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A hybrid numerical-semi-analytical method for computer simulations of 
groundwater flow and heat transfer in geothermal borehole fields 

Abstract 

The formulation of a hybrid numerical-semi-analytical method for cost-effective simulations of 

heat transfer in fields of vertical geothermal boreholes, in the presence of groundwater flow, is 

presented. An amalgamation of a co-located control-volume finite element method and a finite 

volume method is used to solve 1) a volume-averaged continuity and the Darcy-Brinkman-

Frochheimer equations to obtain the distribution of the groundwater flow; and 2) an unsteady 

three-dimensional volume-averaged advection-conduction equation to calculate the related 

ground temperature distribution, assuming local thermodynamic equilibrium between the 

groundwater and the soil particles. The bulk temperature distribution of the working fluid 

(flowing inside the legs of a U-tube pipe inserted inside each borehole and kept in place by 

grout) and the related heat extraction (or addition) rate are obtained using a semi-analytical 

method to solve a quasi-steady quasi-one-dimensional model. The conditions of no-slip, 

impermeability, equality of temperature, and continuity of heat flux are used at the interface 

between each borehole and the groundwater-saturated soil in the borehole field. The proposed 

method is applied to test and demonstration problems to demonstrate its capabilities. 

Key words: Geothermal borehole fields; groundwater flow; hybrid numerical-semi-analytical 

method; Darcy-Brinkman-Forchheimer equations; volume-averaged advection-conduction 

equation; control-volume finite element method 
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1. Introduction 

Geothermal systems are playing an increasingly important role in ongoing worldwide 

efforts to develop environmentally friendly, sustainable, and efficient ways of fulfilling space 

heating and cooling demands. A promising approach in this regard is based on ground-source 

heat pumps (GSHPs) coupled to vertical geothermal boreholes (hereafter referred to as boreholes 

in this paper) [Spitler (2005); Kavanaugh and Rafferty (2014)]. Designing of GSHPs is 

facilitated by accurate predictions of the working-fluid and ground temperatures, and the related 

heat extraction and injection rates, during their operation. The techniques used for such 

predictions are often based on mathematical models that invoke the assumption of purely 

conductive heat transfer in the ground that surrounds the boreholes [Yang et al. (2010); Li and 

Lai (2015)]. However, if the flow of groundwater in a borehole field is sufficiently high, it could 

have a significant effect on the temperatures of the ground and the boreholes, and the related heat 

transfer rates, as discussed by Chiasson et al. (2000), Fan et al. (2007), Wang et al. (2009), 

Chiasson and O’Connell (2011), Zanchini et al. (2012), Capozza et al. (2013), Hecht-Méndez et 

al. (2013), and Choi et al. (2013), for example. 

Accounting for the effects of groundwater flow has also resulted in several improvements 

to the analyses of geothermal thermal-response tests and the data deduced from them, as 

demonstrated, for example, by the works of Gehlin and Hellström (2003), Lee and Lam (2012), 

Therrien et al. (2010), Raymond et al. (2011), Wagner et al. (2013), Rouleau and Gosselin 

(2016), Rouleau et al. (2016), and Zhang et al. (2016). It should also be noted that the 

heterogeneity of the soil hydraulic conductivity and the mixing of flowing groundwater at the 

pore scale, could create disparities between the longitudinal (parallel to the direction of 

groundwater flow) and the transverse (perpendicular to the direction of groundwater flow) 
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dispersion of heat, as discussed, for example, in the works of Hsu and Cheng (1990), Metzger et 

al. (2004), Hidalgo et al. (2009), Hecht-Méndez et al. (2010), Diersch et al. (2011a; 2011b), 

Molina-Giraldo et al. (2011a), Chiasson and O’Connell (2011), and Nield and Bejan (2013). 

Furthermore, in soils of sufficiently high hydraulic conductivity, buoyancy-driven natural 

convection can also affect the performance of geothermal systems, as shown, for example, in the 

works of Zhao et al. (2008) and Ghoreishi-Madiseh et al. (2013). 

Analytical solutions to several simplified mathematical models of heat transfer in 

borehole fields with uniform groundwater flow have been proposed. They are based on 

adaptations and extensions of the seminal works of Carslaw and Jaeger (1959), Eskilson (1987), 

and Hellström (1991). These analytical approaches typically employ moving-infinite-line-source 

and moving-finite-line-source techniques, as illustrated, for example, in the works of Sutton et al. 

(2003), Diao et al. (2004), Molina-Giraldo et al. (2011b), Tye-Gingras and Gosselin (2014), and 

Rivera et al. (2015). Erol et al. (2015) have used a moving-finite-line-source model for 

investigating heat transfer in borehole fields with groundwater flow and different longitudinal 

and transverse thermal conductivities (to account for the effects of thermal dispersion). 

Compared to analytical methods, such as those mentioned above, numerical methods 

offer enhanced accuracy in the simulation of heat transfer in borehole fields [Yang et al. (2010)]. 

Numerical simulations of unsteady heat transfer in borehole fields, without and with 

groundwater flow, and based on finite difference, spectral, unstructured finite volume, and finite 

element methods, are discussed, for example, in the works of Rottmayer et al. (1997), Yavuzturk 

et al. (1999), Li and Zheng (2009), Bauer et al. (2011), Al-Khoury and Focaccia (2016), and Dai 

et al. (2016). However, unsteady and fully multidimensional numerical simulations of the heat 

transfer processes in borehole fields, in both the ground and the boreholes, are quite expensive 
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computationally [Yang et al. (2010)]. Thus, for incorporation in design and energy-analysis 

procedures for borehole fields, hybrid numerical-analytical and numerical-semi-analytical 

methods, in which numerical simulations of heat transfer in the ground are coupled with 

approximate analytical or semi-analytical solutions of heat transfer in the boreholes (including 

the working fluid flowing through the U-tubes inserted in them), are an attractive cost-effective 

alternative (offering acceptable accuracy at affordable costs) to fully numerical and also 

completely analytical methods [Yang et al. (2010); Li and Zheng (2009); Bauer et al. (2011); 

Choi et al. (2013)]. 

In this paper, the formulation of a hybrid numerical-semi-analytical method for cost-

effective simulations of heat transfer in borehole fields in the presence of groundwater flow is 

presented; it is then checked against a moving-finite-line-source analytical solution for a 

simplified version of the problem of interest; and, finally, its application to a demonstration 

problem and the results are discussed. In this method, an amalgamation of a co-located control-

volume finite element method and a finite volume method (CVFEM and FVM) [Baliga and 

Atabaki (2006); Lamoureux and Baliga (2011)] is used to solve 1) a volume-averaged continuity 

equation and the Darcy-Brinkman-Frochheimer equations to obtain the distribution of the 

groundwater flow (assumed to be steady and two-dimensional in the horizontal cross-section of 

the borehole field); and 2) an unsteady three-dimensional volume-averaged advection-

conduction equation to calculate the ground temperature distribution, assuming local 

thermodynamic equilibrium between the groundwater and the soil particles [Vafai (2005); Nield 

and Bejan (2013)]. The bulk temperature distribution of the working fluid (flowing inside the 

legs of a U-tube pipe inserted inside each borehole and kept in place by grout) and the heat 

extraction (or addition) rates are obtained using a semi-analytical solution to a quasi-steady 
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quasi-one-dimensional model, based on the concept of a delta-circuit of thermal resistances 

[Hellström (1991)]. 

The hybrid numerical-semi-analytical method proposed in this paper follows the works of 

Bernier and Baliga (1992) and Lamoureux and Baliga (2015), who proposed cost-effective 

hybrid methods for computer simulations of closed-loop thermosyphons, and Cotta and 

Mikhailov (2006). It also complements and extends the following two hybrid methods proposed 

for the investigation of heat transfer in borehole fields: 1) the method of Li and Zheng (2009), 

who used an unstructured cell-centered finite volume method for simulations of unsteady three-

dimensional pure conduction heat transfer in the ground and a quasi-steady quasi-three-

dimensional model [Yang et al. (2010)] for calculating the bulk temperature distribution of the 

working fluid; and 2) the method of Choi et al. (2013), who used a commercial finite element 

code (COMSOL Multiphysics 4.2a) to solve a two-dimensional steady version of the Darcy 

equation [Vafai (2005); Nield and Bejan (2013)] for the groundwater flow and a transient 

volume-averaged two-dimensional convection-conduction equation for heat transfer in the 

ground, and coupled these numerical solutions with an analytical solution of a model of the 

average (arithmetic mean) of the inlet and outlet bulk temperatures of the working fluid flowing 

through the U-tubes inserted in the boreholes. 

2. Layout of the borehole field and related notation  

Attention in this work is focused on vertical boreholes, each with a single U-tube pipe inserted 

symmetrically within it and held in place by grout. The vertical and horizontal cross sections of a 

borehole, 𝑛, are shown in Fig. 1. There are 𝑁𝑏 such boreholes in the field of interest. Each of 

these boreholes has an active (or heated) length 𝐻 and a radius 𝑟𝑏; and the active length starts at 
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a depth 𝐷 below the ground surface. The working (or heat carrier) fluid flows through each 

borehole at a mass flow rate of 𝑚̇𝑓 through a U-tube pipe of inner radius 𝑟𝑝,𝑖 and outer radius 𝑟𝑝,𝑜. The ground surface or top boundary of the borehole field is indicated by Γ𝑇, the interface 

between borehole 𝑛 and the surrounding ground in the borehole field is denoted by Γ𝑏,𝑛, and the 

vertical coordinate 𝑧 starts at the ground surface and is directed downwards. The boreholes are 

evenly spaced on a square grid, with a distance 𝐵 between adjacent boreholes, as indicated in 

Fig. 2 for a field of 3 × 2 boreholes. The east, west, north, and south boundaries of the borehole 

field (see Fig. 2) are denoted by Γ𝐸, Γ𝑊, Γ𝑁, and Γ𝑆, respectively; and the groundwater enters the 

borehole field with a uniform velocity, 𝑈∞, and temperature, 𝑇𝑔, across the full west boundary, Γ𝑊.  

 

Figure 1. Schematic representations of the vertical (left) and horizontal (right) cross-sections of 

a borehole and the related notation 
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Figure 2. Schematic representation of a horizontal cross-section of the borehole field and the 

related notation 

3. Mathematical models of groundwater flow, temperature distributions, and heat 

transfer in the borehole field 

The assumptions invoked in these mathematical models are presented first in this section. Then 

the equations that were used to model the groundwater flow in the borehole field, the related 

temperature distribution and heat transfer in the groundwater-saturated soil, and the temperature 

distribution and heat transfer in each borehole, in that order, are presented. 

3.1. Assumptions 

The following assumptions are invoked in the mathematical models adopted in this work: 

• The thermophysical properties of the dry soil in the borehole field, and also the grout and 

U-tube pipe wall in the boreholes, are uniform and constant 

• The groundwater is an incompressible Newtonian fluid and its thermophysical properties 

are uniform and constant  
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• The soil in the borehole field is fully saturated with groundwater, and it has uniform and 

constant effective thermophysical properties 

• On the entire west boundary (span and depth) of the borehole field, the groundwater 

velocity (magnitude and direction) and temperature (denoted by 𝑈∞ and 𝑇𝑔, respectively, 

as shown in Fig. 2) are spatially uniform and invariant in time 

• The groundwater-saturated soil in the borehole field is initially at a spatially uniform 

temperature 𝑇𝑔 (or the initial geothermal gradient in the domain of interest is considered 

insignificant) 

• The ground-surface (𝑧 = 0) temperature remains constant throughout and is equal to the 

initial undisturbed ground temperature 𝑇𝑔 

• Buoyancy-driven natural convection is negligibly small, both in the groundwater and in 

the working fluid (flowing through the U-tube pipe in each of the boreholes) 

• The groundwater flow is effectively steady and two-dimensional in the horizontal cross-

section of the borehole field 

• There is local thermodynamic equilibrium between the groundwater and the soil particles, 

thus the local intrinsic phase-average temperatures of the soil particles and the 

groundwater are effectively the same and governed by a single volume-average 

advection-conduction equation [Vafai (2005); Nield and Bejan (2013)] 

• The viscous dissipation and the thermal dispersion due to groundwater movement are 

negligible 

• The effects of the thermal capacitance of each borehole (grout, U-tube pipe wall, and the 

working fluid flowing in it) are negligible, so the heat transfer inside the boreholes is 

effectively quasi-steady 



10 
 

• In the working fluid flowing in the U-tube pipe in each of the boreholes, conduction in 

the axial (or mean flow) direction (z) is negligible compared to advection, viscous 

dissipation is negligible, the thermophysical properties are constant (equal to values at the 

arithmetic-mean of the inlet and outlet bulk temperatures), and hydrodynamically and 

thermally fully developed turbulent flow prevails [Incropera and DeWitt (2002)] 

The assumptions of effectively steady and two-dimensional groundwater flow in the 

horizontal cross-section of the borehole field, and negligible effects of buoyancy, can be avoided 

by using a numerical solution of the unsteady, three-dimensional, versions of the volume-

averaged continuity and Darcy-Brinkman-Forchheimer equations (including buoyancy terms) 

[Vafai (2005); Nield and Bejan (2013)]. Furthermore, the assumption of quasi-steady heat 

transfer in the boreholes can be avoided by using a thermal-resistance-capacitance model 

(TRCM), similar to the one proposed by Bauer et al. (2011), and getting guidance from the 

works of Pasquier and Marcotte (2012) and Beier (2014). However, the above-mentioned 

assumptions were invoked in this work to keep the demonstration of the proposed hybrid method 

relatively simple and cost-effective, and the aforementioned ways to avoid these assumptions are 

considered as potential extensions of the work presented in this paper. 

3.2. Groundwater flow 

The following volume-averaged continuity and Darcy-Brinkman-Forchheimer equations [Vafai 

and Tien (1981); Vafai (2005); Nield and Bejan (2013)] were used to model the steady two-

dimensional groundwater flow in the horizontal cross-section of the borehole field: 

 𝜕𝜕𝑥 𝑢𝑥 + 𝜕𝜕𝑦 𝑢𝑦 = 0 (1) 
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𝜌𝑤𝜀2 (𝑢𝑥 𝜕𝜕𝑥 𝑢𝑥 + 𝑢𝑦 𝜕𝜕𝑦 𝑢𝑥) = − 𝜕𝜕𝑥 𝑃 + 𝜇𝑤𝜀 ( 𝜕2𝜕𝑥2 𝑢𝑥 + 𝜕2𝜕𝑦2 𝑢𝑥) − 𝜇𝑤𝐾 𝑢𝑥 − 𝜌𝑤𝐶𝐹√𝐾 𝑢𝑢𝑥𝜌𝑤𝜀2 (𝑢𝑥 𝜕𝜕𝑥 𝑢𝑦 + 𝑢𝑦 𝜕𝜕𝑦 𝑢𝑦) = − 𝜕𝜕𝑦 𝑃 + 𝜇𝑤𝜀 ( 𝜕2𝜕𝑥2 𝑢𝑦 + 𝜕2𝜕𝑦2 𝑢𝑦) − 𝜇𝑤𝐾 𝑢𝑦 − 𝜌𝑤𝐶𝐹√𝐾 𝑢𝑢𝑦 (2) 

In Eqs. (1) and (2), 𝑢𝑥 and 𝑢𝑦 are the groundwater Darcy (or superficial or phase-average) 

velocity components in the 𝑥 and 𝑦 directions, respectively; 𝜌𝑤 and 𝜇𝑤 are the groundwater 

density and dynamic viscosity, respectively; 𝜀 and 𝐾 are the porosity and permeability of the soil 

in the borehole field, respectively; 𝐶𝐹 is the Forchheimer drag coefficient (it is assumed to be 

given by the Ergun equation, 𝐶𝐹 = 1.75√150𝜀3); 𝑢 = √𝑢𝑥2 + 𝑢𝑦2 is the magnitude of the groundwater 

Darcy velocity; and 𝑃 is the intrinsic-phase-average reduced pressure (static pressure minus 

hydrostatic pressure) in the groundwater. 

With reference to the geometry of the borehole field and the notation presented in Figs. 1 

and 2, Dirichlet-type boundary conditions were prescribed for the Darcy velocity components at 

all domain boundaries; and these velocity components were set equal to zero at the interface 

between the ground and the outer wall of the boreholes (Γ𝑏,𝑛 for borehole 𝑛), which was possible 

because of the inclusion of the Brinkman term in Eq. (2). These boundary and interface 

conditions can be expressed as follows: 

 𝑢𝑥 = 𝑈∞, 𝑢𝑦 = 0, on Γ𝑊, Γ𝐸 , Γ𝑁 , Γ𝑆 (3) 

 𝑢𝑥 = 0, 𝑢𝑦 = 0, on all Γ𝑏,𝑛 (4) 

It is useful at this stage to also examine the following dimensionless forms of the 

continuity and Darcy-Brinkman-Forchheimer equations: 

 𝜕𝜕𝑥∗ 𝑢𝑥∗ + 𝜕𝜕𝑦∗ 𝑢𝑦∗ = 0          (5) 
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1𝜀2 (𝑢𝑥∗ 𝜕𝜕𝑥∗ 𝑢𝑥∗ + 𝑢𝑦∗ 𝜕𝜕𝑦∗ 𝑢𝑥∗) = − 𝜕𝜕𝑥∗ 𝑃∗ + 1𝜀𝑅𝑒𝑑𝑏 ( 𝜕2𝜕𝑥∗2 𝑢𝑥∗ + 𝜕2𝜕𝑦∗2 𝑢𝑥∗) − 1𝑅𝑒𝑑𝑏𝐷𝑎 𝑢𝑥∗ − 𝐶𝐹√𝐷𝑎 𝑢∗𝑢𝑥∗1𝜀2 (𝑢𝑥∗ 𝜕𝜕𝑥∗ 𝑢𝑦∗ + 𝑢𝑦∗ 𝜕𝜕𝑦∗ 𝑢𝑦∗) = − 𝜕𝜕𝑦∗ 𝑃∗ + 1𝜀𝑅𝑒𝑑𝑏 ( 𝜕2𝜕𝑥∗2 𝑢𝑦∗ + 𝜕2𝜕𝑦∗2 𝑢𝑦∗) − 1𝑅𝑒𝑑𝑏𝐷𝑎 𝑢𝑦∗ − 𝐶𝐹√𝐷𝑎 𝑢∗𝑢𝑦∗       (6) 

In Eqs. (5) and (6), 𝑥∗ = 𝑥/𝑑𝑏 and 𝑦∗ = 𝑦/𝑑𝑏 are dimensionless Cartesian coordinates, where 𝑑𝑏 = 2𝑟𝑏 is the diameter of the borehole; 𝑢𝑥∗ = 𝑢𝑥 𝑈∞⁄  and 𝑢𝑦∗ = 𝑢𝑦 𝑈∞⁄  are the dimensionless 

Darcy velocity components; 𝑢∗ = 𝑢 𝑈∞⁄  is the magnitude of the dimensionless Darcy velocity; 𝑃∗ = 𝑃 (𝜌𝑤⁄ 𝑈∞2 ) is the dimensionless intrinsic-phase-average reduced pressure; 𝑅𝑒𝑑𝑏 =𝜌𝑤𝑈∞𝑑𝑏/𝜇𝑤 is the Reynolds number based on 𝑈∞ and 𝑑𝑏; and 𝐷𝑎 = 𝐾 𝑑𝑏2⁄  is the Darcy 

number. The dimensionless boundary conditions are: 𝑢𝑥∗ = 1, 𝑢𝑦∗ = 0, on Γ𝑊, Γ𝐸, Γ𝑁, Γ𝑆; and 𝑢𝑥∗ = 0, 𝑢𝑦∗ = 0, on all Γ𝑏,𝑛. These boundary and interface conditions involve dimensionless 

geometric parameters that characterize the horizontal cross-section of the borehole field (Fig. 2). 

3.3. Temperature distribution and heat transfer in the groundwater-saturated soil 

In the context of the assumptions given in Section 3.1, the following volume-averaged unsteady 

three-dimensional advection-conduction equation [Vafai (2005); Nield and Bejan (2013)] was 

used to model the temperature of the groundwater-saturated soil in the borehole field: 

 (𝜌𝑐𝑝)𝑒𝑓𝑓 𝜕𝑇𝜕𝑡 + 𝜌𝑤𝑐𝑝,𝑤 (𝑢𝑥 𝜕𝑇𝜕𝑥 + 𝑢𝑦 𝜕𝑇𝜕𝑦) = 𝑘𝑒𝑓𝑓 (𝜕2𝑇𝜕𝑥2 + 𝜕2𝑇𝜕𝑦2 + 𝜕2𝑇𝜕𝑧2) (7) 

In Eq. (7), 𝑇 = 𝑇(𝑥, 𝑦, 𝑧, 𝑡) is the local volume-averaged ground temperature (the soil particles 

and the groundwater are assumed to be in local thermodynamic equilibrium); 𝜌𝑤 and 𝑐𝑝,𝑤 are the 

groundwater density and specific heat at constant pressure, respectively; (𝜌𝑐𝑝)𝑒𝑓𝑓 = 𝜀𝜌𝑤𝑐𝑝,𝑤 +(1 − 𝜀)𝜌𝑠𝑐𝑝,𝑠 is the effective volumetric heat capacity of the groundwater-saturated soil, with 𝜌𝑠 

and 𝑐𝑝,𝑠 denoting the density and specific heat at constant pressure of the dry soil, respectively; 

and 𝑘𝑒𝑓𝑓 is the effective thermal conductivity of the groundwater-saturated soil. In this work, 
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values of 𝑘𝑒𝑓𝑓 that are typical of groundwater-saturated soils commonly encountered in borehole 

fields were used (they are given later in this paper). 

The following initial condition on the groundwater-saturated soil temperature was used: 𝑇(𝑥, 𝑦, 𝑧, 0) = 𝑇𝑔. Here, 𝑇𝑔 is the uniform undisturbed ground (and groundwater) temperature far 

from the boreholes. With reference to Fig. 2, Dirichlet-type boundary conditions for the 

groundwater-saturated soil temperature were imposed at the west, north, south, top, and bottom 

boundaries, denoted by Γ𝑊, Γ𝑁, Γ𝑆, Γ𝑇, and Γ𝐵, respectively. An outflow-type boundary condition 

[Patankar (1980)] was prescribed at the east boundary, denoted by Γ𝐸 (in other words, advection 

heat transfer was considered to dominate conduction heat transfer at Γ𝐸). These boundary 

conditions can be expressed as follows: 

 𝑇 = 𝑇𝑔 on Γ𝑊, Γ𝑁, Γ𝑆, Γ𝑇 , Γ𝐵 (8) 

 𝜕𝜕𝑥 𝑇 = 0 on Γ𝐸 (9) 

In this mathematical model, the vertical boreholes were considered to extend to the 

ground surface (𝑧 = 0) and down to a length 𝐿𝐵 below the active (or heated) length, 𝐻; thus, 

their total length is equal to (𝐷 + 𝐻 + 𝐿𝐵). The interface between the ground and the outer wall 

of each of the boreholes (denoted by Γ𝑏,𝑛 for borehole 𝑛) was considered adiabatic above and 

below their active length, 𝑧 < 𝐷 and 𝑧 > (𝐷 + 𝐻), respectively. Over the active length, 𝐻, of 

each borehole, at the interface Γ𝑏,𝑛, the rate of heat extraction was considered uniform over the 

borehole perimeter and variable along its length. For each borehole 𝑛, this interfacial condition 

over its active length can be expressed as follows:  

 (𝑘𝑒𝑓𝑓∇𝑇 ∙ 𝑛⃑ )𝑏,𝑛 = 𝑞𝑏,𝑛′′ (𝑧, 𝑡) on Γ𝑏,𝑛 over (𝐷 ≤ 𝑧 ≤ 𝐷 + 𝐻) (10) 

where 𝑛⃑  is a unit normal pointing from the borehole outer wall into the ground; and 𝑞𝑏,𝑛′′ (𝑧, 𝑡) is 
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the heat flux at Γ𝑏,𝑛. It should be noted that 𝑞𝑏,𝑛′′ (𝑧, 𝑡) varies with 𝑧 and 𝑡, and it is considered 

positive when heat is extracted from the ground. 

The above-mentioned mathematical model was solved numerically using a method that 

was formulated by amalgamating ideas adapted from a finite volume method (FVM) and a 

control-volume finite element method (CVFEM) described in the works of Baliga and Atabaki 

(2006) and Lamoureux and Baliga (2011). A brief overview of this CVFEM-FVM method is 

presented in Section 4. In this numerical solution, the groundwater Darcy velocity components 𝑢𝑥 and 𝑢𝑦 are specified using the corresponding CVFEM solution of the mathematical model 

presented in Section 3.2; and the values of heat flux 𝑞𝑏,𝑛′′ (𝑧, 𝑡) are obtained using a quasi-steady, 

quasi-one-dimensional, semi-analytical model of the heat transfer in the boreholes, including the 

working fluid flowing through them (described in Subsection 3.4). 

Eq. (7) was cast in the following dimensionless form in this work: 

 𝛬𝑅𝑒𝑑𝑏𝑃𝑟𝑤 𝜕𝜃𝜕𝑡∗ + (𝑢𝑥∗ 𝜕𝜃𝜕𝑥∗ + 𝑢𝑦∗ 𝜕𝜃𝜕𝑦∗) = 𝛶 𝑅𝑒𝑑𝑏𝑃𝑟𝑤 (𝜕2𝜃𝜕𝑥∗2 + 𝜕2𝜃𝜕𝑦∗2 + 𝜕2𝜃𝜕𝑧∗2) (11) 

In Eq. (11), 𝜃 = 𝑇𝑔 − 𝑇 (|𝑞𝑏′′|̅̅ ̅̅ ̅𝑑𝑏 𝑘𝑤⁄ )⁄  is the dimensionless temperature, with |𝑞𝑏′′|̅̅ ̅̅ ̅ =|𝑞𝑡𝑜𝑡𝑎𝑙| (𝜋𝑑𝑏𝐻𝑁𝑏)⁄  denoting the absolute value of the heat flux at the interface between the 

boreholes and the groundwater-saturated soil, averaged over the outer surfaces of all 𝑁𝑏 

boreholes and over a suitable time period; 𝑡∗ = 𝑘𝑤𝑡 (𝜌𝑤𝑐𝑝,𝑤𝑑𝑏2)⁄   is the dimensionless time; the 

groundwater Prandtl number is 𝑃𝑟𝑤 = 𝜇𝑤𝑐𝑝,𝑤 𝑘𝑤⁄  ; 𝛬 = (𝜌𝑐𝑝)𝑒𝑓𝑓 (𝜌𝑤𝑐𝑝,𝑤)⁄ = {𝜀 +
(1 − 𝜀) 𝜌𝑠𝑐𝑝,𝑠 (𝜌𝑤𝑐𝑝,𝑤)⁄ }; and Υ = 𝑘𝑒𝑓𝑓 𝑘𝑤⁄  . The dimensionless initial condition is given by 𝜃 = 0 at 𝑡∗ = 0. The dimensionless boundary conditions are the following:  𝜃 = 0 on Γ𝑊, Γ𝑁, Γ𝑆, Γ𝑇, Γ𝐵; and 𝜕𝜃/𝜕𝑥∗ = 0 on Γ𝐸. The dimensionless form of Eq. (10) is (𝛶∇∗𝜃 ∙ 𝑛⃑ )𝑏,𝑛 = [𝑞𝑏,𝑛′′ (𝑧, 𝑡)/|𝑞𝑏′′|̅̅ ̅̅ ̅] on the interface Γ𝑏,𝑛 over the dimensionless active length of 
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the borehole {(𝐷/𝑑𝑏) ≤ 𝑧∗ ≤ (𝐷 + 𝐻)/𝑑𝑏}. These boundary and interface conditions lead to 

dimensionless geometric parameters that characterize the borehole field (Figs. 1 and 2). 

3.4. Working-fluid bulk temperature distribution and heat transfer in each borehole 

Invoking the assumptions listed in Subsection 3.1, the heat transfer in the horizontal cross-

section of the active portion (𝐷 ≤ 𝑧 ≤ 𝐷 + 𝐻) of each borehole, say 𝑛 as illustrated in Figs. 1 

and 3, can be modelled using a delta circuit of thermal resistances between the bulk temperatures 

of the working fluid circulating in the two legs (labelled as 1 and 2) of the U-tube pipe, 𝑇𝑓,1,𝑛(𝑧) 

and 𝑇𝑓,2,𝑛(𝑧), and the perimeter-average temperature of the borehole outer surface, 𝑇̅𝑏,𝑛(𝑧), as 

shown in Fig. 3.  

 

Figure 3. Horizontal cross-section of the active portion of borehole 𝑛, and the corresponding 

notation, thermal resistances (for unit length of the borehole), and delta circuit 

For the vertical borehole with a single U-tube pipe symmetrically inserted in it and 

positioned in place with grout (see Figs. 1 and 3), a line-source approximation proposed by 

Hellström (1991) was used to obtain the following expressions for the thermal resistances (for 

unit length of the borehole) in the delta circuit illustrated in Fig. 3: 
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𝑅1𝑏 = 𝑅2𝑏 = 𝑅11𝑜 + 𝑅22𝑜  ; 𝑅12 = 𝑅21 = 𝑅11𝑜 𝑅22𝑜 +(𝑅12𝑜 )2𝑅12𝑜             (12) 

 𝑅11𝑜 = 𝑅22𝑜 = 12𝜋𝑘𝑔 [ln ( 𝑑𝑏𝑑𝑝,𝑜) − (𝑘𝑔−𝑘𝑒𝑓𝑓𝑘𝑔+𝑘𝑒𝑓𝑓) ln ( 𝑑𝑏2𝑑𝑏2−𝑑1−22 )] + 𝑅𝑝   (13) 

 𝑅12𝑜 = 12𝜋𝑘𝑔 [ln ( 𝑑𝑏𝑑1−2) + (𝑘𝑔−𝑘𝑒𝑓𝑓𝑘𝑔+𝑘𝑒𝑓𝑓) ln ( 𝑑𝑏2𝑑𝑏2+𝑑1−22 )]   (14) 

In Eqs. (13) and (14), 𝑘𝑔 denotes the thermal conductivity of the grout that is used to hold the U-

tube pipe within each borehole; 𝑑𝑏 = 2𝑟𝑏 is the diameter of the borehole; 𝑑𝑝,𝑜 = 2𝑟𝑝,𝑜 is the 

outer diameter of each leg of the U-tube pipe; 𝑘𝑒𝑓𝑓 is the effective thermal conductivity of the 

groundwater-saturated soil outside the borehole; 𝑑1−2 is the total distance between the centers of 

the cross-sections of the two legs, 1 and 2, of the U-tube pipe; and 𝑅𝑝 is the thermal resistance 

(for unit length of the borehole) between the working fluid and the outer surface of the U-tube 

pipe wall. Higher-order procedures to obtain thermal resistances for symmetrically and non-

symmetrically placed single and multiple U-tube pipes within each borehole are available in the 

works of Hellström (1991), Claesson and Hellström (2011), and Javed and Spitler (2017), for 

example. 

The thermal resistance 𝑅𝑝 in Eq. (13) is the sum of the forced-convection and pipe-wall 

thermal resistances (for unit length of the borehole): 

 𝑅𝑝 = 1𝜋𝑑𝑝,𝑖ℎ𝑓 + ln(𝑑𝑝,𝑜 𝑑𝑝,𝑖⁄ )2𝜋𝑘𝑝  (15) 

In Eq. (15), 𝑘𝑝 denotes the thermal conductivity of the pipe-wall material; 𝑑𝑝,𝑖 = 2𝑟𝑝,𝑖 is the 

inner diameter of each leg of the U-tube pipe; and ℎ𝑓 is the forced-convection heat transfer 
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coefficient on the inner surface of each leg of the U-tube pipe. In this work, ℎ𝑓 was obtained 

using the Gnielinski correlation [Incropera and DeWitt (2002)]: 

 ℎ𝑓𝑑𝑝,𝑖𝑘𝑓 = (𝑓 8⁄ )(𝑅𝑒𝑓,𝑑𝑝,𝑖−1000)𝑃𝑟𝑓1+12.7(𝑓 8⁄ )0.5(𝑃𝑟𝑓2/3−1)  (16) 

In Eq. (16), 𝑘𝑓 is the thermal conductivity of the working fluid flowing in the U-tube pipe; 

𝑅𝑒𝑓,𝑑𝑝,𝑖 = 4𝑚̇𝑓𝜋𝜇𝑓𝑑𝑝,𝑖 is the Reynolds number of the working fluid, with 𝑚̇𝑓 and 𝜇𝑓 denoting its mass 

flow rate (in each U-tube pipe) and dynamic viscosity, respectively; 𝑃𝑟𝑓 = 𝜇𝑓𝑐𝑝,𝑓 𝑘𝑓⁄  is the 

Prandtl number of the working fluid, with 𝑐𝑝,𝑓 denoting its specific heat at constant pressure; and 𝑓 is the Darcy friction factor. In this work, the Colebrook correlation [Incropera and DeWitt 

(2002)] was used to obtain 𝑓: 

 1√𝑓 = −2 log10 (𝑒𝑟𝑚𝑠/𝑑𝑝,𝑖3.7 + 2.51𝑅𝑒𝑓,𝑑𝑝,𝑖√𝑓) (17) 

where 𝑒𝑟𝑚𝑠 is the root-mean-square roughness of the inner surface of the pipe wall. 

With the assumptions listed in Subsection 3.1, 𝑇𝑓,1,𝑛(𝑧) and 𝑇𝑓,2,𝑛(𝑧) are governed by the 

following equations (note that the coordinate 𝑧 = 0 at the ground surface of the borehole field 

and increases vertically downwards, as shown in Fig. 1; and the working fluid flows in legs 1 

and 2 of the U-tube pipe in the positive and negative z directions, respectively): 

 (𝑚̇𝑓𝑐𝑝,𝑓) 𝜕𝑇𝑓,1,𝑛(𝑧)𝜕𝑧 = (𝑇̅𝑏,𝑛(𝑧)−𝑇𝑓,1,𝑛(𝑧))𝑅1𝑏 + (𝑇𝑓,2,𝑛(𝑧)−𝑇𝑓,1,𝑛(𝑧))𝑅12   (18) 

 −(𝑚̇𝑓𝑐𝑝,𝑓) 𝜕𝑇𝑓,2,𝑛(𝑧)𝜕𝑧 = (𝑇̅𝑏,𝑛(𝑧)−𝑇𝑓,2,𝑛(𝑧))𝑅2𝑏 + (𝑇𝑓,1,𝑛(𝑧)−𝑇𝑓,2,𝑛(𝑧))𝑅21   (19) 
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In the proposed model, the working-fluid mass flow rate in each borehole, 𝑚̇𝑓, is 

specified; the perimeter-average temperature of the outer surface of the borehole, 𝑇̅𝑏,𝑛(𝑧), is 

prescribed (calculated at any time, t, from a numerical solution to the model of the unsteady 

three-dimensional temperature and heat transfer in the groundwater-saturated soil of the borehole 

field); and the total rate of heat extraction from the ground, 𝑞𝑡𝑜𝑡𝑎𝑙, from all 𝑁𝑏 boreholes in the 

field of interest is specified as a function of time,𝑡. The working fluid enters the active portion of 

borehole 𝑛 at a bulk temperature 𝑇𝑓,𝑖𝑛,𝑛 in leg 1 of the U-tube pipe, and it leaves the active 

portion of this borehole through leg 2 of this pipe at a bulk temperature 𝑇𝑓,𝑜𝑢𝑡,𝑛. At any time, 𝑡, 

the values of 𝑇𝑓,𝑖𝑛,𝑛 for all 𝑁𝑏 boreholes are assumed to be the same, 𝑇𝑓,𝑖𝑛; and this value is 

adjusted to achieve the specified value of 𝑞𝑡𝑜𝑡𝑎𝑙. 
The following set of dimensionless parameters characterize the above-mentioned 

mathematical model: 𝑅𝑒𝑓,𝑑𝑝,𝑖 = 4𝑚̇𝑓𝜋𝜇𝑓𝑑𝑝,𝑖; 𝑃𝑟𝑓 = 𝜇𝑓𝑐𝑝,𝑓 𝑘𝑓⁄ ; (𝑒𝑟𝑚𝑠/𝑑𝑝,𝑖); (𝑘𝑝/𝑘𝑤); (𝑑𝑝,𝑜/𝑑𝑏); 

(𝑑𝑝,𝑖/𝑑𝑏); and (𝑑1−2/𝑑𝑏). 

An extension of this model to boreholes with multiple U-tube pipes can be achieved 

using the ideas presented in the works of Zeng et al. (2003), Eslami-Nejad and Bernier (2011), 

Belzile et al. (2016), and Cimmino (2016). A semi-analytical method was used to solve the 

above-mentioned quasi-steady, quasi-one-dimensional, mathematical model of the working-fluid 

bulk-temperature distribution and heat transfer in the boreholes. This semi-analytical method is 

concisely described in Subsection 4.3. 

4. Numerical and semi-analytical methods 

The numerical and semi-analytical methods that were used to solve the mathematical models 

presented in Section 3 are described concisely in this section. 
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4.1. Overview of the numerical method used for solving the mathematical model of the 

groundwater flow in the borehole field 

A co-located equal-order CVFEM [Baliga and Atabaki (2006); Lamoureux and Baliga (2011); 

Baliga et al. (2017)] was used to solve the mathematical model of the steady two-dimensional 

groundwater flow presented in Subsection 3.2. This CVFEM was implemented to work with 

unstructured planar grids of three-node triangular elements and polygonal control volumes 

associated with the vertices of the elements. A mesh generator written in Matlab by Persson and 

Strang (2004) was used in this work to create the unstructured planar grid of three-node 

triangular elements. A sample unstructured grid of three-node triangular elements used for 

discretizing a horizontal cross-section of a 3 x 2 borehole field is shown in Fig. 4 (top), along 

with the details of this grid in the vicinity of the six boreholes (center) and one borehole 

(bottom). Additional details of the grids that were used for obtaining the results presented in this 

paper are given in Section 5. 
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Figure 4. Discretization of a horizontal cross-section of a 3 x 2 borehole field using an 

unstructured grid of three-node triangular elements (top), and the details of this grid in the 

vicinity of the six boreholes (center) and one borehole (bottom) 

Each triangular element in the unstructured grid (Fig. 4) used in the above-mentioned 

CVFEM is divided into three equal areas by joining its centroid to the mid-points of its three 

sides; and these equal areas in each triangular element collectively create polygonal control 

volumes (of unit depth) around each vertex in the finite-element grid. The governing equations 
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are integrated over the polygonal control volumes to obtain integral conservation equations. The 

dependent variables and the effective thermophysical properties involved in the governing 

equations are interpolated in each triangular element as follows: 𝑃 is interpolated linearly; 𝑢𝑥 

and 𝑢𝑦 are interpolated using a linear function in the viscous transport terms and a flow-oriented 

(FLO) scheme in the advection terms [Baliga and Aatabaki (2006)]; in the Darcy and 

Forchheimer terms, the nodal values of 𝑢𝑥 and 𝑢𝑦 are assumed to prevail over the three 

corresponding portions of the control volumes within the triangular element; and the centroidal 

values of 𝜌𝑤, 𝜇𝑤, 𝜀, 𝐾, and 𝐶𝐹 are assumed to prevail over the triangular element. In the velocity 

components that appear in the mass-fluxes (𝜌𝑤𝑢𝑥 and 𝜌𝑤𝑢𝑦) in the advection terms of the 

Darcy-Brinkman-Forchheimer equations, the groundwater Darcy velocity components are 

interpolated using the so-called momentum-interpolation scheme to avoid checkerboard-type 

pressure distributions in the co-located equal-order formulation of the CVFEM [Rhie and Chow 

(1983); Baliga and Atabaki (2006)]. These interpolation functions are used to obtain the 

discretized equations, which are algebraic approximations to the integral conservation equations. 

The above-mentioned CVFEM is second-order-accurate. 

A sequential iterative variable adjustment (SIVA) procedure was used to solve the non-

linear and coupled sets of discretized (algebraic) equations. In every overall iteration of this 

SIVA procedure, linearized and decoupled sets of discretized equations for the dependent 

variables were solved sequentially using a bi-conjugate gradient method [Saad (2003)]. For each 

set of input parameters in the problems of interest, the CVFEM solution for the steady, two-

dimensional, groundwater flow was obtained only once, and the corresponding time-invariant 

values of the Darcy velocity components were stored and used over the full time period of 

operation of the borehole field. An extension of this model to layered ground with varying 
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hydraulic properties and groundwater flow velocities could be achieved by solving the 

mathematical model of the steady two-dimensional groundwater flow for each subsurface layer 

separately. The resulting groundwater velocities could then be applied to the corresponding 

nodes of the three-dimensional grid for solving the complementary heat transfer problem. 

4.2. Overview of the numerical method used for solving the mathematical model of the 

temperature and heat transfer in the groundwater-saturated soil of the borehole field 

The proposed mathematical model of the unsteady three-dimensional temperature distribution in 

the groundwater-saturated soil of the borehole field was solved numerically using a CVFEM-

FVM that was formulated by amalgamating ideas described in the works of Baliga and Atabaki 

(2006) and Lamoureux and Baliga (2011). This method was implemented to work with a three-

dimensional grid that is obtained by traversing the unstructured two-dimensional grid of 

triangular elements (in the horizontal cross-section of the borehole field; see Fig. 4) in the 

vertical (z) direction, to generate prismatic pentahedral elements and control volumes of 

triangular and polygonal cross-sections, respectively, in the horizontal plane. A vertical cross-

section of such a grid in the region adjacent to the boundary Γ𝑏,𝑛 of a borehole 𝑛 is illustrated in 

Fig. 5: the total number of nodes (grid points) in the vertical (z) direction is denoted by 𝑁𝑧; the 

vertical extent of the control volume associated with the node 𝑘 is denoted by 𝑧𝑘, for 𝑘 ={ 1, 2, … ,𝑁𝑧}; the control volume associated with the nodes along the top (Γ𝑇) and bottom (Γ𝐵) 

boundaries have zero-thickness in the z direction (𝑧1= 𝑧𝑁𝑧 = 0); and the internal nodes 𝑘 ={ 2, 3, … ,𝑁𝑧−1} are located in the 𝑧 direction at the geometric centers of the 𝑧𝑘 extents of their 

respective control volumes. The proposed numerical method was formulated to work with a non-

uniform distribution of 𝑧𝑘. 
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Figure 5. A vertical (x-z) cross-section of a representative three-dimensional grid of pentahedral 

elements in a region adjacent to the boundary Γ𝑏,𝑛 of borehole 𝑛 (the intersections of the solid 

lines denote grid points; and the control-volume faces are indicated by dashed lines). 

In the CVFEM-FVM that was formulated and used for solving the unsteady three-

dimensional temperature distribution in the groundwater-saturated soil of the borehole field, the 

dependent variables and the effective thermophysical properties involved in the governing 

equations are spatially interpolated in each pentahedral element as follows: 1) in the horizontal (𝑥, 𝑦) planes of the grid, which consist of the unstructured mesh of three-node triangular 
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elements, the interpolation functions are the same as those mentioned above for the two-

dimensional CVFEM; 2) in the vertical (𝑧) direction, the centroidal values of the effective 

thermophysical properties are interpolated using a resistance analogy scheme (which reduces to 

the harmonic mean if uniform grids are used), the hybrid scheme is used to interpolate 𝑇 in the 

advection and conduction transport terms, the momentum interpolation scheme is used to 

interpolate the velocity components in the mass flux terms, and quadratic functions are used to 

interpolate 𝑇 in the conduction terms adjacent to the top and bottom boundaries (where 𝑧1= 

𝑧𝑁𝑧 = 0) [Patankar (1980); Rhie and Chow (1983); Baliga and Atabaki (2006)]. These 

discretizations of the spatial terms in the three-dimensional CVFEM-FVM are second-order-

accurate. 

In the proposed CVFEM-FVM, for each time step, Δ𝑡, the above-mentioned spatial 

interpolation functions and the fully-implicit time-integration scheme [Patankar (1980)] (based 

on a backward Euler method) are used to obtain the discretized equations, which are algebraic 

approximations to the integral conservation equations applied to the above-mentioned prismatic 

control volumes. These discretized equations, which are non-linear, in general, are solved 

iteratively in each time step: the coefficients in a set of linearized discretized equations are 

calculated using the latest available values of 𝑇; the linearized set of discretized equations is 

solved using a bi-conjugate gradient method [Saad (2003)]; and these steps are repeated until 

convergence. The aforementioned time-integration scheme is first-order-accurate. 

4.3. Semi-analytical method used for solving the mathematical model of the working-

fluid bulk-temperature distribution and heat transfer in each borehole 

A semi-analytical method was used to solve the quasi-steady, quasi-one-dimensional, 

mathematical model of the working-fluid bulk-temperature distribution and heat transfer in each 
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borehole. In this semi-analytical method, the vertical boreholes are discretized into 𝑁𝑧 segments 

in the vertical (𝑧) direction; 𝑧𝑘 denotes the vertical extent of the segment 𝑘 in the 𝑧 direction; 𝑧𝑓𝑎𝑐𝑒,𝑘 denotes the bottom face of the segment 𝑘 in the 𝑧 direction (which points downwards); 

and 𝑧𝑓𝑎𝑐𝑒,𝑘−1, 𝑧𝑓𝑎𝑐𝑒,𝑘, and 𝑧𝑘 match up perfectly with the corresponding z-coordinates of the 

faces and extents of the prismatic control volumes in the CVFEM-FVM numerical method 

described in the previous section. The active portion of each vertical borehole (𝐷 ≤ 𝑧 ≤ 𝐷 + 𝐻) 

is discretized into 𝑁𝑧,𝑎𝑐 nodes and segments in the vertical direction; and 𝑘1,𝑎𝑐 and 𝑘𝑁𝑧,𝑎𝑐 are 

used to denote the first and last nodes in this active portion of the borehole. The general solutions 

to Eqs. (18) and (19) for an arbitrary 𝑇̅𝑏,𝑘,𝑛(𝑧) profile along the active length of the borehole are 

given below [Eskilson and Claesson (1988); Hellström (1991)]: 

 𝑇𝑓,1,𝑛(𝑧′) = 𝑇𝑓,𝑖𝑛,𝑛𝑓1(𝑧′) + 𝑇𝑓,𝑜𝑢𝑡,𝑛𝑓2(𝑧′) + ∫ 𝑇̅𝑏,𝑛(𝑧′′)𝑓4(𝑧′ − 𝑧′′)𝑑𝑧′′𝑧′0  (20)  

 𝑇𝑓,2,𝑛(𝑧′) = −𝑇𝑓,𝑖𝑛,𝑛𝑓2(𝑧′) + 𝑇𝑓,𝑜𝑢𝑡,𝑛𝑓3(𝑧′) − ∫ 𝑇̅𝑏,𝑛(𝑧′′)𝑓5(𝑧′ − 𝑧′′)𝑑𝑧′′𝑧′0 (21)  

 𝑇𝑓,𝑜𝑢𝑡,𝑛 = 𝑓1(𝐻)+𝑓2(𝐻)𝑓3(𝐻)−𝑓2(𝐻) 𝑇𝑓,𝑖𝑛,𝑛 + ∫ 𝑇̅𝑏,𝑛(𝑧′′)[𝑓4(𝐻−𝑧′′)+𝑓5(𝐻−𝑧′′)]𝑓3(𝐻)−𝑓2(𝐻) 𝑑𝑧′′𝐻0  (22) 

with 𝑧′ = 𝑧 − 𝐷, and 

 𝑓1(𝑧′) = exp(𝛽𝑧′) [cosh(𝛾𝑧′) − 𝛿 sinh(𝛾𝑧′)] (23)  

 𝑓2(𝑧′) = exp(𝛽𝑧′) 𝛽12𝛾 sinh(𝛾𝑧′) (24)  

 𝑓3(𝑧′) = exp(𝛽𝑧′) [cosh(𝛾𝑧′) + 𝛿 sinh(𝛾𝑧′)] (25)  

 𝑓4(𝑧′) = exp(𝛽𝑧′) [𝛽1 cosh(𝛾𝑧′) − (𝛿𝛽1 + 𝛽2𝛽12𝛾 ) sinh(𝛾𝑧′)] (26)  
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 𝑓5(𝑧′) = exp(𝛽𝑧′) [𝛽2 cosh(𝛾𝑧′) + (𝛿𝛽2 + 𝛽1𝛽12𝛾 ) sinh(𝛾𝑧′)] (27)  

 𝛽1 = 1𝑅1𝑏Δ 𝑚̇𝑓𝑐𝑝,𝑓 ;   𝛽2 = 1𝑅2𝑏Δ 𝑚̇𝑓𝑐𝑝,𝑓 ;   𝛽12 = 1𝑅12Δ 𝑚̇𝑓𝑐𝑝,𝑓 ;   𝛽 = 𝛽2−𝛽12  (28)  

 𝛾 = √(𝛽1+𝛽2)24 + 𝛽12(𝛽1 + 𝛽2);   𝛿 = 1𝛾 (𝛽12 + 𝛽1+𝛽22 ) (29) 

In the proposed semi-analytical method, the perimeter-average temperature of the outer surface 

of the segment 𝑘 of a borehole 𝑛,  𝑇̅𝑏,𝑘,𝑛, is assumed to be piecewise uniform over the perimeter 

(𝜋𝑑𝑏) and the length (𝑧𝑓𝑎𝑐𝑒,𝑘 − 𝑧𝑓𝑎𝑐𝑒,𝑘−1) of the segment. With this assumption and the above-

mentioned discretization of the length of each borehole (and with 𝑧𝑘′ = 𝑧𝑘 − 𝐷), the integrals in 

Eqs. (20) to (22) can be solved analytically in the active portions of the boreholes and these 

equations can be cast as follows:  

𝑇𝑓,1,𝑛 (𝑧𝑓𝑎𝑐𝑒,𝑘𝑖,𝑎𝑐′ ) = 𝑇𝑓,𝑖𝑛,𝑛𝑓1 (𝑧𝑓𝑎𝑐𝑒,𝑘𝑖,𝑎𝑐′ ) + 𝑇𝑓,𝑜𝑢𝑡,𝑛𝑓2 (𝑧𝑓𝑎𝑐𝑒,𝑘𝑖,𝑎𝑐′ ) + 

 ∑ 𝑇̅𝑏,𝑗,𝑛 [𝐹4 (𝑧𝑓𝑎𝑐𝑒,𝑘𝑖,𝑎𝑐′ − 𝑧𝑓𝑎𝑐𝑒,𝑘𝑗−1′ ) − 𝐹4 (𝑧𝑓𝑎𝑐𝑒,𝑘𝑖,𝑎𝑐′ − 𝑧𝑓𝑎𝑐𝑒,𝑘𝑗′ )]𝑘𝑖,𝑎𝑐𝑗=𝑘1,𝑎𝑐   (30)  

𝑇𝑓,2,𝑛 (𝑧𝑓𝑎𝑐𝑒,𝑘𝑖,𝑎𝑐′ ) = −𝑇𝑓,𝑖𝑛,𝑛𝑓2 (𝑧𝑓𝑎𝑐𝑒,𝑘𝑖,𝑎𝑐′ ) + 𝑇𝑓,𝑜𝑢𝑡,𝑛𝑓3 (𝑧𝑓𝑎𝑐𝑒,𝑘𝑖,𝑎𝑐′ ) − 

 ∑ 𝑇̅𝑏,𝑗,𝑛 [𝐹5 (𝑧𝑓𝑎𝑐𝑒,𝑘𝑖,𝑎𝑐′ − 𝑧𝑓𝑎𝑐𝑒,𝑘𝑗−1′ ) − 𝐹5 (𝑧𝑓𝑎𝑐𝑒,𝑘𝑖,𝑎𝑐′ − 𝑧𝑓𝑎𝑐𝑒,𝑘𝑗′ )]𝑘𝑖,𝑎𝑐𝑗=𝑘1,𝑎𝑐   (31)  

𝑇𝑓,𝑜𝑢𝑡,𝑛 = 𝑓1(𝐻) + 𝑓2(𝐻)𝑓3(𝐻) − 𝑓2(𝐻)𝑇𝑓,𝑖𝑛,𝑛 + 
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∑ 𝑇̅𝑏,𝑘𝑗,𝑛𝑓3(𝐻)−𝑓2(𝐻) [𝐹4 (𝐻 − 𝑧𝑓𝑎𝑐𝑒,𝑘𝑗−1′ ) − 𝐹4 (𝐻 − 𝑧𝑓𝑎𝑐𝑒,𝑘𝑗′ ) + 𝐹5 (𝐻 − 𝑧𝑓𝑎𝑐𝑒,𝑘𝑗−1′ ) −𝑘𝑁𝑧,𝑎𝑐𝑗=𝑘1,𝑎𝑐𝐹5 (𝐻 − 𝑧𝑓𝑎𝑐𝑒,𝑘𝑗′ )]  (32) 

with 

 𝐹4(𝑧′) = ∫ 𝑓4(𝑧′ − 𝑧′′)𝑑𝑧′′𝑧′0 = exp(𝛽𝑧′) [− cosh(𝛾𝑧′) + 𝛽1+𝛽22𝛾 sinh(𝛾𝑧′) + 1]  (33)  

 𝐹5(𝑧′) = ∫ 𝑓5(𝑧′ − 𝑧′′)𝑑𝑧′′𝑧′0 = exp(𝛽𝑧′) [cosh(𝛾𝑧′) + 𝛽1+𝛽22𝛾 sinh(𝛾𝑧′) − 1]  (34)  

 From an energy balance on the working fluid in both legs of the boreholes, using Eqs. 

(30) and (31), the values of the heat flux 𝑞𝑏,𝑘,𝑛′′ (𝑧, 𝑡) at the interfaces (Γ𝑏,𝑛) between the active 

portion of the borehole n and the groundwater-saturated soil can be calculated using the 

following equation for the nodes 𝑘 =  𝑘1,𝑎𝑐, … , 𝑘𝑁𝑧,𝑎𝑐 (for the other nodes, the heat flux is zero): 

 𝑞𝑏,𝑘𝑖,𝑎𝑐,𝑛′′ = 𝑚̇𝑓𝑐𝑝,𝑓𝜋𝑑𝑏Δ𝑧𝑘𝑖,𝑎𝑐 (𝑇𝑓,1,𝑛 (𝑧𝑓𝑎𝑐𝑒,𝑘𝑖,𝑎𝑐′ ) − 𝑇𝑓,1,𝑛 (𝑧𝑓𝑎𝑐𝑒,𝑘𝑖,𝑎𝑐−1′ ) +𝑇𝑓,2,𝑛 (𝑧𝑓𝑎𝑐𝑒,𝑘𝑖,𝑎𝑐−1′ ) − 𝑇𝑓,2,𝑛 (𝑧𝑓𝑎𝑐𝑒,𝑘𝑖,𝑎𝑐′ ) ) (35) 

In the same manner, using Eq. (32), the total heat extraction rate of the borehole 𝑛 (𝑞𝑏,𝑛) 

and the total heat extraction rate over all 𝑁𝑏 boreholes in the field (𝑞𝑡𝑜𝑡𝑎𝑙) can be calculated from 

the following equations: 

𝑞𝑏,𝑛 = 𝑚̇𝑓𝑐𝑝,𝑓 ((𝑓1(𝐻)+𝑓2(𝐻)𝑓3(𝐻)−𝑓2(𝐻) − 1)𝑇𝑓,𝑖𝑛,𝑛 + ∑ 𝑇̅𝑏,𝑘𝑗,𝑛𝑓3(𝐻)−𝑓2(𝐻) [𝐹4 (𝐻 − 𝑧𝑓𝑎𝑐𝑒,𝑘𝑗−1′ ) −𝑘𝑁𝑧,𝑎𝑐𝑗=𝑘1,𝑎𝑐
𝐹4 (𝐻 − 𝑧𝑓𝑎𝑐𝑒,𝑘𝑗′ ) + 𝐹5 (𝐻 − 𝑧𝑓𝑎𝑐𝑒,𝑘𝑗−1′ ) − 𝐹5 (𝐻 − 𝑧𝑓𝑎𝑐𝑒,𝑘𝑗′ )])  (36)  
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𝑞𝑡𝑜𝑡𝑎𝑙 = 𝑚̇𝑓𝑐𝑝,𝑓 (𝑁𝑏 (𝑓1(𝐻)+𝑓2(𝐻)𝑓3(𝐻)−𝑓2(𝐻) − 1)𝑇𝑓,𝑖𝑛 + ∑ ∑ 𝑇̅𝑏,𝑘𝑗,𝑛𝑓3(𝐻)−𝑓2(𝐻) [𝐹4 (𝐻 − 𝑧𝑓𝑎𝑐𝑒,𝑘𝑗−1′ ) −𝑘𝑁𝑧,𝑎𝑐𝑗=𝑘1,𝑎𝑐𝑁𝑏𝑛=1
𝐹4 (𝐻 − 𝑧𝑓𝑎𝑐𝑒,𝑘𝑗′ ) + 𝐹5 (𝐻 − 𝑧𝑓𝑎𝑐𝑒,𝑘𝑗−1′ ) − 𝐹5 (𝐻 − 𝑧𝑓𝑎𝑐𝑒,𝑘𝑗′ )])  (37) 

The values of the heat flux 𝑞𝑏,𝑘,𝑛′′ (𝑧, 𝑡) vary with 𝑧 and 𝑡; and when they are positive, heat 

is extracted from the ground. The calculated values of 𝑞𝑏,𝑘,𝑛′′ (𝑧, 𝑡) are provided as inputs to the 

numerical solution of the temperature distribution and heat transfer in the groundwater-saturated 

soil (using the CVFEM-FVM described in Subsection 4.2). 

4.4. Summary of the overall numerical procedure 

At each time, 𝑡, based on the known (specified) total rate of heat extraction, 𝑞𝑡𝑜𝑡𝑎𝑙( t t+  ), the 

following overall iterative procedure is used to advance the solution from 𝑡 to 𝑡 + Δ𝑡. 

1. Using Eq. (37), calculate the entering fluid temperature (𝑇𝑓,𝑖𝑛) that is required to satisfy the 

total rate of heat extraction with the latest values of perimeter-average outer-surface temperature 

of all borehole segments (𝑇̅𝑏,𝑘,𝑛). 

2. Calculate the heat fluxes at the outer surface of all borehole active-portion segments 

(𝑞𝑏,𝑘𝑖,𝑎𝑐,𝑛′′ ), using Eqs. (30), (31), (32) and (35). Note that outside the active portions, the outer 

surface of the boreholes is assumed to be adiabatic, so the corresponding heat fluxes are zero. 

3. With the latest values of the heat fluxes at the outer surface of all borehole segments 

(calculated in Step 2) as inputs to the numerical method described in Section 4.2, solve the 

mathematical model of the temperature and heat transfer in the groundwater-saturated soil of the 

borehole field, and then calculate the values of the perimeter-average outer-surface temperature 

of all borehole segments (𝑇̅𝑏,𝑘,𝑛). 
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4. Repeat steps 1-3 until convergence. In this work, convergence was assumed when the 

maximum absolute difference between two successive evaluations of the perimeter-average 

outer-surface temperature of all borehole segments (𝑇̅𝑏,𝑘,𝑛) was less than 0.01 °C. 

5. Results 

The results obtained for the following test and demonstration problems are presented and 

discussed in this section: 1) grid-independence checks on the results generated by the CVFEM-

FVM described in Section 4, by applying it to a single-borehole field, with a prescribed uniform 

and constant heat flux on the outer-surface of the borehole; 2) comparisons of the CVFEM-FVM 

predictions for a 3 x 2 borehole field, with a prescribed uniform and constant heat flux on the 

outer-surface of each of the boreholes, and the results obtained using a moving-finite-line-source 

analytical solution to a simplified version of this problem; and 3) a two-year simulation of a 3 x 2 

borehole field coupled to a ground-source heat-pump system. In these test and demonstration 

problems, the ranges of the required thermophysical properties for dry granular soils likely to be 

encountered in borehole fields were obtained from the published literature, such as the works of 

Chiasson et al. (2000) and Molina-Giraldo et al. (2011b), for example. The thermophysical 

properties of groundwater were taken to be the following [Incropera and DeWitt (2002)]: 𝜌𝑤 = 1000 kg/m³; 𝑐𝑝,𝑤 = 4190 J/kg-K; 𝑘𝑤 = 0.59 W/m-K; and 𝜇𝑤 = 0.00179 Pa-s (at 0 °C) to 

0.000798 Pa-s (at 30°C). A hydraulic gradient of 10-3 m/m and a borehole diameter 𝑑𝑏 = 0.15 m 

were assumed. With these data, the ranges of soil Darcy number (𝐷𝑎 = 𝐾 𝑑𝑏2⁄ ), effective Péclet 

number (𝑃𝑒𝑑𝑏 = 𝑅𝑒𝑑𝑏𝑃𝑟𝑤 Υ⁄ = 𝑑𝑏𝑈∞𝜌𝑤𝑐𝑝,𝑤 𝑘𝑒𝑓𝑓⁄ ), effective volumetric thermal capacity ratio 

(𝛬 = (𝜌𝑐𝑝)𝑒𝑓𝑓𝜌𝑤𝑐𝑝,𝑤 ), thermal conductivity ratio (Υ = 𝑘𝑒𝑓𝑓𝑘𝑤 ), and soil porosity (𝜀) were determined; and 

they are presented in Table 1.  
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Table 1. Ranges of some dimensionless parameters considered in this work. 

 𝑫𝒂 𝑷𝒆𝒅𝒃 𝜰 Λ Porosity (ε) 
Soil 
Type 

Min Max Min Max Min Max Min Max Min Max 

Gravel 3.62E-
10 

8.10E-
08 

3.49E-
02 

3.49E
+00 

3.05 3.05 0.573 0.573 0.24 0.38 

Coarse 
Sand 

3.62E-
09 

8.10E-
09 

1.26E-
01 

3.70E-
01 

2.88 8.47 0.525 0.692 0.31 0.46 

Medium 
Sand 

3.62E-
10 

8.10E-
10 

1.26E-
02 

3.70E-
02 

2.88 8.47 0.525 0.692 - - 

Fine 
Sand 

3.62E-
12 

8.10E-
11 

1.26E-
04 

3.70E-
03 

2.88 8.47 0.525 0.692 0.26 0.53 

Silt 3.62E-
13 

8.10E-
13 

2.73E-
05 

6.98E-
05 

1.53 3.90 0.382 0.811 0.34 0.61 

Clay 3.62E-
16 

8.10E-
15 

4.19E-
08 

5.24E-
07 

2.03 2.54 0.549 0.549 0.34 0.60 

From the results of initial exploratory numerical simulations, it was found that the effects 

of the Darcy number, 𝐷𝑎, in the range of values given in Table 1, on the predicted temperatures 

in the problems of interest were negligible. This finding is in agreement with that of Thevenin 

and Sadaoui (1995), in which no influence of the Darcy number was observed for 𝐷𝑎 < 10-6. 

5.1. Grid-independence of the numerical predictions of temperature in the groundwater-

saturated soil of a single-borehole field 

The investigation reported in this subsection was undertaken to provide guidance in the choice of 

suitable grids for all of the test and demonstration problems considered in this work. In the grid-

independence checks presented here, the case of a single borehole with a constant and uniform 

rate of heat extraction from the ground over its active portion (𝐷 ≤ 𝑧 ≤ 𝐷 + 𝐻) is considered. 

Attention could thus be focused solely on the temperature and heat transfer in the groundwater-

saturated soil of the borehole field, without dealing with the heat transfer and temperature inside 

the boreholes and the working fluid flowing through the U-tube pipe within them. With reference 

to the notation given in Figs. 1 and 2, the borehole has a length 𝐻 = 150 m, a diameter 𝑑𝑏 = 0.15 m, and a buried depth 𝐷 = 4 m. The borehole is centrally located within the horizontal 
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cross-section of the calculation domain, which has extents 𝐿𝑊 = 𝐿𝐸 = 𝐿𝑁 = 𝐿𝑆 = 15 m; and in 

the vertical direction, the calculation domain extends to 𝐿𝐵 = 50 m below the active portion of 

the borehole. The full extents of the calculation domain, as shown in Figs. 1 and 2, are 𝐿𝑋 =𝐿𝑌 = 30 m and 𝐿𝑍 = 204 m. The values of the dimensionless parameters considered in the 

problem are the following: 𝑃𝑒𝑑𝑏 = 1, 𝐷𝑎 = 10−9, 𝛶 = 3, 𝛬 = 0.71, and 𝜀 = 0.34; and on the 

outer surface of the single borehole, (𝛶∇∗𝜃 ∙ 𝑛⃑ )𝑏 = [𝑞𝑏′′(𝑧, 𝑡)/|𝑞𝑏′′|̅̅ ̅̅ ̅] = 1 for {(𝐷/𝑑𝑏) ≤ 𝑧∗ ≤{(𝐷 + 𝐻)/𝑑𝑏}. 

The baseline grid (denoted by 𝑁 = 1) consists of 73,680 pentahedral elements and is 

generated from a two-dimensional grid of 2,456 triangular elements (constructed using the grid 

generator of Persson and Strang (2004)). The minimum side length of the triangular elements is ℎ𝑚𝑖𝑛 = 0.0147 m (= 𝜋𝑑𝑏 32⁄ ) at the outer surface of the borehole. The side length of the 

triangular elements increases linearly at a rate of 0.167 m/m based on the distance to the closest 

borehole. The vertical discretization consists of 𝑁𝑧 = 32 horizontal layers (including the top and 

bottom layers with zero thickness): two equal vertical layers of thickness 2 m are located above 

the active portion of the borehole; 20 vertical layers with a minimum thickness 2.25 m and a 

maximum thickness 16.80 m are located along the active portion of the borehole; and eight 

vertical layers with a minimum thickness of 2.52 m and a maximum thickness of 12.02 m are 

located below the active portion of the borehole. The thickness of successive vertical layers 

increase by a factor of about 1.25 from the top-most and the bottom-most layers along the active 

portion towards the center of the borehole, and from the top-most layer below the active portion 

towards the bottom of the three-dimensional grid. The time step corresponding to the baseline 

grid is Δ𝑡 = 600 s. 
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A pattern-preserving grid-refinement technique and the extended Richardson 

extrapolation procedure proposed by Baliga and Lokhmanets (2016) were used in these grid-

independence checks. The finer pattern-preserving spatial grids and time steps were obtained by 

subdividing the baseline spatial grid and time (𝑁 = 1) step by factors of two and four: to achieve 

the first and second refinements (𝑁 = 2 and 3), each triangular element of the two-dimensional 

grid in the horizontal cross-section was divided into 4 and 16 similar-shaped triangular elements 

of equal area, respectively; each vertical layer was divided into 2 and 4 layers of equal thickness, 

respectively; and the corresponding time step was divided by factors of 4 and 16, respectively. 

Representative results of these grid-independence checks are summarized in Table 2. For 𝑡 = 1 hour (𝑡∗ = 𝑘𝑤𝑡𝜌𝑤𝑐𝑝,𝑤𝑑𝑏2 = 0.023), the values of the perimeter-average outer-surface 

dimensionless temperature of the borehole (𝜃̅𝑏) at the mid-point of its active portion (obtained 

with the aforementioned three grids, 𝑁 = 1, 2, and 3) and the extrapolated value obtained using 

the results of the second and third of these grids (𝑁 = 2 and 3) are presented: the absolute 

percentage difference between the value calculated from the baseline (𝑁 = 1) grid and the 

extrapolated value is 4.32 %, which is considered acceptable in this work, in the context of long-

term (multi-annual) simulations of such geothermal systems. At 𝑡 = 4 weeks (𝑡∗ = 15.1), the 

values of 𝜃̅𝑏 at the mid-point of the active portion of the borehole, and also the dimensionless 

temperature (𝜃) at a distance of 5 m downstream from the borehole at the mid-point of its active 

portion (𝑥 = 5 m, 𝑦 = 0, 𝑧 = 𝐷 + 𝐻 2⁄ ; relative to the coordinate system presented in Figs. 1 

and 2) are presented. These relatively long-term simulations (𝑡 = 4 weeks), were done with only 

two of the aforementioned grids (N = 1 and 2); the absolute percentage differences between the 

values obtained from baseline-grid and the corresponding extrapolated values are 0.11% for  𝜃̅𝑏 

and 5.23% for 𝜃; and these differences were also considered acceptable in this work. 
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Table 2. Representative results of the grid independence checks. 

 Temperature (Absolute % difference with the extrapolated value) 
 𝑡 = 1 hour (𝑡∗ = 0.023) 𝑡 = 4 weeks (𝑡∗ = 15.1) 𝑡 = 4 weeks (𝑡∗ = 15.1) 
Number of 
elements 

𝜃̅𝑏(𝑧 = 𝐷 + 𝐻 2⁄ ) 𝜃̅𝑏(𝑧 = 𝐷 + 𝐻 2⁄ ) 𝜃 (𝑥 = 5m, 𝑦 = 0m,𝑧 = 𝐷 + 𝐻 2⁄ ) 

73,680 (=N) 0.08854 (4.32 %) 0.28525 (0.11 %) 0.04834 (5.23 %) 
589,440 (=8N) 0.09154 (1.08 %) 0.28502 (0.03 %) 0.05034 (1.31 %) 
4,715,520 (=64N) 0.09228 (0.27 %) - - 
Extrapolated value 0.09253 0.28493 0.05101 

Based on these grid-independence checks, the spatial grids and time steps used for the 

simulations reported in the next two sections were chosen to be similar to the above-mentioned 

baseline spatial grid and time step. 

5.2. Comparison of the CVFEM-FVM predictions of the groundwater- saturated soil 

temperature with results obtained using a moving-finite-line-source method 

In this problem, six boreholes (diameter 𝑑𝑏 = 0.15 m) arranged in a 3 × 2 array at an angle of 𝛽𝑏 = 30° relative to the direction of groundwater flow (as shown on Figure 2) are considered, 

and the heat flux on the outer surface of the boreholes is specified to be uniform and constant. 

Attention in this problem can thus be focused solely on the temperature and heat transfer in the 

groundwater-saturated soil of the borehole field, without dealing with the heat transfer and 

temperature of the boreholes and the working fluid flowing through the U-tube pipe within them. 

The dimensionless parameters considered in this problem are following: 𝐷𝑎 = 10−9, 𝛶 = 3, 𝛬 =0.71, 𝜀 = 0.34; two values of the Peclet number 𝑃𝑒𝑑𝑏 = 0.01 and 𝑃𝑒𝑑𝑏 = 0.1; and on the outer 

surface of the active portions of the boreholes, (𝛶∇∗𝜃 ∙ 𝑛⃑ )𝑏,𝑛 = [𝑞𝑏,𝑛′′ (𝑧, 𝑡)/|𝑞𝑏′′|̅̅ ̅̅ ̅] = 1 for 

{(𝐷/𝑑𝑏) ≤ 𝑧∗ ≤ {(𝐷 + 𝐻)/𝑑𝑏}. The calculation domain extends to 𝐿𝑊 = 𝐿𝐸 = 𝐿𝑁 =𝐿𝑆 = 25 m on all sides of the borehole array in the horizontal plane; and 𝐻 = 150 m and 𝐿𝐵 = 50 m (Fig. 1). The resulting total extents of the calculation domain are 𝐿𝑋 = 61.2 m, 
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𝐿𝑌 = 59.3 m and 𝐿𝑍 = 204 m. The total time of the simulations in this problem is 2 years 

(𝑡∗ = 395). The groundwater flow is assumed to be governed by the mathematical model 

presented in Section 3.2, and predicted using the CVFEM described in Section 4.1. The 

temperature and heat transfer in the groundwater-saturated soil are assumed to be governed by 

the mathematical model presented in Section 3.3, except for the prescription of a uniform and 

constant heat flux on the outer surface of each of the six boreholes, and predicted using the 

unsteady three-dimensional CVFEM-FVM described in Section 4.2. The spatial grid and time 

step used in the numerical solution of this problem were chosen using guidance from the baseline 

grid and time step discussed in the grid-independence study described in Section 5.1. The 

resulting grid consists of 354,660 pentahedral elements and is generated from a two-dimensional 

grid of 11,822 triangular elements. 

A simplified version of this problem was also solved analytically using a moving-finite-

line-source technique, which applies strictly only to the ground temperature around a line source, 

moving at a constant velocity and emitting heat uniformly along its length at a constant rate. 

Thus, the geometry considered in this moving-finite-line-source solution differs from the one 

considered in the numerical model, where heat is emitted from the impermeable cylindrical outer 

surfaces of the boreholes and the groundwater flows around them. Nonetheless, noting that the 

diameter of the boreholes is relatively small compared to the overall dimensions of the borehole 

field, a comparison of the numerical CVFEM-FVM predictions and the moving-finite-line-

source analytical solution is provided in this section, as it provides a useful check or verification 

of the correct implementation of the numerical method. 

A spatial superposition of the moving-finite-line-source analytical solutions gives the 

outer surface temperature of all six boreholes (n = 1 – 6): 
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  𝑇̅𝑏,𝑘,𝑛(𝑡) = 𝑇𝑔 + ∑ ∑ 𝑑𝑏2𝑘𝑠 𝑞𝑏,𝑘𝑗,𝑎𝑐,𝑚′′ 𝑓𝑘,𝑛,𝑘𝑗,𝑎𝑐,𝑚(𝑡)𝑁𝑧,𝑎𝑐𝑗=1𝑁𝑏𝑚=1  (38)  

 𝑓𝑘,𝑛,𝑘𝑗,𝑎𝑐,𝑚(𝑡) = 12Δz𝑘 ∫ 1𝑠2 𝐼 (𝑧𝑘𝑗,𝑎𝑐−1, Δ𝑧𝑘𝑗,𝑎𝑐 , 𝑧𝑘−1, Δ𝑧𝑘) exp(−𝑠2 {(𝑑𝑛,𝑚 cos 𝛽𝑛,𝑚 −∞1 √4𝛼𝑒𝑓𝑓𝑡⁄
                                    𝑣𝑇4𝛼𝑒𝑓𝑓𝑠2)2 + 𝑑𝑛,𝑚2 sin2 𝛽𝑛,𝑚})𝑑𝑠 (39)  

  𝐼(𝑧𝑗−1, Δ𝑧𝑗, 𝑧𝑘−1, Δ𝑧𝑘) = erfint ((𝑧𝑘−1 − 𝑧𝑗−1 + Δ𝑧𝑘)𝑠) − erfint ((𝑧𝑘−1 − 𝑧𝑗−1)𝑠) +
erfint ((𝑧𝑘−1 − 𝑧𝑗−1 − Δ𝑧𝑗)𝑠) − erfint ((𝑧𝑘−1 − 𝑧𝑗−1 + Δ𝑧𝑘 − Δ𝑧𝑗)𝑠) + erfint ((𝑧𝑘−1 + 𝑧𝑗−1 +
Δ𝑧𝑘)𝑠) − erfint ((𝑧𝑘−1 + 𝑧𝑗−1)𝑠) + erfint ((𝑧𝑘−1 + 𝑧𝑗−1 + Δ𝑧𝑗)𝑠) − erfint ((𝑧𝑘−1 + 𝑧𝑗−1 +

Δ𝑧𝑘 + Δ𝑧𝑗)𝑠)  (40)  

  erfint(𝑥) = ∫ erf(𝑥′) 𝑑𝑥′𝑥0 = 𝑥 erf(𝑥) − 1√𝜋 (1 − exp(−𝑥2)) (41) 

In Eq. (39), 𝛼𝑒𝑓𝑓 = 𝑘𝑒𝑓𝑓 (𝜌𝑐𝑝)𝑒𝑓𝑓⁄  is the effective thermal diffusivity of the groundwater-

saturated soil; 𝑑𝑛,𝑚 = √(𝑥𝑏,𝑛 − 𝑥𝑏,𝑚)2 + (𝑦𝑏,𝑛 − 𝑦𝑏,𝑚)2 is the axial distance between boreholes 

𝑛 and 𝑚 (it is set to 𝑑𝑛,𝑛 = 𝑑𝑏 2⁄  for 𝑛 = 𝑚); 𝛽𝑛,𝑚 = Arg (𝑥𝑏,𝑛 − 𝑥𝑏,𝑚 + 𝑖(𝑦𝑏,𝑛 − 𝑦𝑏,𝑚)) is the 

angle between boreholes 𝑛 and 𝑚 relative to the direction of flow (it is set to 𝛽𝑛,𝑛 = 𝜋 2⁄  for 𝑛 =𝑚); and 𝑣𝑇 = 𝑈∞𝜌𝑤𝑐𝑝,𝑤 (𝜌𝑐𝑝)𝑒𝑓𝑓⁄  is an effective heat transport velocity. Eqs. (38) to (41) were 

obtained using the method of Claesson and Javed (2011), as elaborated in Cimmino and Bernier 

(2014), rather than the simplified moving-finite-line-source solution proposed by Tye-Gingras 

and Gosselin (2014) based on the method of Lamarche and Beauchamp (2007).  
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The outer-surface dimensionless temperatures (perimeter-average for the numerical 

results; denoted here as 𝜃𝑏) along the active length of the boreholes at 𝑡∗ = 395 are shown in 

Figure 6. The maximum difference between the numerical and analytical results for 𝜃𝑏 at the 

bottom of the active portion of the boreholes at 𝑡∗ = 395 is 5.16 % for 𝑃𝑒𝑑𝑏 = 0.1; and at the 

mid-point of this portion, this maximum difference is 0.14 %. The time variations of the overall-

average outer-surface dimensionless temperatures of the boreholes (denoted here as 𝜃̅𝑏) are 

shown in Figure 7. The maximum difference between the numerical and analytical results for 𝜃̅𝑏 

at 𝑡∗ = 395 is 0.23 % for 𝑃𝑒𝑑𝑏 = 0.01; and it is 0.008 % for 𝑃𝑒𝑑𝑏 = 0.1. 

 

Figure 6. Comparison of the numerical and analytical results for the axial variation of the outer-

surface dimensionless temperatures (perimeter-average for the numerical results; denoted here as 𝜃𝑏) in a field of six boreholes at 𝑡∗ = 395 for 𝑃𝑒𝑑𝑏 = 0.01 (left) and 𝑃𝑒𝑑𝑏 = 0.1 (right). 
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Figure 7. Comparison of the numerical and analytical results for the axial variation of the 

overall-average outer-surface temperatures (denoted here as 𝜃̅𝑏) of the boreholes in a field of six 

boreholes at 𝑡∗ = 395 for 𝑃𝑒𝑑𝑏 = 0.01 (left) and 𝑃𝑒𝑑𝑏 = 0.1 (right). 

5.3. Two-year simulation of a 3 x 2 borehole field coupled to a ground-source heat-pump 

system  

In this demonstration problem, the proposed hybrid numerical-semi-analytical method 

was used for a two-year simulation of a 3 x 2 borehole field (akin to that illustrated in Figs. 1 and 

2) coupled to a ground-source heat-pump system. The geometry of the borehole field is the same 

as that considered in Section 5.2, which results in the same two-dimensional and three-

dimensional grids. The input of time-varying total heat extraction rate was set equal to the 

heating and cooling loads obtained from a simulation of a small (5,000 sq-ft) office building 

using eQuest 3.65 [Hirsch (2016)]. This building was assumed to be equipped with a constant-

efficiency heat pump. The building loads were calculated using ambient temperatures available 

in a representative January-to-December meteorological data file for Montreal, Canada.  
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Table 3. Input data used in the simulation of a 3 x 2 borehole field (akin to that illustrated 
in Figs. 1 and 2) coupled to a ground-source heat-pump system  

Parameter Units Symbol Value 
Simulation time step (min) Δ𝑡 10 
Maximum time (years) 𝑡𝑚𝑎𝑥 2 
Number of boreholes (-) 𝑁𝑏 6 
Bore field angle (°) 𝛽𝑏 30 
Borehole length (m) 𝐻 150 
Buried depth (m) 𝐷 4 
Borehole spacing (m) 𝐵 5 
Borehole diameter (m) 𝑑𝑏 0.15 
U-tube pipe outer radius (m) 𝑑𝑝,𝑜 0.042 
U-tube pipe inner radius (m) 𝑑𝑝,𝑖 0.034 
Shank spacing (m) 𝑑1−2 2⁄  0.053 
U-tube pipe inner-surface root-
mean-square roughness 

(m) 𝑒𝑟𝑚𝑠 1.5×10-6 

Undisturbed ground temperature (°C) 𝑇𝑔 13 
Effective thermal conductivity (W/m-K) 𝑘𝑒𝑓𝑓 2.5 
Effective volumetric heat 
capacity 

(J/m3K) (𝜌𝑐𝑝)𝑒𝑓𝑓 2.8×106 

Groundwater volumetric heat 
capacity 

(J/m3K) (𝜌𝑐𝑝)𝑤 4.2×106 

Groundwater regional Darcy 
velocity 

(m/year) 𝑈∞ 30 

Groundwater dynamic viscosity (Pa-s) 𝜇𝑤 1.3×10-3 
Soil porosity (-) 𝜀 0.26 
Soil permeability (m2) 𝐾 2.5×10-13 
Grout thermal conductivity (W/m-K) 𝑘𝑔 1.5 
U-tube pipe-wall thermal 
conductivity 

(W/m-K) 𝑘𝑝 0.4 

Working-fluid thermal 
conductivity 

(W/m-K) 𝑘𝑓 0.45 

Working-fluid dynamic 
viscosity 

(Pa-s) 𝜇𝑓 4×10-3 

Working-fluid density (kg/m³) 𝜌𝑓 1030 
Working-fluid specific heat (J/kg-K) 𝑐𝑓 4000 
Working-fluid mass flow rate 
per borehole 

(kg/s) 𝑚̇𝑓 0.75 
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The other input data used in the simulation of the 3 x 2 borehole field are shown in 

Table 3. The soil properties are based on data for fine sand (see Table 1); the pipe-material 

properties correspond to those of HDPE pipes; and the working-fluid properties correspond to 

those of a 20% solution of propylene-glycol in water. 

The total heat extraction rate (provided as an input) and the inlet and outlet working-fluid 

temperatures during the second year of the simulation year (calculated used the proposed hybrid 

method) are presented in Figs. 8 and 9, respectively. The maximum heat extraction rate is 

75.6 kW and the maximum heat injection rate is 61.8 kW. The total heat extracted is 24870 kWh 

per year and the total heat injected is 25478 kWh per year. The minimum and maximum inlet 

working-fluid temperatures yielded by the simulation were -1.21°C and 28.26°C, respectively; 

and the minimum and maximum outlet fluid temperatures were 2.96°C and 24.85°C, 

respectively. 

The predicted outlet working-fluid temperatures using the numerical model, and those 

obtained using a semi-analytical method based on a moving-finite-line-source solution of a 

simplified version of this problem, are presented in Fig. 9. This semi-analytical method uses the 

temporal superposition of the temperature step-response function to obtain the variation of the 

ground temperature at the borehole outer-surface and the semi-analytical method presented in 

Section 4.3 to obtain the outlet working-fluid temperature. The temperature step-response 

function is obtained from the method of Cimmino and Bernier (2014), using the moving-finite-

line-source solution presented in Eq. (38). The temporal superposition is conducted using the 

method of Claesson and Javed (2012). During the second simulation year, the root-mean-square 

difference between the outlet working-fluid temperatures obtained from the numerical and semi-

analytical models is 0.42°C. The maximum absolute difference is 2.04°C. In general, the semi-
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analytical method underpredicts the temperature variations since heat is generated at the axis of 

the boreholes and thus the temperature at the borehole outer-surface responds slower to heat 

extraction. 

 

Figure 8. Yearly variation of the total heat extraction rate from the 3 x 2 borehole field. 
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Figure 9. Difference between the outlet working-fluid temperature of the boreholes during the 

second simulation year (above); and inlet and outlet working-fluid temperatures during the 

second year of the simulation (below). 

The temperature field in the groundwater saturated soil in the borehole field at the end of 

the second simulation year (December 31st) is presented in Figure 10 for a horizontal cross-

section located at 𝑧 = 𝐷 + 𝐻 2⁄ = 79 m. It shows that the minimum temperatures are located at 

the borehole outer-surfaces since the borehole field extracts heat from the soil at this time of the 

year. At the illustrated time, the overall average temperature at the borehole outer-surfaces is 

12.13 °C. East of the boreholes, at 𝑥 ≈ 20 m, a temperature greater than 𝑇𝑔 (= 13°C) is observed. 

This maximum is caused by the heat injected into the ground earlier during the simulation year, 

and its location is shifted east of the boreholes due to advection by the groundwater. Soil 

temperatures downstream of the boreholes alternate between maximums and minimums due to 
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the yearly cycling of the building heating and cooling loads. In Fig. 10, the distance between 

maximum and minimum soil temperatures downstream of the boreholes is approximately equal 

to the half-year transport distance given by the effective heat transport velocity, 𝑈∞𝜌𝑤𝑐𝑝,𝑤 (𝜌𝑐𝑝)𝑒𝑓𝑓⁄ ∙ 0.5yr = 22.5 m. 

 

Figure 10. Groundwater-saturated soil temperatures in a horizontal cross-section of the borehole 

field located at z = 79 m at the end of the second simulation year. 

6. Concluding remarks 

The formulation, verification, and demonstration of a hybrid numerical-semi-analytical 

method for cost-effective simulations of the temperatures and heat transfer in borehole fields, in 

the presence of groundwater flow, were presented and discussed in the earlier sections of this 

paper. 

In the proposed method, an amalgamation of a co-located control-volume finite element 

method and a finite volume method (CVFEM and FVM) [Baliga and Atabaki (2006); 

Lamoureux and Baliga (2011)] is used for solving the mathematical models of groundwater flow, 
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temperature, and heat transfer in the soil of the borehole field; and the bulk temperature 

distribution of the working fluid (flowing inside the legs of a U-tube pipe inserted inside each 

borehole and kept in place by grout) and the heat extraction (or addition) rates are obtained using 

a semi-analytical solution to a quasi-steady quasi-one-dimensional model. The numerical and 

semi-analytical solutions are iteratively coupled at each time step, using the conditions of no-

slip, impermeability, equality of temperature, and continuity of heat flux at the interface between 

each borehole and the groundwater-saturated soil in the borehole field.  

The hybrid numerical-semi-analytical method proposed in this paper follows the works of 

Bernier and Baliga (1992) and Lamoureux and Baliga (2015) who proposed cost-effective hybrid 

methods for computer simulations of closed-loop thermosyphons. It also complements and 

extends earlier hybrid methods for the investigation of heat transfer in borehole fields, such as 

those proposed by Li and Zheng (2009), Choi et al. (2013), for example, and others [see the 

review paper by Yang et al. (2010)]. 

The proposed hybrid numerical-semi-analytical method was successfully implemented and it 

produced encouraging results, some of which were presented and discussed in Section 5 of this 

paper. Potentially useful extensions of this method could be achieved by relaxing some of the 

assumptions on which it is based, as was discussed at the end of Subsection 3.1. 
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