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ABSTRACT The introduction of Software-Defined Networking (SDN) separated the control and data
forwarding planes, but the data plane still requires a fully programmable packet scheduler that can adapt to
different traffic patterns and offer high expressiveness at line rate. The Dynamic Ranking Push-In-First-Out
(DR-PIFO) is a novel programmable hardware queue architecture, introduced for the widely-used Portable
Switch Architecture (PSA) used in modern network switches and routers. With the aid of a re-ranking
mechanism, the DR-PIFO offers a flexible and expressive solution for a wide range of scheduling algorithms
while still meeting line rate requirements. Our design, synthesized using TSMC’s 65nm technology, achieves
the desired timing rate of 1GHz while maintaining a throughput that matches the fastest existing schedulers
and incurs a mere 15.5% increase in area compared to the state-of-the-art PIFO design. The proposed
DR-PIFO’s hardware implementation is shown to closely approach the behavior and performance of its
algorithmic model by efficiently executing various scheduling algorithms, leading to precise bandwidth
distribution among traffic flows. Additionally, the DR-PIFO offers a significant reduction in the relative
flow completion time (FCT) errors, exhibiting a minimum of 30% less error compared to the previously
proposed models when implementing various scheduling policies with workloads collected from data
centers. Thus, we believe that the DR-PIFO is a significant step toward making hardware packet schedulers
more programmable.

INDEX TERMS Software-defined networking, programmable packet schedulers, hardware queues, traffic
management.

I. INTRODUCTION
Historically, network equipment such as switches and routers
were not programmable, and many still are not today.
Telecom operators (Telcos) were at the mercy of hardware
equipment vendors and their lengthy ASIC update cycles
to implement well-known scheduling algorithms. This left
operators without the flexibility to introduce new or modify
existing algorithms on their deployed network equipment.
But with the advent of network equipment programmable
using high-level languages like P4, the paradigm is shifting,

The associate editor coordinating the review of this manuscript and
approving it for publication was Luca Cassano.

giving operators more control in a software-defined net-
working environment. Currently, programmable network
equipment still relies on configurable packet schedulers,
which are implemented as fixed-function modules having
parameters that can be configured.

Designing and implementing a programmable packet
scheduler is a complex endeavor. To be truly effective, the
scheduler must have the flexibility to accommodate modifi-
cations to existing algorithms and allow for the introduction
of new ones, potentially ones that have not been created yet,
throughout the life-cycle of the network switches. This level
of flexibility requires a programmable, not just configurable,
packet scheduler. However, the hardware implementation
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must also be efficient enough to keep up with the demanding
pace of network equipment, whichmust handle a high volume
of incoming packets at a line rate, without sacrificing speed
during the enqueue and dequeue of packets.

In [1], a programmable packet scheduler known as
the Dynamic Ranking Push-In-First-Out (DR-PIFO) was
presented as an algorithmic model. Unlike prior proposals,
the DR-PIFO exhibits a more expressive, algorithm-agnostic
model, allowing it to operate independently of any scheduling
algorithm. Its added expressiveness arises from innovative
features such as the forced dequeue primitive, error detection
mechanism, and dynamic updating of flow priorities while
waiting in hardware queues. While these new elements
enhance the DR-PIFO’s flexibility, they also increase the
complexity of the original PIFO architecture outlined in [2].
When deploying the DR-PIFO in hardware switches, careful
considerationmust be given to the design to ensure it canmeet
the expected throughput of 1 enqueue and 1 dequeue every
1ns and minimize any increase in the switch chip area.

In this work, we present a hardware architecture of
the DR-PIFO packet scheduler’s algorithmic model that
is both efficient and effective. The proposed architecture
accommodates the new features introduced by the DR-PIFO
algorithmic model while ensuring the required frequency of
1GHz, which is standard in modern switches operating at
line rate [2]. We outline the hardware implementation of the
DR-PIFO architecture in this paper to validate its operating
frequency and compute its area consumption. The results
show that the hardware design of the DR-PIFO introduces a
mere 15.5% overhead to the original PIFO packet scheduler’s
chip area. We believe that the added overhead in the chip
area is a reasonable trade-off for the increased versatility
in expressing scheduling algorithms achieved through this
design.

The efficacy of our proposed architecture was evaluated
through a series of experiments, in which the workloads
from a previous study [1] were reapplied. Our design was
compared against the DR-PIFO algorithmic model, as well
as the PIEO [2] and PIFO [3] models. Despite the added
latency of one clock cycle due to the new features, the results
demonstrate that our DR-PIFO hardware design operates at
the necessary throughput while retaining superior scheduling
expressiveness compared to the PIEO and PIFO. Moreover,
the design maintains the algorithm-agnostic behavior of the
DR-PIFO algorithmic model.

The key contributions of this work are the following:
• A presentation of a novel hardware architecture for the
DR-PIFO packet scheduler.

• A relatively low area overhead of 15.5% compared to the
PIFO packet scheduler hardware design while achieving
improved expressiveness with the DR-PIFO.

• A validation of the proposed design’s ability to perform
1 dequeue and 1 enqueue operation per clock cycle of
1ns.

• An evaluation of the hardware design’s effectiveness
in mimicking the behavior of the DR-PIFO packet

scheduler algorithmic model when implementing the
pFabric and VDS scheduling algorithms used as signif-
icant case studies.

II. BACKGROUND
A. SOFTWARE IMPLEMENTATIONS OF PACKET
SCHEDULERS
The desired flexibility can be achieved by implementing the
scheduler in software. However, this approach is known to
result in low performance in terms of the number of CPU
cycles required to execute such software implementations [4],
leading to decreased performance in cloud services due to
added latency in the network [5]. The number of CPU cycles
used for enqueueing, dequeueing, and forwarding packets
could pose a challenge for more complex applications [2].
In general, software-based packet switching and traffic shap-
ing exhibit poor CPU utilization and result in inaccuracies
in rate control [4]. To avoid this performance degradation,
a programmable hardware abstraction of a packet scheduler
integrated into the data plane of programmable switches
can offer the required flexibility while still preserving
performance.

B. HARDWARE ARCHITECTURES OF FIXED-FUNCTION
PACKET SCHEDULERS
One of the pioneering studies on hardware packet schedulers
can be traced back to [6]. The authors conducted a
comprehensive comparison of various queuing architectures
and introduced novel concepts for hardware schedulers. The
scalability of hardware queues was explored, with the authors
demonstrating that the use of shift registers in priority queues
can eventually impede the scheduler’s ability to process
a greater volume of packets. The capability of a packet
scheduler architecture to adapt as traffic activity rises is
crucial, particularly as the advent of 5G technology and its
promising wireless-wireline convergence is poised to drive a
surge in traffic activity and further emphasize the importance
of scalability [7].

The hardware implementation of a packet scheduler within
a programmable switch was presented in [8]. The authors
focused on expressing the Weighted Fair Queuing (WFQ)
scheduling algorithm into an OpenFlow switch [9]. The
scheduler was implemented on a NetFPGA executing at
a clock frequency of 125 MHz and utilizing dedicated
FIFO queues, one for each flow, as buffers. To ensure that
packets were dequeued in the proper order, the authors
employed a comparator at the output level of the FIFO
queues. The challenge of finding the optimal implementation
of the WFQ on fixed switch abstraction has previously been
raised in [10], while [11] explores the use of reconfigurable
switches to execute the approximated fair queueing. Such
approximations are crucial for implementing fair queuing and
Active Queue Management (AQM) algorithms on modern
programmable switches. This is because these switches do
not have a built-in abstraction for a programmable packet
scheduler. Consequently, any new scheduling algorithm
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must be compatible with the existing fixed-function packet
schedulers. By introducing a programmable packet scheduler,
the cost and time required to implement a new AQM can
be minimized while also providing greater opportunities for
innovation and customization [12].

C. HARDWARE ARCHITECTURES OF PROGRAMMABLE
PACKET SCHEDULERS
In [13], the authors introduced a general hardware architec-
ture for a packet scheduler to meet 5G specifications. This
architecture was implemented on an FPGA with a 40 Gb/s
throughput and 80 MHz frequency for 64-byte packets. The
authors then expanded their proposal to a programmable
traffic manager on an FPGA platform [14], which achieved a
latency of 2 clock cycles at a frequency of 150 MHz, suitable
for handling minimum packet sizes in 100 Gbps Ethernet
networks.

A high potential hardware architecture for implementing
a programmable packet scheduler was proposed in [3],
[15], which is based on the Push-In-First-Out (PIFO) queue
primitive [15]. This design inspired other hardware scheduler
designs such as the Push-In-Extract-Out (PIEO) [2], calendar
queue [16], PIPO [17], AIFO [18], FAIFO [19], and SP-
PIFO [20] [21]. Although each of these schedulers offers
advantages over the PIFO, they also come with limitations.
For instance, the PIEO allows for a wider range of algorithms
with its forced dequeue operation and has greater scalability
than PIFO as it can support up to 30x more flows, but it also
has a 50x lower throughput and cannot be pipelined [2]. The
SP-PIFO has been implemented on a real-time programmable
hardware switch. However, the main limitation of the
SP-PIFO is that it approximates the PIFO’s behavior with
no guarantee to perfectly emulate it [20]. In addition, the
SP-PIFO requires one ingress pipeline stage per queue in
order to properly compute the packets’ ranks. Furthermore,
in the SP-PIFO implementation, all input packets must be
processed by the same sequence of pipeline stages, even if
there are other available parallel pipelines. Although calendar
queues share a packet sorting mechanism similar to the
PIFO, they introduce a more complex ranking structure
and cannot accommodate packets with scheduling times
in the past or beyond the highest available future time in
the calendar. Despite its limitations, the PIFO remains the
preferred hardware abstraction available.

Generally speaking, a PIFO is a simple priority queue
that inserts elements based on their priority into any
position within the queue. The elements, either packets or
references to packets, reside in logical PIFOs. However,
PIFO can only dequeue elements from the head of the
queue [15]. The PIFO, with its 1 GHz frequency, is an
ideal solution for switches operating at line rate. Its total
area overhead is modest, amounting to just 3.7% of the
minimum chip area utilized in switches [3]. The PIFO
model is derived from two observations: most scheduling
algorithms can rank packets in the ingress pipeline stage,

and for many algorithms, the scheduling task is performed
across flows with monotonically decreasing priority. This
allows for only the head packets of the flows to be sorted,
reducing overhead, but can also result in low-priority flows
starvation if high-priority flows usemore bandwidth than they
should. This can arise as a consequence of a strict priority
scheduling scheme [22]. The limitation of only being able
to dequeue the head packets restricts the functionality of
certain scheduling algorithms, including pFabric [23], Virtual
Deadline Scheduling (VDS) [24], and several data-center
protocols [25], [26], which require the ability to update the
priority of packets after they have been enqueued.

D. THE DR-PIFO PACKET SCHEDULER
The algorithmic model of the DR-PIFO packet scheduler
has been presented in [1]. The DR-PIFO is a programmable
packet scheduler drawing inspiration from the PIFO [3] and
the Push-In-Arbitrary-Out (PIAO) [27] models. It comprises
four crucial components: a rank computation unit, a re-
ranking unit, a packet rank store, and a flow scheduler.
The scheduling algorithms can be expressed using the rank
computation and re-ranking units, making them suitable for
implementation on programmable targets using a domain-
specific language, such as Domino [28] or P4 [29].

The rank computation unit assigns a rank to each incoming
packet. The re-ranking unit evaluates the necessary actions,
such as updating the rank of packets belonging to a flow or
forcing the dequeue operation on the current flow, to ensure
correct scheduling. The DR-PIFO packet scheduler features
a packet rank store and a flow scheduler that operate at
line rate to preserve the switch’s overall throughput. These
components support the essential features of a re-ranking
scheme, including updating ranks and executing forced
dequeue operations.

The DR-PIFO packet scheduler matches the level of
expressiveness of the PIFO scheduler. In addition, it sup-
ports an array of unique features, including the ability to
dynamically update flow priorities within its queues, perform
a forced dequeue from a specific flow, and implement an error
detection mechanism for departures. These features make the
DR-PIFO packet scheduler a superior option compared to
the PIFO and PIEO schedulers since the reported hardware
implementation of the DR-PIFO can support more accurately
and at line rate a wider variety of scheduling algorithms as we
will show in later sections.

The performance of the DR-PIFO algorithm was evaluated
using two different case studies in [1]. The first case study
involved the pFabric algorithm with starvation prevention
and used real-world data center workloads [23]. The second
case study employed the VDS algorithm [24], with the same
workload selected in [30]. These case studies showed that
the DR-PIFO algorithm can express the chosen algorithms
in a more effective way compared to PIFO and PIEO.
Furthermore, the results demonstrate that, unlike PIFO
and PIEO, DR-PIFO is an algorithm-agnostic model and
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FIGURE 1. A high-level architecture of the DR-PIFO packet scheduler. To illustrate the concept of DR-PIFO, this figure presents an example where 4 flows
are scheduled by the pFabric algorithm using the DR-PIFO packet scheduler.

therefore, is not dependent on any specific scheduling
algorithm.

III. THE DR-PIFO ARCHITECTURE
In the rest of the present paper, we present a hardware
implementation of a DR-PIFO packet scheduler that operates
at a line rate. The proposed high-level architecture, shown in
Fig. 1, calculates packet rank at the ingress pipeline using a
method specified with a domain-specific language such as
P4 [20] or Domino [3] that target programmable network
devices. The fixed-function unit of the scheduler, including
the packet rank store and the flow scheduler, is designed
to ensure line-rate performance. On the other hand, the re-
ranking unit, being programmable with more relaxed timing
constraints [3], can be implemented using any programmable
hardware. The focus of the present paper is thus on the
design of the fixed-function units and the interfaces between
the programmable and fixed-function components within the
DR-FIFO.

When a new packet arrives at the switch, it is first evaluated
to determine if there are any other packets with the same flow
ID in the queue. If there are no other packets, the new packet
is considered the head of its flow and inserted directly into the
flow scheduler using the ‘‘Enqueue 1’’ operation, as shown in
Fig. 1. However, if there are other packets, the new packet is
added to the dedicated First-In-First-Out (FIFO) queue for its
flow ID, located within the packet rank store, which contains
a bank of FIFOs. When a head packet from a particular flow
ID is removed from the flow scheduler, its subsequent packet,
belonging to the same flow ID and located in the packet rank
store, is added to the flow scheduler using the ‘‘Enqueue 2’’
procedure. The flow rank store, as depicted in Fig. 1, holds

an unsorted array of the new ranks for each flow, which can
be calculated based on events such as the arrival or departure
of packets.

The flow rank store serves three main purposes: it stores
the updated rank of each flow, shares these ranks with other
blocks, and allows the re-ranking unit to update the rank
of a single flow at any given time. The flow scheduler,
using a PIFO-based queue, sorts packets based on their
ranks in ascending order. It performs up to two enqueue
operations and dequeues the head packet with the lowest
rank, which should be first in the queue. Additionally,
it offers a forced dequeue operation that removes the head
packet of a specific flow ID, regardless of its place in the
PIFO queue.

The flow scheduler may experience errors in the departure
order of packets, as it may dequeue a packet from a flow that
does not have the lowest rank according to updated ranks.
This occurs as the scheduler is unable to constantly re-sort
all the head packets with every change in flow ranks. As a
result, if a flow’s rank is updated, its head packet in the
flow scheduler may not reflect the updated rank, leading to
errors in the departure order. Additionally, this inability may
result in the starvation of flows. To address these issues, the
flow scheduler implements an error detection mechanism that
recognizes if a recently dequeued packet does not belong to
the flow with the minimum rank, according to the new ranks
array. The minimum rank selectors in Fig. 1 are then utilized
to identify any errors or discrepancies according to some
idealized or specified schedule in the packet departure order.
The flow rank store calculates the minimum rank among
the updated ranks and shares it with the flow scheduler.
In the event of an error in the departure order, the flow
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FIGURE 2. The hardware implementation of the packet rank store. All packets from a flow are stored in the FIFO queue dedicated
to their flow except the current head packet of this flow.

scheduler employs a forced dequeue primitive to dequeue the
appropriate packet from the flow in the next cycle.

Fig. 1 illustrates the case of expressing the pFabric schedul-
ing algorithm [23] using the DR-PIFO packet scheduler.
The illustration depicts four distinct flows, each with one
head packet waiting in the PIFO queue within the flow
scheduler and multiple packets stored in the FIFO queues
within the packet rank store. The rank of a packet in the
pFabric algorithm is determined by the remaining size of
its flow, with the flow having the lowest packet rank being
scheduled first [23]. The ranks of the flows are subject to
change with the arrival of new packets. As a result, the
ranks of newly arrived packets inside the flow rank store
may differ from the ranks of their head packets in the flow
scheduler. In the depicted example, the head packet with the
minimum rank (10) from flow ID (2) is dequeued, although
the actual minimum rank (2) belongs to flow ID (0), as shown
in the array inside the flow rank store. This departure error is
detected by the minimum rank selectors, which indicates that
the head packet from flow ID (0) should have been dequeued
instead. The PIFO queue in the flow scheduler cannot keep
pace with new ranks and is unable to re-sort all head packets
with every new packet arrival, leading to the error. To rectify
this, the detected error causes an interruption in the future
departure order of the PIFO queue, which forcibly dequeues
the head packet from flow ID (0) in the next possible dequeue
operation.

IV. HARDWARE DESIGN
In this section, a detailed discussion of the hardware design
of the DR-PIFO architecture is provided. Our emphasis is
placed on explaining the enqueue and dequeue operations
applied to the packet rank store and flow scheduler units.
We will also explain the handling of scheduling errors in
the flow scheduler unit. Without loss of generality and for
simplicity, we will focus on the case of a single logical
PIFO queue. However, the hardware components required
for implementing multiple logical queues are previously

introduced in [3], and we added them to the proposed
architecture with nomodifications. Accordingly, the concepts
described in this section can easily be extended to the case of
multiple logical PIFO queues as in [3].

A. THE PACKET RANK STORE UNIT
Modern network switches are usually implemented with a
shared buffer implementing a bank of FIFO queues. The
shared buffer is used to store the arriving packets, before
forwarding them to the output ports. There are typically two
types of buffers used in data-center switches. Either on-chip
shared RAM buffers, which are small (several MBs), or much
larger external DRAM buffers [31]. Our discussion will focus
on describing the logic controlling the packet rank store unit
during the enqueue and the dequeue operations applied to
packets.

1) ENQUEUE OPERATION
The packet rank store unit works as the primary stage for any
packet enqueued into the scheduler. As depicted in Fig. 2, the
packet rank store employs an input controller in the enqueue
stage at the input of the bank of FIFOs. A flow ID is attached
to each new packet, and the input controller block checks if
this flow ID has, or not, a head packet in the flow scheduler
(PIFO queue). If it does not have a detected head packet yet,
the new packet will bypass the packet rank store and will be
inserted directly into the flow scheduler. If the new packet
is not the first packet in the current flow, it will then be
inserted at the tail of the FIFO queue belonging to its flow
ID. The logic of this controller also determines the correct
FIFO queue to which a packet should be inserted. In addition,
the input controller checks the occupancy of the FIFO queue,
and it drops a packet if a FIFO’s occupancy exceeds a certain
configurable threshold. In parallel to this mechanism, the
information of an enqueued packet is forwarded to the re-
ranking unit, to be used in the re-ranking process, if deemed
necessary.
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FIGURE 3. Hardware architecture of the flow scheduler. Due to pipelining, each component in this architecture is working all the
time in each clock cycle.

2) DEQUEUE OPERATION
The dequeue operation is executed in two phases. During
the first phase, as depicted in Fig. 2, the packet rank store
employs a controller at the output of the FIFO bank. The
output controller receives, from the flow scheduler, the
Flow ID of the most recently dequeued packet, and uses
it to find the corresponding FIFO queue. In other words,
the output controller decodes the flow ID and matches it
with its corresponding FIFO queue. Subsequently, the output
controller extracts the packet from the head of that queue,
if one exists, to propagate it to the second phase. If the FIFO
queue is empty, the output controller sends a signal to the flow
scheduler indicating that there are no packets waiting in the
queue. The second phase is used whenever a rank update is
needed, before sending the packet to the flow scheduler. This
step works in conjunction with the flow rank store that sends
the updated rank, ‘‘new rank fifo’’, of the Flow ID received
from the flow scheduler. The comparator at the last output
stage decides if the initial or the updated rank should be used
as the output of the packet rank store. As in the original
algorithm of the packet rank store in [1], this comparator
transmits the updated rank from the flow rank store if it is not
equal to zero, otherwise, the initial rank is transmitted instead.

B. THE FLOW SCHEDULER UNIT
The flow scheduling unit is responsible for the scheduling
of the head-of-line packets belonging to different flows. The
architecture of this unit is more complex than that of the rank
store unit. At the core of the flow scheduler resides the PIFO
queue, as can be observed in Fig. 3. At each clock cycle, the

scheduler supports two enqueues and one dequeue operation.
A flow’s first arriving packet to the scheduler is handled by
one of the enqueue operations. The other enqueue operation
handles the next-in-line head packet of the recently dequeued
flow. This packet is received from the packet rank store
unit. The dequeue operation has two modes. In the normal
operation mode, it dequeues the head element in the PIFO
array whereas, in the forced dequeue mode it dequeues from
an arbitrary position of the PIFO array, much like the ‘‘extract
out’’ operation in the PIEO [2]. In addition, the scheduler
detects whether an error has occurred in the departure order
of the packets in which case, it automatically applies a forced
dequeue operation for the correct flow in the next possible
dequeue cycle. In our hardware implementation of the DR-
PIFO, it takes four (4) clock cycles to detect and correct
a packet ordering error with a forced dequeue. Finally, the
PIFO array has indices from 0 to (the maximum number
of flows – 1). Each head packet is sorted with one of these
indices and thus, these indices are used to represent the
relative order in the queue.

1) ENQUEUE OPERATION
As already mentioned, the flow scheduler executes two
enqueue operations at a time. This is accomplished with the
aid of a set of two comparator units, and the packet shift
unit located at its input stage, which comprises a number
of parallel comparators used in each comparator set unit
that is equal to the number of supported flows. Thus, one
comparator set is sufficient to compare the rank of the inserted
packet against all the other head packets already stored in the
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PIFO queue. The comparison produces a binary (0/1) result.
This result is used in the first clock cycle of the enqueue
operation to determine the first element with a rank higher
than that of the newly arrived packet as depicted in Fig. 4(a).
Subsequently, the newly arrived packet is inserted ahead of
the first element with a higher rank that was found.

If the packet that arrives at the scheduler is the first one of a
new flow, it is enqueued in the PIFO queue as the head packet
of that flow. Since it is the first packet of a flow, it is arriving
directly from the ingress pipeline and thus, it bypasses the
packet rank store unit. After going through the Comparator
Set 1, as depicted in Fig. 3, the appropriate index for the new
packet is generated in the PIFO queue ‘‘Enqueue1 index’’
based on its rank, and the rank of the remaining packets
waiting in the queue. Subsequently, the packet is placed in
that index position of the queue.

The second enqueue operation takes place whenever a head
packet from a certain Flow ID has just departed from the
scheduler. As already discussed, the remaining packets of
the flow for which the head packet was recently dequeued
from the PIFO queue are kept in the packet rank store. Thus,
the packet rank store unit provides the next packet of the
flow to which the just departed packet belongs. This next
packet is considered as the next lowest rank packet of its flow
according to the observation stating that priorities of packets
are monotonically decreasing through flows [3]. After going
through the Comparator Set 2, as depicted in Fig. 3, the
‘‘Enqueue2 index’’ is generated, which places the packet into
its appropriate position in the PIFO queue, based on its rank.

As depicted in Fig. 3, the packet shift unit has three
indices as inputs, two of which belong to the two distinct
enqueue operations, whereas the third input is coming from
the dequeue operation. Although the index of the dequeued
packet is usually 0, it could be any arbitrary index (up
to the number of flows – 1), whenever a forced dequeue
operation is executed. Thus, the packet shift unit does not
assume a fixed forced dequeue index and it is responsible for
determining the direction of the shift for each element in the
PIFO queue based on the input indices. This is completed in
the first clock cycle of the enqueue as depicted in Fig. 4(a).
After the appropriate position of the current packet has
been determined within the PIFO queue, the elements in
the queue are shifted simultaneously in the following clock
cycle. Following the completion of the shifting of the residing
elements in the PIFO queue, in the appropriate direction,
an unoccupied space will be left. This space will be used
to enqueue new packets in their appropriate indices namely,
‘‘Enqueue1 index’’ and ‘‘Enqueue2 index’’.

2) DEQUEUE OPERATION
The dequeueing of the head element from the PIFO queue
is the default dequeueing operation of the flow scheduler.
We will refer to this action as the normal dequeue operation.
A single physical PIFO can support multiple logical PIFOs.
Thus, the desired logical PIFO ID must be compared against
the logical PIFO IDs of all the head packets currently residing

FIGURE 4. The flow scheduler operations in 2 & 3 pipeline stages.
(a) Shows the Enqueue pipeline operation (same for ‘‘Enqueue1’’ and
‘‘Enqueue2’’), afterwards (b) the normal dequeue is executed or (c) the
forced dequeue is executed.

in the physical queue. The comparator set 3 in Fig. 3, provides
the indices of the packets belonging to the desired logical
PIFO queue from which they are dequeued. An index of zero
is then sent to the packet shift unit, which also receives the
indices of the input comparator units 1 and 2, for the two
enqueue operations.

The value of the first element, indicated as queue[0] in
Fig. 3, is one of the inputs of the multiplexer at the output
stage of the scheduler. The second input to the multiplexer is
the dequeued packet, used in the case of a forced dequeue and
indicated as queue[force index] in Fig. 3. The select signal of
this multiplexer is the ‘‘Forced Dequeue’’ flag signal which
stays on until the head packet, corresponding to the forced
Flow ID, is finally dequeued. The forced dequeue operation
can be triggered either externally by the re-ranking unit or
internally by the error detection unit, which sends a forced
dequeue flag signal that corresponds to the Flow ID. Then,
the position in the queue from which a packet should be
dequeued, is determined using this received flow ID. The
selector that generates the forced dequeue signal, checks if
the forced dequeue is triggered internally and externally at the
same time, then the external forced dequeue triggered by the
re-ranking unit is applied, and the internal forced dequeue is
discarded. Since the original PIFO can only dequeue elements
from the head of the queue, the DR-PIFO employs some
additional logic that adds complexity to the design to support
the needed forced dequeue functionality.

The normal dequeue operation generates an output in two
(2) clock cycles, without pipelining, as depicted in Fig. 4(b).
It can be observed in Fig. 4(c) that the forced dequeue
operation takes three (3) clock cycles. In the first clock cycle,
the identification of the appropriate logical PIFO ID takes
place using the Comparator Set 3 similar to the first step
of the normal dequeue operation. In the second clock cycle,
the scheduler finds the head packet of the desired flow. For
this to be accomplished, the desired Flow ID is compared
against all Flow IDs currently stored in the PIFO queue.
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FIGURE 5. The hardware architecture for the error detection unit, showing an example of supporting 1024 flows. It also illustrates the number of
cascaded comparators required to detect an error.

Parallel comparators are used to find the desired dequeue
index. The number of parallel comparators used to find the
desired dequeue index is equal to the number of supported
flows. In the third clock cycle, the selected head packet is
dequeued to the egress pipeline, and the forced dequeue index
is sent back to the packet shift unit at the enqueue side of the
scheduler.

Compared to the enqueue and normal dequeue operations,
the forced dequeue operation takes an additional clock cycle
to complete. This forces the enqueue operation to stall
for one clock cycle while waiting for the forced dequeue
operation to provide the forced index. The output from the
multiplexer is also sent to the error detection block, to be
used by the re-ranking unit to produce the ‘‘Force Dequeue’’
signal, whenever it is needed. This ‘‘Force Dequeue’’ signal
is used by both, the ‘‘Search for Flow ID’’ block at the
input and the multiplexer at the output of the scheduling
unit. The error detection unit evaluates whether there is an
error in the departure order of the output packets or not.
The additional clock cycle needed by the forced dequeue
operation introduces a latency of one clock cycle to the
packet scheduler. However, we strongly believe that this
added latency does not affect the total throughput of the
DR-PIFO packet scheduler for two reasons. The first one is
that the forced dequeue operation is not the common dequeue
operation, but it is rarely executed as illustrated in section IV.
The second reason is that, even in a non-pipelinedmanner, the
non-pipelined DR-PIFO with its forced dequeue operation
can enqueue and dequeue a packet in 5 clock cycles. This
number of cycles is sufficient for the highest speed links
today [3].

3) THE ERROR DETECTION UNIT
The flow scheduler is unable to rearrange the head packets
of flows whose ranking has been altered within the PIFO
queue. Neither the re-ranking unit nor any other control block
is capable of monitoring all the packets stored within the
queue. A simple approach to overcome this limitation would

be to duplicate the flow scheduler components, but this would
result in potential degradation of performance due to the
added area overhead. Instead, our design features an error
detection unit that enhances the PIFO queue’s awareness of
any changes to the rank of its hosted packets.

As illustrated in Figure 5, the error detection unit operates
in two pipeline stages and produces an output at every clock
cycle. It becomes activated whenever the flow scheduler
performs its normal dequeue operation. The error detection
unit leverages the unsorted ‘‘new ranks’’ array provided by
the updated flow rank store and uses it to search for the
minimum updated rank of all flows stored in the PIFO
queue. If the minimum rank found is lower than the recently
dequeued packet, the error detection unit detects an error in
the departure order and initiates a forced dequeue operation.
The ‘‘last pkt flag’’ produced at the output stage indicates
whether the dequeued packet is the last one from its flow.
This flag changes in response to the ‘‘Empty signal’’ from
the packet rank store, as depicted in Figure 2. If the ‘‘last
pkt flag’’ is set, the error detection unit searches for another
flow ID with the same rank, and when found, schedules its
head packet for the next dequeue cycle via an internal forced
dequeue operation.

Assuming that N flows are supported by the sched-
uler, if one was to implement the classical compare and
shift architecture to find the minimum rank of all flows,
that design would incur a critical path delay of N×

delay_of_comparator_block. Thus, as N becomes large,
it would be difficult to achieve the desired frequency of
1GHz with this naive approach. To overcome this issue
as N may scale to a large number, we propose the use
of multistage comparators to determine the minimum rank
of all flows. Our proposed architecture is depicted in
Fig. 5. As an example, to find the minimum value out
of N values, the first stage consists of N/2 comparators
operating in parallel and generating N/2 output values.
Subsequently, these N/2 values are forwarded to the second
stage where N/4 comparators operate in parallel. The results
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from the second stage propagate to the third stage and
so on and so forth. Using this technique to compare the
ranks can theoretically reduce the critical path delay to
log2 N× delay_of_comparator_block plus the delay of some
additional internal logic blocks. Our results show that the
delay of this critical path can be split over two clock cycles
in a pipelined architecture, as illustrated in Fig. 5.

The implementation reported in the present paper supports
up to 1024 flows. Accordingly, the error detection unit must
find the minimum rank value among the 1024 rank values in
the ‘‘new ranks’’ array. In the first level, labeled ‘‘level1,’’
512 comparators compare the ranks of the odd indices of
the ‘‘new ranks’’ array against those of even indices, with
the index at this level corresponding to the flow ID. The
results, including a rank and a flow ID, are then propagated
from one level to the next one until they reach the pipeline
register. The outputs from ‘‘level5’’ are registered before
being transmitted to the next level, ‘‘level6.’’ The final result
is collected from level 10 (210 = 1024). This final result is
then compared with the values from the recently dequeued
packet. The pipeline register reduces the number of cascaded
comparators triggered at each clock cycle from 10 to 5, which
reduces the critical delay path and enables our design to meet
the timing constraints of the 1GHz clock cycle, even for as
many as 1024 flows.

V. RESULTS
In this section, the hardware implementation of the DR-PIFO
is analyzed and compared to the PIFO-based scheduler
from [3]. In addition, the expressiveness of the DR-PIFO
architecture is evaluated and compared to the algorithmic
models of the DR-PIFO, PIFO-based scheduler, and PIEO
scheduler from [1]. The experiments conducted in this work
are similar to those in [1] for a fair comparison.

A. HARDWARE PERFORMANCE
The hardware implementation of the DR-PIFO scheduler
can service up to 1024 flows, each having 16-bit rank
values. It can store up to 64k packets in its buffer. These
specifications match the ones found in [3], and they target
switches with shallow buffer sizes. An example of such a
switch is Broadcom’s Trident II, which has a buffer size of
12Mbytes.

The DR-PIFO scheduler was developed using SystemVer-
ilog, a widely used hardware description and verification
language, and synthesized using the 65nm TSMC CMOS
technology and Synopsys Design Compiler. The validity and
performance of the resulting scheduler, along with the flow
and packet rank stores, were verified through post-synthesis
simulations. The re-ranking unit was not synthesized, as it
was built as a fixed function for all algorithms in our
experiments (as described in [1], but it is recommended to
implement this unit in a programmable platform to allow
for the implementation of new algorithms or modifications
without requiring a new ASIC chip. The performance of
the DR-PIFO was compared against the original PIFO-based

TABLE 1. DR-PIFO vs PIFO hardware performance (65nm).

scheduler, which has the capability to process one enqueue
and one dequeue operation per packet every 1ns, which is
the optimum throughput as noted in [3]. Since the results
of the PIFO were obtained with a 16nm technology, it was
re-synthesized using the same 65nm technology to ensure a
fair comparison between the two schedulers.

As shown in Table 1, the DR-PIFO operates at the
same clock frequency of 1GHz as the PIFO scheduler. This
throughput of 1 packet enqueue and dequeue every 1ns is
considered an optimal value, as a lower throughput may affect
the total performance of modern switches [3]. The hardware
logic added by the DR-PIFO, such as the flow rank store
and forced dequeue support, did not hinder its maximum
operating frequency. For up to 1024 flows, both the DR-PIFO
and PIFO designs are guaranteed to meet the 1ns timing
constraint at the 65nm technology node. To accommodate
more flows, either a more advanced technology node or more
efficient design optimization is necessary. The DR-PIFO’s
post-synthesis area includes the packet rank store, flow rank
store, and flow scheduler and is only 15.5% larger than the
PIFO design. This area comparison does not take into account
the programmable components such as the rank computation
and re-ranking units.

The impact of the programmable re-ranking unit’s area
overhead is not taken into account. However, the fixed
scheduling components such as the flow scheduler and the
packet rank store are found to be consuming three times
more area than the programmable components in the PIFO
scheduler as reported in [3]. The rank computation unit’s
area has already been calculated in [3]. However, it cannot
be assumed that the re-ranking unit would consume the same
amount of area. To date, no scheduling algorithm has been
found to require more processing in the re-ranking unit than
in the rank computation unit, however, it may be necessary
for the re-ranking unit to operate with lower latency. As a
result, the hardware requirements and area consumption of
the re-ranking unit are topics for future research.

B. EVALUATION
To evaluate the expressiveness of our proposed hardware
design, we utilized two scheduling algorithms, the pFabric
and the VDS. These algorithms were chosen for their distinct
differences and intrinsic importance. The pFabric assigns
priority to flows based on the arrival of new packets, while
the VDS changes priority based on both the arrival and
departure of packets [1]. We evaluated the DR-PIFO, PIFO,
and PIEO using the Bandwidth Utilization (BU) and Flow
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FIGURE 6. Adopted experimental setup showing the implemented testing
stages in our experiments.

Completion Time (FCT) metrics. The results for the proposed
hardware design of the DR-PIFO were obtained from Verilog
netlist simulations targeting the 65nm TSMC technology
node, while the results for the algorithmic DR-PIFO, PIFO,
and PIEO schedulers were obtained from functional software
models from the work in [1]. However, bug-free and
portable hardware codes for PIFO and PIEO designs were
not accessible, which forced us to re-implementing them
as functional software models from the original papers’
functional description.

1) EXPERIMENTAL SETUP
In our experimental setup, as depicted in Fig.6, it is crucial to
specify for each experiment the workload and the input data,
fromwhich the output data is obtained and processed through
an evaluation stage. Our experiments start with generating a
unique workload for each of the two adopted case studies.
The workloads used in our experiments are based on previous
research in the literature, with detailed information provided
further in the section. Each workload consists of a number
of flows, with a specific number of packets per flow, packet
length, order of packets at the sending point, and parameters
for calculating priorities. The objective is to transmit all
packets from the sending point to the receiving point. As we
are testing packet schedulers, the sending point serves as
the input side of the scheduler, and the receiving point is
the output side. The specific information describing each
workload is clearly stated in each individual case study.

The organization of the data generated by the workload
is an essential aspect of the testing process. The input data
stage is responsible for organizing this data to be passed to
the scheduler under test. The process begins with the batches
generator, which splits the packets in the workload into
batches. Each batch consists of a random number of packets
from different flows, which are stored and sorted together in
the scheduler. To avoid overflow, the number of packets from
each flow must not exceed the total available capacity for
that flow. At least one packet from each non-empty flow is
included in each batch.

Once the packets have been organized into batches,
they are passed to the scheduler, one by one, at each

positive edge of the clock cycle. The packets are sorted
in ascending order based on their flow ID. The scheduler
waits until it has received and stored all the packets in
the current batch before dequeueing them, one by one,
based on their priorities and the scheduling algorithm. There
is no overlap between batches, and the next batch is not
passed until all the packets from the current batch have been
dequeued.

In this test setup, the scheduler can be in one of two states:
enqueue or dequeue, with no overlap between them. The test
bench uses communicating flags to synchronize between the
input stage (batches generator) and the scheduler under test.
The number of batches generated for each case study is stated
in the case studies.

The output data stage is the third step in the testing process.
It monitors and reports the packets transmitted from the single
output port of the scheduler under test. This stage generates
a report that showcases the sequence of packets dequeued
by the packet scheduler. This data is collected during the
dequeue state of the scheduler. During the enqueue state,
the output port is idle as there is no dequeueing of packets.
This output data is not modified until it is delivered to the
next stage which is the evaluation stage. The assumption
is made that the total available bandwidth at the output
port of the scheduler is always higher than the combined
bandwidth required to send each flow in the current batch.
This assumption is made for two reasons, the first one is
that the two adopted case studies, which sufficiently assess
and challenge the new features of the DR-PIFO design,
are work-conserving algorithms. Therefore, they provide
neither a rate-limiting scheme to avoid severe congestion
nor a specific dropping scheme to manage packet losses.
The second reason is to avoid congestion collapse at the
output port and the dropping of packets since the packet
loss could affect the evaluation of the schedulers-under-
test in expressing the implemented scheduling algorithms.
Accordingly, the elimination of the packet loss provides
a fair comparison for all the tested packet schedulers.
Thus, the present work mainly evaluates the accuracy
of expressing different scheduling policies and does not
cover packet-dropping policies. Nevertheless, all the sched-
ulers under-test apply the same Tail-Dropping technique,
if needed.

The final stage of our experimental setup is the evaluation
phase, which involves the use of a testing code to determine
the Bandwidth Utilization (BU) for each scheduler being
tested. This code calculates the bandwidth for each flow
during each batch period using the output data from the
schedulers, and then compares these bandwidths to the ideal
bandwidths assigned by the reference model. The reference
models, implemented in MATLAB, are designed to simulate
the respective ideal behavior of the scheduling algorithms
(pFabric or VDS). To ensure fairness in the comparison,
the testing code assumes that all schedulers have equal
processing capacity (1 enqueue and 1 dequeue per clock
cycle).
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TABLE 2. Bandwidth utilization (BU) compared to a nominal (ideal) pFabric.

2) pFabric CASE STUDY
In this study, we utilized two workloads collected from
real-world data centers [23]. The first workload, the web
search, is characterized by its heavy-tailed distribution, where
30% of flows account for over 95% of all sent bytes. The
flow sizes range from 1MB to 20 MB. The second workload,
collected from data centers performing data mining jobs,
is more skewed, with only 3.6% of flows accounting for 95%
of all bytes. Most of the flows, around 80%, are smaller than
10KB. The web search workload, being more challenging
due to its characteristics, can result in starvation of certain
flows [23]. Thus, our primary focus in this case study will
be on the results obtained when using the challenging web
search workload.

In our experiment, we simulated 100 unique flows, gener-
ating a total of over 109k packets for the web search workload
and over 631k packets for the data mining workload. The
number of flows is carefully selected to strike a balance
between simulation time and testing the DR-PIFO Verilog
netlist. Previous research [1] has revealed that increasing
the number of flows degrades the performance of PIFO and
PIEO, but has no impact on the performance of the DR-PIFO
model. The size of each packet is the standard Ethernet MTU
of 1, 500 bytes. The number of batches is randomly generated
and includes 844 batches for the web search workload and
approximately 37k batches for the data mining workload
throughout the simulation time. We use the bandwidth
utilization (BU) factor, defined in equation (1), to evaluate the
proposed hardware architecture of the DR-PIFO scheduler,
as previously mentioned in [1]. An ideal value of 1 for the
BU represents 100% bandwidth utilization, and any reduction
from this ideal value is considered bandwidth (BW) loss,
while any increase is considered an erroneous BW gain for
the given flow.

BU =
BWnominal_pFabric

BWactual_scheduler
(1)

The BU metric measures the precision of the packet
schedulers in realizing the desired scheduling algorithm
during each batch of the workload, yet it fails to illustrate its
impact on end-to-end performance. Hence, we also resort to

FIGURE 7. Bandwidth Utilization (BU) for the pFabric, for 100 flows and
from four schedulers; the DR-PIFO software version, the PIFO, the
PIEO [1] and the proposed DR-PIFO hardware version.

the Flow Completion Time (FCT), a widely used metric for
evaluating scheduling policies’ impact on end-to-end delays.
To assess the accuracy of scheduling policy realization,
we use the relative error in FCT values as our evaluation
metric. The relative errors are computed by comparing the
FCT values obtained by the scheduler under evaluation with
those of the ideal scheduling algorithm, either pFabric or
VDS. The relative error in the FCT values is defined in
equation (2).

FCT_error =
|FCTscheduler − FCTnominal_pFabric|

FCTnominal_pFabric
(2)

As can be observed in Table 2, the DR-PIFO hardware
design achieved an average BU close to 1, with the
lowest standard deviation for the two tested workloads.
The standard deviation is a crucial metric for evaluating
models, as it measures the dispersion of BU values from
the average. Additionally, for the web search workload,
DR-PIFO obtained the optimum values for minimum and
maximum BU for a flow. Thus, its average BU is comparable
to its algorithmic model and is closer to the ideal pFabric than
the results from the PIFO and PIEO software models.

As seen in Fig. 7, both the algorithmic model and hardware
implementation of the DR-PIFO scheduler produced a
constant BU for all starved flows (BU < 1), unlike the
results from the PIFO and PIEO. The impact of these BU
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FIGURE 8. The relative errors in the Flow Completion Time (FCT) for
different flow sizes while implementing the pFabric scheduling algorithm
with the web search workload.

values on end-to-end performance is reflected in the FCT
errors displayed in Fig. 8, where DR-PIFO still achieved
much lower FCT errors compared to PIFO and PIEO.
Only the algorithmic model and hardware implementation of
DR-PIFO were able to consistently produce low FCT errors
for all flows.

The forced dequeue primitive is executed 908 times during
the simulation of over 109k dequeued packets, constituting
roughly 0.83% of all dequeues. This figure is lower in
the hardware design due to the implementation of stricter
triggering criteria for the forced dequeue operation. The
operation requires an extra clock cycle to complete in the
hardware design, and therefore, to mitigate its impact on the
BU results, it should be triggered judiciously.

The disparities in the BU values between the algorithmic
model and the hardware implementation of the DR-PIFO
stem from the hardware constraints incorporated into our
design. Our hardware implementation is limited by a 1
GHz operating frequency, and the forced dequeue prim-
itive contributes an additional clock cycle latency that
impacts the BU factor of the relevant flows. Furthermore,
the error detection unit operates sequentially, requiring
an extra clock cycle to detect departure order errors,
which were omitted from the algorithmic model of the
DR-PIFO.

3) VDS CASE STUDY
The DR-PIFO hardware implementation was evaluated using
the VDS scheduling algorithm. Our experiment, conducted
in the same manner as described in [1], simulated six flows
with a total of 95.3k packets over a 100-second period.
The window constraints parameters of (m, k) were (3, 5),
(5, 7), (7, 9), (9, 11), and (13, 15), one pair for each of the
six flows, and were used to determine the priority of each
flow during simulation. The priority computation steps of
VDS are outlined in [1], [24], and [30]. The six flows had
various arrival rates as follows; 333kbps, 200kbps, 143kbps,
110kbps, 90kbps, and 77kbps, respectively. The simulation
is divided into 804 batches, and the number of batches
is randomly chosen with different randomized sizes. The
comparison was performed between DR-PIFO and PIEO

TABLE 3. Bandwidth utilization for different flows in the VDS Case study.

FIGURE 9. Bandwidth Utilization (BU) for the VDS algorithm for 6 flows
and from three schedulers; the software version of the DR-PIFO, the
PIEO [1] and the proposed hardware version of the DR-PIFO.

schedulers, as the PIFO scheduler does not support the
VDS algorithm. The calculation of BU was performed using
Equation (1).

During 95.3k dequeueing cycles, the forced dequeue
operation was executed 564 times, constituting about 0.6% of
the total dequeueing time. The values in Table 3 demonstrate
that the hardware implementation of DR-PIFO has an average
buffer utilization (BU) of 1.008 with a standard deviation of
0.02. This result is consistent with the algorithmic model.
However, there is a 13%maximum loss in BU in the hardware
implementation compared to the 9% loss in the algorithmic
model, in the worst scenario. Despite this, the hardware
design still surpasses the BU values observed with PIEO,
except for the maximum BU, even with the hardware
limitations. Although the maximum BU of DR-PIFO is
slightly higher than PIEO, they both remain close to 1,
especially when compared to pFabric. Fig. 9 presents the
BU values for the suffered flows with BU < 1 for all
3 schedulers, while Fig. 10 demonstrates the relative errors
of FCT values for the end-to-end performance assessment.
As it can be observed, the differences in the BU values caused
some relative errors in the FCT values.

It should be noted that the maximum throughput achieved
by the PIEO is significantly lower, 4 times less than the
throughput of the DR-PIFO and PIFO, as per [2]. However,
in the two case studies conducted, it was assumed that the
PIEO could operate at the same throughput as the DR-PIFO
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FIGURE 10. The relative errors in the Flow Completion Time (FCT) for
6 flows while implementing the VDS scheduling algorithm in each model.

and PIFO. Without this assumption, the BU values of the
PIEO might decline due to its lower throughput capacity.
The results of the case studies provide robust support for the
theory presented in [1], which asserts that the DR-PIFO is an
algorithm-agnostic model.

VI. DISCUSSION
Despite advances in programmable network switches, such
as Intel’s Tofino series [32], the traffic manager unit still
operates as fixed-function logic. The scheduling algorithms
integrated into the hardware during the fabrication of network
equipment are widely used but limited. The scheduler in the
traffic manager is configurable rather than programmable,
limiting network operators to modifying specific parameters
and being unable to alter or create new scheduling algorithms.
To meet Service Level Agreements (SLAs), the operators
must configure the priority levels and flow transmission rate.
However, there has been a recent surge in research aimed
at increasing the programmability of traffic managers. New
hardware abstractions and data structures, such as the PIFO
and PIEO schedulers, have been proposed to expand the range
of scheduling algorithms. Although these abstractions offer
greater expressiveness, they are still not fully programmable.
The DR-PIFO improves upon the PIFO design with dynamic
re-ranking and forced dequeue on packets, as discussed in
detail in [1].

1) PERFORMANCE OF DR-PIFO’S HARDWARE
IMPLEMENTATION
The DR-PIFO hardware implementation achieves a 1GHz
operating frequency and a 1 packet per 1ns throughput, thanks
to its pipelined design. To meet these timing constraints,
various hardware micro-architecture designs were introduced
in section IV, providing line-rate performance while allowing
dynamic re-ranking and forced dequeueing of packets from
any position in the queue. While the DR-PIFO introduces
more programmability, it also incurs a 15.5% area overhead
compared to state-of-the-art PIFO packet scheduler hardware
designs [3]. In today’s switches, a fixed packet scheduler
is implemented in the chip area without providing any
programmability to the network operators. Thus, for today’s

switches, the DR-PIFO packet scheduler, as a replacement
for the fixed scheduler, offers outstanding expressiveness and
programmability for a wide class of scheduling algorithms
at the cost of its area overhead while maintaining the line
rate processing. Since no optimization efforts were made to
reduce this overhead, it remains a potential area for future
work.

2) DESIGN SCALABILITY
The architecture of the DR-PIFO design inherits scalability
limitation from the original PIFO. The DR-PIFO design
scales proportionally to the number of supported flows since
the proposed design requiresO(N ) flip-flops and comparators
to support N number of flows. Thus, the proposed DR-PIFO
supports around 1k flows without violating the desired timing
constraints. However, there are some practical techniques to
increase the number of supported flows. For example, the
network traffic from multiple sources can be grouped into
aggregate flows [33]. Accordingly, the maximum number
of grouped flows is 64k which is the maximum number
of packets that the DR-PIFO can store. Moreover, parallel
DR-PIFO packet schedulers can be separately implemented,
one dedicated DR-PIFO for each output port, whereas
today’s switch provides up to 64 output ports. In addition,
technologies more advanced and much faster than 65nm
CMOS could be used.

With the advent of 5G and the increasing demand
for wireless-wireline convergence, the need for servicing
hundreds of thousands, or even millions of flows at once is
expected to grow. Previous best-known designs that increased
the number of supported flows compared to the PIFO can
be found in [2] and [20]. Due to the possible starvation of
flows in the original PIFO design, parallel processing cannot
be adopted for multiple PIFO queues. On the other hand,
this starvation is not possible in the DR-PIFO design as
illustrated in section IV. Thus, the DR-PIFO is poised to be
a key solution for addressing this challenge, making traffic
managers more programmable and scalable. The focus of
our current research efforts is on improving the scalability
of a hierarchical version of the DR-PIFO and introducing a
software abstraction compatible with the P4 language.

3) DR-PIFO LIMITATIONS
The DR-PIFO scheduler incorporates an operation to
determine the lowest rank and detect scheduling errors
in packet ordering. However, as the number of flows
grows beyond a certain point, implementing this operation
while meeting timing constraints is very challenging. While
finding the minimum value of an unsorted array is a well-
known issue, there have been various techniques proposed
to enhance its performance. Future work will investigate
micro-architectural improvements to address this scalability
limitation and align with current and future traffic demands.
Moreover, it is crucial to keep the rank updating function
as straightforward as possible, as a complex mechanism
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will negatively impact the performance of the DR-PIFO
scheduler.

VII. CONCLUSION
In a recent work, we introduced the algorithmic model
of the Dynamic Ranking Push-In-First-Out (DR-PIFO),
an expressive programmable packet scheduler. In this paper,
we presented its hardware design and implementation
developed using TSMC’s 65nm CMOS technology. The
DR-PIFO sorts packets based on their priority, which can be
updated while they are stored in the queues. The architecture
also allows packet dequeueing from any position and can
detect errors in their departure order. Our proposed hardware
implementation can enqueue and dequeue packets each 1 ns,
while handling up to 1024 flows. This performance makes
it suitable for deployment in modern programmable network
switches. The DR-PIFO adds a mere 15.5% overhead in
chip area compared to a previous packet scheduler, which is
acceptable given its added flexibility and programmability.
Finally, we assess the proposed hardware implementation by
implementing two vital scheduling algorithms, the pFabric
and the VDS. It was found that the hardware implementation
of the DR-PIFO is as flexible as its algorithmic model
and that in terms of bandwidth utilization, it outperforms
well-known schedulers such as the PIFO and the PIEO.
In addition, it achieves much lower relative flow completion
time (FCT) errors for different flow sizes when implementing
the pFabric scheduling algorithm with the web search
workload. Following this work, we are currently investigating
the implementation of a hierarchical DR-PIFO architecture.
In a future work, the expressiveness and the performance
characteristics of the DR-PIFO scheduler will be validated
and evaluated in FPGA-based network devices. Ultimately,
language constructs that will support the implementation
of the DR-PIFO scheduler could be introduced to the P4
language and deployed in programmable hardware devices.
This will pave the way forward for P4 programmers to
implement a diverse set of scheduling algorithms.
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