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RESUME

Les fortes pluies et le traitement inadéquat des sources d’eau de surface sont des facteurs causaux
a ’origine de plusieurs épidémies de maladies d'origine hydrique. Alors que les changements
climatiques intensifient le cycle hydrologique, une attention accrue sur la gestion des risques
sanitaires liés aux évenements météorologiques est recommandée dans plusieurs guides sur la
gestion de la qualité de 1’eau potable. Cependant, les jeux de données disponibles permettant de
caractériser les concentrations microbiennes a 1’eau brute des usines de production d’eau potable
et la performance de leurs procédés de traitement sont limités. Conséquemment, les variations a
court terme da la qualité microbiologique de I’eau sont hautement incertaines. Le développement
de meéthodes permettant de quantifier ces variations a court terme et d’évaluer leurs risques est

donc nécessaire afin de favoriser le développement des approches d’analyse de risque.

L'objectif principal de ce projet de recherche est de développer et de mettre en ccuvre une
méthodologie permettant d’évaluer systématiquement les risques microbiens associés aux
événements hydrométéorologiques se produisant aux usines de production d'eau potable. Les
objectifs spécifiques de ce projet sont les suivants: (1) présenter un catalogue de distributions de
probabilités pouvant potentiellement décrire les variations temporelles des microbiennes a I’ecau
brute des usines, et fournir une approche statistique permettant d’estimer leurs parameétres et de
comparer leur ajustement relatif; (2) évaluer le potentiel d’une technologie de mesure en ligne de
l'activité de la PB-D-glucuronidase (GLUC) pour évaluer les pointes de micro-organismes
pathogenes et d’indicateurs fécaux a I'eau brute durant des événements hydrométéorologiques et
évaluer leur réduction a grande échelle par des procédés de traitement conventionnels; (3)
déterminer quelles distributions de probabilités permet de prédire adéquatement les concentrations
microbiennes a I’eau brute durant des événement hydrométéorologique; (4) évaluer I’impact des
variations a court terme des concentrations microbiennes a 1’cau brute sur les risques

microbiologiques liés a la consommation d’cau potable.

Dans la premiére partie de cette thése, des distributions de probabilités ont été sélectionnées pour
évaluer les variations temporelles des concentrations microbiennes a 1’eau brute. Le premier article
présente une analyse statistique de données de suivi réglementaire d’E. coli collectées a six usines.

Le deuxieme article présente une analyse statistique de données de suivi mensuel de
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Cryptosporidium et de Giardia collectées a 30 usines. Ces analyses statistiques montrent que
I’identification adéquate des distributions est nécessaire pour modéliser les variations temporelles
de Cryptosporidium a I’eau brute lorsque les jeux de données sont petits (n < 30 échantillons par
usine). La sélection d’une distribution log-normales plutét qu’une distribution gamma peut
considérablement augmenter (>0,5-log) la limite supérieure de I’intervalle de crédibilité a 95% sur
la concentration moyenne. L’application de méthodes permettant de favoriser le choix d’un mod¢le
est donc nécéssaire pour assurer la sélection de distributions convenablement conservatices.
Toutefois, les différences entres les valeurs données par le critére marginal d’information sur la
déviance (mDIC) sont géréalement trop faibles pour justifier le choix d’une distribution. En
conséquence, différentes distributions ajustées de la méme maniére sur un jeu de données peuvent

prédire différents niveaux de risque.

Une approche permettant de résoudre ce probleme est de comparer les prédictions des queues
supérieures de différentes distributions a des données d’échantillonnage collectées lors de périodes
critiques de contamination a la source. Dans le troisieme article, une stratégie d'echantillonnage
déclenchée par des mesures en ligne de I'activité de la B-D-glucuronidase (GLUC) est proposée
afin de caractériser les concentrations microbiennes de pointes durant quatre evenements
hydrométeorologiques a trois usines. Les résultats de cette étude montrent que la capacité du suivi
de I’activité GLUC a caracteriser des évenements de fréquence faible est variable selon le type de
source. Selon des données de suivi de routine, les probabilités de dépassement de la concentration
moyenne journaliere d’E. coli, de Cryptosporidium et de Giardia évaluées durant les évenements
visés sont généralement faibles (< 5%) a deux usines and modérées (10-35%) a une usine. La
distribution log-normale ajustée sur des données de suivi de routine prédit de maniére conservatrice
les concentrations moyennes journalieres d’E. coli, de Cryptosporidium et de Giardia évaluées
durant chacun des évenements. La distribution gamma permet de prédire les concentrations
moyennes journaliéres de Cryptosporidium durant ces évenements mais ne permet pas de prédire
convenablement les concentrations moyennes journaliéres d’E. coli et de Giardia. La queue
supérieure de la distribution gamma pourrait donc étre trop petite pour prédire adéquatement les

concentrations microbiennes a la source durant des événements hydrométéorologiques.
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L’étude de la performance a grande échelle des procédés de traitement de ces mémes trois usines
en périodes normales et lors d'événement hydrométéorologiques est ensuite présentée dans deux
articles. Durant les trois événements de fonte des neiges, I’enlévement par les procédés de
décantation (lamellaire a floc lesté ou lit de boues pulsé) a augmenté proportionnellement aux
concentrations de Giardia, d'adénovirus, de rotavirus, d’E. coli et de C. perfringens a I'eau brute.
Durant I'événement de pluie, I’enlévement d’E. coli et de C. perfringens par le décanteur a lit de
boues pulsé n’a pas augmenté mais la réduction par filtration rapide sur sable a augmenté
proportionnellement aux concentrations d’E. coli et de C. perfringens a 1’eau brute. Les
concentrations de Cryptosporidium a I’eau brute et les taux de réduction de C. perfringens mesurés
durant ces évenements ont été utilisées dans un modéle d’évaluation quantitative du risque
microbien (EQRM) pour estimer les risques journaliers d'infection par Cryptosporidium a I’eau
potable. Les résultats de cette modélisation EQRM indiquent que les risques journaliers d'infection
durant ces événements hydrométéorologiques ne sont pas plus elevés que les risques journaliers en
périodes normales. Par conséquent, a ces usines, le risque annuel d'infection n’est probablement
pas domine par les variations a court terme des concentrations microbiennes a la source. Les
résultats de ces campagnes d'échantillonnage indiquent également que le taux d’inactivation d’E.
coli et d'adénovirus par les procédes d'ozonation est inférieure a ceux obtenues lors d’études
d'inactivation en laboratoire, potentiellement en raison de mauvaises conditions hydrauliques et
conditions de mélange. De plus, des adénovirus infectieux ont été détectés a 1’eau traitée par une
filiere de traitement incluant une décantation lamellaire & floc lesté, une inter-ozonation, une
filtration sur charbon actif granulaire, et une désinfection UV a une dose d’opération de 40 mJ cm’
2.

Il est anticipé que les méthodologies proposees pour caractériser la contamination a la source et la
performance a grande échelle des procédes de traitement va aider les responsables
gouvernementaux de réglementation, les ingénieurs et les gestionnaires des ressources en eau, et
les chercheurs dans ce domaine a évaluer les exigences de suivi réglementaire et déterminer si les

cibles de risque sanitaires sont atteintes.
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ABSTRACT

Heavy rainfall and inadequate treatment of surface water sources are common causative factors of
waterborne disease outbreaks. As climate change intensifies the hydrological cycle, an enhanced
focus on the risk management of weather events has been recommended in future revisions of
guidance documents for drinking water quality. However, real-world data sets describing
concentrations of microbial pathogens in water sources and their full-scale reduction by water
treatment processes are typically small. Consequently, short-term changes in microbial water
quality are highly uncertain. The development of methods to quantify these short-term fluctuations
and evaluate their health risks is needed to enhance the applicability and usefulness of risk

assessment approaches.

The general objective of this research project is to develop and implement a methodology to
systematically assess microbial risks associated with hydrometeorological events at drinking water
treatment plants (DWTPs). The specific objectives of this research project are: (1) to present a
catalogue of candidate probability distributions to describe temporal variations in source water
microbial concentrations, and provide a statistical approach to estimate their parameters from
monitoring data and compare their relative fit; (2) to evaluate the potential of online measurements
of B-D-glucuronidase (GLUC) activity to assess short-term variations in source water microbial
concentrations.; (3) to determine which probability distributions adequately predict source water
microbial concentrations during hydrometeorological events, and (4) to assess the impact of short-
term variations in source water microbial concentrations on microbial risks associated with

drinking water consumption.

In the first part of this work, candidate probability distributions were selected to evaluate temporal
variations in source water microbial concentrations at various DWTPs. The first article presents
the statistical analysis of regulatory monitoring E. coli data sets from six DWTPs. The second
article presents the statistical analysis of routine monitoring Cryptosporidium and Giardia data sets
from 30 DWTPs. These statistical analyses demonstrated that correct identification of the candidate
distribution is needed to model temporal variations in source water Cryptosporidium
concentrations when available data sets are small (n < 30 samples per site). The selection of a log-

normal distribution rather than the gamma distribution can considerably increase (>0.5-log) the



upper bound of the 95% credibility interval on the mean concentration. The application of methods
to assist model selection is therefore needed to ensure that appropriately conservative distributions
are selected for source water characterization. However, differences in marginal deviance
information criterion (mDIC) values were generally too small for discrimination between candidate
distributions. Consequently, candidate distributions fit the data equally well but may predict
different risk estimates when they are used as input distributions in risk assessment.

A possible approach to address this issue is to compare the upper tail predictions of candidate
distributions to event-based monitoring data collected during critical periods of source water
contamination. In the third article, an event-based sampling strategy triggered by online B-D-
glucuronidase (GLUC) activity measurements was thus developed and implemented to capture
microbial peaks during four hydrometeorological events at three DWTPs. Our results indicated that
the potential of GLUC activity for characterizing low-frequency events was site-specific. Based on
routine monitoring data, the exceedance probabilities of daily mean E. coli, Cryptosporidium and
Giardia concentrations evaluated during targeted events were generally low (< 5%) at two sites
and moderate (10-35%) at one site. The log-normal distribution fitted to routine monitoring data
conservatively predicted daily mean concentrations of E. coli, Cryptosporidium and Giardia
evaluated during all targeted events. The gamma distribution did predict daily mean
Cryptosporidium concentrations during these events but did not reasonably predict daily mean E.
coli and Giardia concentrations. The upper tail of the gamma distribution may therefore be too thin

to predict source water microbial concentrations during hydrometeorological events adequately.

The investigation of the microbial reduction performance of full-scale treatment processes during
hydrometeorological events is presented in two articles. It was found, during three snowmelt
events, that the reduction performance of high-rate clarifiers (ballasted or floc blanket) increased
proportionally to source water concentrations of Giardia, adenovirus, rotavirus, E. coli and C.
perfringens. During the rainfall event, the reduction performance of E. coli and C. perfringens by
floc blanket clarifier did not increase; however, the reduction performance of E. coli and C.
perfringens by rapid sand filtration did increase proportionally to their source water concentrations.
Site-specific source water Cryptosporidium data and C. perfringens reduction data were entered
into a QMRA model to estimate daily infection risks by Cryptosporidium via the consumption of

drinking water. The daily infection risks during snowmelt and rainfall episodes were not higher



than the daily risks during baseline conditions. Hence, the annual infection risk is not likely to be
dominated by variations in source water pathogen concentrations at these sites. Additionally, these
sampling campaigns demonstrated that the full-scale inactivation performances of E. coli and
adenovirus by ozonation systems were lower than those obtained in lab-scale inactivation studies,
potentially because of poor mixing and hydraulic conditions. Limited effectiveness of UV
disinfection against naturally occurring adenovirus was also found at operative doses of 40 mJ cm’

2 after a combination of ballasted clarification, ozonation, granular activated carbon filtration.

It is anticipated that the proposed methodologies for source water characterization and full-scale
performance demonstration will help regulators, water supply engineers and managers, and
researchers in this field to evaluate monitoring requirements and determine whether microbial

health-based targets are achieved.
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CHAPTER 1. INTRODUCTION
1.1 Background

The 1993 Milwaukee cryptosporidiosis outbreak, the largest documented North American water
supply waterborne outbreak, was described as being caused by a high concentration of
Cryptosporidium oocysts in source water inadequately removed by conventional treatment
processes after a coagulant change-over (Mac Kenzie et al. 1994, Hrudey and Hrudey 2004).
Concerns with the occurrence of this outbreak and others during this period led researchers to
develop performance-based standards for the control of bacteria, viruses, and protozoa in drinking
water (Regli et al. 1991, Haas et al. 1993, Haas et al. 1996). During the same period, several studies
showed that low- and medium-pressure UV systems were very effective against Cryptosporidium
oocysts (Clancy et al. 1998, Clancy et al. 2000, Craik et al. 2001, Shin et al. 2001). The
implementation of performance-based standards and the installation of UV treatment technologies
in many drinking water treatment plants may have played a significant role in reducing the

waterborne disease burden over the three last decades.

Drinking waterborne outbreaks occurring in affluent nations since 2000 were recently compiled in
literature reviews (Moreira and Bondelind 2017, Hrudey and Hrudey 2019). According to Hrudey
& Hrudey (2019), most of these outbreaks could have been avoided if drinking water suppliers had
recognized rather basic lessons: 1) faecal contaminants can be present in all water sources, and 2)
some microorganisms shed by livestock and wildlife can be infectious to humans. Many of the
cases reviewed also outlined a relationship between waterborne outbreaks and meteorological
conditions (Moreira & Bondelind, 2017; Hrudey & Hrudey, 2019). Heavy rain and inadequate
treatment of surface water sources were potential causative factors for outbreaks caused by
Cryptosporidium (Stirling et al. 2001, Jennings and Rhatigan 2002, Pelly et al. 2007, DeSilva et al.
2015), Giardia (Nygard et al. 2006), norovirus (Larsson et al. 2014), and Shigella sonnei (Arias et
al. 2006).

Comparing causative factors of waterborne outbreaks is limited by the fact that compliance and
enforcement of drinking water regulations can vary regionally. However, taken together, these
outbreak investigations suggest that weaknesses in treatment performances can lie dormant for

weeks, months, or years until the occurrence of a transient peak in raw water contamination
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overwhelmed treatment barriers. Hrudey & Hrudey (2019) concluded that the occurrence of
waterborne outbreaks after heavy rainfall events is certainly common enough to justify increased
vigilance for such events. Furthermore, as the frequency of extreme rainfall events is expected to
increase in many countries around the world (IPCC 2014), enhanced focus on the management of
weather events has been recommended in future revisions of guidance documents for drinking
water quality (Khan et al. 2015, Howard et al. 2016). The current framework for drinking water
quality management allows, to some extent, to assess microbial risk related to variations in raw

water contamination. A brief overview of this framework is presented next.

Since the turn of the millennium, quality assurance of drinking water is shifting from a reactive
approach focused on the examination of faecal indicator bacteria in finished water toward a
preventive, risk-based approach to water quality management (Fewtrell and Bartram 2001). This
framework involves the definition of a quantitative tolerable health-based target and the systematic
assessment of risks to determine the magnitude of treatment and operation control required to
achieve this target. The water safety plan (WSP), analogous to the hazard analysis and critical
control points (HACCP) system in the food industry, has been promoted by the World Health
Organization (WHQO) as an instrument to make the risk-based approach operational (Bartram
2009). Water safety planning is now widely practiced globally (WHO 2017c). One of the key
elements of a WSP is the identification of hazardous events (i.e., a situation or an incident that can
affect the safety of the water supply (WHO 2009b). Heavy rainfall events are typically considered
as potentially hazardous events because surface runoff can increase the loading of microorganisms
into the water source (Signor et al. 2005). Moreover, WHO recently recommended to specifically
consider hazardous events associated with climate variability and change in the WSP process
(WHO 2017a).

Different risk assessment methods (qualitative, semiquantitative, quantitative) have been proposed
to evaluate the likelihood and the consequences of hazardous events (WHO 2016b). Quantitative
microbial risk assessment (QMRA), the quantitative characterization and estimation of potential
health effects associated with exposure of human to microbial agents (Haas et al. 1999), can be
used to quantify health risks associated with hazardous events (Medema and Ashbolt 2006,
Medema and Smeets 2009, Smeets et al. 2010, Petterson and Ashbolt 2016). The WHO recently
published a guidance document to promote and standardize the application of QMRA for water

safety management (WHO 2016b). The QMRA process has been used in various regions of the
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world to support the development of drinking water guidelines (Government of New Zealand 2007,
WHO 2017b, Health Canada 2019) and regulations (VROM-Inspectorate 2005, USEPA 2006).

There are, however, limitations in the available data and models for expanding the application of
QMRA. Microbial pathogens cannot be directly measured in drinking water because concentrations
are too low for detection; therefore, a bottom-up approach must be adopted to quantify the
exposure. However, real-world data sets describing concentrations of microbial pathogens in water
sources and their full-scale reduction by water treatment processes are typically very small.
Consequently, short-term changes in microbial water quality are highly uncertain. The
development of methods to systematically quantify these short-term fluctuations will significantly
enhance the usefulness of the QMRA approach. More specifically, the characterization of short-
term changes in source water quality will be increasingly necessary to evaluate how drinking water

treatment plants cope with current and future hydrometeorological events.
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1.2 Structure of the thesis

Introduction (Chapter 1): Chapter 1 provides background on the role of the water safety plan and
the quantitative microbial risk assessment processes in supporting the management of infectious

microorganisms in drinking water.

Literature review (Chapter 2): This chapter reviews mathematical approaches for the evaluation
of temporal variations in source water microbial concentrations and microbial reduction across

treatment processes.

Research objectives, hypothesis and methodology (Chapter 3): In Chapter 3, the research

objectives, hypothesis, and the methodology of the thesis are presented.

Chapters 4-8 present the content of this research project in the form of four submitted, accepted,

or published scientific publications, and one scientific publication to submit.

1. Article 1 (Chapter 4): Can routine monitoring of E. coli fully account for peak event
concentrations at drinking water intakes in agricultural and urban rivers? Published in
Water Research.

2. Article 2 (Chapter 5): Importance of distributional forms for the assessment of protozoan
pathogens concentrations in drinking water sources. Accepted in Risk Analysis.

3. Article 3 (Chapter 6): Impact of hydrometeorological events for the selection of
parametric models for protozoan pathogens in drinking water sources. Accepted in Risk
Analysis.

4. Article 4 (Chapter 7): Demonstrating the reduction of enteric viruses by drinking water
treatment during snowmelt episodes in an urban watershed. Submitted to Water Research.

5. Chapter 8: Using surrogate data to assess microbial risks associated with

hydrometeorological events for drinking water safety.
The general findings and implications of this work are discussed in Chapter 9.

The main conclusions and recommendations of this research project are presented in Chapter 10.
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CHAPTER 2. LITERATURE REVIEW

Abstract: This chapter investigates fundamental issues related to the assessment of microbial risks
associated with hydrometeorological events at drinking water treatment plants. Mathematical
approaches for evaluating temporal variations in microbial concentrations in source water and
pathogen reduction across treatment processes are presented. A special focus is on the
consideration of low-probability contamination events in risk assessment. Candidate probability
distributions describing simple statements about underlying processes are proposed for the
assessment of temporal variations in source water microbial concentrations. Rate laws governing
the removal and inactivation of pathogens in drinking water treatment processes are presented, and

their potential deviations under dynamic conditions are discussed.

2.1 Introduction

One of the main tasks in drinking water safety management involves the prediction and mitigation
of hazardous events (WHO 2017b). Accurate knowledge of the frequency, amplitude, and duration
of microbial contamination peaks in drinking water sources is of paramount importance for risk
assessment and management (Teunis et al. 2004). Rainfall events are known to promote the rapid
transport of microbial contaminants in surface water, which may lead to transient raw water
contamination peaks at drinking water intakes (Atherholt et al. 1998, Kistemann et al. 2002, Signor
et al. 2005). Snowmelt events have also been recently identified as critical periods of source water
microbial contamination in urbanized catchments (Jalliffier-Verne et al. 2016, Madoux-Humery et
al. 2016). Accounting for the impact of such hazardous events in the quantification of microbial
treatment requirements has been frequently recommended in the scientific literature (Medema and
Ashbolt 2006, Signor and Ashbolt 2009, Schijven et al. 2011, Petterson et al. 2015) and in guidance
documents (WHO 2009b, 2016b). However, reasonable methods to address this issue have not yet
been extensively explored. The aim of this Chapter is, therefore, to present a mathematical
framework to account for microbial risks associated with hydrometeorological events in microbial

risk assessment for drinking water safety.

2.2 Exposure assessment framework for water safety management

The starting point in any QMRA is to consider the dose-response framework for infectious

microorganisms. The probability of response (infection, acute illness) resulting from any single
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inoculated pathogen acting independently to cause infection typically follows an exponential or a
beta Poisson dose—response model (Haas 1983, Teunis and Havelaar 2000). For these dose—
response models, the number of microorganisms in the dose is Poisson distributed. Thus, the
exposure is usually characterized in terms of the arithmetic mean number of organisms in the dose
(Haas 1996)*. The exposure assessment can therefore be viewed as an attempt to quantify the mean
dose of a pathogen ingested by a person via the consumption of contaminated drinking water.

Concentrations of pathogens in treated drinking water are usually too low to be accurately detected
by current detection methods. Due to this limitation, the exposure is generally predicted by
quantifying the concentration of the pathogen in raw water and its reduction by water treatment
processes. A generic model for the exposure assessment can be formulated as follows (Teunis and
Schijven 2019):

(2.1)

1
D = Craw X o= X Sp X Zl,...,n X'V

Se ng

where D is the dose of a pathogen ingested via drinking water; C.,,, is the pathogen concentration
in raw water; Se is the sensitivity of the enumeration method; Sp is the specificity of the
enumeration method; Z is the fraction of pathogen that passes n consecutive water treatment
processes; and Vi, is the volume ingested. Input probability distributions can be used to
characterize these variables over time. Mathematical approaches to describe the temporal variations
in microbial concentrations in raw water and pathogen reduction across treatment processes are

presented in sections 2.3 and 2.4, respectively.

! The number of organisms in the dose may be overdispersed relative to the Poisson distribution; however, for a given
mean dose, the risk predicted with a mixed Poisson model (e.g., negative binomial distribution) is always less than the
risk predicted with a Poisson distribution (Haas 2002, Nilsen and Wyller 2016). The Poisson distribution represents a

conservative upper bound estimate of the risk.
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2.3 Framework for assessing source water concentrations

2.3.1 Statistical model for microbial count data

The simplest model to describe the distribution of microbial counts per unit volume in a suspension
is the Poisson distribution. The probability of finding k& organisms in a homogenous sample x of

volume V collected from a suspension of mean concentration u is given by the Poisson distribution:

T 2.2
P(x=k) = %exp (—av) 22)

At the same location, the mean concentration j is a single sample will vary per unit time because
of the effect of hydrometeorological conditions on the transport of microorganisms, the
presence/absence of sources of microbial contamination in the catchment, etc. To describe temporal
variations in the mean concentration y, a “mixing” continuous probability distribution can be
combined with the Poisson distribution to yield a discrete mixed Poisson distribution (Haas et al.
1999). A mixed Poisson distribution can be written as Equation (2.2) integrated with a mixing

distribution as follows:

v (2.2)
P(x;V,B) = f P, (x; V) h(u; B)du
0

where h is the mixing distribution of parameters 8 describing the temporal variations in the mean
concentration . The negative-binomial distribution (gamma-Poisson mixture) is generally
considered as an input distribution to characterize pathogen data (Teunis et al. 1997, Schijven et
al. 2011, Petterson et al. 2015, WHO 2016b), in part because the negative binomial distribution can
be written in closed form (Teunis and Schijven 2019). Other continuous distributions can be used
as mixing distributions to describe different underlying processes generating temporal variations
in microbial concentrations (Haas et al. 1999). The selection of an adequately conservative mixing
distribution may be key to predict the frequency and the magnitude of microbial peak events in
source water. A catalogue of candidate mixture distributions is therefore proposed in the next

section.
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2.3.2 Candidate mixture distributions

One possible approach to select candidate distribution is to read their distributional forms as
statements about processes (Frank 2014). It can be demonstrated using information theory and the
notion of maximum entropy that probability distributions typically arise as simple combinations of
linear scaling (additive processes) and logarithmic scaling (multiplicative processes or additive
processes on the log scale). In statistical mechanics, a continuous probability distribution can be
determined by maximizing the Shannon entropy S under a constraint on the average value and a
constraint on total probability?. The method of Lagrange multipliers can be used to maximize S

subject to these two constraints®. The solution takes the simple form (Frank 2014):

Dy X e—/lx (2-5)

The probability distribution p, is therefore directly proportional to an exponential distribution e =**
with A = 1/ u. To generalize the solution of Eq. (2.5) into a single framework, the measurement

scale may be constrained, yielding
Dy e s (2.6)

where T is a scaling measure (Frank and Smith 2010). Many distributional forms can be expressed
by choosing an expression for T,. The base scale becomes purely linear if T, = x (exponential

distribution) or purely logarithmic if T, = log (x) (Pareto type I distribution).

The transition from a logarithmic scale to a linear scale with the magnitude of observations can be

expressed if Tr = log(x) — bx (gamma distribution). The logarithmic scale T; ~ log(x) dominates
when x is small, whereas the linear scale T, ~ —bx dominates when x is large. Inversely, a

transition from a linear scale to a logarithmic can be expressed if Ty = log(1 + x/a) (Pareto type

2 The Shannon entropy is given by S = — [ p, log(p,)dx and is maximized under a constraint on the average value

G,(p,) = [ py xdx — p = 0 and a constraint on total probability G,(p,) = [ p,dx—1=10

% This method consists in constructing a new function F' = —S — kG, (p,) — 1G,(p,) and maximizing it by writing

the partial derivates of F'with respect to p,’s equal to zero.
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[I/Lomax distribution). The scale is linear T, ~ x/a for small values of x whereas the scale is

logarithmic Ty ~ log(x/a) for large values of x.

It can also be useful to apply a change of variable to express the probability distribution on a
different scale. In these cases, a measurement scale correction m, needs to be added to the

generalized form presented in Eq. (2.6)
Dy X mye ATr (2.7)

in which m, = |g'(x)|, where g is the derivative of the scale correction function g (Frank, 2014).
For example, for a change of variable y = log (x), the scale y can be changed to the scale x, by
using g(x) = log (x), which yield m, = g'(x) = x~1. If the Gaussian distribution is expressed
using Ty = (x — )2, then the log-normal distribution can be expressed by a change of scale with

Tr = (log (x) —pw)? and m,, = x 1.
Py X x~1e—Aog (x)-w)? (2.8)

Table 2-1 lists the base form of commonly observed distributions arising from combinations of
linear scaling and logarithmic scaling. The advantage of these candidate distributions is that they
can be read in terms of underlying processes. In practice, determining in which context tail events
scale linearly or logarithmically may be useful to guide the risk assessment. The consideration of

other distributions, such as extreme value distributions, could be valuable to extend this list.

4 By applying a constraint on the variance rather than a constraint on the mean, the solution of Eq. (2.5) takes the form

Dy X e~A0-1% where 1 = 1/202, which is the normal (Gaussian) distribution.
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Table 2-1: Common probability distribution as statements about processes. Adapted from Frank
(2014).

Distribution Base form Base scale
Exponential e Linear
Normal (Gaussian) e Linear
Log-normal x~le—2(ogx)*  Linear (on the log-scale)
Gamma xteetx Log-linear
Pareto type | x4 Log
Pareto type Il/Lomax (¢, + x)™* Linear-log

Complementary cumulative distribution function (CCDF) graphs are commonly used in risk
assessment to visually compare candidate distributions with different upper tail behaviors (Haas
1997, Smeets et al. 2008). A CCDF graph is simply a distribution of the exceedance probability
versus the consequence (in our case, the concentration of the microorganism) represented on a log-
log scale. Figure 2-1 illustrates theoretical CCDF distributions for candidate probability
distributions presented earlier. This CCDF graph shows that, at low exceedance probabilities, the
Gamma and normal distributions decay exponentially with tail probabilities (linear scaling). In
contrast, the Lomax distribution has a power-law tail (logarithmic scaling). In this example, the
log-normal and Lomax tails have disproportional roles in defining the mean of these distributions
(Figure 2-1). Correct identification of the tail behavior can therefore be of importance when the
variability in microbial concentrations is high. However, in practice, characterizing tail behaviors
with time series data can be particularly difficult because only small sample sizes are typically

available. The next section will look more closely into this issue.
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Normal, average=100
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Figure 2-1: Complementary cumulative distribution function (CCDF) curves for four candidate
distributions, including normal (x=100, 0=80), gamma («=0.9, $=0.005), log-normal (u=4.7,
0=1.4), and Lomax (a=1.1, 1=150)

2.3.3 Time series concepts —Stationarity and ergodicity

Continuous probability distributions can be used for the analysis of time series data if random
fluctuations exhibit both ergodicity and stationarity. The concept of ergodicity implies that the
parameter values of these distributions can be adequately deduced from a sufficiently large sample
of the random process. Stationarity signifies that the parameter values will not vary over time.
These two assumptions are not commonly validated in practice, but their implications need to be

considered when a real system is intended to be represented.

The ergodic assumption will be violated if multiple underlying processes with their own statistical
properties are superposed. Figure 2-1 shows that the normal, gamma, log-normal, and Lomax
distributions have similar behaviors from exceedance probabilities of 1.0 to 0.2 but have distinct
behaviors at lower exceedance probabilities. Therefore, the underlying process can only be
validated if the sample size is large enough to characterize the upper tail. In Figure 2-2, the sample

mean of randomly generated samples from these distributions is tracked for various sample sizes.
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The sample means stabilize rapidly for thin tail distributions (normal, gamma), but not for heavy

tail distributions (log-normal, Lomax).

Normal
Gamma
Lognermal
Lomax

1200

1000

600 800
1 1

400
1

Sample mean concentration

200
1

T T T T T T T
1 5 10 50 100 500 1000

Sample size (n}

Figure 2-2: Sample mean concentration from randomly generated samples for four candidate
distributions, including normal (©=100, 0=80), gamma («=0.9, $=0.005), log-normal (u=4.7,
0=1.4), and Lomax (a=1.1, 1=150)

In drinking water safety management, sample numbers are often small (n<30 samples per site)
because of the high costs of pathogen analysis. Therefore, pathogen concentrations cannot be
characterized at low exceedance probabilities, and the tail of the distribution can only be
extrapolated. A potential solution to validate these extrapolations may be to identify critical periods
of raw water contamination with a surrogate and monitor pathogen concentrations during these
periods (Teunis and Schijven 2019). The probability that these observations fall in the upper tail of
a candidate distribution may then be evaluated to inform model selection. Stationarity is a more
difficult assumption to validate in a water quality assessment. Nonstationarity may arise from the
combination of the effects of climate change and human disturbances on a river catchment (Milly
et al. 2008). Large faecal indicator data sets collected over multiple years might be useful to
evaluate stochastic trends and distributional shifts. Pathogen/surrogate indicator data are frequently
collected in rounds of source water monitoring (e.g., every 5 years), which may implicitly address
the problem of nonstationarity. Nevertheless, probability distributions are conditional on historical

data; thus, a distribution may not accurately predict concentrations during an accident or an extreme
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weather event. The identification of early signals and precursors is needed to manage these types

of event.

2.4 Framework for assessing pathogen reduction across treatment

Processes

2.4.1 First-order process

A commonly used model to describe the degree to which a treatment process reduces an influent
microorganism concentration is the log-reduction (LR). This quantification method assumes that
the reduction is a first-order process with respect to the influent concentration of the
microorganism. If the reduction of an organism by a treatment process is first-order with respect to

the influent concentration C;,,, then the effluent concentration C,,,; can be calculated as follows:
Cout = Cinexp (—kt) (2.9)

where t is the detention or retention time in the treatment process, and k is a first-order rate constant
(Haas et al. 1999). By assuming that the treatment process is operating under steady-state
conditions (kt is a constant), the log-reduction can be obtained empirically by taking the common
logarithm of the ratio of the concentration before and the concentration after the process. A point

estimate of the log-removal (LR) across a treatment unit can be calculated as follows:

Cin ) (2.10)

Cout

LR = log;, (

The first-order model considerably simplifies the exposure assessment because the same fraction
of microorganisms is expected to be removed regardless of the influent concentration Cj,.
Furthermore, if all treatment processes of a treatment train are first-order and independent, then the
total average reduction performance of the treatment train can be calculated by multiplying the
average rate of passage (107%R) of each process (Haas and Trussell 1998, Teunis et al. 2009,
Schmidt et al. 2020). The concept of log-reduction is widely used in the water industry to
characterize the reduction performance of treatment processes (USEPA 2006, Ministry of Health
2008, Health Canada 2019). However, under real-world dynamic conditions, the first-order rate

constant k may vary in time. In this case, a deviation from the first-order process would occur.



40

2.4.2 Potential deviations from the first-order process

2.4.2.1 Coagulation/flocculation processes

The first-order rate model presented in Equation (2.10) neglects the mechanism of particle
aggregation during flocculation. However, this mechanism may have a significant influence on the
removal of a microorganism. Increases in the removal of protozoan parasites by conventional
treatment have often been associated with increases in turbidity/particle concentrations in raw
water (LeChevallier et al. 1991, LeChevallier and Norton 1992, Nieminski and Ongerth 1995,
McTigue et al. 1998, Dugan et al. 2001).

The Smoluchowski coagulation theory of particles may help understanding how microorganisms
are aggregated during flocculation. The prediction of flocculation rates can be viewed as a two-
step process (Gregory 2005). First, a mathematical expression (size distribution function) is derived
to keep particle count as a function of their size. Second, a collision rate coefficient based on a
physical model (Brownian motion, fluid shear, differential sedimentation) is introduced into the
expression that keeps counts of collisions. The relative contribution of these mechanisms during
flocculation will primarily depend on the size of the particles in the system (Han and Lawler 1992,
Youn and Lawler 2019). According to Smoluchowski, the collision between particles of sizes i and

Jj in a suspension can be treated as a second-order rate process given by
Jij = aijBinn; (2.11)

where «;; is a collision efficiency coefficient; g;; is a collision rate coefficient; and n; and n; are
the particle concentrations (Gregory and O'Melia 1989). Concentrations of microorganisms in
natural aquatic environments are typically much lower than concentrations of abiotic particles.
Thus, the removal of microorganisms during conventional flocculation should be governed by
heteroaggregation between microorganisms and abiotic particles. If the initial concentration of a i-
sized microorganism n; o is assumed to be much smaller than the initial concentration of a j-sized
abiotic particle n; , then the rate of loss of the concentration of a i-sized microorganism n; can be

approximated by a pseudo-first-order process given by:

dn; 2.12
d_tl ~ —a;jBijnon; (@12)



41

where a;; is a collision efficiency coefficient; B;; is a collision rate coefficient; and ¢ is the

detention time in the flocculator. Integrating Equation (2.12) once yields:

ny =MN;o eXp(—nj,oaijﬁijt) (2.13)

Therefore, even without knowing any details of a;; and g;;, it can be anticipated that the particle

concentration in raw water is influencing the aggregation rate of microorganisms during

flocculation.

2.4.2.2 Disinfection processes

In the context of microbial decay promoted by disinfection, the first-order rate constant k from
Equation (2.9) is conventionally replaced by kC™ to form the Chick—Watson model (Haas et al.

1999). This model is expressed by the differential rate law:

Z_IZ — _kC"N (2.14)
where dN/dt is the rate of inactivation, N is the number of survivors at contact time t, k is the
Chick—Watson coefficient for a specific microorganism and set of conditions, C is the
concentration of the disinfectant, n is the coefficient of dilution (i.e., the average number of
molecules of disinfectant necessary to inactivate a microorganism). Equation (2.14) can be

generalized for nonlinear behaviors by the following differential rate law (Gyurék and Finch 1998):

W mnEem-ien (2.15)
dt

which integrated once yields

(2.16)

In (Nﬁ()) =— (x i 1) In[1+ N 1(x — DkC™t™]

where m and x are empirical constants. Equation (2.16) indicates that if x is different than 1, then
the inactivation efficiency depends on N,. This dependency has been observed in experimental
disinfection studies of Giardia muris by ozone (Haas and Kaymak 2003) and of E. coli by
monochloramine (Kaymak and Haas 2008). Haas and Kaymak (2003) hypothesized that quorum

sensing (i.e., cell-cell communication mechanism) could alter the response of organisms at higher
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concentrations or that higher concentrations of organisms could form a more significant amount of

disinfection by-product which could be inactivation agents themselves.

2.4.3 Implications for risk assessment

Deviations from the first-order process for coagulation/flocculation and disinfection suggest that
these treatment processes are operated under dynamic conditions instead of steady-state conditions.
Mechanistic models may be more useful to predict treatment performance under dynamic
conditions (WHO 2016b). The development of mechanistic models would require site-specific data
sets representing a wide range of operational conditions. The incorporation of correlations among
exposure variables in a quantitative risk assessment may have a substantial effect on risk estimates
(Smith et al. 1992, Haas 1999, Wu and Tsang 2004). Further work is needed to evaluate how these
correlations could be assessed and incorporated in QMRA.

2.5 Conclusions

The importance of considering the impact of hydrometeorological events in drinking water safety
management has been frequently recommended in the scientific literature and guidance documents.
A systematic assessment of microbial risks posed by such events is needed to inform risk
management strategies. Identifying critical periods of source water contamination and evaluating
the full-scale performance of treatment processes during these periods could substantially improve
the assessment of these risks. High-resolution data on full-scale performances by physicochemical
and disinfection processes are needed to evaluate whether deviations from the first-order process

are significant in practice.
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CHAPTER 3. RESEARCH OBJECTIVES, HYPOTHESIS AND
METHODOLOGY

3.1 Research objectives and hypothesis

The general objective of this research project is to present a method to systematically assess
microbial risks associated with hydrometeorological events at drinking water treatment plants. The

specific objectives are:

Objective 1: To present a catalogue of candidate probability distributions to describe temporal
variations in source water microbial concentrations, provide a statistical approach to estimate their

parameters from data and compare their relative fit.

Objective 2: To evaluate the potential of autonomous online measurements of B-D-glucuronidase

(GLUC) activity to assess short-term variations in source water microbial concentrations.

Objective 3: To determine which probability distributions adequately predict source water

microbial concentrations during hydrometeorological events.

Objective 4: To assess the impact of short-term fluctuations in source water microbial

concentrations on microbial risks associated with drinking water consumption.
The interdependencies between these objectives are presented with a flowchart in Figure 3-1.
Achieving these objectives should address specific questions, such as:

e Can online GLUC activity monitoring facilitates the identification of microbial peaks in

surface water, and if so, which candidate probability distribution adequately predict them?

e Do microbial reduction performances of full-scale treatment processes deviate from the

first-order rate during hydrometeorological events?

e What is the magnitude of the short-term infection risks during hydrometeorological events?

Do these short-term risks drive the aggregate risk over the long-term?

The research hypotheses and their validation criteria are listed in Table 3-1
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General objective
To present a method to systematically assess microbial risks associated with
hydrometeorological events at surface drinking water treatment plants

¥

Stochastic modeling of source water data

Event-based monitoring of source & treatment

1. Catalogue of candidate probability
distributions as statements about process
Bayesian model to estimate distribution
parameters using routine monitoring data
3. Model comparison and selection using
information criteria and predictive checks

[

4.

Monitoring strategy using autonomous online
measurement of B-D-glucuronidase activity
and meteorological indices to trigger sampling
Assessment of short-term variations in
microbial pathogens/indicators concentrations
Assessment of short-term variations in
microbial reduction by full-scale treatment

4

QMRA framework

7. Evaluation of the impact of distribution selection on the mean concentration of
the microorganism and its uncertainty

8. Validation of probability distributions for short-term variations in microbial
pathogens/indicators concentrations

9. Demonstration of the capacity of full-scale treatment processes to cope with
increases in microbial contamination at the source

10. Quantification of short-term microbial risks in baseline & event conditions

Figure 3-1: Flowchart representing the objectives of the thesis




Table 3-1: Research hypotheses, criteria for their validation, and corresponding articles
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Statement

Hypothesis

Validation

Article

A precise estimate of the mean source water
microbial concentration and its uncertainty
is required for defining site-specific drinking

water treatment requirements.

Correct identification of the tail behavior of
fitted to

monitoring data is necessary to estimate the

a probability distribution

mean source water microbial concentration

and its uncertainty.

The upper bound of the 95% uncertainty
interval on the mean source water
microbial concentration varies from
>0.5-log among distributions fitted to

the same data.

1,2,3

The characterization of low-frequency

events of source water microbial
contamination is needed to validate the tail
behavior of a probability distribution fitted

to small monitoring data sets.

Online  B-D-glucuronidase  monitoring
captures events necessary for characterizing
low-frequency events in source water

microbial concentrations.

The exceedance probability of the daily
mean microbial concentration during
captured events is < 5% based on a
gamma distribution fitted to historical

monitoring data.

1,3,5

Transient peaks in source water microbial
should be

considered in source water characterization.

contamination explicitly

The gamma distribution does not reasonably

predict source water microbial

concentrations during snowmelt and rainfall

events.

The gamma distribution predicts daily
mean concentrations at an exceedance
probability < 0.1% during snowmelt and

rainfall events.

1,3

The reduction of microorganisms by each
treatment process is assumed to be a first-
order process with respect to their influent

concentration.

The concentration of microorganisms in

treated drinking water increases

proportionally to its source water

concentration.

An increase in the daily mean microbial
concentration >1.0-log is measured in
settled water or filtered water during a

source water event.

3,45
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3.2 Methodology

The selection of sites for case studies, the design and implementation of baseline and event-based
monitoring campaigns, and the development of methods for the statistical analysis of microbial
datasets are presented in this section. The selection of reference pathogens and surrogate
microorganisms and the specific procedures required for their concentration and enumeration will

be presented in Chapters 4-8.

3.2.1 Site selection

In Quebec, Canada, weekly or monthly sampling of raw water for the enumeration of Escherichia
coli (E. coli) is required at surface drinking water treatment plants (DWTPs) by the Regulation
respecting the quality of drinking water (Chapter Q-2, r.40) since 2012. Also, for research
purposes, Cryptosporidium and Giardia were monitored by the Government of Quebec at 30
DWTPs for two years between 2011 and 2019. E. coli, Cryptosporidium, and Giardia data from
these 30 DWTPs were available for site selection. The statistical analysis of six E. coli data sets
will be presented in Chapter 4. These sites were selected to investigate temporal variations in E.
coli concentrations at DWTPs highly vulnerable to (un)treated municipal wastewater discharges
and agricultural runoff. Three of the six sites evaluated in Chapter 4 were selected for detailed
investigations of short-term fluctuations in source water quality during hydrometeorological events
(snowmelt and rainfall episodes). Figure 3-2 shows aerial photographs of the location of these
DWTPs and lists primary sources of microbial contamination identified in their catchments. Unit
processes involved in the treatment train of these DWTPs are shown schematically in Figure 3-3.
The DWTPs selected for each article and their general catchment characteristics are listed in Table
3-2.



DWTPs C6 and C7: Snowmelt events (spring 2017-18) DWTP A4: Rainfall event (autu 2017)
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River flow rate (spring): 400 m®/s

Primary sources of microbial contamination
» Five wastewater treatment plants
« >200 combined sewer overflows

Average river flow rate (autumn): 15 m®/s
Primary sources of microbial contamination
» Agricultural spraying: April to October
* One wastewater treatment plant (aerated pond, 10 km
upstream, 1000 m3/d)
» Four combined sewer overflows

Figure 3-2: Maps and catchment characteristics of selected sites

47



48

DWTP A4
Raw water Shdge blalnket » Rapid sand filtration »| UV disinfection » F:Iher:mclal
supply T clarffication disinfection
Raw water Settled water Filtered water UV disinfected water
DWTP C6
Raw water Shidge blanket Dual sand-anthracite Inter- Gramular activated Chemical
supply T clarfication filtration ozonation carbon filtration disinfection
Raw water Settled water Filtered water
DWTP C7
Microsand Dual sand-granular ;
Ra: “litf-‘r ballasted rw [nta; activated carbon [ UV disinfection |—n di(il;mt?al
PP T clarification ozonahon filtration echion
Raw water Settled water Filtered water UV disinfected water

Figure 3-3: Unit processes involved in the treatment train of drinking water treatment plants studied

in this thesis and location of sampling points
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Table 3-2: Drinking water treatment plants studied in this thesis and their catchment characteristics

. . Mean
Article 1 Article 2 Article 3 Article 4 Chapter 8 Main land  Catchment discharge
(Source, (Source, (Source, . > .
(Source) (Source) cover size (km?) of river
treatment) treatment) treatment) (m¥ls)

- DWTP A01 - - - Agricultural 100 <20

- DWTP AQ2 - - - Agricultural 200 <20

- DWTP Al - - - Forested 100 <20

- DWTP A2 - - - Mixed <100 <20

- DWTP A3 - - - Mixed 500 <20
DWTP B DWTP A4 DWTP A4 - DWTP A  Agricultural <100 <20

- DWTP B1 - - - Mixed 2500 23

- DWTP B2 - - - Forested 4000 26

- DWTP B3 - - - Mixed 2500 26

- DWTP B4 - - - Mixed 4200 27

- DWTP B5 - - - Mixed 1100 36

- DWTP B6 - - - Mixed 2500 70

- DWTP B7 - - - Agricultural 3400 74

- DWTP C1 - - - Mixed 10 000 114

- DWTP C2 - - - Agricultural 10 000 114

- DWTP C3 - - - Mixed 7 000 114

- DWTP C4 - - - Mixed 10 000 190

- DWTP C5 - - - Agricultural 10 000 190
DWTPC1 DWTPC6 DWTPC6 DWTP A - Urban >50000 286
DWTPC2 DWTPC7 - DWTP B DWTPB  Urban >50000 286

- DWTP C8 - - - Mixed 23000 330

- DWTP C9 - - - Mixed 23000 330

- DWTP C10 - - - Urban >50000 1,365
DWTPD DWTPCI11 - - - Urban >50000 1,365

- DWTP C12 - - - Urban >50000 16000

- DWTP C13 - - - Mixed >50000 16000

- DWTP C14 - - - Mixed >50000 16000
DWTP A DWTP D1 - - - Agricultural 200 Reservoir

- DWTP E1 - - - Forested 100 Lake

- DWTP E2 - - - Forested 3000 Lake

3.2.2 Event-based monitoring campaigns

3.2.2.1 Rationale for event-based monitoring

In the context of this research, event-based monitoring consists of sampling a microbial

contaminant under conditions (hazardous event) when microbial concentrations are expected to be

high (rainfall/snowmelt episodes, sewer bypass event). Data from event-based monitoring were

used to: 1) validate the prediction of parametric models describing temporal variations in source

water microbial concentrations, and 2) demonstrate the full-scale performance of treatment

processes during critical periods of source water contamination.
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3.2.2.2 ldentification of critical periods of microbial contamination

Fully automated measurement systems (ColiMinder™ VWM GmbH, Vienna, Austria) were
installed at the selected DWTPs to measure -D-glucuronidase (GLUC) activity in raw water at
high-frequency (every ~15-30 minutes). Detailed technical information about the technology can
be found in Koschelnik et al. (2015). Short-term variations in GLUC activity were measured for
about one month before event-based monitoring campaigns to estimate the baseline GLUC activity
level. Event-based monitoring campaigns were triggered by site-specific changes in GLUC activity
levels and meteorological indices (24-hour cumulative rainfall, air temperature). Figure 3-4 shows
results from GLUC activity measurements at an urban DWTP.

a. DWTP intake
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Figure 3-4: Near real-time GLUC activity measurements combined with routine and event-based
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monitoring of E. coli at the intake of a drinking water treatment plant during combined

snowmelt/rainfall-induced runoff events. Adapted from Burnet et al. (2019b).

3.2.2.3 Monitoring the reduction performance of full-scale treatment processes

Monitoring the removal or inactivation of microorganisms by full-scale treatment processes is
challenging because it requires the concentration of large volumes of water. Measuring short-term
fluctuations in the removal performance of a treatment process requires a concentration method
rapid enough to concentrate multiple large volumes in a relatively short amount of time. The
Hemoflow method was used to simultaneously concentrate E. coli and C. perfringens spores in
raw, settled, filtered and UV-disinfected water samples (Veenendaal and Brouwer-Hanzens 2007).
A Hemoflow HF80S filter (Fresenius, Ontario, Canada) can only concentrate water at a rate of
approximately 1 L/min. Therefore, installations with four Hemoflow-filters in parallel were built

to concentrate large water volumes (1000-1500 L) in about 6 hours. Viruses were concentrated
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from water samples using electropositive filters NanoCeram VS2.5-5 (Argonide Corp, Sanford,

FL, USA). Large volume samples were filtered on-site at high-frequency under a constant flow
rate of 5-15 L mint. Schematic overviews of the Hemoflow and NanoCeram concentration systems

are presented in Figure 3-5.

Hemoflow ultrafiltration filter

NanoCeram electropositive filter

Adapted from: media.springernature.com/lw785/springer-static/

Schematic overview of the Hemoflow system

Schematic overview of the NanoCeram system

_®

A picture (4) and a schematic overview (B) of the Hemoflow-system

1, sample-collection point; 2, water meter; 3, water tank with float; 4, pump; 5,
Hemoflow-filter; 6, filtrate; 7, pressure meter; 8, returning tube; 9, tube clamp; a,
¢ en d connection points for tubes

Adapted from: Veenendall & Brouwer-Hanzens (2007)

ﬁgﬂﬂ‘-'-- Water Source

,?*ﬂg&!;o-—--—o Water

Discharge

Intake Module

Discharge
Module

Cartridge
Housing
Module

Adapted from Fout et al. (2016)

On-site Hemoflow concentration

\/

Figure 3-5: Simultaneous concentration of multiple microbial indicators using Hemoflow

ultrafiltration filters and virus concentration using NanoCeram cartridge filters

3.2.3 Statistical analysis of microbial data sets

Hierarchical Bayesian models were developed for the statistical analysis of microbial data sets

using the software JAGS (Plummer 2013). Bayesian methods were selected because Bayesian
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statistics can produce reasonable results when only small data sets are available (van de Schoot and
Miocevié¢ 2020). The fundamentals of Bayesian analysis will be briefly discussed in this section.
The application of hierarchical Bayesian models for the analysis of pathogen data will be detailed
in Chapters 5 and 7.

3.2.3.1 Bayesian computation

In microbial risk assessment, statistical inference is preferably undertaken using original
observations (microorganism counts, analyzed volume) rather than reported concentrations (Haas
et al. 1999). The modeling of original observations is advantageous because it allows incorporating
different sources of uncertainties into the statistical analysis. In Bayesian inference, the distribution

of values of a parameter 6 given the observed data D is evaluated with the Bayes' theorem:

P(D|0)P(08) (3.2)
f, P(DI6)P(6) do

P(B|x) =

where P(0|D) is the posterior; P(D|0) is the likelihood; P(0) is the prior; and the denominator is
the marginal likelihood, i.e., the overall probability of the data D according to the model. The
marginal likelihood is calculated by averaging across all 6 values weighted by the strength of belief
in those values (Kruschke 2014). The computation of the marginal likelihood in hierarchical
models may require the calculation of intractable integrals. In such cases, Markov chain Monte
Carlo (MCMC) methods can be used to generate parameter values from the posterior distribution

of the model without computing the integral in the marginal likelihood.

A popular MCMC method is the Metropolis algorithm. The Metropolis algorithm works by
generating sample values of a parameter 6 by taking a random walk through the parameter space

as follows:

1. The random walk starts at an arbitrary point specified by a proposal distribution (e.g., a

normal distribution centred at the current position in the parameter space).

2. For each time step t, the random walk progress by proposing a new position in the
parameter space. An acceptance ratio r is computed to decide whether the proposed location

is accepted.
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Bi-1) = P(D|8new)P(Bpew) (3.2)
new» St=127 p(D10,_1)P(0,_1)

r(0

If r>1, then 6,.,, IS accepted. If the r <1, then a random number from uniform [0,1] is
generated. If the random number is <, 6., IS accepted, if not, 0., is rejected and a new

value of the parameter 6 is randomly generated from the proposal distribution.

The process is repeated thousands of times, and, in the long run, the positions visited by the random
walk approximate the posterior distribution. The influence of the selection of an arbitrary starting
value can be reduced by discarding the first part of the sample (the burn-in period). The posterior
estimates can be summarized using a measure of central tendency (e.g., mean) of the posterior

distribution and a credibility interval.

A limitation of the Metropolis algorithm is that the proposal distribution needs to be adequately
tuned to estimate the posterior accurately. This procedure may be inconvenient when the inference
of multiple unknown parameters is required (as in hierarchical models). Gibbs sampling is a more
practical alternative for sample generation from distributions of at least two dimensions. This
algorithm is the basis of the popular software JAGS (Just Another Gibbs Sampler). The basic
insight of Gibbs sampling is to leverage the structure of the proposal distribution by repeatedly
sampling from the conditional distribution when one of the variables is fixed. For example, for a
model with two variables (x;,x,), for each iteration, x; is sampled from the conditional
distribution P (x4 |x,) with x, fixed, then x, is sampled from the conditional distribution P(x,|x;)
using the new value of x,. See Bolstad (2009) and Kruschke (2014) for accessible mathematical

tutorials on the Metropolis algorithm and Gibbs sampling.

3.2.3.2 MCMC diagnostics

The interpretation and validation of MCMC estimates within the Bayesian framework are essential
steps to ensure that results can be trusted. The main issues to check to validate MCMC results will

be presented in this section.

First, the stability of the MCMC chains must be checked visually and numerically for all parameters
to ensure that the chains are representative of the posterior. Visual checks of trace plots and density
plots are illustrated in the upper-left and the lower-right panels of Figure 3-6, respectively. The

regularity of the trace plot and the smoothness of the density plot can be checked to ensure that the
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posterior distribution is computed adequately. A popular numerical check is the shrink factor: the
ratio of the variance within the individual chains to the variance between the chains (Gelman and
Shirley 2011). The evolution of the shrink factor is illustrated in the lower-left panel of Figure 3-
6. The convergence of the chains can be verified by evaluating if the shrink factor is close to 1 for
all parameters.

Second, the level of autocorrelation in the Markov chains must be evaluated to ensure that the
entire posterior distribution has been explored. Autocorrelation can be defined as the serial
correlation of the chain values with the chain values at a given number of steps ahead (lag). The
evolution of the autocorrelation for lags of 1 to 35 is illustrated in the upper-right panel of Figure
3-6. In this panel, the effective sample size (ESS) is a numerical indicator evaluated by calculating
the ratio of the sample size to the amount of autocorrelation (Kass et al. 1998). An ESS of 10,000
has been recommended to obtain reasonably accurate estimates of the 95% credibility interval of a
posterior distribution (Kruschke, 2014). The program JAGS in R can be used to automatically
builds MCMC chains and returns a sample from the posterior distribution (Plummer 2013).

Third, the choice of prior distribution may significantly influence the posterior, especially when
the sample size is small. The model may underfit the data if the prior is too diffuse, but overfit the
data if the prior is too informative. It is recommended to conduct a sensitivity analysis using
different specifications of a prior for estimating their influence on the posterior (van de Schoot and
Miocevié¢ 2020). A sensitivity analysis of the impact of the specification of a prior on the variance

parameter of the log-normal distribution will be presented in Chapter 6.
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Figure 3-6: Hlustration from MCMC diagnostics for a specified parameter. Upper-left: Evolution
of parameter values of three chains as the number of iterations increases (trace plot). A burn-in
period of 2000 steps was applied. Upper-right: Autocorrelation diagnostic for lags from 1 to 35.
Lower-left: Evolution of Gelman and Rubin's shrink factor as the number of iterations increases.
Lower-right: Density plots of the parameter values sampled in three MCMC chains. Generated in
R using the diagMCMC function from Kruschke (2014).

3.2.3.3 Model comparison

Information criteria can be used to measure the relative goodness of fit of Bayesian models for a
given data set. These criteria rank models by balancing goodness-of-fit and complexity using
deviance and a penalty term weighted by the number of parameters to reduce the risk of overfitting.

The deviance information criterion (DIC) was used for model comparison in Chapters 4 and 5. The
DIC is given by:

DIC=D-(D-D)=D+pp (3.3)
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where D is the mean of D, the deviance for each set of sampled parameter values in the posterior
distribution, and D is the deviance calculated at the posterior mean. The difference D — D = p,,
can be interpreted as the penalty term. The DIC assumes that the sample size is much larger than
the number of parameters of the model and that the posterior is a multivariate normal distribution
(Spiegelhalter et al. 2002). For Bayesian hierarchical models, the DIC can be expressed either as
conditional upon latent variables (cDIC) or after marginalizing over latent variables (mDIC)
(Spiegelhalter et al. 2002, Celeux et al. 2006). For a mixed Poisson model, the conditional-level
likelihood is the Poisson distribution, and the marginal-level likelihood is the mixture distribution.
A method for the calculation of the mDIC will be presented in Chapter 5.

Finally, each model should be check by simulating replicated data under the predictive distribution
and then comparing these predictions to the observed data (Gelman and Hill 2006). This model
checking approach is known as graphical posterior predictive checks. Complementary cumulative
distribution function (CCDF) graphs can be useful tools to visualize the upper tail behavior of a
distribution (see Section 2.3.2).
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CHAPTER 4. ARTICLE 1 - CAN ROUTINE MONITORING OF E.
COLI FULLY ACCOUNT FOR PEAK EVENT CONCENTRATIONS AT
DRINKING WATER INTAKES IN AGRICULTURAL AND URBAN
RIVERS?
This chapter proposes the use of four probability distributions (gamma, log-normal, Lomax,
bimodal log-normal) to model temporal variations in E. coli concentrations using large data sets
from regulatory monitoring at six drinking water treatment plants located in urban and agricultural
catchments. Data collection and model validation methods are presented to verify whether selected

parametric distributions predicted peak E. coli concentrations. This article is published in Water

Research. Supplementary information is presented in Appendix A.
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Abstract In several jurisdictions, the arithmetic mean of Escherichia coli concentrations in raw
water serves as the metric to set minimal treatment requirements by drinking water treatment plants
(DWTPs). An accurate and precise estimation of this mean is therefore critical to define adequate
requirements. Distributions of E. coli concentrations in surface water can be heavily skewed and
require statistical methods capable of characterizing uncertainty. We present four simple
parametric models with different upper tail behaviors (gamma, log-normal, Lomax, mixture of two
log-normal distributions) to explicitly account for the influence of peak events on the mean
concentration. The performance of these models was tested using large E. coli data sets (200 to
1800 samples) from raw water regulatory monitoring at six DWTPs located in urban and
agricultural catchments. Critical seasons of contamination and hydrometeorological factors leading
to peak events were identified. Event-based samples were collected at an urban DWTP intake
during two hydrometeorological events using online B-D-glucuronidase activity monitoring as a
trigger. Results from event-based sampling were used to verify whether selected parametric
distributions predicted targeted peak events. We found that the upper tail of the log-normal and the
Lomax distributions better predicted large concentrations than the upper tail of the gamma
distribution. Weekly sampling for three years in urban catchments and for four years in agricultural
catchments generated reasonable estimates of the average raw water E. coli concentrations. The
proposed methodology can be easily used to inform the development of sampling strategies and

statistical indices to set site-specific treatment requirements.
4.1 Introduction

The World Health Organization’s (WHO) water quality guidelines recommend a preventive and
risk-based approach for drinking water quality management. For this purpose, a spectrum of
microbial risk assessment approaches is available, from simple sanitary inspections and risk
matrices to more complex ones such as quantitative microbial risk assessment (QMRA) (WHO
2016b).The QMRA approach can provide relative estimates of microbial risks at drinking water
treatment plants (DWTPs), which may be particularly useful to prioritize investments in improving
water treatment or in implementing source water protection measures. However, in many
situations, data on pathogen occurrence and concentrations in raw water are not available at
DWTPs, and only faecal indicator bacteria (FIB) are measured to characterize source water quality.
Therefore, to support the implementation of a source-to-tap approach, simplified classification

methods, known as “bin classification” were developed to determine minimum treatment
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requirements according to a specific level of FIB concentrations in raw water. Different summary
statistics (e.g., mean concentration, maximum concentration) and sampling strategies (weekly
sampling, monthly sampling, event-based sampling) are specified in regulatory requirements

worldwide for bin classification (Supplementary Table 4-1).

The arithmetic mean is a valid metric for characterizing microbial concentrations in order to
characterize the risk of multiple exposures to low doses of pathogens (Haas, 1996). The annual
mean is usually considered in QMRA because annual health-based targets are recommended in
guidelines and regulations (Sinclair et al. 2015). Precise estimation of the mean is challenging for
surface water because microbial concentrations can vary over several orders of magnitude within
hours or days (Burnet et al. 2019b). This metric relies on the law of large numbers; as the sample
size grows, its sample mean gets closer to the true mean. However, the meaning of “large” depends
on the distribution of the data. The convergence is much faster for normal or thin-tailed distribution
than for heavy-tailed distributions. If the variance is very large, any new observation can be large
enough to overwhelm all previous observations, regardless of the number of accumulated

observations.

Numerous studies have shown that heavy rainfall can rapidly increase microbial contamination
loads in water (Atherholt et al. 1998, Kistemann et al. 2002, Signor et al. 2005). In urban areas,
combined sewer overflow (CSO) discharges induced by heavy rainfall or snowmelt events can
cause recurring microbial peaks in raw water at DWTPs (Jalliffier-Verne et al., 2016, Madoux-
Humery et al., 2016). In agricultural areas, similar heavy rainfall episodes can increase microbial
contamination of surface waters as a result of overland transport, tile drainage systems and
resuspension from stream sediments (Dorner et al. 2006). A statistical approach was proposed to
incorporate such peak events in the risk assessment for a hypothetical frequency of occurrence
(Petterson et al. 2006). However, methods for the estimation of peak event frequency have not been
proposed yet. Stochastic models are used in other fields to evaluate the frequency of extreme
precipitation events, streamflow peaks (Katz et al. 2002), and extreme pollution from runoff
(Harremoés 1988). These models have implications for quantifying the frequency of extreme

events at DWTPs but have not been utilized in the context of microbial safety of drinking water.
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In Quebec, Canada, raw water E. coli concentrations are measured since 2013 at least weekly for
large DWTPs (>10,000 inhabitants). These extensive datasets provide a unique opportunity to
study temporal variations in different catchments. The objective of the study was to first develop a
methodology to correctly estimate the mean E. coli concentrations in surface drinking water
sources by considering peak events. Large routine monitoring datasets from six DWTPs were fitted
with parametric distributions having different upper tail behaviors. For the best-fit distributions,
we then evaluated the required minimum sample size to estimate the mean concentration for
different ranges of uncertainty. Secondly, key contributors to the mean concentration level were
identified by examining the influence of seasonality and hydrometeorological factors on temporal
variations. Finally, we conducted event-based sampling during two hydrometeorological events at
an urban DWTP to evaluate whether the selected parametric distributions predicted these targeted
peak events. Implications for the development of sampling strategies and probabilistic models are
discussed for setting health-based drinking water treatment requirements.

4.2 Material and methods
4.2.1 Study sites

Six DWTPs fed by rivers located in urban and agricultural catchments were selected and classified
by the mean annual river flow rate in ascending order from A to D (Table 4-1). DWTPs C2 and D2
were located downstream DWTPs C1 and D1, respectively. Wastewater treatment plants, CSO
discharge points, and the dominant land cover type were identified for areas 15 km upstream of the
drinking water intakes. In Quebec, CSOs are equipped with recording devices to measure the
frequency and the daily cumulative duration of discharges (Gouvernement du Québec 2015). CSO
discharges are forbidden during dry periods but are permitted with restrictions during rainfall and
snowmelt episodes (CCME 2009, Gouvernement du Québec 2015). In agricultural areas, manure

must be spread on unfrozen soils between April and October (Gouverment du Québec 2018).
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Table 4-1: Sampling strategies for E. coli in raw water and characterization of the catchment of six

surface drinking water treatment plants in Quebec, Canada

Main land cover WRRFs/CSOsin

Sampling Sampling Mean flow rate of the . . .
DWTP ) ) ) type in the intake the intake
period frequency river (m*/s) [min-max] ) .
protection zone # protection zone #

2009-2017 Weekly 10 [0.1-100] Agricultural 0/8

B 2013-2017 Weekly 15 [3-100] Agricultural 1/4

C1 2009-2017 Daily M-T 300 [20-1000] Urban 4/26

Cc2 2013-2017 Weekly 300 [20-1000] Urban 3/25

D 2009-2017 Daily M-T 1000 [500-3000] Urban 0/44

E 2010-2015 Daily 9000 [7000-10,000] Urban 1/0

A 15 km upstream and 100 m downstream from the withdrawal site. The distances include surface water, portions of

tributaries and a 120 m strip of land measured from the high-water mark.

4.2.2 Hydrometeorological data

The impact of hydrometeorology on the variations in raw water E. coli concentrations at DWTP
C1 were investigated to identify critical periods of contamination for event-based sampling. Daily
river flow rate, snow cover, and total precipitation were obtained from online databases. River flow
rate was measured at a provincial gauging station five kilometers downstream of DWTP C1. The
other parameters were obtained from the Montreal Pierre Elliott Trudeau international airport
weather station located 17 kilometers south of the DWTP.

4.2.3 Regulatory E. coli monitoring

Escherichia coli was chosen as an indicator of microbial water quality because of its widespread
use in drinking water regulations and because it provides evidence of recent faecal pollution (WHO
2011). Depending on the DWTP, we obtained routine E. coli monitoring results for five to nine
years between 2009 and 2017. Raw water samples were collected daily from Monday to Thursday
(daily M-T) or once a week between Monday and Thursday (weekly). All samples were collected
during regular working hours (from 9:00 to 18:00). E. coli was enumerated with plate counts on
EC-MUG medium (APHA 2012) by membrane filtration using modified membrane-
thermotolerant E. coli agar (modified mTEC) (EPA method 1603) or by the defined substrate
technology using the IDEXX Quanti-Tray/2000 System with Colilert reagent (APHA 2012). E.

coli concentrations were reported either in most probable number (MPN) or colony-forming unit



62

(CFU) per 100 milliliters. Two ten-fold serial dilutions (0.1, 0.01) were carried out for the modified
mTEC method to obtain countable ranges of 20-80 CFUs per plate, and no dilution with countable
ranges of 1-2,419 MPN/100 mL was applied with Colilert. Hence, the upper limit of detection with
this modified mTEC and the Colilert methods were 8,000 CFU/100 mL and 2,420 MPN/100 mL,
respectively. For event-based monitoring, one ten-fold serial dilution (0.1) was applied for the
Colilert assay to increase the upper limit of detection to 24,196 MPN/100 mL. Non-detect values
were replaced with a limit of detection of 1 E. coli/100 mL for statistical analyses. This simple
approach for handling non-detects has a negligible impact on statistical inference because, at these
DWTPs, the proportions of non-detects are small (<5%). Poisson mixture distributions could be
used to handle non-detects in cases in which their proportion would be higher. Burnet et al. (2019a)
observed a strong correlation (r = 0.94) between membrane filtration and the Colilert assay at

DWTP C1. For ease of interpretation, all E. coli results were presented as E. coli/100 mL.

4.2.4 Indices for the identification of heavy tails

Two simple measures were considered to evaluate the statistical dispersion of each empirical
distribution of E. coli concentrations. The kurtosis was selected to evaluate if infrequent extreme
deviations were captured in historical data. A high kurtosis can indicate that tail events are not
properly characterized and that the true mean could be higher than the sample mean. The ratio of
the standard deviation to the mean absolute deviation (MAD) was further examined as it increases
with the heavy-tailedness of the distribution (Taleb 2015).

4.2.5 Statistical inference of E. coli concentrations

Statistical inference was undertaken based on reported E. coli concentrations to draw conclusions
on the mean concentration and its uncertainty. Continuous distributions were selected to describe
the variation in E. coli concentrations without taking into account the random (Poisson) distribution
of counts because only data in the form of concentration measurements were available. The
variations in faecal indicator concentrations in water are often described using log-normal
distributions (Thomas 1955, Ott 1994). Here, we evaluated how the gamma, log-normal and Lomax
distributions described the variations in raw water E. coli concentrations at each DWTP. Those
distributions were selected because they have different simple underlying generative processes
(Frank 2014) and embrace a spectrum of tail behaviors (Haas 1997). The Lomax distribution, also
known as Pareto type Il, has not previously been selected to describe the variability of microbial

contamination in water but has many applications in natural sciences (Newman 2005, Sornette
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2006). This distribution can be interpreted as an exponential distribution with a power-law tail. The

power-law tail is characterized by a much slower decay as compared to an exponential distribution.

Two different approaches were adopted for statistical inference. First, a Bayesian approach was
applied for the inference of the three candidate distributions. Distributions were parametrized by
shape k and scale 6 (gamma); mean u and standard deviation o (log-normal); or shape o and scale
A (Lomax) (Table 4-2). The parameters were provided with broad, noncommittal prior distributions

so that the prior had a minimal influence on the posterior (Kruschke 2014).

Table 4-2: Likelihood and priors selected for Bayesian inference

Distribution Likelihood Prior probability
of density function distribution Average Variance
1 _X k~U (0,10)
k-1 g 2
Gamma F(k)@kx e 6 ~ 1 (0,10000) ko ko
Aa
— A - - -
Lomax E[l _l_f] (a+1) a~U(0,10) o7 fora>1 (a—1D2(a-2) for a>2
A A A~ U (0,10000) Otherwise undefinec coforl<a =<2
Otherwise undefined

1 (lnx_ﬂ)z O-Nu(10_35d(y)ll 10315d(y)) 0_2

Log-normal e~ 202 p~ N (mean(y), ;oo =) exp (u + 7) [exp(a?) — 1]exp (2u + 0?)
xoV2m wherey = In (x)

A sample of posterior parameter pairs was constructed using a Markov chain Monte Carlo
procedure using Gibbs sampling. The models were specified and run in JAGS (v4.2.0) (Plummer
2013) from R (v3.4.1). Markov Chain Monte Carlo methods were performed using rjags (v4-6)
(Plummer 2013). Four Markov chains were implemented for each parameter. The model was run
for 10* iterations after a burn-in phase of 103 iterations. The Brooks-Gelman-Rubin scale reduction
factor indicated that convergence was obtained for each of these four chains (Gelman and Shirley
2011). The uncertainty on the parameter values of the Bayesian models and the predicted mean
concentration was then evaluated. The goodness of fit of each Bayesian model was measured with

the deviance information criterion (DIC) (Spiegelhalter et al. 2002) as follows:

DIC = —2(L — P) (4.1)
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where L is the log-likelihood of the data given the posterior means of the parameters and P is an
estimate of the effective number of the parameter in the model (Gelman et al. 2013). A lower DIC
indicates a better model fit.

A second method was applied for statistical inference because bimodality was observed at DWTP
B and only normal mixture models were available in JAGS. Maximum likelihood estimation was
computed for a mixture of two gamma distributions and for a mixture of two log-normal
distributions via expectation-maximization algorithms with the R package ‘mixR’ (Yu 2018). The
goodness of fit of these two distribution models was measured with the deviance, the Akaike
information criterion (AIC) and the Bayesian information criterion (BIC). AIC and BIC also
reward goodness of fit and includes a penalty that is a function of the number of estimated
parameters. The uncertainty on the parameter values of the mixture models and the predicted mean
concentrations was not evaluated. Source codes are provided in the Supplementary Material,
Section B.

4.2.6 Minimum sample size determination

The minimum sample size required to accurately estimate the true mean of a log-normal
distribution for different confidence intervals was determined by iterations with the Cox method
(Olsson 2005). The confidence interval for a log-normal distribution with a mean p and the standard

deviation o is:

+0%+ C$2+ o 2
o xz 1oy 2(n—1)

where the value of z to evaluate the 95% confidence interval is 1.96, and n is the sample size.
4.2.7 ldentification of critical contamination periods

Lorenz curves (Cowell, 2000) were used to summarize the quantile share information contained in
empirical E. coli distributions. To produce these graphs, E. coli samples were ordered by their
concentration, starting with the lowest and then plotted against the cumulative proportion of the
ordered samples (running from zero to one along the horizontal axis). Ordinary Lorenz curve values
were multiplied by the mean concentration to evaluate the distributions of E. coli concentrations in

terms of long-term mean concentrations. This curve is known as a generalized Lorenz curve
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(Shorrocks 1983). The generalized Lorenz curves were computed with the R package ‘ineq’
(Zeileis and Kleiber 2014). Long-term and seasonal variations were assessed. The seasons were
defined as winter (Dec-Feb), spring (Mar-May), summer (June-Aug), and fall (Sept-Nov).

The short-term variability in E. coli concentrations was examined at DWTP C1 from January to
April (snowmelt period) between 2013 and 2017. The observed variables were: E. coli
concentrations, the flow rate of the river, the snow cover, and the daily precipitation. An online
instrument measuring B-D-glucuronidase (GLUC) activity (ColiMinder™ VWM GmbH, Vienna,
Austria) was installed at the DWTP intake to characterize periods of high variability in microbial
contamination during the 2017 snowmelt period. The technology was used to track E. coli at near
real-time frequency following field and laboratory validation completed by Burnet et al. (2019a).
Detailed technical information about the technology can be found in Koschelnik et al. (2015). The
instrument was installed at the intake of the DWTP in November 2016 and measured GLUC
activity every two hours. GLUC activity measurements obtained during the first month after the
installation allowed to differentiate baseline from peak levels of contamination during and
following autumn and winter rainfall episodes. During periods of high fluctuations of the GLUC
activity level, we adjusted the measurements to hourly frequency. Based on the short-term
dynamics of the GLUC activity, two snowmelt events were identified. Grab samples were collected
every three to five hours for 20 hours during a first GLUC activity peak in February 2017, and for
60 hours during a second GLUC activity peak in April 2017.

4.3 Results

4.3.1 Descriptive statistics

The sample mean of E. coli concentrations in raw water varied between DWTPs, from 22 to 507
E. coli/100 mL (Table 4-3). Overall, the mean and the mean absolute deviation (MAD) decreased
with the mean flow rate of the river. A 0.2 loguo increase in the mean and MAD was observed
between DWTP C1 and C2. DWTPs B, C2, and E displayed the highest SD to MAD ratio. The
kurtosis was greater than 155 at DWTPs C2 and E, but was only 25 at DWTP B, indicating potential

bimodality of the empirical distribution.
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Table 4-3: Statistical characterization of empirical distributions of raw water E. coli concentrations
in E. coli/100 mL at six drinking water treatment plants

Sample Standard Mean absolute Ratio Excess

DWTP n_ average deviation (SD) deviation (MAD) SD/MAD Skewness  Kkurtosis
A 434 507 967 563 1.72 3.89 19.42
B 245 386 1168 523 2.23 4.89 25.56
Cl1 1584 202 271 165 1.64 4.08 22.39
C2 437 318 668 272 2.46 10.70 155.88
D 1043 88 150 83 1.81 5.12 36.78

E 1807 22 58 23 2.44 10.48 162.52

4.3.2 Distribution selection

Best-fit parameters of the gamma, Lomax, and log-normal distributions at DWTPs A and B
predicted differences up to 0.5 logio between the lowest estimated mean concentrations and the
highest estimated mean concentrations (Table 4-4). For DWTPs A and B, the predicted means of
the Lomax distribution were higher than for the gamma and log-normal distributions. The
uncertainty on the predicted mean of the Lomax distribution was not stable at DWTPs A and B
since the mean concentration was not defined when the value of the shape parameter a was less
than 1.0 (the tail had infinite area). The differences among the predicted mean of the three models
at DWTPs C1, C2, D and E was less than 0.1 logio. The influence of the behavior of the tail of a
distribution on the predicted mean is discussed in section 3.1. To define what is an important
difference in DIC for the selection of a model, Spiegelhalter et al. (2002) suggested to apply the
same rules of thumb as was proposed by Burnham and Anderson (2004) for the Akaike Information
Criterion (AIC): differences in AIC within 1-2 of the “best” model (minimum AIC value) deserve
consideration, and differences within 3-7 have considerably less support. Therefore, the log-normal
or the Lomax distribution better fitted the observed data than the gamma distribution at all DWTPs
(Table 4-4). At DWTP B, the difference in DIC was small between the log-normal distribution and
the Lomax distribution. Gamma mixture and log-normal mixture distributions were also considered
for DWTP B (Table 4-5). The deviance of the mixture of two log-normal distributions was much
lower than the deviance of the Lomax distribution (deviance of 3,057). With the mixture models,
a distribution was fitted to the tail of the observations at a probability of exceedance of 14% for the
gamma model and 6% for the log-normal model. The difference between the sample mean and the

combined predicted mean of the mixture models was lower than 0.1 log1o.
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Table 4-4: Maximum a posteriori probability (MAP) of the parameters of gamma, Lomax, and log-
normal distributions of raw water E. coli concentrations at six drinking water treatment plants. The
arithmetic mean estimated by each model in E. coli/100 mL are presented with their 95% credibility
interval (Cl). The performance of each fit is quantified with the deviance information criterion
(DIC). Boldfaced cells indicate the best-fit model for each dataset.

Gamma distribution Lomax distribution Log-normal distribution
Mean” Mean” Mean”
DWTP k 6 (95CI) DIC @ % (95C) DIC p o6 (95CI) DIC
A 053 935 (442?280) 6130 127 219 811 6040 504 162 (452?%0) 6034
B 042 924 (313?275) 325 110 88 80 3059 439 156 (195%58) 3061
C1 085 237 (193?313) 19973 477 753 (185?214) 19904 462 1.30 (21%3259) 19987
c2 081 384 (282,2&52) 5905  3.66 756 (262?248) 5830  5.04 1.26 (293,4200) 5848
D 079 111 (825?895) 11381 248 131 (79‘?899) 11204 372 121 (778,593) 11111
E 062 35 (212,223) 14515 170 16 (222,227) 13895 213 1.29 (171,920) 13755

AE. coli concentration in E. coli/100 mL
B Best-fit model presented in Table 4-5
Table 4-5: Maximum likelihood estimation of the parameters of gamma mixture and log-normal

mixture distributions of raw water E. coli concentrations at drinking water treatment plant B. The
performance of the fit is quantified with the deviance, the Akaike information criterion (AIC) and

the Bayesian information criterion (BIC). Boldfaced values indicate the best fit model.

DWTP B
Gamma Log-normal
Mixture mixture

Part 1 Part 2 Part 1 Part 2
Proportion 0.86 0.14 0.94 0.06

kip 1.06 0.70 4.14 8.29
0/c 87 3137 123 0.50
Average

(MPN/100 mL) 92 2201 136 4529
Combined average

(MPN/100 mL) 387 399

Deviance 3041 3023

AIC 3050 3032

BIC 3068 3050
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4.3.3 Posterior predictive checks

Cumulative distribution function (CDF) and complementary CDF (CCDF) plots were produced to
illustrate the fit of the gamma, log-normal and Lomax distributions to routine monitoring data.
Overall, the gamma distribution accurately estimated the sample mean (Table 4-4) but
overestimated low concentrations (Figure 4-1) and underestimated large concentrations (Figure 4-
2). The power-law tail of the Lomax distribution (straight-line on the CCDF plot) predicted higher
concentrations than the tail of the log-normal distribution when the value of the scale parameter A
was lower than the sample mean. At DWTP E, the DIC of the Lomax distribution was higher than
the DIC of the log-normal distribution, even if the Lomax distribution was a better fit for the tail
events. The bulk of the distribution, in which most of the samples were located, was therefore log-
normally distributed, but not the tail. Figure 4-3 shows that the mixture of two log-normal
distributions provided a better fit to the empirical tail than the unimodal distributions at DWTP B.
The log-normal distribution fit on the highest values only describes the variability of around 5% of
the data, suggesting that specific conditions, such as hydrometeorological events, could generate a
different probability pattern than baseline conditions in this agricultural catchment.
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Figure 4-1: Cumulative distribution function plots of gamma, Lomax, and log-normal distributions

of raw water E. coli concentrations at six drinking water treatment plants. The 95% uncertainty

interval is shown for the log-normal distribution.
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Figure 4-2: Complementary cumulative distribution function plots of gamma, Lomax, and log-
normal distributions of raw water E. coli concentrations at six drinking water treatment plants. The

95% uncertainty interval is shown for the log-normal distribution.
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Figure 4-3: Complementary cumulative distribution function plot of the log-normal distribution

and the mixture of two log-normal distributions of raw water E. coli concentrations at drinking

water treatment plant B. The 95% uncertainty interval is shown for the unimodal log-normal

distribution.

4.3.4 Sample size determination

The value of the parameter sigma of the log-normal distribution had an important influence on the
minimum sample size at DWTPs A, C1, C2, and D (Table 4-6). A sigma increase of 0.4 doubled
the minimum sample size from DWTP D to DWTP A. For all DWTPs, a three-fold increase in

minimum sample size was required to reduce the range of the confidence interval from 0.5 logio to

0.3 logio. A ten-fold increase was needed to reduce that range from 0.3 logio to 0.1 logso.

Table 4-6: Minimum sample sizes for estimating the arithmetic mean in a given confidence

interval for log-normally distributed E. coli concentrations.

Best-fit parameter

Confidence interval on the arithmetic mean

DWTP n c 0.5logw 0.4 logwo 0.3 logwo 0.2 logw 0.1 logio
A 504 162 111 196 441 1760
c1 462 130 37 57 101 227 905

Cc2 504 126 34 53 93 207 826

D 372 121 30 47 83 185 736
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4.3.5 Seasonal variations of E. coli concentrations

The generalized Lorenz curves show that a small proportion of samples contributes highly to the
long-term mean (Figure 4-4). In each graph, the black diagonal line represents perfect equality
where each sample would have the same contribution to the mean concentration. Therefore, the
more the empirical curve deviates from the diagonal, the more the tail of the distribution contributes
to the mean. For example, at DWTP B, the long-term mean illustrated with the black curve breaks
at a mean concentration of approximately 100 E. coli/100 mL. The bimodality of the empirical
distribution causes that break. From this point, around 10% of the total number of samples (also
10% of the total period at the DWTP) increases the long-term mean from 100 E. coli/100 mL to
387 E. coli/100 mL: an increase of 0.6 logio. These curves can also describe the seasonality of the
contamination. Seasonal and annual means are illustrated by the maximum value of their
generalized Lorenz curve. A seasonal distribution has more influence on the annual mean when the
maximum value of a seasonal curve is higher than the maximum value of the annual curve. Thus,
the annual mean was mostly influenced by summer and fall conditions in the agricultural
catchments (DWTPs A, B) and by winter or spring conditions in the urban catchments (DWTPs

C1, C2, E). Smaller differences between seasons were observed at DWTP D.
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Figure 4-4: Generalized Lorenz curves of the distribution of raw water E. coli concentrations at six
drinking water treatment plants. On each graph, the black curve shows the distribution of all the

samples and the green curves show seasonal distributions.

4.3.6 Short-term variations of E. coli concentrations

Time series analysis of hydrometeorological factors and raw water E. coli concentrations were used
to identify periods of high contamination at DWTP C1 from January 2013 to April 2016 (Figure
4-5). Peak concentrations (over 1,000 E. coli/100 mL) were frequently detected during the
snowmelt period, usually occurring from March to April. However, these peak events were not
always detected during the rapid decline of the snow cover (e.g. March-April 2013). In 2016,
precipitation in winter was dominated by rainfall rather than snow, and no peaks were observed.
These different hydrometeorological conditions had a noticeable impact on the annual distribution
of E. coli concentrations at DWTP C1. The annual mean was 341 E. coli /100 mL for 2014 and
146 E. coli/100 mL for 2016, a difference of 0.4 logio.
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Figure 4-5: Raw water E. coli concentrations in samples collected each week from Monday to
Thursday at DWTP C1 during the snowmelt periods from 2013 to 2016 (dark-grey column). The
grey area is the daily flow rate of the river, the black dotted line is the daily snow cover on the
ground, and the solid white line is the daily cumulated rainfall.

In 2017, event-based sampling revealed the influence of hydrometeorological factors on the short-
term dynamics of E. coli concentrations (Figure 4-6). For the February event, E. coli concentrations
varied from 161 to 2,247 E. coli/100 mL within 7 hours and reached a maximum concentration of
2,420 E. coli/100 mL. Concentrations higher than 1,000 E. coli/100 mL were observed for 21 hours.
No routine samples were collected because the event happened over the weekend. The April peak
occurred during the week and was also sampled during routine monitoring. E. coli concentrations
varied from 440 to 3684 E. coli/100 mL, and concentrations higher than 1,000 E. coli/100 mL were

observed for 66 hours. The maximum daily mean concentrations during the February and April
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peaks were 1,588 E. coli/100 mL and 2,567 E. coli/100 mL, respectively. Both daily mean

concentrations were higher than the 97" percentile (8 years of data) of daily M-T sampling. The

maximum concentrations sampled during the April peak was higher than the maximum

concentration sampled in 8 years of routine monitoring data.
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Maximum daily mean concentrations from event-based sampling are represented with vertical lines
on the CCDF plot (Figure 4-7). Both lines crossed the tails of the modeled distributions; thus, tail
events were captured with the event-based sampling strategy. The probability of occurrence of the
event was back calculated for each distribution. The gamma distribution did not predict the
maximum daily mean during the April peak. The log-normal distribution predicted a frequency of
occurrence of these daily peaks between two to twenty days per year. The Lomax distribution
predicted these events at a lower frequency varying between two days a year and one day every

five years.
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Figure 4-7: Complementary cumulative distribution function plot of the tail of gamma, Lomax, and
log-normal distribution fitted to raw water E. coli concentrations at drinking water treatment plant
C1.The 95% uncertainty interval is shown for each distribution. The vertical grey lines illustrate
the daily mean concentration of the two event-based campaigns in February and April 2017 for all

probabilities of exceedance.
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4.4 Discussion
4.4.1 Optimizing distribution selection to describe E. coli variations in source

water
Candidate parametric distributions were selected to fit raw water E. coli measurements. Underlying
generative processes of distributions were considered for the selection. The combination of small-
scale processes at a higher aggregate scale tends to yield a common probability distribution
consistent with given constraints that maximize the entropy (Frank 2009). A maximization of
entropy with a constraint on the arithmetic mean results in an exponential distribution. If the
constraint is on the mean logarithm, then observations follow a power-law distribution. The scaling

often changes between linear and logarithmic as magnitude changes. The gamma distribution is a

product of a power-law x*~-* and an exponential function e (Table 4-2). At small magnitudes, the
scaling is logarithmic because the power-law component dominates, and at large magnitudes, the
scaling is linear because the exponential function dominates. The value of (k — 1)/6 determines the
magnitude at which those scales dominate. Thus, only the linear scaling of the gamma distribution
dominated at all DWTPs because k was less than 1.0 (Table 4-3).

The Lomax distribution has the inverse scale: a linear-log scaling. Thus, it can be understood as an
exponential distribution with a power-law tail. The scale parameter A indicates the level at which
the distribution changes from a linear scaling to a logarithmic scaling (this parameter can be viewed
as a power-law tail threshold). Therefore, the logarithm scaling starts at a concentration below the
sample mean at DWTPs A, B, and E, and above the sample mean at DWTPs C1, C2, D (Table 4-
3). A disadvantage of the Lomax distribution is that the predicted mean is not finite when the value
of the shape parameter « is below 1.0. Truncated Lévy distributions can be considered in these
cases (Koponen 1995, Mantegna and Stanley 1995, Mariani and Liu 2007). These distributions still
have a power-law form, but with infinite tail truncated or exponential cut-offs. The log-normal
distribution follows a Gaussian distribution on the log-scale; therefore, the information dissipates

on the additive log-scale, and the generative process is multiplicative.

At all DWTPs, the tail of the log-normal and the Lomax distributions predicted the observed
concentrations better than the tail of the gamma distribution (Figure 4-2). Log-normal and power-

law distributions have similar multiplicative processes. The argument as to whether one is more
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accurate than the other has arisen across a variety of fields (Mitzenmacher 2004). Under general
conditions, the power-law tail can be obtained with the inclusion of an additive term to the basic
multiplicative process. This additive term is added only when the system crosses a lower threshold,
acting as a barrier preventing collapse to zero (Sornette and Cont 1997). Hence,
hydrometeorological events could be generating this lower threshold and produce power-law
behavior in the distributions as it was observed at DWTP E.

The kurtosis and the SD to MAD ratio are proposed as indices to identify the behavior of the tail
of the distribution. The log-normal distribution produced only a conservative bound for tail
observations when the SD to MAD ratio was less than 2.0 (DWTPs A, C1, D). At a higher ratio
(DWTPs B, C2, E), the log-normal distributions could not conservatively estimate all observations
(Figure 4-2). The sample kurtosis was much smaller at DWTP B than at DWTPs C2 and E (Table
4-3). At DWTP B, the measure of the deviance (Table 4-5) and the posterior predictive check
(Figure 4-3) indicated that the mixture of two log-normal distributions better fitted E. coli
concentrations than the Lomax distribution. The hypothesis of a bimodal behavior in the
distribution of environmental contaminants was previously suggested (Pollard et al. 2002). The
evaluation of a bimodal behavior at DWTP B was necessary because the Lomax distribution
predicted a much higher mean concentration than the sample mean. DWTPs C2 and E had sample
kurtosis greater than 155. The power-law tail of the Lomax distribution predicted observed data at
DWTP E. The value of the shape parameter a of 1.7 was large enough to calculate a finite
credibility interval on the mean (Table 4-3). At DWTP C2, only one sample with a concentration
of 11,000 E. coli/100 mL increased the SD to MAD ratio from 1.80 to 2.46 and the kurtosis from
40 to 155.

Differences between the sample and predicted mean of the best-fit model were lower than 0.1 logio
at all DWTPs. Therefore, the sample mean was a reliable index to estimate the true mean raw water
E. coli concentration at these DWTPs. In other words, the evaluated sample sizes were large enough
to converge to the true mean of the log-normal distribution (DWTPs A, C1, C2, D), the mixture of
two log-normal distributions (DWTP B), and the Lomax distribution (DWTP E). However, upper
limits of detection of 8,000 CFU/100 mL at DWTP B and of 2,419 MPN/100 mL at DWTP C1

may underestimate the size of the upper tail. Hence, the number of dilutions should always be
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carefully selected to avoid dealing with an upper limit of detection when data are collected for
statistical inference.

4.4.2 Evaluation of the sample size to estimate mean of E. coli concentrations
at DWTP intakes

Required confidence or credibility intervals on mean estimates are usually not indicated in
guidelines and regulations (Supplementary Table 4-1). The estimates of the mean concentrations
are used to determine minimum treatment targets, usually quantified in logio reduction values. A
large uncertainty on the mean will increase the probability of misclassification of a treatment bin
category. Health-based targets will not be met if treatment requirements are underestimated, while
unnecessary costly treatment processes will be added if treatment requirements are overestimated.
To reduce the uncertainty to an appropriate level, we are proposing the use of the Cox method to
determine the minimum sample size when the best-fit distribution is log-normal. Weekly sampling
for three years (n=156) allowed the estimation of the true mean with a 95% confidence interval of
0.3 logio at DWTPs C1, C2, and D (Table 4-6). Four years of weekly sampling (n=208) would be
required at DWTP A to reach 0.3 logio. These sample sizes should be doubled to reduce the
uncertainty to 0.2 logiw. Therefore, the lowest 95% confidence interval achievable with a
reasonable number of samples would be 0.3 logi. These results are site-specific because they
depend on the variance of the dataset. A conservative value of the variance could be assumed to
determine the minimum sample size for a group of DWTPs. Other mathematical approaches should
be considered to estimate the minimum sample size when observations follow Lomax or mixture
distributions. The required minimum sample sizes to estimate the true mean with a 95% confidence

interval will probably be higher than those determined for the log-normal distributions.

An estimation of the mean concentration with results from weekly sampling strategies for one year
as regulated in Quebec for large DWTPs (n=52 samples) was sufficient to reach a confidence
interval of around 0.4 logio in urban rivers (DWTPs C1, C2, D), but not in the studied agricultural
river (DWTP A) where the confidence interval was larger than 0.5 logio. Monthly sampling for
two years (n=24 samples), as required by the US EPA in rivers where the arithmetic mean is lower
than 50 E. coli/100 mL, would only predict the mean with a confidence interval lower than 0.5
logo if the variance is small (value of the sigma parameter lower than 1.1, which is lower than

observed at the sites in this study). The variance of the E. coli concentrations was higher for
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DWTPs fed by the small rivers (DWTPs A and B) that are more subject to episodic changes in
water quality. Therefore, robust methods for the design of sampling strategies should consider
water quality variability, particularly in small agricultural catchments.

4.4.3 Integrating peak microbial contamination events

Accounting for hydrometeorological events is an important issue for the quantification of microbial
treatment requirements (Petterson et al. 2015). Peak events need to be considered as they represent
challenging periods for DWTPs as illustrated by major waterborne outbreaks in the past (Curriero
et al. 2001, Hrudey et al. 2002, Thomas et al. 2006). The collection of event-based samples in
addition to routine monitoring has been recently added to WHO guidance documents (WHO
2016b, a) and Australian drinking water guidelines (NHMRC 2018). In the Netherlands, incidental
samples must be collected when peak concentrations in pathogen counts are assumed to occur
(VROM-Inspectorate 2005).

As demonstrated in this study, new statistical approaches are needed to incorporate this information
into risk assessment. Routine samples are quasi-independent and identically distributed (i.i.d.)
random variables. This property implies that a given sample is independent of the previously
collected sample. Alternatively, event-based samples are not i.i.d. random variables, and cannot be
combined with routine samples for statistical inference. However, event-based samples can be used
to 1) evaluate short-term exposure (e.g. maximum daily risk), and 2) evaluate whether peak
concentrations are included or excluded from the tail of a parametric distribution inferred with

routine monitoring data.

Short-term variations of E. coli were measured at DWTP C1 during and following two
hydrometeorological events during the snowmelt period in 2017. Instead of relying on precipitation
data, we used a microbial surrogate to time our event-based sampling. Online measurement of
GLUC activity can be used as a reliable surrogate to identify periods of high E. coli concentrations
(Burnet et al. 2019a, Burnet et al. 2019b) for the collection of samples. The maximum daily mean
concentrations of 1,588 E. coli/100 mL in February and 2,567 E. coli/100 mL in April were higher
than the 97" percentile and the 99" percentile retrieved from eight years of daily M-T (Monday to
Thursday) sampling, respectively. Concentrations exceeding 1,000 E. coli/100 mL were
continuously measured for about one day in February and during three days in April. As such, we

demonstrated that online GLUC activity measurement-based sampling strategy is suitable for the



81

detection of critical periods of E. coli contamination in an urban river during the snowmelt period.
This sampling strategy could be applied to target pathogen monitoring programs or study variations
of pathogen concentrations in source water during hydrometeorological events. The CCDF plot for
DWTP C1 showed that the gamma distribution could not predict the maximum daily mean
concentrations during the April event (Figure 4-7). The maximum daily mean concentrations of
these two events crossed the CCDF curves of the log-normal and the Lomax distributions. The log-
normal distribution predicted a frequency of occurrence of these daily peaks between two to twenty
days per year. Therefore, the log-normal distribution was a conservative bound for peak events if
these maximum daily mean concentrations occurred less than 20 days a year. In this case, weekly
sampling for two years estimated the true mean with a confidence interval of 0.3 logio (Table 4-6)
and included the influence of these peak events.

4.4.4 ldentifying key contributors to peak events in agricultural and urban
rivers

The protection of drinking water sources is a preventive approach to minimize the influence of
peak events on the mean concentration and thereby ensure adequate health-based treatment
requirements. We introduced generalized Lorenz curves as quantitative tools to determine how
critical contamination periods influence the long-term mean E. coli concentrations for four
DWTPs. The identification of these periods could guide the implementation of source water
protection measures. The combined annual generalized Lorenz curves indicated that peak events
had more influence on the mean concentration in small agricultural rivers (DWTPs A and B) than
in large urban rivers (DWTP C1, C2, D) (Figure 4-4). Seasonal contributions to the long-term mean
E. coli concentrations were different between urban and agricultural catchments. For agricultural
rivers, the long-term mean was driven by samples collected during summer and fall. The conditions
leading to the bimodal behavior of the distribution at DWTP B should be further investigated with
hydrometeorological and land use data to identify potential factors triggering a different generative
process for the distribution of tail events. Two primary sources of contamination could contribute
to the observed pattern since four CSOs, and one WWTP are located upstream of the DWTP.

During rainfall, the combined effect of these two sources could generate a different distribution.

In the urban rivers, critical periods of contamination at DWTPs were winter and spring. At DWTP

C1, rapid snowmelt had more influence than rainfall on the variation of E. coli concentrations, and
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recurrent peak events were observed at low flow rates in 2014 and 2015 (Figure 4-5). At DWTP
C1 and C2, treated effluent discharges, but also sewage by-passes at WWTPs, and CSO discharges
during snowmelt periods likely influence the behavior of the tail of the distribution (Burnet et al.,
2019b). At DWTP D, Madoux-Humery et al. (2016) showed that approximately 80% of E. coli
peak concentrations were linked to CSO discharges caused by daily precipitation exceeding ten
millimeters or by spring snowmelt. Here, we show that these peaks could be predicted by a log-
normal distribution (Figure 4-2) and that weekly sampling for two years (n=104 samples) at the
DWTP enables to estimate the true mean concentration with a confidence interval of 0.3 logio
(Table 4-6).

4.5 Conclusions

We have shown that it is possible to use simple parametric models and graphical tools to consider
different tail behaviors for the evaluation of the mean E. coli concentration in raw water. The
application of this approach to large data sets collected with routine and event-based monitoring
strategies at six drinking water treatment plants located in different types of catchments

demonstrated that:

e Weekly sampling for three years in urban catchments and for four years in agricultural
catchments produce reasonable estimates of the average raw water E. coli concentrations,
and encompass peak event concentrations;

e Log-normal, Lomax, and a mixture of log-normal distributions better predict high E. coli
concentrations in raw water;

e The kurtosis and the ratio of the standard deviation to the mean absolute deviation are useful
indices for identifying sites vulnerable to peak E. coli concentrations;

e The log-normal distribution fit on extensive weekly monitoring data conservatively
predicted peak E. coli concentrations as measured during two snowmelt events at a drinking
water treatment plant under the influence of (un)treated sewage discharges.

e The generalized Lorenz curves show that a small proportion of samples predominantly
contributes to the average E. coli concentrations in agricultural catchments.

e Critical seasons of high contamination levels were summer and fall in the agricultural

catchment, and winter and spring in urban catchments.



83

e The characterization of site-specific variations can promote the effective implementation
of mitigation measures to address contamination sources with the highest influence on the
average E. coli concentrations at drinking water treatment plant intakes.

e The data collection and model validation methods described in this paper could be adapted
for pathogens to explicitly consider hydrometeorological events in the quantification of
microbial treatment targets

4.6 Acknowledgments
This work was funded by the NSERC Industrial Chair funded on Drinking Water, the Canadian

Research Chair on Source Water Protection and the Canada Foundation for Innovation. The authors
gratefully acknowledge the support of the involved municipalities and technical staff of
Polytechnique Montreal for providing scientific support and technical assistance during the project.
A part of the outcomes presented in this paper was based on research financed by the Dutch-
Flemish Joint Research Programme for the Water Companies.



84

CHAPTERS ARTICLE 2 - IMPORTANCE OF
DISTRIBUTIONAL FORMS FOR THE ASSESSMENT OF
PROTOZOAN PATHOGENS CONCENTRATIONS IN DRINKING
WATER SOURCES

It should be noted that Article 2 (Chapter 5) and Article 3 (Chapter 6) are companion articles. Both
articles investigate temporal variations in source water protozoan pathogens concentrations. Article
2 is primarily focusing on model development and implementation. Article 3 adapted the model
validation technique presented in Chapter 4 for the assessment of protozoan pathogens in source

water.

This Chapter presents the development and implementation of Poisson and mixed Poisson models
for the analysis of temporal variations in source water pathogen concentrations. Source water
Cryptosporidium and Giardia data sets collected at 30 drinking water treatment plants are modeled.
More specifically, this work investigates whether the choice of a parametric model can significantly
influence the estimation of the mean pathogen concentration and its uncertainty. This article has

been accepted in Risk Analysis. Supplementary information is presented in Appendix B.
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Abstract

The identification of appropriately conservative statistical distributions is needed to predict
microbial peak events in drinking water sources explicitly. In this study, Poisson and mixed Poisson
distributions with different upper tail behaviors were used for modeling source water
Cryptosporidium and Giardia data from 30 drinking water treatment plants. Small differences (<
0.5-log) were found between the “best” estimates of the mean Cryptosporidium and Giardia
concentrations with the Poisson—gamma and Poisson—log-normal models. However, the upper
bound of the 95% credibility interval on the mean Cryptosporidium concentrations of the Poisson—
log-normal model was considerably higher (>0.5-log) than that of the Poisson—-gamma model at
four sites. The improper choice of a model may, therefore, mislead the assessment of treatment
requirements and health risks associated with the water supply. Discrimination between models
using the marginal deviance information criterion (mDIC) was unachievable because differences
in upper tail behaviors were not well characterized with available datasets (n < 30). Therefore, the
gamma and the log-normal distributions fit the data equally well but may predict different risk
estimates when they are used as an input distribution in an exposure assessment. The collection of
event-based monitoring data and the modeling of larger routine monitoring data sets are

recommended to identify appropriately conservative distributions to predict microbial peak events.

5.1 Introduction

As part of a risk-based preventive approach, the World Health Organization (WHO) guidelines for
drinking-water quality (WHO 2017b) promotes the use of quantitative microbial risk assessment
(QMRA) to set health-based treatment targets at drinking water treatment plants (DWTPs). To

undertake a QMRA for drinking water, the number of pathogens that correspond to a set of
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exposures via drinking water is evaluated through an exposure assessment. The exposure pathway
is defined in terms of source water pathogen quantification, treatment barriers, and tap water
consumption. Reliable information on source water microbial quality is therefore needed to define
treatment requirements and implement catchment protection measures. Multiple exposures to low
doses of a pathogen in drinking water are typically characterized in terms of the mean pathogen
concentration because conventional single-hit dose—response models rely on the assumption that

microbial inoculum are characterized up to Poisson uncertainty (Haas 1996).

Reference pathogens for protozoan pathogens in surface drinking water sources are
Cryptosporidium spp. and Giardia lamblia because they are highly prevalent in the population, and
because they pose a treatment challenge as a result of their resistance to chlorination (WHO 2017b).
When available, source water Cryptosporidium and Giardia data sets are typically of small size
because of high analysis costs (e.g., USEPA Method 1623). Caution is needed when small data
sets are modeled for risk assessment because the sample mean concentration may not be

representative of the true mean concentration if high concentrations are not correctly characterized.

The Poisson distribution is commonly used to express the probability of a given number of
microbial counts in a well-mixed water sample (Student 1907). However, in surface water, count
data typically show more variation than implied by the Poisson distribution because of temporal
covariate effects among sampling events (incidence of infections in the population,
hydrometeorological conditions) and measurement errors (Emelko et al. 2010). To account for
over-dispersion, a continuous probability distribution can be used to describing the underlying
Poisson rate (i.e., population distribution). The Poisson—-gamma mixture (negative-binomial)
distribution is generally the default choice for the estimation of temporal concentration variations
in surface water (Pipes et al. 1977, EI-Shaarawi et al. 1981, Teunis et al. 1997, Medema et al. 2003,
Pouillot et al. 2004, Teunis et al. 2009, Schijven et al. 2011, Petterson et al. 2015, Teunis and
Schijven 2019). Other parametric distributions, such as the Poisson—log-normal distribution, have
been used (Haas et al. 1999, Masago et al. 2004, Chik et al. 2018). The Poisson-log-normal is a
more unusual but not less interesting alternative because the upper tail of the log-normal

distribution is asymptotically heavier than the upper tail of the gamma distribution (Smeets et al.
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2008), and this property is preserved under the formation of mixed Poisson models (Kaas and
Hesselager 1995). The behaviors of mixed Poisson models were compared in a broad range of
fields such as ecology (Millar 2009), actuarial science (Kaas and Hesselager 1995), transport safety
(Aguero-Valverde 2013), and food safety (Gonzales-Barron and Butler 2011). However, this issue
has not been extensively explored in drinking water safety management. The identification of
appropriately conservative statistical distributions is needed as guidance documents recommend

the explicit consideration of microbial peak events in exposure assessment (WHO 2009a, 2016b).

The main objective of this study is to determine whether the choice of a parametric distribution can
significantly influence the estimation of the mean Cryptosporidium and Giardia concentrations
using monitoring data from 30 drinking water treatment plants. Additional objectives included: (a)
using the deviance information criterion (DIC) to compare the accuracy of the alternative models,
(b) examining upper tail behaviors with complementary cumulative distribution functions, and (c)
evaluating the influence of non-constant analytical recovery and sample-specific viability of

Cryptosporidium oocysts on the statistical dispersion of the distributions.

5.2 Material and methods

5.2.1 Sample collection and analysis

Source waters of 30 drinking water treatment plants (DWTPSs) in Quebec, Canada, were sampled.
DWTPs were classified by types of drinking water sources (Table 5-1). Identification letters
indicate if a DWTP is supplied by ariver (A, B, C), a reservoir (D), or a lake (E). DWTPs supplied
by rivers were classified based on the annual mean flow rate of the river: below 20 m%/s (A), in
between 20 and 100 m®/s (B), and higher than 100 m?/s (C). Monthly samples were collected for
about four years between 2013 and 2016 at DWTPs C6, C10, C11. Monthly samples were collected
for about two years between 2011 and 2019 at the other DWTPs. VVolumes of raw water varying
from 10 to 60 liters were filtered on-site with Envirochek HV, and samples were analyzed for the
detection of Cryptosporidium oocysts and Giardia cysts following EPA method 1623 (USEPA
2005) from 2011 to 2013, and EPA method 1623.1 from 2013 to 2017 (USEPA 2012). All samples

were analyzed at the Centre d’expertise en analyse environnementale du Québec (CEAEQ).
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Matrix spike, ongoing precision, and recovery, and method blanks were performed following EPA
method 1623 and EPA method 1623.1. A total of 43 Cryptosporidium and Giardia matrix spike
recovery experiments (at least one per DWTP) were carried out in 10-liter raw water samples
collected at the DWTP (Supplementary Table 5-1). Each sample was spiked with 98-100
ColorSeed™ (oo)cysts (Colorseed™, BTF, Australia). The viability of Cryptosporidium oocysts
was assessed based on the inclusion or exclusion of fluorogenic vital dyes. Oocysts that included
the nuclear fluorochrome 4', 6-diamidino-2-phenylindole (DAPI) were considered viable. DAPI-
positive Cryptosporidium oocyst counts from nine sites (Supplementary Table 5-2) were evaluated
to quantify the influence of the viability of Cryptosporidium oocysts on the statistical dispersion of

the distributions.

The sample mean Cryptosporidium and Giardia concentrations were calculated by averaging all
sample concentrations (count/volume). The sample maximum Cryptosporidium and Giardia
concentration were also evaluated. The sample maximum represents the maximum of all
concentrations (count/volume) measured at a site. The relative standard deviation (RSD), defined
as the ratio of the sample standard deviation to the sample mean, was also calculated to estimate

the importance of the difference between upper tail behavior among distributions (Haas 1997).
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Table 5-1: Summary of Cryptosporidium and Giardia data and catchment information

Mean Total

Main land discharge volume Crypto. Giardia

cover type of ~ Catchment  of river analysed oocysts cysts
DWTP  the catchment size (km?) (m®fs) n (L) Sampling period detected detected
A0l  Agricultural 100 <20 21 1026 2018/4/30  2019/3/28 12 283
A02  Agricultural 200 <20 21 1191 2018/4/30  2019/3/28 36 2182
Al Forested 100 <20 20 1086 2016/5/17  2018/1/31 110 6153
A2 Mixed <100 <20 20 710 2016/5/10  2018/1/31 79 6359
A3 Mixed 500 <20 21 830 2014/6/17  2016/3/21 37 1106
A4 Agricultural <100 <20 24 936 2014/3/25  2016/3/15 125 1321
Bl Mixed 2500 23 22 848 2014/3/25  2016/3/15 129 1014
B2 Forested 4000 26 19 957 2016/5/10  2017/11/6 62 2306
B3 Mixed 2500 26 18 869 2016/05/9  2017/11/13 14 906
B4 Mixed 4200 27 15 276 2011/8/28  2013/8/13 16 736
B5 Mixed 1100 36 18 889 2016/5/17  2017/11/13 20 497
B6 Mixed 2500 70 18 458 2016/5/10  2017/11/6 16 448
B7 Agricultural 3400 74 16 428 2011/5/3 2013/9/23 14 232
C1 Mixed 10000 114 19 1077 2016/5/9 2017/11/7 186 1073
Cc2 Agricultural 10000 114 17 930 2016/5/9 2017/117 43 1068
C3 Mixed 7000 114 15 785 2014/3/25  2016/9/8 43 367
C4 Mixed 10000 190 22 606 2014/3/25  2016/3/15 49 587
C5 Agricultural 10000 190 15 145 2011/5/3 2013/9/23 8 86
C6 Urban >50000 286 48 695 2013/1/1 2016/12/31 32 1016
c7 Urban >50000 286 16 372 2011/8/22  2013/9/10 36 1030
C8 Mixed 23000 330 17 854 2014/3/25  2016/9/22 40 389
C9 Mixed 23000 330 15 169 2014/6/17  2015/9/22 4 63
C10 Urban >50000 1,365 45 719 2013/1/1 2016/12/31 16 391
Cl1 Urban >50000 1,365 46 659 2013/1/1 2016/12/31 15 255
C12 Urban >50000 16000 16 147 2011/5/2 2013/9/10 17 539
C13 Mixed >50000 16000 16 339 2011/8/22  2013/9/10 30 1016
Cl4 Mixed >50000 16000 17 364 2011/5/2 2013/9/23 10 170
D1 Agricultural 200 Reserv. 22 707 2014/3/25  2016/3/21 57 1170
El Forested 100 Lake 20 1269 2018/4/30  2019/3/28 4 147
E2 Forested 3000 Lake 21 1003 2018/4/30  2019/3/28 12 2021

5.2.2 Model parametrization

The probabilistic framework of Nahrstedt and Gimbel (1996) and Emelko et al. (2010) were
expanded to account for different temporal variability distributions. Within this framework, the
distribution of one random variable is conditional on the distribution of another random variable
from a higher level. Three levels of analysis were specified to account for temporal concentration

variability. To consider a non-constant analytical recovery, i.e., the sample-to-sample variation of
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the analytical recovery, the number of microorganisms y; observed in sample i was modeled at the

first level by a binomial distribution of x; independent counts having a probability of recovery p;.
y; ~ Binomial (x;, p;) (5.1)

The binomial process assumes independence for the detection of individual microorganisms. At
the second level, the number of microorganisms x; in the i sampling event are treated as Poisson
random variables with an observation-specific mean A; = ¢;V; given as a product of the source

water concentration (c;) and the processed volume of the sample (V;).

xX,—A x ,—(cV)
FO) = A ; _ (cV)*e~(V (5.2)

x!

At the third level, the unknown (unobserved) concentration c; was described by a continuous
population distribution. The gamma and log-normal distributions were selected to describe
temporal variations in concentration c¢ because their densities differ in their upper tail probabilities.

The two-parameter gamma distribution has a density

/1(1 a—1 5.3
FO = g™ &3

and an expectation (i.e., mean) E(c) = al, where a > 0 is the shape parameter and A > 0 is a

scale parameter. The two-parameter log-normal distribution has a density

1 I_ 1[lnc- A]Zl (5.4)
f(C) - acmexp 2 az

2
and an expectation E(c) = exp (a + %) where the shape parameter « > 0 and the scale parameter

A may take each real value.
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The density for high c decreases as exp[—Ac] and exp[— % [In ¢ — A]?/a?] for the gamma and the

log-normal, respectively (Tijms 2003). The log-normal density always has a heavier tail than the
gamma distributions for given values of the mean and the coefficient of variation. The Weibull
distributions was also considered as a population distribution in preliminary work; however, its
upper tail behavior was similar to that of the gamma distribution. Furthermore, convergence

problems arose that limited its application.

The recovery rate p; in Eqg. 5.1 was assumed to be 100% for all samples because sample-specific
recovery rates were not available. However, the influence of a non-constant analytical recovery
was demonstrated using pooled recovery data from Cryptosporidium matrix spike recovery
experiments (Supplementary Table 5-1). Pooled recovery data were assumed to be Beta distributed
(Teunis et al. 1999). Parameters of the Beta distribution were estimated using a Beta-binomial
model representing the variability in the number of seeded (oo)cysts that were observed n; in

matrix spike recovery experiment i.
n; ~ Binomial (m;, p;) (5.5)
p; ~ Beta(&, B) (5.6)

The Beta-binomial model for analytical recovery assumes that the number of seeded (0o)cysts m;
is precisely known, the analytical recovery p; is Beta distributed with mean values of parameters
(a, B), and the analytical error is binomially distributed (Schmidt et al. 2010). The uncertainty of

the Beta distribution parameters was not considered in the analysis.

5.2.3 Model implementation

Bayesian statistics were used rather than classical (frequentist) statistics because mixed Poisson
models are easier to implement with Markov Chain Monte Carlo (MCMC) than with maximum
likelihood estimation (MLE), which require high dimensional numerical integration. Furthermore,

Bayesian methods are especially suited for relatively small data sets because Bayesian statistics are
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not based on large samples (i.e., the central limit theorem) (van de Schoot and Miocevi¢ 2020).
The Bayesian analysis was conducted via rjags (v4-6) (Plummer 2013) in R (v3.4.1). For each
parameter, four Markov chains were run for 3x10° iterations after a burn-in phase of 10* iterations.
The Brooks-Gelman-Rubin scale reduction factor was used to monitor the convergence of the four
chains (Gelman and Shirley 2011). The effective sample size (ESS), the ratio of the sample size to
the amount of autocorrelation in the Markov chains, was evaluated to ensure that the entire
posterior distribution was explored (Kass et al. 1998). Estimates of the 95% credibility interval of
the posterior distributions were considered reasonably accurate when an ESS higher than 10,000
was obtained (Kruschke 2014). The ESS was calculated using the diagMCMC function from
Kruschke (2014). An illustration of these MCMC diagnostics for a specified parameter is presented
in the Supplementary Material (Supplementary Figure 5-1). The mean (expected value) and the
upper bound of the 95% credibility interval on the mean of the gamma and log-normal distributions

were reported.

5.2.4 Prior distributions

In Bayesian analyses, the prior distribution needs to be chosen carefully when sample sizes are
small because its parametrization can strongly impact the results. Prior knowledge on source water
Cryptosporidium and Giardia concentration distributions was not available at these DWTPS;
therefore, uninformative priors (priors with large variance) were adopted to have as little impact
on the analysis as possible. Uninformative priors typically specify a wide range of probable
parameter values and give similar results to a maximum likelihood estimation (MLE) analysis. In
this study, the shape parameters a and £ of the Beta distribution in the Beta-binomial model for
analytical recovery were assigned uninformative uniform priors with hyperparameters set to
Uniform (0.01, 100).

Conjugate priors can be chosen for the exponential family of distributions to minimize the influence
of the data on the posterior and facilitate Gibbs sampling. A conjugate gamma prior with
hyperparameters (i.e., parameters of the prior distribution) set to Gamma (0.01, 0.01) was selected

to describe the concentration c¢ of the Poisson model. This prior is practically flat to reflect no prior
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knowledge. Bayesian estimations become more complicated for two-parameter distributions
because they require two-dimensional prior distributions. The two-parameter gamma distribution
does not have continuous joint prior distribution. Simulations results suggested that Bayesian
estimation of a two-parameter gamma distribution using Lindley’s approximation under the
assumption of a gamma prior on the shape and rate (inverse scale) parameters behave like MLE
(Pradhan and Kundu 2011). Gamma priors on the shape and rate parameters of the two-parameter

Gamma distribution were thus selected. Hyperparameters were also set to Gamma (0.01, 0.01).

For the log-normal distribution, the shape parameter « was assigned a uniform prior. The prior was
set to Uniform (-10, 10), given that the logarithm of the mean was not expected to be outside of
this interval. A weakly informative prior was chosen to describe the variability of the scale
(variance) parameter A of the log-normal distribution. A commonly used prior for the variance
parameter of a (log)normal distribution is the half-Cauchy distribution (Gelman 2006). JAGS does
not have a built-in half-Cauchy distribution, and it employs the precision rather than the variance
in its log-normal distribution. However, such a function can be approximated with an exponential
prior on the standard deviation o (McElreath 2020). The exponential distribution has a much
thinner tail than the half-Cauchy and can help the convergence of the Markov chains. The
exponential prior was set to exp (1) given that the logarithm of the standard deviation was expected
to be well below five at all DWTPs.

5.2.5 Model comparison

5.2.5.1 Deviance Information Criterion

Poisson and mixed Poisson models were compared with an information criterion considering a
constant recovery rate of 100%. Each model was fitted to the same set of observations to compare
their out-of-sample predictions. The Deviance Information Criterion (Spiegelhalter et al. 2002) is
commonly used to compare the accuracy of Bayesian models. This criterion allows to rank models
by balancing goodness-of-fit and complexity using deviance and a penalty term weighted by the

number of parameters. The DIC is given by:
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DIC=D—-(D-D)= D +pp (5.7)

where D is the mean of D, the deviance for each set of sampled parameter values in the posterior
distribution, and D is the deviance of the posterior mean of the parameters. The difference D —
D = pp can be interpreted as a penalty associated with the risk of overfitting. Smaller values of
DIC suggest a better model. A proposed rule of thumb, appearing to work reasonably well for the
comparison of DIC, is that a model with a difference of DIC within 1-2 of the “best” model

deserves consideration, and 3—7 have considerably less support (Spiegelhalter et al. 2002).

In multilevel modeling, the DIC can be specified at different levels of model focus (Spiegelhalter
et al. 2002, Celeux et al. 2006). The DIC can be expressed either as conditional upon latent
variables (cDIC) or after marginalizing over latent variables (mDIC). In this study, the conditional-
level likelihood is the Poisson distribution, and the marginal-level likelihood is the full Poisson
mixture model. In the context of over-dispersed count data, Millar (2009) found evidence of the
poor performance of the cDIC. Instead of reporting the cDIC, the author recommended calculating
the mDIC using likelihood that is marginalized by integrating out the latent variables. A closed-
form of the marginal distribution exists for the Poisson—gamma distribution, i.e., negative binomial
distribution, but does not exist for the Poisson—log-normal distributions. Quintero and Lesaffre
(2018) proposed a method to compute mDIC with Monte Carlo integration using the MCMC output
of JAGS. This approach assumes that the marginalized likelihood components can be approximated
by generating replicate samples from the density of the latent variables and taking the mean value
of the conditional distribution evaluated in the sampled parameters. The method of Quintero and
Lesaffre (2018) was adopted in this study to compute mDIC. The numbers of replicated samples
to approximate the deviance D for each set of sampled parameter values in the posterior distribution
and the deviance D on the posterior mean were set to 5,000. These numbers were adjusted to reduce
the standard error on the mDIC to a value lower than 0.5. At this level, the variation in mDIC can
be expected to be smaller than 1 (Quintero and Lesaffre 2018). The R code used to calculate mDIC

with Monte Carlo integration is provided in the Supplementary Material.
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5.2.5.2 Model checking

Observations were visually compared to simulated data under the fitted model with posterior
predictive checks (Gelman et al. 2013, McElreath 2020). Selected data sets were represented with
complementary cumulative distribution function (CCDF) curves to illustrate differences between
upper tail probabilities of each distribution (Haas 1997, Smeets et al. 2010). CCDF curves were
computed for probabilities of exceedance between 100% and 0.27% (1 day per year). Each
distribution was generated using a point estimate (mean) of the posterior of the parameter (a, A).
The predictive interval about the best fit the distribution was created by simulating 1,000 CCDF
curves parametrized by random values included in the 95% credibility interval of the posterior. The
R code used to generate the figures is provided in the Supplementary Material.

5.3 Results

5.3.1 Characterization of the data sets

Cryptosporidium oocysts and Giardia cysts were detected in 55% and 95%, respectively, of the
553 raw water samples collected at 30 DWTPs. The sample mean Cryptosporidium concentration
varied over 0.01 to 0.2 oocysts/L in rivers, and over 0.001 to 0.01 oocysts/L in lakes (Table 5-2).
According to the WHO guidance on risk assessment of Cryptosporidium in drinking water (WHO
2009a), the microbial quality of water was “very pristine” (mean ~ 0.001 oocysts/L) at 1 DWTP,
between “pristine” (mean ~ 0.01 oocysts/L) and “moderately polluted” (mean ~ 0.1 oocysts/L) at
19 DWTPs, and was between “moderately polluted” and “polluted” (mean ~ 1 oocysts/L) at 10
DWTPs. Moderately polluted sources were observed in small, midsize, and large rivers (Table 5-
1). For Giardia, the sample mean concentration varied over 0.04 to 4 cysts/L (Table 5-2). The site-
specific mean Giardia concentrations were 1 to 3-log higher than the site-specific mean
Cryptosporidium concentrations. Sample mean concentrations higher than 1 cyst/L were estimated
for small, midsize and large rivers, and for a lake. The RSD typically varied over 1.0 and 3.0 for
Cryptosporidium and over 0.5 and 2.0 for Giardia. Higher RSD values were obtained for
Cryptosporidium than for Giardia at 27 DWTPs.



96

Table 5-2: Sample size (number of positive samples), sample mean concentration, sample

maximum concentration and relative standard deviation for raw water Cryptosporidium and

Giardia concentrations at 30 drinking water treatment plants

Cryptosporidium Giardia

Sample Sample Sample Relative Sample  Sample Sample Relative

DWTP size mean maximum  standard size mean maximum  standard

(+ ve) (oocyst/L)  (oocyst/L)  deviation (+ve)  (cyst/L) (cyst/L) deviation
A01 21 (7) 0.010 0.060 1.71 21 (21) 0.342 3.025 1.87
A02 21 (13) 0.028 0.139 1.24 21 (21) 1.840 7.869 0.97
Al 20 (20) 0.159 1.466 2.06 20 (20) 4,977 22.727 1.03
A2 20 (15) 0.127 0.588 1.32 20 (20) 9.110 22.250 0.61
A3 21 (12) 0.062 0.333 1.44 21 (21) 2.063 7.867 1.03
A4 24 (18) 0.181 1.387 1.63 24 (24) 1.543 7.179 1.01
Bl 22 (19) 0.173 1.464 1.77 22 (22) 1.297 3.000 0.62
B2 19 (14) 0.080 0.625 1.77 19 (19) 2.268 5.245 0.63
B3 18 (7) 0.022 0.096 1.89 18 (18) 1.085 2.667 0.59
B4 15 (6) 0.076 0.363 1.49 15 (15) 3.290 7.231 0.64
B5 18 (13) 0.024 0.078 0.93 18 (17) 0.541 1.338 0.68
B6 18 (9) 0.048 0.250 1.47 18 (18) 1.044 3.571 0.90
B7 16 (9) 0.097 0.600 1.65 16 (16) 0.853 4.545 1.32
C1 18 (16) 0.179 0.809 1.42 18 (18) 1.419 14.693 2.34
C2 17 (14) 0.045 0.111 0.85 17 (17) 1.288 4.433 0.87
C3 15 (14) 0.055 0.333 1.41 15 (15) 0.534 2.179 1.10
Cc4 22 (8) 0.122 1.311 2.45 22 (22) 1.066 3.571 0.85
C5 15 (5) 0.062 0.428 1.90 15 (15) 1.364 8.750 1.73
Cé 48 (20) 0.064 0.357 1.65 48 (43) 1.572 7.400 0.93
C7 16 (8) 0.105 0.500 1.42 16 (16) 4.624 21.875 1.35
C8 17 (10) 0.042 0.333 1.98 17 (17) 0.510 2.178 1.13
C9 15 (3) 0.023 0.181 2.26 15 (15) 0.423 1.400 0.90
C10 45 (13) 0.021 0.133 1.78 45 (39) 0.534 1.750 0.88
Ci11 46 (13) 0.021 0.133 1.72 46 (41) 0.416 1.667 1.02
C12 16 (10) 0.113 0.545 1.22 16 (16) 4.110 10.800 0.63
C13 16 (11) 0.100 0.529 1.33 16 (16) 3.143 8.174 0.73
Cl4 17 (6) 0.085 0.285 2.86 17 (17) 0.707 2.571 0.98
D1 22 (15) 0.079 0.406 1.42 22 (22) 1.927 7.826 0.93
El 20 (3) 0.003 0.031 2.60 20 (20) 0.118 0.253 0.69
E2 21 (8) 0.011 0.076 1.72 21 (21) 1.799 7.272 1.13
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5.3.2 Statistical inference

The mean of the posterior estimates of the parameter(s) of the Poisson, Poisson—gamma (PGA),
and Poisson—log-normal (PLN) models are reported in Table 5-3. The MCMC chains of the Poisson
model converged (ESS >10,000) for all Cryptosporidium and Giardia datasets. Convergence was
also obtained with the PGA and PLN models for all Giardia datasets. However, ESSs >10,000
were not obtained for Cryptosporidium datasets from 12 DWTPs after 3 x 10° iterations with the
PGA and PLN models. The total number of oocyst detected at these sites was 20 or lower and the
number of positive samples (at least one oocyst detected) was generally lower than 10. The
posterior estimates of the parameters of the gamma and log-normal distributions of
Cryptosporidium concentrations were not reported for the sites. The collection of more samples
would be needed for statistical analysis.

For all DWTPs, small differences (< 0.5-log) were found between the sample mean and the “best”
estimates of the mean Cryptosporidium and Giardia concentrations with the PGA and PLN models
(Figure 5-1). The upper bounds of the 95% credibility interval on the mean Cryptosporidium
concentrations of the PLN were 0.5 to 1.2-log higher than those of the PGA for DWTPs B7, C1,
C4, and C7. Cryptosporidium data sets from these four DWTPs are available in the Supplementary
Material (Supplementary Table 5-3). For Giardia, only small differences (< 0.5-log) were observed
between the upper bounds of the 95% credibility interval of the PGA and PLN models.
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Table 5-3: Mean of the posterior estimates for parameters of the Poisson, Poisson—-gamma (PGA),

and Poisson—log-normal (PLN) models fit to source water Cryptosporidium and Giardia data at 30

drinking water treatment plants.

Cryptosporidium Giardia
Poisson PGA PLN Poisson PGA PLN
DWTP ¢ a y) a y) ¢ a 2 a y)
A0l 0.010 0.27 0.71 232 113 -1.74
A02 0.028 0.73 235 0.83 -3.82 1.83 0.97 051 1.32 -0.05
Al 0.106 0.36 2.17 144 -2.92 5.67 146 0.29 0.88 1.20
A2 0.112 0.53 3.80 126 -2.87 8.94 2.64 0.29 071 1.99
A3 0.045 041 6.04 1.35 -3.66 1.34 1.20 0.59 1.05 0.21
Ad 0.136 0.49 279 134 -2.56 141 0.97 159 1.21 -0.08
Bl 0.152 0.53 3.04 132 -2.58 1.20 243 201 0.71 0.05
B2 0.064 0.49 5.80 126 -3.24 2.42 1.99 0.88 0.86 0.55
B3 0.016 1.04 3.01 279 0.64 -0.09
B4 0.059 2.68 1.79 0.54 0.94 0.87
B5 0.022 0.55 266 5.13 0.65 -0.79
B6 0.035 0.35 7.52 1.09 -3.62 0.97 1.28 1.25 1.06 -0.40
B7 0.033 0.27 2.63 145 -3.73 0.54 0.61 0.30 1.40 -0.37
C1 0.174 0.40 2.08 157 -2.70 0.99 0.47 0.34 1.63 -1.03
C2 0.047 196 39.2 0.44 -3.16 1.15 1.27 1.02 1.09 -0.19
C3 0.054 1.04 17.6 0.85 -3.32 0.48 097 1091 121 -1.19
Cc4 0.079 0.13 0.80 2.01 -3.93 0.97 1.36 1.27 1.02 -0.34
C5 0.057 0.60 0.79 0.77 1.25 -0.73
Cé 0.049 055 114 096 -3.46 1.46 1.42 0.91 0.94 0.06
C7 0.096 0.26 1.90 145 -3.18 2.77 0.78 0.17 1.25 0.74
C8 0.046 0.32 5.86 135 -4.10 0.45 095 1.93 122 -1.25
C9 0.023 0.37 175 452 0.86 -1.19
C10 0.022 0.54 1.68 3.22 0.83 -0.93
Cl1 0.024 0.39 1.48 3.69 0.88 -1.26
C12 0.116 3.68 3.09 0.75 061 1.21
C13 0.089 0.60 5.62 098 -2.78 3.01 191 0.62 0.84 0.84
Ci4 0.028 0.47 111 1.75 111 -0.90
D1 0.080 0.50 5.62 1.18 -3.20 1.66 1.35 0.70 098 0.22
El 0.002 0.11 199 17.9 0.75 -2.34
E2 0.010 2.01 0.80 0.42 149 -0.15
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Figure 5-1: Sample mean concentration and expected mean concentrations of the gamma and log-
normal distributions for Cryptosporidium and Giardia at 30 drinking water treatment plants. Grey
columns represent sample means, blue columns represent Gamma means, and green columns
represent log-normal means. Vertical error bars represent the upper bound of the 95% credibility
intervals on the mean concentration. The expected mean concentrations of the gamma and log-
normal distributions were not evaluated for Cryptosporidium at 12 drinking water treatment plants

due to poor convergence of the Markov Chains.

5.3.3 Model comparison

The marginal deviance information criterion (mDIC) for the Poisson, PGA, and PLN models are
listed in Table 5-4. The PGA and PLN models better fitted Cryptosporidium and Giardia data sets
than the Poisson model at most DWTPs (difference in mDIC >7). Therefore, pathogen

concentrations in raw water cannot be assumed to be stable at the sites. Negligible differences in
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mDIC were generally observed between the mixed Poisson models. Differences in mDIC of 3-6
were obtained for 4 DWTPs for Cryptosporidium and 11 DWTPs for Giardia. The lowest mDIC
support the PGA for 2 DWTPs for Cryptosporidium and 7 DWTPs for Giardia. The lowest mDIC
support the PLN for 2 DWTPs for Cryptosporidium and 2 DWTPs for Giardia.

Table 5-4: The marginal deviance information criterion (DICr) indicates the relative accuracy of
the Poisson, Poisson-Gamma (PGA) and Poisson-log-normal (PLN) models fit to
Cryptosporidium and Giardia data at 30 drinking water treatment plants. Smaller values of DICn,

suggest a better model.

Cryptosporidium Giardia

DWTP Poisson PGA PLN Poisson  PGA PLN
A0l 392.3 159.8 155.8
A02 86.1 75.7 717 2016  240.0 244.8
Al 2540 1123 1103 4626  273.7 269.6
A2 161.2 974 975 2522  277.0 277.9
A3 104.9 81.2 835 975.2 2223 221.2
A4 280.0 139.6 138.6 1332 24338 246.4
Bl 297.6 1314 1283 508.8 215.0 218.2
B2 143.4 95.7 942 1080  216.5 221.1
B3 4035 1794 182.2
B4 585.6  155.2 159.5
B5 297.0 1574 158.3
B6 59.6 52.9 551 468.7 158.8 160.3
B7 66.2 53.6  56.1 310.0 1201 117.0
C1 3835 1258 125.2 2388 1973 191.1
Cc2 71.8 702 721 811.0 187.3 192.4
C3 96.9 704 674 4359 139.1 139.5
C4 198.8 814 817 533.8 187.8 189.8

C5 169.8 95.1 91.7
C6 119.9 1102 1142 718.1  299.3 300.3
Cc7 101.2 63.3 64.7 1647  176.3 173.8
C8 120.4 67.1  65.2 463.7 145.9 146.6

C9 108.7 81.4 82.7
C10 217.8  148.3 148.5
Cl1 1829  136.0 136.7
C12 290.1 1421 143.2
C13 75.1 59.4 644 7085 164.6 166.2
Cl4 2459 11838 1194
D1 143.1 915 911 9579 2254 226.8
El 1555 1233 127.4

E2 2090  230.8 234.5
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Complementary cumulative distribution function (CCDF) curves were produced to illustrate the
behavior of the upper tail of the gamma and log-normal distributions of Cryptosporidium
concentrations for DWTPs B7, C1, C4, and C7 (Figure 5-2). Differences in upper tail behaviors
were generally observed from a probability of exceedance of approximately 5 %. These CCDF
curves show that the gamma distribution does not extrapolate to concentrations much higher the
sample maximum concentration. In contrast, the log-normal distribution does extrapolate to
concentrations approximatively 1.0-log than the sample maximum at a probability of exceedance
of 0.2%. Furthermore, the size of the 95% predictive interval of the log-normal distribution
increased with concentrations. In comparison, the 95% predictive interval of the gamma
distribution stabilized at a probability of exceedance of around 20%.
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Figure 5-2: Complementary cumulative distribution function (CCDF) curves of the gamma and
log-normal distributions of Cryptosporidium concentrations at four selected drinking water
treatment plants. Dark blue lines and green lines represent the best-fit gamma and log-normal
distributions, respectively. Blue and green surfaces represent the 95% predictive interval about the

gamma and log-normal distributions, respectively. Pink points represent observed concentrations.
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5.3.4 Influence of the non-constant analytical recovery and site-specific oocyst
viability

Mean recovery rates were 0.46 (mean absolute deviation [MAD] = 0.11) for Cryptosporidium and

0.50 (MAD = 0.13) for Giardia. Mean values of the posterior distributions of the parameters of the

Beta distribution were (&, ) = (6.48, 7.70) for Cryptosporidium and (&, ) = (3.80, 3.91) for

Giardia. These quasi-symmetric Beta distribution (Figure 5-3A) shifts the location of the

population distribution but does not change its dispersion (Figure 5-3B).

A | —Crypto.-Beta(@, §) = (6.48, 7.70) B | ®Log-normal - constant recovery of 100%
- - Giardia - Beta(&, ) = (3.80, 3.91) ®|_og-normal - Beta recovery (@, ) = (6.48, 7.70)
2 — : DWTP C1
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Figure 5-3: Impact of Beta distributed recovery rates on the statistical dispersion of the
concentration distribution. A. Density plot of the Beta distributions of the pooled recovery data B.
Complementary cumulative distribution function (CCDF) curves of log-normal distributions of
Cryptosporidium concentrations considering a constant recovery rate of 100% (green) or a non-

constant Beta distributed recovery rate (pink) for drinking water treatment plant C1.

Considering DAPI-positive oocysts rather than the IFA-positive oocysts reduces the mean
Cryptosporidium concentration from less than 0.5-log for seven DWTPs and approximatively 0.6-
log for two DWTPs (Figure 5-4). For DWTP Al, adjusting for viability increases the credibility

interval on the mean concentration of the log-normal distribution of 0.6-log. Therefore, the
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statistical dispersion of the log-normal distribution can, in some cases, increase with sample-
specific viability data.
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Figure 5-4: A. Impact of sample-specific viability of oocysts on the mean and the dispersion of
Cryptosporidium concentrations: A. Mean Cryptosporidium concentrations calculated with IFA-
positive oocysts versus DAPI-positive oocysts for nine drinking water treatment plants. Blue and
green columns represent, respectively, gamma and log-normal means estimated with IFA-positive
oocyst counts. Light blue and light green columns represent, respectively, gamma and log-normal
means estimated with DAPI-positive oocyst counts.. B. Complementary cumulative distribution
function (CCDF) curves of log-normal distributions of Cryptosporidium concentrations
considering IFA-positive oocyst counts (green) or DAPI-positive oocyst counts (yellow) for

drinking water treatment plants A1 and B2.
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5.4 Discussion

5.4.1 Importance of the distributional form

The RSD was first considered as a heuristic to estimate the importance of the difference between
upper tail probabilities of the Cryptosporidium and Giardia concentration distributions. RSD
values higher than 1.0 were found for most of Cryptosporidium data sets and about half of the
Giardia datasets. Haas (1997) demonstrated that considerable differences in the shape of the
distributions might be observed at RSD values > 1.0. In our study, the selection of the log-normal
distribution rather than the gamma distribution did not significantly influence the estimation of the
arithmetic mean Giardia concentration and its uncertainty. In contrast, the choice of distribution
considerably influenced the width of the 95% credibility interval on the mean Cryptosporidium
concentration for four DWTPs (B7, C1, C4, and C7) supplied by midsized rivers (mean discharge:
75-286 m°/s) located in urban, agricultural, and mixed catchments. For these DWTPs, the upper
bound of the 95% credibility interval on the mean was more than 0.5-log higher with the log-

normal distribution than with the gamma distribution.

Differences of more than 0.5-log higher are important for risk assessment because treatment
performances are typically quantified in log-units; thus, health risk estimates are directly
proportional to the pathogen concentration in source water. Direct proportionality is expected
because the reduction performances of treatment processes are typically assumed to be independent
and first-order with respect to the influent concentration of the microorganism (Haas et al. 1999).
The first-order model considerably simplifies the exposure assessment because the same fraction
of microorganisms is expected to be removed regardless of the influent concentration. If all
treatment processes of a treatment train are first-order and independent, then the total average
reduction performance of the treatment train is calculated by multiplying the average rate of
passage (10~LR) of each process (Haas and Trussell 1998, Teunis et al. 2009, Schmidt et al. 2020).
Consequently, the improper choice of a model for source water concentrations may mislead the

assessment of health risks associated with the water supply. Additionally, high-resolution data on
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full-scale performance by treatment processes would be valuable to assess the validity of the first-

order assumption under real-world dynamic conditions.

Health-based targets for drinking water safety are generally defined in terms of annual risk. There
have been discussions about whether this appropriately protects against variable conditions,
especially peaks (Signor and Ashbolt 2009, Smeets 2010). The adoption of a short-duration (e.g.,
daily) target has been suggested previously (Signor and Ashbolt 2009). In our study, the
quantification of the uncertainty in the estimated parameter values of the distributions provides
new insights for risk characterization. First, the CCDF curves of the gamma and the log-normal
distributions are showing that, at an exceedance probability of 0.002 (~1 day per year), the width
of the 95% predictive interval about the Cryptosporidium concentration is similar to the width of
the 95% credibility interval on the expected value of the distribution. The uncertainty on the mean
of the distribution is, therefore, highly sensitive to the uncertainty on the upper tail values. Second,
the upper tail of the log-normal distribution continues to increase below an exceedance probability
of 0.002. Hence, the annual mean concentration may vary from year to year, depending on the
occurrence events with an exceedance probability below 0.002. This inter-year variability may

considerably increase the width of the 95% credibility interval on the annual mean (see companion

paper).

The consideration of short-duration targets would simplify the calculation performed during risk
characterization and may reduce the uncertainty of risk estimates. The compliance with a short-
duration target could be evaluated for a concentration (and its uncertainty) predicted at a given
exceedance probability (e.g., 0.002) by an appropriately conservative distribution. Indeed, the
probability of capacity exceedance is commonly used in civil engineering for the design of
hydraulic structures (Plate and Duckstein 1988) and buildings (Moehle and Deierlein 2004).
Nonetheless, it should be noted that a parametric model may not predict accidents or extreme
weather events: a probability distribution is conditional on historical data. The identification of
early signals and precursors is needed to manage these types of events. The development of early

warning systems using meteorological data has been recently suggested to manage the risks of
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waterborne diseases (Semenza 2020). Online monitoring of faecal indicators could also be useful
for the development of early warning systems.

5.4.2 Methods to assist model selection

The mDIC were computed to compare the fit of Poisson and mixed Poisson models to
Cryptosporidium and Giardia data. The mDIC values indicated that the PGA and PLN models
better fitted Cryptosporidium and Giardia data sets than the Poisson model. However, the mDIC
did not generally allow discrimination between the PGA and PLN models because sample sizes
are too small to characterize the upper tail behaviors of the population distribution adequately. At
an RSD of 1, Haas (1997) found that large sample sizes (over 200 in some cases) would be required
to achieve a high level of reliability in distributional attribution. Indeed, the CCDF curves
illustrated that upper tails behaviors were distinct from each other from a probability of exceedance
of around 1%. Consequently, neither the gamma distribution nor the log-normal distribution should
be selected as a default population distribution for modeling Cryptosporidium data. Additional

information is therefore needed to assist model selection.

The statistical analysis of large data sets might help identifying how Cryptosporidium
concentrations scale at large magnitudes. The investigation of how meteorological covariates
influence temporal variations in microbial concentrations might also help address this issue.
Several studies demonstrated short-term peak pathogen concentrations following rainfall events
(Atherholt et al. 1998, Kistemann et al. 2002, Signor et al. 2005). Results from event-based
monitoring and routine monitoring campaigns could be used to evaluate which distribution
accurately predicts microbial peaks associated with these events. This methodology was recently
implemented for the assessment of peak E. coli concentrations during snowmelt events at an urban
DWTP (Sylvestre et al. 2020a). In our companion paper, we propose an adaptation of this method

for protozoan pathogen data collected during snowmelt and rainfall events.

In the absence of empirical information, it might be helpful to read these probability distributions
as statements about processes (Frank 2014). The gamma distribution scales linearly at large

magnitudes because it expresses an additive process. The CCDF curves show that the upper tail of
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the gamma distribution does not extrapolate to concentrations much larger than the sample
maximum. The log-normal distribution also expresses an additive process but on the log scale.
Consequently, the tail of the log-normal distribution extrapolates to concentrations
approximatively 1.0-log higher than the sample maximum at a probability of exceedance of 0.2%.
The log-normal distribution is, therefore, more conservative for the prediction of peak events than
the gamma distribution, which might be a useful property to consider from a public health
perspective. However, the selection of the log-normal distribution may result in the prediction of
large uncertainties on the mean concentration, which could motivate unnecessary costs for water
utilities. A potential option to reduce this uncertainty might be to collect sample volumes that would
yield more positive counts rather than non-detects.

Other candidate distributions could be considered in future investigations of temporal variations in
source water pathogen concentrations. Informative priors may however be required for modeling
distributions with a heavier tail than the log-normal distribution. Prior knowledge could be obtained
from the literature (meta-analyses, reviews, empirical studies) to increase the precision of posterior
estimates (O'Hagan et al. 2006), but informative priors should be used carefully because variations
in pathogen concentrations are catchment specific. We believe that the collection of more samples

should be preferred to the use of more informative priors.

5.4.3 Limitations for the quantification of protozoan pathogen concentrations

The incorporation of the variation of the analytical recovery with Beta distributions did not
influence the statistical dispersion of the population distribution of the PGA or PLN models
because Beta distributions were close to symmetric (o ~ ). Similar values of the parameters of
the Beta distribution of the analytical recovery were obtained in other studies for Cryptosporidium
(Connell et al. 2000, Pouillot et al. 2004) and Giardia (Connell et al. 2000, Jaidi et al. 2009).
However, site-specific recovery data could produce skewed Beta distributions (a # ), which may
reduce (o« > B fora > 1, > 1) orincrease (e < f fora > 1, 8 > 1) the statistical dispersion of
the concentration distributions. The analytical recovery of Cryptosporidium oocysts may be
correlated to temporal covariates, such as turbidity (DiGiorgio et al. 2002, Feng et al. 2003,

Petterson et al. 2007). In our companion paper, we found a reduction of sample-specific recovery
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rates of 0.9-log at agricultural DWTP A4 during a 24-hour period of peak source water
Cryptosporidium/Giardia concentrations at moderately high turbidity levels (20-30 NTU).

Statistical methods to incorporate viability, infectivity and human specificity proportions in
temporal concentration variability distributions have not yet been fully addressed in QMRA. In this
study, the consideration of DAPI-positive oocyst counts rather than IFA-positive oocyst counts did
not generally result in an important change in the scale of the distributions of Cryptosporidium
concentrations. However, in some cases, adjusting for viability may increase the proportion of non-
detects, which may result in increasing the uncertainty on the mean Cryptosporidium
concentration. Lapen et al. (2016) applied Beta distributions to adjust for the human-pathogenic
proportion of Cryptosporidium oocysts. In their study, the mean of the Beta distribution was
estimated using the overall fraction of C. hominis and C. parvum detected at multiple sites located
on the same river. The 99" percentile of the Beta distribution was approximated by the highest
fraction of C. hominis and C. parvum observed among site/season combinations. The obtained Beta
distributions were skewed to the right (¢ < ), which is reducing the statistical dispersion of the
concentration distribution. The validity of this assumption should be further investigated because,
as discussed previously for the analytical recovery, the specificity and the infectivity of (0o)cysts
could be correlated with concentrations because of temporal covariates (rainfall, snowmelt)

influencing microbial transport mechanisms (Swaffer et al. 2014, Swaffer et al. 2018).

5.5 Conclusions

Bayesian analysis of mixed Poisson distributions with different upper tail behaviors offered a
suitable framework to analyze source water Cryptosporidium and Giardia data obtained at 30

drinking water treatment plants. The following conclusions ensue from this work:

e The relative standard deviation (RSD) indicated that correct identification of the
distribution was necessary (RSD > 1) for most of the DWTPs for Cryptosporidium and for
about half of the DWTPs for Giardia. In these cases, the improper selection of a distribution

may result in a biased estimate of the mean concentration;
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e The convergence of Markov chains was obtained for the Poisson—gamma and Poisson—log-
normal models for all Giardia datasets. However, convergence was only achieved for 18
of the 30 Cryptosporidium datasets. The convergence of the Markov chains should thus be
examined thoroughly when distributions of concentration from pathogen data are modelled,
especially when only small data sets are available.

e The gamma and log-normal distributions predicted similar mean concentrations for
Cryptosporidium and Giardia. However, considerable differences (>0.5-log) in the upper
bound of the 95% credibility interval on the mean Cryptosporidium concentrations were
found at four sites. The application of methods to assist model selection is thus
recommended to ensure that appropriately conservative distributions are selected in
exposure assessment.

e Discrimination between candidate parametric distributions using the marginal deviance
information criterion (mDIC) is unachievable because differences in the upper tail
behaviors are not well characterized with small data sets (n < 30). Therefore, the gamma
and the log-normal distributions fit the data equally well but may predict different risk

outputs when they are used as an input distribution in an exposure assessment.

A possible approach to address this issue could be to compare the upper tail predictions of candidate
distributions to field observations during critical periods of source water contamination. In the
absence of empirical information, the log-normal distribution could be selected as a conservative
model for the prediction of peak concentrations in source water. However, the selection of the log-
normal distribution may result in the prediction of large uncertainties on the mean concentration.
Source water monitoring strategies and risk management options should be investigated in further

work to address this issue.
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CHAPTER 6. ARTICLE 3 - IMPACT OF
HYDROMETEOROLOGICAL EVENTS FOR THE SELECTION OF
PARAMETRIC MODELS FOR PROTOZOAN PATHOGENS IN
DRINKING-WATER SOURCES

It should be noted that Article 2 (Chapter 5) and Article 3 (Chapter 6) are companion articles. Both
articles investigate temporal variations in source water protozoan pathogens concentrations.
Article 2 is primarily focusing on model development and implementation. Article 3 adapted the
model validation technique presented in Chapter 4 for the assessment of protozoan pathogens in

source water.

In this chapter, the potential of in situ B-D-glucuronidase activity measurements is evaluated for
the identification of peak source water Cryptosporidium and Giardia concentrations during
hydrometeorological events at drinking water treatment plants located in urban and agricultural
catchments. Results from event-based monitoring campaigns are used to verify whether Poisson—
gamma and Poisson—log-normal distributions (presented in Chapter 5) predicted Cryptosporidium
and Giardia concentrations during these hydrometeorological events. This article has been

accepted in Risk Analysis. Supplementary information is presented in Appendix C.
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Abstract Temporal variations in concentrations of pathogenic microorganisms in surface waters
are well known to be influenced by hydrometeorological events. Reasonable methods for
accounting for microbial peaks in the quantification of drinking water treatment requirements need
to be addressed. Here, we applied a novel method for data collection and model validation to
explicitly account for weather events (rainfall, snowmelt) when concentrations of pathogens are
estimated in source water. Online in situ B-D-glucuronidase activity measurements were used to
trigger sequential grab sampling of source water to quantify Cryptosporidium and Giardia
concentrations during rainfall and snowmelt events at an urban and an agricultural drinking water
treatment plant in Quebec, Canada. We then evaluate whether mixed Poisson distributions fitted
to monthly sampling data (n~30 samples) could accurately predict daily mean concentrations
during these events. We found that using the gamma distribution underestimated high
Cryptosporidium and Giardia concentrations measured with routine or event-based monitoring.
However, the log-normal distribution accurately predicted these high concentrations. The selection
of a log-normal distribution in preference to a gamma distribution increased the annual mean
concentration by less than 0.1-log but increased the upper bound of the 95% credibility interval on
the annual mean by about 0.5-log. Considering parametric uncertainty in an exposure assessment

is essential to account for microbial peaks in risk assessment.

6.1 Introduction

Hydrometeorological events such as heavy rainfall and snowmelt can lead to short-term
deterioration of source water quality and may pose a challenge for drinking water treatment. Peak

concentrations of pathogens in source water have been recognized as causes of waterborne
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outbreaks associated with drinking water when synchronous with sub-optimal or inadequate
treatment performance (Hrudey and Hrudey 2004). Over the last 20 years, event-based sampling
strategies have been developed to assess variations of protozoan pathogens concentrations during
rainfall-induced runoff conditions in tributaries of drinking water sources (Kistemann et al. 2002,
Dorner et al. 2007, Swaffer et al. 2014, Swaffer et al. 2018), in reservoirs used as a drinking water
source (Burnet et al. 2014), and in raw water from surface drinking water systems (Atherholt et al.
1998, Signor et al. 2005, Astrom et al. 2007, Dechesne and Soyeux 2007). In these studies, the
association between target pathogens, fecal indicator bacteria (FIB), and physical parameters (flow
rate, water level, turbidity) were investigated. Although progress has been made to accelerate
culture-based methods for the detection of FIB, these methods cannot be used as a trigger for
event-based sampling because culture typically requires 6- to 24-hours incubation periods.
Advances in rapid detection of enzyme activity that is associated with fecal contamination (George
et al. 2000, Farnleitner et al. 2001) and its recent automation (Ryzinska-Paier et al. 2014,
Koschelnik et al. 2015) allows for rapid detection of peak fecal contamination events and trigger
for simultaneous collection of sample for pathogens. Commercially available prototypes for f-D-
glucuronidase (GLUC) activity in situ monitoring in near real-time are now available to
characterize faecal pollution temporal dynamics in environmental waters (Ryzinska-Paier et al.
2014, Stadler et al. 2016, Burnet et al. 2019a, Burnet et al. 2019b). These automated measurement
systems could further be used to design new sampling strategies targeting short-term fluctuations

in microbial pathogen concentrations during hydrometeorological events.

Upon characterization of a critical contamination event, risk assessors need to integrate this
information into a probabilistic risk assessment. Basic principles of probability theory need to be
considered to adequately use results from event-based sampling to inform microbial risk
assessment. Results from routine sampling (also known as systematic sampling) are independent
and identically distributed (i.i.d.) random variables because routine samples are collected at a fixed
periodic interval (e.g., monthly sampling). Mixed Poisson distributions, such as the Poisson—
Gamma (negative binomial) distribution and the Poisson—log-normal distribution, have been used

to infer microbiological data (Teunis et al. 1997, Haas et al. 1999, Masago et al. 2004, Westrell et
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al. 2006), but these distributions have not yet been validated for the prediction of microbial peak
events. Results from event-based sampling can also be considered as i.i.d. random variables if
event-based samples are collected at a fixed periodic interval (e.g., hourly) during the event.
However, routine and event-based samples cannot be combined for statistical inference because
their periodic intervals differ. A potential solution to this problem could be to use results from
event-based sampling campaigns to evaluate whether mixed Poisson models fitted to routine
monitoring data can accurately predict pathogen concentrations during peak events. The
identification of the most appropriate distribution to predict these peak events would improve the
assessment of health risk associated with the finished water and the selection of treatment

requirements.

The first objective of this study is therefore to determine if online GLUC activity and turbidity
measurements can indicate periods of high concentrations of protozoan pathogens in source water.
The second objective is to determine whether mixed Poisson distributions fitted to routine
monitoring data accurately predict Cryptosporidium and Giardia concentrations during

hydrometeorological events (snowmelt and rainfall episodes).

6.2 Material and methods
6.2.1 Sample site

Two drinking water treatment plants (DWTPs) introduced in the companion paper (DWTPs C6,

A4) were selected for case studies.

6.2.1.1 Urban site

DWTP C6 is supplied by surface water from a river in the Greater Montreal Area in Quebec,
Canada (Table 6-1). Raw and settled water were sampled during event-based campaigns. From
February to April 2017, the raw water was processed by a sludge blanket clarifier dosed with
aluminum sulfate hydrate “alum” (Alx(SO4)s; dosing rate: 50 mg L) and silica (SiO2; dosing rate:
2 mg L) in 1°C raw water at pH 6.0. The land use in this area is dominated by low to medium

intensity urban residential areas. The air temperature during winter (January to March) averages -
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10°C. The flow rate of the river is measured continuously at a gauging station 5 kilometers
downstream of the drinking water intake. Between 1970 and 2012, the average flow rate of the
river during winter was around 200 m®/s. During the local snowmelt period, generally in March
and April, the average flow rate peaks at approximately 600 m%/s. The flow rate typically peaks 1
week following the local snowmelt because of the large size of the catchment (146,334 km?). Up
to 10 kilometers upstream from DWTP CB6, the river receives treated effluent discharges from four
municipal wastewater treatment plants (WTTPs), as well as untreated sewage discharges from 37
combined sewer overflow (CSO) outfalls, and two tributaries draining agricultural lands of
approximately 70 km?. Limited catchment management practices are implemented to control the
volume and the duration of CSO discharges during snowmelt periods (Gouvernement du Québec
2015).

6.2.1.2 Agricultural site

DWTP A4 is supplied by a small agricultural river in southern Quebec. The annual average flow
rate of the river is 16 m%/s. A municipal WWTP and four CSO outfalls are located 10 km upstream
from the drinking water intake. At the WWTP, wastewater is treated through aerated ponds, and
around 10,000 m®/day of treated water is discharged into the river. The regional watershed
protection plan indicates that intensive pig and cattle farming (>1500 animal units) occurs in this
area and that 30 to 60% of the land is dedicated to agriculture. Cattle and swine manure is applied
to agricultural lands from April to October, and a maximum of 35% of manure produced on-site
can be used for agricultural spraying. Buffer strips of at least 3 meters from the river are required

for source water protection (Gouverment du Québec 2018).

Table 6-1: Summary of catchment information for drinking water treatment plants (DWTPs) C6
and A4

Main land cover type

Mean river flow rate Catchment in the intake WWTPs /CSOs in the
DWTP (m®/s) [min-max] size (km?) protection zone # intake protection zone #
C6 300 [20-1000] >50,000 Urban 4/26
A4 15 [3-100] <100 Agricultural 1/4

A 10 km upstream and 100 m downstream from the withdrawal site. The distances include surface water, portions of
tributaries and a 120 m strip of land measured from the high-water mark.
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6.2.2 Monitoring strategies

Raw water samples were collected monthly (from 2014 to 2017 at DWTP C6 and from 2014 to
2015 at DWTP A4) for the enumeration of Cryptosporidium and Giardia. No samples were
collected between June and September from 2015 to 2017 at DWTP C6. A statistical
characterization of these data sets is presented in Table 6-2. An automated rapid on-site monitoring
system (ColiMinder™, VWMS GmbH, Vienna, Austria) was installed at each DWTP intake
around 30 days before snowmelt or rainfall events for a preliminary investigation of the p-D-
glucuronidase (GLUC) activity fluctuation ranges in each source water. Detailed technical
information about the device can be found in Koschelnik et al. (2015). Analytical validation of the
technology for source waters and challenging against established culture- and molecular-based
assays has been recently performed by Burnet et al. (2019a). The GLUC activity was measured
every 1 to 3 hours during dry weather conditions and every 30 to 60 minutes during
hydrometeorological events. Fifteen minutes after sample collection, results are reported online
and expressed in modified Fishman units (MFU/100 mL) based on the enzyme unit definition for
GLUC activity (Koschelnik et al. 2015).

Table 6-2: Sample size, sample mean concentration, and relative standard deviation for
Cryptosporidium and Giardia concentrations (uncorrected for recovery) for drinking water
treatment plants (DWTPs) C6 and A4

Cryptosporidium Giardia
Sample Sample Relative Sample  Sample Relative
DWTP size mean standard size mean standard
(oocysts/L)  deviation (cysts/L)  deviation
Cé6 27 0.064 1.65 27 1.57 0.93
A4 24 0.181 1.63 24 1.54 1.01

Event-based samples were collected when two conditions were met: 1) cumulative rainfall
exceeding 20 mm or air temperature higher than 5 degrees Celsius (causing rapid snowmelt) were
measured in 24 hours, and 2) an increase in GLUC activity of 5 mMFU/100 mL was observed
within an hour. A trigger of 5 mMFU/100 mL was selected based on short-term increases in GLUC
activity measured during previous hydrometeorological events at these DWTPs (Figure 6-1). For

sample collection, 1-liter grab samples of raw water were collected in autoclaved polypropylene
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bottles at a frequency of 4 to 6 hours for around 24 hours for the enumeration of E. coli.
Additionally, 10 to 40 liter-samples were simultaneously filtered on-site for the enumeration of
Cryptosporidium and Giardia using Envirochek HV sampling capsules (Pall Gelman Laboratory,
Ann Arbor, MI, USA) at DWTP C6, and Hemoflow F80A hollow-fiber ultrafilters (Fresenius
Medical Care, Lexington, MA) at DWTP A4. Ten liter-samples are not typical for surface water
sampling, but the filtration of small volumes was necessary to avoid filter clogging due to high
raw water turbidities during the rainfall event at DWTP A4. Sequential grab samples were
collected for 24 hours to estimate the daily mean concentration. At DWTP C6, 50 liter-samples of
settled water were also filtered during the first event-based sampling campaigns. Settled water
samples were collected 3 hours after raw water samples to match the theoretical hydraulic
residence time throughout coagulation/flocculation/sedimentation (C. Durivage, personal
communication). The sampling capsules (Envirochek HV filtration) or concentrates (Hemoflow
ultrafiltration) were shipped overnight in coolers at 4 °C to the Centre d’expertise en analyse
environnementale du Québec (CEAEQ) in Quebec City, QC, and eluted (Envirochek filters) and

processed within 48 hours of sampling.
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Figure 6-1: Time series of daily rainfall, GLUC activity, snow cover, turbidity, and river flow rate
during sampling periods at drinking water treatment plants C6 and A4. Yellow rectangles indicate

targeted events.
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6.2.3 Microbial enumeration methods

Escherichia coli was enumerated using the defined substrate technology (IDEXX Quanti-
Tray/2000) with Colilert reagents (Method 9223B, American Public Health Association, 2005).
The enumeration of oocysts of Cryptosporidium and cysts of Giardia filtered with Envirochek
HV sampling capsules was carried out following the USEPA method 1623.1 (USEPA, 2012).
The elution procedure was adapted for the enumeration of (oo)cysts filtered with Hemoflow
ultrafilters. Following Hemoflow-based concentration, volumes of filter eluates were
approximately 500-700 mL. Post-concentration was done by centrifugation to obtain a final
volume between 20 and 50 mL and a packed pellet volume between 2 and 5 ml. Between 20 and
50% of the packed pellet volume was then processed by immunomagnetic separation
(IMS), before sample staining and examination following USEPA method 1623.1.

Sample-specific analytical recoveries were not measured for routine monitoring samples, but
ongoing precision recovery (OPR) samples prepared in tap water were done regularly, following
standard method recommendations (USEPA, 2012). Mean analytical recovery rates of 0.46
(Standard Deviation [SD] = 0.14) and 0.50 (SD = 0.17) were measured for Cryptosporidium and
Giardia, respectively, based on 43 Cryptosporidium and Giardia matrix spike recovery
experiments. These experiments were carried out with flow-cytometry sorted fluorescently labeled
(oo)cysts (Colorseed™, BTF, Australia) by spiking a target dose of 98-100 (0o)cysts in ten liter-
samples of raw water collected at 30 DWTPs in Quebec over 9 years. Additional recovery rates
were measured for each sample collected during the event-based campaign at DWTP A4. The
same fluorescently labeled controls (Colorseed™) were spiked at a target dose of 98-100 (00)cysts
in the raw water sample before careful manual mixing and on-site concentration using hollow-
fiber ultrafiltration. Seeded oocysts and naturally occurring oocysts were enumerated in each
event-based sample. At DWTP A4, some samples were partially analyzed because of the high
turbidity of the raw water. For these samples, the distribution of seeded (00)cysts was assumed to
be homogenous at the time of sub-sampling and directly proportional to the analyzed volume.

Sample-specific analytical recovery rates were not measured for samples collected during both
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events at DWTP C6. We conservatively assumed that all detected Cryptosporidium oocysts and

Giardia cysts were human infectious.
6.2.4 Statistical analysis

6.2.4.1 Model parametrization and implementation

The temporal variations in protozoan pathogen concentrations were evaluated with the three-level
hierarchical Bayesian model presented in detail in the companion paper. Briefly, at the first level,
the analytical error of the enumeration method is binomially distributed:

y; ~ Binomial (x;, p;) (6.1)

where y; is the number of (0o)cysts observed in each sample i; x; is the true number of (0o)cysts
in the sample; and p; is the probability of detection of each organism x;. The nonconstant analytical
recovery p; (i.e., the sample-to-sample variability in recovery rate) was assumed to vary randomly
according to a beta distribution with shape parameters a and 3. Posterior means of the parameters
were (&, ) = (6.48, 7.70) for Cryptosporidium and (&, 8) = (3.80, 3.91) for Giardia. The second
level of the hierarchical structure takes into consideration the sampling error. The true number of
(oo)cysts x; is Poisson distributed with mean A; = c¢;V; , the product of the concentration (c;) and
the analyzed volume (V/;).

2 -1 V¥ —(cV) 6.2
flx) = ; _ (e ©2

x!

At the third level, temporal variations of the concentration c; are described by a continuous
distribution. In this study, concentrations predicted by these models are assumed to be daily mean
concentrations. The gamma and log-normal distributions were selected and compared because they
have different upper tail behaviors at large coefficients of variation (Haas 1997), and this property
is preserved under mixed Poisson models (Kaas and Hesselager 1995). The gamma distribution

has a density
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and an expectation (i.e., mean) E(c) = a/A, where a > 0 is the shape parameter and 1 > 0 is a

scale parameter. The log-normal distribution has a density
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and an expectation E(c) = exp (a+%), where the shape parameter « > 0 and the scale

parameter A may take each real value.

Estimations and inferences were carried out in a Bayesian framework using Markov Chain Monte
Carlo (MCMC). Gamma priors with hyperparameters set to Gamma (0.01, 0.01) were selected for
the shape parameter a and the scale parameter A of the gamma distribution. For the log-normal
distribution, the shape parameter a was assigned a uniform prior with hyperparameters set to
Uniform (-10, 10), and the scale parameter A was assigned a weakly informative exponential prior
with hyperparameters set to exp (1). The hyperparameter in the weakly informative prior was set
to a conservative value based on evidence regarding the logarithm of the empirical standard
deviation of Cryptosporidium and Giardia measured at 30 DWTPs (see companion paper). The
rationale for the selection of the other priors is presented in the companion paper. A sensitivity
analysis was conducted in this study to investigate the influence of the hyperparameter value in
the exponential prior of the scale parameter A of the log-normal distribution. The hyperparameter
value was adjusted upward (exp (0.1)) and downward (exp (3)), and the log-normal distribution

was re-estimated with these varied priors.

Models were fitted using the MCMC technique with rjags (v4-6) (Plummer 2013) in R (v3.4.1).
Four Markov chains were run for 10* iterations after a burn-in phase of 103 iterations. The
convergence of the four chains was monitored with the Brooks-Gelman-Rubin scale reduction
factor (Gelman and Shirley 2011).
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6.2.5 Estimation of daily mean concentrations during events

The daily mean concentration was considered in this study because: 1) the exposure is usually
characterized in terms of the arithmetic mean number of organisms in the dose (Haas 1996), and
2) a 24-hour period is typically used to account for short-term exposures in microbial risk
assessment (WHO 2016b). Cryptosporidium and Giardia concentrations in each event-based
sample were estimated with a Poisson model (eq. 6.2). Counts were corrected with sample-specific
recovery rates when available (DWTP A4). The daily mean concentration Cg,.,. Was estimated

by averaging concentrations C; collected at regular intervals over 24 hours.

(6.5)

3|

C;

n
EEvent =

i=1
The uncertainty of the daily mean concentrations was evaluated with Monte Carlo simulations. A
random sample was drawn from the 95% credibility interval on the mean concentration c; (eq. 6.2)
of each sample i. The draws were summed and divided by the number of event-based samples N
collected in 24 hours. The procedure was repeated 10000 times to estimate the 95% predictive
interval for the daily mean concentration. The R code used to calculate these daily mean

concentrations is provided in the Supplementary Material.

6.2.6 Model validation

Distributions were illustrated with complementary cumulative distribution function (CCDF)
curves. Each best fit distribution was generated for probabilities of exceedance between 100% and
0.27% (1 day per year) using the posterior mean of the parameters (a, A). The predictive interval
about each best fit distribution was created by simulating 1000 CCDF curves parametrized by
random values included in the 95% credibility interval for the parameters. To visually assess the
capacity of the distributions to predict high concentration observations, two vertical lines were
juxtaposed with CCDF curves. These two lines represent 1) the sample maximum concentration
measured with routine monitoring, and 2) the daily mean concentration during the

hydrometeorological event. Only the highest event mean Cryptosporidium and Giardia
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concentrations (Event 1) were illustrated for DWTP C6. We assumed that these daily mean
concentrations have probabilities of exceedance higher than one day per year.

6.2.7 Estimation of annual mean concentrations

It is important to note that there may be a difference between the uncertainty on the mean of the
distribution and the uncertainty on the annual mean predicted by a skewed distribution. A
difference will be observed if the upper tail of the distribution does not have an asymptotic
behavior from a probability of exceedance smaller than one day per year. In other words, the
occurrence of daily concentrations predicted to occur less than once a year may generate variations
in the annual mean estimates. To investigate the importance of this difference, the upper bound of
the 95% credibility interval on the mean of the distribution was compared to the upper bound of
the 95% credibility interval on the annual mean of the distribution. The upper bound of the 95%

credibility interval on the annual mean of the distribution was evaluated as follows:

1. the 95% credibility interval was calculated for the shape parameter @ and the scale
parameter A of the distribution;

2. the pair of parameters contained in the 95% credibility interval that maximize the mean of
the distribution was determined;

3. 365 samples were drawn randomly from the distribution generated with the pair of
parameters determined in step (2). The average of these 365 samples (annual mean) was
calculated;

4. Step 3 was repeated 10,000 times to produce a distribution of these annual means. The

97.5" percentile of the distribution of these annual means was determined.

This model was implemented using R (v3.4.1). The R code is provided in the Supplementary

Material.
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6.3 Results and discussion

6.3.1 Short-term fluctuations in microbial contaminants

Short-term fluctuations in microbial contaminants were studied during two snowmelt events in an
urban catchment and one rainfall event in an agricultural catchment. The collection of event-based
samples was triggered by meteorological conditions (cumulative rainfall, change in air
temperature) and rapid increases in the GLUC activity level. This sampling strategy allowed us to

characterize short-term variations in Cryptosporidium and Giardia concentrations in raw water.

At the urban DWTP C6, the amplitudes of E. coli, Cryptosporidium, and Giardia concentration
peaks were 1.1 logio-units, 0.7 logio-units, and 1.4 logio-units, respectively, during Event 1 (Figure
6-2). Sample-specific recovery rates were not measured at DWTP C6; therefore, the intra-event
variation in protozoan pathogen concentrations could be influenced by the difference in recovery
rates among samples. The impact of source water turbidity on recovery rates could be small during
Event 1 because turbidity was low and only ranged from 6 to 13 NTU (mean absolute deviation
(MAD)=1.5 NTU). However, other short-term changes in the composition of the water matrix
could have influenced the recovery performance. At the agricultural DWTP A4, the amplitudes of
the protozoan pathogen concentration peaks were higher (0.8-1.1 logio-units) than the amplitude
of the E. coli concentration peaks (0.5 logio-units) (Figure 6-3). In 24 hours, sample-specific
recovery rates varied between 22 and 70% for Cryptosporidium and between 8 and 70% for
Giardia (Table 6-3). Sample-specific recovery rates decreased through the contamination event,
especially for Giardia. These results show the importance of measuring sample-specific recovery
rates to estimate concentrations of Cryptosporidium and Giardia during hydrometeorological
events in agricultural catchments. Negative correlations between turbidity and recovery rates were
obtained for Cryptosporidium (r = -0.50) and Giardia (r = -0.87) at DWTP A4; however, these
results should be interpreted with caution because the sample size was small (n=6) and turbidity
only ranged from 18 to 28 NTU (MAD=2.8 NTU). Low recovery rates during peak events could
be associated with the nature of the turbidity and the background matrix of the water (DiGiorgio

et al. 2002). Positive correlations between measured concentrations (i.e., uncorrected for the
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analytical recovery) and recovery rates were obtained for Cryptosporidium (r = 0.83) and Giardia
(r = 0.57). Theoretical recovery rates of 30% were assumed for all event-based samples collected
at urban DWTP C6 based on average recovery rates measured during the rainfall event at DWTP
A4,

During these three hydrometeorological events, the GLUC activity level rapidly increased for
about 12 hours and then slowly decreased over several days to return to the baseline level (Figure
6-1). Cryptosporidium and Giardia concentrations also increased during the first 12 hours but did
not decrease in the 12 hours following the GLUC activity peak. Therefore, a decrease in GLUC
activity level may not indicate a decrease in protozoan pathogen concentrations during
snowmelt/rainfall episodes. The 24-hour sampling strategy did not allow us to determine the full
duration of protozoan pathogen peaks. Consequently, measured 24-hour mean Cryptosporidium
and Giardia concentrations could be lower than the maximum 24-hour mean concentrations for
these events. Nevertheless, at the two DWTPSs, the 24-hour event mean Giardia concentration was
higher than the sample maximum measured with routine monitoring (corrected for recovery) at
DWTP C6 (Event 1; +0.3-log) and DWTP A4 (+0.7-log) (Table 6-3).

During the two events at DWTP C6, the turbidity did not increase simultaneously with protozoan
pathogen concentrations (Figure 6-4A, Figure 6-4B). The lack of systematic association between
protozoan pathogen concentrations and turbidity has been reported for large datasets (USEPA,
2005). Differences in protozoan pathogens and turbidity dynamics may be associated with the
varying contributions of multiple sources, including watershed-scale nonpoint source pollution
during snowmelt- and rainfall-runoff and local point source discharges of faecal contamination.
Local sewer discharges can increase faecal contamination loads in the river without increasing
total suspended solids (TSS) because correlations between these parameters are not expected
during the snowmelt period (Madoux-Humery et al. 2013). At agricultural DWTP A4, GLUC
activity, Cryptosporidium, and Giardia concentrations increased with turbidity, suggesting that
turbidity could be a valid surrogate to trigger the sampling of peak protozoan pathogen
concentrations in agricultural catchments. Additional event-based sampling campaigns could be

designed to assess whether the magnitude of turbidity and microbial peaks are associated.
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However, recovery rates for protozoan pathogens may be very low at the high raw water turbidities
(>100 NTU) that can be measured at the drinking water intake.
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Figure 6-2: Short-term variations of E. coli, Cryptosporidium, and Giardia concentrations for the first 24 hours of two

hydrometeorological events (snowmelt and rainfall) in February (Event 1) and April (Event 2) 2017 at drinking water treatment plant

(DWTP) C6.
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Figure 6-3: Short-term variations of E. coli (A), Cryptosporidium (B), and Giardia (C) concentrations for the first 24 hours of an

hydrometeorological event (rainfall) in October 2017 at drinking water treatment plant (DWTP) A4
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Table 6-3: Characterization of raw water samples collected with event-based sampling at drinking water treatment plants C6 and A4

Concentration

Ejal"vt\)lidivtv;‘ ter Count ;g;rl{pl ed ;/r? fjlliyzed Colorseed count  Recovery rate” (00)cysts/L B
pwtp Event Date/hour  (NTU) Oocysts  Cysts (L) (L) Oocysts  Cysts Crypto. Giardia Crypto. Giardia
C6 February  25/20:11 6.1 1 8 15 15 - - 0.30 0.30 0.22 1.8

26/00:04 7.8 1 94 15 15 - - 0.30 0.30 0.22 20.8
26/3:11 8.4 5 200 15 15 - - 0.30 0.30 1.11 44.4
26/7:11 10.4 2 138 15 15 - - 0.30 0.30 0.44 311
26/10:18 10.7 0 102 15 15 - - 0.30 0.30 0.00 22.2
26/14:13 12.9 5 110 15 15 - - 0.30 0.30 1.11 24.4
24-hour event mean  0.52 24.1
April 4/16:49 14.0 1 40 14 14 - - 0.30 0.30 0.15 2.9
4/23:52 17.2 2 152 15 15 - - 0.30 0.30 0.28 10.1
5/3:47 20.7 1 43 15 15 - - 0.30 0.30 0.15 2.9
5/6:35 27.3 2 96 14 14 - - 0.30 0.30 0.31 6.9
24-hour event mean  0.22 5.7
Ad October  30/12:00 18.4 7 94 40 8 10 14 0.50 0.70 1.80 16.8
30/16:00 23.4 9 121 35 7 14 8 0.70 0.40 1.80 43.2
30/20:00 28.0 6 142 30 15 20 5 0.40 0.10 1.00 94.7
31/00:00 24.0 12 117 35 17.5 12 0 0.24 <0.08 2.90 83.6
31/4:00 28.0 1 202 32 16 14 9 0.28 0.18 0.20 70.1
31/8:00 27.0 4 102 30 15 11 4 0.22 0.08 1.20 85.0
24-hour event mean  1.48 65.5

A Theoretical recovery rates at DWTP C6 and sample-specific recovery rates at DWTP A4
B Concentrations corrected for the analytical recovery
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Figure 6-4: Short-term fluctuations of GLUC activity, raw water turbidity, and river flow rate during event conditions (first 24 hours) at
drinking water treatment plant (DWTP) C6 in February 2017 (A), April 2017 (B) and DWTP A4 in October 2018 (C). River flow rate
measurements were not available at DWTP A4.
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6.3.2 Model validation

It was demonstrated in the companion paper that, as only a few samples informed on the behavior
of the upper tail, the differences in marginalized deviance information criterion (mDIC) between
candidate parametric distributions (gamma, Weibull, log-normal) were too small (less than 4
points) for model selection based on mDIC alone. Results from the sensitivity analysis of the
influence of hyperparameter values in the exponential prior of the scale parameter A of the log-
normal distribution are shown in the Supplementary Material (Supplementary Figure 6-1). Changes
in hyperparameter values had a small effect on the behavior of the upper tail of the distribution for
Cryptosporidium and a negligible effect for Giardia (Supplementary Figure 6-1).

The present study allowed investigating whether results from event-based sampling of protozoan
pathogens can be predicted by a parametric distribution fitted to routine monitoring data. The
CCDF curves of the gamma and the log-normal distributions fitted to routine monitoring
Cryptosporidium and Giardia data are presented in Figure 6-5. The capacity of each distribution
to predict a fixed concentration (e.g., event mean concentration) can be visually assessed for
probabilities of exceedance varying between 1.0 (all the time) and 0.002 (about 1 day per year).
For the agricultural DWTP A4, the gamma and the log-normal distribution predicted the 24-hour
event mean Cryptosporidium concentration at a probability of exceedance of 0.002 (Figure 6-5A).
However, only the log-normal distribution predicted the 24-hour event mean Giardia
concentration; the upper tail of the gamma distribution did not predict high enough concentrations
(Figure 6-5B). For DWTP C6, at a probability of exceedance of 0.002, only the log-normal
distribution conservatively predicted the sample maximum Cryptosporidium concentration
measured with routine monitoring (Figure 6-5C) and the 24-hour event mean Giardia
concentration (Figure 6-5D). Sylvestre et al. (2020a) recently demonstrated, using raw water E.
coli concentration data collected at DWTP C6, that the log-normal distribution better predicted
peak E. coli concentrations than the gamma distribution during snowmelt events. Hence, care needs
to be taken when a distribution is selected to describe temporal variations in source water
concentrations because its upper tail may be too light to account for peak contamination levels.
Quantifying the maximum concentration of a distribution might also be of interest to evaluate

worst-case scenarios in a quantitative risk assessment. If so, extreme value theory may be used to
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evaluate the expected maximum concentration of a distribution based on observations (Embrechts
et al. 2013).
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Figure 6-5: Complementary cumulative distribution functions (CCDF) of Cryptosporidium and
Giardia concentrations in raw water at drinking water treatment plants (DWTPs) C6 and A4.

Implications for risk assessment
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The selection of a log-normal distribution in preference to a gamma distribution had a minor effect
on the estimate of the annual mean concentration but increases the upper bound of the 95%
credibility interval on the annual mean from 0.5-log for Cryptosporidium and 0.3-log for Giarda
at DWTP C6, and from 0.6-log for Cryptosporidium and 0.4-log for Giarda at DWTP A4 (Figure
6-6). Treatment requirements for the reduction of microbial pathogens at DWTPs are commonly
scaled to logio-reduction; therefore, the choice of parametric distribution for source water
characterization could result in different treatment requirements. It should be noted that the upper
bound of the 95% credibility interval on the annual mean is higher than the upper bound of the
95% credibility interval on the mean of the distribution for the log-normal but not for the gamma
(Figure 6-6). This difference indicates that, for the log-normal distribution, daily mean
concentrations having a very small probability of exceedance (e.g., once every 10 years) can have
a significant impact on the annual mean concentration. Improved knowledge of the dependencies
between source water concentrations and removal/inactivation efficiencies of treatment processes
could also reduce uncertainties on exposure estimates. In this study, stable Giardia concentrations
(0.08 £ 0.02 cyst/L) were measured in settled water at DWTP C6 during Event 1 regardless of an
increase in source water concentrations of 1.4-log (Figure 6-7). These results must be interpreted
with care because the sample size is small, and recovery rates in raw and settled water matrices
were not measured. It is worth noting that, according to the Smoluchowski theory of flocculation,
a higher flocculation rate should be observed at higher particle concentrations (Benjamin and
Lawler 2013). Basic research on the mechanisms of aggregation of microorganisms during
coagulation/flocculation and the evaluation of full-scale performances of treatment processes
during periods of microbial challenge in raw water could be valuable to improve the assessment

and management of microbial peaks at DWTPs.
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Figure 6-6: Mean and annual mean of the gamma and log-normal distributions at drinking water
treatment plants (DWTPs) C6 (A) and A4 (B). Whiskers indicate the upper bound on the 95%
credibility interval. For the annual mean, the 95% credibility interval represents the year-to-year

variation (365 daily mean concentrations per year) of the upper bounds of the 95% predictive
interval about the best fit distribution.
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Figure 6-7: Short-term variations of Cryptosporidium (A) and Giardia (B) concentrations in raw
water and settled water for the first 24 hours of an hydrometeorological event (snowmelt and

rainfall) in February (Event 1) at drinking water treatment plant (DWTP) CB6.

6.4 Conclusions

This article describes a methodology for data collection and model validation to explicitly account
for hydrometeorological events when source water pathogen concentrations are characterized. An
event-based sampling strategy triggered by meteorological conditions and rapid increases in B-D-
glucuronidase (GLUC) activity was implemented at two drinking water treatment plants to
investigate the impact of snowmelt and rainfall events on source water contamination. These event-
based campaigns allowed us to find that:

e Increase in GLUC activity was indicative of an increase in Cryptosporidium and Giardia
concentrations in source water, which varied over about 1.0-log over 24 hours;
e At the urban site, GLUC activity level was a better surrogate than turbidity to identify

transient peak contaminations by protozoan pathogens in source water during two snowmelt
events.

The use of a model validation approach using mixed Poisson distributions and results from event-
based sampling demonstrated that:
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e The gamma distribution underestimated high protozoan pathogen concentrations collected
with routine and event-based monitoring, but the log-normal distribution accurately
predicted these high protozoan pathogen concentrations;

e The selection of a log-normal distribution rather than a gamma distribution increased the
uncertainty of the annual mean concentration by about 0.5-log, which can result in
additional treatment requirements. Appropriately conservative parametric models should
be carefully chosen to manage human health risks adequately but also to avoid unnecessary

costs for water utilities.

Additional studies confirming these findings in other catchments and for other
hydrometeorological events would be relevant. Improved knowledge of full-scale reduction of
protozoan pathogens and microbial surrogates during hydrometeorological events would be
valuable to quantify the risk of microbial peaks at drinking water treatment plants.
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CHAPTER 7. ARTICLE 4 - DEMONSTRATING THE
REDUCTION OF ENTERIC VIRUSES BY DRINKING WATER
TREATMENT DURING SNOWMELT EPISODES IN URBAN AREAS

In this Chapter, the event-based monitoring strategy presented in Chapter 4 and Chapter 6 is
adapted for the assessment of virus concentrations in source water and treated water throughout
the treatment train of two urban drinking water treatment plants. The collected data sets are used
to quantify the extent of virus removal achieved by individual and combined treatment processes
during challenging periods of source water microbial contamination. This article was submitted to
Water Research.
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Abstract This study proposes a method to quantify the extent of virus removal achieved by full-
scale drinking water treatment processes during challenging periods of microbial contamination.
Critical periods were identified at two urban drinking water treatment plants during snowmelt
freshet using online in situ B-D-glucuronidase activity measurements. Concentrations of norovirus,
rotavirus, enterovirus, adenovirus, and JC virus in these periods were evaluated by reverse
transcription and real-time quantitative PCR after concentrating large volumes of water at the
source and throughout the treatment train. Virus infectivity was assessed through viral culture by
measurement of cytopathic effect and integrated cell culture gPCR. Event-based sampling
indicated that concentrations of viruses in raw water during snowmelt freshet were about 1.0-log
higher than concentrations under baseline conditions. Virus removal performances were similar or
higher during snowmelt episodes than in baseline conditions and were, to some extent, associated
with raw water virus concentration and turbidity. Enterovirus, noroviruses Gl and Gll, and JC virus
were primarily removed by coagulation/flocculation. Rotavirus and adenovirus were detected after
ozonation, filtration, and UV disinfection, and infectious adenoviruses were detected after UV
disinfection. B-D-glucuronidase guided virus monitoring can be used to assess virus reduction

during peak faecal contamination events in urban water sources.

7.1 Introduction

Accurate data on the physical removal and inactivation of enteric viruses by engineered water
treatment processes is essential to the implementation of risk-based preventive approaches to
ensure drinking water safety (WHO 2017b). Virus removal performances are commonly assessed
by spiking cultured or isolated virus stocks. These performances have been estimated at bench- or
pilot plant-scale by plaque assays (Guy et al. 1977, Rao et al. 1988, Nasser et al. 1995, Hijnen et
al. 2010) or quantitative PCR (qPCR) assays (Shin and Sobsey 2015, Shirasaki et al. 2017, Kato et
al. 2018). A limited number of studies also investigated the removal of viruses under full-scale
operating conditions in drinking water treatment plants (DWTPs) (Stetler et al. 1984, Payment et
al. 1985, Payment and Franco 1993, Havelaar et al. 1995, Albinana-Gimenez et al. 2009, Teunis et
al. 2009, Asami et al. 2016). However, these removal performances are usually measured under
random raw water quality conditions, and little is known about specific removal performances

during hydrometeorological events.
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Flocculation is a critical step during intermittent changes in raw water quality. Inadequate floc
formation, floc breakdown, and filter overloading could lead to increased amounts of particles in
finished water, which can render virus disinfection ineffective (Hejkal et al. 1979). An increase of
natural organic matter (NOM) concentration in raw water can occur following rainfall events
(Hurst et al. 2004), which can interfere with virus flocculation performance (Nasser et al. 1995).
Furthermore, coagulation with hydrolyzing metal salts can perform less well at low water
temperature due to lower solubility of the metal hydroxides (Driscoll and Letterman 1988, Kang
and Cleasby 1995) and poor floc formation (Morris and Knocke 1984, Hanson and Cleasby 1990).
Snowmelt episodes associated with high virus concentrations in river water during cold months
could, thus, represent periods of higher viral risks for drinking water consumers (Sokolova et al.
2015). However, the identification and characterization of virus concentration peaks during
hydrometeorological events remain challenging at DWTPs. The automatization of rapid methods
for the detection of indicators of faecal contamination in surface water (Ryzinska-Paier et al. 2014,
Koschelnik et al. 2015) could stimulate the development of new sampling strategies to characterize

viral removal performances at full-scale during microbial peak events.

The main objective of this work was to investigate the virus removal performance of full-scale
drinking water processes during periods of microbial challenge in raw water. Online B-D-
glucuronidase (GLUC) activity measurements were used to trigger sequential sampling of large
volumes of raw water (50-2200 L) and treated water throughout the treatment train. The
concentrations of multiple enteric viruses, including norovirus, rotavirus, reovirus, sapovirus,
astrovirus, enterovirus, adenovirus, and a non-enteric virus JC virus were quantified by reverse
transcription (where needed) and real-time quantitative PCR, and virus infectivity of cultivable
viruses was assessed using the cytopathic effect in cell culture and integrated cell culture with
qPCR (ICC-gPCR).

7.2 Material and methods

7.2.1 Catchment description

Sampling campaigns were carried out at two drinking water treatment plants (DWTPs) treating
water from the Milles lles River in the greater Montreal area in Quebec, Canada. The river has a

length of 40 km, an average water discharge of 286 m? s, It is one of the major rivers of the
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Montreal Archipelago, where the Ottawa River meets the Saint Lawrence River. Locally, it is under
the direct influence of a series of smaller watersheds totalling 1,190 km?. Drinking water intakes
A and B are located at the middle point and the end of the river, respectively. One hundred and
eighty-four combined sewer overflows (CSOs) and 14 municipal wastewater treatment plants
(WWTPs) using mostly aerated ponds or combined biological and physicochemical treatment
discharge to the river and its tributaries. Diffuse pollution sources may also contribute to viral
contamination of animal origin in drinking water supplies because river tributaries are draining
agricultural lands. Spring snowmelt freshet usually occurs between February and April in Southern
Quebec, and it is the critical period for microbial peaks at drinking water intakes located in this
river (Burnet et al. 2019b).

7.2.2 Drinking water treatment description

An overview of unit processes involved in the treatment train of each DWTP and the location of
sampling points is illustrated in Figure 7-1. At both DWTPs, Supervisory Control and Data
Acquisition (SCADA) data (flow rate, turbidity, pH, coagulant dosage, disinfectant residual) were

collected to relate these parameters with the observed removal of viruses.

DWTP A was operated at a capacity of 1.1 x 10° m® dX. The raw water was coagulated with
aluminum sulfate “alum” (Al2(SO4)s.18 H20; dosing rate: 50 mg L) and silica sand (SiO2; dosing
rate: 2 mg L) at pH 6.0 and processed by a floc blanket clarifier. A first-stage dual sand-anthracite
filtration then processed the settled water (10 m h't; 30 cm sand-bottom and 60 cm anthracite-top).
The filtered water then passed through inter-ozonation (dose rate: 1.2 mg L Os), second-stage
granular activated carbon (GAC) filtration (5-10 m h't; 200 cm of activated carbon), and chemical
disinfection with chlorine dioxide (2.3 mg L ClO,).

DWTP B was operated at a capacity of 1.0 x 10° m® d. The raw water was processed by an
ACTIFLO® microsand ballasted clarifier (\Veolia Water Technologies, QC, Canada). During the
sampling period, alum (Al>(SO4)s; dosing rate:15 mg L), polyaluminosilicate-sulfate (PASS-10;
dosing rate: 50 mg L), cationic polyacrylamide (CPAM:; dosing rate: 0.25 mg L) and silica sand
(SiO2; dosing rate: 4 g L) were added in 1°C raw water at pH 6.7. The settled water then passed
through inter-ozonation (dosing rate:1.0 mg L™ Os; Ctio: 0.6 mg L min') for 20-22 minutes and

is processed by dual sand and granular activated carbon (GAC) filters (10 m h'%, 15 cm sand-bottom
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and 140 cm activated carbon-top). The filtered water then went through low pressure (LP, A = 254
nm) UV disinfection (dose: 40 mJ cm, Wedeco BX 3200; Xylem Water Solutions, Herford,
Germany) and chemical disinfection with sodium hypochlorite (dosing rate: 2.1 mg L™ NaOCI).

Drinking water treatment plant A

Raw water Sludge blanket .| Dual sand-anthracite | Inter- .| Gramular activated .| Chemical
supply T clarification T - filtration T "| ozonation carbon filtration disinfection
Raw water Settled water Filtered water

Drinking water treatment plant B

Microsand Dual sand-granular

Raw water Inter- . I . Chemical
supply ballasted > e:; —»  activated carbon » UV disinfection g Ea
PP T clarification T ozonahon filtration T T ection

Raw water Settled water Filtered water UV disinfected water

Figure 7-1:Unit processes involved in the treatment train of drinking water treatment plants A and
B and location of sampling points (red).

7.2.3 Sampling strategy

An automated rapid monitoring system (ColiMinder™ VWMS GmbH, Vienna, Austria) was
installed at each DWTP in February (1-2 months before significant snowmelt episodes) to monitor
variations of B-D-glucuronidase (GLUC) activity in raw water. GLUC activity was measured every
1-3 hours and was reported online in modified Fishman units (MMFU 100 mL™). GLUC activity
was used as a surrogate for faecal contamination levels in raw water. Turbidity levels were
measured continuously in raw water, and every 4 hours in settled water, individual filter effluents,

as well as in combined effluent from all filters.

At DWTP A, the event-based sampling strategy was based on meteorological conditions (daily
rainfall >20 mm or air temperature > 5°C over 24 hours) and GLUC activity levels (variation > +5
mMFU 100 mL? over 1 hour). Two events (Event Al in February and Event A2 in April) were
captured with this sampling strategy. Sequential grab raw water samples (110-500 L) were
collected at a frequency of 4 to 6 hours for around 24 hours to obtain a virus concentration profile
over time. Sequential grab samples of settled and filtered waters (300-600 L) were collected to
match theoretical mean hydraulic residence times through clarification (3 hours) and filtration (2

hours) (C. Durivage, personal communication).
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The event-based sampling strategy was modified at DWTP B because a rapid increase in the level
of the GLUC activity (+20 mMFU/100 mL) in raw water was observed during dry weather
conditions. Two event-based sampling campaigns were carried out when the GLUC activity level
was above 40 mMFU 100 mL™, and three baseline sampling campaigns were conducted when the
GLUC activity level was below 40 mMFU 100 mL™* sampling campaigns were conducted. On
February 7, 2018, a planned discharge of raw sewage (4 hours) was undertaken for maintenance
on the main sewer system at a municipal wastewater treatment plant (WWTP) located 5 kilometers
upstream of DWTP B. The WWTP serves a population of 37,000 residents and treats, on average,
28,000 m® of raw sewage per day. In normal conditions, the wastewater is treated using aerated
lagoons. The impact of this discharge on raw water quality at DWTP B was evaluated using the
GLUC activity to trigger grab sampling (Event B1). A second event-based sampling campaign was
conducted in March 2018 (Event B2). Sequential grab samples of raw water (50-200 L), settled
(350-520 L), filtered (1000-2000 L), and UV disinfected (1200-2700 L) waters were collected over
4 days during Event B2. Grab samples of settled, filtered, and UV disinfected waters were also
collected during baseline sampling campaigns. Theoretical mean hydraulic residence times
throughout clarification (1.5 hours), filtration, and UV disinfection (1.5 hours) were matched for

each raw water sample (M. Marchand, personal communication).

7.2.4 Virus concentration method

An adsorption-elution method was applied to concentrate viruses from water samples using
electropositive filters NanoCeram VS2.5-5 (Argonide Corp, Sanford, FL, USA). Samples were
filtered on-site at the DWTPs under a constant flow rate of 5-15 L min-according to the turbidity
of the water sample. Pre-filters were not used in this study. A decontamination protocol was applied
to prevent cross-contamination during repeat use of the filtration system. Before each use, the
intake and cartridge housing modules were sterilized with 6% NaOCI for 30 minutes, rinsed with
sterile ddH-0, and then dechlorinated with a sodium thiosulfate solution. After filtration, cartridges
were stored and kept cool (between 1-10 °C) in a transport cooler and shipped to the University
Alberta Hospital in Edmonton, AB, Canada, for processing within 48 hours after the start of the
field sample collection. Eight samples collected at DWTP B on February 28, 2018, could only be
processed 96 hours after the collection due to shipment delay. The elution and flocculation steps

after filtration were performed to concentrate the viruses in the samples as previously described
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(Pang et al. 2012). In brief, viruses retained by the positively charged filter were eluted with 1 liter
of 1.5% beef extract (BE) buffer (pH 9.75). The eluate was further flocculated with FeClz and pH
adjustment to 3.5 followed by centrifugation. The water concentrate was suspended in glycine
buffer (0.5 mol/L glycine, pH 9.0) with a final volume of 15 mL. The pH of the suspension was
adjusted to 7.2 + 0.2. The concentrate was stored at -70°C until assayed.

7.2.5 Nucleic acid extraction and quantification of enteric viruses by qPCR

Total nucleic acids were extracted from 200 pL of concentrated water samples and eluted in 50 pL
RNase-free water using the MagaZorb® total RNA Prep kit (Promega, WI, USA). Nucleic acid
extracts were tested for norovirus genogroup I and Gl (GI/GII), rotavirus, sapovirus, astrovirus,
generic adenovirus, enterovirus, JC polyomavirus, and reovirus. Quantification of virus was
performed by a two-step reaction (reverse transcription (RT) real-time quantitative PCR (qPCR))
with the ABI PRISM 7500 Sequence Detection System (ABI) as previously described (Qiu et al.
2015, Qiu et al. 2016). The primer and probes used for qPCR were published previously (Pang et
al. 2012, Qiu et al. 2015, Qiu et al. 2018). RT and qPCR were carried out as described previously
(Pang et al. 2012). Salmon DNA was included as internal control to monitor inhibition. An external
standard curve was established for quantification of all seven viruses using the 875 bp DNA
fragment of norovirus Gl by 10-fold dilution from 10 to 1x10® genome-copies (Qiu et al. 2016).
Optimization of the panel qPCR assay for the eight viruses was performed by adjusting thermal
cycler conditions and concentration of primers and probes to achieve similar qPCR efficiencies.
Based on the standard curves and the Ct values, the virus concentration (free or encapsidated
genomes) was expressed as genome-copies per liter. Sample-specific recovery rates were not
measured, but the recovery rates of qPCR-based assays were described in a previous study (Pang
et al. 2012). The limit of detection (LOD) of gPCR-based assays was one genome copy per PCR
reaction, which was equal to 2-140 genome-copies per 100 mL based on each sample’s volume

and their concentrate volume.

7.2.6 Virus cell culture

Viral replication in cultures was determined by monitoring cytopathic effects (CPE). Infectivity of
rotavirus, enterovirus, adenovirus, and reovirus was assessed in each sample using Buffalo green

monkey kidney cells (BGM) and African rhesus monkey kidney cells (MA104) grown separately
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on Eagle’s MEM medium (Sigma, ON, Canada) as previously described (Qiu et al. 2015).
Integrated cell culture (ICC)-gPCR assay was used to evaluate the presence of infectious virions
in the sample, as detailed by Qiu et al. (2015).

7.2.7 Quantification of virus concentrations

A hierarchical Bayesian framework was adopted to evaluate virus concentrations. Two levels of
analysis were specified to describe uncertainties related to the random error in sample collection
and the analytical recovery due to losses during sample processing. The number of viral genome-

copies detected by PCR (N,,) in a sample was assumed to be randomly distributed according to a
Poisson distribution with a mean 4,,. This model assumes that viruses are randomly dispersed in

the water (i.e., homogeneous concentration) within the time and space from which the sample was
collected. The expected analytical recovery of the detection method was assumed to vary randomly
among samples according to a beta distribution (Wu et al. 2014). The model can be written as:

N, [i]~Poisson(A,[i]) (7.1)
polil = ol vl <22 <l 2
rli] ~ Beta(a, B) (7.3)

where v is the virus concentration, Vs is the volume of raw of treated water filtered with the
NanoCeram ® filter, Vp . is the volume for the PCR reaction, V, is the volume of the pellet (i.e.,
concentrated sample for the nucleic acid extraction), and r is the expected analytical recovery.
Shape parameters (a, B) of the Beta distribution were estimated from recovery rates previously
published for adenovirus 41 (n=3; mean=0.18, standard deviation (STD)=0.03) and norovirus Gll.4
(n=3; mean=0.19, STD=0.03) spiked and concentrated from 10 L of river water by NanoCeram®
filtration and assayed by real-time quantitative RT-PCR and PCR (Pang et al. 2012). Beta
distributions for adenovirus 41 and norovirus Gll.4 were used to describe the recovery rates of

other DNA and RNA viruses, respectively.
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The Bayesian analysis was conducted in R (v3.4.1) via rjags (v4-6) (Plummer 2013). The
uncertainty in parameter values was explored using a Markov Chain Monte Carlo procedure. Four
Markov chains were run for 10* iterations after a burn-in phase of 10° iterations. The Brooks-
Gelman-Rubin scale reduction factor was considered to monitor the convergence of the four chains
(Gelman and Shirley 2011). A conjugate gamma prior with hyperparameters set to Gamma (0.001,
0.001) was selected to describe the virus concentration v of the Poisson model. This prior reflects
practically no prior knowledge. The best estimate virus concentration and a 95% credibility interval
on this mean were reported. The R code used to quantify virus concentrations is provided in the
Supplementary Material.

7.2.8 Quantification of virus removal

Treatment removal performances were quantified using an empirical approach. Point estimates of

the log-removal (LR) across a treatment unit (paired sample) were calculated as follows:

Cin ) (7.4)

LR = 10g10 (C
out

where C;,, and C,,,, are the best estimate virus concentration per sample (genome-copies L) before
and after treatment, respectively. The uncertainty in virus concentrations was not considered in the
quantification of LR. The limit of detection was considered in the calculation when C,,,; was not
quantified. The effective log-removal (LR sfrective) Was obtained as follows:

Ci
LReffective = 10810 < 3 >

out

(7.5)

Each treatment step of the DWTP was assumed to behave as a plug flow reactor operated
hydraulically at a steady state. The theoretical hydraulic residence time was assumed to be a valid

approximation of the retention time of the viruses.
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7.3 Results

7.3.1 Raw water fluctuations at DWTP A

Time series of the GLUC activity, turbidity and hydrometeorological variables (flow rate of the
river, snow cover on the ground) represent raw water during the 2017 snowmelt period at DWTP
A (Figure 7-2A). Relationship between times series for GLUC activity, turbidity, and river flow
rates during the 2017 snowmelt period at DWTP A, and identification of the dominant upstream

fecal pollution sources were described elsewhere (Burnet et al. 2019b).

Rotavirus, adenovirus, norovirus Gll, and JC virus were detected in most samples during the two
snowmelt events (Table 7-1). Raw water concentrations peaked at around 10* genome-copies L™
for adenovirus and rotavirus and 102 genome-copies L * for norovirus Gll and JC virus (Figure 7-
3A). Rotavirus and adenovirus concentrations varied from 0.6 to 0.9 log during these 24-hour
periods. Reovirus was positive in viral culture with ICC-qPCR for all raw water samples (Table 7-
2). Rotavirus, adenovirus, and enterovirus in raw water samples were predominantly negative in
viral culture. The uncertainties related to the random error in sample collection and the analytical
error are shown with credibility intervals in Figure 7-4 and Figure 7-5. These 95% credibility
intervals indicate that the uncertainty on the mean virus concentration per sample is approximately

0.5-log for each virus.
7.3.2 Raw water fluctuations at DWTP B

Two different types of peak events were observed at DWTP B. On February 7, raw water GLUC
activity increased from 20 to 40 mMFU 100 mL™ about 10 hours following the planned wastewater
discharge. This peak had a duration of approximately 24 hours (Figure 7-2B). In March, the raw
water GLUC activity gradually increased from 20 to 50 mMFU 100 mL™ over 5 days without
major cumulative rainfall (<10 mm) and cumulative snowmelt (<10 cm) over the ten days
preceding the GLUC activity peak. Concentrations of rotavirus, adenovirus, norovirus Gll, and JC
virus were about 1.0-log higher during peak event conditions than during baseline conditions
(Figure 7-3B). Enterovirus, astrovirus, and sapovirus, were sporadically measured in event-based
samples. Infectious adenovirus and reovirus were detected in viral culture in raw water samples

(Table 7-2). Raw water concentrations peaked at around 10° genome-copies L™ for adenovirus and
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rotavirus and 10* genome-copies L for norovirus GIl and JC virus. These concentrations were
approximately 1.0-log lower than treated wastewater effluent concentrations and approximately
2.0-log lower than raw sewage concentrations as measured at the upstream WWTP (Supplementary
Figure 7-1).

=== Rainfall === GLUC activity == Snow cover — — Turbidity - River flow rate - Targeted events
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Figure 7-2: Time series of daily rainfall, GLUC activity, snow cover, raw water turbidity, and river
flow rate during snowmelt freshet at drinking water treatment plants (DWTPs) A and B. Yellow

rectangles indicate targeted events.
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Table 7-1: Number of positive samples by gPCR for each virus at each treatment step at drinking
water treatment plants A and B

DWTP A DWTP B
Floc Rapid Ozonation
Raw blanket sand Raw Ballasted + GAC UV
water clarif. filtration water clarif. filtration disinf.
n 8 (%) 6 (%) 6 (%) 8 (%) 6 (%) 6 (%) 6 (%)
Rotavirus 8 (100) 6 (100) 1(17) 8 (100) 6 (100) 3 (50) 3 (50)
Adenovirus 8 (100) 6 (100) 0 8 (100) 6 (100) 2 (33) 0
Norovirus Gl 1(13) 0(0) 0 8 (100) 0 0 0
Norovirus GlI 6 (75) 3 (50) 0 8 (100) 0 0 0
JC virus 6 (75) 4 (66) 0 8 (100) 3 (50) 0 0
Enterovirus 0 0 0 3(38) 0 0 0
Reovirus 0 0 0 0 0 0 0
Astrovirus 0 0 0 2 (25) 0 0 0
Sapovirus 1(13) 0 0 1(13) 0 0 0

Table 7-2: Detection of infectious viruses in water samples by cell culture and integrated cell
culture (ICC) gPCR

DWTP A DWTP B
Floc Rapid Ozonation
Raw blanket sand Raw Ballasted + GAC UV
water clarif. filtration water clarif. filtration disinf,
Positive viral
CPE culture, n (%) 8 (100) 3 (50) 2 (33) 8 (100) 1(16) 0 (0) 0 (0)
Rotavirus 0 0 0 0 0 0 0
ICC-gPCR  Adenovirus 0 1 0 4 0 0 2
(positive Enterovirus 1 0 0 0 0 0 0
samples) Reovirus 8 1 2 7 0 0 0
Unknown' 0 1 0 0 1 0 0

L Unknown : Samples showed CPE in the cell culture but could not be identified for a specific virus by ICC-gPCR
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Figure 7-3: Time series of GLUC activity measurements and rotavirus, adenovirus, norovirus Gll,
and JC virus concentrations during snowmelt episodes at drinking water treatment plants (DWTPs)

A and B. Yellow rectangles indicate targeted events.

7.3.3 Removal by coagulation/flocculation

Time series of removal of viruses throughout the treatment trains are presented in Figure 7-4 and
Figure 7-5. Error bars represent the 95% credibility interval on the mean concentration as a result
of the analytical error and the random distribution of the genome-copies in the sample. At both
DWTPs, the concentration of 300 to 520 liters of settled water allowed the quantification of
rotavirus and adenovirus (>300 genome-copies/L) in all samples. Norovirus Gl1 was sporadically
detected in settled water at DWTP A but not at DWTP B. At both DWTPs, reovirus, sapovirus,
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astrovirus, and enteroviruses were not detected in any samples collected throughout the treatment

train.

Large variations in removal performance for rotavirus, adenovirus, norovirus Gl and GlI, and JC
virus are presented in Table 7-3. For adenovirus, log-removal varied from 0.3 to 1.3 log at DWTP
A (floc blanket clarification), and from 1.2 to 1.7-log at DWTP B (ballasted clarification) (Table
7-3). For rotavirus and norovirus Gll, removal performances were also higher at DWTP B than at
DWTP A. At DWTP A, the removal of rotavirus and norovirus GlI were negligible. Conversely,
removals up to 2.6-log were measured for norovirus Gll during the peak event at DWTP B (Figure
7-3).

Results from sequential grab samples show that the coagulation/flocculation of viruses did not
deteriorate during these snowmelt episodes (Figure 7-6); peak concentrations of adenovirus were
buffered by coagulation/flocculation at both DWTPs. A buffering effect was also observed for
rotavirus and JC virus at DWTP B.
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Figure 7-4: Histograms for rotavirus, adenovirus, norovirus, and JC virus concentrations in raw

water, settled water, and filtered water during hydrometeorological events 1 and 2 at drinking water

treatment plant A. Error bars represent the 95% credibility interval on the mean virus concentration.

Columns with no colour represent the limit of detection. Orange glowing bars represent samples
positive by ICC-gPCR.
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disinfected water under baseline and event conditions at drinking water treatment plant B
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Table 7-3: Log-removal for rotavirus, adenovirus, noroviruses, and JC virus via floc blanket

clarification and filtration at drinking water treatment plant (DWTP) A and via microsand ballasted

clarification, biological activated carbon filtration, and UV disinfection at DWTP B. LRgffective 1S

the effective log-reduction during event conditions. The log-removal has a greater-than sign (>)

when the removal was quantified using the limit of detection of the effluent sample.

DWTP A DWTP B
Sampleid. FBC" RGFsand® Sample id. BC® 0s3+RGFeac® UV
Rotavirus Rotavirus
Event 1-01 0.5 >1.6 Baseline 1 0.5 2.6 >0.4
Event 1-02 0.3 >1.7 Baseline 2 0.7 1.1 0.5
Event 1-03 0.4 >1.6 Event-01 0.6 1.7 0.6
LR.gEvent1 0.4 1.6 Event-02 11 >2.9 -
Event 2-01 0.0 >1.7 Event-03 1.6 >2.8 -
Event 2-02 0.1 >1.8 Event-04 0.8 2.9 0.0
Event 2-03 0.0 1.1 LR.¢ Event 11 2.2 -
LRegEvent2 0.0 1.4 Adenovirus
Adenovirus Baseline 1 1.7 >1.5 -
Event 1-01 0.8 >0.9 Baseline 2 1.6 1.8 >0.2
Event 1-02 1.3 >0.8 Event-01 1.2 >2.3 -
Event 1-03 0.8 >0.9 Event-02 1.3 >2.3 -
LR Event1 1.0 0.9 Event-03 1.6 >2.4 -
Event 2-01 0.3 >0.9 Event-04 1.2 0.2 >2.3
Event 2-02 1.0 >0.8 LR Event 1.4 0.67 -
Event 2-03 0.7 >1.0 Norovirus Gl
LR.gEvent2 0.7 0.9 Baseline 1 >1.2 - -
Norovirus Gl Baseline 2 >1.3 - -
Event 1-01 - - Event-01 >1.2 - -
Event 1-02 0.4 >0.8 Event-02 >1.8 - -
Event 1-03 >1.3 - Event-03 >2.0 - -
LRsEvent 1 - - Event-04 >1.1 - -
Event 2-01 0.1 >0.8 LR Event 1.5 - -
Event 2-02 >0.6 - Norovirus Gl
Event 2-03 - >0.7 Baseline 1 >1.3 - -
LR.¢ Event 2 - - Baseline 2 >2.0 - -
JC virus Event-01 >1.8 - -
Event 1-01 >0.6 - Event-02 >2.5 - -
Event 1-02 0.5 0.1 Event-03 >2.5 - -
Event 1-03 0.3 0.2 Event-04 >0.9 - -
LR.gEvent1 0.4 - LR.¢ Event 2.2 - -
Event 2-01 - - JC virus
Event 2-02 0.1 >0.8 Baseline 1 0.6 >1.6 -
Event 2-03 >0.7 - Baseline 2 1.8 - -
LR Event 2 - - Event-01 0.6 >2.0 -
Event-02 >2.2 - -
Event-03 >2.6 - -
Event-04 1.3 >1.4 -
LR.¢ Event 1.4 - -
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Table 7-4: Raw and settled water turbidity in baseline and event conditions at drinking water
treatment plants (DWTPs) A and B
Turbidity (NTU)

Raw  Settled Log-
Sample id. water  water  removal

Event 1-01 6.14 0.65 1.0
Event 1-02 7.80 0.65 1.1
Event 1-03 8.37 0.66 1.1
DWTP A Event 2-01 135 0.72 1.3
Event 2-02 15.8 0.78 1.3
Event 2-03 27.1 0.78 15
Baseline-01 6.99 0.66 1.0
Baseline-02 6.51 0.74 1.0
Event-01 14.74 0.97 1.2
DWTF B Event-02 12.12 0.82 1.2
Event-03 16.42 0.80 1.3

Event-04 15.09 0.69 13
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Figure 7-6: Change in virus removal performances of coagulation/flocculation in response to
enteric virus peak concentrations in raw water during snowmelt episodes at drinking water
treatment plants (DWTPs) A and B. White circles and squares represent minimum removal
performance values due to the inability to quantify the virus in settled water (below the detection

limit).
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7.3.4 Removal by filtration and inactivation by UV disinfection

The concentration of 500 to 2,200 liters did not allow us to quantify the log-removal of enteric
viruses by filtration accurately. However, virus concentrations were sporadically quantified at
DWTP A after filtration (rotavirus) (Figure 6-4), and at DWTP B after GAC filtration (adenovirus
and rotavirus) and UV disinfection (rotavirus) (Figure 7-5). In two instances, adenovirus was
quantified after GAC filtration (with inter-ozonation) and positive with ICC-gPCR after UV
disinfection (Table 7-2).

7.4 Discussion

7.4.1 Magnitude and variability of virus concentrations in raw water

Event-based sampling triggered by GLUC activity measurements indicated that concentrations of
enteric viruses during snowmelt freshet could be expected to be about 1.0-log higher than
concentrations under baseline conditions. Short-term variations of around 1.0-log in virus
concentrations were previously reported in surface water with daily sampling (Westrell et al. 2006),
and with event-based sampling during autumn rainfall episodes (Hata et al. 2014). At DWTP B,
peak concentrations in raw water were around 2.0 log lower than virus concentrations in raw
sewage and around 1.0-log lower than virus concentrations in treated wastewater effluent (aerated
lagoons) of an upstream WWTP. Payment (2003) also estimated that the cumulative effect of
wastewater effluent discharges in the Mille Tles River accounted for approximately 1.0% of the
flow rate at DWTP B under average streamflow conditions. Although virus concentrations were
not quantified during the same year at DWTP A (2017) and DWTP B (2018), findings from the
current study suggest that the magnitude and variability of virus concentrations increased along the
urban river that is influenced by numerous wastewater discharges. Increases in detection frequency
and virus concentrations along rivers were also reported for major urban centers in France (Prevost
et al. 2015) and in Alberta, Canada (Pang et al. 2019).

Several factors may influence fluctuations of enteric virus concentrations in urban water sources
for a short period of time. Winter and spring peaks in sporadic viral gastroenteritis were previously
observed for norovirus GlI and rotavirus, respectively, in a 1-year study in Alberta, Canada (Pang

et al. 2014). Winter may also be a period of higher enteric virus concentration in environmental



158

waters because of their persistence in cold water (Skraber et al. 2009). On a day-to-day basis, CSO
discharges and WWTP by-passes can contribute to short-term increases in microbial loads at
DWTPs during winter and spring (Burnet et al. 2019b, Taghipour et al. 2019); this is especially the
case during the early snowmelt freshet when the dilution of untreated sewage discharges is likely
limited (Madoux-Humery et al. 2013). Our results indicated that short-term raw sewage discharges
(over 4 hours) in winter conditions have a measurable effect on viral concentrations at a
downstream DWTP intake.

7.4.2 Virus-type specific removal

Viral removal performances of specific types of enteric viruses by coagulation/flocculation were
observed at two DWTPs. At DWTP B, higher mean log-removals were observed for enterovirus,
norovirus, and JC virus in comparison to those of rotavirus and adenovirus. At DWTP A, higher
mean log-removals were seen for adenovirus than for rotavirus. Streaming current, electrophoretic
mobility or zeta potential measurements were not available, which limits the interpretation of these
results in terms of surface charge. In theory, nearly all viral particles in natural water carry a
negative surface charge because the water pH is above their isoelectric point (i.e., pH value at
which the net surface charge switches its sign) (Michen and Graule 2010). Hence, viral particles
are stable as a result of electrical repulsion. Destabilization of the virus can be achieved during
coagulation by adding metal salts that, under the right conditions of dosage and pH, interact
specifically with negative viral particles to neutralize their charge (Shirasaki et al. 2016)hi.
Proposed destabilization mechanisms for viral particles include charge neutralization (i.e.,
positively charged precipitate particles deposit on viral particles) and sweep coagulation (i.e., viral
particles are enmeshed in the growing hydroxide precipitate) (Heffron and Mayer 2016). In the
current study, adenovirus and norovirus would be negatively charged during treatment at pH 6.0-
7.0 because of their low isoelectric point (Michen and Graule 2010). Conversely, rotavirus has a
higher isoelectric point (8.0) and would be positively charged, which may inhibit its destabilization
(the isoelectric point of alum is 8-9). Hence, for coagulation/flocculation processes, the removal
of rotavirus is expected to be lower than the removal of adenovirus and norovirus, as observed in
this study for both DWTPs.

Even if large volumes of water (300-2700 liters) were concentrated, the quantification of virus

removal performances by chemically assisted filtration and disinfection remained a challenge
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because of detection limits. Nevertheless, rotavirus and adenovirus genomes were sporadically
detected after filtration, ozonation, and UV disinfection, and infectious adenoviruses were detected
after UV disinfection at DWTP B. Previous studies reported low removal of viruses and
bacteriophages by GAC filtration at pilot plant scale (0.0-0.7 log; Guy et al. (1977); Hijnen et al.
(2010)) and high UV-resistance of adenovirus at a dose of 40 mJ cm™ (Meng and Gerba 1996,
Thurston-Enriquez et al. 2003). However, a viral ozonation study demonstrated that a Ct value of
0.6 mg Lt min (calculated Ct value at DWTP B) should be sufficient to inactivate adenovirus
type 40 by at least 4.0-logs in treated water (Thurston-Enriquez et al. 2005). The disparity between
our results and those of Thurston-Enriquez et al. (2005) makes it difficult to conclude on the extent
to which full-scale ozonation processes may inactivate naturally occurring adenovirus. Poor mixing
and hydraulic conditions have been found to reduce the inactivation of E. coli by full-scale
ozonation processes (Smeets et al. 2006). The hydraulics of the full-scale ozonation system

assessed in our study may also limit the reduction of adenovirus.

7.4.3 Kinetics aspects of flocculation for the removal of viruses

Short-term increases in removal performances by coagulation/flocculation were observed during
raw water peak events for adenovirus at DWTP A, and for adenovirus, rotavirus, and JC virus at
DWTP B. These results indicate that the performance of coagulation/flocculation is, to some
extent, dependent on the raw water quality. Higher removal of rotavirus and JC virus by ballasted
clarification was observed at raw water turbidity levels of 12-16 nephelometric turbidity units
(NTU) (peak event) than at levels of 6-7 NTU (baselines conditions) (Tables 3, Table 4). However,
adenovirus removal performances increased with the same trend as turbidity levels increased in the
raw water. A hypothesis based on the Smoluchowski theory for particle coagulation can be

advanced to explain these differences in performance.

According to Smoluchowski, the prediction of flocculation rates is a two-step process. First, a
mathematical expression (size distribution function) is derived to keep particle count as a function
of their size. Second, a collision rate coefficient based on a physical model (Brownian motion, fluid
shear, differential sedimentation) is introduced into the expression that keeps counts of collisions
(Han and Lawler 1992, Youn and Lawler 2019). The rate of irreversible heteroaggregation of a

free virus particle can be calculated as following:
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dn; (7.7)
dt —a;;fiynmn;

where n; is the concentration of i-sized free virus particles in raw water, n; is the concentration of
Jj-sized abiotic particles in raw water; «;; is a collision efficiency coefficient; and g;; is a collision

rate coefficient. In natural aquatic environments, abiotic particles are typically present at much

higher concentrations than viruses; thus, it can be assumed that n; =~ n; o, where n; , is the number

of abiotic particle at t = 0. In this case, eq. 7.7 can be approximate by as a pseudo-first-order

process:
dn; (7.8)
d_tl ~ —aPijn o
Integrating once yields
n; = ni,O exp(—nj,oaijﬁij t) (79)

where n; o is the number of virus at t = 0. Even without knowing any details of «;; and g;;, it can
be anticipated that the initial raw water abiotic particle concentration n; , influence the aggregation

rate of viruses during flocculation.

Kinetics equations accounting for the influence of a ballasted medium on the aggregation rate of
particles have not been developed for ballasted clarification. However, it can be hypothesized that
the initial raw water abiotic particle and the silica sand particles (ballasted medium) are both
contributing to the aggregation of viruses. Higher removal performances by ballasted clarifiers
have been reported at higher influent suspended solids concentrations at pilot-scale (Plum et al.
1998), and at higher influent turbidity levels at bench-scale (Lapointe et al. 2017). For conventional
treatment, it has been demonstrated with population balance models using Smoluchowski
coagulation equations that changes in raw water particle concentrations and size distributions can
substantially influence the removal of submicron particles (Lawler et al. 1978, Lawler and Nason
2005). The characterization of particles in raw water using multiple parameters (turbidity, particle
count, suspended solids) is therefore recommended for the assessment of virus removal

performances by coagulation/flocculation processes.
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Performances by floc blanket clarification (DWTP A) during two snowmelt episodes were lower
than those observed with ballasted clarification (DWTP B) during baseline and event conditions.
Virus removal performances by floc blanket clarification did not increase with raw water turbidity,
but according to kinetic equations describing this process, such a relationship should not be
expected. During floc blanket clarification, the microflocs produced during rapid mixing encounter
a fluidized bed (quasi-stationary distribution of large flocs [10-100 um]) maintained in suspension
by the upward flow of the water. A single collector model based on colloid filtration theory was
proposed to predict particles/flocs aggregation in the fluidized bed (Bache and Gregory 2007). The
loss of i-incoming particles passing through a layer of j-collector is also given by eq. 7-8 with a =
ape X Mpe, Where a, is the particle-collector collision efficiency, and 7, is the single collector
collision efficiency. In contrast with kinetic equations for conventional flocculator, the
concentration of flocs forming the fluidized bed (n;) is not expected to vary temporarily. However,
adenovirus removal performances increased proportionally to raw water adenovirus concentrations
during the two events at DWTP A. The reason for this trend is unclear. Alum was dosed at a
constant concentration of 44 mg Lt throughout the first event (February 2017), but the dosage was
increased from 49 to 53 mg L™ during the second event (April 2017), which may have enhanced
adenovirus removal. During both events, the capacity of the DWTP was stable at approximately
4.1x10*m®d™,

Dependence observed between source water virus concentrations and removal performances by
high-rate clarifiers may have important implications for viral risk assessment at some DWTPs,
especially if post disinfection is not present. The removal performance of a physical treatment
process (log-removal) is commonly assumed to be a first-order process with respect to the influent
concentration of the virus (i.e., the same fraction of viruses is removed regardless of the influent
concentration) (Haas and Trussell 1998). The traditional approach might be inadequate if the
flocculation performance is correlated with the concentration of particles in raw water.
Nonetheless, these findings are site-specific and only represent conditions observed during three
hydrometeorological events. Larger data sets would be needed to conduct statistical analysis. Basic
research on the impact of water quality parameters and floc densification on the aggregation of

viruses could be valuable to enable site-specific and potentially dynamic assessments.
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7.4.4 Limitations for the quantification of virus concentrations

Spatial heterogeneity of viruses may have an impact on the quantification log-removal during full-
scale treatment. In this study, viral genome-copies were assumed to be Poisson distributed in all
samples. Overdispersion was not evaluated because sample replicates were not collected, but large-
volume samples were used for concentrating the viruses in the samples (>300 L), which should
minimize this source of uncertainty. Samples were all collected under stable operation conditions
(turbidity < 0.1 NTU at individual filter effluents). Nevertheless, the removal of viruses through a
filter cycle may be more dynamic than the filter effluent turbidity. Nilsen et al. (2019) recently
showed at pilot-scale that, even if the filter effluent turbidity was <0.1 NTU, the removal
performance of phages MS2 and 28B by dual-media contact filtration varied by about 1.5-log
during the ripening and the breakthrough phase. The occasional high concentrations of adenovirus
and rotavirus in the combined effluent from all the filters and in the UV disinfected water at DWTP

B may originate from sampling during such phases.

Owing to the limitations in analytical viral recovery data in the full-scale treatment, the uncertainty
in method recovery performance was incorporated in virus concentration estimates using a beta
distribution of recovery rates reported by Pang et al. (2012). The same laboratory recently reported
slightly lower recovery rates (human adenovirus 2/4, n=28; mean=0.14, STD=0.14; norovirus GlI,
n=10, mean=0.10, STD=0.06) for wastewater samples subjected to secondary treatment (Li et al.
2019). Monitoring the efficiency of the virus concentration step with a process control could
increase the accuracy of virus concentration estimates in raw water during hydrometeorological
events (Hata et al. 2014). Recovery rates for samples collected after treatment processes may also
differ from those measured in raw water because of changes in matrix composition, although Pang
etal. (2012) did not observe significant differences in recovery rates among pure, tap and raw water
samples for two RNA viruses (norovirus and echovirus) and one DNA virus (adenovirus 41).
Nevertheless, the presence of alum and silica sand in settled water may influence analytical

recovery efficiencies.

The presence of viral genomes after ozonation and UV disinfection is challenging to interpret
because encapsidated genomes and free nucleic acids can be detected. Infectious rotaviruses in raw
water were usually not detected by ICC-gPCR unless high concentrations of those viruses were

present in raw water (>10* genome-copies L™). One of the reasons is that human rotavirus does not
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propagate efficiently in the continuous in vitro cell lines we used (MA104 and BGM) (Ward et al.
1984, Arnold et al. 2009). ICC-gPCR has limited value to assess the inactivation of viruses in water
samples because this method only indicates the absence/presence of an infectious virus. Serial
dilutions of wastewater and source water samples have recently been carried out to quantify human
infectious virus concentrations by ICC-gPCR with the most probable number (MPN) method (Qiu
etal. 2018, Schijven et al. 2019); however, concentrations of naturally occurring viruses throughout
full-scale drinking water treatment train may be too low for quantification using dilutions.
Considering these limitations, the fact that positive infectious adenoviruses were found in treated
water after a combination of advanced treatment processes point to the need to develop improved

infectious virus detection methods.

7.5 Conclusion

Two full-scale drinking water treatment plants in Quebec, Canada, were selected to assess the
extent of virus removal during periods of high viral contamination in raw water during three

hydrometeorological snowmelt events. The following conclusions are drawn:

e Event-based sampling using GLUC activity measurements as a guide indicated that
concentrations of enteric viruses during snowmelt freshet were about 1.0-log higher than
concentrations under baseline conditions. Maximum virus concentrations in raw water
during these periods were approximately 10° genome-copies L for rotavirus and
adenovirus, and 10* genome-copies L for norovirus GIl and JC virus, which was
approximately 2.0-log lower than virus concentrations in raw sewage;

e Removal performances by coagulation/flocculation processes under these conditions were
virus-type specific;

e Increases in full-scale removal performance of adenovirus by floc blanket clarification and
of adenovirus and rotavirus by ballasted clarification were observed during peak virus
concentrations in raw water;

e Limited effectiveness of UV disinfection against naturally occurring adenovirus was
observed at current operative doses of 40 mJ cm after a combination of ballasted

clarification, ozonation, GAC filtration.
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The observed dependency between influent concentrations and process removals has important
ramifications for viral risk assessment. Typically, the reduction performance is assumed to be a
first-order process with respect to the influent concentration of the virus (i.e., the same fraction of
viruses is removed regardless of the influent concentration). This common assumption might be
inadequate if flocculation mechanisms allow for higher removal performances during transient
peaks in raw water contamination. As our results may be site-specific, larger data sets would be
needed to validate these observations. Basic research on the impact of water quality parameters
and floc densification on the aggregation of viruses could be valuable to enable site-specific and
potentially dynamic assessments.

Finally, results from this study support the use of adenovirus as a reference viral pathogen for risk
assessment in urban rivers. More performance demonstrations over a wide range of raw water virus
concentrations are needed to quantitatively and reproducibly evaluate full-scale virus removal

achieved by drinking water treatment processes.
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CHAPTER 8. USING SURROGATE DATA TO ASSESS
MICROBIAL RISKS ASSOCIATED WITH
HYDROMETEOROLOGICAL EVENTS FOR DRINKING WATER
SAFETY

This Chapter presents an adaptation of the event-based monitoring strategy presented in Chapter
7. The reduction of surrogate microorganisms by full-scale treatment processes is evaluated during
baseline and event (rainfall, snowmelt freshet) raw water conditions at two drinking water
treatment plants. Site-specific source water pathogen data and full-scale surrogate organism
reduction data are then inputted into a quantitative microbial risk assessment (QMRA) model to
assess daily risks of infection for different source water conditions. This article will be submitted

to Water Research.
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Abstract

Microbial reduction performances of full-scale drinking water treatment processes were evaluated
at an urban and an agricultural site during baseline and event (rainfall, snowmelt) conditions.
Online monitoring of B-D-glucuronidase activity was used to identify peak faecal contamination
events at the source. Sequential high volume (50-1500 L) grab samples were collected to evaluate
the reduction performance of coagulation/flocculation, filtration, ozonation, and UV disinfection
processes, and analyzed for two surrogate organisms: Escherichia coli and Clostridium
perfringens. Site-specific source water Cryptosporidium and C. perfringens reduction data were
entered into a quantitative microbial risk assessment (QMRA) model to estimate daily infection
risks by Cryptosporidium via the consumption of drinking water. This sampling strategy enabled
the detection of daily mean source water E. coli concentrations in the top 15% of what occurs
through the year based on historical routine monitoring data. Full-scale reduction performances of
up to 6.0-log for E. coli and 5.6-log for C. perfringens were measured. Increased reduction of E.
coli and C. perfringens by ballasted clarification and rapid sand filtration compensated for the
augmented concentrations in raw water during events. As a result, daily infection risks by
Cryptosporidium were not higher during events than during baseline conditions based on C.
perfringens reduction data. Our findings suggest that that physical treatment processes optimized

for turbidity reduction can effectively manage short-term increases in raw water microbial quality.

8.1 Introduction

Recent developments in drinking water quality management in Canada and abroad resulted in a
shift from the traditional focus on end-product by faecal indicator bacteria (FIB) monitoring to a
preventive, risk-based approach covering source to exposure (WHO 2004). To implement a risk-
based approach, quantitative information is needed on reduction by water treatment processes
during normal operating conditions but also during period of poor source water quality (Bartram
et al. 2001). Hydrometeorological events, such as heavy rainfall, are known to be detrimental to
surface water quality by increasing microbial concentrations as well as natural organic matter
(NOM) concentrations and turbidity (Atherholt et al. 1998, Kistemann et al. 2002, Hurst et al. 2004,
Dorner et al. 2007). However, identifying transient peaks in faecal contamination in raw water has
proven to be difficult because of a lack of rapid detection methods. Recently, on-site B-D-

glucuronidase (GLUC) activity in situ monitoring was used to successfully characterize microbial
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peaks in surface water (Burnet et al. 2019b, Cazals et al. 2020, Sylvestre et al. 2020a). Yet, this
technology has not been employed to guide the assessment of full-scale reduction of surrogate

microorganisms by drinking water treatment processes.

To evaluate full-scale treatment performances, surrogate microorganisms are typically selected for
each pathogen class. An ideal surrogate should be similar in size, surface properties and persistence
to the pathogen being targeted (WHO 2016b). Furthermore, the surrogate should be present in
environmental waters at relatively high concentrations for its detection through treatment barriers
(Ashbolt et al. 2001). Pre-concentration methods of large volumes of water for on-site isolation are
usually required to quantify the progressive removal of surrogates and pathogens through full-scale
treatment trains (Payment et al. 2002, Hijnen et al. 2007). Spores of sulfite-reducing clostridia
(including Clostridium perfringens) have been shown to be a conservative surrogate for index
protozoan pathogens (Cryptosporidium and Giardia) removal through conventional treatment
(Payment and Franco 1993, Hijnen et al. 2000). Clostridium perfringens (C. perfringens) is
currently recommended as a surrogate organism for protozoan pathogens in World Health
Organization (WHO) guideline and guidance documents (WHO 2016b, 2017b). Thermotolerant
coliforms (including Escherichia coli) were found to be a proper surrogate for an index bacterial
pathogen (Campylobacter) removal by rapid sand filtration (Hijnen et al. 1998) and inactivation

by ozonation (Smeets and Medema 2006).

The objective of this study was to undertake a high-resolution investigation of the reduction
performance of surrogate microorganisms by full-scale treatment processes at two drinking water
treatment plants during baseline and event (rainfall, snowmelt freshet) raw water conditions. An
approach was developed that involved: (i) using online GLUC activity measurements to identified
critical periods of microbial contamination in raw water; (ii) concentrating large water volumes to
quantify the reduction of surrogate organisms throughout the treatment train; (iii) inputting site-
specific source water pathogen data and full-scale surrogate organism reduction data into a
quantitative microbial risk assessment (QMRA) model to assess daily risks of infection for

different source water conditions.
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8.2 Material and methods
8.2.1 Catchment and drinking water treatment description

Unit processes present in the treatment trains of drinking water treatment plants (DWTPs) A and
B and the location of sampling points are illustrated in Figure 8-1. Supervisory Control and Data
Acquisition (SCADA) data (flow rate, coagulant dosage, turbidity, pH, disinfectant residual, and
temperature measurements) were obtained to relate these parameters with the observed reduction

of microorganisms.

Drinking water treatment plant A
KMnO,

Raw water l Sludge blanket
supply T clarification

Chemical
disinfection

—> Rapid sand filtration —» UV disinfection T

Raw water Settled water Filtered water UV disinfected water

Drinking water treatment plant B

T Microsand T Dual sand-granular il
‘ ballasted > e Lo activated carbon > UV disinfection |—s CCR
supply : : ozonation : disinfection
clarification filtration
Raw water Settled water Filtered water UV disinfected water

Figure 8-1:Unit processes involved in the treatment chain of drinking water treatment plants A and

B and the location of sampling points (red)

8.2.1.1 Agricultural drinking water treatment plant A

DWTP A abstracts raw water from a small agricultural river (annual average flow rate of the river
is 16 m%/s) situated in southern Quebec. The microbial water quality of raw water at DWTP A can
be influenced by four combined sewer overflows (CSOs) and a municipal wastewater treatment
plant (WWTP) discharging 10 kilometers upstream of the drinking water intake. At the WWTP,
human sewage is treated through an aerated pond and discharged in the river at an average rate of
10,000 m®/day. Cattle and swine manures are applied for agriculture in the catchment area, with
buffer strips of at least 3 meters from the river being required (Gouvernement du Québec, 2018).
During the sampling campaigns, DWTP A was operated at a capacity of approximately 3,500 m?
d1, about 20% of the design rate (18,000 m® d*). During water treatment, potassium permanganate

(KMnO4; 0.6 mg L) was first added to the raw water. After permanganate oxidation,
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polyaluminum chloride (PACI; PAX-XLS8: 110 mg L) and cationic polyacrylamide (C-492;
dosing rate: 0.11 mg L) were added in water at pH 6.2 and temperature of approximately 10°C
and processed by Ultrapulsator® floc blanket clarification (Suez, Quebec, Canada). The settled
water was then filtered by four single-media sand filters (0.8 m h™; 140 cm sand) and disinfected
by a medium pressure UV system (fluence: 40 mJ cm™2; Trojan UV Swift; Trojan Technologies,
Schollkrippen, Germany) and chlorine dioxide (CIO>).

8.2.1.2 Urban drinking water treatment plant B

Located in the greater Montreal area, DWTP B is supplied by the Mille Tles river, an urban river
with an annual average flow rate of the river of 286 m®s. The Mille Tles river is a channel of the
Ottawa river, which drains an area of about 146,300 km?. The river is also under the direct influence
of a series of small local dense urban watersheds totalling 1,190 km?. Around 180 combined sewer
overflows (CSOs) and 14 municipal WWTPs (mostly aerated ponds or combined biological and
physicochemical treatment) can discharge in the river and its tributaries during the snowmelt
freshet (typically from February to April). Tributaries of the river also drain agricultural lands,

which potentially contribute to microbial contamination from livestock.

DWTP B was operated at a capacity of 46,800 m® d*, about 40% of the design rate (120,000 m® d-
1). During the sampling period, alum (Al2(SO4)s; dosing rate:15 mg L™), polyaluminosilicate-
sulfate (PASS-10; dosing rate: 50 mg L), cationic polyacrylamide (dosing rate: 0.25 mg L) and
silica sand (SiOg; dosing rate: 4 g L) were dosed in 1°C raw water at pH 6.7 and processed by
ACTIFLO® microsand ballasted clarification (Veolia Water Technologies, Quebec, Canada)
operated at a superficial velocity of 40 m/h. The settled water was then disinfected by inter-
ozonation (dosing rate:1.0 mg L™ Og; Ctio: 0.6 mg L min) for 20-22 minutes and filtered by ten
dual sand and granular activated carbon (GAC) filters (10 m h, 15 cm sand-bottom and 140 cm
activated carbon-top). Filtered water was then disinfected with a low pressure (LP, A = 254 nm)
UV system (fluence: 40 mJ cm2; Wedeco BX 3200; Xylem Water Solutions, Herford, Germany)
and sodium hypochlorite (NaOCI).
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8.2.2 Sampling campaigns

8.2.2.1 Routine monitoring

Weekly monitoring raw water E. coli data collected between 2013 and 2017 were analyzed to
identify periods of high faecal contamination at the selected DWTPs. The statistical modeling of
these datasets is presented elsewhere (Sylvestre et al. 2020a). Statistical characterization of
empirical distributions of E. coli concentrations is shown in Table 8-1.

Table 8-1: Statistical characterization of empirical distribution of E. coli concentration in raw

water (E. coli/100 mL) at drinking water treatment plants A and B

Standard Mean absolute

. Arithmetic . L -— Ratio Excess
Site n Median deviation deviation Skewness -
mean (SD) (MAD) SD/MAD kurtosis
A 245 386 64 1168 523 2.23 4.89 25.56
B 437 318 170 668 272 2.46 10.70 155.88

8.2.2.2 Baseline and event-based monitoring

An automated rapid on-site monitoring system (ColiMinder™ VWM GmbH, Vienna, Austria) was
installed at each DWTP around one month before carrying out the sampling campaigns to measure
usual background variations in raw water B-D-glucuronidase (GLUC) activity. Automated
sampling was set to frequencies varying between 1 and 3 hours to ensure the characterization of

short-term fluctuations reflecting hydrometeorological events.

At DWTP A, three baseline sampling campaigns were carried out during dry weather conditions
(no rainfall in the last 48 hours), and one event-based sampling campaign was triggered by the
combination of rainfall (48-hour total rainfall >40 mm) and a short-term increase in GLUC activity
concentrations (variation > +5 mMFU 100 mL™ over 1 hour). A trigger of 5 mMFU mL™ was set
based on short-term increases in GLUC activity measured during previous hydrometeorological
events at this DWTP. Single grab sample (baseline condition) or sequential grab samples (event
condition; n=3) of raw, settled (200 L), filtered (1000 L), and UV disinfected (1500 L) waters were
collected to match theoretical mean hydraulic residence times through clarification (3 hours),
filtration and UV disinfection (2 hours) (A. Verroneau, personal communication). Additionally,

during event conditions, six 30 to 40 liter-samples of raw water were filtered on-site over 24 hours
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to estimate the daily mean Cryptosporidium concentration. A detailed description of this
Cryptosporidium dataset is presented elsewhere (Sylvestre et al. 2020b).

The sampling strategy was adjusted at DWTP B because a short-term increase in the GLUC activity
level (+20 mMFU mL™ over 48 hours) was measured in dry weather conditions (no rainfall or
snowmelt in the last 48 hours) in late February 2018. Baseline and event conditions were thereby
defined based on a fixed trigger of 40 mMFU mL. Three baseline sampling campaigns (GLUC
activity < 40 mMFU mL™) and one event-based sampling campaign (GLUC activity > 40 mMFU
mL™) were carried out. Single grab sample (baseline condition) and sequential grab samples (event
condition; n=4) of raw, settled (200 L), filtered (1000 L), and UV disinfected (1500 L) waters were
collected to match theoretical mean hydraulic residence times through clarification (0.5 hours),
ozonation, filtration, and UV disinfection (1.5 hours) (M. Marchand, personal communication).
Additionally, three grab 25 to 30 liter-samples were filtered on-site over 4 days to estimate the
mean Cryptosporidium concentration in raw water during the targeted event. Single grab 25 liter-
samples were also collected during baseline campaigns to estimate Cryptosporidium concentration

in raw water.

Mean E. coli concentrations evaluated during baseline and event conditions were compared to the
median E. coli concentrations calculated with routine monitoring data. The median was selected as

a summary statistic to represent faecal contamination level during typical source water conditions.

8.2.3 Sample concentration

Raw water samples were concentrated with Hemoflow HF80S filters (Fresenius, Ontario, Canada)
for the enumeration of Cryptosporidium. Concentrates were shipped overnight in coolers at 4 °C
to the Centre d’expertise en analyse environnementale du Québec (CEAEQ) in Quebec City, QC,
and processed within 48 hours of sampling. The Hemoflow concentration method was also used to
simultaneously concentrate E. coli and C. perfringens spores in raw, settled, filtered and UV-
disinfected raw water samples. One tank was filled with 50 L of settled water and multiple tanks
of 1000 L were filled with 1000-1500 L of filtered or UV disinfected water. From these tanks, the
water was pumped through the Hemoflow HF80S filter (Fresenius, Ontario, Canada) at a minimum
speed of 4 liters per minute. The overpressure over the filter was increased to a maximum of 0.7

bar until the water filtrate was pressed through the walls of the straws with a speed of around 0.9
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L/min (Veenendaal and Brouwer-Hanzens 2007). Installations with four Hemoflow-filters in
parallel were built to concentrate large water volumes more rapidly (<6.5 hours) (Figure 8-2). The
concentration process was stopped when the concentrate volume only filled the hoses. Filtrate
water was pumped through the hoses once and then collected in a sterile bottle. The total end
volume was approximately 600 mL. Samples were kept at 4 °C and analyzed within 24 hours. The
recovery rate of the Hemoflow concentration method was evaluated for raw water samples
collected at each DWTP. The recovery rate was calculated as the ratio of the concentration of the
surrogate in an un-concentrated (grab) sample to its concentration in a Hemoflow concentrated
sample (100 L at DWTP A and 20 L at DWTP B). At DWTP A, recovery rates of 103% for E. coli
and 125% for C. perfringens were measured for raw water samples. At DWTP B, a recovery rate
of 124% was measured for C. perfringens in raw water. No recovery rate was determined for E.
coli at DWTP B. Recovery rates from settled, filtered, and UV disinfected water samples were not
measured. Recovery rates of 100% were assumed for the calculations of all E. coli and C.

perfringens concentrations.

Figure 8-2: Installations with four Hemoflow-filters in parallel for the rapid concentration of

microorganisms in large volumes of water

8.2.4 Sample processing and analysis

Volumes of Hemoflow-filter eluates for the enumeration of oocysts of Cryptosporidium were
approximately 500-700 mL. Post-concentration was carried out by centrifugation to obtain a final

volume between 20 and 50 mL and a packed pellet volume between 2 and 5 ml. Between 20 and
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50% of the packed pellet volume was then processed by immunomagnetic separation (IMS), before
sample staining and examination following USEPA method 1623.1. Sample-specific recovery rates
were measured for each sample collected during baseline and event-based campaigns.
Fluorescently labeled controls (Colorseed™) were spiked at a target dose of 98-100 (00)cysts in
the raw water sample before careful manual mixing and on-site concentration using the Hemoflow

method.

Volumes of Hemoflow-filter eluates for the enumeration of surrogate organisms were
approximately 500-700 mL. From these volumes, two aliquots of 100-200 mL were taken for the
detection of E. coli and C. perfringens spores. E. coli was enumerated by membrane filtration using
modified membrane-thermotolerant E. coli agar (modified mTEC) (EPA method 1603), with plate
counts on EC-MUG medium (APHA 2005), or by the defined substrate technology using the
IDEXX Quanti-Tray/2000 System with Colilert reagent (APHA 2005). Three tenfold serial
dilutions (0.1, 0.01, 0.001) were applied with the modified mTEC method to obtain countable
ranges of 20-80 CFUs per plate, and two tenfold serial dilutions (0.1, 0.01) with countable ranges
of 1-2419 MPN/100 mL were carried out with Colilert. Spores of C. perfringens were enumerated

on m-CP medium as described previously (Armon and Payment 1988).

8.2.5 Quantification of reduction by treatment processes

The reduction performance of each treatment process was evaluated by comparing the inflow
concentration (C;,,) and the outflow concentration (C,,,;) of the surrogate organism. Point estimates
of reduction (i.e., removal or inactivation) representing the log-reduction (LR) across a treatment

unit (paired sample) were calculated by the following equation:

(8.1)

C:
LR =1 (i)
0810 Cout
The average percent reduction, expressed as effective log-reduction (LRefrective), during event

conditions was calculated as follows:

Cin > (8.2)

Cout

LReffective = 1oglo <
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The standard error of the mean log-reduction (o) was evaluated to provide a simple measure of
uncertainty in the LR. It can be regarded as the dispersion of the LR across a treatment unit (paired
sample) around the mean LR. The standard error was calculated as follows:

R SLR (8.3)
IR = —
Vn

where S;r is the standard deviation of all LRs evaluated across a treatment unit (paired sample)
and n is the sample size. For simplicity’s sake, each treatment step of the DWTP was assumed to

behave as a plug-low reactor operated hydraulically at a steady state during the sampling period.

8.2.6 Quantitative microbial risk analysis for Cryptosporidium

Site-specific raw water Cryptosporidium data and C. perfringens reduction data were entered in a
QMRA model to quantify daily risks of infection by Cryptosporidium via consumption of
municipally treated drinking water. A linear low-dose approximation to the single-hit dose—
response relationship was adopted to simplify calculations (WHO 2016b, 2017b). The risk of
infection associated with an exposure to more than one oocyst was assumed to be negligible. The

daily probability of infection during baseline conditions was calculated as follows:

— -LR i
Pinf.baseline - Cbaseline - 10 baseline . V. ¢ (8'4)

where Cpaseline 1S the Cryptosporidium concentration in raw water during baseline conditions,
LRy.serine 1S the total reduction of C. perfringens by treatment processes during baseline
conditions, V is the ingested volume of drinking water per person per day, and r is the probability
that any single ingested Cryptosporidium oocyst succeeds in infecting the host. C,ase1ine Were not
measured at DWTP A, thereby it was assumed that Cy,cc1ine Was the sample arithmetic mean
Cryptosporidium concentration in raw water evaluated with monthly sampling for two years. The

daily probability of infection during event conditions was evaluated as follows:

Pnfevent = C_event : 10_m—event -V-r (8-5)

where Ceyent IS the mean Cryptosporidium concentration in raw water during event conditions and

LR yen: 1S the reduction of C. perfringens by treatment processes during event conditions. It was
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conservatively assumed that: 1) all detected Cryptosporidium oocysts in raw water were human
infectious, 2) the reduction of bacterial spores was equivalent to the reduction of oocysts (Teunis
et al. 1997, Barbeau et al. 2000), and 3) free chlorine did not inactivate Cryptosporidium parvum
oocysts (Venczel et al. 1997). The ingested volume V was set to 1 liter per person per day (WHO
2017b). The single oocyst infectivity r was set to 0.2 as recommended in WHO (2017b). Ar of 0.2
represents the mode of the predictive distribution of the expected value of the single
Cryptosporidium parvum oocyst infectivity obtained by fitting a two-level hierarchical
hypergeometric dose-response model (variation within and between isolates) to data from four
isolates (lowa, TAMU, UCP and Moredun) (WHO 2009a).

E. coli reduction data were not entered in a QMRA model because concentrations of bacterial
pathogens in source water were not available and E. coli reductions by chlorine disinfection
processes were not measured. However, the risk of infection by bacterial pathogens should be very
low at these sites because, in general, bacteria are very sensitive to chlorine (Petterson and
Stenstrém 2015).

8.3 Results
8.3.1 Agricultural drinking water treatment plant A

The GLUC activity in raw water during dry weather conditions (no rainfall in the last 48 hours)
decreased from 30 mMFU/100 mL in mid-October to around 5 mMMFU/100 mL at the beginning
of November (Figure 8-3A). Four peaks in GLUC activity of similar duration (approximately 24
hours) but of different amplitudes (40-160 mMFU/100 mL) were measured after rainfall events.
The amplitudes of these peaks decreased over the evaluated period. Mean E. coli concentrations in
raw water measured during baseline conditions (781 E. coli/100 mL, n=3) and event conditions
(3,543 E. coli/100 mL, n=6) were 1.0-log and 1.7-log higher, respectively, than the median E. coli
concentration evaluated with weekly monitoring (64 E. coli/100 mL, n=245) (Table 8-1, Figure 8-
4A). Mean C. perfringens concentrations in raw water were 0.5-log higher during event conditions
(109 CFU/100 mL, n=6) than during baseline conditions (39 CFU/100 mL, n=3).
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Figure 8-3: Time series of daily rainfall, GLUC activity, snow cover on the ground, raw water

turbidity, and flow rate of the river during snowmelt freshet at intakes of drinking water treatment

plants A and B. Yellow rectangles indicate targeted events.
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E. coli was detected in all filtered water samples (n=6) and C. perfringens was detected in all
filtered and UV-disinfected water samples (n=6) (Figure 8-5). E. coli concentrations after UV-
disinfection were not considered because autofluorescence in these samples potentially led to false-
positive results. Maximum reduction performances of 4.7-log and 5.5-log were quantified for E.
coli and C. perfringens, respectively (Table 8-2). Effective log-reductions by floc blanket
clarification were around 3.0-log for both surrogate organisms during baseline and event
conditions. The hourly abstraction flow rate and the turbidity of settled water were similar during
baseline and event conditions (Table 8-3). The water temperature was around 10°C lower during

one baseline campaign (baseline-03) than during the other baseline and event-based campaigns.

The standard errors of the mean log-removal (o) were higher for rapid sand filtration than for
floc blanket clarification. Overall, UV disinfection had a negligible effect on the inactivation of C.
perfringens. The total effective log-reduction of C. perfringens by treatment processes were similar
in baseline (4.3-log) and event conditions (4.5-log), but the standard error on the log-removal was
higher for baseline conditions (ot =0.4-log) than for event conditions (ot =0.1-10g).

Short-term variations in the log-removal of surrogate organisms and turbidity by floc blanket
clarifiers and rapid sand filters during the event are illustrated in Fig. 8-6A. Removal performances

did not deteriorate.

The daily infection risks for Cryptosporidium, calculated using the C. perfringens reduction
performance results, are shown in Table 8-4. The daily infection risk during event conditions was
0.3-log lower than during the second baseline campaign, even if the mean Cryptosporidium
concentration was 0.6-log higher during event conditions than during routine monitoring

conditions.
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Figure 8-5: Reduction of surrogate microorganisms by subsequent treatment processes during

baseline and event conditions at drinking water treatment plants A and B
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Table 8-2: Log-reduction of E. coli and C. perfringens by treatment processes during baseline and

event conditions at drinking water treatment plants A and B. LRgfrective 1S the effective log-

reduction during event condition. orgy IS the standard error on the mean log-reduction.

AFloc blanket clarification

B Rapid sand filtration

C Ballasted clarification
P Ozone and granular activated carbon filtration

DWTP A DWTP B
Sample id. FBCA RGF® UV Total Sample id. BC® 03+RGFgac® UV  Total
C. perfringens C. perfringens
Baseline-01 3.0 1.6 -04 | 4.2 Baseline-01 1.2 2.5 0.3 4.0
Baseline-02 3.4 -0.6 0.8 3.6 Baseline-02 1.6 2.4 1.2 5.2
Baseline-03 3.5 14 -02 | 49 Baseline-03 2.1 - - -
Baseline-LR ¢ 3.3 0.5 0.5 4.3 Baseline-LR ¢ 18 2.4 0.8 4.7
Baseline-otg 0.2 0.7 0.4 0.4 Baseline-org 0.3 0.1 0.5 0.6
Event-01 2.7 15 0.2 4.4 Event-01 2.0 2.8 0.2 5.0
Event-02 3.0 2.4 -0.9 | 45 Event-02 2.0 3.1 0.2 5.3
Event-03 3.0 1.6 0.0 4.6 Event-03 2.1 2.8 0.7 5.6
Event-LR ¢ 2.9 1.7 -03 | 45 Event-04 2.3 3.0 0.3 5.6
Event-otg 0.1 0.3 0.3 0.1 Event-LR ¢ 21 2.9 0.3 5.4
E. coli Event-org 0.0 0.1 0.1 0.1
Baseline-01 3.0 0.6 - - E. coli
Baseline-02 2.7 -0.3 - - Baseline-01 2.8 1.7 - -
Baseline-03 2.3 15 - - Baseline-02 2.0 3.4 - -
Baseline-LR ¢ 2.8 0.6 - - Baseline-03 1.6 - - -
Baseline-otg 0.2 0.5 - - Baseline-LR .¢¢ 19 2.5 - -
Event-01 2.8 0.9 - - Baseline-org 0.2 0.8 - -
Event-02 3.0 0.7 - - Event-01 24 3.3 - -
Event-03 2.6 2.1 - - Event-02 24 3.2 - -
Event-LR ¢ 2.9 1.2 - - Event-03 25 35 - -
Event-otg 0.1 0.4 - - Event-04 2.3 3.3 - -
Event-LR ¢ 24 3.4 - -
Event-org 0.0 0.1 - -
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Table 8-3: Hourly flow rate, water temperature and turbidity of raw water and settled water during

baseline and event conditions at DWTPs A and B

Turbidity (NTU)

Hourly flow Water Raw  Settled

Sample id. rate (m°/h) temp. (°C) water  water
Baseline-01 190 11 6.92 0.06
Baseline-02 116 12 6.28 0.08
Baseline-03 117 3 4386  0.16
DWTP A Event-01 124 12 25.80 0.20
Event-02 126 11 28.60 0.10
Event-03 112 10 28.85  0.08
Baseline-01 1967 2 6.99 0.66
Baseline-02 1950 2 6.51 0.74
Baseline-03 2083 2 24.14 1.06
DWTPB Event-01 1950 2 1474 097
Event-02 1917 2 12,12  0.82
Event-03 1883 1 16.42  0.80
Event-04 1967 2 15.09 0.69

@ E. coli @ C. perfringens

A. DWTP A — Rainfall Floc blanket clarification
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N

' ' '
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Figure 8-6: Short-term variations in the log-reduction of E. coli and C. perfringens by

coagulation/flocculation and filtration during event conditions at drinking water treatment plants

A and B.
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Table 8-4: Daily risk of infection/person/day for Cryptosporidium during baseline and event
conditions at drinking water treatment plants A and B

Raw water Reduction

Cryptosporidium  C. perfringens Daily risk

Sample id. (oocyst/L) (logio-units) (inf./per/day)
Baseline-01 0.39 4.2 4.92 E-06
Baseline-02 0.39 3.6 1.95 E-05
DWTPA  Baseline-03 0.39 4.9 9.81 E-07
Event-LR o4 1.48 4.5 9.36 E-06
Baseline-01 0.08 4.0 1.60 E-06
DWTPB Baseline-02 0.11 5.2 1.38 E-07
Event-LR ¢ 0.40 54 3.18 E-07

8.3.2 Urban drinking water treatment plant B

At DWTP B, the baseline GLUC activity level was stable at a level of about 15 mMFU/100 mL
(Figure 8-3B). The GLUC activity peaked at 44 mMFU/100 mL in early February following a
planned discharge of raw sewage at a wastewater treatment plant around 5 kilometers upstream of
the drinking water intake. At the beginning of March, the GLUC activity peaked at 49 mMFU/100

mL and then slowly decreased for around two weeks before returning to a baseline level.

Mean E. coli concentrations in raw water during baseline conditions (177 E. coli/100 mL, n=3)
were similar to median E. coli concentration evaluated with weekly monitoring (170 E. coli/100
mL, n=437) but increased to 468 E. coli/100 mL (n=6) during event conditions (Table 8-1, Figure
8-4B). Mean C. perfringens concentrations during event conditions (95 CFU/100 mL, n=6) were
0.5-log higher than during baseline conditions (30 CFU/100 mL, n=3).

E. coli was detected in 83% of the filtered water samples (n=6) and C. perfringens was detected in
66% of the UV-disinfected water samples (n=6) (Figure 8-5). Maximum reduction performance
of 6.0-log and 5.6-log were quantified for E. coli and C. perfringens, respectively (Table 8-2).
Effective log-reductions by ballasted clarification were approximatively 2.0-log for both surrogate
organisms. Log-reductions by a combination of ozone and GAC filtration ranged from 1.7 to 3.5-
log for E. coli and from 2.4 to 3.1-log for C. perfringens. UV disinfection had a small effect on C.
perfringens inactivation (effective log-inactivation <1.0-log) during baseline and event conditions.
The total effective log-reduction of C. perfringens by treatment processes increased during event
conditions (5.4-log) as compared to baseline conditions (4.7-log); however, the standard error of

the effective log-reduction was large (org = 0.6-log) during baseline conditions.
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Short-term deterioration of the removal performance of both surrogate organisms was not observed
during event conditions (Fig. 8-6B). C. perfringens and E. coli were better removed than the
turbidity by ballasted clarification and by the combination of ozone and GAC filtration. The
abstraction flow rate, the water temperature, and the turbidity of settled water were similar during
baseline and event conditions (Table 8-3).

The daily infection risk, computed using C. perfringens reduction data, was 1.3-log lower during
event conditions than during the first baseline sampling campaign, even if the mean
Cryptosporidium concentration during event conditions was approximately 0.7-log higher than
during baseline conditions (Table 8-4).

8.4 Discussion

8.4.1 Identification of periods of microbial challenge

8.4.1.1 Agricultural catchment

Temporal variations in faecal contamination were evaluated following a rainfall episode at
agricultural DWTP A using a locally derived rate of increased GLUC activity as the trigger for
sampling. Trends in GLUC activity show large and rapid increases suggesting the contribution of
local sources to faecal contamination at the water intake. To establish whether the event so targeted
represents a rare contamination event, results obtained during baseline and event-based sampling

campaigns can be compared to existing data from routine monitoring at the intake of this plant.

According to a recent analysis of E. coli monitoring in raw water over 5 years at DWTP A, the
daily E. coli concentration measured during the event has an exceedance probability of
approximatively 1% (Sylvestre et al., 2020a). Routine C. perfringens montitoring data were not
available to estimate an exceedance probability. However, previous modeling results of routine
monitoring protozoan pathogens at the intake of DWTP A indicate that the exceedance probability
of protozoan pathogen concentrations measured during this event was approximatively 5% for
Cryptosporidium and approximatively 2% for Giardia (Sylvestre et al. 2020b). Hence, these
observations support the hypothesis that this study investigated the performances of treatment

processes during a low-frequency faecal contamination event. In this small agricultural catchment,
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GLUC activity, E. coli, and C. perfringens concentrations increased with the turbidity of raw water,
suggesting that turbidity could be a useful indicator to trigger event-based sampling.

8.4.1.2 Urban catchment

At DWTP B, event-based sampling was triggered on February 28, 2018, using the locally derived
GLUC activity threshold (40 mMFU/100 mL). Periods of high GLUC activity levels are less
pronounced and sudden than those observed in the smaller agricultural catchment. This relatively
low reactivity most probably reflects the cumulation of multiple discharges from upstream
wastewater facilities and CSOs in this large urban catchment. Short-term trends in GLUC activity
could reflect contamination transported over long distances, which would explain why the GLUC
activity significantly increased in dry weather conditions during the spring snowmelt period. It has
been established that that viable but non-culturable (VBNC) E. coli can contribute to the GLUC
activity signal (Garcia-Armisen et al. 2005, Stadler et al. 2016, Ender et al. 2017, Burnet et al.
2019a, Stadler et al. 2019), and that viable but non-culturable (VBNC) E. coli decreased much
more slowly than culturable E. coli (Servais et al. 2009). Moreover, Burnet et al. (2019b) reported
snowmelt runoff is likely to carry a higher proportion of VBNC, yet GLUC active E. coli cells.
Therefore, a large amount of non-culturable E. coli may have contributed to the GLUC activity

signal during the studied peak event.

Nonetheless, the maximum daily mean E. coli concentrations detected during peaks correspond to
an E. coli contamination level with a relatively low exceedance probability (10-15%) when
considering the long-term data set of E. coli at the intake (Sylvestre et al. 2020a). Previous
modeling results of routine monitoring protozoan pathogens at the intake of DWTP B indicate that
that the exceedance probability of protozoan pathogen concentrations measured during this event
was approximatively 5% for Cryptosporidium and approximatively 20% for Giardia. However,
samples collected for the enumeration of protozoan pathogens in this case could only be collected
at the beginning and the end of the GLUC activity peak, which may underestimate the maximum
daily Cryptosporidium and Giardia concentrations during this event. Additional studies
investigating the validity of GLUC activity monitoring for the detection of rare contamination
events in urban catchments are needed. A better understanding of the relationship between the
GLUC activity and microbial pathogens/indicators in source water may allow detecting

contamination events with lower exceedance probabilities.
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8.4.2 Reduction performance of physical-chemical processes

8.4.2.1 Floc blanket clarification and rapid sand filtration

Results from this study provide full-scale observations of the reduction performance of
conventional treatment processes facing high microbial loads during hydrometeorological events.
High reduction performances observed at DWTP A may, in part, be attributed to the presence of
pre-oxidation with potassium permanganate (KMnO.) before coagulation, and in part to the type
of clarifier. Previous investigations have shown that permanganate pre-oxidation inactivates E. coli
(Cleasby et al. 1964) and improves the removal of particles by
coagulation/flocculation/sedimentation (Liu et al. 2013). A mean removal performance of 3.7-log
for C. perfringens by floc blanket clarification with pre-ozonation was also previously reported for
a DWTP supplied by an agricultural river in Quebec (Payment and Franco 1993). It should also be
emphasized that treatment processes of DWTP A were optimized for turbidity reduction and
operated at approximately 20% of their nominal design capacity during studied baseline and event

conditions.

The effective log-removals of E. coli by floc blanket clarification were similar in baseline and event
conditions; however, the log-removal of C. perfringens was 0.4-log lower during event conditions
than during baseline conditions. The removal performance of a floc blanket clarifier as used in
DWTP A should not theoretically be influenced by the particle concentration in raw water. The
aggregation of micro-sized particles in a fluidized bed (floc blanket) is typically approximated by
a first-order process by assuming that the size of the flocs in the fluidized bed is independent of the
incoming primary particles (Bache and Gregory 2007). However, changes in temperature and
turbidity can cause preferential currents in the sludge blanket resulting in lower performances.
These results and flocculation theory suggest that the floc blanket clarifiers as operated were not
capable of buffering a short-term increase in microbial concentration in raw water caused by a

rainfall event.

Removal performances by rapid sand filtration at DWTP A were higher in event conditions than
in baseline conditions. Still, they are somewhat difficult to ascertain because of a high standard
error on the log-removal of both surrogate organisms during baseline conditions. The standard error

is driven by a negative removal for both E. coli and C. perfringens by filtration during one baseline



186

campaign (baseline-02). A potential cause for this breakthrough was not determined. The collection
of sequential grab samples during event conditions but also during baseline conditions is
recommended in future work to capture temporal changes in sedimentation and filter effluent

quality adequately.

8.4.2.2 Ballasted clarification

Removal performances by ballasted clarification as used in DWTP B are at the high end of the
range of full-scale coagulation/flocculation removal performances reported for bacteria and
bacterial spores (Hijnen and Medema 2010). A mean removal performance of 2.0-log of aerobic
bacterial endospores by ballasted clarification was previously reported at pilot-scale (Huertas et al.
2001). The incorporation of a ballasted media (typically silica sand) within the incoming stream of
flocs makes ballasted clarification more robust for the removal of turbidity regardless of rapid
changes of water quality (Kumar et al. 2016). In our study, higher removal performances of C.
perfringens by ballasted clarification were observed at turbidity levels of 12-24 nephelometric
turbidity units (NTU) (event, baseline 3) than at slightly lower levels of 6-7 NTU (baselines 1, 2).

According to the Smoluchowski coagulation theory of particles, the removal of suspended bacteria
during flocculation is likely to be governed by heteroaggregation between bacteria and abiotic
particles. Bacteria and bacterial spores concentrations in natural aquatic environments are typically
very low in comparison to abiotic particle concentrations (e.g., inorganic and organic materials). If
the initial concentration of a i-sized bacteria n;, is assumed to be much smaller than the initial
concentration of a j-sized abiotic particle n;, then the rate of loss of the concentration of the
bacteria can be approximated by a pseudo-first-order process given by:

dn; (8.7)

d_tl ~ —ajBijn;on;
where a;; is a collision efficiency coefficient; §;; is a collision rate coefficient; and ¢ is the

detention time in the flocculator. Integrating Equation (8.7) once yields:

ng =Mn;g eXp(—nj,o“ij,Bijt) (8.8)
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Therefore, it can be anticipated that the initial particle concentration n;, has an impact on the
aggregation of the bacteria at the beginning of flocculation. Further research on the aggregation of
microorganisms during flocculation would be relevant to quantify the buffering capacity of
ballasted systems.

Finally, the mechanisms described in Equation 8.8 call for caution in considering any results from
pathogen spiking flocculation experiments during which the spiked dose of the pathogen was
similar or higher than the initial particle concentration. In these conditions, the spiked dose may
self-aggregate, which could lead to an overestimation of the removal performance of the

flocculation process.

8.4.3 Reduction performance by disinfection processes

At DWTP B, the combination of inter-ozonation and GAC filtration, referred to as biological
activated carbon (BAC) filtration, considerably reduced E. coli concentrations (1.7 to 3.5-log) and
C. perfringens concentrations (2.4 to 3.1-log). It is likely that most C. perfringens was mainly
removed by GAC filtration because inactivation of environmental C. perfringens under full-scale
conditions is expected to be small (<0.5-log) at a Ctio-value of around 0.6 mg L™ min™ (Hijnen et
al. 2002). Conversely, the inactivation of E. coli was most likely driven by ozonation. Between
2.0- and 3.0-log inactivation of E. coli were previously reported in full-scale conditions at Ctio-
values between 0.5 and 1.0 mg L™* min't and water temperature below 10°C (Smeets et al. 2006).
Slighly higher C. perfringens reduction performances were measured during event conditions (2.8
to 3.1-log) than during baseline conditions (2.4 to 2.5-log). The variations do not appear to be
related to the C. perfringens concentration or the turbidity level in settled water. Low inactivation
(<1.0-log) of C. perfringens were found for UV medium pressure lamps (DWTP A) and UV low
pressure lamps (DWTP B) operated at a fluence of 40 mJ cm. These inactivation performances
were lower than those previously reported at a fluence of 40 mJ cm™. Inactivation of C. perfringens
of approximately 1.0-log were observed at a full-scale municipal wastewater treatment plant with
low pressure lamps (Gehr et al. 2003). Inactivation of environmental spores of sulfite-reducing
clostridia (SSRC) of approximately 2.4-log were obtained at pilot-scale with medium pressure
lamps (Hijnen et al. 2004)
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8.4.4 Implications for risk assessment and management

At the two DWTPs, daily infection risks by Cryptosporidium via consumption of treated drinking
water were not higher during hydrometeorological events than during baseline conditions (Table
8-4). The relative impact of short-term contamination events on risks of infection by
Cryptosporidium has been investigated by modeling Cryptosporidium concentrations in source
water and assuming treatment performances from literature data. Signor et al. (2007) demonstrated
with a QMRA model combined to a hydrograph filtering algorithm that the majority of the annual
risk at a DWTP abstracting raw water from a small agricultural river was attributable to runoff
event periods. In contrast, Taghipour et al. (2019) showed with a discharge-based QMRA
combined with hydrodynamic modeling that the number of combined sewer overflow events per
year had a negligible impact on the annual risk at two DWTPs abstracting raw water from a large
urban river. Smeets et al. (2007) evaluated Cryptosporidium data measured routinely in the treated
water of eight DWTPs with similar physical treatment processes. They found that average treated
water concentrations were similar at sites, independently of their average Cryptosporidium
concentration in source water. The authors hypothesized that “well operated” conventional
treatment may be more effective in removing high concentrations of microorganisms than low
concentrations. Indeed, results from the current study also suggest that that physical treatment
processes optimized for turbidity reduction can effectively manage short-term increases in raw

water microbial quality.

Our findings should be interpreted within their context. During the studied events, turbidity levels
in raw water were moderate (DWTP A: x = 28 NTU; DWTP B: X = 15 NTU) and treatment
processes at the plants investigated were optimized for turbidity reduction (turbidity <1.0 NTU in
settled water; turbidity < 0.1 NTU at individual filter effluents). Although turbidity reduction after
filtration is not a direct indicator of pathogen control, it is an effective indicator of process control.
For example, the Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR) award 0.5
or 1.0-log additional Cryptosporidium credit for achieving filter effluent turbidity < 0.1 NTU
(USEPA 2010). Sedimentation effluent turbidity targets (typically <1 NTU) are also recommended
by industry optimization programs (USEPA 2010); these targets could also be useful to manage

short-term fluctuations in microbial contamination in raw water.
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Nonetheless, in some catchments, pathogens can peak before turbidity (Dorner et al. 2007, St-
Pierre et al. 2009, Sylvestre et al. 2020b). In these situations, achieving sedimentation or filter
effluent turbidity targets may not be indicative of adequate pathogen removal. Floc blanket and
ballasted clarifiers may be well suited to manage low-turbidity microbial peaks because particle
concentrations are intentionally kept high during flocculation/sedimentation. An online zeta
potential analyzer may also be a useful tool to dynamically manage coagulation dosing rates to
optimize microbial reduction performance (Lee 2019).

8.4.5 Limitations of the quantification of reduction performance at full-scale

E. coli and C. perfringens counts were assumed to be Poisson distributed in all samples. However,
previous studies suggested that treatment processes could increase variance in microbial counts to
a higher value than what can be accommodated by the Poisson distribution (Gale et al. 2002).
Overdispersion was not evaluated in this study because sample replicates were not available, but
large-volume samples were concentrated after treatment (50-1500 L), which should minimize this

potential sampling bias.

Another limitation of the present study is that the log-reduction performances were evaluated by
pairing inflow concentration (C;,,) and the outflow concentration (C,,;) by assuming that the
hydraulic mean retention time of water was a valid approximation of the actual detention time of
the microorganisms. It has been pointed out that microorganisms entering in a treatment train
following a microbial peak in raw water may be retained in physical processes and remobilized
over time (Smeets et al. 2007, Hijnen 2009). Higher loads of microorganisms removed by ballasted
clarification during the peak event are not likely to be remobilized through treatment because
settled sludges are continuously pumped from the bottom of the clarifier and recycled via hydro-
cyclone to separate the silica sand from the sludge. However, remobilization could occur in floc
blanket clarifiers. To maintain a steady volume fluidized bed, excess material (so-called sludge
bleed) is withdrawn from the fluidized bed at a flow rate of approximately 1% of the inflow at an
alum dose of 50 mg L (Ives 2001); thus, remobilization of microorganisms in settled water could
occur during a period equivalent to the mean residence time of the flocs. Remobilization of
pathogens from filtration processes could also happen by the end of the filter cycle before turbidity

increases. The collection of composite filtered water samples for an extended period following
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critical periods of raw water microbial quality may be valuable to improve process control
strategies for filter operations.

Overall, high-resolution investigations of the full-scale treatment performances during
hydrometeorological events were logistically challenging and costly; thus, only a small number of
samples were collected. High variations in microbial concentrations, such as those observed after
rapid sand filtration at DWTP A, limited the comparison between treatment performances in
baseline and event conditions. The development of automated sampling devices and faster
concentration methods would be needed to increase the sampling frequency throughout the full-

scale treatment train.

8.5 Conclusions

A sampling strategy was implemented at two drinking water treatment plants in Quebec, Canada,
to quantify the full-scale removal performance of surrogate microorganisms by treatment processes

under varying source water conditions. The following conclusions are drawn:

e Online measurements of B-D-glucuronidase activity can be used for characterization
sampling of full-scale treatment performances during baseline conditions and periods of
poor source water quality. Daily mean E. coli concentrations evaluated during
hydrometeorological peak events had low exceedance probabilities (1% at the agricultural
site, 10-15% at the urban site) when compared to long-term raw water monitoring data (5
years).

e Full-scale reduction performances of up to 6.0-log for E. coli and 5.6-log for C. perfringens
were measured by concentrating large volumes of water (50-1500 L) throughout the
treatment train. Removal performances by coagulation/flocculation processes could be
estimated under baseline and peak event conditions. However, removal performances by
rapid sand filtration were highly variable based on paired samples, which we suspect are
caused by processes of retention and release rather than actual performances of the filters.

e Increased reduction of E. coli and C. perfringens by ballasted clarification and rapid sand
filtration compensated for the augmented concentrations in source water. At the two sites,
daily infection risks by Cryptosporidium via consumption of drinking water were not higher

during peak contamination events than during baseline conditions based on C. perfringens
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reduction data. Thus, daily risks during transient peaks in raw water contamination unlikely
dominate the annual risk at these sites.
Additional studies investigating the reduction of pathogens and surrogate microorganisms by full-
scale treatment processes under variable source water conditions would be desirable to validate our
findings, especially in drinking water treatment plants subjected to severe water quality changes at
the source.
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CHAPTER 9. GENERAL DISCUSSION

The findings of this research project are discussed in this chapter to integrate the various aspects
of the investigations conducted and to help identify their regulatory implications. The general
objective of this thesis was to develop a methodology to systematically assess microbial risks
associated with hydrometeorological events for drinking water safety. The first step of this project
was to expand the stochastic modeling framework for source water characterization by proposing
candidate probability distributions and using them to model routine monitoring
pathogens/indicators data sets. Event-based monitoring campaigns were then implemented to
collect data on short-term fluctuations in source water microbial concentrations at three drinking
water treatment plants. The last step was to incorporate results from event-based monitoring
campaigns into a quantitative microbial risk analysis (QMRA) to estimate the relative contribution
of short-term contamination events to the overall risk. The specific objectives and the research
hypotheses are presented once again in Figure 9-1 and Table 9-1, respectively.

General objective
To present a method to systematically assess microbial risks associated with
hydrometeorological events at surface drinking water treatment plants

L 4

Stochastic modeling of source water data Event-based monitoring of source & treatment

1. Catalogue of candidate probability 4. Monitoring strategy using autonomous online
distributions as statements about process measurement of B-D-glucuronidase activity

2. Bayesian model to estimate distribution and meteorological indices to trigger sampling
parameters using routine monitoring data 5. Assessment of short-term variations in

3. Model comparison and selection using microbial pathogens/indicators concentrations
information criteria and predictive checks 6. Assessment of short-term variations in

microbial reduction by full-scale treatment

¥

QMRA framework

7. Evaluation of the impact of distribution selection on the mean concentration of
the microorganism and its uncertainty

8. Validation of probability distributions for short-term variations in microbial
pathogens/indicators concentrations

9. Demonstration of the capacity of full-scale treatment processes to cope with
increases in microbial contamination at the source

10. Quantification of short-term microbial risks in baseline & event conditions

Figure 9-1: Flowchart representing the objectives of the thesis



Table 9-1: Research hypotheses, criteria for their validation, and corresponding articles
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Statement

Hypothesis

Validation

Article

A precise estimate of the mean source water
microbial concentration and its uncertainty
is required for defining site-specific drinking

water treatment requirements.

Correct identification of the tail behavior of
fitted to

monitoring data is necessary to estimate the

a probability distribution

mean source water microbial concentration

and its uncertainty.

The upper bound of the 95% uncertainty
interval on the mean source water
microbial concentration varies from
>0.5-log among distributions fitted to

the same data.

1,2,3

The characterization of low-frequency

events of source water microbial
contamination is needed to validate the tail
behavior of a probability distribution fitted

to small monitoring data sets.

Online  B-D-glucuronidase  monitoring
captures events necessary for characterizing
low-frequency events in source water

microbial concentrations.

The exceedance probability of the daily
mean microbial concentration during
captured events is <5% based on a
gamma distribution fitted to historical

monitoring data.

1,35

Transient peaks in source water microbial
should be

considered in source water characterization.

contamination explicitly

The gamma distribution does not reasonably

predict source water microbial

concentrations during snowmelt and rainfall

events.

The gamma distribution predicts daily
mean concentrations at an exceedance
probability < 0.1% during snowmelt and

rainfall events.

1,3

The reduction of a microorganism by each
treatment process is assumed to be a first-
order process with respect to its influent

concentration.

The concentration of a microorganism in

treated drinking water increases

proportionally to its source water

concentration.

An increase in the daily mean microbial
concentration > 1.0-log is measured in
settled water or filtered water during a

source water event.

3,45
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9.1 Stochastic modeling of routine monitoring data

Candidate continuous probability distributions were proposed to expand the stochastic modeling
framework for source water characterization (Chapter 2). Distributions representing statements
about additive and multiplicative processes were selected because these processes are commonly
observed in nature (Frank 2014). These candidate probability distributions were then used to assess
temporal variations in source water microbial concentrations at 30 surface drinking water treatment
plants in Quebec, Canada. The first hypothesis is confirmed for Cryptosporidium but not for E. coli
and Giardia. The upper bound of the 95% uncertainty interval on the mean source water
Cryptosporidium concentration can vary from more than 0.5-log among candidate distributions.
The implications of these findings will be discussed for the assessment of faecal indicator
concentrations in section 9.1.1 and for the assessment of protozoan pathogen concentrations in

section 9.1.2.

9.1.1 Temporal variations in faecal indicator concentrations

The first article (Chapter 4) presented a statistical analysis of source water E. coli data collected
with routine monitoring at six DWTPs over extended periods (5-8 years). The first hypothesis was
invalidated for E. coli because the upper bound of the 95% credibility interval on the mean E. coli
concentration varied from less than 0.5-log among selected candidate distributions (gamma, log-
normal, Lomax, bimodal log-normal distribution). Therefore, the upper tail behavior of these
distributions did not produce significant changes in the predicted mean E. coli concentration and
its uncertainty. Nonetheless, this assessment provided useful information on the magnitude of peak
E. coli concentrations. High E. coli concentrations were better predicted by log-normal, Lomax or
bimodal log-normal distributions than the gamma distribution (Figure 4-2). Moreover, the
observation of a bimodal log-normal distribution at an agricultural site suggested that two different
underlying generative processes may influence variations in microbial concentrations (Figure 4-3).
Nevertheless, the quantitative relationship between E. coli concentrations and pathogen
concentrations is site-specific (Lalancette et al. 2014, Sylvestre et al. 2018). The covariance
between pathogen concentrations and E. coli concentrations during hydrometeorological events is

highly uncertain and should be investigated in future work.
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In this study, non-detects were replaced by a detection limit of 1 E. coli/100 mL to fit concentration
distributions. It must be noted that this practice could result in substantial estimation biases if the
proportion of non-detects is high. Alternatively, mixed Poisson distributions could be used in
further work to model E. coli counts and volumes reported in colony-forming unit (CFU) assays.
A mixture distribution could also be obtained by combining the statistical model of a most probable
number (MPN) assay® and a density distribution (Haas et al. 1999)°. It should also be emphasized
that the reporting of “too numerous to count” (TNTC) results should be avoided. The consideration
of “too numerous to count” (TNTC) in the statistical analysis may result in a biased estimate of the
variability of the system. A conservative number of serial dilutions should be prepared to ensure
that high E. coli concentrations are accurately quantified.

9.1.2 Temporal variations in protozoan pathogens concentrations

The statistical analysis of temporal variations in source water Cryptosporidium and Giardia
concentrations from 30 DWTPs was presented in Chapter 5. The gamma and log-normal
distributions predicted similar mean concentrations for Cryptosporidium and Giardia. However,
important differences (> 0.5-log) between the upper bound of the 95% credibility interval on the
mean concentration of the two distributions were found at some sites for Cryptosporidium (Figure
5-1). As discussed in Chapter 2, these differences may have an important influence on risk
estimates because microbial reduction by treatment processes are typically assumed to be first-
order with respect to the influent concentration. The application of model selection techniques is
thus recommended for the characterization of temporal variations in source water Cryptosporidium

concentrations.

5 This model can be describe as a binomial distribution with a success probability for each trial given by the zero term
of the Poisson distribution (Haas and Heller 1988).

6 Statistical inference with this mixture model would require the number of positive wells (and their associated

volumes) per sample rather than reported concentrations from standard MPN tables.



196

However, it was demonstrated in Chapter 5 that differences in marginal deviance information
criterion (mDIC) values between mixed Poisson models are generally too small for discrimination
as only a few samples informed on the behavior of the upper tail (Table 5-4). Consequently, the
gamma and the log-normal distributions fit the data equally well but may predict different risk
estimates when they are used as input distributions in stochastic QMRA. A possible approach to
address this issue could be to compare the upper tail predictions of candidate distributions to field
observations during critical periods of source water contamination, as demonstrated in Chapters 4
and 6 (see section 9.2.2). In the absence of empirical information, one possible solution could be
to choose the log-normal distribution as a reasonably conservative model for the prediction of peak
concentrations. As shown in Chapter 5, the selection of the log-normal distribution may result in
the prediction of large uncertainties on the mean concentration. However, alternative risk

management options could be considered to deal with this uncertainty.

9.2 Impact of hydrometeorological events on microbial

concentrations in source water

Online GLUC activity measurements were used to evaluate short-term variations in concentrations
of E. coli (Chapter 4, Chapter 8), Cryptosporidium and Giardia (Chapter 6), and enteric viruses
(Chapter 7) during hydrometeorological events. The second hypothesis is partially validated: the
exceedance probabilities of daily mean E. coli, Cryptosporidium, and Giardia concentrations
during captured events were generally below 5%. The third hypothesis is validated: the gamma
distribution did not predict daily mean concentrations at a reasonable exceedance probability
(<0.1%) for some snowmelt and rainfall events. The significance of the increases in source water
microbial concentrations during GLUC activity peaks will be discussed in section 9.2.1. The
relevance of a model validation approach using event-based monitoring data will be discussed in

section 9.2.2.
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9.2.1 Identification of critical periods of microbial contamination

The exceedance probabilities of daily mean E. coli, Cryptosporidium and Giardia concentrations
evaluated during hydrometeorological events are listed in Table 9-2. The criterion of 5% was
generally met for events captured at DWTPs C6 and A4 but was not met for events captured at
DWTP C7. The potential of GLUC activity for characterizing low-frequency events of E. coli,
Cryptosporidium and Giardia contamination may therefore be site-specific. At DWTPs C6 and
A4, the GLUC activity peaks could indicate local contamination originating from combined sewer
overflow (CSO) discharges and agricultural runoff. The GLUC activity peaks at DWTP C7 could,
in contrast, reflect contamination transported over long periods (Chapter 8). Additional studies
confirming these findings in other catchments and for other hydrometeorological events would be

relevant.

Table 9-2: Exceedance probabilities of daily mean E. coli, Cryptosporidium and Giardia
concentrations sampled during hydrometeorological events predicted by the gamma distribution or
the log-normal distribution fitted to routine monitoring data. Green shaded cells represent
exceedance probabilities below 5%. Yellow shaded cells represent exceedance probabilities

between 5% and 20%. Red shaded cells represent exceedance probabilities above 20%.

Gamma Log-normal
DWTP id. - Event E.coli Crypto. Giardia E.coli Crypto. Giardia
DWTP C6 - Snowmeltevent1 < 0.001 0.017 <0.001 0.012 0.039 0.026
DWTP C6 - Snowmeltevent2 < 0.001 0.127 <0.001 0.004 0.119 0.042
DWTP A4 — Rainfall event 0.014 0.063 < 0.001 0.012  0.054 0.016
DWTP C7 - Snowmeltevent1 0.112 0.350 0.070 0.102  0.330 0.085
DWTP C7 - Snowmelt event 2 =~ 0.155 0.085 0.308 0.147  0.051 0.220

It was not possible to evaluate the importance of peak virus concentrations with exceedance
probabilities. Concentrations of adenovirus, rotavirus, norovirus, and JC virus at DWTP C7 were
about 1.0-log higher during GLUC activity peaks than during baseline conditions (Figure 7-3B).
However, virus concentrations were quantified using a quantitative real-time polymerase chain

reaction (gPCR) method, which detects the DNA/RNA from viable and nonviable viruses.
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Qualitative results (presence or absence of infectious viruses) obtained with integrated cell culture
(ICC) gPCR indicated that adenovirus, rotavirus, and enterovirus found in samples of source water

were mostly not infectious.

Turbidity was not a useful indicator to trigger pathogen sampling during snowmelt events at urban
DWTP C6 (Chapter 6) and DWTP C7 (Chapter 7). At DWTP C6, Cryptosporidium and Giardia
concentrations increased before turbidity during two snowmelt events (Figure 6-2, Figure 6-4).
Weak correlations between turbidity and bacterial pathogens during hydrometeorological events
were previously reported (Dorner et al. 2007, St-Pierre et al. 2009). At agricultural DWTP A4, the
turbidity did peak with Cryptosporidium and Giardia concentrations during a rainfall event (Figure
6-3, Figure 6-4). Different pollution sources may govern short-term fluctuations in source water
microbial contamination during hydrometeorological events. Pollution in the urban catchment
(DWTPs C6, C7) may be dominated by point sources (CSO discharges), whereas pollution in the
agricultural catchment (DWTP A4) may be dominated by non-point sources (agricultural runoff).
Pathogen and turbidity are more likely to be correlated in a catchment in which diffuse sources
dominate because they have the same sources. In contrast, in the urban watershed, pathogens may

come from point sources, but turbidity comes from the whole watershed.

9.2.2 Model validation using event-based monitoring data

Results from this research suggest that the log-normal distribution conservatively predicts E. coli,
Cryptosporidium and Giardia concentrations during hydrometeorological events (Chapter 4,
Chapter 6). In contrast, the gamma distribution did not reasonably predict (exceedance probability
< 0.1%) E. coli concentrations during two snowmelt events at urban DWTP C6 (Figure 4-7),
Giardia concentrations during a snowmelt event at urban DWTP C6, and Giardia concentrations
during a rainfall event at agricultural DWTP A4 (Figure 6-5). The gamma distribution reasonably
predicted the daily mean Cryptosporidium concentrations for snowmelt events at urban DWTPs
C6 and C7 and a rainfall event at agricultural DWTP A4. However, the gamma distribution did not
predict the sample maximum Cryptosporidium concentration (obtained from routine monitoring)
at DWTP C6 (Figure 8-5).
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The selection of the log-normal distribution as an input distribution in a stochastic QMRA may
thus be a reasonable method to account for hydrometeorological events in the quantification of
treatment targets. However, the log-normal distributions may require special considerations
because: 1) the uncertainty on its expected value is highly sensitive to the uncertainty on its upper
tail values, and 2) its annual mean can vary from year to year depending on the occurrence of rare
events (exceedance probability <1 day per year) (Chapter 6). Whether a short-term or a long-term
risk target is more appropriate in drinking water safety management has been discussed previously
(Signor and Ashbolt 2009, Smeets 2010). The uncertainty analysis presented in our research project
provided new insights to ponder the advantages and limitations of these targets. As discussed in
Chapter 5, the consideration of a short-duration target rather than an annual target may simplify

mathematical calculations and reduce the uncertainty of risk estimates.

Finally, it should be noted that a parametric distribution fitted to historical monitoring data may
not predict accidents or extreme weather events. Resilience analysis might be used as a supplement
to the traditional microbial risk assessment approach for the assessment of such events. The
development of early warning systems using meteorological data has been recently suggested to
manage the risks of waterborne diseases (Semenza 2020). Online monitoring of faecal indicators

could also be useful for the development of early warning systems.

9.3 Impact of hydrometeorological events on microbial reduction by
treatment barriers

The reduction performance of full-scale treatment processes was evaluated during
hydrometeorological events for Cryptosporidium and Giardia (Chapter 6), enteric viruses (Chapter
7), E. coli and C. perfringens (Chapter 8). Results from these campaigns invalidated the fourth
hypothesis: the pathogen concentration in drinking water is not expected to increase proportionally
to its concentration in source water. Microbial peaks in source water were buffered by high-rate
clarifiers (ballasted or floc blanket) for Giardia (Figure 6-7), adenovirus (Figure 7-4, Figure 7-5),
rotavirus (Figure 7-5), E. coli and C. perfringens (Figure 8-4B), and by rapid sand filtration for E.

coli and C. perfringens (Figure 8-4A). The implications of these results for the assessment of the
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performance of coagulation/flocculation and filtration/disinfection processes will be discussed in
section 9.3.1 and 9.3.2. The implications of these findings for QMRA will be discussed in section
9.3.3.

9.3.1 Coagulation/flocculation processes

Increases in turbidity/particle concentrations in raw water are known to increase the reduction of
protozoan parasites by conventional treatment (LeChevallier et al. 1991, LeChevallier and Norton
1992, Nieminski and Ongerth 1995, McTigue et al. 1998, Dugan et al. 2001). As detailed in
Chapters 1, 7, and 8, heteroaggregation between microorganisms and abiotic particles should occur
during flocculation. Heteroaggregation is a pseudo-first-order process because it depends on the
initial particle concentration. At an optimal coagulation dosage, a positive correlation between
particle and microbial concentrations in raw water should therefore increase the reduction
performance of the flocculator. As predicted by the Smoluchowski theory of coagulation, removals
of E. coli, C. perfringens, rotavirus, adenovirus by ballasted clarification (urban DWTP C7)
improved with raw water turbidity (Chapter 7, Chapter 8). These findings represent the behavior
of this system during a single snowmelt event; however, other studies reported higher removal
performances by ballasted clarifiers at higher influent turbidity/suspended solids concentrations
(Plum et al. 1998, Lapointe et al. 2017). The characterization of particles in raw water using
multiple parameters (turbidity, particle count, suspended solids) is recommended in future work
evaluating the microbial removal performances of coagulation/flocculation processes.
Investigating the effect of the ballasted medium on the heteroaggregation of microorganisms could

be relevant for the design and operation of ballasted clarifiers.

Mixed results were obtained for floc blanket clarifiers during hydrometeorological events. In
contrast with conventional flocculator, the concentration of flocs forming the fluidized bed is not
expected to vary at the short-term because of the temporary increase of incoming particle
concentrations (Bache and Gregory 2007). Therefore, the removal of microorganisms by floc
blanket clarifiers is expected to be a first-order process with respect to the influent microorganism
concentration. Indeed, removals of E. coli and C. perfringens by floc blanket clarification at

agricultural DWTP A4 were similar or slightly lower during a rainfall event than in dry weather
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conditions. However, during snowmelt events, the removal performance of the floc blanket clarifier
at urban DWTP C6 increased proportionally to the concentration of Giardia and adenovirus in raw
water (Figure 6-7, Figure 7-4). A small increase in the coagulation dosage may have increased the
performance during one of the two snowmelt events assessed at DWTP C6. Future studies could
characterize the flocs forming the fluidized bed during hydrometeorological events to validate
whether these systems are first-order.

9.3.2 Filtration and disinfection processes

The concentration of volumes of about 300 L per microorganism using Hemoflow method allowed
to quantify E. coli and C. perfringens concentrations in all samples after rapid sand filtration
(Figure 8-4A) and first stage dual media biological filtration (combination of ozonation and GAC
filtration) (Figure 8-4B). Removals of E. coli and C. perfringens by rapid sand filtration at DWTP
A4 were higher in event conditions than in baseline conditions. The signification of this difference
is uncertain because a breakthrough highly influenced the mean log-removal in baseline conditions
(Table 8-2). The collection of sequential grab samples in baseline conditions could improve the
comparison between baseline and event conditions. According to the single spherical collector
model, particle removal in filters are expected to be first-order with respect to the influent particle
concentrations (Benjamin and Lawler 2013). Nevertheless, the single collector transport efficiency
depends on the particle diameter; thus, a change in the floc size following a turbidity peak in source

water may influence the filter performance (Lawler et al. 1978).

Adenovirus and rotavirus were sporadically detected in samples after rapid sand filtration (Figure
7-4) and first stage dual media biological filtration (Figure 7-5) by concentrating large water
volumes (1000-2000 L) with electropositive filters. However, sample sizes were too small to
determine whether breakthroughs were more likely under event conditions than baseline
conditions. The concentration of multiple large volumes simultaneously could reduce the detection

limit low enough to adequality characterize the removal performance of these filters.

The performance of disinfection processes was not directly influenced by variations in source water

microbial concentrations because ballasted clarifier buffered these fluctuations (Figure 7-5, Figure
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8-4). However, our results suggest than full-scale inactivation performances may be much lower
than those obtained in lab-scale inactivation studies of E. coli (Zhou and Smith 1994, Hunt and
Marinas 1997) and adenovirus (Thurston-Enriquez et al. 2005). The hydraulics of the full-scale
ozonation system investigated in our work may be the cause of this lower inactivation. Finally,
infectious adenoviruses were detected after UV disinfection at a dose of 40 mJ cm2 under baseline
and event conditions. High UV-resistance of adenovirus has also been found in lab-scale
inactivation studies (Meng and Gerba 1996, Thurston-Enriquez et al. 2003). However, the fact that
positive infectious adenoviruses were observed in treated water after a combination of advanced
treatment processes points to the need to develop improved concentration and detection methods
for the assessment of infectious viruses in full-scale systems with unperfect hydraulics.

9.4 Impact of snowmelt and rainfall events on daily infection risks

Daily risks of infection with Cryptosporidium were evaluated at two sites assuming daily exposure
from either drinking water treated under baseline or event conditions (Chapter 8). These daily risks
were calculated using source water Cryptosporidium data and full-scale C. perfringens reduction
data. Daily risks under event conditions were not higher than daily risks under baseline conditions
(Table 8-4). These results suggest that the annual infection risk is not likely to be dominated by
variations in pathogen concentrations in source water. As discussed in Chapter 8, our results are in
accordance with those of Smeets et al. (2007). During our campaigns, conventional treatment
processes were optimized for turbidity reduction (settled water <1.0 NTU; individual filters
effluents < 0.1 NTU). Therefore, as hypothesized by Smeets et al. (2007), “well operated”
conventional treatment may be more effective in removing high concentrations of microorganisms
than low concentrations. Achieving sedimentation effluent turbidity targets and filter effluent
turbidity targets may be beneficial for the management of microbial associated with
hydrometeorological events. Additional studies assessing the full-scale performance of
conventional treatment under variable source water conditions, particularly at low turbidity, would

be relevant.
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The statistical independence between source water pathogen concentrations and microbial
reduction performances is typically assumed for risk characterization with Monte Carlo methods
(Teunis et al. 1997, Schijven et al. 2011). The assumption of statistical independence could be
highly conservative if reduction performances are positively correlated with source water
concentrations. Further work is needed to determine how these correlations could be assessed and
incorporated into QMRA.
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CONCLUSIONS AND RECOMMANDATIONS

The general objective of this research project was to develop a systematic methodology to assess
microbial risks associated with hydrometeorological events for drinking water safety management.
Fundamental questions were initially raised in Chapter 3: Which probability distributions
adequately describe temporal variations in source water microbial concentrations? Can automated
rapid microbiological measurements facilitate the identification of microbial peaks in source
water? Does the microbial reduction performance of treatment processes deteriorate/improve
during hydrometeorological events? What is the magnitude of short-term microbial risks during

hydrometeorological events and how important are these risks?

The main conclusions of this research are formulated to address these questions. Recommendations
are then made to support the development and implementation of site-specific microbial risk

assessments. Finally, ideas for future research are suggested.

Candidate continuous probability distributions were proposed to expand the stochastic modeling
framework for source water characterization. The following conclusions can be drawn from this

work:

e The Bayesian analysis of microbial data with mixed Poisson models produces reasonable
results for small data sets and allow incorporating different sources of uncertainty into the
analysis. The convergence of the Markov chains should however be examined thoroughly
with these models.

e Correct identification of the mixture distribution is needed to model temporal variations in
source water Cryptosporidium concentrations when available data sets are small (n < 30
samples per site). The selection of a log-normal distribution rather than the gamma
distribution can considerably increase (>0.5-log) the upper 95% credibility interval on the
mean concentration. Peak concentrations may thus play a substantial role in defining the
uncertainty on the mean Cryptosporidium concentration.

e Differences in marginal deviance information criterion (mDIC) values are generally too

small for discrimination between candidate distributions. Consequently, candidate
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distributions fit the data equally well but may predict different risk estimates when they are
used as input distributions in stochastic QMRA.

For E. coli and Giardia, differences in upper tail behaviors among candidate distributions
do not significantly impact the mean concentration estimate and its uncertainty.
Nonetheless, the gamma distribution does not reasonably predict E. coli concentrations at
large magnitudes.

At large sample sizes (n>156 in urban catchments, n>208 in agricultural catchments), the

95% credibility interval on the mean source water E. coli concentration is small (<0.3-log).

An event-based sampling strategy triggered by online B-D-glucuronidase (GLUC) activity

measurements was proposed to capture microbial peaks during hydrometeorological events. This

strategy was implemented at three drinking water treatment plants to assess variations during four

hydrometeorological events. The following conclusions ensue from this work:

Low-frequency events can be detected using this event-based monitoring strategy. The
exceedance probabilities of daily mean E. coli, Cryptosporidium and Giardia
concentrations evaluated during targeted events were generally below 5% based on
historical monitoring data at two sites. Higher exceedance probabilities (10-35%) were
obtained at the third site. The potential of GLUC activity for characterizing low-frequency
events is, therefore, site-specific.

The log-normal distribution conservatively predicted daily mean concentrations of E. coli,
Cryptosporidium and Giardia evaluated during two snowmelt episodes and one rainfall
event. For these events, the gamma distribution did predict daily mean Cryptosporidium
concentrations but did not reasonably predict daily mean E. coli and Giardia
concentrations. The tail of the gamma distribution may thus be to thin do predict source
water microbial concentrations during hydrometeorological events adequately.

At an urban site, source water concentrations of adenovirus, rotavirus, norovirus, and JC

virus were about 1.0-log higher during GLUC activity peaks than during baseline
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conditions. Therefore, online GLUC activity monitoring could also be used to capture
short-term fluctuations in viral contamination in urban rivers.

Turbidity was not a useful indicator to trigger pathogen sampling during snowmelt events
at urban sites. In contrast, the turbidity did peak with protozoan pathogen concentrations
during a rainfall event at the agricultural site. The potential of turbidity for characterizing
low-frequency events is, therefore, site-specific.

The full-scale reduction performance of treatment processes was evaluated during: 1) snowmelt

episodes at two drinking water treatment plants located in a large urban catchment, and 2) a rainfall

event at one drinking water treatment plant located in a small agricultural catchment. This work

led to the following conclusions:

During snowmelt events, the reduction performance of high-rate clarifiers (ballasted or floc
blanket) increased proportionally to source water concentrations of Giardia, adenovirus,
rotavirus, E. coli and C. perfringens. During a rainfall event, the reduction performance of
E. coli and C. perfringens by floc blanket clarification did not increase. Still, the reduction
performance of E. coli and C. perfringens by rapid sand filtration did increase
proportionally to their source water concentrations. Conventional treatment processes
optimized for turbidity reduction (settled water <1.0 NTU; individual filters effluents < 0.1
NTU) were thus more effective in removing high concentrations of microorganisms than
low concentrations.

Full-scale inactivation performances of E. coli and adenovirus by ozonation systems can be
lower than those obtained in lab-scale inactivation studies, potentially because of poor
mixing and hydraulic conditions. Furthermore, limited effectiveness of UV disinfection
against naturally occurring adenovirus can be observed at operative doses of 40 mJ cm?,

even after a combination of ballasted clarification, ozonation, GAC filtration.

Site-specific raw water Cryptosporidium data and C. perfringens reduction data were entered into

a QMRA model to estimate daily infection risks by Cryptosporidium oocysts via the consumption

of drinking water. Results from these two site-specific risk assessments indicated that daily

infection risks following snowmelt and rainfall episodes are not higher than the daily risks under
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baseline conditions. It should be emphasized that conventional treatment processes were optimized

for turbidity reduction and operated at 20-40% of their nominal capacity during baseline and event

conditions at these sites. Optimizing the removal performance of coagulation/flocculation and

filtration processes may therefore be valuable treatment options for the control of short-term risks

associated with transient peaks in source water microbial contamination.

Based on these conclusions, we can formulate a number of recommendations supported by our

findings:

» Assessment of source water concentrations

Candidate probability distributions with different upper tail behaviors should be
used to evaluate temporal variations in source water microbial concentrations. The
application of methods to assist model selection is recommended to ensure that
appropriately conservative distributions are selected for source water
characterization.

Online GLUC activity monitoring is recommended for the assessment of source
water microbial peak events at drinking water treatment plants during
hydrometeorological events. Additional studies are needed on the potential of this
sampling strategy in other catchments and for other hydrometeorological events.

In the absence of empirical information, we recommend the selection of the log-
normal distribution as a reasonably conservative model for the prediction of daily
mean microbial concentrations during hydrometeorological events. The choice of
the log-normal distribution may result in the prediction of large uncertainties on the
mean Cryptosporidium concentration. A potential option to reduce this uncertainty
might be to collect sample volumes that would yield more positive counts rather
than non-detects.

Turbidity should not be used to trigger event-based sampling of protozoan
pathogens. Online monitoring of faecal indicators is more reliable for the detection
of short-term fluctuations in pathogen concentrations, especially in catchments in

which faecal contamination likely originates from point source pollution.
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» Assessment of pathogen reduction across treatment processes

e The assessment of full-scale reduction performances of treatment processes is
recommended to ensure that treatment is fully maintained during challenging source
water conditions.

e Additional studies investigating the reduction of pathogens and surrogate
microorganisms by full-scale treatment processes under variable source water
conditions are needed to validate our findings. The development of rapid and
automated methods for the detection of microorganisms in large water volumes is
recommended to increase sample sizes. Large sample sizes could give greater power
to detect changes in performance under different source water conditions.

e Without site-specific information on full-scale reduction performances, statistical
independence should be assumed between the distribution of source water microbial
concentrations and the distribution of microbial reduction performances by
treatment processes. Based on our findings, this assumption would be conservative
in a stochastic QMRA.

e The characterization of particles in source water using multiple parameters
(turbidity, particle count, suspended solids) is recommended to evaluate their
influence on the microbial removal performances of coagulation/flocculation

processes.

Several research topics could advance risk assessment and management of short-term fluctuations
in microbial water quality. It would be interesting to:

e Identify pollution sources that substantially contribute to increases in pathogen
concentrations at drinking water intakes during hydrometeorological events. Tracking
theses sources would be valuable for the implementation of risk-based source water
protection measures.

e Evaluate the covariation between microbial pathogens and faecal indicators in source

water during hydrometeorological events.
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Understand the impact of water quality parameters and ballasted medium on the
aggregation of microorganisms during coagulation/flocculation.

Characterize short-term fluctuations in faecal indicator concentrations after full-scale
treatment processes using online monitoring technologies. Barrier efficiency could be
dynamically regulated using online data. Furthermore, the development and
implementation of new methods for the enumeration of pathogens and surrogate
microorganisms in treated drinking water could substantially improve risk assessment
procedures.

Develop resilience analysis approaches to complement the traditional risk assessment
framework. Strengthen resilience would be relevant to the management of accidents and

extreme weather events.
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Supplementary Table 4-1: E. coli-based classification systems to set minimum treatment targets
for surface DWTPs

Current Reassessment  Sampling Statistical Number Minimum log reduction requirements
document period frequency - measure for bin per 100ml
samples (n) classification Protozoa Protozoa Viruses Bacteria
(Crypto.) (Giardia)
Guidelines  for Not mentioned Not mentioned Not mentioned <20 Disinfection
Drinking-Water
Quality, 2nd 20 to 2000 Filtration and disinfection
edition. Volume
2. (WHO, 1996) > 2000 Filtration, disinfection, and at least one other

USEPA LT2
(USEPA, 2010)

Regulation
respecting the
quality of
drinking  water
(Gouvernement
du Québec,
2016)

Australian

Drinking Water
Guidelines (Draft
framework on
microbial HBT)
(NHRMC, 2016)

9 years

Continuously

Not mentioned

Monthly for 24
months or
bimonthly for 12
months (n=24)

Weekly for 36
months (n=156)

for 24
(n=104)
event-

the

Weekly
months
including
based in
dataset

Arithmetic mean

Maximum value
of the 12-months
moving arithmetic
mean

Maximum value

< 10 (lake or reservoir)

< 50 (flowing stream
source)

<15

15to 150
150 to 1500
> 1500

< 20 (protected)
< 20 (unprotected)

20 to 2000 (protected)

20 to
(unprotected)
> 2000

2000

process capable of producing additional
reduction of viruses of >99%

3 3 4 -
3 3 4 -
3 3 4 -
3 4 5 -
4 5 6 -
5 6 7 -
0 - 0 4
2.5 - 3 5
2.5 - 3 5
3.5 - 4 5
5.5 - 6 6
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Current Reassessment  Sampling frequency — Descriptive Number Minimum log reduction requirements
document period samples (n) statistic for bin of organisms per
classification liter Protozoa Protozoa Viruses Bacteria
(Crypto.) (Giardia)
USEPA LT2 9years Monthly for 24 months or Arithmeticmean <0.075 3 3 4 -
(System serving bimonthly for 12 months 0.075to1 4
at least 10,000 (n=24) <1to3 5
persons) >3 5.5
(USEPA, 2010)
New Zealand 5 years At least 26 samples collected Arithmetic mean < 0.075 3 - - -
Drinking water over a 12-month period at 0.075to 1 4
Standards approximately equal time >1 5
(System serving intervals
at least 10,000
persons)
(Ministry of
Health, 2005)
Australian Not mentioned  Not mentioned Arithmetic mean < 0.01 3 3 3
Drinking Water 3.5 3.5
Guidelines (Draft i
framework on 0.01t00.1 4
microbial HBT) <0.1to1 5 4.5 4.5
(NHRMC, 2016) <1to10 6 5.5 5.5
> 10 6.5 6 6
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Supplementary Table 5-1: Calculated recovery rate for 43 Cryptosporidium and Giardia matrix
spike recovery experiments carried out in 10-liter raw water samples collected at the drinking water
intake of 30 drinking water treatment plants (at least one experiments per site)

Cryptosporidium Giardia
Target Number of Recover Target Number of Recover
oocyst recovered y g recovered y
dose 00cysts rate cyst dose Cysts rate
100 37 0.37 100 14 0.14
100 20 0.20 100 10 0.10
100 36 0.36 100 76 0.76
100 36 0.36 100 60 0.60
100 27 0.27 100 39 0.39
100 63 0.63 100 58 0.58
100 50 0.50 100 66 0.66
100 45 0.45 100 47 0.47
100 37 0.37 100 42 0.42
100 70 0.70 100 51 0.51
100 65 0.65 100 52 0.52
100 57 0.57 100 58 0.58
100 51 0.51 100 56 0.56
100 17 0.17 100 37 0.37
100 31 0.31 100 50 0.50
100 36 0.36 100 57 0.57
100 57 0.57 100 78 0.78
100 64 0.64 100 80 0.80
100 46 0.46 100 66 0.66
100 35 0.35 100 68 0.68
100 57 0.57 100 68 0.68
100 35 0.35 100 54 0.54
100 41 0.41 100 29 0.29
100 34 0.34 100 28 0.28
100 58 0.58 100 57 0.57
100 40 0.40 100 48 0.48
100 41 0.41 100 42 0.42
100 57 0.57 100 62 0.62
100 41 0.41 100 53 0.53
100 44 0.44 100 72 0.72
100 43 0.43 100 69 0.69
100 53 0.53 100 62 0.62
100 65 0.65 100 62 0.62
100 50 0.50 100 53 0.53
100 75 0.75 100 75 0.75
100 69 0.69 100 35 0.35
100 55 0.55 100 19 0.19
100 53 0.53 100 17 0.17
100 70 0.70 100 37 0.37
100 34 0.34 100 45 0.45
100 46 0.46 100 38 0.38
100 28 0.28 100 41 0.41

100 33 0.33 100 28 0.28
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Supplementary Table 5-2: Count, sample mean concentration and sample maximum concentration

for IFA-positive Cryptosporidium oocyst and DAPI-positive Cryptosporidium oocyst measured in

raw water at eight drinking water treatment plants.

Sample  Sample Sample Sample

Main land Total IFA+ve  DAPI +ve mean mean maximum  maximum

cover type of volume Crypto. Crypto. (IFA+ve  (DAPl+ve  (IFA+ve  (DAPI +ve

DWTP  the catchment n analysed (L) oocysts oocysts oocyst/L) oocyst/L) oocyst/L) oocyst/L)
Al Forested 20 1086 110 61 0.159 0.092 1.466 0.684
A2 Mixed 20 710 79 48 0.127 0.086 0.588 0.558
A3 Mixed 21 830 37 26 0.062 0.047 0.333 0.250
Ad Agricultural 24 936 125 69 0.181 0.080 1.387 0.358
B1 Mixed 22 848 129 100 0.173 0.136 1.464 1.393
B2 Forested 19 957 62 16 0.630 0.020 0.625 0.086
C1 Mixed 18 1077 186 157 0.179 0.150 0.809 0.714
C2 Agricultural 17 930 43 25 0.045 0.027 0.111 0.088
D1 Agricultural 22 707 57 44 0.079 0.059 0.406 0.356
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Supplementary Figure 5-1: Illustration from MCMC diagnostics for a specified parameter. Upper-
left: Evolution of parameter values of three chains as the number of iterations increases (trace plot).
A burn-in period of 2000 steps was applied. Upper-right: Autocorrelation diagnostic for lags from
1 to 35. Lower-left: Evolution of Gelman and Rubin's shrink factor as the number of iterations
increases. Lower-right: Density plots of the parameter values sampled in three MCMC chains.
Generated in R using the diagMCMC function from Kruschke (2014).
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Supplementary Table 5-3: Cryptosporidium oocyst counts and analyzed water volumes from four

drinking water treatment plants.

DWTP B7
Oocyst
count Volume
33

41

25

4.75
42.5

10

5

11

19

60

75.5
50.5
10.5
27.5

2.2

10.4
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DWTP C1
Oocyst
count Volume
0 62
51 63
31 44.22
39 63
23 61
6 64
5 63
1 61
0 60
2 60
1 65
4 29.5
1 60
0 66
7 40.5
1 70.5
8 62.5
4 24.5
2 57.5

DWTP C4

Oocyst
count Volume
11

11
10.5
49

12

30

25
37.52
57
12.5
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12
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40.87
13.6
30.5
15.25
21
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APPENDIX C SUPPLEMENTAL MATERIAL, ARTICLE 3: IMPACT
OF HYDROMETEOROLOGICAL EVENTS FOR THE SELECTION OF
PARAMETRIC MODELS FOR PROTOZOAN PATHOGENS IN
DRINKING-WATER SOURCES
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Supplementary Figure 6-1: Complementary cumulative distribution function (CCDF) curves for
the log-normal distribution of Cryptosporidium and Giardia concentrations using different values
of the hyperparameter on the prior its the scale parameter A at drinking water treatment plants A

and B. Surfaces represent the 95% predictive interval for each log-normal distribution.
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APPENDIX D SUPPLEMENTAL MATERIAL, ARTICLE 4:
DEMONSTRATING THE REDUCTION OF ENTERIC VIRUSES BY
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Supplementary Figure 7-1: Histograms for the concentrations of 8 enteric viruses at the influent
and effluent of a wastewater treatment plant located 5 kilometers upstream from drinking water
treatment plant (DWTP) B. Error bars represent the uncertainty in virus concentrations due to the
analytical error and the random error in sample collection. Influent samples were collected on three
occasions in 2018 on February 28, March 19, and March 26. Effluent samples were collected on

February 28 and March 26. Orange glowing bars represent samples positive for ICC-qPCR.




