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ABSTRACT
The present study introduces a novel algorithm based on the homotopy analysis method (HAM) to efficiently solve the equation of motion
of simply supported transversely and axially loaded double-beam systems. The original HAM was developed for single partial differential
equations (PDEs); the current formulation applies to systems of PDEs. The system of PDEs is derived by modeling two prismatic beams
interconnected by a nonlinear inner layer as Euler–Bernoulli beams. We employ the Bubnov–Galerkin technique to turn the PDEs’ system
into a system of ordinary differential equations that is further solved with the HAM. The flexibility and straightforwardness of the HAM in
computing time-dependent components of the system’s transverse deflection and natural frequencies, in conjunction with the observed fast
convergence, offer a robust semi-analytical method for analyzing such systems. Finally, the transverse deflection is built through the modal
superposition principle. Thanks to a judicious and high-flexibility selection of initial guesses and convergence control parameters, numerical
examples confirm that at most six iterations are needed to achieve convergence, and the results are consistent with the selected benchmark
cases.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0156487

I. INTRODUCTION

Due to their role in many mechanical, civil, and aerospace
engineering fields, double-beam systems have garnered tremendous
interest in the scientific community. These systems are employed
in modeling the behavior of various engineering structures, such
as suspension and arc bridges, sandwich beams for aircraft compo-
nents, and systems of interconnected pipelines, to achieve optimal
design owing to their stiffness-to-weight and strength-to-weight
ratios.

Double-beam systems are made of two parallel beams contin-
uously connected by an inner layer. Due to the synergy between
the two beams, the system is an excellent technique for mitigating
structural vibrations.

While beams are typically modeled as Timoshenko,1–4

Euler–Bernoulli,5–8 and Rayleigh9,10 beams, the inner layer is
typically modeled as Winkler,11–13 Pasternak,12–14 or Kerr10

layers.
Many methods based on reliable mathematical formulations

for modeling double-beam systems are found in the literature. The
pioneering work of Seeling and Hoppmann15 proposed a generic
solution of n-bar systems described as Euler–Bernoulli beams for
a two-bar system. Hamada et al.16 studied free and forced vibra-
tions of double-beam systems using the extended finite integral
transformation approach and Laplace transform. Another set of
investigations contains the study conducted by Oniszczuk,17 where
the classical modal expansion method was employed to analyze the
forced transverse response of a double-beam system subjected to

AIP Advances 13, 075103 (2023); doi: 10.1063/5.0156487 13, 075103-1
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arbitrarily distributed continuous loads. Before his study related to
forced vibrations, Oniszczuk used a Bernoulli–Fourier method to
solve free transverse vibration problems.18 Zhang et al.19 examined
the effect of compressive axial loads on transverse vibrations through
the modal expansion approach. Palmeri and Adhikari20 considered
a viscoelastic behavior of the inner layer and applied a Galerkin-
type state-space approach to explore the transverse vibrations of
slender double-beam systems. Han et al.11 introduced a dynamic
stiffness-based modal analysis to analyze the influence of the elas-
tic inner layer composed of several elastic supports. Liu and Yang5

used a closed-form analytical approach called the distributed trans-
fer function method to study the double-beam system with general
boundary conditions. Brito et al.14 conducted the bending analysis
of a double-beam system as Euler–Bernoulli beams with an elas-
tic inner layer using a direct boundary element approach. Using
Green’s functions, Zhao et al.3 analyzed the forced vibration of a
Timoshenko double-beam system subjected to compressive axial
loads.

As evidenced by the studies mentioned above, the analysis
of double-beam systems has reached a mature stage. Nevertheless,
some challenges remain and garner interest in developing new mod-
els. One of the challenges is related to the inner layer, which is often
assumed to have linear behavior. Such a simplifying assumption
is widely adopted to avoid cumbersome mathematical formula-
tions in the case of analytical or semi-analytical methods. The same
assumption is adopted to avoid computer-intensive numerical mod-
els, particularly when forced vibrations are investigated. Thus, for a
thorough analysis, new methods must address the nonlinear behav-
ior of the inner layer. In the literature, some studies that have
addressed the nonlinear behavior of the inner layer or the foun-
dation of a double-beam system21,22 or, generally, the nonlinear
vibration of the system23 are available; however, the influence of the
nonlinear stiffness coefficient remains to be elucidated.

This paper aims to develop a novel HAM-based algorithm to
address transverse vibrations of an axially and transversally loaded
double-beam system composed of two prismatic beams modeled as
Euler–Bernoulli beams continuously interconnected by a nonlinear
inner layer.

The HAM was developed by Liao24 and thoroughly explained
in Ref. 25 by the same author. In the years following the seminal
work of Liao, the HAM has proven to be an effective technique for
solving complex and highly nonlinear equations of mechanical sys-
tems. This statement is confirmed by the tremendous amount of
HAM-related work in the literature. As an analytical method, the
HAM is easy to implement and less computer-intensive because it
does not require system discretization. Moreover, the HAM relies
on a flexible way of guaranteeing convergence; therefore, it provides
a reasonably straightforward procedure for analytically approximat-
ing the solutions of nonlinear equations of mechanical systems.

Indeed, convergence is guaranteed and accelerated by an easy selec-
tion of the nonzero convergence-control parameter, the auxiliary
function, and the initial guess of the solution. More importantly,
unlike many other analytical and semi-analytical approaches for
nonlinear systems, the HAM is independent of large or small
parameters.

The HAM has been the foundation of several applications.26–30

Regarding beam analysis, the existing HAM-based models are lim-
ited to single beam problems. In Ref. 31, a robust formulation of
the HAM was developed to address the transversal vibration of
quintic nonlinear beams. In Ref. 32, the effectiveness and accu-
racy of the HAM were demonstrated through the investigation of
large deformations of a single beam subjected to static, arbitrarily
distributed loads. Another valuable HAM-based analytical approx-
imation was proposed in Ref. 33, where large deformations of a
cantilever beam made of axially and functionally graded material
were investigated. In addition, for floating bridges with floating
piers, the method established here may also be applied to analyze
the coupled hydrodynamic-structural behavior by integrating this
method with the multi-body hydrodynamic model established by
Chen et al.34 and Zou et al.35 The method could also be used for
analysis of ice–structure interaction by taking an ice sheet locally
as a beam.36 In the present study, the HAM is combined with
the Bubnov–Galerkin technique to transform the system of PDEs
describing the motion of a double system into a system of ODEs;
the dynamic response is obtained through the modal superposition
principle.

Besides the introduction, this paper is organized as follows:
Sec. II presents the mathematical formulation of a double-beam
model. In Sec. III, the HAM is applied to the system of ODEs derived
in the previous section. Some numerical examples are solved in
Sec. IV, and the concluding remarks are given in Sec. V.

II. MATHEMATICAL FORMULATION OF THE PROBLEM
The to-be-studied double-beam system is depicted in Fig. 1.

The model comprises two parallel prismatic beams that are elas-
tically and continuously connected by an inner layer modeled as
a Winkler foundation, generally characterized by a mass per unit
length denoted by μ and linear and nonlinear stiffness coefficients
denoted by kL and kNL, respectively. The homogeneous and slen-
der beams of identical length are characterized by flexural stiffness
EiIi, densities ρi, and cross-sectional areas Ai; they are axially loaded
with compressive loads denoted by Pi and transversally loaded with
dynamic point loads or continuously varying distributed forces
denoted by fi (i = 1, 2). The system of equations that governs the
forced transverse vibrations of the beam system is derived from the
Euler–Bernoulli theory and is given by the following equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2

∂x2 (E1I1
∂2w1

∂x2 )+P1
∂2w1

∂x2 +
μ
4
(
∂2w1

∂t2 +
∂2w2

∂t2 ) + ρ1A1
∂2w1

∂t2 + kL(w1 − w2)

+ kNL(w1 − w2)
3
= f1,

∂2

∂x2 (E2I2
∂2w2

∂x2 )+P2
∂2w1

∂x2 +
μ
4
(
∂2w1

∂t2 +
∂2w2

∂t2 ) + ρ2A2
∂2w2

∂t2 − kL(w1 − w2)

− kNL(w1 − w2)
3
= f2,

(1)
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FIG. 1. Transversally and axially loaded double-beam system comprising an inner
layer characterized by linear (kL) and nonlinear (kNL) stiffness coefficients and a
mass per unit length μ.

with the initial conditions given as

wi(x, 0) = wi0(x), ẇi(x, 0) = ẇi0(x) = 0, (2)

where wi(x, t) is the transverse displacement field of the i-th beam.
The i-th beam flexural stiffness EiIi is assumed to be constant.
The initial conditions given by wi0 and ẇi0 represent the initial
displacement and velocity fields, respectively.

The governing equations of transverse vibrations may be mod-
ified by non-dimensionalizing the spatial variable and the transverse
displacement; the corresponding non-dimensional quantities are,
respectively, denoted by ξ and w̄i,

x = Lξ, wi = Lw̄i. (3)

The modified governing equation for transverse vibrations for
the i-th beam is given as follows:

EiIi

L3
∂4w̄i

∂ξ4 +
Pi

L
∂2w̄i

∂ξ2 +
Lμ
4
(
∂2w̄1

∂t2 +
∂2w̄2

∂t2 )

+ LρiAi
∂2w̄i

∂t2 + (−1)i−1LkL(w̄1 − w̄2)

+ (−1)i−1L3kNL(w̄ 1 − w̄ 2)
3
= fi. (4)

Referring to the Bernoulli–Fourier method, the i-th beam
transverse displacement can be expressed in accordance with the
modal expansion principle as a linear combination of modal
coordinates ūin ,37

w̄i(ξ, t) =
+∞
∑
n=1

φn(ξ)ūin(t); i = 1, 2, (5)

where φn is the n-th mode shape function.
From here, two different cases are investigated according to the

load type: the first is the case of fixed harmonic excitations (concen-
trated and uniformly distributed loads), and the second is the case of
constant moving concentrated loads.

A. Case of fixed harmonic loads
In this case of a double-beam system transversally loaded with

fixed concentrated or uniformly distributed harmonic excitations,
the applied transverse forces are assumed to be given as products
of two functions, each depending on one of the two independent
variables,

fi(ξ, t) = ki(ξ)gi(t); i = 1, 2. (6)

The relationships of Eqs. (5) and (6) are introduced in Eq. (4).
The obtained equation is multiplied by the mode shape function φm
and integrated with respect to ξ from 0 to 1; this procedure, referred
to as the Bubnov–Galerkin method, enables the transformation of a
PDE into an ODE,

∫

1

0

+∞
∑
n=1
[

EiIi

L3
d4φn(ξ)

dξ4 ūin(t) +
Pi

L
d2φn(ξ)

dξ2 ūin(t)

+
Lμ
4
(

d2ū1n(t)
dt2 +

d2ū2n(t)
dt2 )φn(ξ) + LρiAi

d2ūin(t)
dt2 φn(ξ)

+ (−1)i−1LkL(ū1n(t) − ū2n(t))φn(ξ)

+ (−1)i−1L3kNL(ū 1n(t) − ū 2n(t))
3φ3

n(ξ)]φm(ξ)dξ

= ∫

1

0
ki(ξ)gi(t)φm(ξ)dξ. (7)

The mode shape function φl may be defined as a function of
alξ; φl and its s-th derivative (s being an even number) with respect
to ξ are written as follows:

φl(ξ) ∶= h(alξ),
dsφl(ξ)

dξs = Γ(al, s)φl(ξ), (8)

where the function h depends on the boundary conditions. With the
adopted boundary conditions, h is a sine function and the number
al is equal to lπ, where l is the mode number. If s is equal to 2p,
Γ(al, s) is equal to (−1)pa2p

l . Γ is a function introduced to define the
derivative of the mode shape function; it represents an eigen value
of the operator ds

dξs . The equation corresponding to the n-th mode is
given in the following equation:

d2ūin(t)
dt2 +

μ
4ρiAi

(
d2ū1n(t)

dt2 +
d2ū2n(t)

dt2 )

+
( EiIi

L3 Γ(an, 4) + Pi
L Γ(an, 2))

LρiAi
ūin(t)

+
(−1)i−1kL

ρiAi
(ū1n(t) − ū2n(t))

+
(−1)i−1L2kNL∫

1
0 φ4

n(ξ)dξ
ρiAi∫

1
0 φ2

n(ξ)dξ
(ū 1n(t) − ū 2n(t))

3

=
∫

1
0 ki(ξ)φn(ξ)dξ

LρiAi∫
1

0 φ2
n(ξ)dξ

gi(t). (9)

B. Case of moving concentrated loads
In the case of constant concentrated loads of magnitudes gi,

moving with constant speeds vi, the exciting terms are defined with
the Dirac delta function δ as follows:

fi(ξ, t) =
1
L

δ(ξ −
vi

L
t)gi; i = 1, 2. (10)
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The relationships of Eqs. (5) and (10) are introduced in Eq. (4). The obtained equation is multiplied by the mode shape function φm and
integrated with respect to ξ from 0 to 1; the equation corresponding to the n-th mode in the case of moving concentrated loads is given as
follows:

d2ūin(t)
dt2 +

μ
4ρiAi

(
d2ū1n(t)

dt2 +
d2ū2n(t)

dt2 ) +
( EiIi

L3 Γ(an, 4) + Pi
L Γ(an, 2))

LρiAi
ūin(t) +

(−1)i−1kL

ρiAi
(ū1n(t) − ū2n(t))

+
(−1)i−1L2kNL∫

1
0 φ4

n(ξ)dξ
ρiAi∫

1
0 φ2

n(ξ)dξ
(ū 1n(t) − ū 2n(t))

3
=
∫

1
0 δ(ξ − vi

L t)φn(ξ)dξ
L2ρiAi∫

1
0 φ2

n(ξ)dξ
gi. (11)

C. Modified forms of equations of motion
The Bubnov–Galerkin technique allows the construction of a system of ODEs whose unknowns are the functions ū1n and ū2n . The system

of ODEs is given as follows:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

d2ū1n

dt2 + α11(
d2ū1n

dt2 +
d2ū2n

dt2 ) + α12ū1n + α13(ū1n − ū2n) + α14(ū 1n − ū 2n)
3
= α15g1,

d2ū2n

dt2 + α21(
d2ū1n

dt2 +
d2ū2n

dt2 ) + α22ū2n + α23(ū1n − ū2n) + α24(ū 1n − ū 2n)
3
= α25g2,

(12)

where the coefficients αi j (i = 1, 2; j = 1, . . . , 5) are given in the
following equation:

αi1 =
μ

4ρiAi
, αi2 =

EiIi
L3 Γ(an, 4) + Pi

L Γ(an, 2)
LρiAi

,

αi3 =
(−1)i−1kL

ρiAi
, αi4 =

(−1)i−1L2kNL∫
1

0 φ4
n(ξ)dξ

ρiAi∫
1

0 φ2
n(ξ)dξ

,

αi5 =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
1

0 ki(ξ)φn(ξ)dξ
LρiAi∫

1
0 φ2

n(ξ)dξ
, for fixed loads,

∫
1

0 δ(ξ − vi
L t)φn(ξ)dξ

L2ρiAi∫
1

0 φ2
n(ξ)dξ

, for moving loads.

(13)

Using the definition of the Dirac delta function, the coefficients
αi5 for moving loads are given as

αi5 =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

φn(
vi
L t)

L2ρiAi∫
1

0 φ2
n(ξ)dξ

, if
vi

L
t ∈ (0, 1),

0, if
vi

L
t ∉ [0, 1].

(14)

The initial conditions corresponding to the n-th mode are
derived as shown in the following equation:

ūin(0) =
∫

1
0 w̄i0(ξ)φn(ξ)dξ

∫
1

0 φ2
n(ξ)dξ

, ˙̄uin(0) =
∫

1
0

˙̄wi0(ξ)φn(ξ)dξ

∫
1

0 φ2
n(ξ)dξ

= 0. (15)

For the next step in the modification of the system of equations,
we introduce two unknown functions denoted by ūn and v̄n, given as
follows:

ūn = ū1n − ū2n , v̄n = ū1n + ū2n. (16)

The system of equations to be solved is then expressed as

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∂2ūn

∂t2 + σ11ūn + σ12v̄n + σ13ū3
n = σ14g1 + σ15g2,

∂2v̄n

∂t2 + σ21ūn + σ22v̄n + σ23ū3
n = σ24g1 + σ25g2,

(17)

where the coefficients σ1j and σ2 j ( j = 1, 2, 3, 4, 5) are given in the
following equations, respectively,

σ11 =
0.5(α12 + α22) + α13 − α23 + α11(α22 − 2α23) + α21(α12 + 2α13)

1 + α11 + α21
,

σ12 =
0.5α12(1 + 2α21) − 0.5α22(1 + 2α11)

1 + α11 + α21
, σ13 =

α14(1 + 2α21) − α24(1 + 2α11)

1 + α11 + α21
,

σ14 =
α15(1 + 2α21)

1 + α11 + α21
, σ15 =

−α25(1 + 2α11)

1 + α11 + α21
,

(18)
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σ21 =
0.5(α12 − α22) + α13 + α23

1 + α11 + α21
, σ22 =

0.5(α12 + α22)

1 + α11 + α21
,

σ23 =
α14 + α24

1 + α11 + α21
, σ24 =

α15

1 + α11 + α21
,

σ25 =
α25

1 + α11 + α21
.

(19)

It is guaranteed that the coefficients σij are real numbers for every
value of each of the independent variables, since the number
1+α11+α21 is always greater or equal to 1 (equal to 1 when the mass
per unit length of the inner layer is disregarded).

III. SOLUTION OF THE SYSTEM OF EQUATIONS
USING THE HAM
A. Preliminary work

A further modification of the system of ODEs to be solved con-
cerns the non-dimensionalization of equations with respect to the
temporal variable. The procedure differs according to whether loads
are fixed or moving.

In the case of a fixed harmonic excitation characterized by the
frequency ω, we introduce a dimensionless time denoted by τ, given
as follows:

τ = ωt. (20)

The system of equations to be solved is derived as in the following
equation:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ω2 d2ūn

dτ2 + σ11ūn + σ12v̄n + σ13ū3
n = g,

ω2 d2vn

dτ2 + σ21ūn + σ22v̄n + σ23ū3
n = h,

(21)

where g and h are given as follows

g(τ) = σ14g1(τ) + σ15g2(τ), h(τ) = σ24g1(τ) + σ25g2(τ), (22)

with the initial conditions given as follows:

ūn(0) = ū1n(0) − ū2n(0) = ūo
n,

dūn

dτ
∣
t=0
= 0,

v̄n(0) = ū1n(0) + ū2n(0) = v̄o
n,

dv̄n

dτ
∣
t=0
= 0.

(23)

Regarding the case of constant moving forces, we consider the
mode shape function related to the chosen boundary conditions,

φn(ξ) = cos(nπξ −
π
2
). (24)

A cosine form is adopted to define the mode shape function,
instead of the original sine form, to comply with the solution struc-
ture built with cosine functions. The time scale is modified, but
results corresponding to the same time point in the cases of sine and
cosine forms remain the same since the two functions are mathe-
matically the same despite being written in two different forms. The
corresponding dimensionless temporal variable is defined consid-
ering the expression φn(

vi
L t) stemming from the integration of the

Dirac delta function,

τ∗n =
nπvi

L
t − π/2 = ω∗n t − π/2. (25)

The system of equations to be solved is derived as in the
following equation:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ω∗2
n

d2ūn

dτ∗2
n
+ σ11ūn + σ12v̄n + σ13ū3

n = g,

ω∗2
n

d2vn

dτ∗2
n
+ σ21ūn + σ22v̄n + σ23ū3

n = h,
(26)

where g and h are given as follows:

g(τ∗n ) = σ14(τ∗n )g1 + σ15(τ∗n )g2, h(τ∗n ) = σ24(τ∗n )g1 + σ25(τ∗n )g2.
(27)

The variable τ∗n being dependent on the mode order n, is only
used in the algorithm development; solutions will be presented as
functions of τ∗ = πvi

L t.

B. Application of the HAM
The HAM is now applied to first compute the time-dependent

unknown functions ūn and v̄n; afterward, the time-dependent parts
ū1n and ū2n of the transverse vibrations will be deduced in order
to construct the dynamic vibration functions using the modal
superposition principle.

For each of the equations of the system of ODEs, a function
denoted by H and named the homotopy function is introduced. H

is a function of the approximate value and depends on the embed-
ding parameter or the homotopy-parameter q (q ∈ [0, 1]). In the
context of the HAM, the approximate functions of ūn and v̄n are
denoted by ̃̄un and ̃̄vn, respectively; the homotopy functions are
expressed as

H1(̃̄un; q) ∶= (1 − q)L1[̃̄un(τ; q) − ūn0(τ)] − c01 qH1N1[̃̄un(τ; q)],

H2(̃v̄n; q) ∶= (1 − q)L2[̃v̄n(τ; q) − v̄n0(τ)] − c02 qH2N2[̃v̄n(τ; q)].
(28)

Subsequently, we define the homotopy equations Ei from each
of the homotopy functions; Ei represents the families of equations
that can be generated for different values of q,

E1(q) : (1 − q)L1[̃̄un(τ; q) − ūn0(τ)] − c01 qH1N1[̃̄un(τ; q)] = 0,

E2(q) : (1 − q)L2[̃v̄n(τ; q) − v̄n0(τ)] − c02 qH2N2[̃v̄n(τ; q)] = 0.
(29)

In Hi and Ei, Li represent the linear operators corresponding to
appropriate linear partial differential equations; Ni are the nonlinear
operators representing the nonlinear partial differential equations to
be solved, in which the unknowns ūn and v̄n are substituted with
their approximations ̃̄un and ̃̄vn, respectively, for a certain value of
the homotopy parameter. Assuming that the linear operators have
been appropriately chosen, the convergence of the algorithm to be
built depends on the choice of the initial guesses ūn0(τ) and v̄n0(τ),
on the convergence-control parameters c0i , and, to some extent, on
the auxiliary functions Hi.

The expressions in Eq. (29) are referred to as zeroth-order
deformation equations. They express the continuous deformation
of the solutions to the problem from the initial guesses ūn0(τ) and
v̄n0(τ) as solutions to linear equations (q = 0) represented by the
linear operators to ̃̄un(τ; 1) and ̃̄vn(τ; 1), respectively, as solutions
to the nonlinear equations to be solved (q = 1) represented by the
nonlinear operators.
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The nonlinear operators deduced from the system of equations
to be solved and the chosen linear operators are given in Eqs. (30)
and (31), respectively,

N1[̃̄un(τ; q)] = ω2 d2̃̄un(τ; q)
dτ2 + σ11̃̄un(τ; q) + σ12̃̄vn(τ; q)

+ σ13̃̄u3
n(τ; q) − g̃(τ; q),

N2[̃v̄n(τ; q)] = ω2 d2̃̄vn(τ; q)
dτ2 + σ21̃̄un(τ; q) + σ22̃̄vn(τ; q)

+ σ23̃̄u3
n(τ; q) − h̃(τ; q),

(30)

L1[̃̄un(τ; q)] = ω2
(

d2̃̄un(τ; q)
dτ2 + ̃̄un(τ; q)),

L2[̃v̄n(τ; q)] = ω2
(

d2̃̄vn(τ; q)
dτ2 + ̃̄vn(τ; q)).

(31)

The approximate solutions within the framework of the HAM
are given as follows:

̃̄un(τ; q) ∼
+∞
∑
m=0

ūnm(τ)q
m and ̃̄vn(τ; q) ∼

+∞
∑
m=0

v̄nm(τ)q
m, (32)

where the unknown functions ūnm and v̄nm are obtained as follows:

ūnm(τ) =
1

m!
∂m̃̄un(τ; q)

∂qm ∣

q=0
= D1m[

̃̄un(τ; q)],

v̄nm(τ) =
1

m!
∂m̃̄vn(τ; q)

∂qm ∣

q=0
= D2m [̃v̄n(τ; q)].

(33)

It is assumed that g and h are made of different components gm
and hm, respectively, and are written as an infinite series of functions,

g̃(τ; q) ∼
+∞
∑
m=0

gm(τ)qm, h̃(τ; q) ∼
+∞
∑
m=0

hm(τ)qm. (34)

We can now build higher-order deformation equations. The
substitution of the approximate unknown functions with their infi-
nite serie representations given in Eq. (32) in the left-hand side of
Eq. (29) yields

(1 − q)L1[̃̄un(τ; q) − ūn0(τ)] =
+∞
∑
m=1

L1[ūnm(τ) − χmūnm−1(τ)]q
m,

(1 − q)L2[̃v̄n(τ; q) − v̄n0(τ)] =
+∞
∑
m=1

L2[v̄nm(τ) − χmv̄nm−1(τ)]q
m,

(35)

χm =

⎧⎪⎪
⎨
⎪⎪⎩

0, m ⩽ 1,

1, m > 1.
(36)

Performing the same substitution at the right-hand side of
Eq. (29) yields the following equation:

qN1[̃̄un(τ; q)] =
+∞
∑
m=1

δ(n)1m
qm, qN2[̃v̄n(τ; q)] =

+∞
∑
m=1

δ(n)2m
qm, (37)

where δ(n)1m
and δ(n)2m

are given as follows:

δ(n)1m
= ω2 d2ūnm−1

dτ2 + σ11ūnm−1 + σ12v̄nm−1

+ σ13

m−1

∑
k=0

k

∑
j=0

ūnm−k−1 ūnk− j ūn j − gm−1,

δ(n)2m
= ω2 d2v̄nm−1

dτ2 + σ21ūnm−1 + σ22v̄nm−1

+ σ23

m−1

∑
k=0

k

∑
j=0

ūnm−k−1 ūnk− j ūn j − hm−1.

(38)

Finally, the m-th order deformation equations are given as
follows:

L1[ūnm(τ) − χmūnm−1(τ)] = c01 H1δ(n)1m

and

L2[v̄nm(τ) − χmv̄nm−1(τ)] = c02 H2δ(n)2m
, (39)

with the initial conditions

ūnm(τ = 0) = 0,
dūnm

dτ
∣
τ=0
= 0, v̄nm(τ = 0) = 0,

dv̄nm

dτ
∣
τ=0
= 0. (40)

The next step in the procedure consists of the calcula-
tion of the successive values of the coefficients ūnk(τ) and
v̄nk(τ) (k = 0, 1, . . . , M) to construct the M-th-order homotopy-
approximation solutions as given in Eq. (41) under the consideration
that all the conditions are fulfilled so that the convergence of the
series given in Eq. (32) for q = 1 is guaranteed,

̃̄un(τ) ∼
M

∑
m=0

ūnm(τ) and ̃̄vn(τ) ∼
M

∑
m=0

v̄nm(τ). (41)

The initial guesses have to comply with the initial conditions of
Eq. (23); they are chosen as follows:

ūn0(τ) = a1 + b1 cos τ and v̄n0(τ) = a2 + b2 cos τ; b1, b2 ≠ 0, (42)

where the numbers b1 and b2 are such that

b1 = ūo
n − a1, b2 = v̄o

n − a2. (43)

The numbers a1 and a2 are chosen with a relatively straight-
forward procedure that will be presented later as one way of
guaranteeing convergence.

The first-order deformation equations are given as follows:

L1[ūn1(τ)] = c01 H1δ(n)11

= c01 H1(ω2 d2ūn0

dτ2 + σ11ūn0 + σ12v̄n0 + σ13ū3
n0 − g0),

L2[v̄n1(τ)] = c02 H2δ(n)21

= c02 H2(ω2 d2v̄n0

dτ2 + σ21ūn0 + σ22v̄n0 + σ23ū3
n0 − h0).

(44)
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It is assumed that H1(τ) = H2(τ) = 1 for the sake of simplicity and
g0 and h0 are such that

g0 = λ10 cos τ, h0 = λ20 cos τ. (45)

The right-hand sides of the first-order deformation equations
are developed and rearranged as follows:

c01 δ(n)11
= Δ(n)11,0

+ Δ(n)11,1
cos τ + Δ(n)11,2

cos 2τ + Δ(n)11,3
cos 3τ,

c02 δ(n)21
= Δ(n)21,0

+ Δ(n)21,1
cos τ + Δ(n)21,2

cos 2τ + Δ(n)21,3
cos 3τ,

(46)

Where coefficients Δ(n)k1, j
(k = 1, 2 and j = 0, 1, 2, 3) are given in the

following equation:

Δ(n)k1,0
= c0k(σk1a1 + σk2a2 + σk3a3

1 + 1.5σk3a1b2
1),

Δ(n)k1,1
= c0k(−ω2bk + σk1b1 + σk2b2 + 0.75σk3b3

1 + 3σk3a2
1b1 − λk0),

Δ(n)k1,2
= 1.5c0k σk3a1b2

1, Δ(n)k1,3
= 0.25c0k σk3b3

1.
(47)

In order to avoid the so-called secular terms in the solutions,
the coefficients Δ(n)11,1

and Δ(n)21,1
should be set to zero. Such conditions

provide a way of calculating the lower and higher natural frequencies
of the system considering free conditions (λ10 = λ20 = 0),

Δ(n)11,1
= 0Ô⇒ ω(n)01

=

√

σ11 + σ12
b2

b1
+ 0.75σ13b2

1 + 3σ13a2
1,

Δ(n)21,1
= 0Ô⇒ ω(n)02

=

¿
Á
ÁÀσ21

b1

b2
+ σ22 + 0.75σ23

b3
1

b2
+ 3σ23a2

1
b1

b2
.

(48)

One of the advantages of the HAM is the great freedom with
which some parameters are chosen. It is, however, necessary to have
the guarantee of convergence. One of the ways of guaranteeing con-
vergence is through a good choice of the initial guess. The squared
residuals Emi corresponding to the m-th iteration are calculated for
this purpose. For the zero-th order approximation, we have the
following equations:

E01(a1, a2) =
1

2π∫
2π

0
{N1[ū n0(τ)]}

2dτ

=
1

c2
01

(Δ(n)211,0
+ 0.5Δ(n)211,2

+ 0.5Δ(n)211,3
),

E02(a1, a2) =
1

2π∫
2π

0
{N2[v̄ n0(τ)]}

2dτ

=
1

c2
02

(Δ(n)221,0
+ 0.5Δ(n)221,2

+ 0.5Δ(n)221,3
).

(49)

To guarantee convergence, the numbers a1 and a2 are chosen so
that at least one among the functions E01 and E02 and the norm of the
vector (E01 , E02) is minimal. The corresponding values of a1 and a2

are denoted by â1 and â2, respectively [b̂1 and b̂2 are deduced using
Eq. (43)].

The solutions of the deformation equations [Eq. (39)] are
constructed as follows:

ūnm(τ) − χmūnm−1(τ) = ūs
nm(τ) + ūh

nm(τ),

v̄nm(τ) − χmv̄nm−1(τ) = v̄s
nm(τ) + v̄h

nm(τ),
(50)

where ūs
nm(τ) and v̄s

nm(τ) are special solutions of Eq. (39); ūh
nm(τ)

and v̄h
nm(τ) are the solutions of homogeneous equations as shown

below:

L1[ūh
nm(τ)] = 0, L2[v̄h

nm(τ)] = 0. (51)

Considering the linear operators L1 and L2, as given
in Eq. (31), the solutions of the homogeneous equations are
given as

ūh
nm(τ) = C(n)1m,1

cos τ + C(n)1m,2
sin τ,

v̄h
nm(τ) = C(n)2m,1

cos τ + C(n)2m,2
sin τ.

(52)

We set C(n)1m,2
= C(n)2m,2

= 0 to comply with the solution structure;

the initial conditions in Eq. (40) enable the calculation of C(n)1m,1
and

C(n)2m,1
,

C(n)1m,1
= −χmūnm−1(0) − ūs

nm(0),

C(n)2m,1
= −χmv̄nm−1(0) − v̄s

nm(0).
(53)

Special solutions have the same structure as the right-hand side
of Eq. (44), developed in Eq. (46),

ūs
n1(τ) = Ψ(n)11,0

+Ψ(n)11,2
cos 2τ +Ψ(n)11,3

cos 3τ,

v̄s
n1(τ) = Ψ(n)21,0

+Ψ(n)21,2
cos 2τ +Ψ(n)21,3

cos 3τ.
(54)

The coefficients Ψ(n)i1, j
(i = 1, 2; j = 0, 1, 2, 3) are determined

after incorporating the special solutions in Eqs. (44) and (53),

Ψ(n)i1,0
=

1
ω2 Δ(n)i1,0

, Ψ(n)i1,2
= −

1
3ω2 Δ(n)i1,2

, Ψ(n)i1,3
= −

1
8ω2 Δ(n)i1,3

; i = 1, 2,

(55)

C(n)11,1
= −ūs

n1(0) = −(Ψ
(n)
11,0
+Ψ(n)11,2

+Ψ(n)11,3
) = Ψ(n)11,1

,

C(n)21,1
= −v̄s

n1(0) = −(Ψ
(n)
21,0
+Ψ(n)21,2

+Ψ(n)21,3
) = Ψ(n)21,1

.
(56)

The general solution for the first-order homotopy approxima-
tion (m = 1) can now be determined,

ūn1(τ) = Ψ(n)11,0
+Ψ(n)11,1

cos τ +Ψ(n)11,2
cos 2τ +Ψ(n)11,3

cos 3τ,

v̄n1(τ) = Ψ(n)21,0
+Ψ(n)21,1

cos τ +Ψ(n)21,2
cos 2τ +Ψ(n)21,3

cos 3τ.
(57)

Using the same procedure, the general solution for the first-
order homotopy approximation in the case of a system subjected to
moving loads is written as follows:

ūn1(τ
∗
n ) = Ψ∗(n)11,0

+Ψ∗(n)11,1
cos τ∗n +Ψ∗(n)11,2

cos 2τ∗n +Ψ∗(n)11,3
cos 3τ∗n ,

v̄n1(τ
∗
n ) = Ψ∗(n)21,0

+Ψ∗(n)21,1
cos τ∗n +Ψ∗(n)21,2

cos 2τ∗n +Ψ∗(n)21,3
cos 3τ∗n .

(58)
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At the second iteration, δ(n)12
and δ(n)22

are expressed as in the fol-
lowing equation, and the right-hand sides of Eq. (39) are developed
as shown in Eq. (61):

δ(n)12
= ω2 d2ūn1

dτ2 + σ11ūn1 + σ12v̄n1 + 3σ13ū2
n0 ūn1 − g1,

δ(n)22
= ω2 d2v̄n1

dτ2 + σ21ūn1 + σ22v̄n1 + 3σ23ū2
n0 ūn1 − h1,

(59)

where g1 and h1 can be written as

g1 = λ11 cos τ, h1 = λ21 cos τ. (60)

The right-hand sides of the second-order deformation equa-
tions are developed and rearranged as follows:

c01 δ(n)12
= Δ(n)12,0

+ Δ(n)12,1
cos τ + Δ(n)12,2

cos 2τ + Δ(n)12,3
cos 3τ

+ Δ(n)12,4
cos 4τ + Δ(n)12,5

cos 5τ,

c02 δ(n)22
= Δ(n)22,0

+ Δ(n)22,1
cos τ + Δ(n)22,2

cos 2τ + Δ(n)22,3
cos 3τ

+ Δ(n)22,4
cos 4τ + Δ(n)22,5

cos 5τ.

(61)

The coefficients Δ(n)k2, j
in Eq. (61) (k = 1, 2 and j = 0, 1, . . . , 5)

are given in the following equation:

Δ(n)k2,0
= c0k(σk1Ψ(n)11,0

+ σk2Ψ(n)21,0
+ 3σk3η(n)1,0 ),

Δ(n)k2,1
= c0k(−Ψ(n)k1,1

ω2
+ σk1Ψ(n)11,1

+ σk2Ψ(n)21,1
+ 3σk3η(n)1,1 − λk1),

Δ(n)k2,2
= c0k(−4Ψ(n)k1,2

ω2
+ σk1Ψ(n)11,2

+ σk2Ψ(n)21,2
+ 3σk3η(n)1,2 ),

Δ(n)k2,3
= c0k(−9Ψ(n)k1,3

ω2
+ σk1Ψ(n)11,3

+ σk2Ψ(n)21,3
+ 3σk3η(n)1,3 ),

Δ(n)k2,4
= 3c0k σk3η(n)1,4 , Δ(n)k2,5

= 3c0k σk3η(n)1,5 ,

(62)

where the numbers η(n)1, j ( j = 0, 1, . . . , 5) are given as follows:

η(n)1,0 = â2
1Ψ(n)11,0

+ 0.5b̂2
1Ψ(n)11,0

+ â1b̂1Ψ(n)11,1
+ 0.25b̂2

1Ψ(n)11,2
,

η(n)1,1 = â2
1Ψ(n)11,1

+ 2.25b̂2
1Ψ(n)11,1

+ 0.25b̂2
1Ψ(n)11,3

+ 2â1b̂1Ψ(n)11,0
+ â1b̂1Ψ(n)11,2

,

η(n)1,2 = â2
1Ψ(n)11,2

+ 0.5b̂2
1Ψ(n)11,0

+ â1b̂1Ψ(n)11,1
+ 0.5b̂2

1Ψ(n)11,2
+ â1b̂1Ψ(n)11,3

,

η(n)1,3 = â2
1Ψ(n)11,3

+ 0.75b̂2
1Ψ(n)11,1

+ 0.5b̂2
1Ψ(n)11,3

+ â1b̂1Ψ(n)11,2
,

η(n)1,4 = 0.25b̂2
1Ψ(n)11,2

+ â1b̂1Ψ(n)11,3
, η(n)1,5 = 0.25b̂2

1Ψ(n)11,3
.

(63)

The new lower and higher natural frequencies are again
deduced considering free conditions (λ11 = λ21 = 0) and the con-
dition that the solutions do not contain the so-called secular
terms,

Δ(n)12,1
= 0Ô⇒ ω(n)11

=

¿
Á
Á
ÁÀσ11 + σ12

Ψ(n)21,1

Ψ(n)11,1

+
3σ13η(n)1,1

Ψ(n)11,1

,

Δ(n)22,1
= 0Ô⇒ ω(n)12

=

¿
Á
Á
ÁÀσ21

Ψ(n)11,1

Ψ(n)21,1

+ σ22 +
3σ23η(n)1,1

Ψ(n)21,1

.

(64)

The general solutions ūn2 and v̄n2 at the second iteration are
constructed from the homogeneous equations’ solutions ūh

n2 and
v̄h

n2 and the special solutions ūs
n2 and v̄s

n2 , respectively. The special
solutions have to comply with the structure of Eq. (61); they are
presented as developed in the following equation:

ūs
n2(τ) = Ψ(n)12,0

+Ψ(n)12,2
cos 2τ +Ψ(n)12,3

cos 3τ

+Ψ(n)12,4
cos 4τ +Ψ(n)12,5

cos 5τ,

v̄s
n2(τ) = Ψ(n)22,0

+Ψ(n)22,2
cos 2τ +Ψ(n)22,3

cos 3τ

+Ψ(n)22,4
cos 4τ +Ψ(n)22,5

cos 5τ,

(65)

where coefficients Ψ(n)i2, j
(i = 1, 2; j = 0, 1, . . . , 5) are given as follows:

Ψ(n)i2,0
=

1
ω2 Δ(n)i2,0

, Ψ(n)i2,2
= −

1
3ω2 Δ(n)i2,2

, Ψ(n)i2,3
= −

1
8ω2 Δ(n)i2,3

,

Ψ(n)i2,4
= −

1
15ω2 Δ(n)i2,4

, Ψ(n)i2,5
= −

1
24ω2 Δ(n)i2,5

; i = 1, 2.
(66)

The homogeneous equations’ solutions are given as

ūh
n2(τ) = C(n)12,1

cos τ and v̄h
n2(τ) = C(n)22,1

cos τ, (67)

with the two constants given as

C(n)12,1
= −ūn1(0) − ūs

n2(0) and C(n)22,1
= −v̄n1(0) − v̄s

n2(0), (68)

C(n)12,1
= −(Ψ(n)11,0

+Ψ(n)11,1
+Ψ(n)11,2

+Ψ(n)11,3
)

− (Ψ(n)12,0
+Ψ(n)12,2

+Ψ(n)12,3
+Ψ(n)12,4

+Ψ(n)12,5
) = Ψ(n)12,1

,

C(n)22,1
= −(Ψ(n)21,0

+Ψ(n)21,1
+Ψ(n)21,2

+Ψ(n)21,3
)

− (Ψ(n)22,0
+Ψ(n)22,2

+Ψ(n)22,3
+Ψ(n)22,4

+Ψ(n)22,5
) = Ψ(n)22,1

.

(69)

Finally, the general solutions at the second iteration are derived
as follows:

ūn2(τ) = Ψ(n)12,0
+Ψ(n)12,1

cos τ +Ψ(n)12,2
cos 2τ +Ψ(n)12,3

cos 3τ

+Ψ(n)12,4
cos 4τ +Ψ(n)12,5

cos 5τ,

v̄n2(τ) = Ψ(n)22,0
+Ψ(n)22,1

cos τ +Ψ(n)22,2
cos 2τ +Ψ(n)22,3

cos 3τ

+Ψ(n)22,4
cos 4τ +Ψ(n)22,5

cos 5τ.

(70)

Observing the solutions’ structure at the first and the second
iteration, the solutions at the kth iteration are written as follows:

ūnk(τ) =
2k+1

∑
j=0

Ψ(n)1k, j
cos ( jτ) and v̄nk(τ) =

2k+1

∑
j=0

Ψ(n)2k, j
cos ( jτ), (71)

where coefficients Ψ(n)ik, j
are given as follows:

Ψ(n)ik,1
= C(n)ik,1

and Ψ(n)ik, j
=

1
(1 − j2

)ω2 Δ(n)ik, j
, for j = 0, 2, 3, 4, ...

(72)
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So far, the procedure that may enable appropriate choices of the
convergence-control parameters is yet to be presented. Once again,
the squared residuals are used, and this time, they correspond to a
higher-order deformation,

Em1(c01 , c02) =
1

2π∫
2π

0
{N1[ū nm(τ)]}

2dτ,

Em2(c01 , c02) =
1

2π∫
2π

0
{N2[v̄ nm(τ)]}

2dτ.
(73)

The convergence is guaranteed if the couple (c01 , c02) minimizes at
least one among the functions Em1 and Em2 and the norm of the vec-
tor (Em1 , Em2). However, in some cases where the expression of the
squared residual is complex, making it difficult to find the minimum,
the convergence control parameters are chosen by trial and error.

IV. NUMERICAL EXAMPLES
A. Example 1

In this first example, the results obtained with the HAM
are compared to those calculated using the method described in
Ref. 17, which is appropriate for simplified problems of forced
transverse vibrations of double-beam systems. The studied double-
beam system consists of two identical beams interconnected by an
inner layer, and the whole system has the following characteristics:
L = 10 m, EI = 4 × 106 N m2, A = 5 × 10−2 m2, ρ = 2 × 103 kg m−3,
and kL = 2 × 105 N m−2.

The natural frequencies corresponding to the first six modes are
shown in Table I. A fair agreement is observed between the results
obtained with the HAM at the fifth iteration and those obtained with
the benchmark’s method.

The transverse vibration of each beam is evaluated under two
different simplified loading conditions: a concentrated harmonic
load applied at the mid-span of the upper beam and a uniformly
distributed harmonic load applied to the upper beam.

In Figs. 2 and 3, variations of dimensionless transverse dis-
placements and curvatures with respect to dimensionless time are
depicted. The amplitudes of the concentrated and uniformly dis-
tributed harmonic loads are 10 kN and 10 kN m−1, respectively.
Both excitations have a frequency of 100 rad/s. As with the natural
frequencies, computations are performed up to the fifth iteration to

achieve convergence, and reasonable agreement between the HAM
and Oniszczuk’s method is observed. It can also be observed that
the results of iteration 3 and iteration 4 differ significantly and
that convergence occurs at iteration 4. The sudden change in the
results from iteration 3 to iteration 4 demonstrates that the HAM
algorithm’s parameters and operators, specifically convergence con-
trol parameters, initial guesses, and linear operators, contribute to
the convergence speed and algorithm’s efficiency for the consid-
ered nonlinear mechanical system. A significant convergence speed
is likely to lead to sudden changes in the results, as observed for iter-
ations 3 and 4 in Figs. 2 and 3. The method proposed in Ref. 17 is a
simplified approach only applicable to cases where axial forces, the
mass per unit length of the inner layer, and its nonlinear stiffness
coefficient are not considered. Nevertheless, the method remains
reliable and can be adopted as a benchmark.

B. Example 2
In this example, the adopted double-beam system comprises

two identical prismatic beams and an inner layer. A concentrated
harmonic load of amplitude P = 10 kN is applied at the mid-span
of the upper beam; the excitation has a frequency of 100 rad/s. The
geometry and material characteristics are L = 10 m, EI = 4
× 106 N m2, A = 5 × 10−2 m2, ρ = 2 × 103 kg m−3, kL = 2
× 105 N m−2, μ = 100 kg m−1, and P1 = P2 = 10 kN.

Regarding the initial conditions, instead of going from the
initial configuration of the system given by w̄i0(ξ) and the initial
velocity field given by ˙̄wi0(ξ) and employing the integrations of
Eq. (15), the example is simplified by selecting the initial values of
ūn and v̄n and using Eq. (16) to calculate the initial values of ū1n and
ū2n ; a value of −0.05 × 10−3 is adopted for both ūn and v̄n. The value
of −0.05 × 10−3 is in the order of magnitude of the dimensionless
displacement values, as observed in the literature. The same values
are adopted for the other numerical examples for the sake of simpli-
fication. Using Eq. (16), the initial values obtained for ū1n and ū2n are
equal to −0.05 × 10−3 and 0, respectively.

The computed natural frequencies of the system for the first
six modes and the first five iterations are presented in Table II.
Unlike the lower frequencies ω(n)k−12

, the higher ones ω(n)k−11
are not

substantially influenced by the mode order. It also stands out that
for both categories of frequencies, the finally adopted exact values

TABLE I. Comparison of the values of the natural frequency obtained with the HAM and Oniszczuk’s method.

Natural frequency Natural frequency
ω(n) (rad/s) Error (%) ω(n) (rad/s) Error (%)

Mode (n=)
Present study

(Iter. 5)
Oniszczuk’s

method17
Present study

(Iter. 5)
Oniszczuk’s

method17

1 399.6 400.3 0.175 400.1 399.7 0.100
2 402.6 402.2 0.099 398.1 397.8 0.075
3 410.8 410.4 0.097 390.2 389.8 0.103
4 436.5 436.9 0.092 365.7 366.2 0.136
5 504.6 505.0 0.079 316.7 316.9 0.063
6 646.3 646.7 0.062 246.8 247.4 0.243

AIP Advances 13, 075103 (2023); doi: 10.1063/5.0156487 13, 075103-9

© Author(s) 2023

 14 Septem
ber 2023 13:11:11

https://pubs.aip.org/aip/adv


AIP Advances ARTICLE pubs.aip.org/aip/adv

FIG. 2. Dimensionless displacements and curvatures in the case of a concentrated harmonic load applied to the upper beam. (a) Displacement at the mid-span of beam 1.
(b) Curvature at the mid-span of beam 1. (c) Displacement at the mid-span of beam 2. (d) Curvature at the mid-span of beam 2.

FIG. 3. Dimensionless displacements and curvatures at the mid-span of beam 1 and beam 2 in the case of a uniformly distributed harmonic load applied to the upper beam.
(a) Displacement at the mid-span of beam 1. (b) Curvature at the mid-span of beam 1. (c) Displacement at the mid-span of beam 2. (d) Curvature at the mid-span of beam 2.
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TABLE II. Natural frequencies of a double-beam system made of two identical Euler–Bernoulli beams connected by an inner
layer characterized by a linear stiffness coefficient kL = 2 × 105 N m−2 and a mass per unit length μ = 100 kg m−1.

Natural frequency Natural frequency

ω(n)k−11
(rad/s) (kth iteration) ω(n)k−12

(rad/s) (kth iteration)

Mode (n=) Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5

1 70.710 80.622 63.246 63.245 63.245 36.628 40.588 0.140 0.200 0.200
2 70.712 80.624 63.250 63.247 63.247 31.625 40.765 0.624 0.390 0.390
3 70.727 80.635 63.270 63.264 63.264 33.080 41.056 1.430 1.230 1.230
4 70.770 80.668 63.323 63.312 63.312 31.711 41.344 2.560 2.366 2.366
5 70.865 80.741 63.440 63.418 63.418 32.684 42.690 4.010 3.820 3.820
6 71.042 80.877 63.641 63.616 63.616 32.114 43.783 5.782 5.594 5.594

are obtained at the fourth iteration; however, the third iteration
gives values very close to the adopted ones, demonstrating how fast
convergence is achieved with the HAM.

In Figs. 4 and 5, the unknowns un and vn, which are the solu-
tions of Eq. (21), are shown as functions of the dimensionless time.
The dependence of these functions on the mode shape function is
weak, which explains why the curves corresponding to all modes
have a nearly identical trend. The same explanation applies to the
time-dependent parts of the dynamic responses depicted in Figs. 6

and 7, deduced from Eq. (16). The most important observation from
these figures is how fast the convergence is reached.

The double-beam system under consideration is subjected to a
fixed concentrated harmonic load with an amplitude of P = 10 kN,
acting at the mid-span of the upper beam. In this case, the nonlin-
ear stiffness coefficient kNL of the inner layer is not considered. Due
to this assumption, the convergence is reached very fast when calcu-
lating the modal natural frequencies given in Table II. Regarding the
system’s dynamic response, namely, the transverse vibrations of each

FIG. 4. Variation in the time-dependent unknown function un for the first four modes and the first five iterations from the initial guess u0: kL = 2 × 105 N m−2, μ = 0, and
kNL = 0. (a) First mode (n = 1); (b) second mode (n = 2); (c) third mode (n = 3); (d) fourth mode (n = 4).
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FIG. 5. Variation in the time-dependent unknown function vn for the first four modes and the first five iterations from the initial guess v0: kL = 2 × 105 N m−2, μ = 0, and
kNL = 0. (a) First mode (n = 1); (b) second mode (n = 2); (c) third mode (n = 3); (d) fourth mode (n = 4).

FIG. 6. Temporal variation in u1n
representing the dimensionless time-dependent part of the transverse displacement of beam 1 for the first four modes and the first five

iterations: kL = 2 × 105 N m−2, μ = 0, and kNL = 0. (a) First mode (n = 1); (b) second mode (n = 2); (c) third mode (n = 3); (d) fourth mode (n = 4).
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FIG. 7. Temporal variation in u2n
representing the dimensionless time-dependent part of the transverse displacement of beam 1 for the first four modes and the first five

iterations: kL = 2 × 105 N m−2, μ = 0, and kNL = 0. (a) First mode (n = 1); (b) second mode (n = 2); (c) third mode (n = 3); (d) fourth mode (n = 4).

FIG. 8. Dimensionless displacements and curvatures at the mid-span of beam 1 and beam 2 for the first five homotopy iterations obtained from the superposition of the
first eight modes: kL = 2 × 105 N m−2, μ = 0, and kNL = 0. (a) Displacement at the mid-span of beam 1; (b) curvature at the mid-span of beam 1; (c) displacement at the
mid-span of beam 2; (d) curvature at the mid-span of beam 2.
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FIG. 9. Effects of parameter kL on the frequency response at the mid-span of beam
1 and beam 2.

FIG. 10. Two-dimensional model of a double-beam system subjected to axial loads
and a uniformly distributed harmonic load applied to the upper beam.

beam, they can now be obtained from the computed time-dependent
unknowns. The modal superposition principle is used for this pur-
pose. In Fig. 8 temporal variations of the non-dimensionalized
transverse vibrations and curvatures of each beam at the mid-span

are presented. These graphs are constructed by superposing the
results of the first eight modes. The analysis of the system’s fre-
quency response at the mid-span for the forcing frequency range of
0–150 rad/s is depicted in Fig. 9; the figure reveals that, for the six
observed modes, resonance happens at the first one. Furthermore,
it can be seen that the linear stiffness coefficient slightly affects the
vibration amplitude.

C. Example 3
In the following example, the considered double-beam system

depicted in Fig. 10 comprises two non-identical beams. The upper
beam is acted upon by a uniformly distributed harmonic load with
the amplitude q = 10 kN m−1 and a frequency equal to 100 rad/s.
The two beams are axially loaded by the compressive axial loads
P1 = P2 = 10 kN. The other parameters are given as follows: length
L1 = L2 = 10 m, flexural stiffness E1I1 = 107 N m2 and E2I2 = 1.5
× 109 N m2, mass per unit length of beams ρ1A1 = 100 kg m−1

and ρ2A2 = 3500 kg m−1, linear stiffness coefficient of the inner
layer kL = 4 × 107 N m−2, nonlinear stiffness coefficient of the inner
layer kNL = 1013 N m−4, and mass per unit length of the inner layer
μ = 100 kg m−1.

Various computations are performed to gain insight into the
effect of the nonlinear stiffness coefficient and the inner layer’s mass
per unit length. In the first case where these two parameters are
ignored in the algorithm, variations in the dimensionless transversal
displacements and curvatures, constructed from the superposition
of the first eight modal results, are shown in Fig. 11. Furthermore,

FIG. 11. Dimensionless displacements and curvatures at the mid-span of beam 1 and beam 2 for the first five homotopy iterations obtained from the superposition of the
first eight modes: kL = 4 × 107 N m−2, μ = 0, and kNL = 0. (a) Displacement at the mid-span of beam 1; (b) curvature at the mid-span of beam 1; (c) displacement at the
mid-span of beam 2; (d) curvature at the mid-span of beam 2.
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TABLE III. Natural frequencies: kL = 4 × 107 N m−2, μ = 0, and kNL = 0.

Natural frequency Natural frequency

ω(n)k−11
(rad/s) (kth iteration) ω(n)k−12

(rad/s) (kth iteration)

Mode (n=) Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5

1 580.830 581.690 579.968 579.968 579.968 88.219 108.572 86.550 86.550 86.550
2 580.831 581.700 579.970 579.970 579.970 121.194 149.178 118.950 118.951 118.951
3 580.838 581.703 579.975 579.975 579.975 155.891 191.770 152.764 152.763 152.763
4 580.841 581.706 579.980 579.980 579.980 168.408 207.498 165.707 165.707 165.707
5 580.884 581.750 580.013 580.013 580.013 205.265 252.060 200.254 200.254 200.254
6 580.900 581.762 580.020 580.020 580.020 203.145 250.953 201.240 201.239 201.239

TABLE IV. Natural frequencies: kL = 4 × 107 N m−2, μ = 100 kg m−1, and kNL = 0.

Natural frequency Natural frequency

ω(n)k−11
(rad/s) (kth iteration) ω(n)k−12

(rad/s) (kth iteration)

Mode (n=) Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5

1 660.587 771.910 579.981 579.981 579.981 78.681 93.688 67.476 67.476 67.476
2 660.514 771.791 579.970 579.970 579.970 108.091 128.730 92.747 92.747 92.747
3 660.802 772.250 580.308 580.308 580.308 139.037 165.476 119.058 119.058 119.058
4 660.075 771.059 579.172 579.172 579.172 150.201 179.064 129.307 129.307 129.307
5 661.626 773.540 581.552 581.552 581.552 183.072 217.490 155.884 155.884 155.884
6 658.906 769.091 577.328 577.328 577.328 181.182 216.605 157.382 157.382 157.382

this figure gives insights into how fast the convergence is achieved.
The observed displacements are consistent with the beams’ char-
acteristics. Indeed, the lower beam, being stiffer than the upper,
undergoes smaller displacements than the upper one. A more reli-
able assessment of the convergence is possible by observing the
natural frequencies given in Tables III and IV. In Table III, the natu-
ral frequencies are computed with kNL and μ not accounted for, and
those given in Table IV are computed with μ = 100 kg m−1. In both
cases, the exact values of the natural frequency are obtained at the
third iteration.

The results of the frequency response analysis are presented
in Fig. 12 for the first case where parameters kNL and μ are disre-
garded and in Fig. 13 for the second case where these parameters are
accounted for. For the first case, resonance happens at the first mode,
and for the second case, resonance happens at the first and second
modes. It should be noted again that these observations are limited
to the number of computed modal results.

Two different trends are observed for the natural frequencies
ω(n)k−11

and ω(n)k−12
:

● the natural frequencies ω(n)k−11
are not much affected by the

change in the value of μ. Observing the exact values in
Tables III and IV, at the fifth iteration, for instance, the
values are slightly increased for the odd order modes and
slightly decreased for the even order modes;

FIG. 12. Effects of the parameter kL on the frequency response at the mid-span of
beam 1 and beam 2.

● regarding the natural frequencies ω(n)k−12
, a significant

decrease is observed when the mass of the inner layer
changes from 0 to 100 kg m−1.

Further calculations of the natural frequency are performed for
several values of the stiffness coefficient; the results of the first case
where μ and kNL are ignored are shown in Fig. 14. Similar calcu-
lations are performed for the remaining three cases (at least one of
the parameters μ and kNL is not ignored) (see Figs. 15–17) in order to
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FIG. 13. Effects of the parameters μ and kNL on the frequency response at the mid-span of beam 1 and beam 2. (a) Frequency response at the mid-span of beam 1; (b)
frequency response at the mid-span of beam 2.

FIG. 14. Frequencies ω(n)
41

and ω(n)
42

for different values of the stiffness coefficient: μ = 0 and kNL = 0. (a) Frequency ω(n)
41
(5th iteration); (b) frequency ω(n)

42
(5th iteration).

highlight the simultaneous influence of at least two of the parameters
kL, kNL, and μ.

When the parameter kNL is accounted for in the calculation,
there is an increase in the number of iterations needed to achieve
convergence. For the previous cases, the exact values of the natural
frequencies are obtained at the third iteration even though calcula-
tions are performed up to the fifth iteration, and five iterations are
needed to obtain the exact trends of the graphs representing dimen-
sionless displacements and curvatures. When kNL = 1013 N m−4,
computations need to be performed up to six iterations to reach

the convergence, as it can be observed in Tables V and VI. With
the same value of kNL, two different cases are considered for μ = 0
and μ = 100 kg m−1, corresponding to natural frequencies given in
Tables V and VI, respectively. Unlike the previous observation made
about the effect of the parameter μ, when kNL was not accounted for,
taking into account kNL reduces significantly the influence of μ. This
results from the fact that the nonlinear stiffness coefficient is a very
big number compared to the mass per unit length.

Dimensionless transverse displacements and curvatures are
plotted using kNL = 1013 N m−4 and μ = 100 kg m−1. Prior to this,

FIG. 15. Frequencies ω(n)
41

and ω(n)
42

for different values of the stiffness coefficient: μ = 100 kg m−1 and kNL = 0. (a) Frequency ω(n)
41
(5th iteration); (b) frequency

ω(n)
42
(5th iteration).
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FIG. 16. Frequencies ω(n)
51

and ω(n)
52

for different values of the stiffness coefficient: μ = 0 and kNL = 1013 N m−4. (a) Frequency ω(n)
51
(6th iteration); (b) frequency

ω(n)
52
(6th iteration).

FIG. 17. Frequencies ω(n)
51

and ω(n)
52

for different values of the stiffness coefficient: μ = 100 kg m−1 and kNL = 1013 N m−4. (a) Frequency ω(n)
51
(6th iteration); (b) frequency

ω(n)
52
(6th iteration).

the time-dependent unknown functions un and vn are computed and
plotted in Figs. 18 and 19, and time-dependent parts of dimension-
less displacements u1n and u2n are deduced and plotted in Figs. 20
and 21. It appears again that the functions un, vn, u1n , and u2n are
not significantly affected by the mode order; the reason lies in the
weak dependence on mode shape functions of the coefficients of the
solved system of ODEs. The superposition of the first eight modal
results gives the total displacement whose temporal variation at the
mid-span and the corresponding curvature are plotted in Fig. 22.

The influence of the parameters kNL and μ is noticeable when com-
paring the results of deflections and curvatures in Figs. 11 and 22. In
Fig. 11, the two beams appear to behave differently, with marked dis-
crepancies in the results. A different picture is provided in the results
depicted in Fig. 22, where the incorporation of kNL and μ leads to
greater synergy in the double-beam system and the same behavior
of the two beams.

The influence of the nonlinear stiffness coefficient is high-
lighted by comparing Figs. 11 and 22. Besides the difference in the

TABLE V. Natural frequencies: kL = 4 × 107 N m−2, μ = 0, and kNL = 1013 N m−4.

Natural frequency Natural frequency

ω(n)k−11
(rad/s) (kth iteration) ω(n)k−12

(rad/s) (kth iteration)

Mode (n=) Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 6 Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 6

1 662.374 778.585 594.322 597.683 602.007 602.008 79.760 95.512 69.924 70.316 70.820 70.820
2 662.300 778.466 594.210 597.573 601.900 601.900 106.477 127.527 93.395 93.918 94.589 94.589
3 662.576 778.910 594.614 597.971 602.300 602.303 144.113 172.490 126.160 126.870 127.783 127.783
4 661.824 777.706 593.490 596.863 601.200 601.200 145.530 174.477 128.083 128.791 129.668 129.670
5 663.312 780.104 595.670 599.008 603.306 603.305 194.657 232.550 169.512 170.480 171.729 171.730
6 660.492 775.604 591.497 594.892 599.260 599.260 173.001 207.953 153.673 154.497 155.541 155.542
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TABLE VI. Natural frequencies: kL = 4 × 107 N m−2, μ = 100 kg m−1, and kNL = 1013 N m−4.

Natural frequency Natural frequency

ω(n)k−11
(rad/s) (kth iteration) ω(n)k−12

(rad/s) (kth iteration)

Mode (n=) Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 6 Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 6

1 662.374 778.585 594.322 597.683 602.007 602.008 78.957 94.551 69.220 69.608 70.106 70.105
2 662.302 778.468 594.214 597.577 601.903 601.904 108.470 129.914 95.143 95.675 96.360 96.360
3 662.590 778.923 594.634 597.990 602.309 602.309 139.526 167.001 122.140 122.827 123.711 123.711
4 661.864 777.745 593.551 596.924 601.261 601.260 150.727 180.710 132.637 133.372 134.314 134.314
5 663.411 780.198 595.820 599.160 603.460 603.459 183.720 219.500 159.936 160.852 162.036 162.037
6 660.700 775.800 591.796 595.194 599.563 599.563 181.813 218.586 161.404 162.274 163.381 163.380

FIG. 18. Variation in the time-dependent unknown function un for the first four modes and the first six iterations from the initial guess u0: kL = 4 × 107 N m−2, μ = 100 kg m−1,
and kNL = 1013 N m−4. (a) First mode (n = 1); (b) second mode (n = 2); (c) third mode (n = 3); (d) fourth mode (n = 4).

number of iterations required to achieve the convergence, there is a
notable difference in the pace of the plotted curves.

With the time-dependent parts of the dynamic response at each
mode being known, three-dimensional surfaces representing varia-
tions in the displacement with time and position can be constructed.
For the sake of clarity, each of the first four modal dimensionless dis-
placements is presented in Fig. 23 for the upper beam and in Fig. 24
for the lower beam.

D. Example 4
We consider the double-beam system given in the preced-

ing example, subjected to a constant moving load of magnitude
g1 = 160 kN applied to the upper beam. Computations are con-

ducted for moving speeds of 40 and 100 m s−1. We consider 4
different combinations of kNL and μ.

The results obtained from the sixth homotopy iteration and
the superposition of the first eight modal responses are depicted
in Fig. 25, where graphs of the variations of the dimensionless dis-
placement at the mid-span of each beam vs the dimensionless time
are plotted. The influence of the inner layer characteristics and
the load speed is observed. One direct observation concerns the
occurrence of the maximum deflection. It is noticed that the max-
imum deflection of the lower beam occurs for almost the same value
of the dimensionless time. If parameter kNL is equal to 0, values
of the maximum deflections of the two beams are not substan-
tially affected by the increase in the mass per unit length of the
inner layer.
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FIG. 19. Variation in the time-dependent unknown function vn for the first four modes and the first six iterations from the initial guess v0: kL = 4 × 107 N m−2, μ = 100 kg m−1,
and kNL = 1013 N m−4. (a) First mode (n = 1); (b) second mode (n = 2); (c) third mode (n = 3); (d) fourth mode (n = 4).

FIG. 20. Temporal variation in u1n
representing the time-dependent part of the transverse displacement of beam 1 for the first four modes and the first six iterations:

kL = 4 × 107 N m−2, μ = 100 kg m−1, and kNL = 1013 N m−4. (a) First mode (n = 1); (b) second mode (n = 2); (c) third mode (n = 3); (d) fourth mode (n = 4).
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FIG. 21. Temporal variation in u2n
representing the time-dependent part of the transverse displacement of beam 2 for the first four modes and the first six iterations:

kL = 4 × 107 N m−2, μ = 100 kg m−1, and kNL = 1013 N m−4. (a) First mode (n = 1); (b) second mode (n = 2); (c) third mode (n = 3); (d) fourth mode (n = 4).

FIG. 22. Dimensionless displacements at the mid-span of beam 1 and beam 2 for the first six homotopy iterations obtained from the superposition of the first eight modes:
kL = 4 × 107 N m−2, μ = 100 kg m−1, and kNL = 1013 N m−4. (a) Displacement at the mid-span of beam 1; (b) curvature at the mid-span of beam 1; (c) displacement at the
mid-span of beam 2; (d) curvature at the mid-span of beam 2.
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FIG. 23. Variations in dimensionless displacements of the upper beam with dimensionless time and position for the first four modes: kL = 4 × 107 N m−2, μ = 100 kg m−1,
and kNL = 1013 N m−4. (a) First mode (n = 1); (b) second mode (n = 2); (c) third mode (n = 3); (d) fourth mode (n = 4).

FIG. 24. Variations in dimensionless displacements of the lower beam with dimensionless time and position for the first four modes: kL = 4 × 107 N m−2, μ = 100 kg m−1,
and kNL = 1013 N m−4. (a) First mode (n = 1); (b) second mode (n = 2); (c) third mode (n = 3); (d) fourth mode (n = 4).
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FIG. 25. Dimensionless displacements at the mid-span of beam 1 and beam 2 from the sixth homotopy iteration, under a constant moving load of magnitude 160 kN applied
to the upper beam: kL = 4 × 107 N m−2. (a) v = 40 m s−1, kNL = 0, and μ = 0; (b) v = 100 m s−1, kNL = 0, and μ = 0; (c) v = 40 m s−1, kNL = 0, and μ = 100 kg m−1;
(d) v = 100 m s−1, kNL = 0, and μ = 100 kg/m; (e) v = 40 m s−1, kNL = 1013, and μ = 0; (f) v = 100 m s−1, kNL = 1013, and μ = 0; (g) v = 40 m s−1, kNL = 1013, and
μ = 100 kg m−1; (h) v = 100 m s−1, kNL = 1013, and μ = 100 kg m−1.
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V. CONCLUSION
This paper presented the HAM for analyzing transverse vibra-

tions of axially and transversally loaded simply supported double-
beam systems comprising two prismatic parallel Euler–Bernoulli
beams of equal length, interconnected by an inner layer charac-
terized by linear and nonlinear stiffness coefficients. The system’s
motion is described by a set of nonlinear PDEs derived from the
Euler–Bernoulli theory. At the beginning of the procedure, the mode
shape function consistent with the chosen boundary conditions
enabled, through the Bubnov–Galerkin method, removal of the spa-
tial variable and transformed the system of PDEs into a system of
ODEs that was solved with the HAM. The solutions of the sys-
tem of ODEs are time-dependent functions involved in the modal
superposition technique to construct the dynamic response of the
system.

Natural frequencies corresponding to the n-th mode at the k-
th iteration were easily computed by setting the coefficients of the
terms in the k-th order deformation equations that are likely to gen-
erate the so-called secular terms in the solution to zero. In addition,
the effects of the nonlinear stiffness coefficient and the mass per
unit length of the inner layer were explored. It was observed that
the incorporation of the nonlinear stiffness coefficient substantially
affected the dynamic response and natural frequencies. Moreover,
a subtle difference in the natural frequencies was observed when
accounting for the mass per unit length.

The efficiency of the algorithm has been demonstrated through
numerical examples. Fast convergence was observed since six iter-
ations at most were needed to reach convergence, thanks to the
proper choice of initial guesses and convergence control parameters.

The current study is limited to fixed concentrated and uni-
formly distributed harmonic loads and constant moving loads
applied to simply supported undamped double-beam systems.
Therefore, there is room left to extend the algorithm to other load
types and systems with various boundary conditions. Nonetheless,
the developed method is a powerful tool that can serve as a reliable
benchmark for future investigations.
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