closed form calculus
is possible. However, for illustration purpose, we consider in this section the simulation
approach to get empirical results.

We apply the simulation procedure we explained so far, in the simple case we want to estimate
the expected value E [T ] of the Time before Next Offer T . Using the notation introduced
earlier,
• The unknown characteristic value we want is z = E [T ].
• The statistic we use to estimate it is simply the time before the first event: Z = t1.
• The corresponding statistic for the kth simulated history is Zk = tk1.

For Nsim = 2000, we simulate the sample of histories using the algorithm 1. We take as
the time limit, T̃ = 350 days (' 1 year, which is more than enough since we only need the
first event to happen). A time transformation is performed in the inverse algorithm, which
turns times we simulated from an unit rate Poisson process to times that could have been
generated from the GIF of the model. This time transformation is represented for one given
simulated history Hs,k in Figure 5.7, for the 20 first events.

The resulting simulated history Hs,k, which includes generated marks, is represented in Fig-
ure 5.8. Each point corresponds to an offer in the simulated history. The times on the x-axis
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are the absolute times from the beginning of the history (the cumulative sum of interevent
waiting times: tj = ∑j−1

k=0 τk). The simulated marks qj (KDRI quality) are on the y-axis.

Then, we compute the statistics (Zk)k and the final statistic Z̄. The histogram of the dis-
tribution of the (Zk)k is given in Figure 5.9. We use it to represent the point estimation Z̄
of the expected time E [T ] we are searching for. Also, we can access to empirical confidence
interval of this quantity, as shown in the figure. In conclusion, we get the estimation Z̄ = 16.3
and the estimated 95% confidence interval ĈI95% = [0, 49.3]. These values are practically the
exact same results as the ones we found in Section 5.2.2.2 using closed form calculus, as we
can compare in Table 5.2.

Table 5.2 Exact predictions and simulation predictions

Exact predictions Simulation predictions
E [T ] 17 16.3
ĈI95% [0, 50.7] [0, 49.3]
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CHAPTER 6 EXPERIMENTS AND RESULTS

In this chapter, we conduct the experiments to define the CIF, obtain the best estimators for
the parameters, and bring corrections to the model. We start by introducing the transplant
attribution system records we use as data. Then, we also present the verification methodology
for validating the developed MPP method. Finally, the performances on the test set are
illustrated in Section 6.6.

6.1 Data from attribution system records

In this work, we applied our MPP model to real attribution system records furnished by TQ,
the public institution in charge of organs attribution to patients waiting for a graft in the
province of Québec. We used the same data as in the former work by Weller [1], that include
records between 2012-03-29 and 2017-12-13. In this previous research, all the raw data were
formatted, preprocessed and cleaned in order to make them usable to our purposes. For this
reason, we will not go deeper into the details but instead focus here on the essential points
for our purposes. All the details, including quantitative and qualitative analysis of the data
can be found in Weller [1], Chapter 5.

6.1.1 The data

After the formatting, the records of the attribution system are contained into two main data
frames. Namely,

• A donor file that contains several lines for each donor. Each line is related to a kidney
offer with the corresponding patient identification. The features of this file are detailed
in Table 6.1.

• A patient file that contains several lines for each patient. Each line is related to a
change in the patient’s status (temporarily or permanently removed from waiting-list,
transplanted). The features of this file are detailed in Table 6.2.

To summarize the methodology we develop, the idea is to take an initial offer (x0, y0, t0), and
to fit the corresponding MPP process that describes the arrival of kidneys and their qualities.
After the MPP is fitted, the model can be used to predict the time before the next offer.
Consequently, the structure of the data points we need should be a pair composed of an initial
offer and the corresponding time before the next offer in order to validate our prediction.
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Table 6.1 Features in the donor file

Feature Signification Type
DON_ID Donor identification number Int
DON_BTH_DT Donor birth date YYYY-MM-DD
DON_STATUS Donor status (e.g. DND or DCD) Int
DON_DEATH_TM Donor date of death YYYY-MM-DD
DON_AGE Donor age in years Int
DON_GENDER Donor gender: Male or Female 1, 2
DON_DIAB Donor history of diabetes 0, 1, 2
DON_COCAINE Donor history of cocaine 0, 1, 2
DON_CIGARETTE Donor history of cigarette 0, 1, 2
DON_CORONARY Donor coronary disease 0, 1
DON_VASC Donor vascular disease 0, 1
DON_HTN Donor history of hypertension 0, 1, 2
DON_CREAT Donor creatinine (µmol.L−1) Int
DON_WGT_KG Donor weight in kg Int
DON_HGT_CM Donor height in cm Int
DON_RACE Donor race Int
DON_COD Donor cause of death Int
DON_EXC Donor exceptional distribution 0, 1
DON_ABO Donor blood-type Char
DON_RH Donor rhesus 0, 1
DON_ANTI_HCV Donor hepatitis C serology Int
DON_A/B/BW/CW/ Donor HLA Allele A, B, BW, CW, DQ, DR or Int
DQ/DR/DRW_1/2 DRW at locus 1 or 2
DON_ORG Donor kidney removed 0, 1, 2
DON_RCV Donor kidney recovered 0, 1
DON_WHY_NOT_RCV Donor kidney why not recovered Int
DON_WHY_REFUSED Donor why refused Int
DON_WHY_FAMILY_REFUSED Donor why family refused Int
DON_WHY_NOT_TX Donor why not transplanted Int
DON_WHAT_IF_NO_TX What happened to the organ if not transplanted Int
DON_CAN_SCORE Donor-Candidate score if relevant Float
CAN_RANK Rank of the candidate for this offer Int
CAN_ID Candidate ID number for this offer Int
CAN_DECISION Candidate decision: Rejection, acceptance 0, 1
CAN_STATUS Candidate status for this offer Null, 2

(Transplanted or not)
CAN_WHY_NO Why candidate refused offer Int
CTR_NO_FOR_ALL Center refused for all candidates 0, 1
CAN_CTR_ID Candidate center ID number Int
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Table 6.2 Features in the patient file

Feature Signification Type
CAN_ID Candidate ID Number Int
ORG_TY Organ to which the candidate is applying Int
CAN_BTH_DT Candidate birth date YYYY-MM-DD
CAN_GENDER Candidate gender: Male, Female 1,2
CAN_WGT_KG Candidate weigth in kg Int
CAN_HGT_CM Candidate height in cm Int
CAN_ABO Candidate blood-type Char
CAN_RH Candidate Rhesus 0,1
CAN_AGHBS Candidate hepatitis B serology Int
CAN_ANTI_HCV Candidate hepatitis C serology Int
CAN_ANTI_HIV Candidate HIV serology Int
CAN_A/B/BW/CW/ Candidate HLA allele A, B, BW, CW, DQ, DR or Int
DQ/DR/DRW_1/2 DRW at locus 1 or 2
CAN_CPRA Candidate latest cRPA Int ∈ [0, 100]
CAN_CPRA_DT_TM Latest date of cPRA measurement YYYY-MM-DD
CAN_LISTING_DT Candidate latest date of enlisting YYYY-MM-DD
CAN_DIAL_DT Candidate latest date of first dialysis YYYY-MM-DD
CAN_NB_TX Number of transplant the candidate underwent Int
CAN_STATUS Candidate status on waiting list: -1,0,1,2

deceased, inactive, active, DDKT
UPDATE_TM Date of status update YYYY-MM-DD
CAN_WHY_RMV Why candidate was removed from the waiting Int

list if relevant
CAN_DGN Candidate initial diagnosis Int
CAN_DGN2 Candidate secondary diagnosis Int
CAN_WTG_DT Starting date for the waiting chronometer YYYY-MM-DD

For these reasons, in this work the data are used in two main different ways.

• Building the history: for a given initial offer an algorithm creates the history of the
corresponding MPP. To do this, it retrieves all kidneys (from the donors file) arrived
in the time window [t0 −∆T, t0], and then it creates all the corresponding waiting lists
by using the data of the patients who were enlisted at that time (from the patients
file).

• Pairing initial offer and next offer: the elementary data points we use are pairs of initial
offer and corresponding next offer. When we mention datasets or data points, we refer
to a number of those pairs.

We summarize the data processing and the way we use it in the Figure 6.1 below.
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1

Pairs
(current offer, next event)

Preprocessing

- Formatting

- Cleaning

2012-03-29 → 2017-12-13

- 848 donors

- 1696 patients enlisted

Histories

Figure 6.1 Steps to create the synthetic dataset

6.1.2 One first experiment to handle data

In this section, the objective is mainly to illustrate the kind of experiments we are performing
when manipulating the data in order to investigate. Also, this section will give a better idea
of what type of experiments we carry out, in contrast to Chapter 5 that was only theoretical.
To implement progressively and test the method, without the computations over the entire
dataset, we have to select a subset that represent well the whole set of patients. We select
20 patients and denote the representative sample as S̃20.

Since one main characteristic in our method differentiating one patient from another is the
number of offers on a patient history, we use the value of Noffer to select the patients that
will constitute S̃20. We draw the histogram of the distribution of Noffer among the patients
in Figure 6.2.

As we can see in Figure 6.2, Noffer is widely ranged from high values (189) to the minimum
value of 0. For most of the data, the numbers of offers Noffer is more than enough to infer
comfortably the parameters of the quality distribution and have a good fit. However, there are
problematic patients i.e., the ones with small Noffer. It is hard to fit the quality distribution
for these patients with few examples of offers in their history.

Moreover, for data with Noffer < 2, we simply cannot infer the parameters of the quality
distribution. We need at least 2 offers in the history (hence 2 quality data points) to infer
the 2 parameters (θ1, θ2) of the Weibull distribution.
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Figure 6.2 Histogram of Noffer and S̃20 patients selection

As a consequence, there is no point in having many patients with high number of offers in
S̃20, since there will be no challenge to fit the quality distribution. Instead, we focus on
potentially problematic patients with small Noffer. We zoom on the histogram in Figure 6.3
to better observe the distribution for low Noffer, and we represent the selected patients in S̃20

with red dotted lines on both Figure 6.2 and Figure 6.3.
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Then, we apply the MPP method for each patient in S̃20. We compute the history according
to the past waiting list method (refer to Section 5.1.2), and we infer the parameters of the
MPP model. We compute the estimator λ̂1 of the GIF of the MPP, and we fit the Weibull
quality distribution on the quality marks of the history. We give all the MPP parameters
we estimated for each patient in Table 6.3. Also, we show the summary plots for the quality
distribution fit for patient n◦15 and n◦20 in Figure 6.4.

Table 6.3 Representative 20 patients sample S̃20

Patient n◦ 1 2 3 4 5 6 7 8 9 10
Noffer 0 1 2 3 4 5 6 7 8 9
λ̂1 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
θ̂1 ∅ ∅ 4.92 3.08 2.84 6.00 10.40 6.17 6.42 3.80
θ̂2 ∅ ∅ 2.39 1.58 1.94 1.35 1.80 1.93 1.78 1.41

Patient n◦ 11 12 13 14 15 16 17 18 19 20
Noffer 10 11 14 16 17 19 32 59 124 189
λ̂1 0.010 0.011 0.014 0.016 0.017 0.019 0.032 0.059 0.124 0.189
θ̂1 2.97 3.28 5.95 2.64 4.52 2.90 2.33 3.62 2.81 2.91
θ̂2 1.70 2.04 2.29 1.62 2.09 1.99 1.62 1.70 1.65 1.67

According to the distribution of Noffer among the patients, we face three different types of
challenges in terms of the difficulty to fit the quality distribution. First, there is not enough
data points (Noffer < 2). Then, between 2 ≤ Noffer ≤ 8, the fit is challenging (the upper bound
is given as an indicative basis, it is not the result of an extended analysis). Finally, there is
the rest of the patients with a sufficiently large Noffer so it does not cause any difficulty to
fit the 2-parameters quality distribution. The proportions of these different categories are
compiled in Table 6.4.

Table 6.4 Three types of challenge in quality fit

Noffer < 2 2 ≤ Noffer ≤ 8 9 ≤ Noffer Total
Occurrences 13 159 608 780
Proportion of dataset (%) 1.67 20.38 77.95 100

On the one hand, in Figure 6.4 for instance, the quality fit is really good for popular patients
that receive a lot of offers in their history (e.g. patient n◦20), or even a sufficient number
of offers (e.g. patient n◦15). On the other hand, the diagnosis plots for patients with a low
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Noffer reveal some challenges, as it can be observed in Figure 6.5. The low number of quality
points in the history makes it hard to infer the parameters correctly. Indeed, only a few
points do not represent well a whole distribution. As a consequence, the histograms that can
be observed are far from the fitted Weibull distribution. This experiment enables us to spot
a weakness in the method. To tackle this difficulty and make a serious improvement of the
model, we propose a solution in the next section.
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(b) Patient n◦20

Figure 6.4 Quality fit on S̃20 patients for Weibull distribution

6.1.3 Method adjustment to tackle hard to fit patients challenge

As we just saw in the previous section, patients who have a low number of offers Noffer in
their history pose a challenge for fitting the mark distribution (the quality of kidney offers).

In parallel to this issue, we remind that we decided in Chapter 5 that for the MPP model we
develop, events and marks are independent (i.e. intensity function and mark distribution are
independent). Hence, while we only keep the Noffer eligible offers to compute the process rate,
we can decide to fit the quality distribution on the whole history before thinning it. This
history before thinning has Ntotal ≥ Noffer offers on it (refer to history building procedure in
Section 4.1.1 and Figure 4.1 as a reminder). The rationale that justifies the possibility of this
adjustment is based on the fact that the eligibility of an offer is not supposed to influence
the mark distribution in our model.
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We test this method modification later in this chapter, in Section 6.4.3.
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Figure 6.5 Challenging quality fit for patient with low Noffer



74

6.2 Verification Methodology

We present the verification methodology we applied to check the validity of the MPP method
we developed. It includes the use of specific verification tools, such as statistical indicators,
and the comparison of performances with other methods.

6.2.1 Notations

In this chapter, we will manipulate several different notions that correspond to waiting times.
Also, we will have to consider several data at the same time, to compute loss functions for
instance, so that variables or parameters (T , q0, etc.) do not necessarily refer to the same
initial offer anymore. In order to make it perfectly clear, we introduce the following notations:

• For one given initial offer, we fit a MPP. As a result, we have an estimated distribution
for the time before next offer.

– When necessary, we will refer to the corresponding random variable with the
notation T≈.

– When referring to the observed time, the target we have, we will use the notation
T ∗.

• Now, when we work with several initial offers at the same time, we differentiate them
by the subscript notation i for the variables corresponding to the ith initial offer
(xi, yi, t0,i, q0,i). Combining this and the previous notations, it gives

– The random variable T≈(i) is the time to next offer we fitted for the ith initial offer,
and E

[
T≈(i)

]
is the corresponding expected waiting time.

– The real number T ∗(i) is the observed waiting time for the ith initial offer.

– The random variable T(i) without exponent is the actual time to next offer, that
is to say the real random variable we want to approximate with T≈(i).

6.2.2 Data particularity

Validation is difficult in our problem. In a classic statistical problem, we usually have several
targets (or outputs) drawn from the same distribution, which makes it possible to compute
statistics from the sample of targets, and then compare them to the predictions we made
using our model. The larger the sample is, the more it reduces randomness of the statistic
(its variance), and the closer the statistic is to the true value we are searching for. The



75

convergence of many usual estimators comes from various theorems like the central limit
theorem (See [37]).

To illustrate a classical situation, let us take an example. Assume that we have a large
number nsample of machines of the exact same type, and the goal is to estimate their time
before failure. We record for each machine, its observed waiting time before failure. For
i ∈ {1, . . . , nsample}, it is denoted as T ∗,ex(i) .
We get a sample of nsample observations from which we can get information about the distri-
bution of the time before failure T ex. To illustrate and analyze the sample distribution, one
of the first things to do is to draw an histogram, as provided in Figure 6.6. We could also
estimate the expected waiting time using a statistic: the sample mean

T̄ ex = 1
nsample

nsample∑
i=1

T ∗,ex(i) .

The statistic T̄ ex is represented as the point estimation in Figure 6.6. As a consequence, we
could compare T̄ to the waiting time E [T≈] we predicted (without using the targets but only
the input variables), in order to validate the method. If the two values are sufficiently close,
it means the method is valid a priori.
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Figure 6.6 Histogram of observed sample
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In our case, it is different since we only have one target. Indeed, for each initial offer, we fit
a complete MPP, and consequently a distribution for T≈ at the same time. But to validate
this distribution, we only have access to one observed time T ∗ which is the time before next
offer for this patient and initial offer.
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Figure 6.7 True PDF of the waiting time T

To illustrate the difficulty it represents, we take the previous example and adapt it to our
current problem. Consider the following model is true: for the process corresponding to the
initial offer, the waiting time T is exponentially distributed and its density is represented
in Figure 6.7 with the blue line. It is the real exact distribution we want to predict to
answer TNO issue, and that we could have guessed from the histogram shape in Figure
6.6 (indeed, the histogram converges to the true distribution as the sample size becomes
larger [41]). However, in our case, we do not have access to the sample of observed times,
and consequently cannot plot any histogram or compute any statistics on it. We only have
access to the one observation T ∗, which was drawn from the true distribution at random. We
represent it with the red line on Figure 6.7.

With this value alone, there is few information about the distribution we are looking for. It
is not necessarily near to the expected value E [T ] (the blue line in Figure 6.7). We already
understand clearly how easier it would have been to validate the model if we had access to
a sample of observations instead of this one value.
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However, let us assume that we fitted the distribution of the waiting time T using the MPP
methodology of Chapter 5. We represent two hypothetical fitted distributions in Figure 6.8,
that we could have fitted following our method. We can see that the two distributions are
quite different from each other, but the observed value is still contained into the 75% CI for
both.

This means that even if we predict the exact true distribution (the one in Figure 6.7), it
will not guarantee that the observed value will be closer to the expected value we predict.
Consequently, it means that we cannot validate the fitted distribution, and then the global
methodology, by only considering one data. We need to use all the initial offers to cancel the
randomness of the draws of the observed times

{
T ∗(i)

}
i
.

Moreover, we can predict that the difference T ∗(i) − E
[
T'(i)

]
between our prediction and the

observed time could be large, even if the prediction is good. Then, validation indicators that
use this difference over all data will probably be large too. As a result, we will focus on
the variation of the indicator value from one method to another, instead of looking at its
absolute value. For instance, a decrease in an error score would mean a global improvement
of the prediction power.
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Figure 6.8 Two examples of possible fitted distributions

Censored observations. Another point to consider in the verification methodology is the
presence of censored observations in the dataset.

For an uncensored data point, we have access to the target we want to predict: it is the time
before next offer.
By opposition, a censored data point does not have the value of this target. It is missing since
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it could not have been observed in practice. In the kidney transplant problem, a censored
data point means the corresponding patient never received another offer after the current one,
because something occurred before it could happen (e.g. patient removed from the waiting
list, deceased patient). This results in the absence of a waiting time before next offer, and
thus the data point has no target to compare the predicted waiting time to.
The Figure 6.9 illustrates the difference between a censored observation and an uncensored
one.

Uncensored

Censored

Figure 6.9 Uncensored and censored observations (figures from [1])

In the light of these difficulties, the objective is to try to make the expected value of our
distribution and the observed value match, on average. However, due to the particularity of
the data targets, the absolute error value is not that useful. Then, to measure improvement
brought by the model we built, it is necessary to compare it to other methods, and consider
relative performances. In addition, despite the fact censored data are generally not used since
it is incomplete data, we propose an approach to include them anyway in the verification
process.
But first, it is necessary to introduce appropriate statistical tools in order to measure perfor-
mances.
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6.2.3 Validation tools

In order to measure performances of methods, we use two main indicators. The first one is
the Mean Absolute Percentage Error (MAPE).

Definition 6.1 (Mean Absolute Percentage Error). For i ∈ 1, . . . , n, letXi be an independent
random variable of predicted value X̂i. The Mean Absolute Percentage Error is

100%
n

n∑
i=1

∣∣∣Xi − X̂i

∣∣∣
Xi

. (6.1)

In our problem, it is written as

100%
n

n∑
i=1

∣∣∣T ∗(i) − E
[
T'(i)

]∣∣∣
T ∗(i)

. (6.2)

The MAPE is an error score measuring the quality of a predictor. It evaluates the difference
between the predictions and the observed values. Also,

• It does not over-penalize errors for large observed times since we normalize the error
by the real observed value T ∗(i).

• It could lead to exaggerated large penalties for small observed times, since we will
divide by a small quantity. However, it will not be a problem here since we consider a
1-day granularity.

The second validation tool evaluates the ability of the method to order patients in terms of
their waiting times. It is the Concordance Index (C-index).

Definition 6.2 (C-index in the continuous case). For i ∈ 1, . . . , n, let ti be the observed
time for a patient i, t̂i the predicted time and Ci = 0 if the observation is censored and 1
otherwise. We assume ti and t̂i are continuous. The C-index is

Cindex =
∑
i:Ci=1

∑
j 6=i 1ti<tj1t̂i<t̂j∑

i:Ci=1
∑
j 6=i 1ti<tj

. (6.3)

The C-index (also known as C-Statistic) is a well known indicator used to evaluate the
predictive power of a model in survival analysis. The index utility allows to measure the
ability of the survival model to predict the events in the right order. It means that if an
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event happens in reality before another one, then the predicted times should be in the same
order. One main characteristic of this indicator is that it can take into account censored data
as well as uncensored ones.

• If the times are not assumed to be continuous, there are some special ways to handle
the tie cases (equality between two times).

• In our problem, the predicted times t̂i will be the times E
[
T'(i)

]
.

6.2.4 Baseline Policy

In order to evaluate the performance of the method we develop, we need to compare it to
some baseline methods. We need to find a basic method that will give first approximations
of the quantities we want to predict, such as waiting times.

Definition 6.3 (Baseline Policy: mean waiting time). We chose a baseline method, to
approximate the waiting time of a patient by the mean waiting time for all patients over the
dataset we have. We will denote it as the mean waiting time

T̄Global = 1
n

n∑
i=1

T ∗(i). (6.4)

This method uses the data targets to estimate a target. Theoretically, when it comes to
computing the performances of the method on a dataset (validation set for instance), we
cannot use the target of the tested data (the one for which we want to predict the real
waiting time) to compute T̄Global. For example, if we want to compute the error of the kth

data εk = T ∗(k) − T̄Global, we cannot use T ∗(k) to compute T̄Global. It is inherently incorrect.
Hence, to evaluate the performance of the method on a dataset, we will use the leave-one-out
cross validation method. This method provides results that are really close to real test error
in practice [42]. The leave-one-out error for the kth data point is

εOOBk = T ∗(k) − T̄Global,k , where T̄Global,k = 1
n− 1

n∑
i=1:i 6=k

T ∗(i).

Another aspect of the Baseline Policy is that, as the method gives the same waiting time for
each patient, it does not have any discriminative power. Indeed, all the predicted times are
equal so the patients cannot be ordered. The resulting C-index is then 0.

Time before Next Offer: For TNO problem, the mean waiting time will be computed over
the whole set, as for each offer we got the time before next offer. The censored data will not
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be used.

Time before Next Better Offer: For the TNBO problem, the mean waiting time will only be
computed over the offer with a next better offer. Censored data will not be used.

6.2.5 Data partition

We use the validation set/test set methodology to validate the model.

During all the validation methodology (Sections 6.3, 6.4 and 6.5), we will run experiments
only on a subset of the data; the validation set. We use it to define the model, like choosing
quality distribution, and also to make adjustments on the model, like with the estimator of
the process rate.

The rest of the data, the test set, is kept unused until the end. Once the model is totally
defined and adjusted, we use the test set to run a last verification procedure and check the
performances of the MPP method we built (in Section 6.6). The performances we get at this
point are supposed to reflect true performances of the model on any new data, since the test
set is not used at any time in the model building process and is supposed to be representative
of real data [42].

The dataset partition is presented in Table 6.5. In order to have similar datasets, we split
data randomly so that both datasets have the same ratio between uncensored and censored
data.

Table 6.5 Dataset partition

Data type Validation set Test set
Uncensored 627 626
Censored 153 152
Total 780 778
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6.3 Define and estimate the GIF: the rate λ

In our MPP model, the GIF λ defines the rate of arrival of eligible kidneys. We need to
infer it with an estimator that uses the history of the process. In the model we built, rate
and quality are uncorrelated, so we can calibrate the rate alone first. This corresponds to
answering the TNO problem, since no quality is used for the moment.

6.3.1 Estimating the process rate with λ̂1

We first try the estimator λ̂1 = Noffer
∆T and evaluate it on the validation set. We will refer

to this estimation method as Method 1. We check the validity of the model using an ap-
propriate statistical tool, the normalized process and the corresponding Quantile-Quantile
plot (Q-Q plot) diagnosis figure. Additionally, we compute results and compare performances
with the Baseline Policy. In the end, we conclude that the rate estimator λ̂1 has to be mod-
ified in order to improve predictions. Therefore, we will use the other rate estimator λ̂2 in
the upcoming Section 6.3.2.

6.3.1.1 Model checking: Q-Q plot of normalized process

One big issue with evaluating the model in our situation is the nature of our data. For
each process we fit, we only have one target, the real observed time before the next offer.
It is not convenient to use usual tools that require a larger sample to validate the quality
of the process fit. In order to overcome this difficulty, we propose a method that enables
us to use all the data at once. The idea is to normalize each process to gain homogeneous
data that can be considered to come from the same unit rate process. Then a Q-Q plot
can be generated using all the normalized data, making empirical quantiles appear from the
normalized observed time. The Q-Q plot informs us about the validity and goodness of the
model.

Mathematically, we need to normalize each process we fitted (for each initial offer), so each
one is converted into a unit rate process. To do so, we have to normalize each process by
using the value of its own rate.

Consider one of the processes we fitted with process rate λ. According to Proposition 3.3, in
order to normalize the corresponding observed time T ∗, we have to multiply it by the rate of
the process. Since it is not accessible, we use instead the estimator of the rate we computed:
λ̂1. Then, we get the normalized observed time Z∗ = λ̂1 × T ∗. The process rates λ being
always smaller than 1 in the kidney offer problem (1 would be equivalent to 1 offer per day
on average), the normalization has the effect of reducing the observed time T ∗.
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By doing this for each process, i.e. each initial offer, we get the sample of normalized observed
waiting times we wanted in the end. It can be considered to come from a unit rate Poisson
process, which means we can draw a Q-Q plot with theoretical quantiles drawn from Exp(1).

Remark 6.1. We can see how we get here the same result we saw before in Section 5.2.2 when
we modified the rate of the process. Indeed, when we normalize the process, we obtain a new
rate λZ by multiplying the original rate by the factor 1

λ
: λZ = 1

λ
× λ. And as we computed

previously in Equation (5.19), this results in dividing the expected value by this same factor
1/λ. In fact, we do have for the new interevent waiting time variable Z, the expectation
E [Z] = E[T ]

1/λ = 1/λ
1/λ = 1. �

Remark 6.2. The study of the normalized waiting times of a process is a common verification
procedure discussed in [2] and [43]. After undergoing a transformation involving the iGIF,
the transformed times constitute the residual process. �
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Figure 6.10 Normalized Q-Q plot: no outliers removed

Once we normalize all the observed times, we draw the Q-Q plot of the normalized sample
in Figure 6.10. We plot 100 points, each one corresponds to an empirical quantile value
computed on the sample (on the y-axis) and the corresponding theoretical quantile value (on
the x-axis). For a perfect fit, that is to say for an empirical distribution that is the same as
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the theoretical distribution we are comparing the sample to, the points of the Q-Q plot are
all on the identity line. In this case, empirical and theoretical quantiles are all equal.
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Figure 6.11 Normalized Q-Q plot: 5 outliers removed

As Figure 6.10 shows, there are abnormally large outlier values that are flattening the plot.
Indeed, the resulting scale of the y-axis makes it hard to discern the rest of the points and
analyze the plot. We remove the 5 largest outlier values and form the Q-Q plot in Figure 6.11.
The analysis of this second Q-Q plots informs us that:

• The removal of only 5 values (out of a total of 626) makes the y-scale go from a 120
maximum to only 15. It means that the outlier values we removed were really far from
the other values, and influenced a lot the graph.

• The 75 first empirical quantiles are the same as the theoretical quantiles. They are
straight on the red identity line y = x. For the early quantiles, empirical and theoretical
distributions are matching.

• Then, the quantiles start to shift appart from the line. The 10 following quantiles are
near theoretical quantiles and have a quite constant shift from the reference line.

• The more we go towards the last quantiles, the more they are shifting from the reference
line. The 2 last quantiles are far from it: we have a ratio empirical/theoretical quantile
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that is around 3 (ratios of 12/4 and 15/5).
• The shift is always on the same side of the line, meaning that the empirical quantile

values are always higher than the theoretical ones. This bias tends to increase when
the values increase. A larger empirical quantile compared to the theoretical one means
the empirical distribution of the sample spreads more towards large values than the
theoretical exponential distribution.

The model has some difficulties with large values, for which it seems the sample of normalized
times has larger values than a sample drawn from a Exp(1). Before digging deeper into this
situation (like checking for causes), we check the performances of Method 1 in terms of
predictions.

6.3.1.2 Performances

We test performances of the method by computing the indicators we detailed earlier during
the validation methodology. We compare the method with the Baseline Policy. The results
are reported in Table 6.6.

Table 6.6 Methods performances comparison

Method MAPE C-index
TNO - Baseline Policy 700 0
TNO - MPP: Method 1 677 0.66

For the C-index, the Method 1 gives a 66% rate of ordering the patient well (based on
the observed time). Concerning the Baseline Policy, it does not offer the possibility to order
patients. Since everyone is given the same waiting time expectation, then the C-index is null.
As a consequence, Method 1 is a good approach for ordering the patients, since otherwise we
will not be able to do it at all.

Compared to Method 1, the Baseline Policy increases the MAPE error by 100 × 700−677
677 =

3.3%. Thus, Method 1 is only slightly better than the Baseline Policy in terms of waiting
time prediction. There is a problem in the predictive power of this estimator.

As a conclusion, the first method λ̂1 built to estimate the process rate presents limitations.
In addition to the issues the Q-Q plot revealed, the predictive power appears to be weak.
In order to address these limitations, we test in the following section another method to
estimate the rate of the process, that is to say the estimator λ̂2 that we presented in Section
5.1.5.3.
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6.3.2 Addressing limitations of λ̂1 with λ̂2

First, we explain the coherence and the link that exists between both estimation methods
for λ that we presented.
The first estimation method is λ̂1 = Noffer

∆T . If we look at Figure 5.4, we can easily observe
that

∆T = (t1 − 0) + (t2 − t1) + ...+ (tN − tN−1) + (tN+1 − tN)

= τ0 + τ1 + τ2 + ...+ τN

= τ0 +
N∑
j=1

τj.

Also, we know that
N = Noffer,

so that we can rewrite
λ̂1 = Noffer

∆T = N

τ0 +∑N
j=1 τj

.

Now, we compare λ̂1 with the expression of the Method 2 estimator

λ̂2 = 1
1
N

∑N
j=1 τj

= N∑N
j=1 τj

.

We can see that they have the same expression without the first term of the denominator.
They are equivalent if we ignore a certain amount of time τ0, which is the time elapsed
between the beginning of the history and the first event.

As a result, the estimated rate λ̂2 is greater than λ̂1. One of the main objectives of developing
this new estimator is particularly not to underestimate process rates for a not popular patient
who would not have a lot of eligible offers in his history. For such a patient, the estimation
of the process rate can be doubled easily by using Method 2 instead of Method 1.

Two examples are given in Figure 6.12. In the history above N = 1, there is only one offer
that happens at time t1 ' ∆T/2. Then, Method 2 will only divide N by τ1 ' ∆T/2, while
Method 1 divides it by the entire time horizon ∆T anyway. By doing this, we can double the
rate for a very unpopular patient. The same thing is demonstrated in the second example
below with N = 2.
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Figure 6.12 Example 1: Low number of eligible offers

We chose to develop the second method since we saw on diagnosis plots (for example on error
diagrams) that too low rates are not representative of the true corresponding rates. For a
patient with one offer, the rate with Method 1 is λ̂1 = Noffer/∆T = 1/1000, which is very
low, taking into account that the patient is not inactive since he already received a first offer
at t0 (the systematic configuration in our problem).

While Method 2 can fix low rates by increasing them, it has no major impact on the other
higher rates. Indeed, the estimator tends to the true value (by consistency property of
the estimator), and this intentional difference is caused by the bias of the estimator λ̂2,
Bias

[
λ̂2
]

= 1
N−1λ , which decreases inversely proportionally with the number N of offers in

the history. With N = 3 offers, the bias is half the rate (the rate is increased by half on
average), but with N ≥ 11, we have a bias less than 10% of the value of the rate (only a
small increase above the real rate value λ on average).
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History 2

History 1

Figure 6.13 Example 2: Recent activity

Furthermore, Method 2 is more adaptive to the recent activity of the patient than Method 1.
Let us consider a patient who does not have any eligible offer in the beginning of the history,
but who starts to become “popular” and receives several offers in the end of the history. The
process rate will be low on average in the whole history period with Method 1, while with
Method 2, we only start to count time from the first eligible offer. The process rate will be
higher, and more representative of the recent actual situation for the patient. We illustrate
this point in Figure 6.13. History 1 and 2 give the same rate with Method 1, while the
History 2 with a recent activity of the patient gives a higher rate with Method 2.

Additionally, Method 2 allows to have more continuous values for expected time predictions.
For low values of Noffer, the corresponding expectation is really discrete in the sense that
possible values are far away from each other. Namely,

Noffer = 1⇒ E [T ] = 1
λ̂1

= ∆T
Noffer

= 1000
1 = 1000,

Noffer = 2⇒ E [T ] = 500,

Noffer = 3⇒ E [T ] = 333, etc.

Patients with the same Noffer will get the exact same predicted waiting time, even if the
pattern of their history is not the same at all. This categorization of patients results in
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the high discretization of the expected times, and results in giving the same prediction for
patients who do not necessarily have the same profile.

We demonstrate both these limitations in Figure 6.14 and the corresponding results in Ta-
ble 6.7, and show how the pinpointed issues are corrected by using λ̂2 instead of λ̂1.

Table 6.7 Solving clustering and discretization with Method 2: estimators and predictions

Method 1 Method 2
Patient n◦ Noffer λ̂1 E [T ] λ̂2 E [T ]

1 1 0.001 1000 0.0011 897
2 1 0.001 1000 0.0014 724
3 1 0.001 1000 0.0021 479
4 2 0.002 500 0.0028 357
5 2 0.002 500 0.0042 240
6 3 0.003 333 0.0046 216
7 3 0.003 333 0.0071 141
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Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

Patient 7

Figure 6.14 Solving clustering and discretization with Method 2: Examples of histories
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Figure 6.15 Correlation between λ̂1 and λ̂2

Linear Regression We compare the rates λ computed with both methods, by plotting a
scatter plot and fitting a linear regression in Figure 6.15. We list important points to consider
in this figure.

• First, it is clear that we have a real coherence between both methods. It is confirmed
statistically: the linear regression model has a p-value for ANOVA test such that p-value
< 2.2× 10−16, which is really significant.

• As we mentioned above, the value of λ̂2 is always larger than the value of λ̂1 (all the
points are above the identity line).

• We see with the regression that we have a global, non negligible, translation to higher
values. The slope is close to 1 (exact value being 1.02) and the intercept is 0.003, which
is equivalent (on average) to adding 0.003 ×∆T = 0.003 × 1000 = 3 eligible offers to
the history of each patient.
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• Method 2 address the low rate limitations we discussed earlier. The rates are increased,
although they still stay reasonably low, but the increase is significant proportionally to
their low initial value with Method 1.
• The other theoretical major improvement of the better representation of the recent

situation for a patient seems to work too. For higher rates of the process, we could
expect (as said and illustrated previously) that values would not differ so much from one
method to the other. This is the case if offers are distributed regularly in the history,
but we see that some groups of points are far away from the identity line (e.g. detached
group at λ̂1 = 0.12). In this case, the big difference comes from the recent popularity
of the patient that Method 2 managed to get to adapt the rate in consequence.

Now that we have illustrated the limitations addressed by the estimator of Method 2, we
apply the solution to answer TNO issue and analyze its performances in the next section.

6.3.3 Estimating the process rate with λ̂2

We check Method 2 based on the same verification methodology we carried out for Method
1. We first use the normalized processes sample technique and draw corresponding diagnosis
plots from it. We analyze the Q-Q plot, as well as another diagnosis plot: the Probability-
Probability plot (P-P plot). After this, we check on performances and compare them with
Method 1 as well as with Baseline Policy.

6.3.3.1 Model checking: Q-Q plot of normalized process

As in Section 6.3.1, we proceed to the Q-Q plot verification. We plot three different Q-Q plots
in Figure 6.16.

The first plot in Figure 6.16a is drawn without removing any of the outliers values, like in
Figure 6.10. The two plots genuinely look alike. We can also observe that the last empirical
quantiles are far from the theoretical ones, so the points drift apart from the red line. Also,
the global shape of the graph is the same as in Figure 6.10. The value of y-scale is significantly
reduced, when compared to the one in Figure 6.10. It means we successfully reduced large
outlier values by using Method 2 instead of Method 1.

However, outliers values still exist and provoke the shift of last quantiles as well as the
impossibility to read the graph. Thus, we will remove some of them to see if there is an
improvement in the Q-Q plot, and judge if the method works well on the remaining values.
In the same way we did in Figure 6.11, we remove the 15 largest outliers values and show
the result in Figure 6.16b. There is a significant improvement in the Q-Q plot, as the points
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are getting closer to the identity line. It indicates that the empirical quantiles match their
corresponding theoretical values better. Moreover, the points are now more aligned than
before, which means that the exponential model is a fairly valid way of modeling the problem.
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Figure 6.16 Normalized Q-Q plot for Method 2

Remark 6.3 (Q-Q plot). In a Q-Q plot, a straight line for the quantiles means the theoretical
distribution we should have (exponential distribution) is the right type of distribution the
sample is drawn from. The slope of the line formed by the quantiles gives information about
the rate of the process (the rate of the exponential distribution). If the slope is 1, then we
have the theoretical rate 1, and the theoretical model matches perfectly the observed data.
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If we have a slope slightly greater than 1, then the rate of the process is slightly smaller than
1 (the events happen less frequently, thus the quantiles are bigger than theoretical ones, so
the points in the Q-Q plot are above the red line). �

To match perfectly the red line, we remove 30 outliers in Figure 6.16c. In this case, the
theoretical model matches perfectly the normalized sample.

It appears that the model we built is really coherent and valid if we remove a little proportion
of the last largest values of the normalized sample. In the Q-Q plot verification, the data
we use are composed of the uncensored values, and non null λ (because otherwise it would
give an infinite expected waiting time), making a total of 626 values. Removing 30 of them
represents a 4.8 % decrease of the total. In Table 6.8, we indicate the proportions in which
some given numbers of removed outliers account for in comparison with the total size of the
validation set.

Table 6.8 Removed outliers proportions - Validation set

Number of outliers removed 5 10 15 20 25 30 35 40 45
Proportion of dataset (%) 0.8 1.6 2.4 3.19 3.99 4.79 5.59 6.39 7.19

Outliers removed. The number of outliers we removed to reach a perfect match between
the model and the data does not account for a significant proportion of the data, less than 5%.
It is quite impossible that all the values fit perfectly a model we build, since there is always
a difference between reality and the model. In our case, only the very tail of the empirical
distribution does not fit the model, which makes the other 95% remaining data validate the
model. We will not focus on the analysis of this drift in quantiles, but we present some
considerations about the outliers values we removed.

• The strategy we adopted to correct the issue is a very simple one. We only removed
the highest values of the sample without any selection process. Some of these values
seemed fairly aberrant given how much they stood out from the rest of the sample, as
Figure 6.16a shows. We remind we are referring to values after normalization.

• In order to draw the normalized Q-Q plot, we normalized the observed times T ∗ of
the data using the rate λ̂2 we computed : Z∗ = λ̂2 × T ∗. So in the end we have a
new normalized waiting time Z∗, which is supposed to come from a unit rate Poisson
process, that is to say Z∗ ∼ Exp(1). A “large” value means a large value compared to
this specific distribution.
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• Given that, we see that a large value can occur for different reasons. It may come from
a large original T ∗, an estimation λ̂2 of the real rate that is not small enough, or both
at the same time. For example, if the λ̂2 we compute is not small enough, the observed
time T ∗ (that is large because it comes from a low rate Poisson process) will not be
shrinked enough when normalized by the estimated rate λ̂2.
Incoherent values can be hard to identify then, when nothing suggests that the patient
will wait a long time (there are lots of offers in the history), but still has a long observed
waiting time. The kidney transplant problem involves a lot of hidden variables that
bring a lot of variability and cannot always be taken into account correctly in the model
we build.

6.3.3.2 Model checking: P-P plot of normalized process

We pursue the verification methodology with the analysis of the normalized sample through
a new type of diagnosis plot, the P-P plot.

While the Q-Q plot represents quantiles, the P-P plot allows to represent theoretical and
empirical probabilities. A P-P plot is a probability plot used to assess how closely two
datasets agree, and that plots the two CoDFs against each other. P-P plots are vastly used
to evaluate the skewness of a distribution.

As a Q-Q plot, the P-P plot allows to assess the goodness of fit for the normalized sample
as well as the validity of the GIF of the MPP model we build. The plot uses the normalized
sample, so the proof that supports it is the same one as for Q-Q plot, that is to say Proposition
3.3.

We display the P-P plots in Figure 6.17 and Figure 6.18 for different numbers of outliers we
removed (as we did previously with Q-Q plots). We add confidence bands (in grey) to detect
natural random little deviations from larger and more abnormal ones. For each subfigure, on
the left we have the classic P-P plot, and on the right we have the corresponding P-P plot
that is detrended in order to reduce visual bias caused by the orthogonal distances from
points to the reference lines [44]. This bias may cause wrong conclusions to be drawn via
visual inference of the plot. With the detrended plot, we can see where and how much the
points deviate from the line or the confidence bands more easily and precisely.

We observe the shift in probabilities in the ending tail of the distribution, like we did before
with Q-Q plots. As before, we remove outliers to see if it reduces the issue. In Figure
6.18b, the deviation is totally eliminated and the remaining deviation can be considered to
be the result of inherent randomness of the model (because the dots are included in the grey
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confidence bands).
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P−P Plot Exp(1): Outliers removed =  0
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P−P Plot Exp(1): Outliers removed =  0 .  Detrend

(a) Removed = 0

●●●●●●●●
●●●●●●

●●●●
●●●●●●●

●●●●●●
●●●●●●●

●●●●
●●●●●

●●●
●●●●
●●●
●●●●●

●●●●●●●
●●●●
●●●●
●●
●●●●●●

●●●●
●●●
●●●●●

●●●●
●●●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●●●●

●●●●
●●●●
●●●●●

●●●●●●
●●●●
●●●●
●●●
●●●
●●●●
●●●
●●●●●

●●●●
●●●●●●●●

●●●●●
●●●●●●●

●●●●●
●●●●
●●●●●●

●●●
●●●
●●●●●

●●
●●●●
●●●●●

●
●●
●●●●
●●●●●●

●●●●
●●●●
●●●●●

●●●●●
●●
●●●●●●●●

●●●●●
●
●●●●●

●●●●
●●●●
●●●●
●●●●●●

●●●
●●●●
●●●
●●●●●

●●●●●
●●●
●●●
●●●●●●

●●●●●●●●
●●
●●
●●●●●●●

●●●●●●●
●●●●
●●●
●●●●●

●●●●
●●●
●●●●
●●●●
●●●●●

●●●
●●●●
●●●●●●

●●●
●●●●●

●●●●
●●●●
●●●●●●●●●

●●●●
●●●●●●●●●●

●●●●●●
●●●●●

●●●●●
●●●
●●●●●

●
●●●●●●●●

●●●
●●●
●●●●●

●●●●●●
●●●●●●

●●●
●●●
●●●●●●

●●●●●●
●●●●●●●●●

●●●●●
●●●●
●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Empirical Probabilities

T
he

or
et

ic
al

 P
ro

ba
bi

lit
ie

s

P−P Plot Exp(1): Outliers removed =  15
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P−P Plot Exp(1): Outliers removed =  15 .  Detrend

(b) Removed = 15

Figure 6.17 P-P Plot for different number of removed outliers

Also, if we start to remove too many of the highest values, as in Figure 6.18c, the probability
points begin to shift down too much, and to go beyond the confidence bands. This is a good
sign which means we also need the highest values of the sample to have a good fit. It con-
firms that only the very ending tail of the sample does not fit well the MPP model we develop.
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P−P Plot Exp(1): Outliers removed =  30
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P−P Plot Exp(1): Outliers removed =  30 .  Detrend

(a) Removed = 30
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P−P Plot Exp(1): Outliers removed =  45
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P−P Plot Exp(1): Outliers removed =  45 .  Detrend

(b) Removed = 45
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Figure 6.18 P-P Plot for different number of removed outliers
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6.3.3.3 Model checking: fit a distribution on normalized data

We can also think of another way to validate our model. Until now, we compared the
normalized sample to a unit rate Poisson process and checked how good the match was.
However, we can try another approach in which we simply fit a Poisson process on the
normalized sample, without fixing any particular rate, and evaluate how probable it is that
the sample comes from a Poisson process. We present the diagnosis plots of the exponential
fit in Figure 6.19.
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Figure 6.19 Exponential Fit on Normalized data

The diagnoses plots show a really good fit. The histogram matches definitely well the expo-
nential distribution, and the CoDF and P-P plots show a genuine match between theory and
observation. Concerning the Q-Q plot, it is correct except for the tail of the distribution that
shows again the recurrent issue we had before. The highest values seem to have a particular
behaviour, different from the rest of the sample.
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Concerning the estimated rate of the process, the distribution of the sample is theoretically
supposed to be the same as a unit rate Poisson process, i.e. a Exp(1). Meanwhile, the fit
gives a rate λ = 0.86± 0.04 which is really close to the theoretical value 1 that represents a
situation where everything in practice is the same as in theory (model assumptions, estimated
rates, not polluted observed values, ...). Also, when fitting the exponential distribution, we
did not remove any outlier values, which has the effect of reducing the estimated rate of the
process.

The fact that the exponential distribution fits so well the normalized sample is a sign of a
genuine coherent model.

6.3.3.4 Performances of Method 2

We test performances of Method 2 by computing indicators we detailed earlier on the verifi-
cation methodology. We compare it with Method 1 and the Baseline Policy.

Table 6.9 Methods performances comparison

Method MAPE C-index
TNO - Baseline Policy 700 0
TNO - Method 1: λ̂1 677 0.66
TNO - Method 2: λ̂2 480 0.66
TNO - Baseline Policy → Method 2 - 31.4% +∞
TNO - Method 1 → Method 2 - 29.1% =

We give the results in Table 6.9, where we can observe that:

• Choosing the Baseline Policy over the Method 2 increases the MAPE error by 100 ×
700−480

480 = 45.8%. The Method 2 is way better than the Baseline Policy, since it makes
the MAPE drop by 31.4%. Method 2 outperforms Method 1, with a 29.1% MAPE
decrease.

• For the C-index, Method 1 and Method 2 give the same performance with a 66% rate
of ordering well the patients (based on the observed time).

As a conclusion, Method 2 gives better results than Method 1 on several and complementary
aspects. We decide then to choose the statistic λ̂2 to estimate the GIF λ of the MPP model
we develop.
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6.4 Define and estimate the mark distribution: the quality Q

The second step to completely define the MPP is to choose the mark CoDF of the process,
which stands for the quality of kidneys. We have to select a probability law that fits well
the quality marks on patients’ histories. We compare the different candidate distributions
we introduced in Section 5.1.4.1, using indicators like Akaike Information Criterion (AIC) or
Bayesian Information Criterion (BIC). Once we define the mark CoDF, the MPP is totally
defined. The marked aspect of the MPP makes it possible to answer the TNBO problem.

6.4.1 Selection procedure of the quality distribution

We already employed Gamma and Weibull distributions during experiments in Section 6.1,
as they are good candidates to fit well the distribution of kidney quality. As we saw, it seems
they both gave similar results, and both fit quite well. However, the systematic selection
between the two has not been discussed. We need to select only one of the distribution to
define the mark CoDF of the MPP. We will use statistical criteria to evaluate the quality of
fit and obtain the better one. For that, we introduce the BIC,

Definition 6.4 (Bayesian Information Criterion). For a k-parameters modelM fitted on a
n-sample X,

BIC = k ln(n)− 2 ln(L̂), (6.5)

where L̂ is the maximized value of the likelihood function of the modelM, i.e.

L̂ = max
θ

[p(X | θ,M)] = p(X | θ̂MLE,M). (6.6)

And we also introduce the AIC,

Definition 6.5 (Akaike Information Criterion). For a k-parameters model M fitted on a
n-sample X,

AIC = 2k − 2 ln(L̂), (6.7)

where L̂ is defined in the same way as in Equation (6.6) in Definition 6.4.

In our case, we need to compare Gamma and Weibull distribution, which both have k = 2
parameters. Then, for a given n-sample of qualities, the term k ln(n) of the BIC expression
in Equation (6.5) is fixed, whatever the distribution is. In the same way, for a fixed sample,
the term 2k of the AIC expression in Equation (6.7) is fixed from one distribution to the
other. Hence, the difference in goodness of fit from one model to the other will only come
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from the maximization of the likelihood L̂.
Therefore, the 2 criteria will order the two tested distributions in the same positions, resulting
in the choice of the same distribution. Consequently, we can rely on only one of the criteria
for our experiments. Here, we select the BIC.

Remark 6.4. the AIC and BIC criteria are proved to be able to estimate how much more (or
less) information is lost by choosing one model or another, which makes them convenient tools
to decide between possible models. However, these estimates are only valid asymptotically,
when the number of data points is large [45,46].
This could cause problems with some patients, whose histories only have a few data points
(low number of offers n = Noffer = 10 for instance). In this case, and even in the case
n/k < 40 according to [47], it is recommended to use rectified criteria, that concentrate
on the difference in the number of parameters between the models we are testing (like the
rectified second-order criterion AICc).
Nonetheless, in our situation, we simply need to compare two distributions that both have
the same number of parameters (k = 2), and each time we compare them, it is on the same
sample with n fixed (a given history). Therefore, we can stick to non-rectified criteria, such
as AIC and BIC, to compare the candidate distributions. �
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Figure 6.20 Weibull vs Gamma selection over BIC criteria, in terms of Noffer
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Test over the validation set. We test if BICWeibull < BICGamma on the histories of the
patients of the validation set. We find that BICWeibull < BICGamma 57.1% of the time. We
plot the percentage in which Weibull law was chosen over the Gamma law in Figure 6.20, in
terms of the number of offers Noffer on considered histories. The red-dotted line shows the 50-
50 percentage where Weibull is selected as often as Gamma. If the quality of fit between the
two distributions is rather the same for low number of offers, it is definitely better with the
Weibull law for a high Noffer. Hence, the right choice would be to take Weibull distribution
to model the quality distribution of the MPP.

6.4.2 Testing Lognormal distribution

Even if Weibull distribution seemed to have a good fit, it is still reasonable to confirm it by
trying another possible distribution. Thus, we apply the Lognormal distribution over the
validation set to see if it outperforms the Weibull distribution. The Lognormal distribution
is denoted as Lognormal(θ1, θ2), with parameters θ1 ∈ R and θ2 > 0. It was also introduced
in Section 5.1.4.1.

Selection over validation set among 3 laws. We did the selection using BIC on the
validation set, as what we did previously with only Gamma and Weibull. For each data
point, we choose the distribution that gives the lowest BIC, which is the one supposed to fit
best the quality sample (the qualities on the history of the corresponding patient). For each
data, the best distribution is said to be “selected”.

If we count each selection individually, i.e. for each one of the data point, we get the fol-
lowings figures: the proportions in which Weibull, Gamma and Lognormal are selected are
respectively 51.4%, 0.5% and 46.4%. Figures are summarized in Table 6.10.

Table 6.10 Best density fit selected over BIC

Weibull Gamma Lognormal No fit
Number of selection 401 4 362 13
Proportion of selection (%) 51.4 0.5 46.4 1.7

For the patients with no more than 2 offers on their history (Noffer < 2), no distribution fit
can be performed at all, as the column ‘No fit’ in Table 6.10 shows. This issue has already
been risen in Section 6.1.

In Figure 6.21 we are now reasoning by clusters, grouping data by same Noffer. For a given
Noffer, we fit all three laws on each data of the group. Then, we compute the proportion in
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Figure 6.21 Weibull/Gamma/Lognormal: Best density fit selected over BIC

which each distribution has been selected, and plot the one which has been selected the most
on the graph, with corresponding proportion.
We can see in Figure 6.21 that:

• Gamma is never the best fit. Weibull or Lognormal are always preferred.
• For low Noffer, Lognormal and Weibull are chosen half of the time approximately. They

are tied. With increasing Noffer, Weibull tends to be chosen more often, to the point it
is always the best of the three.
• One can argue that a larger number of offers in a history can lead to a better and more

faithful representation of the quality. Hence with a large Noffer, randomness is reduced
and the sample is closer to the "real" shape of the quality distribution. In this case,
we should probably go with the systematic selection of Weibull and decide to consider
Weibull as the most appropriate distribution for our problem.

In the light of its clear superiority during the experiments, we decide to stick with the Weibull
distribution to model the mark CoDF of the MPP.
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6.4.3 Method adjustment to tackle hard to fit patients challenge

We apply the method adjustment we discussed in Section 6.1.3 to fix the challenge of fitting
the mark distribution for patients with a low Noffer. Consequently, we adapt the algorithm
and then proceed to the same methodology we did before in Section 6.4.2 to select one of the
three candidate distributions.

If we count each selection individually, i.e. for each one of the data point, we get the fol-
lowings figures: the proportions in which Weibull, Gamma and Lognormal are selected are
respectively 97.2%, 0% and 2.8%. Figures are summarized in Table 6.11.

Table 6.11 Best density fit selected over BIC - Adjustment

Weibull Gamma Lognormal No fit
Number of selection 758 0 22 0
Proportion of selection (%) 97.2 0 2.8 0

It is worth noting that the column ‘No fit’ in Table 6.11 is empty. It means a quality
distribution has been fitted to each one of the patients’ history. The previously pinpointed
problem about patients with a too low number of offers (Noffer < 2) has been solved. The
number of offers Ntotal before thinning is always greater than 2.
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Figure 6.22 Weibull/Gamma/Lognormal: Best density fit selected over BIC - Adjustment
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Also, we produce in Figure 6.22 the same diagnostic graph as in Figure 6.21 to represent
which distribution is the most selected one in terms of the total number Ntotal of offers in
histories before thinning. The conclusion is clearer than before: the Weibull distribution is
the best option to model the quality distribution.

In addition to tackle hard to fit patients challenge, this adjustment in the method also
emphasizes the relevance of the use of Weibull distribution to model quality.
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6.5 Combining rate and quality: the answer to Time before Next Better Offer

In this section, we apply the solution presented in Section 5.2.2. We proceed to the MPP
thinning by using the quality distribution, so we can predict waiting times before a better
kidney proposal, and thus answer the TNBO problem. We refer to this method as Method 2
MPP, by opposition to Method 1 of previous work [1], and in order to indicate the difference
with Method 2 (that does not use the marked aspect of the process). To validate the solution,
we use the same verification methodology as in Section 6.3 with the TNO solution.

6.5.1 Result on original dataset

We first apply the TNBO solution we developed on the original dataset, the one we have
been using from the beginning. The experiments are still carried out on the validation set
we defined in Section 6.2.

Data proportions On the whole validation set, we can have different types of data. There
are censored and uncensored data, but there are also data that correspond on the one hand
to a TNO, and on the other hand to a TNBO. For the verification process of the TNBO
solution, we will run the solution only on TNBO data points. Then, it is fair to check if there
are enough TNBO data points available to validate our solution. We present the proportions
of all different data types in Figure 6.23.

Censored

Uncensored

Time next offer ->

Time next better offer ->

20 %

36 %

44 %

No time before next offer -> Time of censorship

Figure 6.23 Data proportions in terms of their nature
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Given the reasonable proportion of TNBO data points, it seems that we have the required
amount of resources to test the MPP method we developed to tackle TNBO issue.

Performances We run the TNBO solution to predict waiting TNBO. Then, we evaluate
performances and compare them to the Baseline Policy. We give the results in Table 6.12.
From the results and complementary analyses (e.g. residuals analysis), we conclude that:

• We obtain abnormally bad results with the original dataset, in fact even worse results
with our MPP method than with the Baseline Policy. The MAPE score was 703 for
our method against 660 for the Baseline Policy, which accounts for a 6.5% increase.
• The process thinning we do to answer TNBO is too strong and leads to overestimating

the real observed TNBO (the target we want to predict).

Table 6.12 Methods performances comparison - on original dataset

Method MAPE C-index
TNBO - Baseline Policy 659.5 0
TNBO - Method 2 MPP 702.6 0.627

These unexpected results led us to search for an explanation by checking meticulously the
nature of the dataset we use. Finally, we pinpointed one aspect about the way the dataset
is built, which explains the issue we just encountered.

6.5.2 Rebuilding dataset

As we explain in Section 4.2.1 and Section 6.1.1, the building process of the dataset is retrieved
from the former work [1]. During this building process, only pairs of immediate consecutive
offers are retrieved from raw data to build the interevent waiting time targets. We needed
to change the way the dataset is built to retrieve true next better offers. We refer to the
Section 4.2.1 where this issue is already discussed. We illustrate the point in Figure 6.24 to
summarize it.



108

q=2.3 q=1.4

Next offer
q=1.5

Next offer

Real Next_Better_Offer

Data 1 Data 2

Real Next_Better_Offer

Figure 6.24 Build the new targets

Once we tackled this issue, we are able to run again the verification methodology on the new
dataset with valid TNBO targets. As what we did with the original dataset in Section 6.2.5,
we partition the new dataset in a validation set and a test set, at a rate of 50% of total data
each. In this section, experiments are run on the validation set.

6.5.3 Q-Q plots an P-P plots of normalized process

As a first step, we proceed to the Q-Q plot verification. We draw Q-Q plot of the normalized
sample in Figure 6.25. For each subfigure, we removed a given number of outliers, in order
to evaluate if we get a better fit.

In Figure 6.25c we remove 12 outliers, accouting for 12/164 = 7% of the whole dataset. The
quantiles were all brought closer to the red line. In addition, they form quite a straight line
meaning that the theoretical model (exponential distribution) is genuinely correct for the
normalized sample we are testing.

We can see that there is a lot more noise in the graphs in Figure 6.25 than in the ones in
Figure 6.16. This is partly because of the significant difference in the amount of data. Indeed,
less data generally means more noise.
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Figure 6.25 Normalized Q-Q plot for TNBO

As a second step, we draw the P-P plots of the normalized sample in Figure 6.26, as in Figure
6.17 before. Like in the Q-Q plots, we observe more variability than in Figure 6.17, but we
can see the pattern is quite the same. The beginning of the points distribution is close to
the theoretical line, and then we observe a deviation of the empirical points from the theory,
which results in points outside the gray confidence bands. However, removing some outlier
values here also solves the shift by translating the points into the confidence bands. Which
means the model is well adapted to the remaining 93% of the data.
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Figure 6.26 P-P Plot for different number of removed outliers



111

6.5.4 Performances of MPP Method - Comparison

We now test performances of the method by computing indicators, in the case of the TNBO
problem. We compare the Method 2 MPP with both the Baseline Policy and the former
Method 1. We give results in Table 6.13, where it can be seen that:

• The Baseline Policy is outperformed by far by both Method 1 and Method 2 MPP.
The Method 1 reduces the MAPE error by 100× 649.2−335.5

649.2 = 48.3%, while the Method
2 MPP reduces it by nearly 60%. This means both Method 1 and Method 2 MPP
predictions of waiting times are closer to real observed values.
• However, Method 2 MPP gives a significant better score than Method 1, with a 21.8%

reduction of the MAPE error score.
• Concerning C-index, Method 1 and Method 2 MPP both give almost the same percent-

age of ordering well the patient (based on the observed time). We can note a slightly
better performance with Method 2 MPP, a 2.2% increase (proportionally). Concerning
the Baseline Policy, it still does not offer the possibility to order patients so the C-index
is null.

Table 6.13 Methods performances comparison for TNBO

Method MAPE C-index
TNBO - Baseline Policy 649.2 0
TNBO - Method 1 335.5 65.0
TNBO - Method 2 MPP 262.2 66.4
TNBO - Baseline Policy → Method 2 MPP - 59.6% ∞
TNBO - Method 1 → Method 2 MPP - 21.8% +2.2%

In conclusion, the verification procedure we conducted on Method 2 MPP shows it is a viable
way of modeling the TNBO problem. Moreover, in terms of performances, Method 2 MPP
has a better predictive power than Method 1, and is much better than Baseline Policy. The
predictions of the waiting TNBO made by the new MPP model are closer to reality.
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6.6 Results on the test set

During all previous sections in current Chapter 6, the validation set is used to define the
model (selection of quality distribution), assess the current model, and bring modifications
to it if the tests reveal limitations. In the end, we have a fixed definitive MPP model. In this
section, we evaluate the performances of this final MPP model. For this purpose, we use the
test set, which we kept unused so far. In order to confirm the validity of the model, we run
the same verification methodology we carried out on the validation set in the Section 6.3.3
for TNO problem and in the Section 6.5 for TNBO problem.

6.6.1 Results for TNO

We first test the model for the TNO problem.

Performances. We indicate the performances of Method 2 as well as Method 1 and Base-
line Policy in Table 6.14.

The indicators values (MAPE and C-index) are close to the ones we obtained with the
validation set (see Table 6.9). The improvement percentages from one method to another
are also similar. This is a good indicator that the method is consistent, and that it does not
fluctuate from one dataset to another. Also, Method 2 still performs better than Method 1
and the Baseline Policy. It improves significantly the predictive power of the model.

Table 6.14 TNO - Methods performances comparison

Method MAPE C-index
TNO - Baseline Policy 817.1 0
TNO - Method 1: λ̂1 688.9 0.718
TNO - Method 2: λ̂2 513.3 0.722
TNO - Baseline Policy → Method 2 - 37.2% +∞
TNO - Method 1 → Method 2 - 25.5% +0.6%

Q-Q and P-P plots. We give the Q-Q and P-P plots for different relevant numbers of
outliers removed in Figure 6.27. With 35 outliers removed in Figure 6.27c, we reach a quite
perfect straight line and a unit slope in the Q-Q plot. In the same way, the P-P plot shows
a quite perfect line, inside the gray confidence bands. We get the same results as with the
validation set. A removal of 35 values accounts for 5.6% of the total 624 data points we use
in the normalization verification process.
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(c) Removed = 35

Figure 6.27 Q-Q and P-P Plot for different number of removed outliers
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Fit an exponential distribution on the normalized data. As in Section 6.3.3.3, we
fit an exponential distribution on the normalized sample we get with the test set. We present
the diagnosis plots in Figure 6.28. The plots look exactly the same as in Figure 6.19 for
the validation set, so the same analysis can be conducted and the same conclusions can be
drawn. We can conclude that the model matches the test set well too.
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Figure 6.28 Exponential Fit on Normalized data - Test Set

In conclusion, we get exactly the same results on the test set as on the validation set. In both
cases, the model we built improves significantly the predictions for TNO issue compared to
Method 1. Moreover, this similarity in the results between validation set and test set also
means the method we developed is consistent for the type of dataset we build it for.
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6.6.2 Results for TNBO

In this section, we test the model for the TNBO problem.

Performances. We demonstrate the performances of Method 2 MPP as well as Method 1
and Baseline Policy in Table 6.15.

Method 2 MPP performs better than the two others methods. A solid MAPE decrease of
22.3% is observed when using Method 2 MPP instead of Method 1. The C-index is quite the
same for both Method 2 MPP and Method 1. As with the TNO solution, we cannot notice
a significant improvement in the discriminative power.

The indicators values (MAPE and C-index) are not the exact same ones as we obtained
with the validation set (see Table 6.13), but they remain comparable. This difference was
predictable since the validation and test sets are different. Moreover, the small size of the
sets increases the variability and the difference between them (compared to bigger sets that
would tend to be more similar).

However, the relative improvements in performances from one method to another are com-
parable to the ones in Table 6.13. This proves the consistency of the TNBO solution perfor-
mances.

Table 6.15 Methods performances comparison for TNBO

Method MAPE C-index
TNBO - Baseline Policy 564.3 0
TNBO - Method 1 212.4 63.8
TNBO - Method 2 MPP 165.1 65.3
TNBO - Baseline Policy → Method 2 MPP - 70.7% ∞
TNBO - Method 1 → Method 2 MPP - 22.3% +2.4%

Q-Q and P-P plots. We present the Q-Q and P-P plots for different relevant numbers of
outliers removed in Figure 6.29. In the same way as with previous Q-Q and P-P plots for
the validation set in Section 6.5.3, removing outliers improves the match with the theoretical
unit rate exponential distribution. For 14 outliers removed in Figure 6.29c (accounting for
8.6 % of the set), the P-P plots points are all in the gray confidence bands, and the quantiles
of the Q-Q plot are quite aligned. More generally, as with validation set in Figure 6.25, high
variability remains, particularly in the ending tail. Moreover, the Q-Q plot points pattern is
similar to the one in Figure 6.25.
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Figure 6.29 Q-Q and P-P Plot for different number of removed outliers

In conclusion, the Method 2 MPP developed to answer TNBO issue also proves its perfor-
mances and its validity on the test set. The improvement in terms of predictions compared
to Method 1 is comparable to the improvement we observed on the validation set (-22.3%
MAPE on test set, and -21.8 % MAPE on validation set).
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CHAPTER 7 CONCLUSION AND RECOMMENDATIONS

In this chapter, we first summarize the work achieved throughout the thesis and give con-
cluding remarks. Then, we discuss limitations of the proposed method. Finally, we point
out the potential future research that could be conducted, particularly in order to address
current method weaknesses.

7.1 Summary of work

This thesis addresses the problem of informing an ESKD patient on his perspectives about
a next kidney offer if he rejects the current one. The study of the problem is restricted
to non-paediatric patients on a general scoring waiting list, without taking account special
priorities. This kidney transplantation problem is a decision-making issue. Indeed, a patient
and his nephrologist need to decide, during the SDM process, if they accept the kidney
transplantation.

The current work intervenes in this SDM process, its objective is to help the patient decide
if he should accept the current kidney transplant offer, or if he should rather wait for a next
offer. The clinical tool developed enables him to access easily understandable information,
i.e. waiting times. The method provides the expected time before a next offer, as well as
the time to a next better offer. We think this kind of commonly understandable information
can help patients in their decision, but also help them more generally in the disease fighting
process as it helps them be proactive and empowered instead of passive. In addition, the
access for the nephrologist to more complex information than waiting times could always
be useful to better understand the situation himself, or to vulgarize it for the patient if he
judges it relevant.

Many works in the literature addressed the organ transplantation issue but only a few took
a one patient’s side in the decision-aid tool they provided. Additionally, in the few examples
we can find, information given by the tool still poses the question of interpretation for the
patient, like in [22]. The work conducted in [1] palliated these limitations by answering the
TNO issue, as well as laying a groundwork for the TNBO issue but without being conclusive
about it.

The main objective of this thesis was to continue the work in [1] by designing a solution
that consolidates the kidney quality aspect to answer the TNBO issue. To achieve this,
the strategy adopted has been the MPP methodology that enables to model marked and
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timestamped events. The methodology relies on a CIF that combines a GIF (intensity of the
process) that describes the arrival of kidneys, and a mark CoDF that models the quality of
kidneys.

The model we designed successfully gave personalized individual predictions of waiting times,
taking into account patient characteristics through a particular history building as well as
through the use of the KDRI quality index to carry out the MPP thinning. The predictions
provide a solution to the No question issue from the patient aspect.

Moreover, the MPP method we developed provides other possibilities too, including giving
customizable confidence intervals for waiting times, giving the possibility to change the de-
sired quality threshold for the next kidney offer, and giving the expected quality of the next
kidney. These options provide less easily understandable information and can be considered
as advanced ones. If they should be offered or not to patients is a totally different question
to answer. The aim of the tool is to inform the patient, not to confuse him. Besides, this
personalized advanced information is understandable to the nephrologist, which can help
him too during the SDM. Then, the solution answers the No question issue from the doctor
aspect as well.

Performances obtained in both TNO and TNBO issues have proved that the new methodology
completed the pinpointed missing aspects from previous work, and improved the predictive
power of the clinical tool we are developing. Based on the MAPE error score on the test set,
our proposed method outperformed an unmarked Poisson process by 25.5% for TNO problem
and by 22.3% for TNBO problem. Moreover, we respectively observed a MAPE decrease of
37.2% and 70.7% when using our model instead of a baseline policy (a basic statistic that
averages waiting times of all patients in the dataset). Additionally, the method has proved
to be consistent between the validation set and the test set, in terms of absolute results, and
in terms of relative improvements compared to competing methods.

7.2 Limitations

Obviously, the work we developed presents some limitations.

First, we demonstrated the validity of the model when removing a restricted number of
outliers values during the verification procedure. Although we gave some potential causes,
we could not identify the clear reason why these particular values were not shrunk correctly
when normalized. It could potentially mean the process rates we estimated for these patients
were not representative of their true process rates. It may be worth working on it to try to
confirm potential causes, and potentially detect patients for which the method is not entirely
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suitable. The access to better, more complete datasets and information about patients would
help to achieve it.

Secondly, we used the KDRI indicator to evaluate the quality of a kidney, which is presented
in [8]. The quality mark is a major characteristic in the MPP framework we used to answer the
TNBO issue, thus the relevance of the quality indicator can influence directly performances of
the method. For that reason, even if the KDRI indicator is a valid quality indicator, finding
a better, more specific and adapted one could lead to a solution enhancement (e.g. the
KDRI has been developed on American patients, while our work is about transplantation in
Quebec). However, finding a better quality indicator for this kidney transplantation problem
is an entire new research topic in its own which should be addressed at least partially by
qualified nephrologists.

7.3 Future research directions

Beyond the improvements in terms of performances, our work aimed at setting a groundwork
for future research in a longer-term vision. For instance, some of the limitations of this work
could be addressed in future work.

In this research, all the different possibilities offered by the previous work [1] were not explored
nor combined with current work. In this work, we limited the study to a given configuration
of the previous solution from [1], and built the new methodology on top of it. Now that
the MPP methodology that we developed proved to provide promising results for this one
configuration, it could also be applied to other combinations of previous work options (another
history building method for instance).

Also, we did not integrate the piecewise aspect of the previous work [1]. This piecewise aspect
is supposed to update the rate of the Poisson process each year, accounting for the increase
of patient’s age and waiting time. With a full access to data and history building, this aspect
could be integrated into the MPP methodology easily. It would involve the GIF and the
mark CoDF of the process to be piecewise defined, and their parameters to be re-evaluated
for each year elapsed since the time t0 of the initial offer.

The MPP model we developed is not extremely complicated, so we have access to closed form
results (expected waiting time, confidence intervals, etc.) as we demonstrated in Section 5.2.
However, we also justified how the MPP framework provides powerful and convenient simu-
lation possibilities in the case the MPP model becomes too complex to get exact analytical
results. Simulation allows us to access empirical results that are good approximations of
closed form results (refer to simulation Section 3.2.4.2 and the simulation application in
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Section 5.2.3). As a consequence, even if the MPP theory introduced in Chapter 5 is not
used to its full extent with the current model, a future research could explore more of its
potential by designing a more advanced MPP model, as in [25]. One simple example of a
possible improved model is described in Appendix A. Nonetheless, a model like this would
require access to the real and complete history of the patients, when our current MPP model
does not because of incompleteness of clinical data. CIHI annual report [3] claims that since
2011, Quebec is experiencing increased under-reporting due to administrative issues, and
gives supporting statistics as a 40% completeness rate for Quebec dialysis data in 2013.

Finally, the possibility to develop these improvements, and more importantly the ability to
test them, depend highly on the quality of the data we can access to. This is why a more
systematic and complete collection and record of clinical data is a major issue for the research
world to address more and more health problems efficiently. Especially with new methods
like machine learning that require numerous quality data. It is worth noting that institutions
like the data collect from the Canadian Institute for Health Information [48] are helping to
pursue that objective as it is stated in the annual report [4] about organ replacement in
Canada that: “it is only through the ongoing and systematic collection of data that sound
information can be produced to assist with decision-making”.
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APPENDIX A MPP MODEL PROPOSAL

We give the outline of a possible MPP model that could be developed in a future work.
Before that, we want to illustrate the point by providing an example of a MPP model that
includes history dependencies.

Example A.1 (Marked Hawkes process). We present a relevant example of MPP from [33] to
show the relation between the CIF and the nature of the process. The Epidemic Type After-
shock Sequence (ETAS) model is a particular type of MPP for modeling earthquakes times
and magnitudes. In this example, the mark κj ∈ R∗+ = ]0,+∞[ stands for the magnitude of
the earthquake occuring at time tj. The ETAS model can be defined by its specific GIF

λ∗G(t) = µ+ α
∑
tj<t

eβκie−γ(t−tj),

where α, β, γ > 0 are the GIF parameters. When looking closer, we can see how the past
history influences the current rate of the process, through the sum over the whole history
events tj < t. A past mark κj increases the rate via the exponential contribution eβκi , which
itself is weighted by the attenuation exponential factor e−γ(t−tj) that decreases with the age
of the earthquake t − tj. Concerning the magnitude, the mark CoDF is an exponential
distribution

f ∗(κ|t) = δe−δκ,

where δ > 0 is the only parameter. In this model, marks do not depend on the past, and
are exponentially distributed so that the higher the magnitude is, the lower the probability
of such an earthquake to happen is. The exponential distribution parameter δ is essential to
adjust the magnitude of the earthquakes. Finally, we get the corresponding CIF, including
both marks and times by mutliplying the GIF and the mark CoDF together

λ∗(t, κ) = λ∗G(t)f ∗(κ|t) =
µ+ α

∑
tj<t

eβκje−γ(t−tj)

 δe−δκ.
�

Back to our problem, we first believe to observe in some cases that a recent offer made to one
patient could influences in reality the happening of a quick next offer (The model developed
in the thesis is assumed to be a renewal process, which means the happening of an event
does not influences the process rate, which is constant all along). The rationale is that when
a patient is offered a kidney, it could mean that the attribution system situation at this
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particular time (the position of the patient in the waiting list, and the situation of other
patients) enables him to be offered more kidney proposals. In the current model, the rate
computed before and after such an event does not change.

Secondly, in the model developed in this thesis the real history of the patient is not taken
into account, and neither is the real current activity. The reason (as explained in the history
building process in section 4.1.1) is the recurrent missing and/or incomplete data for a lot of
patients that would not allow to develop a method that require real histories. The solution
adopted in the current method is to create a pseudo history for each patient since this is a
viable solution that could be applied for every one of them.

We could use the MPP mathematical framework to develop a model that includes the two
aspects we just pinpointed. We propose a model with a more advanced GIF composed of
two terms, as follows

λ∗G = λpseudo + λreal,

where

. The term λpseudo is computed on the pseudo history H we used so far in the thesis.
Then, we can take the estimator of the rate we used so far, namely: λpseudo = λ̂2.

. The term λreal depends on the real recent activity of the patient in its real history
denoted as Ḣ. To take account of the first point we mentioned, the rate λreal would
include the self-exciting property. It could be defined similarly as in the example A.1,
with an exponentially weighted sum:

λreal = α
∑
j

e−γ(t−ṫj),

where ṫj is the real time of the jth event in real history Ḣ, and α and γ are model
parameters to infer. The parameter α has to be adjusted to account for the relative
importance between the two rates λpseudo and λreal. The parameter γ is the discount
factor that values more recent events higher than older ones.
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