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g-Functions of bore fields with series- and parallel-connected 
boreholes 
 
MASSIMO CIMMINO1* 
1Department of Mechanical Engineering, Polytechnique Montréal, Montréal, QC, Canada 

 

 

A semi-analytical method for the calculation of g-functions of bore fields with mixed arrangements of 

series- and parallel-connected boreholes is presented. Borehole wall temperature variations are obtained 

from the temporal and spatial superposition of the finite line source (FLS) solution. The FLS solution is 

coupled to a quasi-steady-state solution of the fluid temperature profiles in the boreholes, considering the 

piping connections between the boreholes. The dimensionless borehole wall temperatures in the bore field 

and the inlet fluid temperature are obtained from the simultaneous solution of the heat transfer inside and 

outside the boreholes. The effective borehole wall temperature, i.e. the g-function, is defined based on the 

dimensionless inlet fluid temperature and a newly introduced effective bore field thermal resistance. The 

g-function evaluation method is validated against the DST model and its use is demonstrated in a sample 

simulation of a seasonal thermal energy storage system. 

Introduction 

The design of geothermal bore fields is facilitated by the accurate prediction of fluid and ground 

temperatures during their operation. The simulation of geothermal bore fields can be achieved by temporally 

superimposing thermal response factors, or g-functions, to obtain the fluid and ground temperature variations 

over the design period, e.g. 20 years or more. g-Functions are also employed in direct design methods, such 

as the ASHRAE method (ASHRAE 2015). 

By definition, g-functions are step-response functions that give the relation between the heat extraction 

rate in the bore field and the effective temperature variation at the borehole walls. The g-function of a 

particular bore field may then be superimposed in time to obtain the effective borehole wall temperature 

variation due to a variable heat extraction rate in the bore field: 

 𝑇𝑏∗(𝑡) = 𝑇0 − 12𝜋𝑘𝑠 ∫ �̅�′(𝑡 − 𝑡′) 𝑑𝑔𝑑𝑡 (𝑡′)𝑑𝑡′𝑡0  (1) 



where 𝑇𝑏∗ is the effective borehole wall temperature, 𝑇0 is the undisturbed ground temperature, �̅�′ is the 

average heat extraction rate per unit borehole length and 𝑔 is the g-function of the bore field. The effective 

borehole wall temperature is related to the mean fluid temperature in the bore field through the bore field 

thermal resistance: 

 �̅�𝑓(𝑡) = 𝑇𝑏∗(𝑡) − 𝑅𝑓𝑖𝑒𝑙𝑑∗ �̅�′(𝑡) (2)  

where �̅�𝑓 = 0.5(𝑇𝑓,𝑖𝑛 + 𝑇𝑓,𝑜𝑢𝑡) is the arithmetic mean of the inlet and outlet fluid temperature in the bore 

field and 𝑅𝑓𝑖𝑒𝑙𝑑∗  is the effective bore field thermal resistance. 

In fields of boreholes of equal dimensions (length and radius) with the same U-tube pipe configurations, 

connected in parallel and receiving evenly distributed fluid mass flow rates, the effective borehole wall 

temperature is typically equal to the overall average borehole wall temperature and the effective bore field 

thermal resistance is equal to the effective borehole thermal resistance 𝑅𝑏∗  (equal for all boreholes). Bore 

fields with series connections between boreholes may feature important differences in temperature at the 

borehole walls and the overall average borehole wall temperature is then not representative of heat transfer 

between the fluid and the ground. The effective bore field thermal resistance also needs to be adjusted to 

account for the variation of fluid temperatures in series-connected boreholes. 

The concept of g-functions was introduced by Eskilson (1987). The original g-functions were obtained 

numerically using a finite difference method by simulating the temperature variations at the borehole walls 

caused by a constant total heat extraction rate from the bore field. A condition of uniform temperature at the 

borehole walls, equal for all boreholes, was imposed. This condition stems from the assumptions that (i) the 

borehole thermal resistance is sufficiently small that the borehole wall temperature is close to the fluid 

temperature, and (ii) that the fluid mass flow rate is sufficiently large that the fluid temperature variations 

inside the boreholes are small. From these assumptions, for bore fields of parallel-connected boreholes, the 

borehole wall temperature is close to uniform and equal for all boreholes. For large bore fields with large 

amounts of boreholes, the generation of g-functions becomes computationally intensive. 

Since then, analytical methods have been employed to approximate g-functions. Eskilson (1987) 

proposed using the finite line source (FLS) solution to approximate the thermal response of a single borehole. 

Zeng et al. (2002) later proposed the spatial superposition of the FLS to obtain g-functions of bore fields with 



multiple boreholes. Lamarche and Beauchamp (2007a) and Claesson and Javed (2011) developed simplified 

formulations of the FLS solution to compute the average (over the length) borehole wall temperature. The 

limitation of the FLS solution is that it considers uniform heat extraction rate along the boreholes, which does 

not correspond to the uniform borehole wall temperature condition of Eskilson (1987) and leads to an 

overestimation of the g-function (Fossa 2011). The variation of heat extraction rates along the boreholes can 

be represented by vertically dividing the borehole into segments and modelling each of the segments with 

the FLS solution (Cimmino and Bernier 2014; Cimmino, Bernier, and Adams 2013; Lamarche 2017b; 

Cimmino 2018c), thereby respecting the condition of uniform borehole wall temperature in the calculation 

of g-functions. The calculation of g-functions can be accelerated by the joint use of Chebyshev polynomials 

or by the simultaneous evaluation of the g-functions at all times using a block matrix formulation (Dusseault, 

Pasquier, and Marcotte 2018). g-Functions were also evaluated numerically using the finite element method 

by Monzó et al. (2015) and by Naldi and Zanchini (2019). The validity of the condition of uniform borehole 

wall temperature was investigated by Cimmino (2015) using an FLS-based method and by Monzó et al. 

(2018) using a finite element method. It was found that, as the borehole thermal resistance is reduced, the 

borehole wall temperatures tend to uniformity. 

Analytical and semi-analytical extensions of the g-functions have been proposed to extend their validity 

outside of pure conduction in uniform isotropic ground, and to consider short-term dynamics of the boreholes. 

Short-term one-dimensional radial analytical solutions that model the fluid flowing inside U-tubes as a single 

equivalent diameter pipe have been proposed in the works of Beier and Smith (2003), Lamarche and 

Beauchamp (2007b), Bandyopadhyay et al. (2008), Javed and Claesson (2011), Lamarche (2015). Line 

sources in composite media have been proposed by Li and Lai (2013; 2012a) to model the effect of the 

thermal properties of the grout material. A moving finite line source to model boreholes under the influence 

of groundwater flow was proposed by Molina-Giraldo et al. (2011). A finite line source solution applicable 

to anisotropic ground was proposed by Li and Lai (2012b). Layered subsurface properties were considered 

in the works of Abdelaziz et al. (2014), Hu (2017) and Erol and François (2018). Finite line source solutions 

for inclined boreholes were proposed in the works of Cui et al. (2006), Marcotte and Pasquier (2009) and 

Lamarche (2011), and were used by Lazzarotto (2016) to obtain g-functions with uniform borehole wall 

temperature. 



The aforementioned models are only applicable to parallel-connected boreholes. Series connections 

between boreholes are common in borehole thermal energy storage (BTES) systems, where a temperature 

gradient is established in the ground for efficient charging and discharging of the storage, typically in a 

cylindrical volume. The most commonly used model for the simulation of BTES is the duct ground heat 

storage (DST) model (Pahud and Hellström 1996), which assumes that the boreholes are uniformly 

distributed in a cylindrical volume. The storage and fluid temperatures are obtained by the numerical solution 

of local and global problems. A limitation of the DST model is that the position and piping arrangement of 

the boreholes cannot be prescribed. A finite line source method to evaluate g-functions of fields of borehole 

with a mix of series and parallel connections was proposed by Marcotte and Pasquier (2014). However, their 

method does not consider the axial variations of heat transfer rates along the boreholes and may thus 

overestimate the long-term variations of borehole wall temperatures. 

The objective of this paper is to obtain g-functions for fields of boreholes with a mixed arrangement of 

series and parallel connections between the boreholes. The heat transfer process in the bore field is divided 

into two regions: (1) unsteady heat conduction between the borehole wall and the surrounding ground, and 

(2) quasi-steady-state heat transfer between the heat carrier fluid and the borehole walls. The two regions are 

joined by a condition of continuity of temperature and heat transfer rate at the borehole walls. The paper 

expands on earlier work (Cimmino 2018b), and includes expressions to evaluate fluid temperatures and heat 

extraction rates in boreholes with axially varying borehole wall temperature as well as a sample simulation 

of a borehole thermal energy storage consisting of 144 boreholes. 

The proposed method provides a contribution to the works of Marcotte and Pasquier (2014) who 

obtained thermal response factors of fields of series- and parallel-connected boreholes, and to the works of 

Cimmino (2015) and Monzó (2018) who showed the effect of the borehole thermal resistance on the long-

term temperature changes in geothermal bore fields. An extension of the method of Cimmino (2016) is 

presented, providing simplified expressions to obtain fluid temperature and heat extraction rate profiles along 

geothermal boreholes. The simplified expressions, applied to series- and parallel-connected boreholes, 

provide a contribution to the network-based simulation methods of Lazzarotto (2014), Lamarche (2017a) and 

Cimmino (2018a) by reducing the size of the system of equations to be solved for the fluid and borehole wall 

temperatures. 



Methodology 

A field of 𝑁𝑏 = 3 vertical boreholes is shown on Figure 1. Each borehole 𝑖 has a length 𝐿𝑖, is buried at a 

distance 𝐷𝑖  from the ground surface, and is located at coordinates (𝑥𝑖 , 𝑦𝑖). All boreholes have the same radius 𝑟𝑏. Heat carrier fluid enters the bore field at a temperature 𝑇𝑓,𝑖𝑛 and leaves the bore field at a temperature 𝑇𝑓,𝑜𝑢𝑡 with a total mass flow rate �̇�. The ground has a thermal conductivity 𝑘𝑠, a thermal diffusivity 𝛼𝑠 and 

is initially at an undisturbed temperature 𝑇0. In the context of this paper, boreholes may be connected in a 

mixed arrangement of parallel and series connections between the boreholes. Each borehole may have one 

or multiple U-tube pipes connected in series or in parallel. In Figure 1, boreholes 1 and 3 each receive the 

fluid at a temperature 𝑇𝑓,𝑖𝑛,1 = 𝑇𝑓,𝑖𝑛,3 = 𝑇𝑓,𝑖𝑛 corresponding to the inlet field temperature and at mass flow 

rates �̇�1 and �̇�3 (with �̇�1 + �̇�3 = �̇�), respectively. Borehole 2 receives the fluid at a temperature 𝑇𝑓,𝑖𝑛,2 =𝑇𝑓,𝑜𝑢𝑡,1 corresponding to the outlet of borehole 1 and at a mass flow rate �̇�2 = �̇�1 The outlet field 

temperature 𝑇𝑓,𝑜𝑢𝑡 = (�̇�2𝑇𝑓,𝑜𝑢𝑡,2 + �̇�3𝑇𝑓,𝑜𝑢𝑡,3) �̇�⁄  is the result of mixing of the fluid leaving boreholes 2 and 

3. 

 

Figure 1. Field of 3 vertical geothermal boreholes 

 



Unsteady heat conduction in the ground region 

Ground temperatures in the bore field are evaluated considering heat extraction over line sources located 

along the axis of all of the boreholes in the field. Assuming pure conduction in semi-infinite ground with 

homogeneous and constant thermal properties initially at a uniform temperature 𝑇0 with the ground surface 

maintained at the initial temperature 𝑇0, the borehole wall temperature along a borehole 𝑖 is obtained by the 

integration of the point-source solution: 

𝑇𝑏,𝑖(𝑧𝑖 , 𝑡) = 𝑇0 − ∑ ∫ ∫ 𝑄𝑗′(𝑧𝑗,𝑡′)𝜌𝑠𝑐𝑠[4𝜋𝛼𝑠(𝑡−𝑡′)]3 2⁄ (exp (𝑑𝑖𝑗2 +(𝑧𝑖−𝑧𝑗)24𝛼𝑠(𝑡−𝑡′) ) − exp (𝑑𝑖𝑗2 +(𝑧𝑖+𝑧𝑗)24𝛼𝑠(𝑡−𝑡′) ))𝑑𝑧𝑗𝐷𝑗+𝐿𝑗𝐷𝑗 𝑑𝑡′𝑡0𝑁𝑏𝑗=1  (3) 

where 𝑑𝑖𝑗 = [(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2]1 2⁄
 is the radial (horizontal) distance between boreholes 𝑖 and 𝑗, 

with 𝑑𝑖𝑖 = 𝑟𝑏,𝑖, 𝑧𝑖 ∈ [𝐷𝑖 , 𝐷𝑖 + 𝐿𝑖] is the depth along the axis of borehole 𝑖, 𝜌𝑠 and 𝑐𝑠 are density and specific 

heat capacity of the ground, 𝑇𝑏,𝑖 is the borehole wall temperature of borehole 𝑖 and 𝑄𝑗′  is the heat extraction 

rate per unit borehole length of borehole 𝑗. 
Following the method of Cimmino and Bernier (2014) and Cimmino (2018c), each borehole 𝑖 is divided 

into 𝑛𝑞,𝑖 segments of equal lengths. The heat extraction rate is uniform along each of the segments and is 

considered constant during every time step of the simulation. The average borehole wall temperature over 

any borehole segment is given by spatial and temporal superpositions of the finite line source solution 

(Cimmino and Bernier 2014): �̅�𝑏,𝑖,𝑢,𝑘 = 𝑇0 − 12𝜋𝑘𝑠∑ ∑ ∑ �̅�𝑗,𝑣,𝑝′ (ℎ𝑖,𝑗,𝑢,𝑣(𝑡𝑘 − 𝑡𝑝−1) − ℎ𝑖,𝑗,𝑢,𝑣(𝑡𝑘 − 𝑡𝑝))𝑘𝑝=1𝑛𝑞,𝑗𝑣=1𝑁𝑏𝑗=1  (4) 

 ℎ𝑖,𝑗,𝑢,𝑣(𝑡) = 12𝐿𝑖,𝑢 ∫ 1𝑠2 exp(−𝑑𝑖𝑗2 𝑠2) 𝐼𝐹𝐿𝑆(𝑠)𝑑𝑠∞1√4𝛼𝑠𝑡  (5)  

 𝐼𝐹𝐿𝑆(𝑠) = erfint ((𝐷𝑖,𝑢 − 𝐷𝑗,𝑣 + 𝐿𝑖,𝑢)𝑠) − erfint ((𝐷𝑖,𝑢 − 𝐷𝑗,𝑣)s) + erfint ((𝐷𝑖,𝑢 − 𝐷𝑗,𝑣 −𝐿𝑗,𝑣)𝑠) − erfint ((𝐷𝑖,𝑢 − 𝐷𝑗,𝑣 + 𝐿𝑖,𝑢 − 𝐿𝑗,𝑣)𝑠) + erfint ((𝐷𝑖,𝑢 + 𝐷𝑗,𝑣 + 𝐿𝑖,𝑢)𝑠) − erfint ((𝐷𝑖,𝑢 +𝐷𝑗,𝑣)𝑠) + erfint ((𝐷𝑖,𝑢 + 𝐷𝑗,𝑣 + 𝐿𝑗,𝑣)𝑠) − erfint ((𝐷𝑖,𝑢 + 𝐷𝑗,𝑣 + 𝐿𝑖,𝑢 + 𝐿𝑗,𝑣)𝑠) (6)  

 erfint(𝑋) = ∫ erf(𝑥′) 𝑑𝑥′𝑋0 = 𝑋 erf(𝑋) − 1√𝜋 (1 − exp(−𝑋2)) (7)  



where �̅�𝑏,𝑖,𝑢,𝑘 is the average borehole wall temperature along segment 𝑢 of borehole 𝑖 at time 𝑡𝑘, �̅�𝑗,𝑣,𝑝′  

is the average heat extraction rate per unit borehole length over segment 𝑣 of borehole 𝑗 from time 𝑡𝑝−1 to 𝑡𝑝, ℎ𝑖,𝑗,𝑢,𝑣 is the segment-to-segment thermal response factors for the borehole wall temperature change over 

segment 𝑢 of borehole 𝑖 caused by heat extraction from segment 𝑣 of borehole 𝑗, 𝐿𝑖,𝑢 = 𝐿𝑖 𝑛𝑞,𝑖⁄  is the length 

of segment 𝑢 of borehole 𝑖, 𝐷𝑖,𝑢 = 𝐷𝑖 + (𝑢 − 1) 𝐿𝑖 𝑛𝑞,𝑖⁄  is the buried depth of segment 𝑢 of borehole 𝑖, erf(𝑥) 
is the error function and erfint(𝑥) is the integral of the error function. 

It is useful at this stage to introduce the dimensionless form of Equation 1: 

 𝜃𝑏∗(𝜏) = ∫ �̅�′(𝜏 − 𝜏′) 𝑑𝑔𝑑𝜏 (𝜏′)𝑑𝜏′𝜏0  (8)  

where 𝜃𝑏∗ = (𝑇𝑏∗ − 𝑇0) (−𝑄𝑛𝑜𝑚′ 2𝜋𝑘𝑠⁄ )⁄  is the dimensionless effective borehole wall temperature in the 

bore field, with 𝑄𝑛𝑜𝑚′  an arbitrary nominal heat extraction rate per unit borehole length, �̅�′ = �̅�′ 𝑄𝑛𝑜𝑚′⁄  is 

the normalized average heat extraction rate per unit borehole length and 𝜏 = 9𝛼𝑠𝑡 �̅�2⁄  is the dimensionless 

time, with �̅� the average borehole length. All temperatures (e.g. fluid temperatures) may be 

nondimensionalized in the same manner. 

The dimensionless form of Equation 4 is then: 

 �̅�𝑏,𝑖,𝑢,𝑘 = ∑ ∑ ∑ �̅�𝑗,𝑣,𝑝′ (ℎ𝑖,𝑗,𝑢,𝑣(𝜏𝑘 − 𝜏𝑝−1) − ℎ𝑖,𝑗,𝑢,𝑣(𝜏𝑘 − 𝜏𝑝))𝑘𝑝=1𝑛𝑞,𝑗𝑣=1𝑁𝑏𝑗=1  (9) 

where �̅�𝑏,𝑖,𝑢,𝑘 is the average dimensionless borehole wall temperature along segment 𝑢 of borehole 𝑖 at 

time 𝜏𝑘, and �̅�𝑗,𝑣,𝑝′  is the average normalized heat extraction rate per borehole length over segment 𝑣 of 

borehole 𝑗 from time 𝜏𝑝−1 to 𝜏𝑝. 

Equation 9 may then be simplified by introducing matrix notation: 

 �̅�𝒃,𝒌 = ∑ (𝐇(𝜏𝑘 − 𝜏𝑝−1) − 𝐇(𝜏𝑘 − 𝜏𝑝)) �̅�𝒑′𝑘𝑝=1  (10) 

where �̅�𝒃,𝒌 = [�̅�𝒃,𝟏,𝒌𝑻 ⋯ �̅�𝒃,𝑵𝒃,𝒌𝑻 ]𝑻 is a vector of average dimensionless borehole wall temperature 

along all segments of all boreholes at time 𝜏𝑘, �̅�𝒃,𝒊,𝒌 = [�̅�𝑏,𝑖,1,𝑘 ⋯ �̅�𝑏,𝑖,𝑛𝑞,𝑖,𝑘]𝑻 is a vector of average 

borehole wall temperatures along all segments of borehole 𝑖 at time 𝜏𝑘, �̅�𝒑′ = [�̅�𝟏,𝒑′𝑻 ⋯ �̅�𝑵𝒃,𝒑′𝑻 ]𝑻 is a vector 

of average normalized heat extraction rates per unit borehole length along all segments of all boreholes at 



time 𝜏𝑝, and �̅�𝒋,𝒑′ = [�̅�𝑗,1,𝑝′ ⋯ �̅�𝑗,𝑛𝑞,𝑗,𝑝′ ]𝑻 is a vector of average normalized heat extraction rates per unit 

borehole length along all segments of borehole 𝑗 at time 𝜏𝑝. 𝐇 is a matrix of segment-to-segment thermal 

response factors between all pairs of segments in the bore field, given by: 

 𝐇(𝜏) = [ 𝐇𝟏,𝟏(𝜏) ⋯ 𝐇𝟏,𝑵𝒃(𝜏)⋮ ⋱ ⋮𝐇𝑵𝒃,𝟏(𝜏) ⋯ 𝐇𝑵𝒃,𝑵𝒃(𝜏)], 𝐇𝒊,𝒋(𝜏) = [
ℎ𝑖,𝑗,1,1(𝜏) ⋯ ℎ𝑖,𝑗,1,𝑛𝑞,𝑗(𝜏)⋮ ⋱ ⋮ℎ𝑖,𝑗,𝑛𝑞,𝑖,1(𝜏) ⋯ ℎ𝑖,𝑗,𝑛𝑞,𝑖,𝑛𝑞,𝑗(𝜏)] (11)  

Equation 10 is further simplified by separating the contribution of heat extraction at times preceding 

time 𝜏𝑘 from the present time 𝜏𝑘: 

 �̅�𝒃,𝒌 = �̅�𝒃,𝒌𝟎 +𝐇(𝜏𝑘 − 𝜏𝑘−1)�̅�𝒌′  (12)  

 �̅�𝒃,𝒌𝟎 = ∑ (𝐇(𝜏𝑘 − 𝜏𝑝−1) − 𝐇(𝜏𝑘 − 𝜏𝑝)) �̅�𝒑′𝑘−1𝑝=1  (13) 

Quasi-steady-state heat transfer in the borehole region 

Quasi-steady-state heat transfer inside the boreholes can be represented as a circuit of thermal 

resistances, as shown on Figure 2 for a double (𝑛𝑝,𝑖 = 2) U-tube borehole. Heat transfer between the fluid 

flowing inside the pipes and the borehole wall is strictly two-dimensional (over the borehole cross-section); 

axial heat conduction in the pipes and the grout is neglected. Each borehole 𝑖 has 𝑛𝑝,𝑖 U-tubes (2𝑛𝑝,𝑖  pipes). 

Each pipe 𝑚 is connected to pipe 𝑚 + 𝑛𝑝,𝑖 at the bottom of the borehole. 

 

Figure 2. Delta-circuit of thermal resistances of a double U-tube borehole 



Assuming steady-state heat transfer in the borehole (i.e. the thermal capacities of the fluid, pipes and 

grout are neglected), the fluid temperature variation along the boreholes are obtained from the following 

energy balance on the fluid over a borehole cross-section: 

  �̇�𝑖,𝑚𝑐𝑓 𝜕𝑇𝑓,𝑖,𝑚𝜕𝑧 (𝑧) = 𝑇𝑓,𝑖,𝑚(𝑧)−𝑇𝑏,𝑖(𝑧)𝑅𝑖,𝑚,𝑚Δ + ∑ 𝑇𝑓,𝑖,𝑚(𝑧)−𝑇𝑓,𝑖,𝑛(𝑧)𝑅𝑖,𝑚,𝑛Δ𝑛𝑝,𝑖𝑛=1𝑛≠𝑚 , 0 ≤ 𝑧 ≤ 𝐿𝑖, 𝑚 ≤ 𝑛𝑝,𝑖 (14)  

  −�̇�𝑖,𝑚𝑐𝑓 𝜕𝑇𝑓,𝑖,𝑚𝜕𝑧 (𝑧) = 𝑇𝑓,𝑖,𝑚(𝑧)−𝑇𝑏,𝑖(𝑧)𝑅𝑖,𝑚,𝑚Δ + ∑ 𝑇𝑓,𝑖,𝑚(𝑧)−𝑇𝑓,𝑖,𝑛(𝑧)𝑅𝑖,𝑚,𝑛Δ𝑛𝑝,𝑖𝑛=1𝑛≠𝑚 , 0 ≤ 𝑧 ≤ 𝐿𝑖 , 𝑛𝑝,𝑖 + 1 ≤ 𝑚 ≤ 2𝑛𝑝,𝑖 (15) 

where �̇�𝑖,𝑚 is the fluid mass flow rate in pipes 𝑚 and 𝑚 + 𝑛𝑝,𝑖, and 𝑇𝑓,𝑖,𝑚 is the fluid temperature in 

pipe 𝑚 of borehole 𝑖. 𝑅𝑖,𝑚,𝑛Δ  is the delta-circuit thermal resistance between pipes 𝑚 and 𝑛 of borehole 𝑖 and 𝑅𝑖,𝑚,𝑚Δ  is the delta-circuit thermal resistance between pipe 𝑚 and the wall of borehole 𝑖. These delta-circuit 

thermal resistances can be evaluated from the multipole solution (Claesson and Hellström 2011). In this work, 

the multipole solution of order 3 was used to evaluate delta-circuit thermal resistances. 

It is again useful to introduce dimensionless parameters by considering the dimensionless form of 

Equation 2: 

 �̅�𝑓(𝜏) = 12 (𝜃𝑓,𝑖𝑛(𝜏) + 𝜃𝑓,𝑜𝑢𝑡(𝜏)) = 𝜃𝑏∗(𝜏) + Ω𝑓𝑖𝑒𝑙𝑑∗ �̅�′(𝜏) (16) 

where �̅�𝑓 is the dimensionless mean fluid temperature, 𝜃𝑓,𝑖𝑛 and 𝜃𝑓,𝑜𝑢𝑡 are the dimensionless inlet and 

outlet fluid temperatures of the bore field, Ω𝑓𝑖𝑒𝑙𝑑∗ = 2π𝑘𝑠𝑅𝑓𝑖𝑒𝑙𝑑∗  is the dimensionless effective bore field 

thermal resistance. 

The dimensionless forms of Equations 14 and 15 are then: 

 𝜕𝜃𝑓,𝑖,𝑚𝜕𝜂 (𝜂) = 𝜃𝑓,𝑖,𝑚(𝜂)−𝜃𝑏,𝑖(𝜂)𝛾𝑖Ω𝑖,𝑚,𝑚Δ + ∑ 𝜃𝑓,𝑖,𝑚(𝜂)−𝜃𝑓,𝑖,𝑛(𝜂)𝛾𝑖Ω𝑖,𝑚,𝑛Δ𝑛𝑝,𝑖𝑛=1𝑛≠𝑚 , 0 ≤ 𝜂 ≤ 1, 𝑚 ≤ 𝑛𝑝,𝑖 (17)  

  
𝜕𝜃𝑓,𝑖,𝑚𝜕𝜂 (𝜂) = 𝜃𝑓,𝑖,𝑚(𝜂)−𝜃𝑏,𝑖(𝜂)−𝛾𝑖Ω𝑖,𝑚,𝑚Δ + ∑ 𝜃𝑓,𝑖,𝑚(𝜂)−𝜃𝑓,𝑖,𝑛(𝜂)−𝛾𝑖Ω𝑖,𝑚,𝑛Δ𝑛𝑝,𝑖𝑛=1𝑛≠𝑚 , 0 ≤ 𝜂 ≤ 1, 𝑛𝑝,𝑖 + 1 ≤ 𝑚 ≤ 2𝑛𝑝,𝑖 (18) 

where 𝜃𝑓,𝑖,𝑚 is the dimensionless fluid temperature in pipe 𝑚 of borehole 𝑖, Ω𝑖,𝑚,𝑛Δ  and Ω𝑖,𝑚,𝑚Δ  are 

dimensionless delta-circuit thermal resistances, 𝛾𝑖 = �̇�𝑖𝑐𝑓 2𝜋𝑘𝑠𝐿𝑖⁄  is the dimensionless fluid mass flow rate 

in borehole 𝑖, and 𝜂 is the normalized depth along the length of the borehole. 

Equations 17 and 18 may then be simplified by introducing matrix notation: 



 𝜕𝚯𝒇,𝒊𝜕𝜂 (𝜂) = 𝚪𝒊 (𝚯𝒇,𝒊(𝜂) − 𝟏𝜃𝑏,𝑖(𝜂)) , 0 ≤ 𝜂 ≤ 1 (19) 

where 𝚯𝒇,𝒊(𝜂) = [𝜃𝑓,𝑖,1 ⋯ 𝜃𝑓,𝑖,2𝑛𝑝,𝑖]𝑻 is a vector of dimensionless fluid temperatures in each pipe of 

borehole 𝑖, 𝚪𝒊 = [𝛤𝑖,𝑚,𝑛]2𝑛𝑝,𝑖×2𝑛𝑝,𝑖  is a dimensionless thermal conductance matrix, given by: 

 𝛤𝑖,𝑚,𝑛 = {  
  ∑ (𝛾𝑖Ω𝑖,𝑚,𝑛Δ )−1𝑚𝑛=1 for 𝑚 = 𝑛 and 𝑚 ≤ 𝑛𝑝,𝑖−(𝛾𝑖Ω𝑖,𝑚,𝑛Δ )−1 for 𝑚 ≠ 𝑛 and 𝑚 ≤ 𝑛𝑝,𝑖−∑ (𝛾𝑖Ω𝑖,𝑚,𝑛Δ )−1𝑚𝑛=1 for 𝑚 = 𝑛 and 𝑛𝑝,𝑖 + 1 ≤ 𝑚 ≤ 2𝑛𝑝,𝑖(𝛾𝑖Ω𝑖,𝑚,𝑛Δ )−1 for 𝑚 ≠ 𝑛 and 𝑛𝑝,𝑖 + 1 ≤ 𝑚 ≤ 2𝑛𝑝,𝑖

 (20)  

The solution to Equation 19 is given by the matrix exponential (Cimmino 2016): 

 𝚯𝒇,𝒊(𝜂) = exp(𝚪𝒊𝜂)𝚯𝒇,𝒊(0) − ∫ exp(𝚪𝒊(𝜂 − 𝜂′)) 𝚪𝒊𝟏𝜃𝑏,𝑖(𝜂′)𝑑𝜂′𝜂0  (21)  

This solution gives the fluid temperature variation along the borehole for an arbitrary borehole wall 

temperature. From this solution, it is possible, considering piping connections within the borehole (series or 

parallel), to obtain linear relations between the inlet and outlet fluid temperatures of the borehole and between 

the inlet fluid temperature into the borehole and the heat extraction rate per unit length along the borehole. 

For a borehole 𝑖 divided into 𝑛𝑞,𝑖 segments of equal lengths with uniform temperature along the wall of each 

segment, these relations are given by: 

 𝜃𝑓,out,𝑖,𝑘 = Ein,𝑖𝜃𝑜𝑢𝑡𝜃𝑓,in,𝑖,𝑘 + 𝐄𝒃,𝒊𝜽𝒐𝒖𝒕�̅�𝒃,𝒊,𝒌 (22)  

 �̅�𝒊,𝒌′ = 𝐄𝐢𝐧,𝒊𝝓 𝜃𝑓,in,𝑖,𝑘 + 𝐄𝒃,𝒊𝝓 �̅�𝒃,𝒊,𝒌 (23) 

where 𝜃𝑓,in,𝑖,𝑘 and 𝜃𝑓,out,𝑖,𝑘 are the dimensionless inlet and outlet fluid temperatures of borehole 𝑖 at time 𝜏𝑘, and Ein,𝑖𝜃𝑜𝑢𝑡 , 𝐄𝒃,𝒊𝜽𝒐𝒖𝒕, 𝐄𝐢𝐧,𝒊𝝓  and 𝐄𝒃,𝒊𝝓  are coefficients with values developed in appendices 1 and 2. 

Piping connections in the network of boreholes 

In bore fields with mixed parallel and series connections between the boreholes, the inlet fluid 

temperature into a borehole 𝑖 may be different from the inlet fluid temperature into the bore field and is 

determined by the arrangement of the borehole network. The inlet fluid temperature into borehole 𝑖 is either 



equal to the inlet fluid temperature into the field or to the outlet fluid temperature of another borehole. The 

arrangement of the borehole network is represented by a borehole connectivity vector: 

 𝜃𝑓,in,𝑖,𝑘 = 𝜃𝑓,out,𝑐in,𝑖,𝑘 (24) 

where 𝐂𝐢𝐧 = [𝑐in,1 ⋯ 𝑐in,𝑁𝑏] is the borehole connectivity vector, with 𝑐in,𝑖 the index of the borehole 

connected to the inlet of borehole 𝑖 (e.g. 𝑐in,2 = 1 in Figure 1); and 𝜃𝑓,out,0,𝑘 = 𝜃𝑓,in,𝑘 is the inlet fluid 

temperature into the bore field (e.g. 𝑐in,1 = 0 in Figure 1). For example, for the bore field represented in 

Figure 1, the borehole connectivity vector is 𝐂𝐢𝐧 = [0 1 0]. For convenience, the sequence 𝐏𝐢𝐧,𝐢 denotes 

the path starting from borehole 𝑖 leading to the bore field inlet. With regards to the bore field of Figure 1: 𝐏𝐢𝐧,𝟏 = {1}, 𝐏𝐢𝐧,𝟐 = {2,1} and 𝐏𝐢𝐧,𝟑 = {3}. 
From Equation 22 and with knowledge of the borehole connectivity, the outlet fluid temperature at any 

borehole can be expressed in terms of the inlet fluid temperature of the field and the borehole wall 

temperatures of all boreholes in its path to the inlet: 

 𝜃𝑓,out,𝑖,𝑘 = (∏ Ein,𝑖𝜃𝑜𝑢𝑡𝑗∈𝐏𝐢𝐧,𝒊 ) 𝜃𝑓,in,𝑘 + ∑ (∏ Ein,𝑗′𝜃𝑜𝑢𝑡𝑗′∈𝐏𝐢𝐧,𝒊𝑗′∉𝐏𝐢𝐧,𝒋 )𝐄𝒃,𝒋𝜽𝒐𝒖𝒕�̅�𝒃,𝒋,𝒌𝑗∈𝐏𝐢𝐧,𝒊  (25)  

 𝜃𝑓,out,𝑖,𝑘 = Ain,𝑖𝜃𝑜𝑢𝑡𝜃𝑓,in,𝑘 + ∑ 𝐀𝒃,𝒊,𝒋𝜽𝒐𝒖𝒕�̅�𝒃,𝒋,𝒌𝑗∈𝐏𝐢𝐧,𝒊  (26) 

where Ain,𝑖𝜃𝑜𝑢𝑡  and 𝐀𝒃,𝒊,𝒋𝜽𝒐𝒖𝒕 are scalar and vector coefficients, with 𝐀𝒃,𝒊,𝒋𝜽𝒐𝒖𝒕 = 𝟎 if 𝑗 ∉ 𝐏𝐢𝐧,𝒊, Π is the product 

operator, with ∏ Ein,𝑖𝜃𝑜𝑢𝑡𝑗∈{1,2,3} = Ein,1𝜃𝑜𝑢𝑡Ein,2𝜃𝑜𝑢𝑡Ein,3𝜃𝑜𝑢𝑡 and ∏ Ein,𝑖𝜃𝑗∈{ } = 1. 

From Equations 23 and 25, and considering the borehole connectivity, the heat extraction rate per unit 

borehole length of any borehole may also be expressed in terms of the inlet fluid temperature of the field and 

the borehole wall temperatures of all boreholes in its path to the inlet: 

 �̅�𝒊,𝒌′ = 𝐄𝐢𝐧,𝒊𝝓 (∏ Ein,𝑗𝜃𝑜𝑢𝑡𝑗∈𝐏𝐢𝐧,𝒊𝑗≠𝑖 )𝜃𝑓,in,𝑘 + ∑ (∏ Ein,𝑗′𝜃𝑜𝑢𝑡𝑗′∈𝐏𝐢𝐧,𝒊𝑗′∉𝐏𝐢𝐧,𝒋 )𝐄𝒃,𝒋𝝓 �̅�𝒃,𝒋,𝒌𝑗∈𝐏𝐢𝐧,𝒊  (27)  

 �̅�𝒊,𝒌′ = 𝐀𝐢𝐧,𝒊𝝓 𝜃𝑓,in,𝑘 + ∑ 𝐀𝒃,𝒊,𝒋𝝓 �̅�𝒃,𝒋,𝒌𝑗∈𝐏𝐢𝐧,𝒊  (28) 

where 𝐀𝐢𝐧,𝒊𝝓  and 𝐀𝒃,𝒊,𝒋𝝓  are vector and matrix coefficients, with 𝐀𝒃,𝒊,𝒋𝝓 = 𝟎 if 𝑗 ∉ 𝐏𝐢𝐧,𝒊. 



The heat extraction rates per unit borehole length of all borehole segments are then given by assembling 

Equation 28 for all boreholes in the field: 

 �̅�𝒌′ = 𝐀𝐢𝐧𝝓 𝜃𝑓,in,𝑘 + 𝐀𝒃𝝓�̅�𝒃,𝒌 (29) 

 𝐀𝐢𝐧𝝓 = [ 𝐀𝐢𝐧,𝟏𝝓⋮𝐀𝐢𝐧,𝑵𝒃𝝓 ] (30) 

 𝐀𝐛𝝓 = [ 𝐀𝒃,𝟏,𝟏𝝓 ⋯ 𝐀𝒃,𝟏,𝑵𝒃𝝓⋮ ⋱ ⋮𝐀𝒃,𝑵𝒃,𝟏𝝓 ⋯ 𝐀𝒃,𝑵𝒃,𝑵𝒃𝝓 ] (31) 

The outlet fluid temperature of the bore field is obtained by an energy balance: 

 𝜃𝑓,out,𝑘 = 𝜃𝑓,in,𝑘 −𝑁𝑏 �̅�𝑘′𝛾  (32) 

 𝜃𝑓,out,𝑘 = (1 − 1𝛾 𝐋�̅�𝐀𝐢𝐧𝝓 ) 𝜃𝑓,in,𝑘 − 1𝛾 𝐋�̅�𝐀𝒃𝝓�̅�𝒃,𝒌 (33)  

 𝜃𝑓,out,𝑘 = Ain𝜃𝑜𝑢𝑡𝜃𝑓,in,𝑘 + 𝐀𝒃𝜽𝒐𝒖𝒕�̅�𝒃,𝒌 (34)  

where 𝛾 = �̇�𝑐𝑓 2𝜋𝑘𝑠�̅�⁄  is the dimensionless total fluid mass flow rate, �̅�𝑘′ = 𝐋�̅�𝒌′ 𝑁𝑏�̅�⁄  is the 

normalized average heat extraction rate per unit borehole length in the bore field, 𝐋 = [𝐋𝟏 ⋯ 𝐋𝑵𝒃] is a 

vector of the lengths of all borehole segments in the bore field, with 𝐋𝐢 = [𝐿𝑖,1 ⋯ 𝐿𝑖,𝑛𝑞,𝑖]. 
g-Function of the bore field 

Dimensionless borehole wall and inlet fluid temperatures 

Per the definition of the g-function (Equations 1 and 8), the g-function is obtained from the 

dimensionless borehole wall temperature response to a constant unit normalized heat extraction rate per 

borehole length: 

 �̅�𝑘′ = 𝐋�̅�𝒌′ 𝑁𝑏�̅�⁄ = 1 (35)  

The dimensionless borehole wall and inlet fluid temperature responses are obtained by the simultaneous 

solution of Equations 12, 29 and 35: 



 [𝐇(𝜏𝑘 − 𝜏𝑘−1) −𝐈 𝟎−𝐈 𝐀𝒃𝝓 𝐀𝐢𝐧𝝓𝐋 𝑁𝑏�̅�⁄ 𝟎 0 ] [
�̅�𝒌′�̅�𝒃,𝒌𝜃𝑓,in,𝑘] = [−�̅�𝒃,𝒌

𝟎𝟎1 ] (36) 

where 𝐈 is the identity matrix. 

Effective borehole and bore field thermal resistances 

To evaluate the effective dimensionless borehole wall temperature – and thus the g-function – the 

effective bore field thermal resistance (defined by Equations 2 and 16) must first be evaluated. The concept 

of effective borehole thermal resistance was first introduced by Hellström (1991), who considered a uniform 

borehole wall temperature and obtained the effective borehole thermal resistance based on the arithmetic 

mean fluid temperature: 

 Ω𝑏,𝑖∗ = 12(𝜃𝑓,in,𝑖,𝑘+𝜃𝑓,out,𝑖,𝑘)−𝜃𝑏,𝑖,𝑘∗�̅�𝑖,𝑘′  (37) 

where �̅�𝑖,𝑘′ = 𝐋𝒊�̅�𝒊,𝒌′ 𝐿𝑖⁄  is the average normalized heat extraction rate per unit length of borehole 𝑖, 𝜃𝑏,𝑖,𝑘∗  

is the effective uniform dimensionless borehole wall temperature of borehole 𝑖, and Ω𝑏,𝑖∗ = 2𝜋𝑘𝑠𝑅𝑏,𝑖∗  is the 

effective dimensionless borehole thermal resistance of borehole 𝑖. 
From Equations 22 and 23 and assuming a zero dimensionless borehole wall temperature, 𝜃𝑏,𝑖,𝑘∗ = 0: 

 Ω𝑏,𝑖∗ = 12 ∙ 1+Ein,𝑖𝜃𝑜𝑢𝑡𝐋𝒊𝐄𝐢𝐧,𝒊𝝓 𝐿𝑖⁄  (38) 

Similarly, the bore field thermal resistance is defined as the ratio of the temperature difference between 

the arithmetic mean fluid temperature in the bore field and the effective borehole wall temperature, and the 

average heat extraction rate per unit borehole length in the bore field, considering a uniform effective borehole 

wall temperature across the bore field: 

 Ω𝑓𝑖𝑒𝑙𝑑∗ = 12(𝜃𝑓,in,𝑘+𝜃𝑓,out,𝑘)−𝜃𝑏,𝑘∗�̅�𝑘′  (39)  

From Equations 29 and 34 and assuming a zero dimensionless borehole wall temperature, 𝜃𝑏,𝑖,𝑘∗ = 0: 

 Ω𝑓𝑖𝑒𝑙𝑑∗ = 12 ∙ 1+Ain𝜃𝑜𝑢𝑡𝐋𝐀𝐢𝐧𝝓 𝑁𝑏�̅�⁄  (40) 



Effective dimensionless borehole wall temperature 

The solution of Equation 36 gives the variation of the dimensionless inlet fluid temperature into the bore 

field. From Equations 16 and 32, the effective dimensionless borehole wall temperature is given by: 

 𝜃𝑏∗(𝜏𝑘) = 𝜃𝑓,in,𝑘 − 𝑁𝑏2𝛾 −Ω𝑓𝑖𝑒𝑙𝑑∗  (41) 

where 𝜃𝑏∗ is the effective dimensionless borehole wall temperature, equal to the g-function of the bore 

field. In combination with the effective bore field thermal resistance, the g-function permits the simulation 

of fluid temperatures in geothermal bore fields with series- and parallel-connected boreholes. An example of 

the complete calculation process for the evaluation of the g-function of a field of 2 series-connected boreholes 

is detailed in Appendix 3. 

Results 

A field of 144 boreholes is shown on Figure 3. The field consists of 24 parallel branches of 6 series-

connected single U-tube boreholes of equal dimensions. The dimensional and physical parameters of the bore 

field are presented in Table 1. Fluid enters the 24 parallel branches from the center of the field and exits from 

its perimeter. The fluid mass flow rate is evenly distributed across all branches. The effective borehole 

thermal resistance is 𝑅𝑏∗ = 0.1460 m-K/W, corresponding to a dimensionless effective borehole thermal 

resistance of Ω𝑏∗ = 1.835. The effective bore field thermal resistance is 𝑅𝑓𝑖𝑒𝑙𝑑∗ = 0.1700 m-K/W, 

corresponding to a dimensionless effective borehole thermal resistance of Ω𝑓𝑖𝑒𝑙𝑑∗ = 2.136. The dimensionless 

total fluid mass flow rate is 𝛾 = 54.25. With regards to the number of boreholes, the number of parallel 

branches, the length of the boreholes and the average spacing between the boreholes, the bore field in Figure 3 

is similar to the borehole thermal energy storage of Drake Landing Solar Community (Sibbitt et al. 2012). In 

this section, the presented g-function calculation method is compared to the results of simulations obtained 

using the duct ground heat storage (DST) model (Pahud and Hellström 1996). The effect of fluid mass flow 

rate on the g-function and on the effective bore field thermal resistance is then studied. 



  

Figure 3. Bore field of 144 boreholes in 24 parallel branches of 6 series-connected boreholes 

Table 1. Parameters of the bore field 
Parameter Value Units 
Bore field   

Number of boreholes, 𝑁𝑏 144 - 
Number of parallel branches 24 - 

Boreholes per branch 6 - 
Nominal borehole spacing 2.25 m 

Total fluid mass flow rate, �̇� 6 kg/s 
Boreholes   

Borehole length, 𝐿 35 m 
Borehole radius, 𝑟𝑏 0.075 m 

Borehole buried depth, 𝐷 0.5 m 
Piping   

Number of U-tubes per borehole, 𝑛𝑝 1 - 
Pipe outer diameter 0.0422 m 
Pipe inner diameter 0.0294 m 

Shank spacing 0.052 m 
Pipe surface roughness 10-6 m 

Physical properties   
Undisturbed ground temperature, 𝑇0 10 °C 

Ground thermal conductivity, 𝑘𝑠 2 W/m-K 
Ground thermal diffusivity, 𝛼𝑠 10-6 m2/s 

Grout thermal conductivity 1 W/m-K 
Pipe thermal conductivity 0.4 W/m-K 
Fluid thermal conductivity 0.492 W/m-K 

Fluid density 1015 kg/m3 

Fluid specific heat capacity, 𝑐𝑓 3977 J/kg-K 
Fluid dynamic viscosity 0.00203 kg/m-s 



g-Function of the bore field 

The effective dimensionless borehole wall temperature (i.e. the g-function) and the dimensionless inlet 

fluid temperature obtained from the presented methodology are shown on Figure 4, using 𝑛𝑞 = 12 segments 

per borehole. The dimensionless temperatures are compared to the average storage temperature and the inlet 

fluid temperature obtained from a constant heat injection simulation using the DST model. As the DST model 

does not consider the positions of the boreholes in the bore field, but rather assumes evenly distributed 

boreholes in a specified storage volume, a storage volume of 25,270 m3 given by the cylindrical volume 

delimited by the boreholes furthest from the center of the field was used for this simulation. The simulation 

was performed with a time step of 1 hour over a simulation period of 100 years and a constant heat injection 

rate �̅�′ = 2𝜋𝑘𝑆. The effective borehole wall temperature is not directly comparable to the average storage 

temperature, as the former is representative of the temperature in the immediate vicinity of the boreholes 

while the latter is representative of the average temperature in the volume. For this reason, the inlet fluid 

temperatures are better suited for comparison between the g-function and the DST model (Pahud and 

Hellström 1996). The results are close, with a maximum absolute difference of 1.46 at ln(𝜏) = 1.8 when the 

dimensionless inlet fluid temperature is 54.02, and a maximum relative difference of 4.2 % at ln(𝜏) = -9.9 

corresponding to the second time step of the DST simulation. Differences are expected since the DST model 

does not consider the actual positions of the boreholes. 

The calculation time for the evaluation of the g-function of the field of 144 boreholes over 100 time steps 

using 𝑛𝑞 = 12 segments per borehole is 447 seconds on a computer equipped with a 4.2 GHz quad core 

(8 threads) processor. Comparatively, the calculation time for the evaluation of the g-function of the same 

bore field using a uniform borehole wall temperature condition as per the method of Cimmino and Bernier 

(2014) and Cimmino (2018c) (i.e. without consideration for the fluid temperature variations and the 

connections between boreholes) is 412 seconds. The time difference is caused by the increased size of the 

system of equations solved in Equation 36, as the time required for the evaluation of the matrix of segment-

to-segment thermal response factors, 𝐇, is 220 seconds in both cases. 



  

Figure 4. Comparison of the dimensionless effective borehole wall and inlet fluid temperatures 

with the DST model 

Simulation of a seasonal storage system 

The g-function of the bore field presented in Figure 4 is used in a sample simulation of a seasonal thermal 

energy storage system. Simplified relations are used for the total heat extraction from the bore field, given as 

the sum of heat extraction due to building heating loads and solar thermal collectors (heat injection 

corresponds to negative heat extraction). The building heating loads, 𝑄𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 , are represented by a linear 

relation with ambient temperature: 

 𝑄𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 = max(0,−7500[𝑊 𝐾⁄ ] ∙ 𝑇𝑎𝑚𝑏 + 75000[𝑊]) (42) 

where 𝑇𝑎𝑚𝑏  is the ambient temperature (in °C), averaged over the 6 preceding hours, obtained from a 

typical meteorological year for the city of Montreal, Canada (Numerical Logics 1999). In the simulation, 



solar heat injection started at the beginning of the system’s operation, on January 1st, while building heating 

loads were only applied at the beginning of the following heating season, in September of the first year. 

The heat extraction rate from solar collectors is given by: 

 𝑄𝑠𝑜𝑙𝑎𝑟 = −𝐴𝑐𝑜𝑙𝜂𝐺 (43) 

where 𝐴𝑐𝑜𝑙 = 750 m2 is the total solar collector area, 𝜂 = 0.6 is a constant solar collector efficiency and 𝐺 is the total solar radiation on solar collectors facing due south with a slope of 45°, obtained for the same 

typical meteorological year. 

A 5 year simulation of the seasonal thermal storage system was conducted with the DST model with a 

time step of 1 hour. Using the same ground heat extraction rates, the effective borehole wall temperature 

were obtained from the temporal superposition of the g-function, using the FFT technique proposed by 

Marcotte and Pasquier (2008). The inlet fluid temperatures were then obtained from Equation 2. The inlet 

fluid temperatures during the 5th simulation year predicted from the temporal superposition of the g-function 

are presented on Figure 5, along with the average heat extraction rate per unit borehole length. Predicted inlet 

fluid temperatures are in good agreement with the DST model, as shown on Figure 6 for a 5 day period of 

the 5th simulation year, starting on June 30th. This 5 day period coincides with the maximum difference of 

1.85 °C between the inlet temperatures predicted by the two models. 



 

Figure 5. Inlet fluid temperature during the 5th simulation year (above), and average heat 

extraction rate per unit borehole length (below) 



 

Figure 6. Comparison of the inlet fluid temperatures predicted by the g-function and the DST 

model (above), difference between the two models (center), and average heat extraction rate per unit 

borehole length (below) 

Fluid mass flow rate 

The influence of the fluid mass flow rate on the g-function is presented on Figure 7. It is shown that the 

difference between the inlet fluid temperature and the effective borehole wall temperature increases when 

the mass flow rate is reduced, as predicted by Equation 41. It is also shown that, for sufficiently large mass 

flow rates, the effective dimensionless borehole wall temperature does not show significant variations. At 



ln(𝜏) = 5, the values of the effective dimensionless borehole wall temperature are 51.5 and 52.0 for 

dimensionless fluid mass flow rates of 𝛾 = 25 and 125, respectively. These results imply that, for sufficiently 

large mass flow rates, the same g-function can be used for simulation. The effect of the fluid mass flow rate 

is further demonstrated on Figure 8, comparing the steady-state dimensionless inlet fluid temperature and 

effective dimensionless borehole wall temperature at varying mass flow rates. For the bore field of Figure 3, 

the steady-state effective borehole wall temperature only varies by 1 % for 𝛾 ≥ 21.8. The sharp variation 

around ln(𝜏) = 3 is due to the transition from laminar to turbulent flow within the boreholes. The variations 

of the effective dimensionless borehole wall temperature are explained by the variations of the effective bore 

field thermal resistance, as shown on Figure 9. In the same range 𝛾 ≥ 21.8, the effective bore field thermal 

resistance varies from 4.07 to 1.76. These results are in agreement to that of Cimmino (2015) who found that, 

for parallel-connected boreholes, the values of the g-function depend on the effective borehole thermal 

resistance. It should be noted that, for infinite mass flow rate (i.e. 𝛾 → ∞), the effective bore field thermal 

resistance (defined in Equation 2) tends to the same value as the effective borehole thermal resistance. 



 

Figure 7. Influence of the dimensionless fluid mass flow rate on the dimensionless inlet fluid 

temperature and on the effective dimensionless borehole wall temperature 



 

Figure 8. Influence of the dimensionless fluid mass flow rate on the steady-state dimensionless 

effective borehole wall temperature and on the steady-state dimensionless inlet fluid temperature 

 

Figure 9. Influence of the dimensionless fluid mass flow rate on the effective borehole thermal 

resistance and the effective bore field thermal resistance 



Conclusion 

A semi-analytical method for the calculation of g-functions of bore fields with mixed arrangements of 

series- and parallel-connected boreholes is presented. Borehole wall temperature variations are obtained from 

the temporal and spatial superposition of the finite line source solution. Heat transfer between the fluid and 

the borehole wall is obtained from an analytical solution based on an energy balance on a thermal resistance 

network representing a borehole cross-section. The concept of effective bore field thermal resistances is 

introduced and is used in the definition of the effective borehole wall temperature. This yields a linear relation 

between the arithmetic mean fluid temperature, the heat extraction rate per unit borehole length and the 

effective bore field thermal resistance, as is typically encountered in simulations of parallel-connected 

borehole fields. 

The g-function calculation method is validated against the DST model on a bore field consisting of 24 

parallel branches of 6 series-connected boreholes, totalling 144 boreholes. Some small differences in 

predicted inlet fluid temperatures are observed but can be explained by the fundamental differences between 

the two methods, i.e. the positions of the boreholes are not explicitly prescribed in the DST model. The 

g-function is shown to be dependent on the fluid mass flow rate, although variations in g-function values are 

not significant at sufficiently high fluid mass flow rates. An important limitation of the proposed method is 

that it is not possible to account for changes in flow direction within the bore field, which can be expected in 

seasonal storage systems. This limitation will be addressed in future work. 

Nomenclature 

A, 𝐀 : Coefficient, vector of coefficients or matrix of coefficients 𝐂𝐢𝐧 : Borehole connectivity vector 𝑐𝑓 : Fluid specific heat capacity, J/kg-K 𝐷 : Buried depth, m 𝑑 : Distance, m E, 𝐄 : Coefficient, vector of coefficients or matrix of coefficients 𝐺 : Total incident solar radiation 𝑔 : g-function 𝐇 : Matrix of segment-to-segment thermal response factors ℎ : Segment-to-segment thermal response factor 𝐼𝐹𝐿𝑆 : Axial portion of the integrand function of the finite line source solution 𝑘 : Thermal conductivity, W/m-K  𝐿 : Length, m 



�̇� : Mass flow rate, kg/s 𝑁𝑏 : Number of boreholes 𝑛𝑝 : Number of U-tubes 𝑛𝑞 : Number of borehole segments 𝐏𝐢𝐧 : Path sequence to bore field inlet 𝑄 : Heat extraction rate, W  𝑄′ : Heat extraction rate per unit length, W/m 𝑅 : Thermal resistance, m-K/W 𝑟 : Radius, m 𝑇 : Temperature, ºC 𝑡 : Time, s (𝑥, 𝑦) : Borehole horizontal coordinates, m 𝐘 : Vector of dimensionless fluid mass flow rates 𝑧 : Vertical coordinate, m 

Greek symbols 

𝛼 : Thermal diffusivity, m2/s 𝚪 : Dimensionless thermal conductance matrix 𝛾 : Dimensionless fluid mass flow rate 𝜂 : Dimensionless vertical coordinate 𝚯 : Vector of dimensionless temperatures 𝜃 : Dimensionless temperature 𝜌 : Density, kg/m3 𝜏 : Dimensionless time 𝚽′ : Vector of dimensionless heat extraction rates per unit length 𝜙′ : Dimensionless heat extraction rate per unit length Ω : Dimensionless thermal resistance 

Subscripts 

0 : Initial 𝑏 : Borehole, or borehole wall (temperature) 𝑓 : Fluid 𝑓𝑖𝑒𝑙𝑑 : Bore field 𝑖, 𝑗 : Borehole indices 𝑖𝑛 : Inlet  𝑘, 𝑝 : Time step indices 𝑚, 𝑛 : Pipe indices 𝑛𝑜𝑚 : Nominal value 𝑜𝑢𝑡 : Outlet 𝑠 : Soil 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 : Storage (DST model) 𝑢, 𝑣 : Borehole segment indices 

 



Superscripts 

( )∗ : Effective value ( )Δ : Delta-circuit 

References 

Abdelaziz, S. L., T. Y. Ozudogru, C. G. Olgun, and J. R. Martin. 2014. “Multilayer Finite Line Source 
Model for Vertical Heat Exchangers.” Geothermics 51: 406–416. 
doi:10.1016/j.geothermics.2014.03.004. 

ASHRAE. 2015. ASHRAE Handbook — HVAC Applications. Atlanta GA, USA: American Society of 
Heating, Refrigerating and Air Conditioning Engineers. 

Bandyopadhyay, G., W. Gosnold, and M. Mann. 2008. “Analytical and Semi-Analytical Solutions for 
Short-Time Transient Response of Ground Heat Exchangers.” Energy and Buildings 40 (10). 
Elsevier: 1816–1824. doi:10.1016/J.ENBUILD.2008.04.005. 

Beier, R. A., and M. D. Smith. 2003. “Minimum Duration of In-Situ Tests on Vertical Boreholes.” 
ASHRAE Transactions 109: 475–486. 

Cimmino, M. 2015. “The Effects of Borehole Thermal Resistances and Fluid Flow Rate on the G-
Functions of Geothermal Bore Fields.” International Journal of Heat and Mass Transfer 91: 1119–
1127. doi:10.1016/j.ijheatmasstransfer.2015.08.041. 

Cimmino, M. 2016. “Fluid and Borehole Wall Temperature Profiles in Vertical Geothermal Boreholes with 
Multiple U-Tubes.” Renewable Energy 96: 137–147. doi:10.1016/j.renene.2016.04.067. 

Cimmino, M. 2018a. “A Finite Line Source Simulation Model for Geothermal Systems with Series- and 
Parallel-Connected Boreholes and Independent Fluid Loops.” Journal of Building Performance 
Simulation 11 (4): 414–432. doi:10.1080/19401493.2017.1381993. 

Cimmino, M. 2018b. “G-Functions for Bore Fields with Mixed Parallel and Series Connections 
Considering Axial Fluid Temperature Variations.” In Proceedings of the IGSHPA Research Track 
2018, 262–270. International Ground Source Heat Pump Association. 
doi:10.22488/okstate.18.000015. 

Cimmino, M. 2018c. “Fast Calculation of the G-Functions of Geothermal Borehole Fields Using 
Similarities in the Evaluation of the Finite Line Source Solution.” Journal of Building Performance 
Simulation 11 (6): 655–668. doi:10.1080/19401493.2017.1423390. 

Cimmino, M., and M. Bernier. 2014. “A Semi-Analytical Method to Generate g-Functions for Geothermal 
Bore Fields.” International Journal of Heat and Mass Transfer 70 (c): 641–650. 
doi:10.1016/j.ijheatmasstransfer.2013.11.037. 

Cimmino, M., M. Bernier, and F. Adams. 2013. “A Contribution towards the Determination of G-Functions 
Using the Finite Line Source.” Applied Thermal Engineering 51 (1–2): 401–412. 
doi:10.1016/j.applthermaleng.2012.07.044. 

Claesson, J., and G. Hellström. 2011. “Multipole Method to Calculate Borehole Thermal Resistances in a 
Borehole Heat Exchanger.” HVAC&R Research 17 (6): 895–911. 
doi:10.1080/10789669.2011.609927. 

Claesson, J., and S. Javed. 2011. “An Analytical Method to Calculate Borehole Fluid Temperatures for 
Time-Scales from Minutes to Decades.” ASHRAE Transactions 117 (2): 279–288. 

Cui, P., H. Yang, and Z. Fang. 2006. “Heat Transfer Analysis of Ground Heat Exchangers with Inclined 
Boreholes.” Applied Thermal Engineering 26 (11–12): 1169–1175. 
doi:10.1016/j.applthermaleng.2005.10.034. 

Dusseault, B., P. Pasquier, and D. Marcotte. 2018. “A Block Matrix Formulation for Efficient G-Function 
Construction.” Renewable Energy 121 (June). Pergamon: 249–260. 
doi:10.1016/J.RENENE.2017.12.092. 

Erol, S., and B. François. 2018. “Multilayer Analytical Model for Vertical Ground Heat Exchanger with 
Groundwater Flow.” Geothermics 71 (January). Pergamon: 294–305. 
doi:10.1016/J.GEOTHERMICS.2017.09.008. 



Eskilson, P. 1987. “Thermal Analysis of Heat Extraction Boreholes.” University of Lund. 
Fossa, M. 2011. “The Temperature Penalty Approach to the Design of Borehole Heat Exchangers for Heat 

Pump Applications.” Energy and Buildings 43 (6): 1473–1479. doi:10.1016/j.enbuild.2011.02.020. 
Hellström, G. 1991. “Ground Heat Storage: Thermal Analysis of Duct Storage Systems.” University of 

Lund. 
Hu, J. 2017. “An Improved Analytical Model for Vertical Borehole Ground Heat Exchanger with Multiple-

Layer Substrates and Groundwater Flow.” Applied Energy 202 (September): 537–549. 
doi:10.1016/j.apenergy.2017.05.152. 

Javed, S., and J. Claesson. 2011. “New Analytical and Numerical Solutions for the Short-Term Analysis of 
Vertical Ground Heat Exchangers.” ASHRAE Transactions 117: 279–288. 

Lamarche, L. 2011. “Analytical G-Function for Inclined Boreholes in Ground-Source Heat Pump 
Systems.” Geothermics 40 (4): 241–249. doi:10.1016/j.geothermics.2011.07.006. 

Lamarche, L., and B. Beauchamp. 2007a. “A New Contribution to the Finite Line-Source Model for 
Geothermal Boreholes.” Energy and Buildings 39 (2): 188–198. doi:10.1016/j.enbuild.2006.06.003. 

Lamarche, L., and B. Beauchamp. 2007b. “New Solutions for the Short-Time Analysis of Geothermal 
Vertical Boreholes.” International Journal of Heat and Mass Transfer 50 (7–8). Pergamon: 1408–
1419. doi:10.1016/J.IJHEATMASSTRANSFER.2006.09.007. 

Lamarche, L. 2015. “Short-Time Analysis of Vertical Boreholes, New Analytic Solutions and Choice of 
Equivalent Radius.” International Journal of Heat and Mass Transfer 91 (December): 800–807. 
doi:10.1016/j.ijheatmasstransfer.2015.07.135. 

Lamarche, L. 2017a. “Mixed Arrangement of Multiple Input-Output Borehole Systems.” Applied Thermal 
Engineering. doi:10.1016/j.applthermaleng.2017.06.060. 

Lamarche, L. 2017b. “G-Function Generation Using a Piecewise-Linear Profile Applied to Ground Heat 
Exchangers.” International Journal of Heat and Mass Transfer 115 (December): 354–360. 
doi:10.1016/j.ijheatmasstransfer.2017.08.051. 

Lazzarotto, A. 2014. “A Network-Based Methodology for the Simulation of Borehole Heat Storage 
Systems.” Renewable Energy 62: 265–275. doi:10.1016/j.renene.2013.07.020. 

Lazzarotto, A. 2016. “A Methodology for the Calculation of Response Functions for Geothermal Fields 
with Arbitrarily Oriented Boreholes – Part 1.” Renewable Energy 86: 1380–1393. 
doi:10.1016/j.renene.2015.09.056. 

Li, M., and A. C. K. Lai. 2012a. “New Temperature Response Functions (G Functions) for Pile and 
Borehole Ground Heat Exchangers Based on Composite-Medium Line-Source Theory.” Energy 38 
(1). Pergamon: 255–263. doi:10.1016/J.ENERGY.2011.12.004. 

Li, M., and A. C. K. Lai. 2012b. “Heat-Source Solutions to Heat Conduction in Anisotropic Media with 
Application to Pile and Borehole Ground Heat Exchangers.” Applied Energy 96 (August): 451–458. 
doi:10.1016/j.apenergy.2012.02.084. 

Li, M., and A. C. K. Lai. 2013. “Analytical Model for Short-Time Responses of Ground Heat Exchangers 
with U-Shaped Tubes: Model Development and Validation.” Applied Energy 104 (April). Elsevier: 
510–516. doi:10.1016/J.APENERGY.2012.10.057. 

Marcotte, D., and P. Pasquier. 2008. “Fast Fluid and Ground Temperature Computation for Geothermal 
Ground-Loop Heat Exchanger Systems.” Geothermics 37 (6): 651–665. 
doi:10.1016/j.geothermics.2008.08.003. 

Marcotte, D., and P. Pasquier. 2009. “The Effect of Borehole Inclination on Fluid and Ground Temperature 
for GLHE Systems.” Geothermics 38 (4): 392–398. doi:10.1016/j.geothermics.2009.06.001. 

Marcotte, D., and P. Pasquier. 2014. “Unit-Response Function for Ground Heat Exchanger with Parallel, 
Series or Mixed Borehole Arrangement.” Renewable Energy 68: 14–24. 
doi:10.1016/j.renene.2014.01.023. 

Molina-Giraldo, N., P. Blum, K. Zhu, P. Bayer, and Z. Fang. 2011. “A Moving Finite Line Source Model 
to Simulate Borehole Heat Exchangers with Groundwater Advection.” International Journal of 
Thermal Sciences 50 (12): 2506–2513. doi:10.1016/j.ijthermalsci.2011.06.012. 

Monzó, P., P. Mogensen, J. Acuña, F. Ruiz-Calvo, and C. Montagud. 2015. “A Novel Numerical Approach 
for Imposing a Temperature Boundary Condition at the Borehole Wall in Borehole Fields.” 
Geothermics 56 (July). Pergamon: 35–44. doi:10.1016/J.GEOTHERMICS.2015.03.003. 

Monzó, P., A. R. Puttige, J. Acuña, P. Mogensen, A. Cazorla, J. Rodriguez, C. Montagud, and F. Cerdeira. 



2018. “Numerical Modeling of Ground Thermal Response with Borehole Heat Exchangers 
Connected in Parallel.” Energy and Buildings 172 (August). Elsevier: 371–384. 
doi:10.1016/J.ENBUILD.2018.04.057. 

Naldi, C., and E. Zanchini. 2019. “A New Numerical Method to Determine Isothermal G-Functions of 
Borehole Heat Exchanger Fields.” Geothermics 77 (January). Pergamon: 278–287. 
doi:10.1016/J.GEOTHERMICS.2018.10.007. 

Numerical Logics. 1999. “Canadian Weather for Energy Calculations, Users Manual and CD-ROM.” 
Downsview ON, Canada: Environment Canada. 

Pahud, D., and G. Hellström. 1996. “The New Duct Ground Heat Model for TRNSYS.” In Proceedings of 
Eurotherm Seminar N° 49, edited by A. A. van Steenhoven and W. G. J. van Helden, 127–136. 
Eindhoven, The Netherlands. 

Sibbitt, B., D. McClenahan, R. Djebbar, J. Thornton, B. Wong, J. Carriere, and J. Kokko. 2012. “The 
Performance of a High Solar Fraction Seasonal Storage District Heating System – Five Years of 
Operation.” Energy Procedia 30 (January). Elsevier: 856–865. doi:10.1016/J.EGYPRO.2012.11.097. 

Zeng, H. Y., N. R. Diao, and Z. H. Fang. 2002. “A Finite Line-Source Model for Boreholes in Geothermal 
Heat Exchangers.” Heat Transfer - Asian Research 31 (7): 558–567. doi:10.1002/htj.10057. 

 

Appendix 1 : Coefficients for the evaluation of fluid temperatures 

The solution to Equation 19 gives the fluid temperature variation in each of the pipes inside a borehole: 

 𝚯𝒇,𝒊(𝜂) = exp(𝚪𝒊𝜂)𝚯𝒇,𝒊(0) − ∫ exp(𝚪𝒊(𝜂 − 𝜂′)) 𝚪𝒊𝟏𝜃𝑏,𝑖(𝜂′)𝑑𝜂′𝜂0  (44)  

where 𝚯𝒇,𝒊(0) is a vector of fluid temperature in each of the pipes at the top of borehole 𝑖. 
For a borehole 𝑖 divided into 𝑛𝑞,𝑖 segments of equal lengths with uniform borehole wall temperature 

along each of the segments: 

 𝚯𝒇,𝒊(𝜂) = exp(𝚪𝒊𝜂)𝚯𝒇,𝒊(0) + ∑ 𝚪𝒊−1[exp(𝚪𝒊max(0, 𝜂 − 𝜂𝑢+1)) − exp(𝚪𝒊max(0, 𝜂 −𝑛𝑞,𝑖𝑢=1𝜂𝑢))]𝚪𝒊𝟏𝜃𝑏,𝑖,𝑢  (45) 

where 𝜂𝑖,𝑢 = (𝐷𝑖,𝑢 − 𝐷𝑖) 𝐿𝑖⁄  is the normalized depth of segment 𝑢 along borehole 𝑖 and 𝜂𝑖,𝑛𝑞,𝑖+1 = 1. 

A relation between the inlet and outlet fluid temperature is obtained by first considering the connection 

between the pipes at the bottom of the borehole: 

 𝚯𝒇𝒅,𝒊(1) = 𝚯𝒇𝒖,𝒊(1) (46) 

where 𝚯𝒇𝒅,𝒊(𝜂) = [𝐈𝒏𝒑,𝒊 𝟎𝒏𝒑,𝒊]𝚯𝒇,𝒊(𝜂) is a vector of fluid temperatures in downward flowing pipes,  𝚯𝒇𝒖,𝒊(𝜂) = [𝟎𝒏𝒑,𝒊 𝐈𝒏𝒑,𝒊]𝚯𝒇,𝒊(𝜂) is a vector of fluid temperatures in upward flowing pipes, 𝐈𝒏𝒑,𝒊 is the 𝑛𝑝,𝑖 × 𝑛𝑝,𝑖 identity matrix and 𝟎𝒏𝒑,𝒊 is the 𝑛𝑝,𝑖 × 𝑛𝑝,𝑖 null matrix. 



The dimensionless fluid temperature vector may be reconstructed by the vectors of fluid temperatures in 

downward and upward flowing pipes: 

 𝚯𝒇,𝒊(𝜂) = [𝚯𝒇𝒅,𝒊𝑻(𝜂) 𝚯𝒇𝒖,𝒊𝑻(𝜂)]𝑻 = [𝐈𝒏𝒑,𝒊 𝟎𝒏𝒑,𝒊]𝑻𝚯𝒇𝒅,𝒊(𝜂) + [𝟎𝒏𝒑,𝒊 𝐈𝒏𝒑,𝒊]𝑻𝚯𝒇𝒖,𝒊(𝜂) (47) 

From Equations 45, 46 and 47: 

 𝐄𝒇𝒖,𝒊𝜽𝒖 (1)𝚯𝒇𝒖,𝒊(0) = 𝐄𝒇𝒅,𝒊𝜽𝒖 (1)𝚯𝒇𝒅,𝒊(0) + 𝐄𝒃,𝒊𝜽𝒖(1)�̅�𝒃,𝒊 (48)  

 𝐄𝒇𝒖,𝒊𝜽𝒖 (𝜂) = [𝐈𝒏𝒑,𝒊 −𝐈𝒏𝒑,𝒊] exp(𝚪𝒊𝜂) [𝟎𝒏𝒑,𝒊 𝐈𝒏𝒑,𝒊]𝑻 (49)  

 𝐄𝒇𝒅,𝒊𝜽𝒖 (𝜂) = [−𝐈𝒏𝒑,𝒊 𝐈𝒏𝒑,𝒊] exp(𝚪𝒊𝜂) [𝐈𝒏𝒑,𝒊 𝟎𝒏𝒑,𝒊]𝑻 (50)  

 𝐄𝒃,𝒊𝜽𝒖(𝜂) = [𝐄𝒃,𝒊,𝟏𝜽𝒖 (𝜂) ⋯ 𝐄𝒃,𝒊,𝒏𝒒,𝒊𝜽𝒖 (𝜂)] (51)  

 𝐄𝒃,𝒊,𝒖𝜽𝒖 (𝜂) = [−𝐈𝒏𝒑,𝒊 𝐈𝒏𝒑,𝒊]𝚪𝒊−1[exp(𝚪𝒊max(0, 𝜂 − 𝜂𝑢+1)) − exp(𝚪𝒊max(0, 𝜂 − 𝜂𝑢))]𝚪𝒊𝟏 (52) 

Expressions for outlet fluid temperatures and fluid temperature profiles based on the inlet fluid 

temperature are then developed by considering the piping connections within the borehole. 

U-tubes in series 

For U-tubes connected in series, the inlet of each pipe 𝑚+ 1 (𝑚 ≤ 𝑛𝑝,𝑖 − 1) is connected to the outlet 

of pipe 𝑚+ 𝑛𝑝,𝑖 , 𝜃𝑓,𝑖,𝑚+𝑛𝑝,𝑖(0) = 𝜃𝑓,𝑖,𝑚+1(0), the inlet fluid temperature into pipe 1 is equal to the inlet fluid 

temperature into the borehole, 𝜃𝑓,𝑖,1(0) = 𝜃𝑓,in,𝑖, and the outlet fluid temperature of pipe 2𝑛𝑝,𝑖 is equal to the 

outlet fluid temperature from the borehole, 𝜃𝑓,𝑖,2𝑛𝑝,𝑖(0) = 𝜃𝑓,out,𝑖. In matrix notation: 

 𝚯𝒇𝒅,𝒊(0) = [1 𝟎𝟏×𝒏𝒑,𝒊−𝟏]𝑻𝜃𝑓,in,𝑖 + 𝐈𝒏𝒑,𝒊(−𝟏)𝚯𝒇𝒖,𝒊(0) (53)  

 𝜃𝑓,out,𝑖 = [𝟎𝟏×𝒏𝒑,𝒊−𝟏 1]𝚯𝒇𝒖,𝒊(0) (54) 

where 𝐈𝒏𝒑,𝒊(−𝟏) is a 𝑛𝑝,𝑖 × 𝑛𝑝,𝑖 matrix with ones along the first diagonal below the main diagonal. 

The dimensionless outlet fluid temperature is given by introducing Equations 53 and 54 into 

Equation 48: 



(𝐄𝒇𝒖,𝒊𝜽𝒖 (1) − 𝐄𝒇𝒅,𝒊𝜽𝒖 (1)𝐈𝒏𝒑,𝒊(−𝟏))𝚯𝒇𝒖,𝒊(0) = 𝐄𝒇𝒅,𝒊𝜽𝒖 (1)[1 𝟎𝟏×𝒏𝒑,𝒊−𝟏]𝑻𝜃𝑓,in,𝑖 + 𝐄𝒃,𝒊𝜽𝒖(1)�̅�𝒃,𝒊 (55) 

 𝜃𝑓,out,𝑖 = Ein,𝑖𝜃𝑜𝑢𝑡𝜃𝑓,in,𝑖 + 𝐄𝒃,𝒊𝜽𝒐𝒖𝒕�̅�𝒃,𝒊 (56)  

 Ein,𝑖𝜃𝑜𝑢𝑡 = [𝟎𝟏×𝒏𝒑,𝒊−𝟏 1] (𝐄𝒇𝒖,𝒊𝜽𝒖 (1) − 𝐄𝒇𝒅,𝒊𝜽𝒖 (1)𝐈𝒏𝒑,𝒊(−𝟏))−𝟏 𝐄𝒇𝒅,𝒊𝜽𝒖 (1)[1 𝟎𝟏×𝒏𝒑,𝒊−𝟏]𝑻 (57)  

 𝐄𝒃,𝒊𝜽𝒐𝒖𝒕 = [𝟎𝟏×𝒏𝒑,𝒊−𝟏 1] (𝐄𝒇𝒖,𝒊𝜽𝒖 (1) − 𝐄𝒇𝒅,𝒊𝜽𝒖 (1)𝐈𝒏𝒑,𝒊(−𝟏))−𝟏 𝐄𝒃,𝒊𝜽𝒖(1) (58)  

The fluid temperatures at the top of the boreholes are obtained by introducing Equations 53 and 55 into 

Equation 47: 

 𝚯𝒇,𝒊(0) = 𝐄𝐢𝐧,𝒊𝜽𝟎 𝜃𝑓,in,𝑖 + 𝐄𝒃,𝒊𝜽𝟎�̅�𝒃,𝒊 (59)  

 𝐄𝐢𝐧,𝒊𝜽𝟎 = [1 𝟎𝟏×𝒏𝒑,𝒊−𝟏]𝑻 + [𝐈𝒏𝒑,𝒊 𝐈𝒏𝒑,𝒊(−𝟏)]𝑻 (𝐄𝒇𝒖,𝒊𝜽𝒖 (1) − 𝐄𝒇𝒅,𝒊𝜽𝒖 (1)𝐈𝒏𝒑,𝒊(−𝟏))−𝟏 𝐄𝒇𝒅,𝒊𝜽𝒖 (1)[1 𝟎𝟏×𝒏𝒑,𝒊−𝟏]𝑻 (60)  

 𝐄𝒃,𝒊𝜽𝟎 = [𝐈𝒏𝒑,𝒊 𝐈𝒏𝒑,𝒊(−𝟏)]𝑻 (𝐄𝒇𝒖,𝒊𝜽𝒖 (1) − 𝐄𝒇𝒅,𝒊𝜽𝒖 (1)𝐈𝒏𝒑,𝒊(−𝟏))−𝟏 𝐄𝒃,𝒊𝜽𝒖(1) (61) 

Fluid temperature profiles are then obtained by introducing Equation 59 into Equation 45: 

 𝚯𝒇,𝒊(𝜂) = 𝐄𝐢𝐧,𝒊𝜽 (𝜂)𝜃𝑓,in,𝑖 + 𝐄𝒃,𝒊𝜽 (𝜂)�̅�𝒃,𝒊 (62)  

 𝐄𝐢𝐧,𝒊𝜽 (𝜂) = exp(𝚪𝒊𝜂)𝐄𝐢𝐧,𝒊𝜽𝟎  (63)  

 𝐄𝒃,𝒊𝜽 (𝜂) = exp(𝚪𝒊𝜂) 𝐄𝐛,𝒊𝜽𝟎 + [𝐄𝒃,𝒊,𝟏𝜽 (𝜂) ⋯ 𝐄𝒃,𝒊,𝒏𝒒,𝒊𝜽 (𝜂)] (64)  

 𝐄𝒃,𝒊,𝒖𝜽 (𝜂) = 𝚪𝒊−1[exp(𝚪𝒊max(0, 𝜂 − 𝜂𝑢+1))− exp(𝚪𝒊max(0, 𝜂 − 𝜂𝑢))]𝚪𝒊𝟏 (65) 

U-tubes in parallel 

For U-tubes connected in parallel, the inlet fluid temperature into each pipe 𝑚 (𝑚 ≤ 𝑛𝑝,𝑖) is equal to the 

inlet fluid temperature into the borehole, 𝜃𝑓,𝑖,1(0) = 𝜃𝑓,in,𝑖, and the outlet fluid temperature of the borehole 

is the result of mixing of the outlets of all pipes 𝑚 (𝑚 ≥ 𝑛𝑝,𝑖 + 1). In matrix notation: 

 𝚯𝒇𝒅,𝒊(0) = 𝟏𝜃𝑓,in,𝑖 (66)  



 𝜃𝑓,out,𝑖 = 𝐘𝒊𝛾𝑖𝚯𝒇𝒖,𝒊(0) (67) 

where 𝟏 is a vector of ones and 𝐘𝒊 = [𝛾𝑖,1 ⋯ 𝛾𝑖,𝑛𝑝,𝑖] is a vector of dimensionless fluid mass flow rates 

in each U-tube, with 𝛾𝑖,𝑚 = �̇�𝑖,𝑚𝑐𝑝 2𝜋𝑘𝑠𝐿𝑖⁄ . 

The dimensionless outlet fluid temperature is given by introducing Equations 66 and 67 into 

Equation 48: 

 𝚯𝒇𝒖,𝒊(0) = 𝐄𝒇𝒖,𝒊𝜽𝒖 −𝟏(1)𝐄𝒇𝒅,𝒊𝜽𝒖 (1)𝟏𝜃𝑓,in,𝑖 + 𝐄𝒇𝒖,𝒊𝜽𝒖 −𝟏(1)𝐄𝒃,𝒊𝜽𝒖(1)�̅�𝒃,𝒊 (68)  

 𝜃𝑓,out,𝑖 = Ein,𝑖𝜃𝑜𝑢𝑡𝜃𝑓,in,𝑖 + 𝐄𝒃,𝒊𝜽𝒐𝒖𝒕�̅�𝒃,𝒊 (69)  

 Ein,𝑖𝜃𝑜𝑢𝑡 = 𝐘𝒊𝛾𝑖 𝐄𝒇𝒖,𝒊𝜽𝒖 −𝟏(1)𝐄𝒇𝒅,𝒊𝜽𝒖 (1)𝟏 (70)  

 𝐄𝒃,𝒊𝜽𝒐𝒖𝒕 = 𝐘𝒊𝛾𝑖 𝐄𝒇𝒖,𝒊𝜽𝒖 −𝟏𝐄𝒃,𝒊𝜽𝒖(1) (71)  

The fluid temperatures at the top of the boreholes are obtained by introducing Equations 66 and 68 into 

Equation 47: 

 𝚯𝒇,𝒊(0) = 𝐄𝐢𝐧,𝒊𝜽𝟎 𝜃𝑓,in,𝑖 + 𝐄𝒃,𝒊𝜽𝟎�̅�𝒃,𝒊 (72)  

 𝐄𝐢𝐧,𝒊𝜽𝟎 = [𝐈𝒏𝒑,𝒊 𝟎𝒏𝒑,𝒊]𝑻𝟏 + [𝟎𝒏𝒑,𝒊 𝐈𝒏𝒑,𝒊]𝑻𝐄𝒇𝒖,𝒊𝜽𝒖 −𝟏(1)𝐄𝒇𝒅,𝒊𝜽𝒖 (1)𝟏 (73)  

 𝐄𝒃,𝒊𝜽𝟎 = [𝟎𝒏𝒑,𝒊 𝐈𝒏𝒑,𝒊]𝑻𝐄𝒇𝒖,𝒊𝜽𝒖 −𝟏(1)𝐄𝒃,𝒊𝜽𝒖(1) (74) 

Appendix 2 : Coefficients for the evaluation of heat extraction rates 

The average heat extraction rate per unit borehole length of a segment 𝑢 of a borehole 𝑖 is obtained from 

an energy balance on the fluid flowing in each of the pipes: 

 �̅�𝑖,𝑢′ = [𝐘𝒊 −𝐘𝒊] (𝚯𝒇,𝒊(𝜂𝑖,𝑢) − 𝚯𝒇,𝒊(𝜂𝑖,𝑢−1)) (75)  
where 𝜂𝑖,𝑢 = (𝐷𝑖,𝑢 − 𝐷𝑖) 𝐿𝑖⁄  is the normalized depth of segment 𝑢 along borehole 𝑖. 
Introducing Equation 62 into Equation 75: 



 �̅�𝑖,𝑢′ = [𝐘𝒊 −𝐘𝒊] (𝐄𝐢𝐧,𝒊𝜽 (𝜂𝑖,𝑢) − 𝐄𝐢𝐧,𝒊𝜽 (𝜂𝑖,𝑢−1)) 𝜃𝑓,in,𝑖 + [𝐘𝒊 −𝐘𝒊] (𝐄𝒃,𝒊𝜽 (𝜂𝑖,𝑢) − 𝐄𝒃,𝒊𝜽 (𝜂𝑖,𝑢−1)) �̅�𝒃,𝒊 (76)  

The heat extraction rates per unit borehole length of all segments of borehole 𝑖 are then given by 

assembling Equation 76 for all segments of the borehole: 

 �̅�𝒊′ = 𝐄𝐢𝐧,𝒊𝝓 𝜃𝑓,in,𝑖 + 𝐄𝒃,𝒊𝝓 �̅�𝒃,𝒊 (77)  

 𝐄𝐢𝐧,𝒊𝝓 = [Ein,𝑖,1𝜙 ⋯ Ein,𝑖,𝑛𝑞,𝑖𝜙 ]𝑻 (78)  

 Ein,𝑖,𝑢𝜙 = [𝐘𝒊 −𝐘𝒊] (𝐄𝐢𝐧,𝒊𝜽 (𝜂𝑖,𝑢) − 𝐄𝐢𝐧,𝒊𝜽 (𝜂𝑖,𝑢−1)) (79)  

 𝐄𝒃,𝒊𝝓 = [𝐄𝒃,𝒊,𝟏𝝓 ⋯ 𝐄𝒃,𝒊,𝒏𝒒,𝒊𝝓 ]𝑻 (80)  

 𝐄𝒃,𝒊,𝒖𝝓 = [𝐘𝒊 −𝐘𝒊] (𝐄𝒃,𝒊𝜽 (𝜂𝑖,𝑢) − 𝐄𝒃,𝒊𝜽 (𝜂𝑖,𝑢−1)) (81) 

Appendix 3 : Sample calculation of the g-function of a field of 2 boreholes 

The evaluation of the g-function is carried out by the following process: (1) Identification of borehole 

and bore field parameters, (2) evaluation of the segment-to-segment thermal response matrix, (3) evaluation 

of coefficients for fluid temperatures and heat extraction rates in the boreholes, (4) evaluation of coefficients 

for fluid temperatures and heat extraction rates in the bore field, (5) evaluation of the dimensionless fluid and 

borehole wall temperatures, (6) evaluation of the effective bore field thermal resistance, and (7) evaluation 

of the effective dimensionless borehole wall temperature (i.e. the g-function). This appendix outlines this 

process for the evaluation of the g-function of a field of 2 series-connected boreholes. 

Borehole and bore field parameters 

The positions and dimensions of boreholes in a field of 2 series-connected boreholes are illustrated on 

Figure 10. Parameters relevant to the evaluation of the g-function are presented in Table 2. For the purpose 

of the sample calculation, the g-function is calculated using only 𝑛𝑞,1 = 𝑛𝑞,2 = 1 segment per borehole and 

at only two time steps 𝑡1 = 10000 h and 𝑡2 = 20000 h. The bore field connectivity vector and path sequences 

are obtained from the bore field layout presented in Figure 10:  



 𝐂𝐢𝐧 = [0 1] (82)  

 𝐏𝐢𝐧,𝟏 = {1}, 𝐏𝐢𝐧,𝟐 = {2, 1} (83) 

  

Figure 10. Field of 2 series-connected geothermal boreholes 

Table 2. Parameters of the field of 2 boreholes 
Parameter Value Units 
Bore field   

Number of boreholes, 𝑁𝑏 2 - 
Total fluid mass flow rate, �̇� 0.25 kg/s 

Boreholes   
Borehole lengths, 𝐿1 / 𝐿2 150 / 100 m 

Borehole radius, 𝑟𝑏 0.075 m 
Borehole buried depths, 𝐷1 / 𝐷2 3 / 2 m 

Piping   
Number of U-tubes per borehole, 𝑛𝑝 1 - 

Pipe outer diameter 0.0422 m 
Pipe inner diameter 0.0294 m 

Shank spacing 0.052 m 
Pipe surface roughness 10-6 m 

Physical properties   
Ground thermal conductivity, 𝑘𝑠 2 W/m-K 
Ground thermal diffusivity, 𝛼𝑠 10-6 m2/s 

Grout thermal conductivity 1 W/m-K 
Pipe thermal conductivity 0.4 W/m-K 
Fluid thermal conductivity 0.492 W/m-K 

Fluid density 1015 kg/m3 

Fluid specific heat capacity, 𝑐𝑓 3977 J/kg-K 
Fluid dynamic viscosity 0.00203 kg/m-s 

 



Segment-to-segment thermal response matrix 

The segment-to-segment thermal response matrices, 𝐇, are obtained from the evaluation of the finite line 

source solution (Equation 5) for each pair of borehole segments in the bore field and at each time step. The 

segment-to-segment thermal response factors, ℎ𝑖,𝑗,𝑢,𝑣, are then assembled according to Equation 11: 

 𝐇(𝑡1) = [4.7392 0.25680.3852 4.7119] (84)  

 𝐇(𝑡2) = [5.0630 0.42500.6374 5.0222] (85) 

Coefficients for fluid temperatures and heat extraction rates in the boreholes  

The multipole solution of order 3 is used to evaluate delta-circuit thermal resistances (Claesson and 

Hellström 2011) :  

 𝑅1,1,1Δ = 𝑅1,2,2Δ = 𝑅2,1,1Δ = 𝑅2,2,2Δ = 0.2908 m-K/W (86) 

 𝑅1,1,2Δ = 𝑅1,2,1Δ = 𝑅2,1,2Δ = 𝑅2,2,1Δ = −3.2774 m-K/W (87) 

Following the evaluation of the dimensionless delta-circuit thermal resistances, Ω𝑖,𝑚,𝑛Δ = 2𝜋𝑘𝑠𝑅𝑖,𝑚,𝑛Δ , 

and the dimensionless fluid mass flow rates, 𝛾𝑖 = �̇�𝑖𝑐𝑓 2𝜋𝑘𝑠𝐿𝑖⁄ , the dimensionless thermal conductance 

matrices are evaluated from Equation 20 :  

 𝚪𝟏 = [−0.4728 −0.04600.0460 0.4728 ] (88) 

 𝚪𝟐 = [−0.3152 −0.03070.0307 0.3152 ] (89) 

As the two boreholes are single U-tube boreholes, the coefficients for the evaluation of the dimensionless 

outlet fluid temperatures of the boreholes (Equation 22) can be obtained by either of Equations 57 and 58, or 

Equations 70 and 71 :  

 Ein,1𝜃𝑜𝑢𝑡 = 0.3481 (90) 

 𝐄𝒃,𝟏𝜽𝒐𝒖𝒕 = [0.6519] (91) 



 Ein,2𝜃𝑜𝑢𝑡 = 0.4981 (92) 

 𝐄𝒃,𝟐𝜽𝒐𝒖𝒕 = [0.5018] (93) 

The coefficients for the evaluation of the normalized heat extraction rates of the boreholes (Equation 23) 

are obtained from Equation 78 and 80 :  

 𝐄𝐢𝐧,𝟏𝝓 = [0.3439] (94) 

 𝐄𝒃,𝟏𝝓 = [−0.3439] (95) 

 𝐄𝐢𝐧,𝟐𝝓 = [0.3970] (96) 

 𝐄𝒃,𝟐𝝓 = [−0.3970] (97) 

Coefficients for fluid temperatures and heat extraction rates in the bore field 

The coefficients for the evaluation of the normalized heat extraction rates of the bore field (Equation 29) 

are obtained from Equation 27 and assembled according to Equations 30 and 31 :  

 𝐀𝐢𝐧𝝓 = [0.3439 0.1382]𝑻 (98) 

 𝐀𝒃𝝓 = [−0.3439 00.2588 −0.3970] (99) 

The coefficients for the evaluation of the dimensionless outlet fluid temperature of the bore field 

(Equation 34) are then obtained from Equation 33 :  

 Ain𝜃𝑜𝑢𝑡 = 0.1734 (100) 

 𝐀𝒃𝜽𝒐𝒖𝒕 = [0.3248 0.5018] (101) 

Dimensionless fluid and borehole wall temperatures 

The system of equations of Equation 36 is assembled and solved sequentially for each time step. Note 

that the zero-extraction dimensionless borehole wall temperatures, �̅�𝒃,𝒌𝟎 , change every time step. The 



segment-to-segment thermal response matrix, 𝐇, only changes if the time step changes. At the first time step 𝑡 = 𝑡1 : 

 [   
 4.7392 0.2568 −1 0 00.3852 4.7119 0 −1 0−1 0 −0.3439 0 0.34390 −1 0.2588 −0.3970 0.13820.6 0.4 0 0 0 ]   

 
[  
   �̅�1,1,1

′�̅�2,1,1′�̅�𝑏,1,1,1�̅�𝑏,2,1,1𝜃𝑓,in,1 ]  
   = [   

 00001]  
   (102) 

The solution of the system of equations gives normalized heat extractions rates, dimensionless borehole 

wall temperatures and inlet fluid temperature at time 𝑡1 :  

 �̅�𝟏′ = [1.1016 0.8476]𝑻 (103) 

 �̅�𝒃,𝟏 = [5.4383 4.4183]𝑻 (104) 

 𝜃𝑓,in,1 = 8.6416 (105) 

Starting from the second time step 𝑡 = 𝑡2, the zero-extraction dimensionless borehole wall temperatures 

are evaluated from Equation 13 (with 𝑡0 = 0) : 

 �̅�𝒃,𝟐𝟎 = (𝐇(𝑡2 − 𝑡0) − 𝐇(𝑡2 − 𝑡1))�̅�𝟏′ = [0.4993 0.5409]𝑻 (106) 

The solution of the updated system of equations gives normalized heat extractions rates, dimensionless 

borehole wall temperatures and inlet fluid temperature at time 𝑡2 :  

 �̅�𝟐′ = [1.1042 0.8437]𝑻 (107) 

 �̅�𝒃,𝟐 = [5.9490 4.9416]𝑻 (108) 

 𝜃𝑓,in,2 = 9.1600 (109) 

Effective dimensionless bore field thermal resistances 

The effective dimensionless bore field thermal resistance is evaluated from Equation 40 : 

 Ω𝑓𝑖𝑒𝑙𝑑∗ = 2.2427 (110) 

 



Effective dimensionless borehole wall temperature 

The effective dimensionless borehole wall temperature is finally evaluated from Equation 41 : 

 𝜃𝑏∗(𝑡1) = 4.8191 (111) 

 𝜃𝑏∗(𝑡2) = 5.3374 (112) 
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