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Fluid temperature predictions of geothermal borefields
using load estimations via state observers

Abstract

Fluid temperature predictions of geothermal borefields usually involve tem-
poral superposition of its characteristic g-function, using load aggregation schemes
to reduce computational times. Assuming that the ground has linear proper-
ties, it can be modeled as a linear state space system where the states are the
aggregated loads. However, the application and accuracy of these models is
compromised when the borefield is already operating and its load history is not
registered or there are gaps in the data. This paper assesses the performance
of state observers to estimate the borefield load history to obtain accurate fluid
predictions. Results show that both Time-Varying Kalman Filter (TVKF) and
Moving Horizon Estimator (MHE) provide predictions with average and max-
imum errors below 0.1 °C and 1 °C respectively. MHE outperforms TVKF in
terms of n-step ahead output predictions and load history profile estimates at
the expense of about 5 times more computational time.

Keywords: Geothermal modeling, Fluid temperature prediction, Load

estimation, State observers, Kalman Filter, Moving Horizon Estimation,

Nomenclature
a Thermal diffusivity (m s=2) K Weighting factor (-)
: -3
At Load aggregation resolution * Density (kg m™)
(s)) T Moving-backwards time (s)
r Arrival cost A State matrix
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AAD Average absolute temperature

difference (K) or (°C)

AAOF Average absolute output error

Q

O = 3

NS

(K) or (°C) w
Input matrix

Output matrix or Thermal ca-
pacity (J/K)
Specific heat capacity (J kg~!

K—1)

45

Buried depth (m) or model dis-
turbance

Thickness (m)
g-Function (-)
Borehole length (m) 5
Identity matrix (-)

Thermal conductivity (W m~!
K1)

Kalman gain

Mass flow rate (kg s~1) 55
Number of instances (-)
Number of time-steps (-)
Observer

Model parameter (kg s~!)

Error covariance matrix 60

Thermal power per unit length

(Wm™)

Thermal power (W)

Q Thermal energy (J)

r Radius (m)

R Thermal resistance (m K W—1)
or measurement noise matrix

S Process noise matrix

t Time (s))

T Temperature (K) or (°C)

u Model input (W)

v Model measurement noise

Vv Volume (m?)

w Model process noise

Z Estimated state (W), (K) or
(°C)

x Model state (W), (K) or (°C),
or shanking space (m)

y Model output (K) or (°C)

z Axial direction

Subscripts

acc Accumulated

agg  Aggregated

b Borehole or borehole wall

c Cell

d Difference

e Error

f Fluid

fg Fluid-to-grout

fm Mean/average fluid
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fm

Measured

Grout

80

gb Grout-to-wall

g9 Grout-to-grout

k Time-step

out Outlet

Q Aggregated loads

s Soil )
sim  Simulation

T Temperatures

v Vertical discretization

x State

Acronyms %

BMS Building Management System

CHS Cylindrical heat source

1. Introduction

COP Coeflicient of performance

FLS Finite line source

GSHP Ground source heat pump

I1LS

Infinite line source

KPI Key performance indicator

MHFE Moving Horizon Estimator or

RC

Moving Horizon Estimation

Resistance-capacitance

SSM State-space model

TABS Thermally activated building

system

TES Thermal energy storage

TRT Thermal response test

TV KF Time-varying Kalman Filter

Geothermal borefields are composed of multiple drillings of vertical boreholes

to extract/inject heat from/into the ground. Typically, each borehole consists of

one or two U-shaped pipes through which water or an anti-freeze mixture is cir-

culated to realize the targeted heat transfer. Borefields are coupled with ground

source heat pump (GSHP) and passive cooling heat exchanger systems, or used

as thermal energy storage (TES) systems to provide efficient heating and cooling

for buildings and districts. The efficiency of these systems is dependent on the

fluid temperature that leaves the borefield. Therefore, knowing the borefield

leaving fluid temperature is key both for optimal design and optimal control

of the geothermal system. To this end, detailed borefield modeling is used to

ultimately predict the fluid temperatures that leave the geothermal borefield.



105

110

115

120

125

130

135

A common approach is to separately treat the modeling of the borehole and the
ground and couple the two models at the borehole wall.
The relation between the borehole wall temperature and the average fluid

temperature within the borehole is given by the effective borehole thermal re-
Trm—Ty

sistance Ry = —~

, where T}, is the average fluid temperature, Tj is the
borehole wall temperature and ¢, is the heat transfer rate (from the borehole to
the ground) per unit length (W/m) [1]. Both analytical (Multipole, Claesson
and Hellstrom [2]) and numerical methods (Finite element method, Lamarche
et al. [3]) can be used to calculate this resistance. Resistance networks can
be considered to add more level of detail and evaluate the temperatures in the
different legs of the U-tubes. However, these approaches do not account for the
transient heat transfer in the grout or the movement of the fluid flow through
the U-tube legs. The borehole capacity can have a substantial influence as
demonstrated by Shirazi and Bernier [4] and it can be taken into account by
adding thermal capacitances to the resistance network [5, 6]. To account for
the heat transfer effects of the fluid flow moving through the piping, the bore-
hole can be vertically discretized [7, 8]. Each discretization comprises a thermal
resistance-capacitance (RC) network and they are coupled by advection heat
transfer equations. Consequently, the vertical variation of the fluid tempera-
ture is taken into account, improving the accuracy of the borehole outlet fluid
temperature Ty, .

To model the ground, the pioneer work of Eskilson and Claesson [9] in-
troduced the so-called ’g-functions’, which are dimensionless thermal response
factors of the ground for a given borefield geometry. In his thesis, Eskilson com-
puted the g-functions numerically considering the ground as a homogeneous
medium, assuming a constant average ground temperature and the same fluid
inlet and borehole wall temperature for all boreholes. Following the work of
Eskilson, several authors tried to analytically determine the g-function of the
borefield using the Infinite Line Source (ILS, Ingersoll and Plass [10]), Cylindri-
cal Line Source (CLS, Carslaw and Jaeger [11]) and Finite Line Source (FLS,

Claesson and Eskilson [12]) approaches. These approaches determine the tem-
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perature profile in the ground for an individual borehole when a constant heat
load is applied. As the ground is assummed to be homogeneous, i.e. the ground
properties are linear, spatial superposition can be applied to obtain the ther-
mal response of a borefield. Then, temporal superposition can be applied to
obtain the ground response under a variable heat load. However, the number of
superposition calculations is proportional to the square of the number of time
steps, therefore escalating the problem complexity as it advances in time. Since
the loads far in time have less impact than the inmediate applied loads, load
aggregation schemes are proposed to reduce the computational burden. A com-
prehensive review of load aggregation schemes can be found in Mitchell and
Spitler [13]. Some examples include the ones proposed by Bernier et al. [14]
and Claesson and Javed [15].

More recently, interest in simpler models oriented towards model-based op-
timal control has increased. Model-based optimal control aims to minimize an
objective function over a finite period of time, relying on the predictions made
by the model. A common strategy for these models is to model the heat dif-
fusion in the ground as a 1D RC network, considering a constant undisturbed
ground temperature in the far field [16], incorporating the geothermal gradi-
ent [17] or even taking into account the effects of the fluid mass flow rate [18].
The information about the borefield load history is stored instead within the
ground nodes. The ground long-term effects, such as thermal interference be-
tween multiple boreholes or axial heat transfer are often not accounted for,
however state updates can be introduced to incorporate these [19]. Other au-
thors prefer data-driven modeling approaches using data from more accurate
models [20, 21]. More recently, Laferriere and Cimmino [22, 23] proposed a
ground model formulation for optimal control based on the thermal response of
the borefield.

Either for simulation or optimization, the accuracy of these models to predict
the fluid temperature is compromised if the borefield load history is not known.
A priori, this lack of information may not be a problem for the assessment and

sizing of new and isolated installations, where there is no previous load history.
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However, in model-based optimal control applications this can lead to issues
in the operation phase. The prediction of the fluid temperature significantly
influences the efficiency of the GSHP system and its ability to supply passive
cooling. Thus, the control decisions taken by the optimal controller are affected
by this prediction. An incorrect prediction of the borefield fluid temperature
may lead to sub-optimal and detrimental control actions. It is not rare to
encounter operating installations which are either not being monitored or lack
high-quality data. Moreover, the measurement instruments (e.g., calorimeters)
normally measure fluid heat flow rate Q ¢, which does not necessarily coincide
with the ground heat flow rate @, as depicted in Figure 1. Finally, there is
always a degree of uncertainty related not only to the measurement data but also
to model parameters that can be re-estimated after a period of operation [24]
or to the presence of neighbouring boreholes that can interfere with the ground
load history [25].

Extending the methodology developed by Cupeiro Figueroa et al. [19, 26],
this paper proposes a method to estimate the load history of non-monitored
operational borefield installations using state observers to obtain accurate bore-
field fluid predictions. State observers are feedback systems that provide an
estimate of the internal states of a given model from measurements of the in-
puts and outputs of the real system to minimize the next-step output error.
They are widely used in model-based optimal control applications to minimize
the error on the current state of the system model and improve the accuracy
of the predictions. The performance of these state observers to estimate the
borefield load history and predicting the fluid temperature is assessed in both
the short and long-term. Section 2 elaborates on the methodology used. Sec-
tion 3 describes the case study building from which the data is extracted and
further details on the experiment set-up, such as the initialization of the states
xg. The resulting vectors of aggregated loads and the fluid temperature predic-
tions from the simulations are discussed in Section 4. Finally, conclusions are

drawn in Section 5.
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Figure 1: Distinction between the fluid heat flow Q 7 and the borefield heat flow Qp.

2. Methodology

Figure 2 shows a schematic of the methodology used in this paper. A generic
borefield model is calibrated using the technical datasheets and information
from a real installation of an office building located in Dilbeek, Brussels. The
model can be represented as a state-space model (SSM) with a parameterized
A matrix. The model input u is the heat flow to the fluid Q ¢ and the output y
is the mean fluid temperature T%,,. The states  of the model are the fluid and
grout temperatures and the vector of aggregated loads Qagg. The parameter
p is the mass flow rate through the borefield rh. A further description of the
model can be found in Section 2.1. Using a frame of historical data (fluid heat
and mass flow rates) stored within the Building Management System (BMS)
the model simulation is coupled with the state observer O that uses the BMS
measurements y,, to estimate the new vector of states & for the next simulation
time-step. Three cases are considered: (i) No state observer O is applied, i.e.
the simulation is run in open-loop, (ii) the observer O is a Time-varying Kalman
Filter (TVKF) and (iii) the observer O is a Moving Horizon Estimator (MHE).

More details about the algorithms of the considered estimators can be found in
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Measured outputs yp,

Real borefield (BMS)

Inputs u
Parameters p ﬂ Technical datasheets

/ Y
> @ ]— Model outputs 'y o

%
Borefield model (SSM)

Initial states X,

> Xy = A(Pw) X + B uy
yvw= Cxy+Duy

Estimated states X

Figure 2: Schematic view of the methodology. The model is initiated with a set of states xq.
At each time-step k the borefield model is fed with the required inputs u and parameters p
extracted from the BMS system, and the states from the previous step. The resulting outputs
y and states x receive feedback information from the output measurements ym to compute a

new state vector of estimates X.

Section 2.2.

2.1. Borefield model

The borefield model is based on the one developed by Laferriere et al. [27].
It uses separate borehole and ground models which are connected through the
wall temperature of the borehole. All the n;, boreholes in the field are lumped
into one single borehole. The borehole model is discretized in a number of
segments n, along the axial direction. For each vertical discretization, radial
heat transfer is considered through the resistance-capacitance networks devel-
oped by Bauer et al. [5] and shown in Figure 3. We refer to their work for
further details about the calculation of the fluid-to-grout R¢,4, grout-to-grout
Rgyg1, Rgg2 and grout-to-wall Ry, resistances and the grout capacitances Cy. To

add the fluid transport component, each discretization i is connected to ad-



vection heat transfer equations. Applying energy balances on the nodes of the

resistance-capacitance network yields:

for the fluid nodes:

dTr1;  Tgs—Trig
prfLiC;lhf dt = £ Rf
g
dT2;  Tyos — Tpoy
prf2.,iCP7f dt =4 Rf
g

for the grout nodes:

Cy

dlg1s  Tris— Ty + Ty,

—mep(Tr1i — Tr1i-1)

—1ep(Tr2,i — T2,it1)

—Tg1i  Tgri—Th

)

dngyi

 Tyai— Ty + Ty1,

dt ng Rggl Rgb

—Ty2i  Tg2 —Thi

Cy

and for the wall node:

s Tgi—Tes
Qv =

Ty2,i — Tp

dt Ryg Rggl Rgb

s

Ry

R

Analogously, for a double U-tube borehole:

for the fluid nodes:

AT Tg1— T

pfViicp s 0 i )
piVi2icp s dz;{;’i = TgQﬂR_ngfZ,z‘
piVis.iCos dz;{t&i _ TgB,zR_ngfS,i
PfViaicp, s dj:{f’i = Tg4»lR;ng4,i

for the grout nodes:

—mep(Tr1i — Tr1i-1)
—mcp(Tr2: — Traie1)
—nep(Tysi — Trs,i-1)

—mep(Tra; — Trajiv1)



Figure 3: Radial cross-sections, resistance-capacitance networks and nomenclature used in the

borehole model for the i-th discretization: Ty fluid temperatures, Ty grout temperatures, T
borehole wall temperatures, Cy grout thermal capacities, R thermal resistances, Qb heat flow
injected /extracted into/from the ground. The subscripts 1 and 3 refer to the downward-flow
legs, while the subscripts 2 and 4 refer to the upward-flow legs. Adaptation from Bauer et al.

[5).

10



dTg1s  Tria—Tge | Tooi—Tgrs | Tysi — T Tgai — Ty Tgri—Toy

c — + + + -
v dt ng Rggl Rgg2 Rggl Rgb
(2e)
c, dT g2 _ Ttai— Ty n Ty1,s — Tg2, n Tyai — Tg2,s n Tysi — T2, Ty2i —Th
dt ng Rggl Rgg2 Rggl Rgb
(2f)
c, dT 3.4 _ Tr3: —Ty3,i n Tyo,i — Ty3,i n Tog1,0 —Tya,i n Tyai —Tysi  Tyzi —Thi
dt ng Rggl Rgg2 ngl Ryb
(28)
c, dT g4, _ Tra;—Tyay n To1,i — Tyai + Ty2,i — Tga,i + Ty3i —Tgai  Tgai — T
dt Ry Rgg1 Rggo Rgg1 Rgp
(2h)

and for the wall node:

Tor—Toi  Tg2,0 —Tos  Ty35 —Tos  Tyay — T .
g1, b, + 92, b, + 93, b, + g4, b, (21)

Qb’i a Ry, Ry Ry Ry

The mean fluid temperature T, is given by the average of the inlet and

outlet of the borehole:

T 5(Tr10+ Tr2,1) single U-tube
fm =
i(TfLU + Tf271 + ng}o + Tf4’1) double U-tube (3)

and the total borefield load equals the sum of all the segment loads, multi-

plied by the number of boreholes ny:

Qv = ZU: Qb.i (4)

i=1

Moreover, the following boundary and initial conditions are imposed:

11
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mep(Tr10 — Tr2,1) single U-tube

Qr=9 . (5a)

m;" (Tr1,0 — Tp21 + T30 — Tra1)  double U-tube
Tsi = Tir1,72,13,f4,91,92,93,94},i(t = 0) (5b)
Trom,+1 = Tr1,m, (5¢)
Tram,+1 = Trsm, (5d)

where T ; is the undisturbed ground temperature in the far field at the
discretization ¢, thus accounting for the geothermal gradient. The borehole
model dynamic equations (Equations 1, 2, 3 and 5b) can be re-arranged and
represented as a state-space model as shown in Equation 6, where Ay, Br and
Cr are the matrices of the linear state-space model. Ap represents a time
linear transfer map of the discretized fluid and grout temperatures (T1,1, Tr2,1,
Tg1,1, Ty2,1, -..), Br is the heat gain matrix from the fluid heat flow (Qf),
while Cr represents the mapping of the discretized fluid and grout temperatures
to the mean fluid temperature (Ty,,). The states of the model are the fluid
and grout temperatures for each discretization, represented by the vector! T
in Equation 6¢c. Note that the borehole model Ar(p) matrix is dependant
on the mass flow rate circulating through the borefield due to (i) the fluid
transport component and (i) the variability of Ry, with the convective heat
transfer coeffficient. As a result, the Ar(p) matrix is parameterized, with the
parameter p representing the mass flow rate ri. The size of the state-space
model depends on the number of considered vertical discretizations n, and the

pipe configuration of the borehole (single U-tube or double U-tube).

1We represent the vectors with upright boldface notation while the matrices use non-bold

italic notation.

12
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oT

o= Ar(p) T+ Br Qg (6a)

Tim=Cr T (6b)

T = [Tr11,Tro1, (Tis0, Tran), Ty 1y Tozts (Tyss Tyan)s -] - (6¢)
Qe = [Qf]" (6d)
Tem = [Tym]” (6e)

The ground model computes the effective borehole wall temperature in the
borefield, T}, from the temporal superposition of the g-function, g(t) [9, 28, 29]
as presented by Equation 7:

_ [fdg Qt—7)
Ty(t) = /0 e de (7)

To reduce the computational time, the history of borefield loads, Qp, is ag-
gregated using a continuous load aggregation scheme, in line with the continuous
state-space model in Equation 6. Several discrete load aggregation methods are
available in the literature with varying levels of performance and computational
speed, as analysed by Mitchell and Spitler [13]. Here, a continuous scheme is
constructed in analogy with convection phenomena, where historical borefield

loads are akin to loads advected through time, that is :

3Qa99 _ aQagg

o0 or (8a)
Qagg(t=0,7) =0 (8b)
Qagg(t, ™ = 0) = Qu(t) (8c)

where Qug is the load history of the borefield and 7 is the time moving
backwards through the load history, such that the exact solution to Equa-
tion 8 yields Qagg(t,T) = Qb(t — 7). A state-space formulation is obtained
by discretizing the load history into load aggregation cells and expressing the 7-

derivative from the cell values of the historical loads (i.e. the aggregated loads).

13
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A QUICK (Quadratic Upstream Interpolation of Convective Kinetics) method
[30] is adopted :

- Qagg,k—1/2 - Qagg,k+l/2

Qagg.k = Ar (9a)
Q _ Qagg,k—l + Qagg,k o (Tk - Tk—1)2 Qagg,k - Qagg,k—l . Qagg,k—l - Qagg,k—2
agg:k—1/2 2 8ATL_1 Th — Th—1 Th—1 — Th—2
(9b)
Q etl/2 = Qagg,k + Qagg,k—i—l _ (T/H-l - Tk)2 Qagg,k—i—l - Qagg,k . Qagg,k - Qagg,k—l
agg,k+1/ ) SATk Thi1 — Th ——

(9¢)

Qagg,l/Q = Qb (9d)
where Qagg,k is the aggregated load in the k-th aggregation cell, and Qaggvk_l/g

and Qagg’k+1/2 are the interpolated loads at the left and right faces of the k-th

load aggregation cell, respectively.

The load history is discretized into geometrically expanding cells [15] :

Ay = Aty - 257 (10a)
k
T = Z AT, (10b)
p=1

where Atg is the width of the first aggregation cell. The number of aggre-
gation cells, n., is selected such that the time of the last cell, 7,,_, is larger than
the maximum simulation time.

Each aggregated load Qagg,k proportionally contributes to the borehole wall
temperature increase/decrease by a weighting factor ki given by the discrete

form of Equation 7:

Tb = Z Qagg,k’fk (11&)
k=1
9(1k) — 9(7r-1)
=< 11
2wk, Hny (11b)

14



The accumulated load in the ground is given by:

Qacc = Z Qagg,kATk (12)
k=1

Re-arranging equations 9 and 11 results in the linear state-space model rep-
20 resented in Equation 13, where the states of the ground model are the vector of
aggregated loads. The size of the state-space model depends on the number of

aggregation cells.

aQagg

ot Aq Qagg + Bq Qb (13a)
Th =Co Qage (13b)
Qagg = [Qagg,lv Qagg,Qa Qagg,B» ceey Qagg,nc]T (130)
Qb =[] (13d)
Ty = [T,]" (13e)

where Ag, Bg and Cg are the matrices of the linear state-space model,
obtained by combining and rearranging Equations 9 and 11. Ag represents a

25 time linear transfer map of the space-discretized aggregated heat loads (Qaggﬁl,
e Qagg’nc) in the load history, Bg is the heat gain matrix from the borehole
heat flow (Qb), while Cg represents the mapping of the aggregated heat loads

to the borehole wall temperatures. The borehole and the ground models can be

combined into one single SSM model:

15
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5 = AW®) x+B u (14a)
y=C x (14b)
x = [T7, Qugel” (14c)
u=[Q]" (14d)
y = [Tym]" (14e)

The model dimensionality includes a large quantity of unmeasured states
compared to its number of inputs and outputs and the number of available

measurements.

2.2. State estimation

State estimators or state observers are used in models whose states are hid-
den, i.e. it is not possible to measure all system states. They provide an estimate
of these internal states for a real system from measurements of the inputs and
the outputs of the real system. Their main challenge is to solve a problem
where the number of knowns (input and output measurements) is smaller than
the number of unknowns (states). In the literature, there exist many state es-
timation methods. We restrict the scope of this work to the family of Bayesian
estimators, which are recommended when: (i) full information about the system
dynamic behavior is available and (ii) there exists uncertainty in some of the
parameters of the system [31]. Bayesian observers are algorithms based on prob-
abilistic distributions of the process noise? S and measurement noise R. Since
the borefield model is linear, we apply two linear state observers: Time-varying

Kalman Filter (TVKF) and Moving Horizon Estimation (MHE).

2In the literature, the process noise matrix is commonly referred as Q. We use the notation

S to avoid confusion with the heat flow rates.

16
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> Plant
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> Y1
Model |
VAN
Xk[k-1
VAN
Xk|k I
Observer

Figure 4: Kalman filter representation: The updated states Xy are estimated using the
predicted states Xy |3 and the difference between the output yix_3 (resulting from the

states )Ack|k,1) and the measurements y, k.

2.2.1. Time-varying Kalman Filter

The Kalman Filter (KF) is one of the most popular estimation techniques
in the literature for many different engineering applications. KF is a simple and
practical algorithm that relies on the SSM matrices, and with proper tuning it
can achieve excellent performance [32]. A representation of a KF is given in
Figure 4. In essence, the KF algorithm can be considered as a discrete two-step
feedback system with a proportional gain L. At each time-step k, an update
step is made where the predicted states at time-step &k — 1 are updated using

the information from the measurements:

Rk = Xik—1 + L (Ymx — Yijk-1) (15a)

= Xyk—1 + Le(Ymx — OXg—1 — Duy)

17
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Then, a prediction step is made where the states at step k + 1 are predicted

using the physical model with the information at step k:
)A(k+1|k = A}A(k‘k + Buy (15b)

The Kalman gain L can be computed a priori leading to a Stationary Kalman
Filter (SKF), or it can be updated at each time-step extending to a Time-
Varying Kalman Filter (TVKF). However, since the borefield model has a pa-
rameterized A matrix there is no point in applying SKF. The Kalman gain L
for TVKF is given by:

_ Pyji—1CT
Ry + Cpk|k_1CT

where P is the error covariance matrix which is also defined by an update-

Ly

(15¢)

prediction step via Equations 15d and 15e:

Py = (I — LrC) Py (15d)

Pyy1jp = APy AT + Sy, (15e)

where I is the identity matrix.

2.2.2. Moving Horizon Estimation

Kalman Filters rely on the information they have from the previous time-
step. To increase its accuracy, a constrained dynamic optimization problem
can be formulated to reduce the process and measurement noise over the data
window. However, it is clear that this full information (FI) estimation problem
would grow up in time to a point where its computational burden would become
intractable. Moving Horizon Estimation (MHE) is an approximation to this
FI estimation. It considers a fixed horizon of previous measurements inside a
moving time window that makes the problem feasible in practice. To account
for the dropped measurements past the considered time window, an arrival cost
term is introduced into the optimization problem [33]. Moreover, constraints on
the states and parameters of the model can be enforced as a method to improve
the quality of the estimates. Figure 5 illustrates the MHE concept, which can
be described by the following optimization problem:
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Xk—N+1,W,

i=k—N+1 i=k—N+1
(16a)
s.t. Xjp1 = Ax; + Bu; + Ed; + wy, 1€ le:ll\ﬂrl
(16D)
yi = Cx; + Du; + vy, i€ NF_nia
(16¢)
X€X, wieW, vie . (16(21)

where x;, u;j, dj, w; and v; represent the vector of states, inputs, distur-
bances, process and measurement noise respectively, predicted at the i-th step
of the estimation horizon N, and W and V are the concatenation of the vectors
w; and vi. Note that index k denotes a current time sample, while index 7 refers
to the time index of the MHE. The predictions are obtained from the prediction
model given by Eqgs. (16b) and (16¢). Limits on state and noise variables are
defined by eq. (16d). The term ||a||% in the objective function represents the
weighted squared 2-norm, i.e., a” Sa, with the weighting process, noise and error
covariance matrices S, R, and P given as positive definite diagonal matrices.
The first term of the objective function I' stands for the so called arrival cost,
which represents the summarized effect of data from previous time-steps outside

the estimation window V.

3. Virtual experiment set-up

The methodology is applied to the borefield of a cooling-dominated office
building located in Dilbeek, Brussels, Belgium. The building conditioned space
is 2232 m? and is equipped with a borefield of 37x94m deep double-U tubes,
distributed around the building separated by an intermediate 6 m as shown by
Figure 6.

Further details on the borefield parameters can be found in Table 1. The

thermal properties of the ground are extracted from the SmartGeotherm tool [34],
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Figure 6: Distribution of the boreholes around the building envelope and hydronic schematic

of the building (TABS stands for thermally activated building system).

which provides information about the ground composition and the average
ground thermal conductivity for any location in Flanders, since no thermal-
response-test (TRT) is available. The geothermal gradient is calculated using a
geothermal heat flow of 0.07 W/m? as documented by Earth-Energy-Designer
for the location of Brussels [35], which also indicates an undisturbed ground
temperature T of 9.7 °C'. The resolution of the load aggregation scheme Atq is
set to 480 s (8 minutes), which corresponds to the resolution of the monitoring
system. All the other parameters are extracted from the installation technical
documentation. Two ground-source heat pumps of 70 kW nominal capacity
each provide heating to the building, while direct cooling is supplied by means
of two heat exchangers. A variable-speed hydraulic pump circulates a mixture
of propylene glycol and water at 30% weight with a maximum volumetric flow
rate of 38 m3/h. Despite being a 10-year-old building, monitored data from

the borefield is only available for 1.5 years, as the calorimeters were recently
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Table 1: Summary of the borefield parameters of the office building

Borehole parameters Piping parameters

Notation | Description Value Units Notation | Description Value Units
Th Borehole radius 75.0 mm Tp Pipe radius 16.0 mm
H, Borehole height 94.0 m kp Pipe conductivity 0.42 W/(m.K)
dy Borehole burial depth 1.0 m ep Pipe thickness 3.0 mm
np Number of boreholes 37 - el Pipe spacing 85.0 mm

Ground parameters Grout parameters

Notation | Description Value Units Notation | Description Value Units
ks Ground conductivity 1.30 | W/(m.K) kg Grout conductivity 2.35 | W/(m.K)
Cs Ground heat capacity 930 J/(kg.K) g Grout heat capacity | 1550 | J/(kg.K)
Ps Ground density 1358 kg/m?3 Py Grout density 1225 kg/m?
Ts Undisturbed ground temperature 9.7 °C

dT,/d= Geothermal gradient 0.05 °C/m

installed. The available data comprises the inlet and outlet temperatures of the
borefield, the fluid flow rate and the fluid heat flow in intervals of 8 minutes. It
has to be noted that the calorimeters are installed in the building cellar, causing
the temperature sensors to converge to the cellar temperature when no flow is
passing through. As we know beforehand that such data are not related to the
phenomena investigated, it has been filtered out from the data-set.
Simulations are set up using the BeSim framework in Matlab [36], which
is built upon the modeling and optimization toolbox YALMIP [37]. The opti-
mization problem resulting from the MHE is solved using Gurobi [38]. Table 2
summarizes the simulation conditions applied in this research. The temperature
states are initiated at the undisturbed ground temperature, taking into account
the effects of the geothermal gradient. The load history for simulations la, 2a
and 3a is initiated as if it was empty. Simulations 1b and 2b are initiated with
an initial guess of aggregated loads which results from a previous simulation
that applies a constant load for 10 years to minimize the error between the sim-
ulation mean fluid temperature and the measured one. The process, noise and
covariance matrices are chosen based on a trial-and-error procedure extending
from previous work [19]. Based on the results of the simulations, we decided
not to run an extra simulation 3b with the initial guesses of aggregated loads.

The simulations are run for 585 days of data starting at the end of February
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Table 2: Summary of the simulation conditions in the cases considered.

Estim. matrices
Case | Initial load states (xg) Estimator
S R P

la Empty No estimator (Open-loop) | N/A | N/A | N/A
1b Guess No estimator (Open-loop) | N/A | N/A | N/A
2a Empty TVKF 1el0 | 1lel lel
2b Guess TVKF lel0 | lel lel
TVKF (Borehole model) | 1el0 | lel | lel

3a Empty
MHE (Ground model) le6 | lel | lel

in time-steps of 8 minutes, in order to match with the time resolution of the
calorimeters and comprising a total number of time-steps Ng;,;, = 105300. The
model in Equation 14 is loaded into BeSim and converted from its continuous
formulation to a discrete 8-minutes resolution formulation using the MATLAB
embedded function c2d. At the start of each time-step k, the A matrix of the
borefield model is re-computed using the mass flow rate measurement from the
calorimeter. In the open-loop simulations 1a and 1b, the output (i.e. the mean
fluid temperature) at time-step k and the predicted state vector at the time-step
k + 1 are calculated using Equations 14a and 14b. In simulations 2a and 2b, at
each time-step, the need for pre-filtering the measurement data is checked first
to assess whether the measured data is corrupted. If the data point is valid,
TVKF is applied and the state vector is updated using Equations 15c¢ and 15a
to compute the new state prediction at k + 1 (Equation 15b) and the estimated
output. The error covariance matrix P is also updated and then predicted by
Equations 15d and 15e. If the data is filtered out, the corresponding time-step
is simulated in open-loop using Equations 14 and 14b.

To reduce the complexity of the MHE optimization in simulation 3a, the es-
timator is only applied to the ground model, thus avoiding the implementation
of the parameterized A matrix in the optimization formulation. This is justi-
fied since the long-term dynamics of the model are stored within the ground

load states, while the short-term dynamics are stored within the temperature
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states. Hence, as in simulations 2a and 2b, TVKF is applied first to obtain
an initial set of state estimates. Using the resulting estimates of the borehole
wall temperature T}, as the reference value and Q) as the input value, MHE is
then applied to the ground model with a window frame of 1 day (N = 180)
to refine the estimates of the ground loads. The optimization to find the set
of aggregated load estimates éagg is therefore formulated at each time-step k

with the following constraints:

k—1 k
. min Yoo IwillE o+ Y il (17a)
Qaggk-N+1,W,V j=k_ N1 i=k—N+1
s.t. Qaggi+1 = AQQaggi + BoQbi +wi, i€ Ny,  (17b)
Th; = CoQagei + Vi i€ Nf_ni  (17c)
éaqg,j,i = Qaggj,i S NI?—N—i—l
jel2.m (17d)
Qace,i > 0 (17e)
Quggi € X, Wi €W, vie V. (17£)

where m represents the aggregation cell where the load history becomes
unknown, and Qagg,j,i and (:Qagg,j,i represent the predicted and estimated ag-
gregated load in the j-th cell at the i-th MHE time-step. As the simulation
problem advances in time, the point where the load history is unknown is fur-
ther in the past and consequently the number of states to be guessed becomes
smaller. This feature is enforced by constraint (17d): the first aggregation cells
keep the value from the previous prediction step while the cells beyond the
point m until n. have a higher degree of freedom. Additionally, constraint (17¢)
forces the ground load balance to be positive, in accordance to what is expected
from a cooling-dominated building. Thus, no arrival cost I' is defined as the
information from previous history is implicitly included within the formulated
constraints. The MHE state, process and noise bounds (Equation 17f) are kept
within + 3E5 W, £ 1E2 W and + 1E-1 K respectively. The optimization vari-
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ables include: the estimated states Qagg over the horizon N, the estimated state
update error W and the estimated measurement error V. The first element of
the optimized estimated states over the horizon éaggk_NJrl is selected and the
current estimated states éaggk are calculated by integration using W via the
so-called state condensing method [39]. This technique can efficiently reduce

the number of optimization variables and as such speed up the solver.

4. Results and discussion

The main objective of the estimators is to reduce the 1-step ahead output
error between the estimated output and the real measurement yo = ¥ — ym-
However, the predictions of the fluid temperatures in the longer-term are also
of interest. Section 4.1 elaborates on the results obtained from the estimators
with a focus on 1-step predictions, while Section 4.2 evaluates the performance
of the estimators in the longer run. Please note that the model output y in this

case is the mean fluid temperature Tsy,.

4.1. 1-step ahead predictions

The 1-step ahead output error results are evaluated towards the following

key performance indicators (KPIs), summarized in Table 3:
e the average absolute output error (AAOFE = Z]kvjlm |¥ekl/Nsim),
e the absolute maximum output error (max|ye|),
e the mean output error (¥e), and
e the average simulation time per time-step (tsim,step = tsim/Nsim,)-

Figure 7 compares the box plots of the output errors ye for the different
simulations cases (as listed in Table 2 for the full period of 585 days). The
open-loop simulation (1a) clearly underpredicts the fluid temperature of the
system, in accordance to our expectations from the load history of a cooling-

dominated building. Simulation 1b shows that this effect can be mitigated by
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Table 3: 1-step ahead output numerics.

Case | AAOE [K] Ye [K] max|ye| [K] tsim,step [S]

la 2.50E0 —2.50E0 7.62E0 1.34E-2
1b 6.47E—1 —2.14FE-1 5.69F0 1.40E-2
2a 6.39E-2 —5.63E—-2 8.71E—-1 1.65E-2
2b 347TE-2 —7.90E-3 7.58E—-1 1.711E-2

3a 2.59E-2 1.43E-5 6.38E—-1 8.81E-2

a reasonable guess of the annual load imbalance of the ground, by modifying
Equation 8b to include the annual load imbalance at all times from the start of

system operation (which is taken at 10 years) until the start of the simulation:

Qagg(t =0, T) = Qannuala T<=10 years (18)

All three simulation cases with an estimator implemented (2a, 2b and 3a)
outperform the simulations without, with an output error typically an order of
magnitude lower. A closer look at the output KPIs can be found in Table 3. It
is shown that, with a reasonable estimate of the previous history, TVKF perfor-
mance can be increased. With the adequate selection of the constraints, MHE
outperforms TVKF in terms of error defined KPIs regardless of the previous
load history estimate. However, this performance increase comes at the cost of
about 5 times more computation time per simulation step as MHE requires to
solve an optimization problem.

To enable minimization of the 1-step ahead output error, the estimators
have a direct effect on the temperature states of the model, i.e. borehole fluid,
grout and wall temperatures, as their influence on the short-term dynamics
is higher. Contrary to the output evaluation, there is no direct measurement
of these states, consequently we analyze the temperature differences on the
temperature states xq between open-loop simulations and applying TVKF'. Note
that only TVKF evaluation is done since simulation case 3a uses this state

observer to estimate the temperature states. Analogously to the previous case,
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Table 4: Temperature state difference numerics.

Difference 1la-2a Difference 1b-2b
State set
AAD [K] | Xq [K] | maxxq [K] | AAD [K] xa K] max |xq| [K]
Fluid 2.06 E0 —2.02E0 1.28F1 7.36 E—1 1.45E—-1 1.05F1
Grout 2.06 E0 —2.06E0 4.34F0 4.33E—-1 | —1.51E-1 3.72E0
Wall 2.00E0 —2.00E0 3.81E0 411E-1 | —1.43F-1 2.20E0
Total 2.12E0 —2.12E0 1.28F1 4.63E—-1 | —1.60E—1 1.05E1

the evaluation is done based on the following KPIs, summarized in Table 4:

e the average absolute temperature difference (AAD = 25:1

Xd,k|/(nstim))a
e the absolute maximum temperature difference (max |xq|), and

a75 e the mean temperature difference (Xq) for each set of fluid, grout and wall

temperatures ng,.

On average, TVKF needs to correct about 2.1 °C' when the model is initiated
with an empty load history and 0.5 °C' if an estimate of the load history is first
provided, pointing again towards a cooling-dominated building. As expected,

w0 these differences are higher the faster the dynamics of the states are. The fluid
temperatures have the fastest dynamics, and the wall temperatures the slowest.
Since the aggregated load states travel in time, the same analysis is not repeated
for that set of states.

Figure 8 shows the accumulated load in the ground (given by Equation 12)

a5 over the simulation time. When the model is initiated without load history, it is
observed from the open-loop simulations that despite being a cooling-dominated
building, over the considered period the ground experienced a negative balance,
more typical for heating-dominated buildings. Applying TVKF slowly corrects
the negative imbalance towards a positive one to reduce the 1-step ahead output
w0 error. This correction effect is no longer needed when the states initial guess is
more accurate, as it can be observed from the trajectories in experiments 1b and
2b. On the other hand, despite being initiated without load history, the MHE

accumulated load immediately jumps to a different order of magnitude thanks
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Figure 8: Accumulated ground load over the operation period shown during the simulation

period.

to the constraints formulated in the optimization. The observed oscillations can
be explained due to the high degree of freedom that the load states have from
the point where the load history becomes unknown. Moreover, as the loads far
away in time have a lower impact on the wall temperatures, to obtain a small
change in the fluid temperature it is necessary a big change in the loads far in
the past. A constraint on the accumulated load rate of change could be added
to limit this effect and have a smoother load, however by doing so we found that
this led to infeasible computational times.

The load correction effect seen in TVKF has a larger effect in the first load
states, as it can be pointed out from Figure 9. The fluid load is represented
from the steady-state time which is the characteristic time of the boreholes
(ty = 5r/a,) until the end of the simulation period. In the long-term, the

fluid and ground energy should be almost coincidental, however this is not the
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case when TVKEF is being applied. This effect can be explained by looking at
Equation 15a, where all load and temperature states are updated proportionally
to the computed Kalman Gain Li. Comparing simulation cases la and 2a, the
cells that are empty, i.e. the load history before the simulation, are barely
affected. Even by introducing a load history as in simulation case 2b, the
variation of the first cells that affect the immediate load history has a larger
cumulative effect in time, producing the load mismatch between ground and
fluid within the 585 days simulation period. An additional reason that causes
the mismatch is associated with the update of the temperature states. By
doing so, energy from the soil which was not registered through the fluid energy
balance is being introduced/removed. This inherent feature of TVKF does not
occur in MHE, where due to the constraints applied the load history during the
simulation period is not affected, focusing more on finding a combination of the

unknown aggregation cells that minimizes the borehole wall temperature error.

4.2. n-step ahead predictions

To analyze the performance of the estimators when there is a gap in the
data or towards optimal control applications, we analyse the accuracy of open-
loop simulations after initialization of the model through varying periods of
closed-loop simulations. Closed-loop simulations are run for cases 2a, 2b and
3a. After each month of simulation, an open-loop simulation is started using
the estimated states of the closed-loop simulations and the measured loads, and
the obtained fluid predictions over time horizons of 1 hour, 6 hours, 24 hours,
3 days, 1 week and 1 month are compared to the monitored data. Figure 10
shows the values of AAOF, maxy,, and ¥y, for the simulation periods of 1 hour,
6 hours, 24 hours, 3 days, 1 week and 1 month, starting after different periods
of estimates. In general, and in line with our expectations, the errors increase
with the considered simulation period for all the considered estimators. For a
simulation time of 24 hours, the TVKF output error can average more than 1
°C if no estimate of the previous load history is provided beforehand, slowly

returning to the underestimation of 2 °C' given by the open-loop simulation 1la.
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Figure 9: Histogram of aggregated loads and cumulative ground and fluid load at the end of
the simulation. The fluid load is represented from t;, till the end of the simulation period. Each
bar represents the aggregated load state within the corresponding cell, positioned relatively
to the current instant (cells on the right side are closer to the present). The green region
corresponds to the simulation period (585 days). The red region corresponds to the building

operation period (10 years). The grey period comprises the remaining cells until 7,
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Figure 10: n-step ahead output KPIs after a period of estimates given by the x-axis for the

different estimation experiments 2a, 2b and 3a.

The same trend is seen when the estimation of the previous load is provided,
with TVKF returning to the underestimates of 0.5 °C given by the open-loop
simulation 1b. In these cases, we do not recommend TVKF for n-step output
predictions longer than 6-24 hours. On the other hand, MHE is able to keep
the average errors under 0.5 °C' even after long periods of time of 1 month and
without previous initial estimate of loads provided. The length of the estimation
period does not seem to have a clear effect on reducing the output errors, but
depending on the time frame the open-loop simulation starts the error can be
higher or lower. Based on the open-loop simulations with estimates from the
estimation 2a, we believe that this feature is related to the seasonality of the
loads. The higher errors occur around month 5 which corresponds to the end
of the cooling season, increasing the effect of the previous load history. On
the other hand, lower errors occur at the end of the heating season where the
surrounding ground is colder, compensating for the effect of the previous load
history.

The best performance estimator (MHE, experiment 3a) is selected and com-

pared against the open-loop simulation with an initial guess of the load history
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to evaluate the increase in performance. After each month of simulation, the
values of AAOF, maxye, and ye for the coming simulation periods of 1 hour,
6 hours, 24 hours, 3 days, 1 week and 1 month are evaluated for the open-loop
simulation. Results are shown in Figure 11, where it can be seen the lower errors
obtained by the estimator. The provided initial load history estimate obtained
by the manual tuning was selected to minimize the error over the whole sim-
ulation period, however the error does not present a constant trend, which is
probably caused by uncertainties such as the ground conductivity or the undis-
turbed ground temperature. In that sense, the estimator is able to help with
these kinds of uncertainties minimizing the error in the prediction of the fluid

temperature.

5. Conclusions

Knowledge of borefield load history is necessary to get accurate predictions
of the working fluid temperature for design, monitoring and optimal control
of geothermal systems. However, lack of monitoring data can lead to large
uncertainties on estimating this load history.

This research presents a methodology to estimate the unknown load his-
tory of borefields based on state observers with the objective of getting better
predictions of the fluid temperatures. First, technical information from a real
installation is used to calibrate a physics-based borefield model. This calibrated
model is then implemented in a simulation environment together with state es-
timator algorithms that estimate the load history, using real operational data.
Since the borefield dynamics can be modeled in a linear way, two linear state
estimators are investigated: Time-Varying Kalman Filter (TVKF) and Moving
Horizon Estimator (MHE). Additionally, we investigate the effect of having a
previous estimate of the load history. Finally, simulations are run in open-loop
after a period of estimates to assess the performance of the estimators in the
longer run. The estimators are compared between them and against the case

where a previous estimate of the load history is provided.
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Figure 11: n-step ahead output KPIs after a period of simulation/estimates given by the
x-axis for the experiments 1b (load history initial guess) and 3a (MHE).
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Both observers provide excellent results in predicting the borefield fluid tem-
perature, with average and maximum 1-step ahead errors below 0.1 °C' and 1
°(C respectively when compared to the real measurement data, in contrast to the
average and maximum errors of 2.5 °C and 7.62 °C respectively of the open-loop
simulation. To minimize this error, the estimators have a direct influence on the
temperature states of the model, which contain the fast-dynamics information,
and consequently the load is modified. This, however, comes with a mismatch
between the cumulative ground and fluid loads in the known load history in the
case of TVKF, independently of whether a previous unknown load history guess
is provided or not. This feature can be corrected with the aid of constraints in
the MHE formulation, therefore having a more realistic full load history profile
over time. When assessing the open-loop n-step output errors after a period
of estimates, it is observed that the error converges to the values of the full
open-loop simulations for TVKF the further away the prediction is. The period
of estimates does not seem to have a clear effect on the error reduction, but the
time-frame where the open-loop simulations start does. MHE excels in keeping
the output errors under 0.5 °C even after one month of open-loop simulation
time and without a previous guess of the unknown load. The drawback of MHE
is its increased computational burden, about 5 times higher than TVKF per
time-step.

A raw estimation of the borefield load history which does not need to match
the actual complete history can already get sufficiently accurate fluid tempera-
ture predictions. However, the estimators are able to get better fluid predictions
in the short and long term compared to the case where the past load history is
manually estimated, and they converge even by providing an initial inaccurate
load estimate.

Future work can be directed towards the different individual aspects of the
approach. The proposed discretized SSM model could be evaluated for differ-
ent sampling times, different from the data acquisition resolution. The work
on TVKF should be aimed at decoupling the Kalman Gain between the bore-
hole and the ground model. Concerning the MHE, further tuning of the MHE
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optimization problem parameters and its formulation can be explored. For in-

stance, different MHE estimation windows can be evaluated and compared to

a full information optimization problem that takes into account the whole data

set. The MHE accumulated load oscillations could be filtered out by introducing

a constraint on the accumulated load variation or post-processing the resulting

accumulated load by using a time-average approach. Finally, the application

of the state observers to an optimal control problem or a case where exist un-

accounted neighbouring ground source heat pump systems that affect the load

history could be explored.

References

1]

S. Javed, J. Spitler, Accuracy of borehole thermal resistance calculation
methods for grouted single U-tube ground heat exchangers, Applied Energy
187 (2017) 790 — 806. doi:https://doi.org/10.1016/j.apenergy.2016.
11.079.

J. Claesson, G. Hellstrém, Multipole method to calculate borehole thermal
resistances in a borehole heat exchanger, HVAC&R Research 17 (6) (2011)
895-911.

L. Lamarche, S. Kajl, B. Beauchamp, A review of methods to evaluate bore-
hole thermal resistances in geothermal heat-pump systems, Geothermics
39 (2) (2010) 187 —200. doi:https://doi.org/10.1016/j.geothermics.
2010.03.003.

A. S. Shirazi, M. Bernier, Thermal capacity effects in borehole ground
heat exchangers, Energy and Buildings 67 (2013) 352 — 364. doi:https:
//doi.org/10.1016/j.enbuild.2013.08.023.

D. Bauer, W. Heidemann, H. Miiller-Steinhagen, H.-J. Diersch, Thermal
resistance and capacity models for borehole heat exchangers, International

Journal of Energy Research 35 (4) (2011) 312-320. doi:10.1002/er.1689.

36



645

650

655

660

665

[6]

[10]

[11]

[12]

[13]

A. Zarrella, M. Scarpa, M. D. Carli, Short time step analysis of vertical
ground-coupled heat exchangers: The approach of carm, Renewable Energy
36 (9) (2011) 2357 — 2367. doi:https://doi.org/10.1016/j.renene.
2011.01.032

P. Pasquier, D. Marcotte, Joint use of quasi-3D response model and spectral
method to simulate borehole heat exchanger, Geothermics 51 (2014) 281 —
299. doi:https://doi.org/10.1016/j.geothermics.2014.02.001.

D. Bauer, W. Heidemann, H.-J. Diersch, Transient 3D analysis of borehole
heat exchanger modeling, Geothermics 40 (4) (2011) 250 — 260. doi:https:
//doi.org/10.1016/j.geothermics.2011.08.001.

P. Eskilson, Thermal analysis of heat extraction boreholes Ph.D (Doctoral
dissertation, Thesis). Department of Mathematical Physics, University of

Lund Lund, Sweden (1987).

L. Ingersoll, H. Plass, Theory of the ground pipe source for the heat pump,
ASHRAE Transactions 54 (1948) 339-348.

H. S. Carslaw, J. C. Jaeger, Conduction of heat in solids, Oxford: Claren-
don Press, 1959, 2nd ed.

J. Claesson, P. Eskilson, Conductive heat extraction to a deep borehole:

Thermal analyses and dimensioning rules, Energy 13 (6) (1988) 509-527.

M. S. Mitchell, J. D. Spitler, Characterization, testing, and optimization
of load aggregation methods for ground heat exchanger response-factor
models, Science and Technology for the Built Environment 25 (8) (2019)
1036-1051. arXiv:https://doi.org/10.1080/23744731.2019.1648936,
doi:10.1080/23744731.2019.1648936.

URL https://doi.org/10.1080/23744731.2019.1648936

M. A. Bernier, P. Pinel, R. Labib, R. Paillot, A multiple load aggrega-
tion algorithm for annual hourly simulations of gchp systems, HVAC&R
Research 10 (4) (2004) 471-487.

37



670

675

680

685

690

695

[15]

[17]

[18]

[20]

22]

J. Claesson, S. Javed, A load-aggregation method to calculate extraction
temperatures of borehole heat exchangers, ASHRAE Transactions 118 (1)
(2012) 530-539.

C. Verhelst, L. Helsen, Low-order state space models for borehole heat ex-
changers, HVAC&R Research 17 (2011) 928-947. doi:10.1080/10789669.
2011.617188.

H. J. Witte, A. Cazorla-Marin, J. M. Corberan, An efficient borehole heat
exchanger model for the analysis of transient thermal response: comparison
with some existing models, in: Proceedings of EnerSTOCK 2018, Adana
(Turkey), 25-28 April 2018.

I. Cupeiro Figueroa, D. Picard, L. Helsen, Short-term modeling of hybrid
geothermal systems for model predictive control, Energy and Buildings

25 (8) (2019) 1095-1110. doi:10.1080/23744731.2019.1620564.

I. Cupeiro Figueroa, J. Drgona, L. Helsen, State estimators applied to a
linear white-box geothermal borefield controller model, in: Proceedings of
International Building Simulation Conference 2019, 2019, Rome (Italy), 3-5
September 2019.

F. De Ridder, M. Diehl, G. Mulder, J. Desmedt, J. Van Bael, An optimal
control algorithm for borehole thermal energy storage systems, Energy and
Buildings 43 (10) (2011) 2918 — 2925. doi:10.1016/j.enbuild.2011.07.
015.

E. Atam, D. O. Schulte, A. Arteconi, I. Sass, L. Helsen, Control-oriented
modeling of geothermal borefield thermal dynamics through Hammerstein-
Wiener models, Renewable Energy 120 (2018) 468-477. doi:10.1016/j.
renene.2017.12.105.

A. Laferriere, M. Cimmino, Model predictive control applied to residential

self-assisted ground source heat pumps, in: Proceedings of International

38



700

705

710

715

720

[26]

[27]

Ground Source Heat Pump Association Research Track, 2018, Stockholm
(Sweden), 18-20 September 2018.

A. Laferriere, M. Cimmino, Linear model predictive control for the reduc-
tion of auxiliary electric heating in residential self-assisted ground-source
heat pump systems, Science and Technology for the Built Environment

25 (8) (2019) 1095-1110. doi:10.1080/23744731.2019.1620564.

A. R. Puttige, S. Andersson, R. Ostin, T. Olofsson, Improvement of bore-
hole heat exchanger model performance by calibration using measured
data, Journal of Building Performance Simulation 13 (4) (2020) 430-
442. arXiv:https://doi.org/10.1080/19401493.2020.1761451, doi:
10.1080/19401493.2020.1761451.

URL https://doi.org/10.1080/19401493.2020.1761451

M. L. Fasci, A. Lazzarotto, J. Acufia, J. Claesson, Analysis of the thermal
interference between ground source heat pump systems in dense neighbor-
hoods, Science and Technology for the Built Environment 25 (8) (2019)
1069-1080. doi:10.1080/23744731.2019.1648130.

I. Cupeiro Figueroa, J. Drgona, M. Abdollahpouri, D. Picard, L. Helsen,
State observer for optimal control using white-box building models, in:
Proceedings of Purdue Herrick Conferences, 2018, West Lafayette (USA),
9-12 July 2018.

A. Laferriere, M. Cimmino, D. Picard, L. Helsen, Development and valida-
tion of a full-time-scale semi-analytical model for the short- and long-term
simulation of vertical geothermal bore fields, Geothermics 86 (2020) 101788.
doi:https://doi.org/10.1016/j.geothermics.2019.101788.

M. Cimmino, M. Bernier, A semi-analytical method to generate g-
functions for geothermal bore fields, International Journal of Heat and
Mass Transfer 70 (2014) 641 — 650. doi:https://doi.org/10.1016/j.
ijheatmasstransfer.2013.11.037.

39



725

730

735

740

745

750

[29]

[31]

[33]

[38]

M. Cimmino, Fast calculation of the g-functions of geothermal borehole
fields using similarities in the evaluation of the finite line source solution,
Journal of Building Performance Simulation 11 (6) (2018) 655-668. doi:
10.1080/19401493.2017.1423390.

B. Leonard, A stable and accurate convective modelling procedure based
on quadratic upstream interpolation, Computer Methods in Applied Me-
chanics and Engineering 19 (1) (1979) 59 — 98. doi:https://doi.org/10.
1016/0045-7825(79)90034-3.

J. M. Ali, N. H. Hoang, M. A. Hussain, D. Dochain, Review and classifica-
tion of recent observers applied in chemical process systems, Computers &

Chemical Engineering 76 (2015) 27-41.

C. V. Rao, J. B. Rawlings, D. Q. Mayne, Constrained state estimation for
nonlinear discrete-time systems: Stability and moving horizon approxima-

tions, IEEE transactions on automatic control 48 (2) (2003) 246-258.

P. Kiihl, M. Diehl, T. Kraus, J. P. Schléder, H. G. Bock, A real-time
algorithm for moving horizon state and parameter estimation, Computers

& chemical engineering 35 (1) (2011) 71-83.

Geotermische  Screeningstool -  SmartGeotherm, http://tool.

smartgeotherm.be/geo/alg, accessed: 2018-09-06.

G. Hellstrom, B. Sanner, Earth energy designer, User’s Manual, version 2

(2000).

J. Drgona, BeSim Toolbox: Fast Development, and Simulation of Advanced

Building Control, https://github.com/drgona/BeSim (2019).

J. Lotberg, YALMIP: a toolbox for modeling and optimization in MATLAB
Proc, in: CACSD Conf.(Taipei)(http://control. ee. ethz. ch./joloef/yalmip.
php), 2004.

G. Optimization, Inc.,“Gurobi optimizer reference manual,” 2015 (2015).

40



[39] G. Frison, J. Jorgensen, A fast condensing method for solution of linear-
quadratic control problems, in: Proceedings of 52nd IEEE Conference on

Decision and Control, 2013, pp. 7715-7720.

41



	Introduction
	Methodology
	Borefield model
	State estimation
	Time-varying Kalman Filter
	Moving Horizon Estimation


	Virtual experiment set-up
	Results and discussion
	1-step ahead predictions
	n-step ahead predictions

	Conclusions

