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Fluid temperature predictions of geothermal borefields

using load estimations via state observers

Abstract

Fluid temperature predictions of geothermal borefields usually involve tem-

poral superposition of its characteristic g-function, using load aggregation schemes

to reduce computational times. Assuming that the ground has linear proper-

ties, it can be modeled as a linear state space system where the states are the

aggregated loads. However, the application and accuracy of these models is

compromised when the borefield is already operating and its load history is not

registered or there are gaps in the data. This paper assesses the performance

of state observers to estimate the borefield load history to obtain accurate fluid

predictions. Results show that both Time-Varying Kalman Filter (TVKF) and

Moving Horizon Estimator (MHE) provide predictions with average and max-

imum errors below 0.1 ◦C and 1 ◦C respectively. MHE outperforms TVKF in

terms of n-step ahead output predictions and load history profile estimates at

the expense of about 5 times more computational time.

Keywords: Geothermal modeling, Fluid temperature prediction, Load

estimation, State observers, Kalman Filter, Moving Horizon Estimation,

Nomenclature

α Thermal diffusivity (m s−2)

∆t Load aggregation resolution

(s))

Γ Arrival cost5

κ Weighting factor (-)

ρ Density (kg m−3)

τ Moving-backwards time (s)

A State matrix
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AAD Average absolute temperature10

difference (K) or (◦C)

AAOE Average absolute output error

(K) or (◦C)

B Input matrix

C Output matrix or Thermal ca-15

pacity (J/K)

cp Specific heat capacity (J kg−1

K−1)

d Buried depth (m) or model dis-

turbance20

e Thickness (m)

g g-Function (-)

H Borehole length (m)

I Identity matrix (-)

k Thermal conductivity (W m−1
25

K−1)

L Kalman gain

ṁ Mass flow rate (kg s−1)

n Number of instances (-)

N Number of time-steps (-)30

O Observer

p Model parameter (kg s−1)

P Error covariance matrix

q̇ Thermal power per unit length

(W m−1)35

Q̇ Thermal power (W)

Q Thermal energy (J)

r Radius (m)

R Thermal resistance (m KW−1)

or measurement noise matrix40

S Process noise matrix

t Time (s))

T Temperature (K) or (◦C)

u Model input (W)

v Model measurement noise45

V Volume (m3)

w Model process noise

x̂ Estimated state (W), (K) or

(◦C)

x Model state (W), (K) or (◦C),50

or shanking space (m)

y Model output (K) or (◦C)

z Axial direction

Subscripts

acc Accumulated55

agg Aggregated

b Borehole or borehole wall

c Cell

d Difference

e Error60

f Fluid

fg Fluid-to-grout

fm Mean/average fluid
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fm Measured

g Grout65

gb Grout-to-wall

gg Grout-to-grout

k Time-step

out Outlet

Q Aggregated loads70

s Soil

sim Simulation

T Temperatures

v Vertical discretization

x State75

Acronyms

BMS Building Management System

CHS Cylindrical heat source

COP Coefficient of performance

FLS Finite line source80

GSHP Ground source heat pump

ILS Infinite line source

KPI Key performance indicator

MHE Moving Horizon Estimator or

Moving Horizon Estimation85

RC Resistance-capacitance

SSM State-space model

TABS Thermally activated building

system

TES Thermal energy storage90

TRT Thermal response test

TV KF Time-varying Kalman Filter

1. Introduction

Geothermal borefields are composed of multiple drillings of vertical boreholes

to extract/inject heat from/into the ground. Typically, each borehole consists of95

one or two U-shaped pipes through which water or an anti-freeze mixture is cir-

culated to realize the targeted heat transfer. Borefields are coupled with ground

source heat pump (GSHP) and passive cooling heat exchanger systems, or used

as thermal energy storage (TES) systems to provide efficient heating and cooling

for buildings and districts. The efficiency of these systems is dependent on the100

fluid temperature that leaves the borefield. Therefore, knowing the borefield

leaving fluid temperature is key both for optimal design and optimal control

of the geothermal system. To this end, detailed borefield modeling is used to

ultimately predict the fluid temperatures that leave the geothermal borefield.
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A common approach is to separately treat the modeling of the borehole and the105

ground and couple the two models at the borehole wall.

The relation between the borehole wall temperature and the average fluid

temperature within the borehole is given by the effective borehole thermal re-

sistance R∗
b =

Tfm−Tb

q̇b
, where Tfm is the average fluid temperature, Tb is the

borehole wall temperature and q̇b is the heat transfer rate (from the borehole to110

the ground) per unit length (W/m) [1]. Both analytical (Multipole, Claesson

and Hellström [2]) and numerical methods (Finite element method, Lamarche

et al. [3]) can be used to calculate this resistance. Resistance networks can

be considered to add more level of detail and evaluate the temperatures in the

different legs of the U-tubes. However, these approaches do not account for the115

transient heat transfer in the grout or the movement of the fluid flow through

the U-tube legs. The borehole capacity can have a substantial influence as

demonstrated by Shirazi and Bernier [4] and it can be taken into account by

adding thermal capacitances to the resistance network [5, 6]. To account for

the heat transfer effects of the fluid flow moving through the piping, the bore-120

hole can be vertically discretized [7, 8]. Each discretization comprises a thermal

resistance-capacitance (RC) network and they are coupled by advection heat

transfer equations. Consequently, the vertical variation of the fluid tempera-

ture is taken into account, improving the accuracy of the borehole outlet fluid

temperature Tout.125

To model the ground, the pioneer work of Eskilson and Claesson [9] in-

troduced the so-called ’g-functions’, which are dimensionless thermal response

factors of the ground for a given borefield geometry. In his thesis, Eskilson com-

puted the g-functions numerically considering the ground as a homogeneous

medium, assuming a constant average ground temperature and the same fluid130

inlet and borehole wall temperature for all boreholes. Following the work of

Eskilson, several authors tried to analytically determine the g-function of the

borefield using the Infinite Line Source (ILS, Ingersoll and Plass [10]), Cylindri-

cal Line Source (CLS, Carslaw and Jaeger [11]) and Finite Line Source (FLS,

Claesson and Eskilson [12]) approaches. These approaches determine the tem-135
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perature profile in the ground for an individual borehole when a constant heat

load is applied. As the ground is assummed to be homogeneous, i.e. the ground

properties are linear, spatial superposition can be applied to obtain the ther-

mal response of a borefield. Then, temporal superposition can be applied to

obtain the ground response under a variable heat load. However, the number of140

superposition calculations is proportional to the square of the number of time

steps, therefore escalating the problem complexity as it advances in time. Since

the loads far in time have less impact than the inmediate applied loads, load

aggregation schemes are proposed to reduce the computational burden. A com-

prehensive review of load aggregation schemes can be found in Mitchell and145

Spitler [13]. Some examples include the ones proposed by Bernier et al. [14]

and Claesson and Javed [15].

More recently, interest in simpler models oriented towards model-based op-

timal control has increased. Model-based optimal control aims to minimize an

objective function over a finite period of time, relying on the predictions made150

by the model. A common strategy for these models is to model the heat dif-

fusion in the ground as a 1D RC network, considering a constant undisturbed

ground temperature in the far field [16], incorporating the geothermal gradi-

ent [17] or even taking into account the effects of the fluid mass flow rate [18].

The information about the borefield load history is stored instead within the155

ground nodes. The ground long-term effects, such as thermal interference be-

tween multiple boreholes or axial heat transfer are often not accounted for,

however state updates can be introduced to incorporate these [19]. Other au-

thors prefer data-driven modeling approaches using data from more accurate

models [20, 21]. More recently, Laferriere and Cimmino [22, 23] proposed a160

ground model formulation for optimal control based on the thermal response of

the borefield.

Either for simulation or optimization, the accuracy of these models to predict

the fluid temperature is compromised if the borefield load history is not known.

A priori, this lack of information may not be a problem for the assessment and165

sizing of new and isolated installations, where there is no previous load history.
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However, in model-based optimal control applications this can lead to issues

in the operation phase. The prediction of the fluid temperature significantly

influences the efficiency of the GSHP system and its ability to supply passive

cooling. Thus, the control decisions taken by the optimal controller are affected170

by this prediction. An incorrect prediction of the borefield fluid temperature

may lead to sub-optimal and detrimental control actions. It is not rare to

encounter operating installations which are either not being monitored or lack

high-quality data. Moreover, the measurement instruments (e.g., calorimeters)

normally measure fluid heat flow rate Q̇f , which does not necessarily coincide175

with the ground heat flow rate Q̇b as depicted in Figure 1. Finally, there is

always a degree of uncertainty related not only to the measurement data but also

to model parameters that can be re-estimated after a period of operation [24]

or to the presence of neighbouring boreholes that can interfere with the ground

load history [25].180

Extending the methodology developed by Cupeiro Figueroa et al. [19, 26],

this paper proposes a method to estimate the load history of non-monitored

operational borefield installations using state observers to obtain accurate bore-

field fluid predictions. State observers are feedback systems that provide an

estimate of the internal states of a given model from measurements of the in-185

puts and outputs of the real system to minimize the next-step output error.

They are widely used in model-based optimal control applications to minimize

the error on the current state of the system model and improve the accuracy

of the predictions. The performance of these state observers to estimate the

borefield load history and predicting the fluid temperature is assessed in both190

the short and long-term. Section 2 elaborates on the methodology used. Sec-

tion 3 describes the case study building from which the data is extracted and

further details on the experiment set-up, such as the initialization of the states

x0. The resulting vectors of aggregated loads and the fluid temperature predic-

tions from the simulations are discussed in Section 4. Finally, conclusions are195

drawn in Section 5.
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Qb
.

Qf
.

m
.

Ts

Tin+Tout
=Tfm2

ToutTin

Figure 1: Distinction between the fluid heat flow Q̇f and the borefield heat flow Q̇b.

2. Methodology

Figure 2 shows a schematic of the methodology used in this paper. A generic

borefield model is calibrated using the technical datasheets and information

from a real installation of an office building located in Dilbeek, Brussels. The200

model can be represented as a state-space model (SSM) with a parameterized

A matrix. The model input u is the heat flow to the fluid Q̇f and the output y

is the mean fluid temperature Tfm. The states x of the model are the fluid and

grout temperatures and the vector of aggregated loads Q̇agg. The parameter

p is the mass flow rate through the borefield ṁ. A further description of the205

model can be found in Section 2.1. Using a frame of historical data (fluid heat

and mass flow rates) stored within the Building Management System (BMS)

the model simulation is coupled with the state observer O that uses the BMS

measurements ym to estimate the new vector of states x̂ for the next simulation

time-step. Three cases are considered: (i) No state observer O is applied, i.e.210

the simulation is run in open-loop, (ii) the observer O is a Time-varying Kalman

Filter (TVKF) and (iii) the observer O is a Moving Horizon Estimator (MHE).

More details about the algorithms of the considered estimators can be found in
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Real borefield (BMS)

Borefield model (SSM)

Inputs u

Parameters p 

Model outputs y

g(t)

Initial states x0

O

xk+1 = A(pk) xk + B uk

   yk =      C xk + D uk

Measured outputs ym

Estimated states x̂

Technical datasheets

Figure 2: Schematic view of the methodology. The model is initiated with a set of states x0.

At each time-step k the borefield model is fed with the required inputs u and parameters p

extracted from the BMS system, and the states from the previous step. The resulting outputs

y and states x receive feedback information from the output measurements ym to compute a

new state vector of estimates x̂.

Section 2.2.

2.1. Borefield model215

The borefield model is based on the one developed by Laferriere et al. [27].

It uses separate borehole and ground models which are connected through the

wall temperature of the borehole. All the nb boreholes in the field are lumped

into one single borehole. The borehole model is discretized in a number of

segments nv along the axial direction. For each vertical discretization, radial220

heat transfer is considered through the resistance-capacitance networks devel-

oped by Bauer et al. [5] and shown in Figure 3. We refer to their work for

further details about the calculation of the fluid-to-grout Rfg, grout-to-grout

Rgg1, Rgg2 and grout-to-wall Rgb resistances and the grout capacitances Cg. To

add the fluid transport component, each discretization i is connected to ad-225
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vection heat transfer equations. Applying energy balances on the nodes of the

resistance-capacitance network yields:

for the fluid nodes:

ρfVf1,icp,f
dTf1,i

dt
=

Tg1,i − Tf1,i

Rfg
− ṁcp(Tf1,i − Tf1,i−1) (1a)

ρfVf2,icp,f
dTf2,i

dt
=

Tg2,i − Tf2,i

Rfg
− ṁcp(Tf2,i − Tf2,i+1) (1b)

for the grout nodes:

Cg
dTg1,i

dt
=

Tf1,i − Tg1,i

Rfg
+

Tg2,i − Tg1,i

Rgg1
−

Tg1,i − Tb,i

Rgb
(1c)

Cg
dTg2,i

dt
=

Tf2,i − Tg2,i

Rfg
+

Tg1,i − Tg2,i

Rgg1
−

Tg2,i − Tb,i

Rgb
(1d)

and for the wall node:

Q̇b,i =
Tg1,i − Tb,i

Rgb
+

Tg2,i − Tb,i

Rgb
(1e)

Analogously, for a double U-tube borehole:

for the fluid nodes:

ρfVf1,icp,f
dTf1,i

dt
=

Tg1,i − Tf1,i

Rfg
− ṁcp(Tf1,i − Tf1,i−1) (2a)

ρfVf2,icp,f
dTf2,i

dt
=

Tg2,i − Tf2,i

Rfg
− ṁcp(Tf2,i − Tf2,i+1) (2b)

ρfVf3,icp,f
dTf3,i

dt
=

Tg3,i − Tf3,i

Rfg
− ṁcp(Tf3,i − Tf3,i−1) (2c)

ρfVf4,icp,f
dTf4,i

dt
=

Tg4,i − Tf4,i

Rfg
− ṁcp(Tf4,i − Tf4,i+1) (2d)

for the grout nodes:
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Rfg Rfg
Rgg1

Rgb Rgb

Tb,i

Tg1,i Tg2,i

Tf1,i Tf2,i

Rgb

Rgb

Rgb
Rgb
Tb,i

Rgg1

Rgg1

Rgg1

Rgg1Rgg2
Rgg2

Rfg Rfg

RfgRfg

Tf1,i Tf2,i

Tf3,i
Tf4,i

Tg1,i Tg2,i

Tg3,iTg4,i

Cg Cg

CgCg

Cg
Cg

Tf1,i Tf2,i

Tg1,i Tg2,i

Tf1,i Tf2,i

Tf4,i Tf3,i

Tg1,i Tg2,i

Tg4,i Tg3,i

Qb,i
.

Qb,i
.

Figure 3: Radial cross-sections, resistance-capacitance networks and nomenclature used in the

borehole model for the i-th discretization: Tf fluid temperatures, Tg grout temperatures, Tb

borehole wall temperatures, Cg grout thermal capacities, R thermal resistances, Q̇b heat flow

injected/extracted into/from the ground. The subscripts 1 and 3 refer to the downward-flow

legs, while the subscripts 2 and 4 refer to the upward-flow legs. Adaptation from Bauer et al.

[5].
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Cg
dTg1,i

dt
=

Tf1,i − Tg1,i

Rfg
+

Tg2,i − Tg1,i

Rgg1
+

Tg3,i − Tg1,i

Rgg2
+

Tg4,i − Tg1,i

Rgg1
−

Tg1,i − Tb,i

Rgb

(2e)

Cg
dTg2,i

dt
=

Tf2,i − Tg2,i

Rfg
+

Tg1,i − Tg2,i

Rgg1
+

Tg4,i − Tg2,i

Rgg2
+

Tg3,i − Tg2,i

Rgg1
−

Tg2,i − Tb,i

Rgb

(2f)

Cg
dTg3,i

dt
=

Tf3,i − Tg3,i

Rfg
+

Tg2,i − Tg3,i

Rgg1
+

Tg1,i − Tg3,i

Rgg2
+

Tg4,i − Tg3,i

Rgg1
−

Tg3,i − Tb,i

Rgb

(2g)

Cg
dTg4,i

dt
=

Tf4,i − Tg4,i

Rfg
+

Tg1,i − Tg4,i

Rgg1
+

Tg2,i − Tg4,i

Rgg2
+

Tg3,i − Tg4,i

Rgg1
−

Tg4,i − Tb,i

Rgb

(2h)

and for the wall node:

Q̇b,i =
Tg1,i − Tb,i

Rgb
+

Tg2,i − Tb,i

Rgb
+

Tg3,i − Tb,i

Rgb
+

Tg4,i − Tb,i

Rgb
(2i)

The mean fluid temperature Tfm is given by the average of the inlet and

outlet of the borehole:230

Tfm =







1

2
(Tf1,0 + Tf2,1) single U-tube

1

4
(Tf1,0 + Tf2,1 + Tf3,0 + Tf4,1) double U-tube (3)

and the total borefield load equals the sum of all the segment loads, multi-

plied by the number of boreholes nb:

Q̇b = nb

nv
∑

i=1

Q̇b,i (4)

Moreover, the following boundary and initial conditions are imposed:
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Q̇f =







ṁcp(Tf1,0 − Tf2,1) single U-tube

ṁcp
2

(Tf1,0 − Tf2,1 + Tf3,0 − Tf4,1) double U-tube
(5a)

Ts,i = T{f1,f2,f3,f4,g1,g2,g3,g4},i(t = 0) (5b)

Tf2,nv+1 = Tf1,nv
(5c)

Tf4,nv+1 = Tf3,nv
(5d)

where Ts,i is the undisturbed ground temperature in the far field at the

discretization i, thus accounting for the geothermal gradient. The borehole235

model dynamic equations (Equations 1, 2, 3 and 5b) can be re-arranged and

represented as a state-space model as shown in Equation 6, where AT , BT and

CT are the matrices of the linear state-space model. AT represents a time

linear transfer map of the discretized fluid and grout temperatures (Tf1,1, Tf2,1,

Tg1,1, Tg2,1, ...), BT is the heat gain matrix from the fluid heat flow (Q̇f ),240

while CT represents the mapping of the discretized fluid and grout temperatures

to the mean fluid temperature (Tfm). The states of the model are the fluid

and grout temperatures for each discretization, represented by the vector1 T

in Equation 6c. Note that the borehole model AT (p) matrix is dependant

on the mass flow rate circulating through the borefield due to (i) the fluid245

transport component and (ii) the variability of Rfg with the convective heat

transfer coeffficient. As a result, the AT (p) matrix is parameterized, with the

parameter p representing the mass flow rate ṁ. The size of the state-space

model depends on the number of considered vertical discretizations nv and the

pipe configuration of the borehole (single U-tube or double U-tube).250

1We represent the vectors with upright boldface notation while the matrices use non-bold

italic notation.
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∂T

∂t
= AT (p) T+BT Q̇f (6a)

Tfm = CT T (6b)

T = [Tf1,1, Tf2,1, (Tf3,1, Tf4,1), Tg1,1, Tg2,1, (Tg3,1, Tg4,1), ...]
T (6c)

Q̇f = [Q̇f ]
T (6d)

Tfm = [Tfm]T (6e)

The ground model computes the effective borehole wall temperature in the

borefield, Tb, from the temporal superposition of the g-function, g(t) [9, 28, 29]

as presented by Equation 7:

Tb(t) =

∫ t

0

dg

dτ
·
Q̇b(t− τ)

2πksHnb
dτ (7)

To reduce the computational time, the history of borefield loads, Q̇b, is ag-

gregated using a continuous load aggregation scheme, in line with the continuous255

state-space model in Equation 6. Several discrete load aggregation methods are

available in the literature with varying levels of performance and computational

speed, as analysed by Mitchell and Spitler [13]. Here, a continuous scheme is

constructed in analogy with convection phenomena, where historical borefield

loads are akin to loads advected through time, that is :260

∂Q̇agg

∂t
= −

∂Q̇agg

∂τ
(8a)

Q̇agg(t = 0, τ) = 0 (8b)

Q̇agg(t, τ = 0) = Q̇b(t) (8c)

where Q̇agg is the load history of the borefield and τ is the time moving

backwards through the load history, such that the exact solution to Equa-

tion 8 yields Q̇agg(t, τ) = Q̇b(t − τ). A state-space formulation is obtained

by discretizing the load history into load aggregation cells and expressing the τ -

derivative from the cell values of the historical loads (i.e. the aggregated loads).265
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A QUICK (Quadratic Upstream Interpolation of Convective Kinetics) method

[30] is adopted :

Q̇agg,k =
Q̇agg,k−1/2 − Q̇agg,k+1/2

∆τk
(9a)

Q̇agg,k−1/2 =
Q̇agg,k−1 + Q̇agg,k

2
−

(τk − τk−1)
2

8∆τk−1

(

Q̇agg,k − Q̇agg,k−1

τk − τk−1

−
Q̇agg,k−1 − Q̇agg,k−2

τk−1 − τk−2

)

(9b)

Q̇agg,k+1/2 =
Q̇agg,k + Q̇agg,k+1

2
−

(τk+1 − τk)
2

8∆τk

(

Q̇agg,k+1 − Q̇agg,k

τk+1 − τk
−

Q̇agg,k − Q̇agg,k−1

τk − τk−1

)

(9c)

Q̇agg,1/2 = Q̇b (9d)

where Q̇agg,k is the aggregated load in the k-th aggregation cell, and Q̇agg,k−1/2

and Q̇agg,k+1/2 are the interpolated loads at the left and right faces of the k-th

load aggregation cell, respectively.270

The load history is discretized into geometrically expanding cells [15] :

∆τk = ∆t0 · 2
⌊ k−1

5
⌋ (10a)

τk =

k
∑

p=1

∆τp (10b)

where ∆t0 is the width of the first aggregation cell. The number of aggre-

gation cells, nc, is selected such that the time of the last cell, τnc
, is larger than

the maximum simulation time.

Each aggregated load Q̇agg,k proportionally contributes to the borehole wall275

temperature increase/decrease by a weighting factor κk given by the discrete

form of Equation 7:

Tb =

nc
∑

k=1

Q̇agg,kκk (11a)

κk =
g(τk)− g(τk−1)

2πksHnb
(11b)
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The accumulated load in the ground is given by:

Qacc =

nc
∑

k=1

Q̇agg,k∆τk (12)

Re-arranging equations 9 and 11 results in the linear state-space model rep-

resented in Equation 13, where the states of the ground model are the vector of280

aggregated loads. The size of the state-space model depends on the number of

aggregation cells.

∂Q̇agg

∂t
= AQ Q̇agg +BQ Q̇b (13a)

Tb = CQ Q̇agg (13b)

Q̇agg = [Q̇agg,1, Q̇agg,2, Q̇agg,3, ..., Q̇agg,nc
]T (13c)

Q̇b = [Q̇b]
T (13d)

Tb = [Tb]
T (13e)

where AQ, BQ and CQ are the matrices of the linear state-space model,

obtained by combining and rearranging Equations 9 and 11. AQ represents a

time linear transfer map of the space-discretized aggregated heat loads (Q̇agg,1,285

..., Q̇agg,nc) in the load history, BQ is the heat gain matrix from the borehole

heat flow (Q̇b), while CQ represents the mapping of the aggregated heat loads

to the borehole wall temperatures. The borehole and the ground models can be

combined into one single SSM model:
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∂x

∂t
= A(p) x+B u (14a)

y = C x (14b)

x = [TT , Q̇T
agg]

T (14c)

u = [Q̇f ]
T (14d)

y = [Tfm]T (14e)

The model dimensionality includes a large quantity of unmeasured states290

compared to its number of inputs and outputs and the number of available

measurements.

2.2. State estimation

State estimators or state observers are used in models whose states are hid-

den, i.e. it is not possible to measure all system states. They provide an estimate295

of these internal states for a real system from measurements of the inputs and

the outputs of the real system. Their main challenge is to solve a problem

where the number of knowns (input and output measurements) is smaller than

the number of unknowns (states). In the literature, there exist many state es-

timation methods. We restrict the scope of this work to the family of Bayesian300

estimators, which are recommended when: (i) full information about the system

dynamic behavior is available and (ii) there exists uncertainty in some of the

parameters of the system [31]. Bayesian observers are algorithms based on prob-

abilistic distributions of the process noise2 S and measurement noise R. Since

the borefield model is linear, we apply two linear state observers: Time-varying305

Kalman Filter (TVKF) and Moving Horizon Estimation (MHE).

2In the literature, the process noise matrix is commonly referred as Q. We use the notation

S to avoid confusion with the heat flow rates.
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Figure 4: Kalman filter representation: The updated states x̂k|k are estimated using the

predicted states x̂k|k−1 and the difference between the output yk|k−1 (resulting from the

states x̂k|k−1) and the measurements ym,k.

2.2.1. Time-varying Kalman Filter

The Kalman Filter (KF) is one of the most popular estimation techniques

in the literature for many different engineering applications. KF is a simple and

practical algorithm that relies on the SSM matrices, and with proper tuning it310

can achieve excellent performance [32]. A representation of a KF is given in

Figure 4. In essence, the KF algorithm can be considered as a discrete two-step

feedback system with a proportional gain L. At each time-step k, an update

step is made where the predicted states at time-step k − 1 are updated using

the information from the measurements:315

x̂k|k = x̂k|k−1 + Lk(ym,k − yk|k−1) (15a)

= x̂k|k−1 + Lk(ym,k − Cx̂k|k−1 −Duk)
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Then, a prediction step is made where the states at step k + 1 are predicted

using the physical model with the information at step k:

x̂k+1|k = Ax̂k|k +Buk (15b)

The Kalman gain L can be computed a priori leading to a Stationary Kalman

Filter (SKF), or it can be updated at each time-step extending to a Time-

Varying Kalman Filter (TVKF). However, since the borefield model has a pa-

rameterized A matrix there is no point in applying SKF. The Kalman gain L

for TVKF is given by:

Lk =
Pk|k−1C

T

Rk + CPk|k−1CT
(15c)

where P is the error covariance matrix which is also defined by an update-

prediction step via Equations 15d and 15e:

Pk|k = (I − LkC)Pk|k−1 (15d)

Pk+1|k = APk|kA
T + Sk (15e)

where I is the identity matrix.

2.2.2. Moving Horizon Estimation

Kalman Filters rely on the information they have from the previous time-

step. To increase its accuracy, a constrained dynamic optimization problem

can be formulated to reduce the process and measurement noise over the data320

window. However, it is clear that this full information (FI) estimation problem

would grow up in time to a point where its computational burden would become

intractable. Moving Horizon Estimation (MHE) is an approximation to this

FI estimation. It considers a fixed horizon of previous measurements inside a

moving time window that makes the problem feasible in practice. To account325

for the dropped measurements past the considered time window, an arrival cost

term is introduced into the optimization problem [33]. Moreover, constraints on

the states and parameters of the model can be enforced as a method to improve

the quality of the estimates. Figure 5 illustrates the MHE concept, which can

be described by the following optimization problem:330
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Figure 5: Comparison between Kalman Filter (KF), Full information (FI) estimation and

Moving Horizon Estimation (MHE).
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min
xk−N+1,W,V

[

||Γ||2P−1 +

k−1
∑

i=k−N+1

||wi||
2

S−1 +

k
∑

i=k−N+1

||vi||
2

R−1

]

(16a)

s.t. xi+1 = Axi +Bui + Edi +wi, i ∈ Nk−1

k−N+1

(16b)

yi = Cxi +Dui + vi, i ∈ Nk
k−N+1

(16c)

xi ∈ X , wi ∈ W, vi ∈ V. (16d)

where xi, ui, di, wi and vi represent the vector of states, inputs, distur-

bances, process and measurement noise respectively, predicted at the i -th step

of the estimation horizon N , and W and V are the concatenation of the vectors

wi and vi. Note that index k denotes a current time sample, while index i refers

to the time index of the MHE. The predictions are obtained from the prediction335

model given by Eqs. (16b) and (16c). Limits on state and noise variables are

defined by eq. (16d). The term ||a||2S in the objective function represents the

weighted squared 2-norm, i.e., aTSa, with the weighting process, noise and error

covariance matrices S, R, and P given as positive definite diagonal matrices.

The first term of the objective function Γ stands for the so called arrival cost,340

which represents the summarized effect of data from previous time-steps outside

the estimation window N .

3. Virtual experiment set-up

The methodology is applied to the borefield of a cooling-dominated office

building located in Dilbeek, Brussels, Belgium. The building conditioned space345

is 2232 m2 and is equipped with a borefield of 37x94m deep double-U tubes,

distributed around the building separated by an intermediate 6 m as shown by

Figure 6.

Further details on the borefield parameters can be found in Table 1. The

thermal properties of the ground are extracted from the SmartGeotherm tool [34],350
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Figure 6: Distribution of the boreholes around the building envelope and hydronic schematic

of the building (TABS stands for thermally activated building system).

which provides information about the ground composition and the average

ground thermal conductivity for any location in Flanders, since no thermal-

response-test (TRT) is available. The geothermal gradient is calculated using a

geothermal heat flow of 0.07 W/m2 as documented by Earth-Energy-Designer

for the location of Brussels [35], which also indicates an undisturbed ground355

temperature Ts of 9.7 ◦C. The resolution of the load aggregation scheme ∆t0 is

set to 480 s (8 minutes), which corresponds to the resolution of the monitoring

system. All the other parameters are extracted from the installation technical

documentation. Two ground-source heat pumps of 70 kW nominal capacity

each provide heating to the building, while direct cooling is supplied by means360

of two heat exchangers. A variable-speed hydraulic pump circulates a mixture

of propylene glycol and water at 30% weight with a maximum volumetric flow

rate of 38 m3/h. Despite being a 10-year-old building, monitored data from

the borefield is only available for 1.5 years, as the calorimeters were recently
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Table 1: Summary of the borefield parameters of the office building

Borehole parameters Piping parameters

Notation Description Value Units Notation Description Value Units

rb Borehole radius 75.0 mm rp Pipe radius 16.0 mm

Hb Borehole height 94.0 m kp Pipe conductivity 0.42 W/(m.K)

db Borehole burial depth 1.0 m ep Pipe thickness 3.0 mm

nb Number of boreholes 37 - xC Pipe spacing 85.0 mm

Ground parameters Grout parameters

Notation Description Value Units Notation Description Value Units

ks Ground conductivity 1.30 W/(m.K) kg Grout conductivity 2.35 W/(m.K)

cs Ground heat capacity 980 J/(kg.K) cg Grout heat capacity 1550 J/(kg.K)

ρs Ground density 1358 kg/m3 ρg Grout density 1225 kg/m3

Ts Undisturbed ground temperature 9.7 ◦C

dTs/dz Geothermal gradient 0.05 ◦C/m

installed. The available data comprises the inlet and outlet temperatures of the365

borefield, the fluid flow rate and the fluid heat flow in intervals of 8 minutes. It

has to be noted that the calorimeters are installed in the building cellar, causing

the temperature sensors to converge to the cellar temperature when no flow is

passing through. As we know beforehand that such data are not related to the

phenomena investigated, it has been filtered out from the data-set.370

Simulations are set up using the BeSim framework in Matlab [36], which

is built upon the modeling and optimization toolbox YALMIP [37]. The opti-

mization problem resulting from the MHE is solved using Gurobi [38]. Table 2

summarizes the simulation conditions applied in this research. The temperature

states are initiated at the undisturbed ground temperature, taking into account375

the effects of the geothermal gradient. The load history for simulations 1a, 2a

and 3a is initiated as if it was empty. Simulations 1b and 2b are initiated with

an initial guess of aggregated loads which results from a previous simulation

that applies a constant load for 10 years to minimize the error between the sim-

ulation mean fluid temperature and the measured one. The process, noise and380

covariance matrices are chosen based on a trial-and-error procedure extending

from previous work [19]. Based on the results of the simulations, we decided

not to run an extra simulation 3b with the initial guesses of aggregated loads.

The simulations are run for 585 days of data starting at the end of February
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Table 2: Summary of the simulation conditions in the cases considered.

Case Initial load states (x0) Estimator
Estim. matrices

S R P

1a Empty No estimator (Open-loop) N/A N/A N/A

1b Guess No estimator (Open-loop) N/A N/A N/A

2a Empty TVKF 1e10 1e1 1e1

2b Guess TVKF 1e10 1e1 1e1

3a Empty
TVKF (Borehole model) 1e10 1e1 1e1

MHE (Ground model) 1e6 1e1 1e1

in time-steps of 8 minutes, in order to match with the time resolution of the385

calorimeters and comprising a total number of time-steps Nsim = 105300. The

model in Equation 14 is loaded into BeSim and converted from its continuous

formulation to a discrete 8-minutes resolution formulation using the MATLAB

embedded function c2d. At the start of each time-step k, the A matrix of the

borefield model is re-computed using the mass flow rate measurement from the390

calorimeter. In the open-loop simulations 1a and 1b, the output (i.e. the mean

fluid temperature) at time-step k and the predicted state vector at the time-step

k+ 1 are calculated using Equations 14a and 14b. In simulations 2a and 2b, at

each time-step, the need for pre-filtering the measurement data is checked first

to assess whether the measured data is corrupted. If the data point is valid,395

TVKF is applied and the state vector is updated using Equations 15c and 15a

to compute the new state prediction at k+1 (Equation 15b) and the estimated

output. The error covariance matrix P is also updated and then predicted by

Equations 15d and 15e. If the data is filtered out, the corresponding time-step

is simulated in open-loop using Equations 14 and 14b.400

To reduce the complexity of the MHE optimization in simulation 3a, the es-

timator is only applied to the ground model, thus avoiding the implementation

of the parameterized A matrix in the optimization formulation. This is justi-

fied since the long-term dynamics of the model are stored within the ground

load states, while the short-term dynamics are stored within the temperature405
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states. Hence, as in simulations 2a and 2b, TVKF is applied first to obtain

an initial set of state estimates. Using the resulting estimates of the borehole

wall temperature Tb as the reference value and Q̇b as the input value, MHE is

then applied to the ground model with a window frame of 1 day (N = 180)

to refine the estimates of the ground loads. The optimization to find the set410

of aggregated load estimates ˆ̇Qagg is therefore formulated at each time-step k

with the following constraints:

min
ˆ̇
Qaggk−N+1,W,V

k−1
∑

i=k−N+1

||wi||
2

S−1 +

k
∑

i=k−N+1

||vi||
2

R−1 (17a)

s.t. Q̇aggi+1 = AQQ̇aggi +BQQ̇bi +wi, i ∈ Nk−1

k−N+1
(17b)

Tbi = CQQ̇aggi + vi, i ∈ Nk
k−N+1 (17c)

ˆ̇Qagg,j,i = Q̇aggj,i i ∈ Nk
k−N+1

j ∈ 1, 2...m (17d)

Q̂acc,i ≥ 0 (17e)

ˆ̇Qagg,i ∈ X , wi ∈ W, vi ∈ V. (17f)

where m represents the aggregation cell where the load history becomes

unknown, and Q̇agg,j,i and ˆ̇Qagg,j,i represent the predicted and estimated ag-

gregated load in the j-th cell at the i-th MHE time-step. As the simulation415

problem advances in time, the point where the load history is unknown is fur-

ther in the past and consequently the number of states to be guessed becomes

smaller. This feature is enforced by constraint (17d): the first aggregation cells

keep the value from the previous prediction step while the cells beyond the

point m until nc have a higher degree of freedom. Additionally, constraint (17e)420

forces the ground load balance to be positive, in accordance to what is expected

from a cooling-dominated building. Thus, no arrival cost Γ is defined as the

information from previous history is implicitly included within the formulated

constraints. The MHE state, process and noise bounds (Equation 17f) are kept

within ± 3E5 W, ± 1E2 W and ± 1E-1 K respectively. The optimization vari-425
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ables include: the estimated states Q̇agg over the horizon N , the estimated state

update error W and the estimated measurement error V . The first element of

the optimized estimated states over the horizon ˆ̇Qaggk−N+1 is selected and the

current estimated states ˆ̇Qaggk are calculated by integration using W via the

so-called state condensing method [39]. This technique can efficiently reduce430

the number of optimization variables and as such speed up the solver.

4. Results and discussion

The main objective of the estimators is to reduce the 1-step ahead output

error between the estimated output and the real measurement ye = ŷ − ym.

However, the predictions of the fluid temperatures in the longer-term are also435

of interest. Section 4.1 elaborates on the results obtained from the estimators

with a focus on 1-step predictions, while Section 4.2 evaluates the performance

of the estimators in the longer run. Please note that the model output y in this

case is the mean fluid temperature Tfm.

4.1. 1-step ahead predictions440

The 1-step ahead output error results are evaluated towards the following

key performance indicators (KPIs), summarized in Table 3:

• the average absolute output error (AAOE =
∑Nsim

k=1
|ye,k|/Nsim),

• the absolute maximum output error (max |ye|),

• the mean output error (ye), and445

• the average simulation time per time-step (tsim,step = tsim/Nsim).

Figure 7 compares the box plots of the output errors ye for the different

simulations cases (as listed in Table 2 for the full period of 585 days). The

open-loop simulation (1a) clearly underpredicts the fluid temperature of the

system, in accordance to our expectations from the load history of a cooling-450

dominated building. Simulation 1b shows that this effect can be mitigated by
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Table 3: 1-step ahead output numerics.

Case AAOE [K] ye [K] max |ye| [K] tsim,step [s]

1a 2.50E0 −2.50E0 7.62E0 1.34E−2

1b 6.47E−1 −2.14E−1 5.69E0 1.40E−2

2a 6.39E−2 −5.63E−2 8.71E−1 1.65E−2

2b 3.47E−2 −7.90E−3 7.58E−1 1.71E−2

3a 2.59E−2 1.43E−5 6.38E−1 8.81E−2

a reasonable guess of the annual load imbalance of the ground, by modifying

Equation 8b to include the annual load imbalance at all times from the start of

system operation (which is taken at 10 years) until the start of the simulation:

Q̇agg(t = 0, τ) = Q̇annual, τ <= 10 years (18)

All three simulation cases with an estimator implemented (2a, 2b and 3a)455

outperform the simulations without, with an output error typically an order of

magnitude lower. A closer look at the output KPIs can be found in Table 3. It

is shown that, with a reasonable estimate of the previous history, TVKF perfor-

mance can be increased. With the adequate selection of the constraints, MHE

outperforms TVKF in terms of error defined KPIs regardless of the previous460

load history estimate. However, this performance increase comes at the cost of

about 5 times more computation time per simulation step as MHE requires to

solve an optimization problem.

To enable minimization of the 1-step ahead output error, the estimators

have a direct effect on the temperature states of the model, i.e. borehole fluid,465

grout and wall temperatures, as their influence on the short-term dynamics

is higher. Contrary to the output evaluation, there is no direct measurement

of these states, consequently we analyze the temperature differences on the

temperature states xd between open-loop simulations and applying TVKF. Note

that only TVKF evaluation is done since simulation case 3a uses this state470

observer to estimate the temperature states. Analogously to the previous case,
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Figure 7: Box plots of the estimated output open-loop/estimation errors for the different

experiments.
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Table 4: Temperature state difference numerics.

State set
Difference 1a-2a Difference 1b-2b

AAD [K] xd [K] maxxd [K] AAD [K] xd [K] max |xd| [K]

Fluid 2.06E0 −2.02E0 1.28E1 7.36E−1 1.45E−1 1.05E1

Grout 2.06E0 −2.06E0 4.34E0 4.33E−1 −1.51E−1 3.72E0

Wall 2.00E0 −2.00E0 3.81E0 4.11E−1 −1.43E−1 2.20E0

Total 2.12E0 −2.12E0 1.28E1 4.63E−1 −1.60E−1 1.05E1

the evaluation is done based on the following KPIs, summarized in Table 4:

• the average absolute temperature difference (AAD =
∑Nsim

k=1
|xd,k|/(nxNsim)),

• the absolute maximum temperature difference (max |xd|), and

• the mean temperature difference (xd) for each set of fluid, grout and wall475

temperatures nx.

On average, TVKF needs to correct about 2.1 ◦C when the model is initiated

with an empty load history and 0.5 ◦C if an estimate of the load history is first

provided, pointing again towards a cooling-dominated building. As expected,

these differences are higher the faster the dynamics of the states are. The fluid480

temperatures have the fastest dynamics, and the wall temperatures the slowest.

Since the aggregated load states travel in time, the same analysis is not repeated

for that set of states.

Figure 8 shows the accumulated load in the ground (given by Equation 12)

over the simulation time. When the model is initiated without load history, it is485

observed from the open-loop simulations that despite being a cooling-dominated

building, over the considered period the ground experienced a negative balance,

more typical for heating-dominated buildings. Applying TVKF slowly corrects

the negative imbalance towards a positive one to reduce the 1-step ahead output

error. This correction effect is no longer needed when the states initial guess is490

more accurate, as it can be observed from the trajectories in experiments 1b and

2b. On the other hand, despite being initiated without load history, the MHE

accumulated load immediately jumps to a different order of magnitude thanks
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Figure 8: Accumulated ground load over the operation period shown during the simulation

period.

to the constraints formulated in the optimization. The observed oscillations can

be explained due to the high degree of freedom that the load states have from495

the point where the load history becomes unknown. Moreover, as the loads far

away in time have a lower impact on the wall temperatures, to obtain a small

change in the fluid temperature it is necessary a big change in the loads far in

the past. A constraint on the accumulated load rate of change could be added

to limit this effect and have a smoother load, however by doing so we found that500

this led to infeasible computational times.

The load correction effect seen in TVKF has a larger effect in the first load

states, as it can be pointed out from Figure 9. The fluid load is represented

from the steady-state time which is the characteristic time of the boreholes

(tb = 5r2b/αs) until the end of the simulation period. In the long-term, the505

fluid and ground energy should be almost coincidental, however this is not the
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case when TVKF is being applied. This effect can be explained by looking at

Equation 15a, where all load and temperature states are updated proportionally

to the computed Kalman Gain Lk. Comparing simulation cases 1a and 2a, the

cells that are empty, i.e. the load history before the simulation, are barely510

affected. Even by introducing a load history as in simulation case 2b, the

variation of the first cells that affect the immediate load history has a larger

cumulative effect in time, producing the load mismatch between ground and

fluid within the 585 days simulation period. An additional reason that causes

the mismatch is associated with the update of the temperature states. By515

doing so, energy from the soil which was not registered through the fluid energy

balance is being introduced/removed. This inherent feature of TVKF does not

occur in MHE, where due to the constraints applied the load history during the

simulation period is not affected, focusing more on finding a combination of the

unknown aggregation cells that minimizes the borehole wall temperature error.520

4.2. n-step ahead predictions

To analyze the performance of the estimators when there is a gap in the

data or towards optimal control applications, we analyse the accuracy of open-

loop simulations after initialization of the model through varying periods of

closed-loop simulations. Closed-loop simulations are run for cases 2a, 2b and525

3a. After each month of simulation, an open-loop simulation is started using

the estimated states of the closed-loop simulations and the measured loads, and

the obtained fluid predictions over time horizons of 1 hour, 6 hours, 24 hours,

3 days, 1 week and 1 month are compared to the monitored data. Figure 10

shows the values of AAOE, maxye, and ye for the simulation periods of 1 hour,530

6 hours, 24 hours, 3 days, 1 week and 1 month, starting after different periods

of estimates. In general, and in line with our expectations, the errors increase

with the considered simulation period for all the considered estimators. For a

simulation time of 24 hours, the TVKF output error can average more than 1

◦C if no estimate of the previous load history is provided beforehand, slowly535

returning to the underestimation of 2 ◦C given by the open-loop simulation 1a.

30



Figure 9: Histogram of aggregated loads and cumulative ground and fluid load at the end of

the simulation. The fluid load is represented from tb till the end of the simulation period. Each

bar represents the aggregated load state within the corresponding cell, positioned relatively

to the current instant (cells on the right side are closer to the present). The green region

corresponds to the simulation period (585 days). The red region corresponds to the building

operation period (10 years). The grey period comprises the remaining cells until τnc
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Figure 10: n-step ahead output KPIs after a period of estimates given by the x-axis for the

different estimation experiments 2a, 2b and 3a.

The same trend is seen when the estimation of the previous load is provided,

with TVKF returning to the underestimates of 0.5 ◦C given by the open-loop

simulation 1b. In these cases, we do not recommend TVKF for n-step output

predictions longer than 6-24 hours. On the other hand, MHE is able to keep540

the average errors under 0.5 ◦C even after long periods of time of 1 month and

without previous initial estimate of loads provided. The length of the estimation

period does not seem to have a clear effect on reducing the output errors, but

depending on the time frame the open-loop simulation starts the error can be

higher or lower. Based on the open-loop simulations with estimates from the545

estimation 2a, we believe that this feature is related to the seasonality of the

loads. The higher errors occur around month 5 which corresponds to the end

of the cooling season, increasing the effect of the previous load history. On

the other hand, lower errors occur at the end of the heating season where the

surrounding ground is colder, compensating for the effect of the previous load550

history.

The best performance estimator (MHE, experiment 3a) is selected and com-

pared against the open-loop simulation with an initial guess of the load history
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to evaluate the increase in performance. After each month of simulation, the

values of AAOE, maxye, and ye for the coming simulation periods of 1 hour,555

6 hours, 24 hours, 3 days, 1 week and 1 month are evaluated for the open-loop

simulation. Results are shown in Figure 11, where it can be seen the lower errors

obtained by the estimator. The provided initial load history estimate obtained

by the manual tuning was selected to minimize the error over the whole sim-

ulation period, however the error does not present a constant trend, which is560

probably caused by uncertainties such as the ground conductivity or the undis-

turbed ground temperature. In that sense, the estimator is able to help with

these kinds of uncertainties minimizing the error in the prediction of the fluid

temperature.

5. Conclusions565

Knowledge of borefield load history is necessary to get accurate predictions

of the working fluid temperature for design, monitoring and optimal control

of geothermal systems. However, lack of monitoring data can lead to large

uncertainties on estimating this load history.

This research presents a methodology to estimate the unknown load his-570

tory of borefields based on state observers with the objective of getting better

predictions of the fluid temperatures. First, technical information from a real

installation is used to calibrate a physics-based borefield model. This calibrated

model is then implemented in a simulation environment together with state es-

timator algorithms that estimate the load history, using real operational data.575

Since the borefield dynamics can be modeled in a linear way, two linear state

estimators are investigated: Time-Varying Kalman Filter (TVKF) and Moving

Horizon Estimator (MHE). Additionally, we investigate the effect of having a

previous estimate of the load history. Finally, simulations are run in open-loop

after a period of estimates to assess the performance of the estimators in the580

longer run. The estimators are compared between them and against the case

where a previous estimate of the load history is provided.
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Figure 11: n-step ahead output KPIs after a period of simulation/estimates given by the

x-axis for the experiments 1b (load history initial guess) and 3a (MHE).
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Both observers provide excellent results in predicting the borefield fluid tem-

perature, with average and maximum 1-step ahead errors below 0.1 ◦C and 1

◦C respectively when compared to the real measurement data, in contrast to the585

average and maximum errors of 2.5 ◦C and 7.62 ◦C respectively of the open-loop

simulation. To minimize this error, the estimators have a direct influence on the

temperature states of the model, which contain the fast-dynamics information,

and consequently the load is modified. This, however, comes with a mismatch

between the cumulative ground and fluid loads in the known load history in the590

case of TVKF, independently of whether a previous unknown load history guess

is provided or not. This feature can be corrected with the aid of constraints in

the MHE formulation, therefore having a more realistic full load history profile

over time. When assessing the open-loop n-step output errors after a period

of estimates, it is observed that the error converges to the values of the full595

open-loop simulations for TVKF the further away the prediction is. The period

of estimates does not seem to have a clear effect on the error reduction, but the

time-frame where the open-loop simulations start does. MHE excels in keeping

the output errors under 0.5 ◦C even after one month of open-loop simulation

time and without a previous guess of the unknown load. The drawback of MHE600

is its increased computational burden, about 5 times higher than TVKF per

time-step.

A raw estimation of the borefield load history which does not need to match

the actual complete history can already get sufficiently accurate fluid tempera-

ture predictions. However, the estimators are able to get better fluid predictions605

in the short and long term compared to the case where the past load history is

manually estimated, and they converge even by providing an initial inaccurate

load estimate.

Future work can be directed towards the different individual aspects of the

approach. The proposed discretized SSM model could be evaluated for differ-610

ent sampling times, different from the data acquisition resolution. The work

on TVKF should be aimed at decoupling the Kalman Gain between the bore-

hole and the ground model. Concerning the MHE, further tuning of the MHE
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optimization problem parameters and its formulation can be explored. For in-

stance, different MHE estimation windows can be evaluated and compared to615

a full information optimization problem that takes into account the whole data

set. The MHE accumulated load oscillations could be filtered out by introducing

a constraint on the accumulated load variation or post-processing the resulting

accumulated load by using a time-average approach. Finally, the application

of the state observers to an optimal control problem or a case where exist un-620

accounted neighbouring ground source heat pump systems that affect the load

history could be explored.
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[26] I. Cupeiro Figueroa, J. Drgoňa, M. Abdollahpouri, D. Picard, L. Helsen,

State observer for optimal control using white-box building models, in:

Proceedings of Purdue Herrick Conferences, 2018, West Lafayette (USA),

9-12 July 2018.715

[27] A. Laferrière, M. Cimmino, D. Picard, L. Helsen, Development and valida-

tion of a full-time-scale semi-analytical model for the short- and long-term

simulation of vertical geothermal bore fields, Geothermics 86 (2020) 101788.

doi:https://doi.org/10.1016/j.geothermics.2019.101788.

[28] M. Cimmino, M. Bernier, A semi-analytical method to generate g-720

functions for geothermal bore fields, International Journal of Heat and

Mass Transfer 70 (2014) 641 – 650. doi:https://doi.org/10.1016/j.

ijheatmasstransfer.2013.11.037.

39



[29] M. Cimmino, Fast calculation of the g-functions of geothermal borehole

fields using similarities in the evaluation of the finite line source solution,725

Journal of Building Performance Simulation 11 (6) (2018) 655–668. doi:

10.1080/19401493.2017.1423390.

[30] B. Leonard, A stable and accurate convective modelling procedure based

on quadratic upstream interpolation, Computer Methods in Applied Me-

chanics and Engineering 19 (1) (1979) 59 – 98. doi:https://doi.org/10.730

1016/0045-7825(79)90034-3.

[31] J. M. Ali, N. H. Hoang, M. A. Hussain, D. Dochain, Review and classifica-

tion of recent observers applied in chemical process systems, Computers &

Chemical Engineering 76 (2015) 27–41.

[32] C. V. Rao, J. B. Rawlings, D. Q. Mayne, Constrained state estimation for735

nonlinear discrete-time systems: Stability and moving horizon approxima-

tions, IEEE transactions on automatic control 48 (2) (2003) 246–258.
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[37] J. Löfberg, YALMIP: a toolbox for modeling and optimization in MATLAB

Proc, in: CACSD Conf.(Taipei)(http://control. ee. ethz. ch./joloef/yalmip.

php), 2004.

[38] G. Optimization, Inc.,“Gurobi optimizer reference manual,” 2015 (2015).750

40



[39] G. Frison, J. Jorgensen, A fast condensing method for solution of linear-

quadratic control problems, in: Proceedings of 52nd IEEE Conference on

Decision and Control, 2013, pp. 7715–7720.

41


	Introduction
	Methodology
	Borefield model
	State estimation
	Time-varying Kalman Filter
	Moving Horizon Estimation


	Virtual experiment set-up
	Results and discussion
	1-step ahead predictions
	n-step ahead predictions

	Conclusions

