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Linear model predictive control for the reduction of auxiliary 
electric heating in residential self-assisted ground-source heat 
pump systems 
 
ALEX LAFERRIÈRE1, MASSIMO CIMMINO1 
1Department of Mechanical Engineering, Polytechnique Montréal, Montreal, Quebec, Canada 

 

 

This paper presents a linear model predictive control strategy for the operation of a “self-assisted” 

ground-source heat pump (GSHP) to reduce auxiliary electric heating in residential applications equipped 

with undersized boreholes. The self-assisted configuration uses an electric heating element at the heat 

pump outlet to inject heat into the bore field when approaching peak power demand. A linear control-

oriented model is proposed to account for both the source-side and load-side GSHP dynamics. The ground 

heat transfer is predicted using the bore field’s ground-to-fluid thermal response factor, thus allowing for 

any bore field configuration while accounting for thermal capacity effects. Real historic ambient 

temperature forecasts and their corresponding historic recorded ambient temperatures from Montreal are 

used in this paper. The COP non-linearity is circumvented with an iterative approach. A Kalman filter is 

used to dynamically adjust the bias on the predicted returning fluid temperature. On a borehole undersized 

by 15%, the control strategy reduces auxiliary electric heating by 96% over 20 years at the cost of a 5.53% 

increase in total energy consumption. Due to the occasional simultaneous heat injection and auxiliary 

heating, the yearly peak power demand is increased. 

Introduction 

Ground-source heat pumps (GSHP), coupled to vertical geothermal boreholes, are an energy-efficient 

method to meet the heating and cooling loads of buildings. In cold climates, GSHPs will gradually exhaust 

the ground thermal energy stores, resulting in lower returning fluid temperatures from the boreholes. This is 

especially true in residential applications which, in cold climates, are very heating-dominated. A colder 

returning fluid temperature will typically cause a drop in heat pump efficiency. If the fluid temperature 

drops too low, the heat pump will no longer be able to operate safely (e.g. due to the risk of the heat-carrier 



fluid freezing) or efficiently (e.g. due to the increased fluid viscosity and increased circulating pump energy 

consumption). In the former case, the heating demand must then be met by an auxiliary source. Auxiliary 

electric heating creates high peaks in power consumption. As this is undesirable from a grid-management 

perspective, it can therefore be desirable to implement solutions to thermally assist GSHPs operating in 

cold climates. 

One common method of assisting GSHPs is by coupling the GSHP to solar collectors. These may 

recharge the ground thermal stores or store thermal energy in storage vessels used when the returning fluid 

temperature from the ground is too low. For example, Kjellsson et al. (2010) showed that, for a wide range 

of different borehole lengths, solar assistance can lead to large savings in energy consumption over a long 

period of operation (20 years), especially if the solar assistance is optimized to alternate between assisting 

the boreholes and providing energy for domestic hot water. The downside of solar assistance for GSHPs is 

that they require extensive installations with costly solar collectors. Eslami Nejad et al. (2017) therefore 

proposed a “self-assisted” GSHP configuration, wherein the excess compressor power is injected into the 

ground to thermally assist the GSHP. Even though the self-assisted configuration invariably causes an 

increase in total energy consumption, its usage can lower peak power demand caused by auxiliary electric 

heating, thus reducing peak power demand of GSHPs with undersized boreholes without relying on 

expensive solar collectors. The authors showed the potential of the self-assisted configuration by reducing 

peak power consumption by 47% at the cost of a 4.1% increase in energy consumption on an undersized 

GSHP system. Laferrière and Cimmino (2018) studied a modified version of this configuration. Instead of 

relying on the excess compressor power, a heating element was added in series at the heat pump outlet (i.e. 

before returning into the bore field). With this configuration, the authors used a simulation-based model 

predictive control (MPC) strategy to completely eliminate auxiliary electric heating from a residential 

application. The MPC strategy assumed zero weather forecast uncertainty and used a perfect information 

MPC scheme, i.e. the emulation model was used by the controller to predict future operation. This allowed 

a peak power reduction of 58% with an energy consumption increase of 2.8%, showing the potential 

benefits of a predictive control strategy with self-assisted GSHPs on undersized boreholes. 

Because of the increased complexity of building heating and cooling systems (e.g. solar-assisted and 

self-assisted GSHPs) as well as the desire to improve the energy performance of buildings, advanced 



control methods have been employed in the literature. Of particular interest is model predictive control 

(MPC). In its classical formulation, MPC implies using a model and forecasts at discrete intervals to predict 

the model dynamics over a finite horizon based on future control inputs. These inputs are optimized to 

minimize or maximize a cost function, with possible constraints on inputs and on model variables. The 

optimized inputs are applied until the next MPC control step, at which point the optimization process is 

repeated (and the previously optimized inputs which have not yet been applied are discarded). When this 

process is repeated, the same horizon length is used; this creates what is known as a receding horizon. One 

of the difficulties in designing MPC controllers is determining an appropriate model to predict future 

operation. 

MPC has seen many successful applications in simulation-based studies of building heating and 

cooling systems. Among the many examples that can be found in the literature, Oldewurtel et al. (2012) 

showed that different MPC formulations for HVAC controls, especially stochastic MPC, could offer 

significant savings in energy consumption while also leading to fewer constraint violations of occupant 

thermal comfort when compared to rule-based control. Oldewurtel et al. (2010) used real-time pricing 

forecasts to reduce the peak power demand of thermal appliances by up to 39%. Verhelst et al. (2012) were 

able to obtain a reduction of 5% in the energy consumption of an air-to-water heat pump while limiting 

fluctuations in its power demand. Candanedo et al. (2013) showed that a simple grey-box resistance-

capacitance model can adequately predict the thermal behaviour of buildings. Široký et al. (2011) 

performed an experimental validation of MPC applied to HVAC systems, where the commercial building 

studied showed a decrease in energy consumption between 15% and 28% while using real-time weather 

forecasts. 

Despite its many successful applications to building HVAC systems in simulation models and 

laboratory experiments, MPC has seen more timid use in the area of GSHP research. One of the key 

challenges in this endeavour is the difficulty in obtaining an accurate control-oriented model of ground heat 

exchanger dynamics, due in part to its non-linear behaviour and the short-term effects of the thermal 

capacity of the borehole filling material and of the fluid travelling through the bore field (Atam and Helsen, 

2016). Verhelst (2012) compared three approaches: a black-box model using system identification, a grey-

box model using parameter estimation, and a white-box model using model reduction. The latter model, 



which discretizes the ground as a resistance-capacitance network, was found to offer the best performance. 

Another similar approach is the control-oriented model developed by Atam and Helsen (2013), which uses 

a finite volume discretization of the fluid, grout and ground around a single borehole to construct a state-

space representation of the borehole dynamics, followed by an orthogonal decomposition to create a 

reduced-order version of this model. This control-oriented model was used by Atam et al. (2016) as part of 

a non-linear MPC strategy and was compared, for different building load profiles, to a dynamic 

programming control strategy and to linear optimal control. The non-linear MPC was found to perform 

only slightly worse than the dynamic programming strategy (assumed to be optimal) with regards to energy 

use minimization. However, these results feature minimal mismatch between the control models and the 

emulator model. Weeratunge et al. (2018) used the infinite line source solution to model a single borehole 

without accounting for thermal capacitance effects. One of the downsides of the aforementioned control-

oriented models is their inability to model a bore field consisting of more than one borehole. The approach 

by Weeratunge et al. (2018) also has the additional downside of being unable to predict short-term borehole 

thermal dynamics. De Ridder et al. (2011) used simulation results obtained with the Duct Ground Heat 

Storage (DST) Model (Hellström, 1989) to parametrize a linear model of the ground dynamics with a 

week-long sampling time. This time scale limits its applicability to real-life systems. Atam et al. (2018) 

used a Hammerstein-Wiener model to decouple the linear and non-linear dynamics, with parameters 

identified using appropriate excitation inputs with the BASIMO bore field simulation model (Schulte, 

2016). Another approach with several examples in the literature is the use of artificial neural networks, as 

used for example by Esen et al. (2008). Both Hammerstein-Wiener models and artificial neural networks 

have the downside of potentially requiring a large number of emulator simulations to properly train or 

parametrize a control model. Sundbrandt (2011) developed a linear state space model as part of a hybrid 

MPC strategy formulated using mixed-integer quadratic programming to control a GSHP. The proposed 

model includes the on-off behaviour of the heat pump with a time step of 5 minutes. The MPC strategy was 

found to offer better energy performances than a conventional control strategy. However, the proposed 

model does not include detailed ground dynamics for the GSHP and instead assumes that any load required 

by the GSHP can be met. 



Beyond the challenges of the ground dynamics, there is also the difficulty created by the fact that the 

dynamics of the GSHP’s coefficient of performance (COP) may render the problem non-convex. The COP 

is a key parameter in the heat pump dynamics, as it directly affects the amount of heat that is injected or 

extracted from the ground, which in turns affects the bore field returning fluid temperature and therefore 

the COP. However, the COP’s dependence on variables such as returning fluid temperature or returning 

fluid flow rate is non-linear. Some authors have circumvented the problem by considering a constant COP 

(Verhelst, 2012; Mayer et al., 2016), which may introduce errors in the calculation of heat transfer to or 

from the heat-carrier fluid and thus on the returning fluid temperatures. Atam et al. (2014) used analytical 

convexified approximations assuming known building loads to model the thermal behaviour of the source-

side heat carrier fluid. Weeratunge et al. (2018) linearized the temperature-dependence of the COP in two 

segments as part of a mixed-integer linear programming problem for a MPC strategy applied to a solar-

assisted GSHP. 

To the authors’ knowledge, there are no works in the literature which present and study the energy 

performance of a control-oriented model of a complete GSHP system (i.e. source-side as well as load-side) 

with variable bore field configurations (i.e. not limited to a single borehole) and with completely linear 

system dynamics while reducing the dependence on a bore field emulation model. Furthermore, there are 

no works which show GSHP performance results with MPC using real historical weather forecasts along 

with the corresponding actual historical weather data. For examples where real historical forecasts are used 

in other MPC applications for building systems control, the reader is referred to Oldawurtel et al. (2012) 

and Hilliard (2017). This paper aims to fill these gaps by presenting a control-oriented linear state space 

model for a complete GSHP and studying its performance with real weather forecasts. This control model 

is applied to a residential single-family house in the Montreal area equipped with a self-assisted GSHP 

using weather forecasts and weather data from 2017 and 2018. This paper therefore furthers the study of 

the self-assisted configuration proposed by Eslami Nejad et al. (2017). 

Methodology 

The self-assisted GSHP system considered in this paper is shown in Figure 1. The GSHP is coupled to 

a bore field and provides heating and cooling to a single-family dwelling. Figure 1 shows the operation 



during the heating season. The GSHP is coupled to a bore field consisting of a single borehole. The heat 

pump is equipped with an electric element at its source-side outlet to provide assistance when approaching 

peak power demand. An auxiliary heater provides additional heating to the building when the heat pump 

cannot operate. The thermal assistance is meant to avoid the use of this auxiliary heating by keeping the 

returning fluid temperature (𝑇𝑖𝑛,ℎ𝑝) above a minimum temperature limit. 

 

Figure 1. Self-assisted GSHP system 

The operation of the heat injection element in the self-assisted GSHP depends on a model predictive 

control strategy. At regular intervals of 12 hours (i.e. the control period), the controller optimizes the 

operation of the heat injection element, providing the heat injection pattern at every controller time step 

(e.g. 15 minutes) of the 6 following days (i.e. the prediction horizon). In this paper, the control period 

corresponds to the frequency of update of the weather forecasts and the length of the prediction horizon 

corresponds to the length of the available weather forecasts. In a previous study (Laferrière and Cimmino, 

2018), it was shown that heat injection should start several days ahead to eliminate auxiliary heating with 

minimal energy use. For the sake of controller simplicity, feasability and computation times, it is preferable 

for the model used in the predictive controller to rely on linear dynamics. However, the real-life operation 



of a GSHP features many non-linearities. Thus, there is a distinction between the system emulation model, 

which simulates the system shown in Figure 1 as realistically as possible, and the control model, which is 

used by the controller as a linear approximation of the system for the sake of heat injection optimization. 

The components of the emulation model are presented in the next section, followed by the components of 

the control model. 

Emulation model 

The components of the emulation model are all developed in the Modelica language. Modelica is a 

modular object-oriented programming language aimed at simulating dynamic engineering systems 

(thermal, mechanical, electrical, etc.). 

Building 

The building is a single-family two-story residential dwelling in Montreal, Canada, with a total floor 

area of 200 m2. The Modelica building model was generated using the TEASER tool (Remmen et al., 

2017). The TEASER tool generates building archetypes based on the energy performance of buildings in 

Germany. It was still used for the emulator because, to the authors’ knowledge, it is currently the only 

Modelica building archetype for single-family residential dwellings. To compensate for the differences in 

the typical energy performances of German and Canadian houses, the equivalent thermal resistances of the 

envelope elements (exterior walls, roof, floor plate and windows) were adjusted to the arithmetic mean of 

the base archetype value and the value prescribed by a local high-performance building code (Transition 

Énergétique Québec, 2018). The annual heating energy demand of the building model simulated with a 

typical meteorological year in Montreal is 72.4 kWh/m2/year. For a recently built house with very good 

energy performance, this value seems coherent, as Natural Resources Canada (2004) gives a value of about 

119.5 kWh/m2/year for an average Montreal house built after 1990 (assuming a total floor area of 186 m2). 

Bore field 

The emulation model uses the bore field model developped by Laferrière et al. (submitted manuscript, 

2018) and implemented into the open-source IBPSA library of building system models (“IBPSA Project 1,” 

n.d.). This model is comprised of two heat transfer regions: the long-term heat transfer in the ground 

surrounding the boreholes, and the short-term heat transfer through the borehole filling material and the 



heat carrier fluid. The borehole wall temperature, considered uniform along the length of the boreholes, 

acts as an interface between the two regions. Temporal superposition of the bore field’s thermal response 

factor is used to evaluate the borehole wall temperature variation, with a load aggregation method to reduce 

calculation times. This method allows the model to simulate any number of boreholes positioned in any 

configuration. The thermal response factor, or g-function (Eskilson, 1987), is evaluated using a finite line 

source solution (Cimmino and Bernier, 2014; Cimmino, 2018) and is then corrected to account for the 

cylindrical geometry of boreholes (Li et al., 2014). The heat transfer through the grout, pipes and fluid uses 

a vertical discretization of a single equivalent borehole (as all of the boreholes are considered to have the 

same average borehole wall temperature). Each vertical element is modeled as a resistance-capacitance 

network (Bauer et al., 2011). The multipole method is used to calculate borehole resistances (Claesson and 

Hellström, 2011). In the radial direction, each element accounts for the fluid convective heat transfer 

(including the fluid thermal capacitance), the pipe conductive heat transfer, and the grout conductive heat 

transfer (including the grout thermal capacitance). In the axial direction, the heat transfer is strictly 

advective (i.e. due to the fluid flow). The bore field model was validated for both its short-term and long-

term behaviour using a combination of analytical, experimental and field results.  

GSHP 

The heat pump is single-speed and reversible. Its energy performance is modeled based on the curve 

fitting equations proposed by Tang (2005) for water-to-air heat pumps. These equations use the source-side 

water inlet temperature 𝑇𝑖𝑛,ℎ𝑝, the source-side volumetric flow rate �̇�𝑖𝑛,ℎ𝑝, the load-side dry-bulb (𝑇𝑏𝑢𝑖) and 

wet-bulb (𝑇𝑤𝑏) temperatures, and the load-side volumetric flow rate �̇�𝑏𝑢𝑖. The outputs are the capacity 𝑄 

and the compressor input power 𝑃. 

𝑄𝑐𝑄𝑐,𝑟𝑒𝑓 = B1 + B2 𝑇𝑏𝑢𝑖𝑇𝑟𝑒𝑓 + B3 𝑇𝑤𝑏𝑇𝑟𝑒𝑓 + B4 𝑇𝑖𝑛,ℎ𝑝𝑇𝑟𝑒𝑓 + B5 �̇�𝑏𝑢𝑖�̇�𝑏𝑢𝑖,𝑟𝑒𝑓,𝑐 + B6 �̇�𝑖𝑛,ℎ𝑝�̇�𝑖𝑛,ℎ𝑝,𝑟𝑒𝑓,𝑐  (1) 𝑃𝑐𝑃𝑐,𝑟𝑒𝑓 = C1 + C2 𝑇𝑤𝑏𝑇𝑟𝑒𝑓 + C3 𝑇𝑖𝑛,ℎ𝑝𝑇𝑟𝑒𝑓 + C4 �̇�𝑏𝑢𝑖�̇�𝑏𝑢𝑖,𝑟𝑒𝑓,𝑐 + C5 �̇�𝑖𝑛,ℎ𝑝�̇�𝑖𝑛,ℎ𝑝,𝑟𝑒𝑓,𝑐   (2) 𝑄ℎ𝑄ℎ,𝑟𝑒𝑓 = E1 + E2 𝑇𝑏𝑢𝑖𝑇𝑟𝑒𝑓 + E3 𝑇𝑖𝑛,ℎ𝑝𝑇𝑟𝑒𝑓 + E4 �̇�𝑏𝑢𝑖�̇�𝑎𝑖𝑟,𝑟𝑒𝑓,ℎ + E5 �̇�𝑖𝑛,ℎ𝑝�̇�𝑤,𝑟𝑒𝑓,ℎ   (3) 

𝑃ℎ𝑃ℎ,𝑟𝑒𝑓 = F1 + F2 𝑇𝑏𝑢𝑖𝑇𝑟𝑒𝑓 + F3 𝑇𝑖𝑛,ℎ𝑝𝑇𝑟𝑒𝑓 + F4 �̇�𝑏𝑢𝑖�̇�𝑏𝑢𝑖,𝑟𝑒𝑓,ℎ + F5 �̇�𝑖𝑛,ℎ𝑝�̇�𝑖𝑛,ℎ𝑝,𝑟𝑒𝑓,ℎ   (4) 

 

The subscripts 𝑐 and ℎ refer to cooling and heating modes, respectively. Coefficients B1 to B6, C1 to 

C5, E1 to E5 and F1 to F5 are obtained via a curve fitting procedure using manufacturer data for a 



residential GSHP with a nominal capacity of 11.13 kW. The manufacturer data also provides the reference 

conditions for Equations 1 to 4, i.e. the maximum capacities and their associated power consumptions and 

volumetric flow rates, while 𝑇𝑟𝑒𝑓 is set to 283 K as recommended by Tang (2005). 

The capacity and the compressor power are used to calculate the the heat’s pump coefficient of 

performance (COP) for either heating (ℎ) or cooling (𝑐) modes. COPℎ/𝑐 = 𝑄ℎ/𝑐𝑃ℎ/𝑐        (5) 

 

The heat extraction or injection rate from the bore field can then be defined using this COP. 𝑄𝑠𝑜𝑢,ℎ = −𝑄ℎ(1 − 1COPℎ)       (6) 𝑄𝑠𝑜𝑢,𝑐 = 𝑄𝑐(1 + 1COP𝑐)       (7) 
 
where the heating and cooling capacities are positive and where 𝑄𝑠𝑜𝑢 is positive for heat injection into the 

bore field (and negative for extraction). 

The heat pump uses a hysteresis controller to maintain the indoor temperature above a heating setpoint 

of 21 °C and under a cooling setpoint of 24 °C. Both setpoints have a deadband of 2 °C around the setpoint. 

In all cases, to avoid excess compressor cycling, the heat pump must remain on for at least 3 minutes before 

being turned off again, and must remain off for at least 4 minutes before being turned on again. These 

values are provided in the manufacturer data. 

The source-side heat carrier fluid is a 20% propylene-glycol mixture. The minimum source-side inlet 

temperature in heating mode is set to 0 °C to avoid the fluid potentially freezing at the heat pump source-

side outlet. The maximum source-side inlet temperature in cooling mode is set to 50 °C, though this limit is 

never reached in the case being studied. 

Other heating sources 

As the heat pump uses the “self-assisted” heat pump configuration, heat injection into the ground is 

supplemented by a heating element located at the heat pump source-side outlet. The heating element, 

assumed to have negligible thermal losses, is controlled using model predictive control to recharge the 

ground in preparation of high heat demand periods and to avoid using the auxiliary heater. Should the heat 

injection fail to prevent the GSHP from shutting off due to a low source-side inlet temperature, the building 

will gradually cool down until it reaches the auxiliary heating setpoint of 19.5 °C. When this temperature is 



reached, a hysteresis controller is used with a deadband of 1 °C to maintain the indoor temperature above 

the setpoint until the heat pump can safely operate. 

Control model 

Weather forecasts 

One of the objectives of this paper is to include real weather forecasts in the control strategy and 

therefore account for the mismatch between weather forecasts and actual weather. Weather forecasts at the 

international airport in Montreal were collected over a period of a year, from October 26 th, 2017 to 

November 1st, 2018. The weather forecasts are retrieved from two sources: CanMETEO (Candanedo et al., 

2018) and Environment Canada (“Environment Canada,” n.d.). The CanMETEO software provides hourly 

ambient temperature forecasts, but is limited to a maximum horizon of 48 hours. In practice, as the 

forecasts are only updated every few hours, the forecasts are often less than 48 hours long. Hourly forecasts 

are linearly interpolated to sub-hourly intervals when required. To increase the precision of the forecasts 

while also having a sufficiently long prediction horizon, the CanMETEO forecasts were used for short-term 

predictions, and the Environment Canada forecasts for long-term predictions. However, forecasts provided 

by Environment Canada are limited to daily high and low temperatures and must first be converted to a 

time-varying temperature profile. 

Synthetic hourly ambient temperature profiles are generated according to the method presented by De 

Wit (1978) and validated by Reicosky et al. (1989). This method assumes that the daily maximum ambient 

temperature occurs at 14:00 while the daily minimum temperature occurs at sunrise. At any given ℎ𝑜𝑢𝑟 of 

the day, the forecasted temperature 𝑇𝑎𝑚𝑏(ℎ𝑜𝑢𝑟) can be predicted using the nearest daily minimum 

temperature 𝑇𝑎𝑚𝑏,𝑚𝑖𝑛, the nearest daily maximum temperature 𝑇𝑎𝑚𝑏,𝑚𝑎𝑥 , and the sunrise time 𝑟𝑖𝑠𝑒. 𝑇𝑎𝑣𝑒 = 𝑇𝑎𝑚𝑏,𝑚𝑎𝑥+𝑇𝑎𝑚𝑏,𝑚𝑖𝑛2        (8) 𝑇𝑎𝑚𝑝 = 𝑇𝑎𝑚𝑏,𝑚𝑎𝑥−𝑇𝑎𝑚𝑏,𝑚𝑖𝑛2        (9) 

𝑇𝑎𝑚𝑏(ℎ𝑜𝑢𝑟) = {  
  𝑇𝑎𝑣𝑒 + 𝑇𝑎𝑚𝑝cos(𝜋 ℎ𝑜𝑢𝑟+10𝑟𝑖𝑠𝑒+10 ) ℎ𝑜𝑢𝑟 < 𝑟𝑖𝑠𝑒𝑇𝑎𝑣𝑒 − 𝑇𝑎𝑚𝑝cos(𝜋 ℎ𝑜𝑢𝑟−𝑟𝑖𝑠𝑒14−𝑟𝑖𝑠𝑒 ) 𝑟𝑖𝑠𝑒 ≤ ℎ𝑜𝑢𝑟 ≤ 14𝑇𝑎𝑣𝑒 + 𝑇𝑎𝑚𝑝cos(𝜋 ℎ𝑜𝑢𝑟−14𝑟𝑖𝑠𝑒+10 ) 14 < ℎ𝑜𝑢𝑟   (10) 

 



The Environment Canada forecasts were collected twice daily on a personal computer at intervals of 

12 hours: once in the morning, once in the afternoon. The CanMETEO forecasts were collected once daily 

in the afternoon. Occasional technical problems such as electrical blackouts caused some forecasts to be 

missing. The missing Environment Canada forecasts were filled in by linearly interpolating between the 

two nearest forecasts for the same target time. Suppose, for example, that the forecasts could not be 

collected on January 1st at 14:00. Using the 2-day-ahead forecast (i.e. the forecast for January 3rd at 14:00) 

as an example, the missing forecast could be linearly interpolated with the forecasts for January 3rd at 14:00 

that were collected on January 1st in the morning and on January 2nd in the morning. As for missing 

CanMETEO forecasts, these were instead replaced by the Environment Canada forecasts.  

The starting points of every control period were set to 2:00 and 14:00. The boundary between the 

short-term and long-term forecasts was set at the first sunrise after the second full day. The time period of 

the forecasts varies between 6 and 7 days. To ensure a constant prediction horizon, the prediction horizon 

was fixed at 6 days, as this way all control periods could have the exact same prediction horizon. Figure 2 

shows the contribution of both data sources to the generation of a 6-day-long hour-by-hour forecast using 

the forecasts of November 1st 2017 as an example. Each full day into the forecast ends at 14:00, and each 

dashed vertical bar represents a sunrise (at a different time each day). In the first region, wherein the 

forecasts are provided by CanMETEO, the maxima and minima do not necessarily align with day starts or 

sunrises. In the second region, wherein the forecasts are provided by Environment Canada, the day starts 

and sunrises are aligned with maxima and minima, respectively. Figures 3 and 4 show sample ambient 

temperature forecasts over the 6-day prediction horizon compared to the corresponding reported measured 

temperature. Figure 3, showing the forecast on the 7th of May 2018, is representative of clear sky periods 

with a root mean square difference of 2.13 ºC between the predicted and reported temperatures. Figure 4, 

showing the forecast on the 13th of April 2018, is representative of cloudy periods with some missing (i.e. 

interpolated) forecasts with a root mean square difference of 2.05 ºC between the predicted and reported 

temperatures. 



 

Figure 2. Construction of 6-day-ahead weather forecasts on 2017-11-01 

 

Figure 3. Comparison of forecasted and real temperatures, 2018-05-07  



 

Figure 4. Comparison of forecasted and real temperatures, 2018-04-13 

Building load forecasts 

For a linear MPC formulation, the heat pump operation needs to be expressed as a linear function of 

the forecasted ambient temperature. This is a challenging task in the case of an on-off single-speed heat 

pump, as a regular time discretization of the order of minutes cannot accurately predict a heat pump’s 

cycling with highly variable operation times. Additionally, it also requires forecasts on solar gains (which 

were not collected during the year of forecast collection) and occupancy gains. Thus, the heat pump’s 

average operating load is instead predicted using weather forecasts. The discretized average load is 

expressed in two linear parts as a function of the difference between the indoor building temperature 𝑇𝑏𝑢𝑖 
(assumed to be equal to the heating setpoint of 21 °C) and the ambient temperature 𝑇𝑎𝑚𝑏 . This approach 

provides an approximation of the solar gains and the occupancy gains directly within the building effective 

UA value. 

𝑄𝑙𝑜𝑎𝑑(𝑘) = { 
 𝑈𝐴(𝑇𝑏𝑢𝑖 − 𝑇𝑎𝑚𝑏(𝑘)) + 𝑞 𝑇𝑎𝑚𝑏 ≤ 𝑇𝑒𝑞,1𝑈𝐴(𝑇𝑏𝑢𝑖−𝑇𝑒𝑞,1)+𝑞(𝑇𝑒𝑞,2−𝑇𝑒𝑞,1) (𝑇𝑒𝑞,2 − 𝑇𝑎𝑚𝑏(𝑘)) 𝑇𝑒𝑞,1 < 𝑇𝑎𝑚𝑏 ≤ 𝑇𝑒𝑞,20 𝑇𝑒𝑞,2 < 𝑇𝑎𝑚𝑏  (11) 

 



The effective UA value, its associated load constant 𝑞, and the equilibrium temperatures (𝑇𝑒𝑞,1 and 𝑇𝑒𝑞,2) 

were identified for two time periods: one set for daytime operation (7:00 to 19:00) and one set for nighttime 

operation (19:00 to 7:00), meaning that a total of 2 different UA values were used (𝑈𝐴𝑑𝑎𝑦 and 𝑈𝐴𝑛𝑖𝑔ℎ𝑡). 
This was done by simulating the emulator model for a full year with a typical meteorological year and then 

using a curve fitting procedure with the half-day-averaged ambient temperatures and heating loads. The 

data points as well as the resulting curves are shown in Figure 5. The daytime half-day averaged heatings 

loads are shown as a function of the average ambient temperature in Figure 5a, while Figure 5b shows the 

nighttime half-day averaged loads. For ambient temperatures lower than 𝑇𝑒𝑞,1, which correspond to 

temperatures at which auxiliary heating and heat injection are probable, the root-mean-square errors for 

Figures 5a and 5b are 773 W and 373 W, respectively. 𝑇𝑒𝑞,1 is equal to -2.85 °C for the daytime curve fit 

and 1.35 °C for the nighttime curve fit. The lack of solar gains and the more regular occupancy gains at 

night explain why the nighttime curve fit displays a better fit. 

 

Figure 5. Building heating load curve fitting 

Bore field fluid temperature prediction 



To model the bore field thermal dynamics, a hybrid numerical/semi-analytical approach is proposed. 

The approach uses a bore field’s “ground-to-fluid thermal response factor” (GTFTRF). The GTFTRF is 

similar to more conventional thermal response factors (e.g. g-functions), with the difference that the 

thermal response extends to the average fluid temperature rather than the borehole wall temperature. In 

other words, it includes short-term thermal capacity effects. The GTFTRF gives the variation of the mean 

fluid temperature in the bore field in response to a constant total heat injection rate into the bore field. It is 

defined by the relation: 𝑇𝑓(𝑡) = 𝑇𝑔 + 𝑔𝑔𝑓(𝑡)2𝜋ℎ𝑘𝑠𝑁𝑏 ∙ 𝑄      (12) 

where 𝑇𝑓 = 12 (𝑇𝑖𝑛,𝑠𝑜𝑢 + 𝑇𝑜𝑢𝑡,𝑠𝑜𝑢) is the arithmetic mean fluid temperature in the bore field, 𝑇𝑖𝑛,𝑠𝑜𝑢 and 𝑇𝑜𝑢𝑡,𝑠𝑜𝑢 are the inlet and outlet fluid temperature in the bore field, 𝑇𝑔 is the undisturbed ground temperature, 𝑄 is a constant total heat injection rate, 𝑔𝑔𝑓 is the GTFTRF, ℎ is the borehole length, 𝑘𝑠 is the ground 

thermal conductivity, and 𝑁𝑏 is the number of boreholes in the bore field. 

The mean fluid temperature variation due to a varying heat injection rate into the bore field is obtained 

from the temporal superposition of the GTFTRF. At a time 𝑘: 𝑇𝑓(𝑘) = 𝑇𝑔(𝑘) + 12𝜋ℎ𝑘𝑠𝑁𝑏∑ (𝑔𝑔𝑓(𝑘 − 𝑖 + 1) − 𝑔𝑔𝑓(𝑘 − 𝑖)) 𝑄(𝑖)𝑘𝑖=1  (13) 

The summation in Equation 13 becomes computationally intensive in multi-year simulations with 

small time steps. Therefore, a modified cell-shifting aggregation scheme based on the work of Claesson and 

Javed (2012) is used instead. The cell-shifting load aggregation scheme involves discretizing the thermal 

history of the bore field since the start of the system’s operation into 𝑁𝑐 cells. Each cell 𝑖 represents the 

average ground thermal load during a period spanning from 𝜈𝑖−1 to 𝜈𝑖  of the bore field’s thermal history. 

The 𝑤𝑖𝑑𝑡ℎ𝑖 of each cell doubles every 𝑛𝑐 cells, meaning more distant cells contain thermal loads averaged 

over longer time periods. The widths and time spans of each cell are defined by: 

𝑤𝑖𝑑𝑡ℎ𝑖 = 2floor(𝑖−1𝑛𝑐 )       (14) 𝜈𝑖 = Δ𝑡∑ 𝑤𝑖𝑑𝑡ℎ𝑗𝑖𝑗=1        (15) 

i.e. 𝜈𝑖 = 𝜈𝑖−1 + Δ𝑡 ∙ 𝑤𝑖𝑑𝑡ℎ𝑖  with 𝜈0 = 0, where Δ𝑡 is the controller time step. At every controller time step, 

cells transfer part of their thermal history towards more distant cells while conserving energy. At a 



controller time step 𝑘 occuring at time 𝑡, the value of the aggregated load �̅�𝑖(𝑘) of each cell 𝑖 ≥ 2 is 

expressed as a function of aggregated loads from controller step (𝑘 − 1): 
�̅�𝑖≥2(𝑘) = { 

 0 𝑡 < 𝜈𝑖−11𝑤𝑖𝑑𝑡ℎ𝑖 �̅�𝑖−1(𝑘−1) + �̅�𝑖(𝑘−1) 𝜈𝑖−1 ≤ 𝑡 < 𝜈𝑖1𝑤𝑖𝑑𝑡ℎ𝑖 �̅�𝑖−1(𝑘−1) + 𝑤𝑖𝑑𝑡ℎ𝑖−1𝑤𝑖𝑑𝑡ℎ𝑖 �̅�𝑖(𝑘−1) 𝜈𝑖 ≤ 𝑡    (16) 

 
The value of the averaged ground load in the first cell, �̅�1(𝑘), is equal to the ground load during the current 

controller time step, 𝑄(𝑘). 
The aggregation weighting factor 𝜅 of each cell 𝑖 is then calculated using the GTFTRF: 𝜅𝑖 = 12𝜋ℎ𝑘𝑠𝑁𝑏 (𝑔𝑔𝑓(𝜈𝑖) − 𝑔𝑔𝑓(𝜈𝑖−1))     (17) 

with 𝑔𝑔𝑓(𝜈0) = 0. At each controller time step 𝑘, temporal superposition is performed on the averaged 

ground loads to determine the mean fluid temperature:  

𝑇𝑓(𝑘) = 𝑇𝑔(𝑘) +∑ 𝜅𝑖𝑄𝑖(𝑘)𝑁𝑐𝑖=1       (18) 

GSHP performance prediction 

Contrary to the emulation model, the GSHP’s energy performance in the control model should strictly 

rely on variables which can be measured or predicted. Thus, the control model assumes that the load-side 

temperature, the load-side volumetric flow rate and the source-side volumetric flow rate are all constant 

and known, leaving the source-side heat pump inlet temperature 𝑇𝑖𝑛,ℎ𝑝 (= 𝑇𝑜𝑢𝑡,𝑠𝑜𝑢) as the only variable 

taken into account. Manufacturer data was used to produce a quadratic curve fit. 𝐶𝑂𝑃(𝑘) = 𝛽1 + 𝛽2𝑇𝑖𝑛,ℎ𝑝(𝑘) + 𝛽3𝑇𝑖𝑛,ℎ𝑝2 (𝑘)    (19) 

where 𝛽1, 𝛽2 and 𝛽3 are the curve fit coefficients. Assuming steady state heat pump behaviour, 𝑇𝑖𝑛,ℎ𝑝 is 

calculated using 𝑇𝑓 and the ground load 𝑄. 𝑇𝑖𝑛,ℎ𝑝(𝑘) = 𝑇𝑓(𝑘) − 𝑄(𝑘)2�̇�𝑐𝑝       (20a) 

𝑇𝑖𝑛,ℎ𝑝(𝑘) = 𝑇𝑓(𝑘) − (𝑄𝑖𝑛𝑗(𝑘)−𝑄𝑠𝑜𝑢(𝑘))2�̇�𝑐𝑝      (20b) 

𝑇𝑖𝑛,ℎ𝑝(𝑘) = 𝑇𝑓(𝑘) − (𝑄𝑖𝑛𝑗(𝑘)−(1− 1𝐶𝑂𝑃(𝑘))𝑄𝑙𝑜𝑎𝑑(𝑘))2�̇�𝑐𝑝     (20c) 



where 𝑄𝑖𝑛𝑗 is the heat injection in the self-assisted configuration, �̇� is the source-side mass flow rate, and 𝑐𝑝 is the specific heat capacity of the heat carrier fluid. 

MPC formulation 

MPC relies on a model to forecast future system dynamics based on future input signals and forecasted 

disturbances. In this section, a brief theoretical framework for linear time-varying (LTV) MPC with a state 

space representation is first provided, followed by a LTV state space representation of the self-assited 

GSHP system. 

LTV MPC framework 

With a discrete linear state space representation, the vector of states 𝑥 changes from time step 𝑘 to 𝑘 +1 following 𝑢𝑘, a vector of input signals, and 𝑤𝑘, a vector of input disturbances. 𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝐸𝑘𝑤𝑘       (21) 
 

where the matrices 𝐴𝑘, 𝐵𝑘 and 𝐸𝑘 provide the system dynamics at time 𝑘. Provided forecasts on the future 

values of the 𝑢 and 𝑤 vectors as well as knowledge of the future 𝐴, 𝐵 and 𝐸 matrices, the future states 𝑥 

predicted at time 𝑘 can be expressed through successive applications of Equation 21: 𝑋𝑘 = Γ𝑘𝑥𝑘 +𝐻𝑘𝑢𝑈𝑘 + 𝐻𝑘𝑤𝑊𝑘      (22) 

𝑋𝑘 = [  
  𝑥𝑘+1|𝑘𝑥𝑘+2|𝑘𝑥𝑘+3|𝑘⋮𝑥𝑘+𝑁𝑝|𝑘]  

  
        (23) 

Γ𝑘 = [  
  𝐴𝑘𝐴𝑘+1𝐴𝑘𝐴𝑘+2𝐴𝑘+1𝐴𝑘⋮∏ 𝐴𝑘+𝑖0𝑖=𝑁𝑝−1 ]  

  
       (24) 

𝐻𝑘𝑢 = [  
  𝐵𝑘 0 0 …𝐴𝑘+1𝐵𝑘 𝐵𝑘+1 0 …𝐴𝑘+2𝐴𝑘+1𝐵𝑘 𝐴𝑘+2𝐵𝑘+1 𝐵𝑘+2 …⋮ ⋮ ⋮ ⋮(∏ 𝐴𝑘+𝑖1𝑖=𝑁𝑝−1 )𝐵𝑘 (∏ 𝐴𝑘+𝑖2𝑖=𝑁𝑝−1 )𝐵𝑘+1 (∏ 𝐴𝑘+𝑖3𝑖=𝑁𝑝−1 )𝐵𝑘+2 …]  

  
 (25) 

𝑈𝑘 = [  
  𝑢𝑘|𝑘𝑢𝑘+1|𝑘𝑢𝑘+2|𝑘⋮𝑢𝑘+𝑁𝑝−1|𝑘]  

  
       (26) 



𝐻𝑘𝑤 = [  
  𝐸𝑘 0 0 …𝐴𝑘+1𝐸𝑘 𝐸𝑘+1 0 …𝐴𝑘+2𝐴𝑘+1𝐸𝑘 𝐴𝑘+2𝐸𝑘+1 𝐸𝑘+2 …⋮ ⋮ ⋮ ⋮(∏ 𝐴𝑘+𝑖1𝑖=𝑁𝑝−1 )𝐸𝑘 (∏ 𝐴𝑘+𝑖2𝑖=𝑁𝑝−1 )𝐸𝑘+1 (∏ 𝐴𝑘+𝑖3𝑖=𝑁𝑝−1 )𝐸𝑘+2 …]  

  
 (27) 

𝑊𝑘 = [  
  𝑤𝑘|𝑘𝑤𝑘+1|𝑘𝑤𝑘+2|𝑘⋮𝑤𝑘+𝑁𝑝−1|𝑘]  

         (28) 

 

where 𝑁𝑝 is the number of controller time steps in the prediction horizon and 𝑋𝑘, 𝑈𝑘 and 𝑊𝑘 are vectors of 

vectors wherein the |𝑘 subscript denotes vectors that are predicted (𝑥, 𝑤) or optimized (𝑢) at time 𝑘. The 

presence of the term 𝑥𝑘 in Equation 22 indicates that the initial conditions of the states are appropriately 

reset at the start of every control period. 

LTV MPC applied to a GSHP 

This section presents a LTV state space formulation to predict the inlet fluid temperature and to use the 

heat injection element of the self-assisted configuration to prevent the use of auxiliary heating. This first 

requires the prediction of the mean bore field fluid temperature with the general format shown in Equation 

21. The bore field’s aggregated ground loads �̅� are used as the state variables with the dynamics shown in 

Equation 18 as well as the decomposition of the total ground load shown in Equation 20. 

𝑥𝑘 =
[  
   
  𝑄1(𝑘)𝑄2(𝑘)𝑄3(𝑘)⋮𝑄𝑁𝑐(𝑘)]  

   
  
        (29) 

𝑢𝑘 = [𝑄𝑖𝑛𝑗(𝑘)]        (30) 𝑤𝑘 = [𝑄𝑙𝑜𝑎𝑑(𝑘)]        (31) 
 

The matrices defining the discrete system dynamics are derived from the dynamics shown in the 

control model section. 

𝐴𝑘 = [  
  0 0 0 0 ⋯𝑎2,1(𝑘) 𝑎2,2(𝑘) 0 0 ⋯0 𝑎3,2(𝑘) 𝑎3,3(𝑘) 0 ⋯0 0 𝑎4,3(𝑘) 𝑎4,4(𝑘) ⋯⋮ ⋮ ⋮ ⋮ ⋮ ]  

  
𝑁𝑐×𝑁𝑐

        (32) 



𝑎𝑖,𝑖−1(𝑘) = { 0 𝑘Δ𝑡 < 𝜈𝑖−11𝑤𝑖𝑑𝑡ℎ𝑖 𝑘Δ𝑡 ≥ 𝜈𝑖−1      (33) 

𝑎𝑖,𝑖(𝑘) = { 0 𝑘Δ𝑡 < 𝜈𝑖−11 𝜈𝑖−1 ≤ 𝑘Δ𝑡 < 𝜈𝑖𝑤𝑖𝑑𝑡ℎ𝑖−1𝑤𝑖𝑑𝑡ℎ𝑖 𝜈𝑖 ≤ 𝑘Δ𝑡      (34) 

𝐵𝑘 = [   
 100⋮0]  
  
𝑁𝑐×1

        (35) 

 

𝐸𝑘 = [   
  −(1 − 1𝐶𝑂𝑃(𝑘))00⋮0 ]   

  
𝑁𝑐×1

       (36) 

 

The 𝑁𝑝-step-ahead aggregated ground loads can then be predicted with the formulation used in 

Equation 22, after which they can be used to predict the 𝑁𝑝-step-ahead fluid temperatures following the 

temporal superposition shown in Equation 18. 𝑇→𝑓(𝑘) = 𝑉 [Γ𝑘𝑥𝑘 + 𝐻𝑘𝑢𝑈𝑘 + 𝐻𝑘𝑤𝑊𝑘]⏟                𝑋𝑘 + 𝑇→𝑔    (37) 

𝑇→𝑓(𝑘) = [   
  𝑇𝑓(𝑘 + 1)𝑇𝑓(𝑘 + 2)𝑇𝑓(𝑘 + 3)⋮𝑇𝑓(𝑘 + 𝑁𝑝)]  

          (38) 

𝑇→𝑔(𝑘) = [   
  𝑇𝑔(𝑘 + 1)𝑇𝑔(𝑘 + 2)𝑇𝑔(𝑘 + 3)⋮𝑇𝑔(𝑘 + 𝑁𝑝)]  

         (39) 

𝑉 = [   
 𝜔 0 0 ⋯ 00 𝜔 0 ⋯ 00 0 𝜔 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮0 0 0 ⋯ 𝜔]  

        (40) 

𝜔 = [𝜅1 𝜅2 𝜅3 ⋯ 𝜅𝑁𝑐]      (41) 



where 𝑇→𝑓 is the vector of all mean fluid temperatures 𝑇𝑓 in the prediction horizon. Similarly, 𝑇→𝑔 is the vector 

of all undisturbed ground temperatures 𝑇𝑔 in the prediction horizon. In this paper, 𝑇𝑔 is assumed to be 

constant. 

Control-oriented COP dynamics  

The presence of the 𝐶𝑂𝑃(𝑘) term in Equation 36 renders the formulation non-linear, as the COP 

depends on the state variables in a non-linear fashion. Therefore, an iterative approach is proposed whereby 

the COP at each controller time step is evaluated iteratively. The COP is evaluated from the inlet fluid 

temperature to the heat pump at each iteration based on the latest prediction of mean fluid temperatures. 

This process is repeated until convergence, i.e. until the maximum difference between the assumed COP 

values and the calculated COP values falls below the absolute COP tolerance 𝜀𝐶𝑂𝑃. The inlet fluid 

temperatures to the heat pump in the prediction horizon are given by: 𝑇→𝑖𝑛,ℎ𝑝(𝑘) = 𝑇→𝑓(𝑘) + 𝐻Δ𝑇,𝑢𝑈𝑘 + 𝐻Δ𝑇,𝑤𝑊𝑘    (42) 

𝑇→𝑖𝑛,ℎ𝑝(𝑘) = [   
  𝑇𝑖𝑛,ℎ𝑝(𝑘 + 1)𝑇𝑖𝑛,ℎ𝑝(𝑘 + 2)𝑇𝑖𝑛,ℎ𝑝(𝑘 + 3)⋮𝑇𝑖𝑛,ℎ𝑝(𝑘 + 𝑁𝑝)]  

         (43) 

𝐻Δ𝑇,𝑢 =
[  
   
−12�̇�𝑐𝑝 0 0 ⋯0 −12�̇�𝑐𝑝 0 ⋯0 0 −12�̇�𝑐𝑝 ⋯⋮ ⋮ ⋮ ⋮ ]  

        (44) 

𝐻Δ𝑇,𝑤(𝑘) =
[  
   
  (1− 1𝐶𝑂𝑃(𝑘))2�̇�𝑐𝑝 0 0 ⋯0 (1− 1𝐶𝑂𝑃(𝑘+1))2�̇�𝑐𝑝 0 ⋯0 0 (1− 1𝐶𝑂𝑃(𝑘+2))2�̇�𝑐𝑝 ⋯⋮ ⋮ ⋮ ⋮ ]  

   
  
   (45) 

Optimization and cost function 

The aim of the control strategy is to prevent 𝑇𝑓(𝑘) from falling below a certain minimum temperature 𝑇𝑚𝑖𝑛(𝑘). Here, 𝑇𝑓(𝑘), rather than 𝑇𝑖𝑛,ℎ𝑝(𝑘), is constrained to be maintained above the minimum 

temperature 𝑇𝑚𝑖𝑛(𝑘), as it is considered the lowest possible returning fluid temperature during a controller 



time step. As shown by Laferrière and Cimmino (2018), peak power consumption reduction can be 

achieved by eliminating auxiliary electric power, and thus by maintaining the mean fluid temperature above 

the low temperature limit. In this formulation, the sum of all 𝑄𝑖𝑛𝑗  values in the prediction horizon is 

minimized while respecting state constraints and bounds on 𝑄𝑖𝑛𝑗  and 𝑇𝑓: min0≤𝑄𝑖𝑛𝑗(𝑘+𝑖|𝑘)≤𝑄𝑖𝑛𝑗,𝑚𝑎𝑥∑ 𝑄𝑖𝑛𝑗(𝑘 + 𝑖|𝑘)𝑁𝑝−1𝑖=0
s.t.[−𝑉𝐻𝑘𝑢]𝑈𝑘 ≤ [−𝑇→𝑚𝑖𝑛(𝑘) + 𝑉Γ𝑘𝑥𝑘 + 𝑉𝐻𝑘𝑤𝑊𝑘 + 𝑇→𝑔(𝑘)]  (46) 

where 𝑄𝑖𝑛𝑗,𝑚𝑎𝑥 is the upper bound on 𝑄𝑖𝑛𝑗 . In this paper, the lower and upper bounds on 𝑄𝑖𝑛𝑗 are constant, 

though they could also be time-varying. 𝑇→𝑚𝑖𝑛 is the vector of future minimum fluid temperatures entering 

the heat pump. 

𝑇→𝑚𝑖𝑛(𝑘) = [  
  𝑇𝑚𝑖𝑛(𝑘 + 1)𝑇𝑚𝑖𝑛(𝑘 + 2)𝑇𝑚𝑖𝑛(𝑘 + 3)⋮𝑇𝑚𝑖𝑛(𝑘 + 𝑁𝑝)]  

  
      (47) 

Operational bounds 

Due to the model’s reliance on imperfect weather forecasts and the averaged ground load prediction 

method shown in Equation 11, the control model is likely to exhibit some modelling error. In particular, the 

use of 𝑇𝑓 as a worst-case 𝑇𝑖𝑛,ℎ𝑝 detailed previously is likely to cause a systematic overestimation of the heat 

injection requirements. While this helps to reduce auxiliary electric heating, it is also likely to cause an 

unnecessarily large increase in energy consumption. Therefore, 𝑇𝑚𝑖𝑛 is complemented by a Kalman filter to 

minimize any systematic error of the GSHP source-side inlet temperature prediction and, therefore, 

minimize the amount of unnecessary heat injection into the bore field. The Kalman filter recursively 

attempts to correct the 𝑏𝑖𝑎𝑠 of 𝑇𝑖𝑛,ℎ𝑝. The 𝑏𝑖𝑎𝑠 is defined as the difference between the forecasted 

temperature and the measured temperature, i.e. 𝑏𝑖𝑎𝑠 = 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒. Here, only the maximum 

measured bias of 𝑇𝑖𝑛,ℎ𝑝 (i.e. the worst-case overestimation of 𝑇𝑖𝑛,ℎ𝑝) over the past control period is 

considered and used as a measure of the bias for the Kalman filter. The filtered bias is denoted as 𝑏𝑖𝑎𝑠𝐾𝑎𝑙 . 𝑇𝑚𝑖𝑛 = 0℃+ 𝑏𝑖𝑎𝑠𝐾𝑎𝑙        (48) 

The Kalman filter used in this paper follows the approach suggested by Galanis and Anadranistakis 

(2002), which involves a linear one-dimensional model to correct the bias in ambient air temperature 



forecasts with a dynamic recalculation of the covariances of the process and output noises. The same initial 

conditions were used for the process noise covariance (i.e. 𝑄𝐾𝑎𝑙(0) = 1), the output noise covariance (i.e. 𝑅𝐾𝑎𝑙(0) = 6), the filter model state (i.e. 𝑧(0) = 0), and the filter model state’s error covariance (i.e. 𝑃(0) = 4). The number of samples 𝑁𝐾𝑎𝑙  before the noise covariances are recalculated is 6 (i.e. 3 days) 

rather than 7 as used by Galanis and Anadranistakis (2002). As the Kalman filter is updated at the start of 

every control period, the value of 𝑏𝑖𝑎𝑠𝐾𝑎𝑙  is potentially different for every control period (though applied 

uniformly to every control time step within a given prediction horizon). 

The downside with this approach is that the Kalman filter is a reactive filter. This means that, when 

faced with any sudden changes in the systematic bias, it can only react one control period later at best. To 

anticipate situations where the application of the Kalman filter could lead to an under-injection of heat into 

the bore field, the measure of 𝑇𝑖𝑛,ℎ𝑝 at the start of a control period is used to verify whether or not the 

GSHP is within a certain margin Δ𝑇𝑚𝑎𝑟𝑔𝑖𝑛 of the GSHP’s physical operational bounds.  Δ𝑇𝑚𝑎𝑟𝑔𝑖𝑛 = 𝑄𝑙𝑏2�̇�𝑐𝑝       (49) 

where 𝑄𝑙𝑏 is the ground load 𝑄 when 𝑇𝑖𝑛,ℎ𝑝 is near the GSHP’s lower limit. If the initial 𝑇𝑖𝑛,ℎ𝑝 is lower than Δ𝑇𝑚𝑎𝑟𝑔𝑖𝑛, negative values of 𝑏𝑖𝑎𝑠𝐾𝑎𝑙   in Equation 48 are ignored. The definition of Δ𝑇𝑚𝑎𝑟𝑔𝑖𝑛 shown in 

Equation 49 stems from the definition of the steady-state fluid temperature shown in Equation 20. 

Specifically, it is assumed that, should the operational bound of 0 °C be within a half-amplitude of the 

expected variation around the average 𝑇𝑓, the Kalman filter’s adjustment (𝑏𝑖𝑎𝑠𝐾𝑎𝑙) should be ignored for 

any value 𝑏𝑖𝑎𝑠𝐾𝑎𝑙 < 0. 

Results 

The methodology described in the previous section was used to study the performance of the described 

MPC strategy on a single-family two-story dwelling with a total floor area of 200 m2 in Montreal, Canada. 

The energy performance is studied over a simulation period of 20 years. As the weather forecasts were 

collected over a period of only one year, these forecasts were repeated from year to year. Along with the 

forecasts, the real weather data used by the emulation model covered the same period and was also repeated 

year to year. The building heating and cooling loads are primarily met by a GSHP with a bore field 



consisting of one single-U-Tube vertical borehole. The borehole parameters are shown in Table 1, the 

emulation model GSHP parameters are shown in Table 2, the control model building load estimation 

parameters are shown in Table 3, and the GSHP curve fit coefficients (for the emulation and control 

models) are shown in Table 4. 

Table 1. Borehole parameters 
Parameter (units) Value 

Borehole buried depth (m) 4 
Borehole radius (m) 0.075 

Tube outer radius (m) 0.0274 
Tube thickness (m) 0.002 

Shank spacing (half of the distance 
between the center of both pipes) 

(m) 0.035 

Soil thermal conductivity (W/m.K) 2 
Soil volumetric heat capacity (J/m3.K) 2e+06 
Grout thermal conductivity (W/m.K) 1.15 

Grout volumetric heat capacity (J/m3.K) 1.472e+06 
Undisturbed ground temperature (K) 283.15 

 

Table 2. GSHP parameters 
Parameter (units) Value 

Heat carrier fluid density (kg/m3) 1018 
Heat carrier fluid specific heat 

capacity 
(J/kg-K) 3956 

Heat carrier fluid dynamic viscosity (Pa-s) 2.87e-03 
Source-side mass flow rate (kg/s) 0.437 
Load-side mass flow rate (kg/s) 0.623 𝑄ℎ,𝑟𝑒𝑓  (W) 16304 𝑄𝑐,𝑟𝑒𝑓  (W) 8260 𝑃ℎ,𝑟𝑒𝑓 (W) 2772 𝑃𝑐,𝑟𝑒𝑓 (W) 1679 �̇�𝑎𝑖𝑟,𝑟𝑒𝑓,ℎ (m3/s) 0.590 �̇�𝑎𝑖𝑟,𝑟𝑒𝑓,𝑐  (m3/s) 0.590 �̇�𝑤,𝑟𝑒𝑓,ℎ (m3/s) 5.678e-04 �̇�𝑤,𝑟𝑒𝑓,𝑐 (m3/s) 2.839e-04 𝑇𝑟𝑒𝑓 (K) 283 

Minimum operational 𝑇𝑖𝑛,ℎ𝑝 (K) 273.15 
 

Table 3. Building load estimation parameters 
Period Parameter (units) Value 

Day 𝑈𝐴 (W/K) 44.55 
 𝑞 (W) 2581 
 𝑇𝑒𝑞,1 (K) 270.3 
 𝑇𝑒𝑞,2 (K) 285.6 

Night 𝑈𝐴 (W/K) 60.65 
 𝑞 (W) 2686 
 𝑇𝑒𝑞,1 (K) 274.5 
 𝑇𝑒𝑞,2 (K) 283.3 

 



Table 4. Heat pump curve fit coefficients 
 1 2 3 4 5 6 

B 4.557 17.123 -20.265 -1.057 0.238 0.018 
C -10.696 4.954 6.068 0.755 -0.141 - 
E -2.361 -0.865 3.815 0.027 0.113 - 
F -6.226 5.377 1.651 -0.220 0.057 - 𝛽 -98.600 0.659 -0.001 - - - 

 

The emulation model uses variable simulation time steps. While the nominal time step is 300 seconds, 

this can become shorter whenever an event (e.g. a change in a controller’s input condition) is triggered. The 

control strategy uses a time step Δ𝑡 of 15 minutes, i.e. 900 seconds. The key parameters of the predictive 

controller are shown in Table 5, where 𝑁𝑐𝑡𝑟𝑙 refers to the number of control time steps within a control 

period, i.e. the number of steps from a given total prediction horizon that are applied. 

Table 5. MPC parameters 
Parameter (units) Value Δ𝑡 (s) 900 𝑁𝐾𝑎𝑙 (-) 6 𝑁𝑐𝑡𝑟𝑙 (-) 48 𝑁𝑝 (-) 577 𝑄𝑖𝑛𝑗,𝑚𝑎𝑥 (W) 5000 Δ𝑇𝑚𝑎𝑟𝑔𝑖𝑛 (K) 1.9 𝑁𝑐 (-) 86 

 

The energy performance of the proposed control strategy is studied by comparing three cases: (1) a 

GSHP system with a sufficiently long borehole to avoid any auxiliary heating over 20 years, (2) an 

undersized and unassisted GSHP with a shorter borehole and, therefore, auxiliary electric heating, and (3) a 

self-assisted undersized GSHP with the same shorter borehole. The auxiliary electric heating capacity is 

10 kW in all three cases. The three cases are compared in Table 6. “Total peak power demand” and “total 

energy consumption” are calculated using the sum of the power demands or energy consumptions of the 

heat pump compressor, the assisting heat injection, and the auxiliary electric heating. 

Table 6. Comparison of three GSHP configurations over 20 years 
Result (units) Case 1:  

Full-size GSHP 
Case 2: 

Unassisted and 
undersized GSHP 

Case 3: 
Self-assisted and 

undersized GSHP 
Borehole length (ℎ) (m) 177 150 150 
Total peak power 

demand 
(W) 2876 12,694 16,119 

Peak heat pump power 
demand 

(W) 2876 2878 2878 

Peak heat injection 
power demand 

(W) 0 0 4224 

Peak auxiliary heating (W) 0 10,000 10,000 



power demand 
Yearly average total 
energy consumption 

(kWh) 4064 4329 4568 

Yearly average heat 
pump energy 
consumption 

(kWh) 4064 4049 4114 

Yearly average heat 
injection energy 

consumption 

(kWh) 0 0 443 

Yearly average 
auxiliary heating 

energy consumption 

(kWh) 0 279 11 

 

The results in Table 6 show that the self-assisted GSHP (i.e. Case 3) does not fully eliminate auxiliary 

electric heating. Thus, when compared to a similar unassisted GSHP (i.e. Case 2), there is no decrease in 

peak power demand; rather, there is an increase in peak power demand as there are a few instances of 

combined auxiliary electric heating and heat injection. It is worth noting that the instances of such high 

demand are rare, as there is only a total of 1.1 hour per year of auxiliary electric heating during Case 3 

(compared to 27.9 hours in Case 2). Therefore, while the overall peak power demand increases, the 

majority of peaks are decreased by at least 5 kW. Additionally, there is a net 239 kWh (i.e. 5.53%) increase 

in energy consumption. Indeed, while the average yearly auxiliary electric heating over 20 years decreases 

from 279 kWh to 11 kWh (i.e. -96%), the average required yearly heat injection is 443 kWh, which is 

greater than the decrease in auxiliary electric heating. 

Figure 6 compares the total power demand of all three cases during the 20th year. Figure 6a shows the 

daily average total energy consumption, while Figure 6b shows the daily maximum power demand. While 

the highest peak power demand in Case 3 doesn’t decrease with regards to Case 2, there are fewer peaks of 

auxiliary electric heating. Therefore, rather than focusing on peak power demand over 20 years, the results 

instead focus on the amount of auxiliary electric heating over 20 years. 



 

Figure 6. Total heating-related power demand, 20th year 

Figure 7 shows the yearly total and maximum heat injection for Case 3 that was found to be optimal by 

the model predictive controller, while Figure 8 shows the heat injection profile during the 20th year and 

compares the heat injection with the value of 𝑇𝑖𝑛,ℎ𝑝. The heat injection profile displays similar year-to-year 

peaks after the first heating season. This can be explained by the fact that the system starts at a temperature 

equal to the undisturbed ground temperature, which is 10 °C in this paper. Thus, the GSHP requires less 

heat injection during the first year of operation. As for year-to-year total energy consumption, it reaches a 

steady value after approximately 16 years. Figure 8 shows that heat injection mainly coincides with low 

returning fluid temperatures. 



 

 

Figure 7. Heat injection over 20 years 

 



Figure 8. Heat injection and returning fluid temperature, 20th year 

A 4th Case is added to the comparison. This 4th Case is the same as Case 3, though without the 𝑏𝑖𝑎𝑠𝐾𝑎𝑙  
adjustment from the Kalman filter. In other words, Case 4 has a constant 𝑇𝑚𝑖𝑛 of 0 °C. Table 7 compares 

the energy performance of the undersized GSHPs, i.e. Cases 2, 3 and 4. Without the Kalman filter (i.e. in 

Case 4), the net increase in yearly average energy consumption is 322 kWh (7.45%), wich is greater than 

the increase of 239 kWh observed with the Kalman filter. This indicates that the absence of Kalman filter 

causes an overprediction of the heat injection required to eliminate the use of auxiliary electric heating. 

These results are as anticipated, as the Kalman filter attempts to correct the bias in fluid temperature 

predictions to generally reduce the amount of heat injection. 

Table 7. Effect of the Kalman-filtered bias 
Result (units) Case 2: 

Unassisted and 
undersized GSHP 

Case 3: 
Self-assisted and 

undersized GSHP 

Case 4: 
Self-assisted and 

undersized GSHP 
without 𝒃𝒊𝒂𝒔𝑲𝒂𝒍 

Yearly average total 
energy consumption 

(kWh) 4329 4568 4651 

% change in total 
energy consumption 

relative to Case 2 

(-) - +5.53% +7.45% 

Yearly average 
auxiliary electric 

heating consumption 

(kWh) 279 11 10 

% change in auxiliary 
electric heating 

consumption relative 
to Case 2 

(-) - -96% -96.2% 

Yearly average heat 
injection 

(kWh) 0 443 536 

 

Calculation times 

The total time required for the simulation of Case 3 to be completed on a PC was about 60.5 hours. 

However, the majority of this time (75%) was taken up by the emulation model due to the bore field model 

and the hysteresis controllers used for the heat pump operation. The total time taken by the MPC 

calculations (including the multiple COP iterations) over 20 years was about 15.2 hours. The average time 

for the MPC calculations for a single control period (once again including the multiple COP iterations) was 

7.1 seconds, with a maximum value of 16.9 seconds. As the controller only optimizes a heat injection 

profile once every 12 hours, this is fast enough to be considered real-time. In Case 3, the COP convergence 

procedure described in the Methodology section succeeded in achieving convergence with a maximum of 4 



iterations and an average of 3.98 iterations over 20 years. This was done with an absolute tolerance 𝜀𝐶𝑂𝑃 of 

10-4. 

Model parameter sensitivity  

This section analyzes the sensitivity of the results to three parameters: heat pump heating load 

predictions (𝑄𝑙𝑜𝑎𝑑), the Kalman filter’s initial conditions (𝑃(0), 𝑄𝐾𝑎𝑙(0) and 𝑅𝐾𝑎𝑙(0)) and the frequency at 

which the covariances in the Kalman filter are updated (𝑁𝐾𝑎𝑙). Table 8 compares the results of Case 3 with 

the results from four new cases (5, 6, 7 and 8) with varied parameters. 

Table 8. Sensitivity analysis 
Case Modified 

parameter 
New value (% 

change)  
Yearly average 

total energy 
consumption 

(kWh) 

Yearly average 
heat injection 

energy 
consumption 

(kWh) 

Yearly average 
auxiliary electric 
heating energy 
consumption 

(kWh) 
Case 3 - - 4568 443 11 
Case 5 𝑄𝑙𝑜𝑎𝑑 (+10%) 4667 554 3 
Case 6 𝑄𝑙𝑜𝑎𝑑 (-10%) 4459 301 48 
Case 7 𝑁𝐾𝑎𝑙 14 (+133%) 4569 444 11 
Case 8 𝑃(0), 𝑄𝐾𝑎𝑙(0), 𝑅𝐾𝑎𝑙(0) 2, 0.5, 3 (-50%) 4569 444 11 

 

The results in Table 8 show that the parameters of the Kalman filter have little impact on the results, as 

evidenced by Cases 7 and 8. The heat pump load predictions, on the other hand, present significant 

influence on the results: the overestimated loads 𝑄𝑙𝑜𝑎𝑑  in Case 5 increase the yearly average heat injection 

to 554 kWh and thus increase the yearly average total energy consumption by 338 kWh (7.81%) compared 

to Case 2. The underestimated loads in Case 6 lead to an underprediction of the heat injection required to 

eliminate the use of auxiliary electric heating and only lead to a reduction in auxiliary electric heating of 

83%. These results demonstrate that the amount of heat injection (and thus the amount of auxiliary electric 

heating) are strongly affected by the ground load forecasts (which are in turn affected by the heat pump 

heating load forecasts). 

Discussion and conclusions 

This paper presents a LTV state space formulation for a MPC strategy used on a self-assisted GSHP 

system. The control-oriented model is linear with regards to the GSHP’s source-side and load-side 

dynamics, with the ground heat transfer being modeled using the bore field’s GTFTRF combined with a 



load aggregation scheme. The COP is calculated iteratively until convergence, thus permitting non-linear 

temperature dependence. The optimization problem, formulated as a LP problem, uses a Kalman filter on 

the fluid temperature prediction bias to correct the returning fluid temperature bounds. 

The control strategy was applied on a single-family residential dwelling in Montreal, Canada, over a 

period of 20 years using real weather forecasts and historical weather data from 2017 and 2018. Results 

show that, while the self-assisted GSHP doesn’t succeed to completely eliminate auxiliary electric heating, 

it does manage to reduce it by 268 kWh (96%), at the cost of a 239 kWh (5.52%) net increase in total 

energy consumption. Without the Kalman-filtered bias, the control strategy overpredicts the required 

amount of heat injection, leading to a 322 kWh (7.45%) increase in total energy consumption. The results 

are shown to be sensitive to the forecasts of the heat pump heating load, meaning that more accurate heat 

pump heating load predictions lead to better results. Despite this, these results show that the self-assisted 

configuration may still offer adequate thermal assistance with a modest increase in total energy 

consumption even when accounting for forecasting uncertainty. The increase in total energy consumption 

could be reduced by considering the heating temperature set-point as a control input (in addition to the self-

assisted heat injection). This way, the building could be pre-heated in preparation of peak heating periods, 

thereby decreasing the amount of heat that needs to be extracted during the peak heating periods. A hybrid 

system with both solar- and self-assistance may lead to better energy performance while significantly 

reducing the amount of solar collectors required by a strictly solar-assisted system. 

An important limitation of the proposed MPC method is that the states (i.e. the aggregated ground 

loads) are assumed to be exactly measurable. In reality, the measurement of ground loads is difficult since 

they would need to be inferred from measured returning fluid temperatures and the performance data 

provided by the manufacturer of the heat pump, introducing uncertainty. Another source of uncertainty not 

accounted for in the presented methodology is the uncertainty of the ground temperature response. Here, 

the same emulation model used to simulate the borehole was also used to obtain the borehole’s GTFTRF 

and the ground temperature response is thus exact. Future work will therefore be devoted to the estimation 

of ground loads while accounting for the uncertainty of measurements and predictions. Finally, future 

works will include cost analysis to compare the self-assisted configuration to solar assistance methods over 

the life cycle of the GSHP. 



Nomenclature 

Abbreviations 

COP: Coefficient of performance 

GSHP: Ground-source heat pump 

GTFTRF: Ground-to-fluid thermal response factor 

LTV: Linear time-varying 

MPC: Model predictive control 

Symbols 

𝑎  = coefficient for defining the 𝐴 matrix 𝐴  = controller state dynamics matrix 𝛽1,…,𝛽3  = heat pump control performance coefficients 

B1,…,B6 = heat pump emulation performance coefficients 𝐵  = controller input signal dynamics matrix 𝑏𝑖𝑎𝑠  = measured bias on predicted 𝑇𝑖𝑛,ℎ𝑝 𝑏𝑖𝑎𝑠𝐾𝑎𝑙   = Kalman-filtered 𝑏𝑖𝑎𝑠 
C1,…,C5 = heat pump emulation performance coefficients 𝑐𝑝  = specific heat capacity [J/kg-K] Δ𝑡  = controller time step [s] Δ𝑇𝑚𝑎𝑟𝑔𝑖𝑛 = temperature threshold for applying negative 𝑏𝑖𝑎𝑠𝐾𝑎𝑙   𝐸  = controller input disturbance dynamics matrix 

E1,…,E5 = heat pump emulation performance coefficients 

F1,…,F5 = heat pump emulation performance coefficients Γ  = future controller state dynamics 𝑔𝑔𝑓  = GTFTRF 𝐻Δ𝑇,𝑢  = future controller input signal dynamics for 𝑇𝑖𝑛,ℎ𝑝 𝐻Δ𝑇,𝑤  = future controller input disturbance dynamics for 𝑇𝑖𝑛,ℎ𝑝 



𝐻𝑢  = future controller input signal dynamics 𝐻𝑤   = future controller input disturbance dynamics ℎ𝑜𝑢𝑟  = hour of the day [hours] 𝑘  = controller time step 𝑘𝑠  = ground thermal conductivity [W/m.K] �̇�  = mass flow rate [kg/s] 𝜈  = aggregation time of a load aggregation cell [s] 𝑁𝑏  = number of boreholes in a bore field 𝑛𝑐  = number of consecutive cells before doubling cell sizes 𝑁𝑐  = number of aggregation cells 𝑁𝑐𝑡𝑟𝑙  = number of control time steps in a control period 𝑁𝐾𝑎𝑙   = number of Kalman filter observations used to recalculate covariances 𝑁𝑝  = number of time steps in a prediction horizon 𝜔  = vector of load aggregation weighting factors 𝜅 𝑃  = Kalman filter state covariance matrix 𝑞  = constant term in building load estimation [W] 𝑄  = heat transfer rate, or heat pump capacity [W] �̅�  = aggregated ground heat load [W]  𝑄𝐾𝑎𝑙   = Kalman filter state dynamics noise covariance 𝑅𝐾𝑎𝑙   = Kalman filter output dynamics noise covariance 𝑟𝑖𝑠𝑒  = time of sunrise [hours] 𝑡  = time [s] 𝑇  = temperature, [K] or [°C] 𝑢  = controller input signal vector 𝑈  = vector of future controller input signal vectors 𝑈𝐴  = building effective UA value 𝑉  = matrix of future vectors 𝜔  �̇�  = volumetric flow rate [m3/s] 



𝑤  = controller input disturbance vector 𝑊  = vector of predicted controller input disturbance vectors 𝑤𝑖𝑑𝑡ℎ  = temporal width of a load aggregation cell 𝑥  = controller state vector 𝑋  = vector of predicted controller state vectors 𝑧  = Kalman filter state 

Subscripts 𝑎𝑚𝑏  = ambient 𝑎𝑚𝑝  = difference between max. and min. ambient 𝑎𝑣𝑒  = mean of max. and min. ambient 𝑏𝑢𝑖  = building interior air 𝑐  = heat pump cooling mode 𝑒𝑞  = building heating load equilibrium 𝑓  = average bore field fluid 𝑔  = undisturbed ground ℎ  = heat pump heating mode 𝑖𝑛, ℎ𝑝  = heat pump source-side inlet 𝑖𝑛, 𝑠𝑜𝑢  = bore field inlet 𝑖𝑛𝑗  = heat injection 𝑙𝑏  = near heat pump lower operating bound 𝑙𝑜𝑎𝑑  = building load 𝑚𝑖𝑛  = minimum bound |𝑘  = predicted at step 𝑘 𝑜𝑢𝑡, 𝑠𝑜𝑢  = bore field outlet 𝑟𝑒𝑓  = heat pump reference conditions 𝑠𝑜𝑢  = from or to bore field 𝑤𝑏  = air wet bulb 
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