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Generalized FDTD scheme for the simulation of
electromagnetic scattering in moving structures

ZOÉ-LISE DECK-LÉGER,1,* AMIR BAHRAMI,2 ZHIYU LI,2,3 AND
CHRISTOPHE CALOZ2

1Polytechnique Montréal, 2500, ch. de Polytechnique, Montreal, H3T 1J4, Quebec, Canada
2KU Leuven, Kasteelpark Arenberg 10 Box 2440 3001 Leuven, Belgium
3Xi’an Jiaotong University, West Xianning Road 28, Box 710049, Xi’an, Shaanxi, China
*zoe-lise.deck-leger@polymtl.ca

Abstract: Electromagnetic scattering in moving structures is a fundamental topic in physics
and engineering. Yet no general numerical solution to related problems has been reported to date.
We introduce here a generalized FDTD scheme to remedy this deficiency. That scheme is an
extension of the FDTD standard Yee cell and stencil that includes not only the usual, physical
fields but also auxiliary, unphysical fields allowing a straightforward application of moving
boundary conditions. The proposed scheme is illustrated by four examples – a moving interface,
a moving slab, a moving crystal and a moving gradient – with systematic validation against exact
solutions.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Moving structures are pervasive in electromagnetics. They may involve both moving bodies,
such as stars or vehicles, and moving perturbations, such as fluid or elastic waves. The category
of moving-body structures has a nearly 300-year history and has led to the discovery of many
fundamental physical phenomena, such as Bradley aberration [1], Doppler frequency shifting
[2], Fizeau dragging [3], relativity [4, 5], magneto-electric coupling [6], medium bianisotropy
[7] and gravity emulation [8]. The category of moving-perturbation structures is more recent
and particularly amenable to practical applications; it produces effects such as parametric
amplification [9–11], nonreciprocal transmission [12,13], deflected reflection [14,15], space-time
frequency transitions [16,17], pseudo-Fizeau dragging [18,19], spatiotemporal bandgaps [20–22]
and acceleration-based beam bending [23].

Surprisingly, no general numerical tool is currently available to simulate electromagnetic
moving structures, whether of the moving-body or moving-perturbation type. The development
of such a tool would be highly desirable to simulate the plethora of moving structures mentioned
above as well as future ones, particularly the non-canonical – and typically more practical –
structures that do not admit analytical solutions. This issue is well-known. There have been only
two workarounds in the literature so far [24–28], both based on the FDTD technique [29,30],
probably selected for its natural incarnation of both spatial and temporal variations in Maxwell’s
equations. However, one of these approaches is restricted to non-penetrable objects [24,25],
while the other one implies cumbersome Lorentz frame transformations [26–28].

We present here a novel, general, and efficient FDTD scheme for simulating electromagnetic
scattering in moving structures. That scheme, contrarily to that in [24,25], also applies to
penetrable media, allowing hence to handle gradient structures and metamaterials [18,31],
without requiring problematic numerical transformations, contrarily to that in [26–28]. This
scheme is based on a generalized Yee cell and stencil, which include not only the usual, physical
fields but also auxiliary, unphysical fields that carry the velocity information, to automatically
satisfy the moving boundary conditions.
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2. Types of systems

The proposed method applies to both moving-matter and moving-perturbation media [19], the
only difference between the two, in terms of modeling, being that in the former case, motion
transforms media that are isotropic at rest into bianisotropic media [32,33], whereas in the latter
case, motion alters the values of the permittivity or permeability parameters without affecting the
isotropy of the medium [16,34,35]. Figure 1 depicts some of these structures [50,53], which will
be used for illustration and validation purposes in Sec. 6: a simple interface [36] [Fig. 1(a)], a
slab [37] [Fig. 1(b)], a bilayer crystal [Fig. 1(c)], which can be operated in the Bragg regime
[10] or in the metamaterial (homogeneous) regime [18], and a gradient [38] [Fig. 1(d)], all
moving at a velocity v in a direction selected as being z in a Cartesian coordinate system. The
different parts of these structures can represent arbitrary bianisotropic media, with general tensor
χ =

[︂
ϵ , ξ; ζ , µ

]︂
, which may be all different from each other and may be arbitrarily truncated in

the xy-plane. Note that all these structures can be seen as a succession of interfaces, including
the gradient upon decomposition into subwavelength slabs. For this reason, we shall focus on an
interface in the next section.

(a) (b)

(c) (d)

ψi

v v

vv

χ1 χ2

x

y

z

Fig. 1. Types of moving structures, of either the moving-matter or moving-perturbation
type, that can be simulated by the proposed generalized FDTD scheme. (a) Simple interface.
(b) Slab. (c) Bilayer crystal. (d) Gradient.

3. Generalized Yee cell

The boundary conditions at a moving interface, whether associated with moving modulation or
moving matter, read [39,40]

n̂ × (E∗
2 − E∗

1) = 0, (1a)

n̂ × (H∗
2 − H∗

1) = Js, (1b)

n̂ · (D2 − D1) = ρs, (1c)

n̂ · (B2 − B1) = 0, (1d)

with
E∗ = E + v × B and H∗ = H − v × D, (2)

where 1 and 2 label the media at the two sides of the interface [Fig. 1(a)], E, H, D, B are the
usual electromagnetic fields, Js and ρs are the usual surface current and charge densities, n̂ is
the unit vector normal to the interface pointing towards medium 1, and v is the velocity of the
interface. Note that these conditions, as expected, reduce to the stationary boundary conditions
for v = 0, viz., n̂ × (E2 − E1) = 0, n̂ × (H2 − H1) = Js, n̂ · (D2 − D1) = ρs and n̂ · (B2 − B1) = 0.
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The fields in Eq. (2) may be decomposed into tangential and normal components with respect
to the interface. The tangential components are

E∗
tan = Etan + v × B − (n̂ · (v × B))n̂ and H∗

tan = Htan − v × D − (n̂ · (v × D))n̂, (3a)

while the normal components are

E∗
norm = Enorm + (n̂ · (v × B))n̂ and H∗

norm = Hnorm + (n̂ · (v × D))n̂. (3b)

In the case where the interface is perpendicular to the direction of motion, i.e., n∥v, the
right-most terms in the right-hand sides of Eqs. (3a) and (3b) vanish. This is the scenario that is
represented in Fig. 1 and that will be assumed in the sequel of the paper [51,52,54]. The paper
will further assume non-conducting interfaces, and hence Js = ρs = 0 in Eq. (1).

The dynamic boundary conditions (1) differ from the static or stationary boundary equations
only insofar as they involve the auxiliary fields E∗

1,2 and H∗
1,2, whose tangential components include

velocity-dependent extra terms [Eq. (3a)], instead of the fields E1,2 and H1,2. This observation
suggests the generalization of the standard Yee cell [37] to a Yee cell with correspondingly
modified Etan and Htan fields, without alteration of the conventional electric and magnetic field
staggering arrangement. The result is shown in Fig. 2, for a pair of generalized Yee cells separated
by a moving interface. The so-defined generalized Yee cell straightforwardly allows the field
continuity conditions at a moving interface, i.e., Eqs. (1a) and (1b), to be satisfied by having the
field components E∗

x , E∗
y and Hz uniquely defined at the permittivity interface of Fig. 2 (or H∗

x ,
H∗

y and Ez in the case of a corresponding magnetic interface).

x

y
z

v

E∗
x

E∗
x

E∗
x E∗

x

E∗
y

E∗
y

E∗
y E∗

y

H∗
xH∗

x

H∗
yH∗

y

Hz

Hz

HzHz

Hz
Hz

Hz Hz

Hz

Fig. 2. Pair of generalized Yee cells, separated by a moving interface [as in Fig. 1(a)], with
the generalization consisting in the substitution of the tangential physical fields Etan and
Htan by the corresponding tangential auxiliary fields E∗

tan and H∗
tan in Eq. (3a).

This simple generalization of the Yee cell is the core idea of the paper. It implies a mixture of
physical and unphysical fields, namely, as seen in Eqs. (1) and (3), the physical fields D, B, Enorm
and Hnorm and the unphysical fields E∗

tan and H∗
tan, which will also imply unphysical mixed-field

electromagnetic equations. This strange situation is somewhat reminiscent of the unphysical
anisotropic media appearing in Bérenger’s Perfect Matched Layers (PMLs) [41] and, as for the
PMLs, it does not pose any fundamental problem. The corresponding unphysical Maxwell’s
equations and constitutive relations, which will be derived and discretized in Sec. 4 to establish
the generalized FDTD update equations, are mathematical mappings of the physical Maxwell’s
equations via the simple changes of variable in Eqs. (3), and the physical fields E and H can be
found anytime from the auxiliary fields by simply inverting these relations.

4. Generalized scheme

In this section, we shall derive the generalized FDTD scheme corresponding to the generalized
Yee cell established in Sec. 3. This scheme must, of course, model the physics of the problem,
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and hence follow the usual Maxwell-Faraday and Maxwell-Ampère equations,

∂B
∂t
= −∇ × E and

∂D
∂t
= ∇ × H, (4)

as well as the general constitutive relations,

D = ϵ(r − vt) · E + ξ(r − vt) · H and B = ζ(r − vt) · E + µ(r − vt) · H, (5)

whose bianisotropic form [42] pertains to moving matter [55] and which reduce to simple
homoisotropic relations

(︂
ϵ = ϵ , µ = µ, ξ = ζ = 0

)︂
in the case of moving modulation [16,34,35].

In order to apply the generalized Yee cell established in Sec. 3, we must express the fields
E and H in Eqs. (4) and (5) in terms of the fields E∗ and H∗ using Eq. (2). This results in the
mixed-field Maxwell’s equations

∂B
∂t
= −∇ × E∗ + ∇ × (v × B), (6a)

∂D
∂t
= ∇ × H∗ + ∇ × (v × D), (6b)

and constitutive relations

D = ϵ(r − vt) · (E∗ − v × B) + ξ(r − vt) · (H∗ + v × D) , (7a)

B = ζ(r − vt) · (E∗ − v × B) + µ(r − vt) · (H∗ + v × D) . (7b)

From this point, we shall restrict our developments, for the sake of simplicity and without any
loss of generality, to structures that are i) based on moving modulation (as opposed to moving
matter), ii) one-dimensional (1D) and iii) illuminated by a plane wave propagating in the direction
of the modulation (i.e., normal to the interface(s)). Using a Cartesian coordinate system with z
corresponding to the direction of the modulation, the non-zero field components reduce to Ex
and Hy and Eqs. (6) and (7) become then

∂By

∂t
= −
∂E∗

x
∂z

− v
∂By

∂z
, (8a)

∂Dx

∂t
= −
∂H∗

y

∂z
− v
∂Dx

∂z
, (8b)

and
Dx = ϵ(z − vt)

(︁
E∗

x + vBy
)︁
, (9a)

By = µ(z − vt)
(︂
H∗

y + vDx

)︂
, (9b)

where we have used the fact that the mapping (2) preserves the polarization in the 1D case [56],
so that only the star field components E∗

x and H∗
y , corresponding to Ex and Hy, are involved,

We can now proceed to the discretization of Eqs. (8) and (9). The static (v = 0) parts can be
discretized in the usual fashion [30], which yields

By |
n
k+ 1

2
= By |

n−1
k+ 1

2
− S

(︃
E∗

x |
n− 1

2
k+1 − E∗

x |
n− 1

2
k

)︃
− v∆t

∂By

∂z
, (10a)

Dx |
n+ 1

2
k = Dx |

n− 1
2

k − S
(︂
H∗

y |
n
k+ 1

2
− H∗

y |
n
k− 1

2

)︂
− v∆t

∂Dx

∂z
, (10b)
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and

E∗
x |

n+ 1
2

k =
Dx |

n+ 1
2

k

ϵ |
n+ 1

2
k

− vBy, (10c)

H∗
y |

n
k+ 1

2
=

By |
n
k+ 1

2

µ|n
k+ 1

2

− vDx, (10d)

where S = ∆t/∆z.
In contrast, the dynamic (v ≠ 0) terms, which have not been discretized yet in Eqs. (10), require

special treatment for the numerical stability and minimal dispersion of the overall scheme. We
empirically [57] found that the discretization choices given in Table 1 are appropriate in these
regards. Note that these schemes are different for positive velocities, i.e., v∥ẑ or v>0 and negative
velocities, v∥ − ẑ or v<0.

Table 1. Discretization of the dynamic terms in Eqs. (10).

Positive velocity (v>0) Negative velocity (v<0)

∂By

∂z
=

By |
n−1
k+ 1

2
− By |

n−1
k− 1

2
∆z

(11a)
∂By

∂z
=

By |
n−1
k+ 3

2
− By |

n−1
k+ 1

2
∆z

(11b)

∂Dx
∂z
=

Dx |
n−1/2
k − Dx |

n−1/2
k−1

∆z
(12a)

∂Dx
∂z
=

Dx |
n−1/2
k+1 − Dx |

n−1/2
k

∆z
(12b)

By =
By |

n
k−1/2 + By |

n
k−3/2

2
(13a) By =

By |
n
k+3/2 + By |

n
k+1/2

2
(13b)

Dx =
Dx |

n−1/2
k+1 + Dx |

n−1/2
k

2
(14a) Dx =

Dx |
n−1/2
k+1 + Dx |

n−1/2
k

2
(14b)

E∗
x

E∗
x

E∗
x

Dx

Dx

Dx Dx

Dx

By

By

ByBy

By

H∗
y

H∗
y

H∗
y

n

n

n

n

n− 1
2

n− 1
2

n− 1
2

n− 1

n+ 1
2

n+ 1
2

k − 1

k − 1 k

k k

k k + 1

k + 1 k + 1

k + 1

z

t

Eqs. (10a), (11)
Eqs. (10b), (12)

Eqs. (10c), (13) Eqs. (10d), (14)

v > 0

v < 0

Fig. 3. FDTD stencil corresponding to the FDTD scheme in Eqs. (10) with Eqs. (11)–(14).
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Figure 3 shows the stencil of the overall proposed generalized FDTD scheme, which provides
a handy pictorial representation of Eqs. (10) with Eqs. (11)–(14).

5. Stability

In this section, we demonstrate the stability of the generalized scheme presented in Sec. 4 using
von Neumann’s approach [43]. This approach consists in inserting plane-wave test fields of the
form

Ψ|nk = Ψ0ξ
kζn, (15a)

where ξ and ζ are the space-dependent oscillatory and time-dependent magnitude-oscillatory
functions

ξ = eikz∆z and ζ = e−α∆t, (15b)

with α being the attenuation/amplification rate and oscillation, into the update equations and
determining the condition under which the ζ(ξ) solution of the resulting matrix system is smaller
than one – but as close as possible to one to avoid numerical attenuation [58].

Inserting the test fields of the above form into Eqs. (10) with Eqs. (11a)–(14)(a) or
(11)(b)–(14)(b), setting the determinant of the matrix associated with the resulting homo-
geneous system of equations to zero, and finding the ζ roots of the corresponding characteristic
polynomial yields (see details in Appendix A.)

ζ± =
ξ−3

4n2

[︂
Sdξ4 + 4

(︂
b − 4S2

)︂
ξ3 + S

(︂
3βn2 + 2S

)︂
ξ2 − βn2Sξ

]︂
±
ξ−2

4n2 (1 − ξ)S
√︂
ξ4d2 + 4

(︁
b − 2S2)︁ ξ3 + 4(n4β2 − 6n2Sβ − 2S2)ξ2 − 4β2n2Sξ

, (16)

where β = v/c, ξ = eikz∆z, b = n2(4 − 3βS) and d = 2S + βn2. Setting ζ = 1 in Eq. (16) provides
the stability threshold of the scheme, with stability achieved for ζ<1 (and instability for ζ>1).

The fact that the stability analysis admits a double solution, ζ± [Eq. (16)], may a priori appear
surprising, given that ζ solutions are usually unique. However, this can be understood by realizing
that waves that are co-moving and contra-moving with respect to the modulation see different
numerical “landscapes”. Specifically, if v>0, then the scheme uses Eq. (11a)-(14a) [first column
in Table 1] for the dynamic parts, which correspond to the dotted segments (with the dashed
segment removed) in Fig. 3; the resulting stencils for the first three equations [Eqs. (10a–10c)
with Eqs. (11a)–(13a)] are clearly asymmetric with respect the z direction and therefore, although
the stencil for the fourth equation [Eq. (10d) with Eq. (14a)] is symmetric, the stencil is overall
asymmetric with respect to z, so that co-moving and contra-moving waves will see different
stencils. A similar conclusion holds for the case v<0, so we expect that, for a given choice of
the modulation direction, ζ+ will correspond to one of the two (co-moving or contra-moving)
regimes, while ζ− will correspond to the other regime. Note that the scheme must be stable for
both waves since typical problems involve both of them [59]. The stability criterion (ζ<1) should
then be taken as corresponding to the more restrictive (larger ζ) of the two ζ solutions.

The two regimes may be identified by comparing the signs of the spatial and temporal phases
of the test plane-wave in Eq. (15a), with the spatial phase and temporal phase residing in ξ and
ζ±, respectively. For this purpose, let us consider a specific numerical position and time, say
for simplicity k = 1 and n = 1, and analyze the test plane wave for the two possible propagation
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directions. We have, upon writing α± = ωi± ± iωr± in ζ± (with ωi±>0 assuming stability),

Ψ|n=1
k=1
Ψ0

= ξζ± = eikz∆z−α±∆t = eikz∆z−(ωi±±iωr±)∆t

= e−ωi±∆tei(kz∆z∓ωr±∆t) = e−ωi±∆teikz∆ze∓iωr±∆t

= eikz∆ze−ωi±∆t [cos(ωr±∆t) ∓ i sin(ωr±∆t)] = ξ (ζr± ∓ iζi±) .

(17)

In these relations, the first expression of the second line reveals that the upper sign, which
is associated with ζ+, corresponds to a forward wave, propagating in the +z direction, while
the lower sign, which is associated with ζ−, corresponds to a backward wave, so that ζ+ and ζ−
respectively correspond to the co-moving and contra-moving regimes for v>0 (and conversely
for v<0).

Unfortunately, it is not possible to generally assert whether the ± signs in Eq. (17) correspond to
the ± signs in Eq. (16), or their opposite, because Eq. (16) does not admit a general decomposition
in real and imaginary parts. Therefore, that sign correspondence has to be determined in a
numerical fashion. For instance, for the set of parameters S = 0.5, β = 0.3, ϵ = 4, µ = 1 and
∆zkz = 2π/5, we have ζ+ = 0.925 − i0.33 and ζ− = 0.917 + i0.23, and therefore the ± signs in
Eq. (17) correspond to ± signs in Eq. (16). The correct sign mapping has to be determined on a
case-by-case basis for different simulation parameters.

Let us now illustrate and verify our stability analysis. Figure 4 plots the attenuation rate,
α = ln(ζ)/∆t, versus the meshing density, Nλ = λ0/∆z = 2π/(kz∆z) = i2π/ln(ξ), for Gaussian
pulse propagation and for the case v>0 [corresponding to the stencils with Eqs. (11a)–(14a)].
The analytical results are obtained by Eq. (16) while the numerical results are obtained by
FDTD simulations and taking ratios of the pulse maxima at different times. The insets show the
FDTD-simulated space-time field evolutions for two meshing densities. The FDTD attenuation
results closely match the attenuation results predicted by the analytical stability analysis, with
distinct levels corresponding to the co-moving and contra-moving regimes. Note that in the
present case (v>0 and chosen parameters) and throughout the considered Nλ range (10<Nλ<100),

20 40 60 80 100

-50

-40

-30

-20

-10

α
=
−
ln
(ζ
)/
Δ
t
(d
B
/s
ec
)

Nλ = 2πi/ ln(ξ)

v

z

t

co-moving

contra-moving

FDTD
Analytical

➀➀ ➁

➁

➂

➂

➃

➃

Fig. 4. Attenuation rate versus meshing density obtained by Eq. (16) and by FDTD
simulation, for S = 0.5, v = 0.3c (v>0, first column in Table 1), ϵ = 1 and µ = 1. The insets
show FDTD-simulated space-time evolution of a 3λ-wide Gaussian pulse modulated by a
harmonic wave of wavelength λ = 2π/kz and period T = 2π/ω, over a distance of 20λ and
time of 45T , for the mesh densities Nλ = 10 and Nλ = 80.
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ζ± in Eq. (16) corresponds to ζ± in Eq. (17), so that ζ+ and ζ− correspond to co-moving and
contra-moving waves, respectively, as in the above numerical example. We see from the plot that
the appropriate (more restrictive) criterion corresponds to that for the co-moving wave (ζ+, lower
attenuation), and its satisfaction will a fortiori ensure the stability of the contra-moving wave (ζ−,
larger attenuation). Symmetrically identical results (not shown) are obtained for the case v>0,
corresponding to the stencil with Eqs. (11b)–(14b).

6. Illustrative and validating examples

Figures 5, 6, 7 and 8 provide illustrative and validating examples of scattering from the structures
corresponding to Figs. 1(a), (b), (c) and (d): a moving interface, a moving slab, a moving crystal,
and a moving gradient. In all the cases, the incident wave is a modulated Gaussian pulse with
(starred) electric field E∗

i (t) = e−iωite−(t/τi)
2 , and the computational domain is terminated by

standard Mur boundary conditions, to which the generalized Yee cells are automatically matched,
as shown in App. B. The panels (a) show the space-time evolution of the incident and scattered
fields, with the input and output temporal waveforms at specific z positions plotted on the sides,
for a pulse with τi = Ti = 2π/ωi. The panels (b) plot the Fourier transforms of these waveforms.
The panels (c) plot the scattering coefficient functions Γ(ω) and T(ω), obtained for an incident
pulse Ei that is temporally short enough to have a nonzero spectrum across the frequency range
of interest, as done for instance in [44]. All the analytical solutions are given in Appendix C.
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Fig. 5. Results for a contra-moving interface [Fig. 1(a)], for the physical parameters
v = −0.3c, ϵ1 = 1, ϵ2 = 4 and µ = 1, and numerical parameters S = 0.2 and ∆z = λi/150.
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Ẽi

Ẽr
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Fig. 6. Same as in Fig. 5 but for a co-moving slab [Fig. 1(b)], with velocity v = +0.3c and
length ℓ = λi

4n2
1+n2β
1−n1β

, with λi = 2πc/(n1ωi) corresponding to a space-time quarter-wave
slab [30].
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Fig. 7. Same as in Fig. 5 but for a co-moving bilayer crystal [Fig. 1(c)], consisting of 5
unit-cells each made of two space-time quarter-wave slabs, with lengths ℓ1 = λi
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Ẽr

Ẽt
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Fig. 8. Same as in Fig. 5 but for a co-moving gradient [Fig. 1(d)], corresponding to a linear
increase of the permittivity from ϵ1 to ϵ2 over a length of ℓ = λi/2.

In all the cases (Figs. 5, 6, 7 and 8) and for all the quantities (incident, reflected and transmitted
electric fields, and reflection and transmission coefficients), excellent agreement is observed
between the numerical results of the proposed generalized FDTD scheme and the analytical
results (given in Appendix C.), with minor observable discrepancies in the scattering coefficients
(panels (c)), which are explained by the limited bandwidth of the test pulse.

The physics of the dynamic scattering observed in Figs. 5, 6, 7 and 8 involves reflection Doppler
frequency shifting, transmission index contrast frequency shifting, co-moving attenuation, contra-
moving amplification, multiple space-time scattering, and space-time stopbands. All these effects
have been described elsewhere [31,35,45] and are therefore not discussed here.

7. Conclusion

We have presented a generalized FDTD scheme that can simulate electromagnetic scattering in a
great diversity of moving-medium problems. This scheme, using a combination of physical and
auxiliary fields to satisfy moving boundary conditions in a natural fashion, is both simple and
powerful. It fills a fundamental and important gap in the toolbox of electromagnetic computational
techniques and is hence expected to find wide applications, particularly in the emergent area of
space-time metamaterials.
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Appendices

A. Stability calculation

This section derives the stability condition for the generalized FDTD scheme, presented in Sec. 4,
using von Neumann’s approach [43]. We will therefore replace everywhere the electromagnetic
fields with their plane-wave test counterpart, Ψ|nk = Ψ0ζ

neikzk∆z, with ζ = e−α∆t. In addition, we
will use the convenient parameter S = ∆t/∆z wherever appropriate.

We shall restrict our derivations to the positive-velocity regime (v>0), whose dynamic part
corresponds to the first column of Table 1. The negative-velocity derivations (v<0), whose
dynamic part corresponds to the second column of Table 1, can easily be obtained upon following
similar steps.

Using the plane-wave test field substitution in Eqs. (10a) and (11a), and dividing the resulting
expression by ζn and eikzk∆z yields

By0eikz∆z/2 = By0eikz∆z/2ζ−1 − SE∗
x0ζ

−1/2eikz∆z/2
(︂
eikz∆z/2 − e−ikz∆z/2

)︂
− vSBy0ζ

−1
(︂
eikz∆z/2 − e−ikz∆z/2

)︂
,

(18)

which may be alternatively written, upon multiplying by ζe−ikz∆z/2, forming sines, grouping
terms, and transferring everything to the left-hand-side of the equality, as

E∗
x0ζ

1/22iS sin(kz∆z/2) + B0

(︂
ζ − 1 + ve−ikz∆z/22iS sin(kz∆z/2)

)︂
= 0. (19)

Similarly, Eq. (10b) with Eq. (12a) becomes

Dx0ζ
1/2 = Dx0ζ

−1/2 − SH∗
y0

(︂
eikz∆z/2 − e−ikz∆z/2

)︂
− vSDx0ζ

−1/2e−ikz∆z/2
(︂
eikz∆z/2 − e−ikz∆z/2

)︂
,

(20)
or, multiplying by ζ1/2, and doing the same next operations as for the previous equation,

Dx0

(︂
ζ − 1 + 2iSve−ikz∆z/2 sin(kz∆z/2)

)︂
+ H∗

y0ζ
1/22iS sin(kz∆z/2) = 0. (21)

Next, Eq. (10c) with (13a) becomes, after factoring out e−ikz∆z from the last two terms to form
a cosine,

E∗
x0ζ

1/2 = Dx0ζ
1/2/ϵ −

v
2

By0e−ikz∆z(eikz∆z/2 + e−ikz∆z/2), (22)

or, multiplying by ϵζ−1/2, forming cosines, etc.,

Dx0 − ϵE∗
x0 − ϵvBy0ζ

−1/2e−ikz∆z cos(kz∆z/2) = 0. (23)

Finally, Eq. (10d) with (14a) becomes, after factoring out e−ikz∆z/2 from the last terms to form
a cosine,

H∗
y0eikz∆z/2 = By0eikz∆z/2/µ −

v
2
ζ−1/2eikz∆z/2Dx0(eikz∆z/2 + e−ikz∆z/2), (24)

or, multiplying by −µe−ikz∆z/2, etc.,

By0 − µH∗
y0 − µvζ

−1/2Dx0 cos(kz∆z/2) = 0. (25)

Equations (19), (21), (23) and (25) form a system of equations that can be put in the matrix
form ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A 0 0 B + vC

0 A B + vC 0

−ϵ 0 1 −ϵvDe−ikz∆z

0 −µ −µvD 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E∗
x0

H∗
y0

Dx0

By0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0, (26)



Research Article Vol. 31, No. 14 / 3 Jul 2023 / Optics Express 23224

where
A = 2iζ1/2S sin(kz∆z/2), (27a)

B = ζ − 1, (27b)

C = 2iSe−ikz∆z/2 sin(kz∆z/2), (27c)

D = ζ−1/2 cos(kz∆z/2). (27d)

Setting the determinant of this homogeneous system to zero to find a nontrivial solution for ζ
leads to the characteristic polynomial

ζ2 +
ζ

2n2

(︂
4S2 − n2(4 − 3βS) − 4S(S + n2β) cos(kz∆z)

)︂
+
ζSβ
2

(cos(2kz∆z) + 2i sin(kz∆z) − i sin(2kz∆z))

+ e−ikz∆z[1 − Sβ(1 − cos(kz∆z))][Sβ + (Sβ − 1) cos(kz∆z) − i sin(kz∆z)] = 0.

(28)

This is a polynomial of the second order in ζ whose solution is given by Eq. (16). The
corresponding polynomial and solutions turn out to be exactly identical for the negative-velocity
regime, although the related derivation involves distinct equations.

B. Impedance matching between the standard and the modified schemes

Inserting the constitutive relation (9b) into (8a), we find

∂µH∗
y

∂t
+
∂vµDx

∂t
= −
∂E∗

x
∂z

− v
∂µH∗

y

∂z
− v
∂vµDx

∂z
. (29)

Assuming medium homogeneity [ϵ ≠ ϵ(z, t), µ ≠ µ(z, t)], as at the boundaries of the
computational domain, these relations simplify to

µ
∂H∗

y

∂t
+ vµ

∂Dx

∂t
= −
∂E∗

x
∂z

− vµ
∂H∗

y

∂z
− v2µ

∂Dx

∂z
. (30)

Inserting (8b) into this result, we obtain

µ
∂H∗

y

∂t
− vµ

∂H∗
y

∂z
− v2µ

∂Dx

∂z
= −
∂E∗

x
∂z

− vµ
∂H∗

y

∂z
− v2µ

∂Dx

∂z
, (31)

i.e.,

µ
∂H∗

y

∂t
= −
∂E∗

x
∂z

. (32)

For a monochromatic plane wave, this relation reduces to

E∗
x

H∗
y
=

kz

µω
= η. (33)

Thus, the starred fields have the same impedance as their non-starred counterparts, and the
former are therefore matched to the latter.

C. Analytical solutions

This section provides analytical solutions that are used for validation of the illustrative examples
given in Sec. 6. The solutions in Secs. C.2. and C.3 are closed-form solutions for the canonical
problems of an interface and a slab, corresponding to Figs. 1(a) and 1(b), respectively, while the
solutions in Sec. C.4 are transfer-matrix method solutions for the more complex problems of a
bilayer crystal and a gradient, corresponding to Figs. 1(c) 1(d), respectively.
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C.1. General formulas

In all cases, the incident field is a modulated Gaussian pulse, with temporal and spectral profiles

E∗
x,i(t) = e−iωite−(t/τi)

2
and Ẽ∗

x,i(ω) =
τi

4
√
π

e(τi(ω−ωi))
2/4, (34)

where τi is the full-width at half-maximum duration divided by 2
√

ln 2 and ωi is the modulation
frequency. The reflected and transmitted pulses may then be computed as

E∗
x,t,r(t/ar,t) = {T(t), Γ(t)} ∗ E∗

x,i(t), (35a)

where T(t) and Γ(t) are the impulse-response transmission and reflection coefficients, and at,r are
the transmission and reflection compression or expansion factors [34,44]

at =
1 − ninv/c
1 − noutv/c

and ar =
1 − ninv/c
1 + ninv/c

, (35b)

where nin is the refractive index of the medium in which the incident and reflected waves propagate,
and nout is the refractive index of the medium in which the transmitted wave propagates. The
spectra corresponding to the waveforms (35a) are then found, using the scaling property
f (t/a) ⇔ af̃ (aω), as

ar,tẼ∗
x,t,r(ar,tω) = {T(ω), Γ(ω)}Ẽ∗

x,i(ω). (35c)
Although scattering from modulated interfaces has been extensively studied in the literature (e.g.

[34,35,46,47]), the formula (35c) has not been explicitly published anywhere, to the best of our
knowledge. The reason is that the quasi-totality of studies have been restricted to monochromatic
waves, whose reflected field spectrum particularizes to ar,tδ(ω − ar,tωi)Ã∗

r,t = δ(ω/ar,t − ωi)Ã∗
r,t,

after using the identity aδ(at) = δ(t), where the ar,t factor has disappeared. However, the factor
ar,t in Eq. (35c) cannot be dropped for other wave regimes such as the pulse regime.

C.2. Interface

The scattering coefficients for a modulated interface are found by applying the continuity
conditions (1a) and (1b). They read [31,34,45], assuming wave incidence from medium 1 towards
medium 2,

T21 =
2η2
η1 + η2

1 − n1v/c
1 − n2v/c

and Γ121 =
η2 − η1
η1 + η2

1 − n1v/c
1 + n1v/c

, (36)

while the formulas for the reverse propagation direction are obtained by a simple interchange of
the subscripts. Note that the scattering coefficients here independent of the frequency.

C.3. Slab

The scattering coefficients for a modulated slab may be found, as for a stationary slab, either by
the multiple-reflection method or the boundary-value method [48]. This results in the scattering
coefficients [31]

T(ωi) =
T21T12e−iω+2 n2ℓ

1 − Γ212Γ
−
212e−i(ω+2 +ω

−
2 )n2ℓ

and Γ(ωi) = Γ121
1 − e−i(ω+2 +ω

−
2 )n2ℓ

1 − Γ212Γ
−
212ei(ω+2 +ω

−
2 )n2ℓ

. (37)

These relations are written in terms of ωi through the expressions of the frequencies for waves
propagating forward (ω+2 ) and backward (ω−

2 ), namely

ω+2=
1 − n1v/c
1 − n2v/c

ωi and ω−
2=

1 − n1v/c
1 + n2v/c

ωi, (38)

and the expressions T21 and Γ121 are provided in Eq. (36), T12 and Γ121 are obtained by
interchanging 1 and 2 in Eq. (36), and Γ−212 is obtained by interchanging 1 and 2 and changing
the sign of v in Γ121 (36).
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C.4. Transfer-matrix method

The transfer-matrix method [20,31,34] allows to compute electromagnetic scattering for any
traveling-wave modulation profile with uniform (space-time) slabs in the frequency domain [60].
This is even true for a smooth gradient modulation profile, which can be approximated as a
succession of subwavelength interfaces with constant parameters.

The transfer-matrix method models the interface scattering by the interface matrix

Imn =
1

t−nm

⎡⎢⎢⎢⎢⎣
tmnt−nm−γmnmγ

−
nmn γ−mnm

−γnmn 1

⎤⎥⎥⎥⎥⎦ , (39)

whose coefficients are given by

tmn =
2ηm
ηm + ηn

1 − nnv/c
1 − nmv/c

and γnmn =
ηm − ηn
ηm + ηn

1 − nnv/c
1 − nnv/c

(40)

and where the t−mn and γ−nmn coefficients are found by inverting the sign of v in (40) and the
tnm and γnmn coefficients are found by inverting m and n in (40). On the other hand, it models
(space-time) slabs by the propagation matrix

Pm(ωi) =

⎡⎢⎢⎢⎢⎣
e−iω+mnm∆z 0

0 eiω−
mnm∆z

⎤⎥⎥⎥⎥⎦ , (41)

where
ω+m=

1 − n1v/c
1 − nmv/c

ω+1 , and ω−
m=

1 − n1v/c
1 + nmv/c

ω+1 (42)

are the frequencies of the forward- and backward-propagating waves within a given slab, and ∆z
is the width of this slab (which is constant under the assumption of uniform discretization).

The transfer matrix of a structure composed of N slabs is then found by taking the product of
alternating discontinuity and propagation matrices, viz.,

[M]N1 = [IN,N−1][PN−1][IN−1,N−2][PN−2] · · · [P2][I2,1]. (43)

Finally, the scattering coefficients can be obtained by converting the transfer matrix into a
scattering matrix [49], which yields

T(ωi) =
AD − BC

D
, Γ(ωi) =

−A
D

, (44)

where A, B, C and D are the (1, 1), (1, 2), (2, 1) and (2, 2) components of the [M]N1 matrix.
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53. In the case of moving-perturbation, these structures are essentially traveling-wave modulation-type structures, while

standing-wave modulation-type structures, such as those studied in [21, 50], which consist combinations of purely
spatial and purely temporal interfaces, can be handled by the standard FDTD algorithm. Indeed, the FDTD algorithm
automatically enforces continuity of the tangential E and H fields at stationary interfaces and continuity of D and B
fields at temporal interfaces.

54. If we had n∥
/︁

v, the interface would be slanted with respect to the motion direction. Related problems were treated
analytically in [51, 52].

55. In this case, for motion in the z direction (v = vẑ), the tensors in Eq. (5) are [41] ϵ = ϵ ′

⎡⎢⎢⎢⎢⎢⎢⎢⎣
α 0 0

0 α 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, µ =

µ′

⎡⎢⎢⎢⎢⎢⎢⎢⎣
α 0 0

0 α 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, ξ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 χ/c 0

−χ/c 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, ζ = ξ

T
, with α =

1−β2

1−β2n′2
, χ = β 1−n′2

1−β2n′2
, β =

v/c and n′/c =
√
ϵ ′µ′, where ϵ ′ and µ′ are constant scalars that represent the permittivity and permeability

of the medium at rest (v= 0), which is assumed to be isotropic, nondispersive and linear.
56. To show this, we insert B = −

∫
(∇ × E) dt, from (4), into (2), which yields, using the vectorial iden-

tity A × (∇ × B) = ∇(A · B) − (A · ∇)B − (B · ∇)A − B × (∇ × A), E∗ = E − ∫ (v × (∇ × E)) dt =
E − ∫ (∇(v · E) − (v · ∇)E − (E · ∇)v − E × (∇ × v)) dt. The last two last terms in the last expression both vanish in
the assumed regime of constant velocity. Given E = Exx̂ and v = vẑ, the term with v ·E also vanishes since v⊥E.
Finally, the term (v · ∇)E reduces to x̂∂Ex/∂z and is hence parallel to E. Thus, E∗ ∥E. It may be similarly shown that
H∗ ∥ H.

57. To the best of our knowledge, there is no general method to synthesize a stencil with guaranteed stability in the
discretization of a system of partial differential equations (PDEs). Such stencils are always found, as done here, from
a systematic testing of different stencil structures (forward, backward or centered differences, and possible field
averages) in the different PDEs forming the system [28, 29].

58. In Eq. (15b), one must be careful not to confuse kz, the z-component of the wavenumber, with k, the spatial index
appearing in the FDTD update equations. No related ambiguity should exist in the paper insofar as the two quantities
are always distinguishable by the presence or absence of the z subscript. Furthermore, there should be no possible
confusion between the ξ and ζ functions in (15b) and the bianisotropic tensors ξ and ζ in (7), since the latter always
appear with double overbars and are not involved in the following stability analysis.

59. This is even true for a simple mismatched moving interface, where the incident and transmitted waves are co-moving
and the reflected wave is contra-moving if the incident wave propagates in the direction of the modulation.

60. Note that, however, the uniform slab and frequency domain requirements of the transfer-matrix methods are very
restrictive. The former requirement precludes the simulation of a space-time structure composed of slabs with finite
temporal duration (and hence involving space-time corners), which are obviously a basic constraint in practical
scenarios. The latter requirement essentially precludes the determination of the spatio-temporal features of the
scattered waves because this would imply an extremely complex set of Fourier transformations. In contrast, the
proposed generalized FDTD scheme can straightforwardly simulate truncated slabs and exact space-time waveforms.
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