
Titre:
Title:

Decision Making Under Uncertainty Using Machine Learning

Auteur:
Author:

Rahul Mihir Patel

Date: 2020

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Patel, R. M. (2020). Decision Making Under Uncertainty Using Machine Learning
[Mémoire de maîtrise, Polytechnique Montréal]. PolyPublie.
https://publications.polymtl.ca/5451/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/5451/

Directeurs de
recherche:

Advisors:
Andrea Lodi, & Yoshua Bengio

Programme:
Program:

Maîtrise recherche en mathématiques appliquées

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/5451/
https://publications.polymtl.ca/5451/

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Decision Making Under Uncertainty Using Machine Learning

RAHUL PATEL
Département de mathématiques et de génie industriel

Mémoire présenté en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées
Mathématiques appliquées

Août 2020

c© Rahul Patel, 2020.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Ce mémoire intitulé :

Decision Making Under Uncertainty Using Machine Learning

présenté par Rahul PATEL
en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées

a été dûment accepté par le jury d’examen constitué de :

Michel GENDREAU, président
Andrea LODI, membre et directeur de recherche
Yoshua BENGIO, membre et codirecteur de recherche
Emma FREJINGER, membre

iii

DEDICATION

To my grandparents and parents.

iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to my co-advisors, Andrea Lodi and Yoshua Bengio, for
providing me the freedom to explore a fundamental research problem during the course of
this thesis. It was because of them I got to work in such an exciting and upcoming research
area of combinatorial machine learning. I appreciate Andrea’s words of encouragement and
support to the members of the chair during these turbulent times of pandemic. I would also
like to thank my brilliant collaborators, Sriram Sankaranarayanan and Emma Frejinger, from
whom I learned a lot. I am grateful to Sriram for chalking out the exact research idea which
is at the heart of this thesis.

I would also like to thank Mehdi Taobane for gracefully managing the logistical aspects
during my masters; right from scheduling my interview with Andrea to scholarship and
organizing my defense. I would like to thank Khalid for providing the necessary technical
support critical for conducting the experiments. I would like to thank all of my colleagues
at the chair, especially, Jeff Decary, Didier Chételat, Antoine Prouvost, Elias Khalil and
Justin Dumouchelle, for the wonderful discussions on varied topics like useful pointers for my
research to exploring things in Montreal.

I am exceptionally grateful to my friends, particularly, Shashwat Sanghavi, Nisarg Patwa,
Harsh Prajapati, Dhanraj Vaghela, Eeshan Dhekane and Sujaat Ali for their positivity and
support during the course of past two years. I would like to thank all the teachers, mentors
and educational institutions I was a part of, right from kindergarten to this date, for shaping
my intellect and imbibing in me the quality to ask the right questions.

I will always be in debt of the love and support of my parents. They have motivated me to
pursue my dreams and taught me to take responsibility for my actions. I am ever so grateful
to my fiancé, who has been with me through the thick and thin since the past 10 years, who
knows me better than I do myself. Last but not the least, I would like to thank God for
creating this beautiful universe and all its amazing life forms.

v

RÉSUMÉ

Nous proposons un algorithme basé sur l’apprentissage supervisé pour obtenir de bonnes
solutions primales pour les programmes stochastiques en deux étapes en nombres entiers (en
anglais, two-stage stochastic integer programs (2SIP)). Le but de l’algorithme est de prédire
un scénario représentatif (en anglais, representative scenario (RS)) pour le problème tel
qu’en résolvant de manière déterministe le 2SIP avec la réalisation aléatoire égale au scénario
représentatif, l’algorithme donne une solution quasi optimale au 2SIP original. Prédire un RS,
au lieu de prédire directement une solution, garantit la faisabilité de la solution de première
étape. Si le problème possède un recours complet, la réalisabilité de la deuxième étape est
également garantie.

Nous effectuons des expériences sur deux problèmes: le problème de localisation d’entrepôts
avec capacité stochastique (en anglais, stochastic capacitated facility location problem (S-
CFLP)) et problème d’affectation généralisée stochastique (en anglais, stochastic generalized
assignment problem (S-GAP)). Les deux problèmes ont des variables entières et des con-
traintes linéaires dans les première et deuxième étapes. La méthode proposée est capable de
produire de bonnes solutions primales pour le S-CFLP lorsqu’elle est testée sur les tailles sur
lesquelles elle a été entraînée. De plus, notre temps de calcul est compétitif par rapport à
celui pris par Gurobi pour obtenir une qualité de solution similaire. Cependant, nos modèles
ne sont pas capables de généraliser et de produire de bonnes solutions primales lorsqu’ils sont
testés sur les tailles sur lesquelles ils n’ont pas été entraînés. Dans le cas de S-GAP, jusqu’à
maintenant, notre méthode peine à trouver de bonnes solutions primales. Nous discutons
des défis et des solutions potentielles que nous pourrions utiliser pour leur faire face.

vi

ABSTRACT

We propose a supervised learning based algorithm to obtain good primal solutions for two-
stage stochastic integer programming (2SIP) problems with constraints in the first and second
stages. The goal of the algorithm is to predict a representative scenario for the problem
such that, deterministically solving a two-stage stochastic integer program with the random
realization equal to a representative scenario, gives a near-optimal solution to the original
2SIP. Predicting a representative scenario, instead of directly predicting a solution ensures
first-stage feasibility of the solution. If the problem is known to have complete recourse,
second-stage feasibility is also guaranteed.

We perform computational tests on two problems, namely, the stochastic capacitated facility
location problem (S-CFLP) and stochastic generalized assignment problem (S-GAP). Both
the problems have integer variables and linear constraints in the first and second stages. The
proposed method is able to produce good primal solutions for the S-CFLP when tested on
the sizes on which it was trained. Also, our computing time is competitive to that taken by
Gurobi to achieve a similar solution quality. However, our models are not able to generalize
and produce good primal solutions when tested on the sizes on which they were not trained.
In the case of S-GAP, as of now, our method struggles to find good primal solutions. We
discuss the challenges and the potential solutions we would be pursuing to alleviate them.

vii

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vi

TABLE OF CONTENTS . vii

LIST OF TABLES . ix

LIST OF SYMBOLS AND ACRONYMS . x

CHAPTER 1 INTRODUCTION . 1
1.1 Mathematical Programming . 1

1.1.1 Linear Programming . 2
1.1.2 Mixed Integer Linear Programming 3

1.2 Machine Learning . 5
1.2.1 Supervised learning . 6
1.2.2 Linear Regression . 9
1.2.3 Artificial Neural Networks . 9

1.3 Outline . 10

CHAPTER 2 A LEARNING BASED ALGORITHMTOQUICKLY COMPUTEGOOD
PRIMAL SOLUTIONS FOR STOCHASTIC INTEGER PROGRAMS – AN EXTEN-
SION . 12
2.1 Introduction . 12
2.2 Motivation and Literature Review . 12
2.3 Problem Definiton . 15
2.4 Methodology . 15

2.4.1 Surrogate Formulation . 16
2.4.2 Learning Algorithm . 17

2.5 Computational Study . 17
2.5.1 Stochastic Capacitated Facility Location Problem 21

viii

2.5.2 Stochastic Generalized Assignment Problem 34

CHAPTER 3 CONCLUSION AND RECOMMENDATIONS 41

REFERENCES . 43

ix

LIST OF TABLES

Table 2.1 Notations used to define an instance of the stochastic capacitated fa-
cility location problem (S-CFLP). 21

Table 2.2 Data sampling details for generating an instance of the S-CFLP . . . 23
Table 2.3 Experiment 1 OVDR statistics (in %) of different methods. 26
Table 2.4 Experiment 1 computing time statistics (in seconds) of different methods. 27
Table 2.5 Experiment 2 OVDR statistics (in %) of different methods. 28
Table 2.6 Experiment 2 computing time statistics (in seconds) of different methods. 30
Table 2.7 Description of the test set detailing the sub-classes, size-NOS combi-

nations and the corresponding number of instances. 31
Table 2.8 Experiment 3 OVDR statistics (in %), on the sub-classes SSSS and

unlabeled-SSSS. 32
Table 2.9 Experiment 3 OVDR statistics (in %), on the sub-classes SSUS, USSS

and USUS. 33
Table 2.10 Notations used to define an instance of the S-GAP 34
Table 2.11 Data sampling details for generating an instance of the S-GAP 36
Table 2.13 Hyperparameter tuning for the Feed-forward Neural Network (FFNN)

used in the stochastic generalized assignment problem (S-GAP) exper-
iment. 38

Table 2.14 Learning metrics and OVDR statistics (in %) for the S-GAP for differ-
ent models . 40

x

LIST OF SYMBOLS AND ACRONYMS

LP linear program
MILP mixed integer linear programming
2SIP two-stage stochastic integer program
RS representative scenario
OVDR Objective Value Difference Ratio
NOS number of scenarios
S-CFLP stochastic capacitated facility location problem
S-GAP stochastic generalized assignment problem
AI Artificial Intelligence
ML Machine Learning
i.i.d. independent and identically distributed
RL Reinforcement Learning
LR Linear Regression
FFNN Feed-forward Neural Network
CNN Convolutional Neural Network
MSE mean squared error
R2 R-squared score
SGD stochastic gradient descent

1

CHAPTER 1 INTRODUCTION

A key trait of humans is rationality; this involves taking conscious decisions to minimize
some cost. Due to the limited availability of resources (fossil, time, bandwidth, etc.) in
the world, more often than not, the decisions that we are allowed to make need to respect
certain constraints. Mathematical optimization – more popularly known as mathematical
programming – is one such branch of mathematics that formalizes the art of decision making
by providing techniques to model and solve decision-making problems. This problem of
optimal decision making becomes all the more challenging and complex when the constraints
under which one needs to operate are not known in advance. Speaking broadly the area
that deals with such problems is called decision making under uncertainty. It includes areas
such as stochastic programming, stochastic control, bandit problems, active learning, etc. [1].
In this thesis, we focus on stochastic integer programming, which lies at the intersection of
mathematical programming and decision making under uncertainty.

The preliminaries, crucial to the work presented in the thesis, are covered in Section 1.1 and
Section 1.2.

1.1 Mathematical Programming

The first step to solve a decision-making problem is its mathematical modeling. The key
components used for defining the model are as follows:

• Problem data or problem input

• Set of variables over which one wants to optimize

• Set of constraints on variables

• Objective function to be optimized

Supposing that the objective function models cost, we would like to minimize it. Consider a
problem P of the form:

2

min f(x) (1.1)

s.t. gi(x) ≤ 0, i = 1, 2, . . . , k (1.2)

hj(x) = 0, j = 1, 2, . . . , l (1.3)

x ∈ X, (1.4)

where s.t. is a shorthand for subject to. Here, x ∈ Rn is the decision variable vector,
f : Rn → R is the objective value function of x to be minimized, g = {g1, . . . , gk} and
h = {h1, . . . , hl} are the set of functions used to define constraints on x and X ⊆ Rn. The
exact definition of f,g,h and X depends on the problem definition. The type of optimization
problem and their solution techniques are characterized by f,g,h and X.

1.1.1 Linear Programming

A mathematical programming problem can be characterized as a linear program (LP), when
the objective value function and the constraints are linear. An LP in the standard form can
be written as

min cᵀx (1.5)

s.t. Ax = b (1.6)

x ≥ 0 (1.7)

where c and x are n-dimensional column vectors, b is an m-dimensional column vector and
A is an m× n matrix.

George Dantzig, known as the father of LP, used it to solve several military planning problems.
One of the key contributions of Dantzig was the Simplex method, which can efficiently solve an
LP with a polynomial average-case complexity with respect to the size of the problem, [2–4].
Suppose that the constraint polyhedron is feasible, bounded and non-degenerate. First, the
simplex method initializes the solution to one of the vertices of the constraint polyhedron and
then improves it iteratively by moving from one vertex to another, such that the objective
value is improved. There are theoretically better algorithms to solve an LP with a polynomial
worst-case time complexity (ellipsoid and interior-point methods [5]). However, the choice of
the algorithm to solve an LP should be made depending upon the context of the problem.

3

1.1.2 Mixed Integer Linear Programming

Many decision problems in practice involve that decisions are made from a discrete set, which
can be modeled by constraining a subset of variables to take integer values. The mixed integer
linear programming (MILP) paradigm offers us the tools to model and solve such problems.
A general MILP formulation is given as

min cᵀx (1.8)

s.t. Ax = b (1.9)

x ≥ 0 (1.10)

xi ∈ Z ∀i ∈ I (1.11)

where I is the set of indices of variables x which are required to be integer and Z is the set
of integers. As compared to an LP formulation, we imposed additional constraints given by
Equation (1.11) which models integer decisions. However, integrality constraints makes the
problem non-convex, leading to MILP falling in the NP-hard complexity class [5].

We know that LP belongs to the P complexity class; there exist polynomial time algorithms
to solve any given LP. We leverage this fact and advances in solving LP to iteratively solve a
MILP. The basic idea is to start with an LP relaxation of the original MILP and iteratively
add more constraints to this LP to prune the LP solution space, such that the eventual LP
solution obtained satisfies the integrality constraints of the original MILP. This idea is at
the core of many algorithms for solving MILPs like branch-and-bound [6], cutting planes [7],
branch-and-cut [8], branch-and-price, etc. We will briefly describe branch-and-bound and
cutting plane approaches to solve a MILP, which are the building blocks to other advanced
approaches to MILP solving.

Branch-and-bound

Branch-and-bound is a tree-based approach that iteratively prunes and creates smaller parti-
tions of the solution space using relaxation bounds and creating sub-MILP problems adding
cuts, respectively. Details of the same, for a maximization problem, are given in Algorithm

4

1 based on [9].

Algorithm 1: The branch-and-bound algorithm to solve a maximization MILP
Data: MILP instance I
Result: Optimal integer solution to I,x∗IP

1 Let ILP be the LP relaxation of instance I;
2 Let the best lower bound BLB ← −∞;
3 Let the set of open nodes O ← {ILP};
4 Initialize x∗IP ← ∅;
5 while |O| > 0 do
6 Select a node IsLP from the set of open nodes O and delete it from O;
7 Solve IsLP ;
8 if IsLP is feasible then
9 Let OBJsLP and xsLP be the objective value and solution of IsLP , respectively;

10 if OBJsLP > BLB then
11 if xsLP satisfies integrality constraints of I then
12 BLB ← OBJsLP ;
13 x∗IP ← xsLP ;
14 else
15 Create two subproblems Is1LP and Is2LP by adding constraints such that

none of them contain xsLP in their feasible region. However, both of
their feasible regions should contain all the feasible integer solutions
of IsLP ;

16 O ← O ∪ {Is1LP} ∪ {Is2LP};
17 end
18 end
19 end
20 end
21 return x∗IP ;

The branch-and-bound solves an LP relaxation of the MILP problem on each node of the
tree. Once solved, it checks first if the bound obtained is better than the best bound so far.
If no, then update the best bound and create two sub-problems by branching on a variable
which is supposed to be an integer, but takes fraction value in the relaxed solution.

5

Cutting planes

The general idea of algorithms falling in the broad category of cutting planes to solve a
MILP starts by optimizing over the polyhedron defined by the LP relaxation and iteratively
adds constraints such that the LP optimal solution, containing fractional solution is cut-off,
without removing any feasible solution from the original non-convex constraint set of MILP.
The present-day cutting plane algorithms are used as sub-routine within the branch-and-
bound framework to make it a branch-and-cut. Next, we illustrate through a toy example of
how a cutting plane method might function at an iteration. Let x ∈ Z2 be an integer decision
variable and let c ∈ R be a positive constant. Suppose, we need to obey x1 + x2 ≤ c, then
we can use the rounding argument to claim that x1 + x2 ≤ bcc. Note that all the feasible
solutions for x ∈ Z are still valid, however, we are successful in chopping of the search space.

1.2 Machine Learning

The human brain is a marvelous computing machine with about 86 billion neurons [10]. As
humans, we would like to emulate this complex computing system using a mix of modern-
day hardware and software to solve problems of humanity, and in the process get a better
understanding of the governing principles of our intellect. This field of study is broadly known
as Artificial Intelligence (AI). Machine Learning (ML) is a sub-field of AI, that leverages
data of the past experiences and optimization, rather than explicitly stated rules, to assist
decision making in the future in similar situations.

ML can be broadly classified into three main categories of supervised learning, unsupervised
learning and reinforcement learning. In supervised learning, we are given a training set
containing input-output pairs. The task is to find a mapping from the input space to the
output space, such that this mapping is able to correctly predict the output for the unseen
inputs. In unsupervised learning, the task is to find the latent representation of the data
points. This latent representation can then be used for tasks like grouping similar data
points, density estimation, etc. One of the successful applications of this technique can
be found in the field of natural language processing for improving language understanding
tasks [11]. In reinforcement learning, an agent learns the optimal control mechanism for some
task by continuously interacting with the environment and improving the expected reward
it gathers during an episode. The agent-environment interaction is modeled as a Markov
decision process. The agent starts in some initial state and performs some action. The
environment processes this action to return a reward signal and the next state to the agent.
This interaction continues until the agent reaches a terminal state and the episode ends. By

6

interacting with the environment over multiple episodes, the agent learns how good it is to
be in some state and what is the best course of action in this state.

1.2.1 Supervised learning

Given a labeled dataset of input-output pairs, supervised learning tries to learn a mapping
that can correctly predict an output associated with an input. We later use this mapping
to predict output for a previously unseen input. These unseen input-output pairs on which
we test are also sampled from the same distribution as the input-output pairs on which it
was trained. Supervised learning can be divided into two main classes of problems, namely,
classification and regression.

In (binary) classification, the output y ∈ {0, 1}, indicating a discrete class to which the
input x belongs. For example, consider a labeled dataset of images containing oranges and
apples. As we know, apples and oranges come in many different forms, colors and sizes.
Hence, writing an exhaustive if-then-else program to classify an image as an apple or orange
is out of the question. Since we have a labeled dataset, we can use supervised learning to
train a model that can correctly classify whether the input image is an apple or orange. The
image of the fruit can be treated as an input x and the corresponding label y can either
be 0 for being an apple or 1 for being orange. Thus, whenever a new unlabeled image is
given to the model, it will predict the conditional probability p(y = 1|x). We can predict
the class to which the input belongs by thresholding this probability, i.e., we label it 1 if
p(y = 1|x) ≥ 0.5 or 0 otherwise. Note that a given type of fruit might have different
properties based on the geographical location where it is produced. Hence, one should not
expect the learning algorithm trained on the images of the fruits of particular geography to
work on those of another geography, even for the same kind of fruit. This phenomenon is
known as the distribution shift. To alleviate this issue, one must strive to make the train
set to capture the variations that the model is supposed to encounter during inference for
good results. Hence, the system requirements should be clear before endeavoring into the
development of such a system.

In regression, the output label y ∈ R, mapping the input x to a real number. For example,
consider building a house price prediction system. For simplicity assume that the input x
only contains the information about the number of rooms, number of bathrooms, postal code
and area of house in square meters. The corresponding y label can be the price of that house.
We can then use a regression model trained on the data of many such houses.

To put it formally, let X and Y be the feature/input space and label/output space, respec-
tively, P (X ,Y) (or P for short) be the non-tractable joint probability distribution defined

7

over them and fθ : X → Y a parameterized mapping. The expected discrepancy/loss/cost
associated with mapping fθ,

Lemp(fθ,X × Y) = E(x,y)∼P [L(fθ(x),y)]

is called the empirical risk. The goal of supervised learning is to find the optimal mapping
fθ∗ ∈ F , where F is the family of parameterized mappings from X to Y , that minimizes the
empirical risk associated with it, i.e.,

fθ∗ = arg minfθ∈F L
emp(fθ,X × Y).

This process of finding fθ∗ from F is called the empirical risk minimization. Note that the
exact evaluation of E(x,y)∼P [L(fθ(x),y)] is not possible because P is non-tractable, i.e., we
do not have access to X × Y . Hence, we do the Monte-Carlo approximation to evaluate the
same; we create a training dataset Dntrain = {(xi,yi) : (xi,yi) ∼ P, 1 ≤ i ≤ n} by drawing n
independent and identically distributed (i.i.d.) samples from P and calculating,

Lemp(fθ,Dntrain) = 1
|Dntrain|

∑
(x,y)∈Dn

train

L(fθ(x),y) ≈ Lemp(fθ,X × Y).

The empirical risk can also be viewed from the perspective of the parameters θ, as fθ is
characterized by θ, i.e.,

Lemp(θ,Dntrain) ≡ Lemp(fθ,Dntrain)

and the corresponding optimization process is to find θ∗ ∈ Θ, instead of fθ∗ ∈ F . The
popular gradient descent based methods like [12–16] are among the preferred choice of the
optimization algorithm to find θ∗ ∈ Θ as they perform well under practical considerations
like computational complexity and time.

Once we have obtained these optimal set of parameters θ∗ for the training data distribution,
we check how well do they perform over other samples drawn from P , not present in the
training set. As we already know, checking this in its true sense is not feasible as P is non-
tractable. Hence, we again do the Monte-Carlo approximation but on a new test dataset; we
create a test dataset Dmtest = {(xi,yi) : (xi,yi) ∼ P, (xi,yi) /∈ Dntrain, 1 ≤ i ≤ m} by drawing
m i.i.d. samples from P , not present in training dataset, and calculating,

Lemp(θ∗,Dmtest) = 1
|Dmtest|

∑
(x,y)∈Dm

test

L(fθ∗(x),y).

8

Lemp(fθ∗ ,Dmtest) is called the generalization/test error. To judge the performance of θ∗ and
drive the model building process in the right direction, we can leverage the relationship
between the train and test errors. Both the train and test errors being low is the ideal
scenario. The case in which the train error is high and the test error is low usually does
not occur in practice, provided the train and test datasets are created using i.i.d. samples.
If we have a high train and test errors, our model is under-fitting the data as it does not
have enough capacity. To overcome this, we should increase the model capacity by increasing
the number of parameters. If we have a low train error and high test error, our model is
over-fitting the data as it has more capacity than required. The high capacity enables it
to memorize the training data, resulting in low train error. When this model is subjected
to previously unseen data, drawn from the same distribution as training data, it performs
miserably. We can take different measures to prevent the model from memorization and
driving it to learn a meaningful mapping. First, we can decrease the model capacity by
reducing the number of parameters. Second, we can add a regularization term or weight
penalty to the empirical loss term during optimization,

Lemp(fθ∗ ,Dntrain) + λR(θ)

where R : Θ → R is the regularizer and λ > 0 is the regularization constant. The two
commonly used regularizers are lasso penalty L1(θ) = ∑

i |θi| and ridge penalty L2(θ) =∑
i

∥∥∥θi∥∥∥2
. Last, we can add more samples in the training dataset. However, this traditional

understanding might only be one half of the story as argued in [17], where they continue
training beyond the over-fitting regime and achieve improved generalization.

Gradient descent based methods, as stated before, are the workhorse of many modern-day
optimization algorithms that help us find the optimal parameters θ∗. Hence, if we evaluate
the gradient of Lemp(fθ, ·) with respect to θ and a move a small step α against that direction

θnew ← θold − α∇θLemp(fθold , ·)

then, Lemp(fθnew , ·) ≤ Lemp(fθold , ·). This requires us to have a differentiable loss function
L. The common choices for L are the cross-entropy loss for classification tasks and the
mean squared error for regression tasks. Ideally, we would like to be as close as possible to
θ∗ by iteratively updating θ. A nice overview comparing different gradient descent based
algorithms is provided in [18]. Next we explain linear regression in Section 1.2.2 and artificial
neural network in Section 1.2.3, which are used to solve a regression task in this thesis.

9

1.2.2 Linear Regression

Linear regression (LR) model, as the name suggests, tries to learn a linear mapping/hypothesis
from the input space to output space, i.e., fθ : X → Y is linear. Let X = [xi]ni=1 be the
inputs and Y = [yi]ni=1 be the corresponding outputs, then the output predictions Ŷ = θ ·X.
Note that xi0 = 1,∀i and hence θ0 acts a bias. This helps in keeping the notation simple.
The error E in the predictions is equal to E = Ŷ −Y and we would like to minimize the
mean squared error mean squared error (MSE), i.e.,

minθ
1
n

∑
E2 = minθ

1
n

∥∥∥Ŷ −Y
∥∥∥2

= minθ
1
n
‖θ ·X−Y‖2

The value of optimal parameters θ∗ is then given by

θ∗ = (XTX)−1XTY.

However, for stability and keeping the weights from assuming extreme values (too big or
small), it is better to add a lasso or ridge regularizer to the MSE. Note that we can also
minimize the l1-norm of E, i.e., the absolute value |E|.

1.2.3 Artificial Neural Networks

An artificial neural network (ANN) is a computational model based on an analogy with the
biological neural network and are composed of interconnected neurons. A neuron is the basic
computational unit of an ANN, which takes a linear combination of its input and applies a
non-linearity to produce the output, i.e.,

y = σ(θ · x)

where x,y,θ and σ are the input, output, neuron parameters and non-linearity respectively.
A few of the common non-linearities include sigmoid, tanh, ReLU, leaky-ReLU, etc. An ANN
consists of multiple layers of neurons. The predictions of the ANN are compared against the
labels or ground truth and the error is computed. This error is used to tune the parameters
of the ANN (or the neurons) using backpropagation [19, 20], which uses the chain rule of
calculus.

10

Feed-forward Neural Network

FFNN is a type of an ANN in which each neuron in a given layer is connected to all the
neurons in the next layer. The first, intermediate and last layers are called input, hidden
and output layers, respectively. Suppose the output at a layer i is a(i), then we compute the
output of the next layer a(i+1) as

a(i+1) = σ(W(i) · a(i))

where W(i) is the parameter matrix connecting layer i to i+ 1. a(0) is set equal to the input.
The final output is equal to a(l) for an l− layer neural network. The computations performed
to calculate the final layer output a(l) starting from a(0), is called the forward-pass. We
calculate the loss between the label/ground truth y and prediction a(l). Once we have the
error, we calculate its gradient with respect to the model parameters sequentially, starting
from the last layer to the first layer.

Convolutional Neural Network

A Convolutional Neural Network (CNN) is a special type of an ANN, designed specifically to
cater to image data. First, image data is high dimensional, and if we try to process it using a
FFNN, then the number of parameters can easily explode. For example, a grayscale image of
size 100x100 would lead to 10,000 dimensional input. CNN, on the other hand, exploits local
connectivity, i.e., they only operate on a small chunk of the data at a given point in time.
Dealing with only a small portion of the input helps in reducing the number of parameters
as compared to the FFNN. Second, images contain spatial data, however, FFNN are not
designed to leverage this. On the other hand, CNN uses parameter sharing which helps to
extract exactly similar features on the entire input. Finally, images contain information that
is usually invariant to certain translations. Consider performing the classification task on
images of apples. These apples might be captured under different lighting, rotation, scaling,
etc. However, all of these images contain the same information that an apple is present in
that image. CNN uses a technique called max-pooling, which helps it achieve translation
invariance. We refer the reader to [21,22] for further understanding of the CNN.

1.3 Outline

This thesis is primarily based on our work “A learning based algorithm to quickly compute
good primal solutions for Stochastic Integer Programs”, which appeared at the conference

11

Constraint Programming, Artificial Intelligence, and Operations Research 2020 as a short
paper [23]. Especially, the introduction, motivation, problem definition and methodology
given in Section 2.1, Section 2.2, Section 2.3 and Section 2.4, respectively are taken from [23].
Also, [23] provides the preliminary results on the stochastic capacitated facility location prob-
lem (S-CFLP) of a fixed size. Section 2.5 details the computational study to further test the
scalablity of our approach to handle variable sized instances of the S-CFLP. We also report
the performance of our method on the stochastic generalized assignment problem (S-GAP).
Finally, Chapter 3 details the conclusion, the challenges faced during the experimentation
and the potential next steps to alleviate these challenges.

12

CHAPTER 2 A LEARNING BASED ALGORITHM TO QUICKLY
COMPUTE GOOD PRIMAL SOLUTIONS FOR STOCHASTIC INTEGER

PROGRAMS – AN EXTENSION

2.1 Introduction

Two-stage stochastic integer programming (2SIP) is a standard framework to model decision
making under uncertainty. In this framework, first the so-called first-stage decisions are made.
Then, the values of uncertain parameters in the problem are determined, as if sampled from a
known distribution. Finally, the second set of decisions is made depending upon the realized
value of the uncertain parameters, the so-called second-stage or recourse of the problem. The
decision maker, in this setting, minimizes the sum of (i) a linear function of the first-stage
decision variables and (ii) the expected value of the second-stage optimization problem.

2SIP is studied extensively in the literature [24–34] owing to its applicability in various
decision making situations with uncertainty, like the stochastic unit-commitment problems
for electricity generation [33,34], stochastic facility location problems [26], stochastic supply
chain network design [35], among others. With the overwhelming importance of 2SIP a wide
range of solution algorithms have been proposed, for example, [25,36–40].

2.2 Motivation and Literature Review

This body of work broadly falls in the category of combinatorial ML (CML), where ML is
leveraged to solve problems in combinatorial/discrete optimization. AlexNet [41] winning the
2012 ImageNet competition was a monumental moment for the ML community, as researchers
from the other scientific communities started believing in the promise of ML. Since then the
field has made remarkable progress in areas like computer vision, natural language processing
and reinforcement learning owing to a mix of novel algorithms and increased computing
capabilities. Thus, researchers from different domains started asking the pertinent question
of how can they can use ML to advance the state-of-the-art in their fields.

The field of discrete optimization has many computationally hard problems, for example,
MILP is NP-hard. As a result, many state-of-the-art algorithms in this domain heavily rely
on heuristics which are based on the knowledge accumulated over the years by the experts
and can be problem specific. There can be better techniques to solve these problems, which
are not yet discovered. Reinforcement learning, a specific type of ML, can be used in such
cases, to discover novel control strategies, just like in the case of AlphaGo [42]. In some

13

cases, the heuristic might be time consuming to compute and one would like to have a fast
approximation for the same. We can use supervised learning to tackle this issue, where we
go through an expensive training phase, but have an extremely fast inference phase which
approximates the heuristics during test time. For example, [43] uses ML to approximate
a strong branching strategy used in the branch-and-bound search tree. Last but not the
least, optimization algorithms assume no knowledge of the previously solved problems. One
might likely be solving many similar optimization problems, originating from a specific non-
tractable probability distribution, without benefiting from the insights of previously solved
problems. ML algorithms are inherently data-driven and hence can prove useful for solving
problems coming from some specific, non-tractable, probability distribution. All of these
factors combined acted as a catalyst for the field of CML. For a snapshot of the recent
developments in this area, we point the reader to these surveys [44,45].

Stochastic Programming and ML [46] proposes a hybrid strategy by combining scenario
trees and ML to solve multi-stage stochastic programming problems. They specifically use
supervised learning and scenario-tree approximations to construct a decision policy. They
test this policy to quickly evaluate an approximation and selecting good scenario trees. [47]
proposes a General Policy Function Approximation, based on Policy Function Approximation
introduced in [48], to evaluate electricity portfolio policies. [49] introduces an end-to-end
learning approach for stochastic programming problems, such that the predictions perform
well on the downstream optimization task, rather than just excelling at the learning task.
The crucial component of their algorithm is the ability to differentiate through an argmin
operator, with some assumptions of strong convexity. [50] proposes to solve the Constrained
Stochastic Program as an RL task, by combining the scalability of the RL with the modeling
and constraint filtering techniques of constraint programming. One of the solution techniques
to solve two-stage stochastic integer program (2SIP) is Benders Decomposition. Benders
decomposition starts with a relaxation of the original problem, by only considering a few of
the original constraints. It iteratively tries to find an intermediate solution and check if it
satisfies all the constraints. We selectively add only those cuts which are violated by the
intermediate solution. [51] uses supervised learning to improve Benders Decomposition, by
selecting valuable cuts. A cut is deemed valuable if it significantly reduces the feasible region
at a given iteration of the algorithm, or is active for the final solution. This helps in faster
convergence of the algorithm.

Our work is mainly inspired by [52]. They proposed a reinforcement learning-based heuristic
solver to quickly find solutions to 2SIP. Given that the agent can be trained offline, the
algorithm provided solutions much faster for some classes of problems compared to an open-

14

source general-purpose mixed-integer programming (MIP) solver, in their case, SCIP [53,54].
However, their method is based on the following restrictive assumptions:

(i) All first-stage variables are required to be binary. General integer variables or contin-
uous variables in the first stage cannot be handled.

(ii) Any assignment of the binary variables is required to be feasible for the first stage of
the problem, i.e., no constraints are allowed in the first stage.

Assumption (i) above is intrinsic to the method in [52], as both the initialization policy and
the local move policy of the method involves flipping the bits of the first-stage decision vector.
Hence, one cannot easily have general integer variables or continuous variables. Assumption
(ii) is again crucial to the algorithm in [52], as flipping a bit in the first stage could potentially
violate constraints present in the first-stage and make the new decision infeasible. To deal
with this issue, it might require a more complicated feedback mechanism to check and discard
infeasible solutions. In fact, if there are constraints, it is NP-hard to decide if there exists a flip
that keeps the decision feasible. Alternatively, one could empirically penalize the infeasible
solutions, but tuning the value of penalty might be a hard problem in itself.

In contrast, our method does not require either of these two restrictive assumptions. We
allow binary, general integer as well as continuous variables in both the first and second
stages of the problem. We also allow constraints in both stages of the problem. Furthermore,
we have a simple and direct approach to handle the first-stage constraints, without requiring
any empirical penalties.

We make the following common assumption to exclude pathological cases, where an uncertain
realization can turn a feasible first-stage decision infeasible.

Assumption 1 The 2SIP has complete recourse, i.e., if a first-stage decision is feasible
given the first-stage constraints, then it is feasible for all the second-stage problems as well.

We make another assumption of uncertainty with finite support, so we can have a proper
benchmark to compare our solution against. However, this assumption can be readily re-
moved, without affecting the proposed algorithm.

Assumption 2 The uncertainty distribution in the 2SIP has a finite support.

15

2.3 Problem Definiton

We formally define a 2SIP as follows:

min
x∈Rn1

cᵀx+ Eξ [Q(x, ξ)] (2.1a)

subject to Ax ≤ b (2.1b)

xi ∈ Z, ∀ i ∈ I1 (2.1c)

where,

Q(x, ξ) = min
y∈Rn2

{
qᵀξyξ : Wyξ ≤ hξ − Tξx, yξ ≥ 0; yi ∈ Z ∀ i ∈ I2

}
where x ∈ Rn1 and y ∈ Rn2 are the first and second-stage decisions respectively, c ∈ Rn1 ,
A ∈ Rm1×n1 , b ∈ Rm1 , yξ ∈ Rn2 , qξ ∈ Rn2 , W ∈ Rm2×n2 , Tξ ∈ Rm2×n1 , hξ ∈ Rm2 , I1 ⊆
{1, . . . , n1}, I2 ⊆ {1, . . . , n2}, ξ ∈ Ξ and where (Ξ,FΞ, p) defines a probability space.

When Assumption 2 holds, the 2SIP described above can also be expressed as a single de-
terministic MIP as follows:

min
x,y

cᵀx+
∑
∀ξ∈Ξ

pξq
ᵀ
ξyξ (2.2a)

subject to Ax ≤ b (2.2b)

Wyξ ≤ hξ − Tξx ∀ξ ∈ Ξ (2.2c)

xi ∈ Z, ∀ i ∈ I1 (2.2d)

yξi ∈ Z, ∀ξ ∈ Ξ,∀ i ∈ I2. (2.2e)

where, Ξ is the set of random scenarios and pξ is the probability of a random scenario ξ ∈ Ξ.

When Assumption 2 does not hold, the formulation Equation (2.2) could be a finite-sample
approximation of Equation (2.1), which is extensively studied in the stochastic programming
literature. Imitating [52], we compare our algorithm against solving Equation (2.2) with a
general-purpose MIP solver.

2.4 Methodology

This section details the methodological contribution to solve an SIP quickly using machine
learning.

16

2.4.1 Surrogate Formulation

We first define the objective value function (OVF) Φ : Rn1 → R, mapping x 7→ cᵀx +
Eξ [Q(x, ξ)] - the function we are trying to optimize over the mixed-integer set defined in
Equation (2.1).

Given Equation (2.2), we define the surrogate problem associated with ξ† = (q†, h†, T †), as
follows:

min
x,y

cᵀx+ (q†)ᵀy (2.3a)

subject to Ax ≤ b (2.3b)

Wy ≤ h† − T †x (2.3c)

xi, yj ∈ Z, ∀ i ∈ I1; j ∈ I2 (2.3d)

In other words, a surrogate formulation is a special case of the extensive formulation with
the set of scenarios Ξ = {ξ†}. Note that ξ† need not be equal to one of the scenarios used
to formulate the extensive formulation given by Equation (2.2). Now, the idea behind the
algorithm proposed in the thesis is captured by Conjecture 1.

Conjecture 1 Let Equation (2.2) (and hence Equation (2.1)) have an optimal objective value
of f ∗. There exists ξ? = (q?, h?, T ?) such that if (x†, y†) solves the (much smaller) surrogate
problem defined by ξ† = ξ?, then, f ∗ = Φ(x†).

Observe that by construction, x† is feasible to the original problem in Equation (2.1). Also,
Conjecture 1 asserts that, there exists a realization of the uncertainty ξ? such that if one
deterministically optimizes for that realization ξ?, then its solutions are optimal for the
original 2SIP. Each such ξ? is called a representative scenario (RS) for the given 2SIP.

Now, given adequate computing resources, one could solve the following bilevel program to

17

obtain an RS.

min
U,v,w
x,y

cᵀx+
∑
∀ξ∈Ξ

pξq
ᵀ
ξyξ (2.4a)

subject to (x,w) ∈ arg min
x,w


cᵀx+ vᵀw :

Ax ≤ b;
Ww ≤ v − Ux;

xi ∈ Z ∀ i ∈ I1

wi ∈ Z ∀ i ∈ I2


(2.4b)

Wyξ ≤ hξ − Tξx ∀ξ ∈ Ξ (2.4c)

yξi ∈ Z, ∀ξ ∈ Ξ,∀ i ∈ I2 (2.4d)

If the optimal value of this problem matches the optimal value of the original 2SIP, then
the corresponding values for (U, v, w) form the RS. Note that if Tξ is the same for all ξ ∈ Ξ,
then Equation (2.4) is a mixed-integer bilevel linear program (MIBLP) and can hopefully be
solved faster than the general case.

2.4.2 Learning Algorithm

The goal of ML algorithms is to predict an optimal (U, v, w) to Equation (2.4), given the
data for the 2SIP. On the one hand, we are expecting the ML algorithms to predict the
solutions of a seemingly much harder optimization problem than the original 2SIP. On the
other hand, this is easier for ML since there are no constraints on the predicted variables –
U, v, w. Supervised learning is a natural tool to achieve this goal.

Supervised learning can be used if there is a training dataset of problem instances and their
corresponding RS. The task of predicting RS can be formulated as a regression task as RS
is real valued. The algorithm tries to minimize the mean squared error (MSE) between the
true and predicted RS. The prediction can also be evaluated on the merits of optimization
metrics, comparing the solution and objective value of a true and predicted RS.

2.5 Computational Study

This section presents the computational results that can help assess the performance of our
methodology in different problem settings. For the same, we adopt a three-phase strategy.

Phase 1 : We check the performance of our methodology on the stochastic capacitated facility
location problem (S-CFLP) for a fixed size of instances, details of which are given in the
experiment 1 of Section 2.5.1.

18

Phase 2 : We check the performance of our methodology on multiple sizes of the S-CFLP,
details of which are given in the experiments 2 and 3 of Section 2.5.1. This will help assess
the scalability of our approach to handle multiple sizes, after some positive results with fixed
size instances of the S-CFLP.

Phase 3 : We check the performance of our methodology on the stochastic generealized
assignment problem (S-GAP) to assess its scalability to a new problem type, details of which
are given in the experiment 1 of Section 2.5.2.

Note that the results presented in [23] are also under similar settings as in Phase 1. The
similarity lies in terms of the problem type and size of instances that are tested. In both cases,
we work with the S-CFLP with 10 facilities and 50 scenarios. The differences are in terms of
the features, the computational platform to perform the experiments and the optimizer used
by the ML algorithms. In [23], the dimension of the features used is 190, whereas in Phase
1 the dimension of the features used is 140. We talk about the modified feature engineering
in Section 2.5.1. Also, the experiments presented in [23] are performed on a local server,
whereas the experiments of Phase 1 are performed on Beluga cluster, Compute Canada.
We used stochastic gradient descent (SGD) with momentum as optimizer for experiments
in [23], whereas we use Adam in Phase 1 experiments. Apart from these, Phase 1 contains
additional results about the performance of the ML algorithms on the instances for which
we were not able to find an representative scenario (RS), i.e., unlabeled set. However, the
key conclusion of the ML models being able to obtain good primal solutions as compared to
Gurobi, in significantly less time, still holds.

Comparisons In order to evaluate the ML-based prediction of ξ?, which we refer to as ξ̂?,
we compare the solution obtained by solving the surrogate problem associated with ξ† = ξ̂?

against solutions obtained by various algorithms.

We use different supervised learning models like Linear Regression (LR), FFNN and CNN
to predict an RS. We compare these predictions against

1. Solutions obtained using Gurobi by solving Equation (2.2) (GRB). For the S-CFLP,
the percentage gap allowed was 2% and for the S-GAP, we solved it to optimality.

2. Solutions obtained by solving the surrogate associated with the average scenario, namely∑N
k=1 ξk/N (AVG), where N = |Ξ| and ξk is the kth scenario in Ξ.

3. Solutions obtained by solving the surrogate associated with a randomly chosen scenario
from the N choices (RND).

19

4. Solutions obtained by solving the surrogate associated with a randomly chosen scenario
from the distribution of the scenario predicted by LR (DIST).

Note that GRB produces better solutions (in most cases) than the ML methods, however,
taking a significantly longer time. We, therefore, assess the time it takes GRB to get a
solution of comparable quality to the ML methods. This time is referred to as GRB-X,
which is the time taken by Gurobi to beat an ML method X.

Performance metrics

1. Objective Value Difference Ratio: We define the objective value difference ratio
(OVDR) as a relative measure of how well a given method B performs with respect
to a reference method A, in terms of the objective value obtained by them in the
optimization process. Let OBJA and OBJB be the objective value of the method A and
method B, respectively.

OVDR ≡ OBJB − OBJA

OBJA

In the context of this thesis, we compare the objective value of different methods (OBJM)
with respect to to the objective value obtained by solving the extensive form of 2SIP
using Gurobi [55] (OBJGRB). Thus, OVDR can also be stated as,

OVDR ≡ OBJM − OBJGRB

OBJGRB

Also, for the problems defined in this thesis, OBJGRB is always positive. Hence, when
OVDR is negative, the objective value of the method is better than that obtained by
the extensive form using Gurobi (assuming we are solving a minimization problem)
and vice versa. To make the comparison easier, we evaluate the percentage OVDR
(OVDR%) by multiplying the original OVDR with 100.

OVDR% ≡ OVDR× 100

For the remainder of this thesis, OVDR refers to OVDR% unless otherwise stated
explicitly.

2. Mean Squared Error: The mean squared error (MSE) between two m > 0 dimen-
sional quantities, y and ŷθ, can be defined as:

20

MSE ≡
∑
m(ŷθ − y)2

m

In our case, we use MSE to evaluate the empirical risk L(θ) of an ML algorithm
(estimator) for a multi-output regression task. In the same context, ŷθ refers to the
prediction of the estimator for some input x and y is its true label. Hence,

MSE(θ) = L(θ) =
∑
m(ŷθ − y)2

m
=
∑
m(hθ(x)− y)2

m

where hθ : X → Y , x ∈ X , y ∈ Y . Also, for performing empirical risk minimization
using SGD, we evaluate the batch loss. Let the number of samples in the batch be n,
Ŷθ = [ŷ(1)

θ , ŷ(2)
θ , . . . , ŷ(n)

θ] be the vector of predictions and Y = [y(1),y(2), . . . ,y(n)] be
the vector of labels, then, the empirical risk is equal to

MSE(θ) = L(θ) =
∑
n

∑
m(Ŷθ −Y)2

n ·m

3. R-squared Score: The R-squared (R2) score is a metric to gauge the ability of an
estimator hθ to capture the variance in the labels y(i)s by the corresponding predictions
ŷ(i)
θ s, respectively. Semantically, it tries to capture the following relation:

R2 ≡ Explained variation
Total variation ≡ 1− Unexplained variation

Total variation

Let ȳ be the mean of n labels,

ȳ =
∑n
i=1 y(i)

n

then, we can define total variation, explained variation and unexplained variation as

Total variation ≡
n∑
i=1

(
ȳ(i) − y(i)

)2

Explained variation ≡
n∑
i=1

(
ȳ(i) − ŷ(i)

θ

)2

Unexplained variation ≡
n∑
i=1

(
ŷ(i)
θ − y(i)

)2

Usually, R2 lies between 0 and 1; 0 indicates that the estimator is not able to capture
any variation in the labels and 1 indicates that the estimator is fully able to explain

21

the variation in the labels. There are cases in which it can also be negative. A negative
value implies that the mean of the labels is better able to capture the variation than
the predictions of the estimator.

However, solely considering the R2 to judge an estimator might be misleading; there are
cases in which low and high R2 are reported for good and poorly performing models,
respectively [56].

2.5.1 Stochastic Capacitated Facility Location Problem

Problem Formulation

We consider a stochastic capacitated facility location problem (S-CFLP), with binary and
continuous variables both in the first and second stages. Let F be the set of potential facilities
that can be opened. We assume that the number of clients is equal to the number of facilities.
Hence we can also use the set F to refer the clients. The demand of the clients are random.
To ensure complete recourse, i.e., every client’s demand is satisfied, we add a hub facility
(or hub) that can satisfy infinite demand in the second-stage. Let F ′ be the set of facilities
including the hub. The first-stage decision is to select a subset of facilities from F and decide
what capacity to install in each of them. Once the client demands are realized, we are allowed
to make the second-stage decision which assigns the open facilities to clients to satisfy their
demand. Table 2.1 contains the notations used to formulate the S-CFLP.

Table 2.1 Notations used to define an instance of the S-CFLP.

Data Definition
cfi Fixed cost of opening facility i
cvi Variable cost of opening facility i
ctfij Fixed cost of transporting from facility i to client j
ctvij Variable cost of transporting from facility i to client j
ξjk Demand of client j in scenario k

Variable Definition

bi

1, if facility i is open
0, otherwise

vi Capacity installed at facility i

uij

1, if facility i satisfies demand of client j
0, otherwise

yij Supply from facility i to client j

22

Using the definitions given in Table 2.1, we formulate the S-CFLP as follows:

min
b,v

∑
i∈F

(
cfi bi + cvi vi

)
+ 1
N

N∑
k=1

Q(b, v, ξk) (2.5)

|F |
10 ≤

∑
i∈F

bi ≤ 3 |F |
4 (2.6)

vi ≤ Mbi ∀i ∈ F (2.7)

bi ∈ {0, 1} ∀i ∈ F (2.8)

vi ≥ 0 ∀i ∈ F (2.9)

Here Q(b, v, ξk) is defined as the optimal value of the problem:

min
u,y

∑
i∈F ′

∑
j∈F

(
ctfij uij + ctvijyij

)
(2.10)

∑
j∈F

yij ≤ vi ∀i ∈ F (2.11)

∑
i∈F ′

yij = ξjk ∀j ∈ F (2.12)

yij ≤ Muij ∀i ∈ F ′ , ∀j ∈ F (2.13)

uij ≤ bi ∀i ∈ F, ∀j ∈ F (2.14)

uij ∈ {0, 1} ∀i ∈ F ′ ,∀j ∈ F (2.15)

yij ≥ 0 ∀i ∈ F ′ ,∀j ∈ F (2.16)

We minimize the fixed and variable costs of opening a facility along with the fixed and variable
costs of transportation between the facilities and clients in Equation (2.5). A fixed cost of
cfi is incurred, if a facility is opened in location i, and a variable cost of cvi is incurred per-
unit capacity of the facility opened in location i. The binary variable, bi tracks if a facility
is opened in location i and the continuous variable vi indicates the size of the facility at
location i. The constraints in Equation (2.7), Equation (2.8) and Equation (2.9) ensure that
the costs are incurred in the right way. Finally, Equation (2.6) is a complicating constraint,
which says that at least a tenth of the locations must have a facility open and not more than
three-quarters of the locations must have a facility open.

The second-stage objective in Equation (2.10) minimizes the transportation cost incurred
under a random demand scenario ξk. Then, Equation (2.11) ensures that the total quan-
tity transported out of a facility is not greater than the capacity of the facility, while Equa-
tion (2.12) ensure that the total quantity supplied to a location j equals the (random) demand

23

at j. Finally, constraints Equation (2.13) link u and y variables appropriately.

Data generation

1. Instance generation: Table 2.2 gives the data sampling details for generating an
instance of the S-CFLP.

Table 2.2 Data sampling details for generating an instance of the S-CFLP

Variable Sampling method
cf DiscreteUniform[15, 20)
cv DiscreteUniform[5, 10)
ξk Poisson(λ)

λ = b(cf + 10 ∗ cv)/
√
|F |c

Note that ctf and ctv remain fixed across instances of the same size.

2. Optimal solution generation: The generated instances are solved within 2% gap
and 10 minutes time limit using Gurobi. We are able to solve all the instances to the
specified gap within the specified time limit.

3. Representative scenario generation: We employ an iterative method to construct
an RS. Let ξ† be initialized with the average scenario ∑N

k=1 ξk/N , x† ≡ (b†, v†) and
OBJ† ≡ Φ(x†) be the solution and objective value of the surrogate problem constructed
using ξ†, respectively, and x∗ ≡ (b∗, v∗) and OBJ∗ be the near-optimal optimal solution
and objective value, respectively. Whenever the optimization problem is posed as a
minimization task, we try to find an RS from the set Ξ? ≡

{
ξ† : OBJ† ≤ c ∗ OBJ∗

}
,

where c is a positive constant (1.01 in our case). We use a mix of three heuristics to
update ξ†.

Heuristic 1 : If a facility i ∈ F is closed in the near-optimal solution and open in the
surrogate solution, then we zero out the demand on that location in surrogate, i.e.,

b∗i = 0 ∧ b†i = 1 =⇒ ξ†i = 0 (2.17)

Heuristic 2 : Update the demand on location imax ≡ argmax
i

|v∗i − v
ξ̄
i | by p percentage

of the current demand. The direction of the update is determined by the difference of

24

optimal and surrogate capacities installed on those locations:

ξ†imax = ξ†imax + v∗imax − v†imax

|v∗imax − v†imax|
p ξ†imax (2.18)

Heuristic 3 : Update the demand on location imax by a fraction f of the difference of
capacities in the optimal solution and surrogate solution.

ξ†imax = ξ†imax + (v∗imax − v†imax) f ξ†imax (2.19)

We quantify the aggressiveness of a heuristic by how smooth an RS we get using it.
Here, heuristic 1 is more aggressive in the sense that there will be more zeros induced
in an RS generated using it. Whereas heuristic 2 and heuristic 3 are milder. Also,
during our experiments, we were able to find more RS using heuristic 1 as compared
to other heuristics. To generate an RS, we start with the milder heuristics. If we are
not able to find an RS using them, then we use the aggressive one.

Feature Engineering

It is well known that features describing the connection between variables, constraints and
other interactions help ML to perform well rather than just providing plain data matrices
[43, 44, 57, 58]. In this spirit, along with the fixed and variable costs to open facilities at
different locations, we also provide aggregated features on the set of scenarios. These features
give information about each of the potential locations for facilities in S-CFLP as well as the
way different locations interact through the demands in adjacent nodes.

Let Ξ be an N × |F | matrix, where N is the number of scenarios and |F | is the number
of clients. We calculate the minimum, maximum, average, standard deviation, median, 75th

quantile, and 25th quantile of Ξ[:,i] (ith column of Ξ) for i = 1, . . . , |F |, resulting in a total of
7× |F | features.

We also find the percentage of scenarios in which some fraction c of the demand for a client
is greater than than the demand on all the other nodes∑

m 1cΞ[:,i] ≥ Ξ[:,6=i]

N

The dimension of the indicator function is equal to the number of scenarios N . We assign c to
different values from the set C = {0.9, 1, 1.1, 1.2, 1.5} and end up with |C|×|F | features. Note

25

that |C| = 5 as C remains fixed across experiments. Along with these, we also have the cf and
cv adding another 2×|F | features. Thus, in total we have (7×|F |)+(|C|× |F |)+(2×|F |) =
14× |F | features.

Results

We conduct three experiments to evaluate our approach. The three experiments performed
were increasingly difficult for the learning algorithm to achieve good generalization. Also,
we started using Adam optimizer instead of SGD with momentum, in PyTorch. We set the
learning rate and weight penalty of the Adam optimizer to 10−3 and 10−5, respectively.

Experiment 1 We start with a minimal setup to evaluate the claim made in Conjecture 1,
where the size and number of scenarios (NOS) for all the instances in the dataset were fixed.
We generate 50K instances of S-CFLP with 10 facilities, 10 clients and 50 scenarios. Using
heuristics, we were able to find an RS for 49,290 instances. The remaining 710 instances,
for which we are not able to find an RS, are referred to as an unlabeled set. We use 45K
instances in the train set and the remaining 4290 instances in the test set. We create a
140 dimensional input feature vector for the ML models. The output dimension of the ML
models is equal to 10, as we predict a representative demand at each of the 10 locations.

Table 2.3 reports the statistics of OVDR and Table 2.4 statistics on computing times, for
different methods to estimate an RS. We report our results on the test and unlabeled sets.
FFNN1 and FFNN2 in Table 2.3 refer to two different configurations of an FFNN; both of
them have the same input and output dimensions, however, the former has a single hidden
layer of dimension 256 as compared to the latter with two similar hidden layers. In the context
of experiment 1, we jointly refer to FFNN1 and FFNN2 as FFNN, instead of explicitly making
a distinction of their configuration, if the observation holds for both of them. GRB-L, GRB-
F1 and GRB-F2 in Table 2.4 refer to the time taken by Gurobi to produce a solution as good
as an LR, FFNN1 and FFNN2, respectively.

On the test set, we observe from Table 2.3 that LR and FFNN produce decisions that are as
good as GRB ones on an average (and by the median value), and in some cases, the ML-based
methods even beat GRB, i.e., produce solutions whose objective value is better than that
of GRB. This is possible because GRB does not necessarily solve the problem to optimality,
but only up to a gap of 2%. Further, even in the worst of the 4,290 test cases, LR is at
most 2.67% away from GRB. To show that this is not easily achieved, we also compare GRB
against baselines like AVG, RND and DIST. We observe from Table 2.3 that these methods
perform much poorer than GRB, unlike LR and FFNN.

26

On the unlabeled set, we observe an increase in the average, min and median of the OVDR
for all methods, as compared to the test set, from Table 2.3. ML based methods are still able
to produce good decisions, with minimum average OVDR of 0.83% for LR and a maximum
average OVDR of 1.14% for FFNN2. The relative performance of the ML based methods in
terms of average OVDR on the test set also holds on the unlabeled set, i.e., LR < FFNN1

< FFNN2 in terms of average OVDR. Also, the maximum OVDR of the ML based methods
on the unlabeled set is similar to that on the test set.

Table 2.3 Experiment 1 OVDR statistics (in %) of different methods.

GRB vs. Avg. ± Stdev. Min Median Max
Test set

AVG 8.12 ± 1.61 3.21 8.08 14.00
RND 12.15 ± 12.13 0.60 8.11 89.05
DIST 5.13 ± 4.60 -0.28 3.68 43.25
LR 0.65 ± 0.42 -0.55 0.61 2.67

FFNN1 0.78 ± 0.50 -0.45 0.71 3.36
FFNN2 0.87 ± 0.59 -0.46 0.77 4.64

Unlabeled set
AVG 9.43 ± 1.87 4.08 9.45 14.57
RND 13.37 ± 12.96 0.15 9.31 81.10
DIST 6.83 ± 4.66 0.15 6.08 25.56
LR 0.83 ± 0.41 -0.28 0.81 2.69

FFNN1 1.00 ± 0.50 -0.14 0.93 3.48
FFNN2 1.14 ± 0.62 -0.07 1.06 4.27

Analyzing the time improvement in using LR and FFNN, we observe from Table 2.4 that
these methods solve the S-CFLP orders of magnitude faster than GRB, both on the test and
unlabeled sets. On the one hand, GRB takes over 6 and 12 seconds, on average, on the test
and unlabeled sets, respectively. On the other hand, LR takes a maximum of 0.02 seconds
and an average of 0.003 seconds, on both the test and unlabeled sets. The time taken to solve
the S-CFLP using the ML methods includes is the time in computing the features, predicting
an RS and solving the surrogate problem associated with the predicted RS. This underscores
the fact that our method is able to produce good solutions for the S-CFLP, which could be
useful in itself or used in tandem with exact solvers like Gurobi for improved efficiency. In
fact, LR and FFNN are still orders of magnitude faster than GRB.

We observe that the standard ML objective of improving generalization, i.e., the performance
on the test set, as measured by MSE, is achieved by choosing a model with more parameters.

27

The MSE achieved by LR is 71.11, FFNN1 is 44.64 and FFNN2 is 38.50. In particular, the
generalization of FFNN1 is better than that of LR and the performance of FFNN2 is better
than that of FFNN1. In contrast to the above observation, when we measure the performance
using average OVDR, we observe that LR has a better performance compared to both FFNN1

and FFNN2. But, given that OVDR is known to be a discontinuous function, learning by
trying to minimize the empirical OVDR is a harder task, forcing us to use a proxy like that
of MSE, as we have done above. We do not fully understand the reliability of differentiable
metrics like the MSE when our ultimate goal is to minimize OVDR, and we leave this analysis
to future work.

Table 2.4 Experiment 1 computing time statistics (in seconds) of different methods.

Method Avg. ± Stdev. Min Median Max
Test set

GRB 6.2592 ± 14.3423 0.2544 1.3688 468.9182
AVG 0.0025 ± 0.0005 0.0023 0.0024 0.0226
RND 0.0025 ± 0.0005 0.0023 0.0024 0.0145
DIST 0.0025 ± 0.0006 0.0023 0.0024 0.0194
GRB-L 3.0190 ± 9.0502 0.2220 0.8522 468.9182
GRB-F1 2.6158 ± 8.6584 0.2220 0.8190 468.9182
GRB-F2 2.4687 ± 5.9890 0.2173 0.8041 110.0594

LR 0.0028 ± 0.0005 0.0026 0.0027 0.0160
FFNN1 0.0028 ± 0.0005 0.0026 0.0027 0.0180
FFNN2 0.0028 ± 0.0004 0.0024 0.0027 0.0136

Unlabeled set
GRB 12.2431 ± 18.8957 0.4950 11.9533 216.8782
AVG 0.0026 ± 0.0011 0.0023 0.0024 0.0161
RND 0.0025 ± 0.0004 0.0023 0.0024 0.0089
DIST 0.0025 ± 0.0005 0.0023 0.0024 0.0131
GRB-L 4.4137 ± 9.0979 0.3042 0.9319 94.1244
GRB-F1 3.6492 ± 8.6216 0.2918 0.8811 94.1244
GRB-F2 2.9721 ± 7.1220 0.2918 0.8451 94.1244

LR 0.0029 ± 0.0008 0.0026 0.0027 0.0155
FFNN1 0.0028 ± 0.0009 0.0026 0.0027 0.0155
FFNN2 0.0029 ± 0.0012 0.0025 0.0027 0.0201

Experiment 2 After some initial validation of the idea with fixed size and NOS equal to
10 and 50, respectively, we focus on creating a model that can predict an RS for multiple
sizes and NOS. Hence, we try to train a model that can handle sizes between 15 and 25, and

28

NOS between 25 and 50. The key step to create such a model is to generate feature vectors
of the same dimension for instances of different size-NOS combinations. If we consider an
instance with the maximum possible size of 25 and maximum possible NOS of 50, for this
experiment, we will end up with a 350 dimensional feature vector. The process of creating
features is described in point 4 of Section 2.5.1. For any instance with sizes or NOS less than
the maximum possible, we add relevant padding to convert it to a 350-dimensional feature
vector. We normalize the features between -1 and 1, and use -2 for padding to indicate null
values in the feature vector. We generate 50 instances for a given size-NOS combination,
giving a total of 27,300 instances.

The upper bound on size and NOS is decided based on the following criteria:

• Time to solve the extensive form of S-CFLP to 2% gap,

• Time to find an RS using heuristics,

• Number of labeled instances for the learning algorithm.

Out of these 27,300 instances, we were able to label 23,539 instances, and are left with 3761
instances being unlabeled. We use 85% of the labeled instances to create the train set and
the remaining 15% for the test set.

Table 2.5 Experiment 2 OVDR statistics (in %) of different methods.

GRB vs. Avg. ± Stdev. Min Median Max
Test set

AVG 12.29 ± 6.75 0.00 12.09 32.88
RND 17.42 ± 20.53 -0.38 9.59 216.38
DIST 20.84 ± 14.65 -0.11 19.49 70.46
LR 1.00 ± 0.57 -0.35 0.94 4.88

FFNN 2.17 ± 2.40 -0.32 1.42 28.08
CNN 1.82 ± 1.63 -0.46 1.34 17.38

Unlabeled set
AVG 19.47 ± 5.10 1.42 19.94 37.12
RND 27.85 ± 26.92 -0.17 20.19 206.63
DIST 34.65 ± 12.87 0.40 36.62 70.04
LR 1.27 ± 0.64 -0.22 1.16 6.31

FFNN 4.34 ± 3.63 0.03 3.08 24.92
CNN 3.20 ± 2.19 0.08 2.66 16.75

29

The FFNN considered for these experiments contains two hidden layers. The input layer con-
tains 350 neurons, the hidden layers contain 256 neurons each and the output layer contains
25 neurons. We use ReLU activation in the hidden and output layers. The CNN consists of
3 convolutional layers, each followed by a max-pooling layer. Every convolutional layer has
a kernal size 3, stride 1 and no-padding. The number of kernels in the three convolutional
layers are 16, 32 and 64, respectively. Each of the max-pooling layers has a kernel size 3 and
stride 3. Consequently, the 1× 350 shaped input is successively transformed into features of
shape 16× 116, 32× 38 and 64× 12 by the three layers. The last 64× 12 shaped feature is
flattened to get a 768 dimensional feature, which is then passed through a FFNN to produce
a 25-dimensional output.

Table 2.5 contains the OVDR statistics and Table 2.6 contains the time statistics for exper-
iment 2, both on train and unlabeled sets. The key result from experiment 1 still holds, i.e.,
the ML methods, especially LR, are able to achieve good average OVDR in a fraction of the
time taken by Gurobi. We observe that average OVDR has gone up for all the methods as
compared to experiment 1, however, this increase is more drastic for the baseline methods.
AVG achieves the best average OVDR of 12.29% on the test set and 19.47% on the unlabeled
set, among the baselines. LR, on the other hand, is able to achieve an average OVDR of 1%
and 1.27% on the train set and the unlabeled set, respectively.

In terms of time, on average, GRB takes around 9 seconds and 23 seconds on the train set
and the unlabeled set, respectively. Whereas, LR takes 0.006 seconds and 0.01 seconds, on
an average, on the train set and the unlabeled set, respectively. Also, GRB-L suggests that
it is still time consuming for Gurobi to produce a solution of the same quality as an LR.

Experiment 3 In this experiment, we further scrutinize the generalization ability of our
model, by training on some size-NOS combinations and testing on, partially or completely,
unseen size-NOS combinations. We generate 5000 instances for each of the (size-NOS) com-
bination from the set {(10, 25), (15, 25), (15, 50), (25, 50)}. For the size-NOS combinations
(10, 25), (15, 25), (15, 50), (25, 25) and (25, 50), we were able to find an RS in 4663, 4477,
4654, 3005 and 3273 instances, respectively. The increased number of labeled instances with
more NOS can be attributed to the fact that for any given size, solving their extensive form
with more scenarios makes the problem harder and increases the objective value. This in-
creases the 1% gap barrier value for classifying a scenario as an RS, eventually increasing
the space of scenarios that can be classified as an RS. We sample 5000 labeled instances of
(10, 50) from the first experiment. We use 85% of the labeled instances for training, giv-
ing us a train set of size 21,309 and a test set of size 3763. We refer to this sub-class of
instances in the test set as seen-size-seen-NOS (SSSS), as we have already seen these (size,

30

Table 2.6 Experiment 2 computing time statistics (in seconds) of different methods.

Method vs. Avg. ± Stdev. Min Median Max
Test set

GRB 9.4537 ± 26.5455 0.0220 2.2679 411.2703
AVG 0.0059 ± 0.0042 0.0010 0.0045 0.0271
RND 0.0058 ± 0.0042 0.0009 0.0044 0.0329
DIST 0.0057 ± 0.0041 0.0010 0.0044 0.0264
GRB-L 2.2493 ± 6.6935 0.0220 1.1659 266.2290
GRB-F 1.4666 ± 4.2472 0.0220 0.8848 201.1213
GRB-C 1.5715 ± 5.3128 0.0220 0.8997 201.1213
LR 0.0061 ± 0.0040 0.0014 0.0048 0.0161

FFNN 0.0062 ± 0.0040 0.0015 0.0049 0.0213
CNN 0.0062 ± 0.0040 0.0014 0.0049 0.0201

Unlabeled set
GRB 23.4069 ± 49.0136 0.0914 5.1477 599.0264
AVG 0.0101 ± 0.0037 0.0014 0.0104 0.0377
RND 0.0101 ± 0.0037 0.0010 0.0104 0.0302
DIST 0.0098 ± 0.0036 0.0010 0.0102 0.0266
GRB-L 3.3761 ± 9.0150 0.0483 2.1077 229.5173
GRB-F 1.8142 ± 2.7233 0.0483 1.4327 70.9094
GRB-C 1.9464 ± 3.4336 0.0483 1.4741 115.3235
LR 0.0103 ± 0.0035 0.0019 0.0107 0.0353

FFNN 0.0105 ± 0.0036 0.0020 0.0108 0.0475
CNN 0.0105 ± 0.0037 0.0019 0.0109 0.0377

31

Table 2.7 Description of the test set detailing the sub-classes, size-NOS combinations and
the corresponding number of instances.

Sub-class (size-NOS) # instances Total

SSSS

(10, 25) 700

3763

(10, 50) 750
(15, 25) 672
(15, 50) 699
(25, 25) 451
(25, 50) 491

Unlabeled-SSSS

(10, 25) 337

4928

(10, 50) 0
(15, 25) 523
(15, 50) 346
(25, 25) 1995
(25, 50) 1727

SSUS

(10, 10) 100

1200

(10, 40) 100
(10, 65) 100
(10, 100) 100
(15, 10) 100
(15, 40) 100
(15, 65) 100
(15, 100) 100
(25, 10) 100
(25, 40) 100
(25, 65) 100
(25, 100) 100

USSS

(5, 25) 100

400(5, 50) 100
(20, 25) 100
(20, 50) 100

USUS

(5, 40) 100

400(5, 100) 100
(20, 40) 100
(20, 100) 100

Total 10691

NOS) combinations in the train set. We add more sub-classes to the test set like unlabeled
seen-size-seen-NOS (Unlabeled SSSS) referring to the instances for which we were not able
to find an RS, seen-size-unseen-NOS (SSUS) referring to instances whose sizes we have seen
in the train set but not the NOS, unseen-size-seen-NOS (USSS) referring to instances whose
sizes are not present in the train set but the NOS are, and unseen-size-unseen-NOS (USUS)
referring to instances whose neither size and nor NOS are present in the train set. A detailed
description of the test set is given in Table 2.7. The statistics of the OVDR of the trained
models on the sub-classes SSSS and unlabeled-SSSS are given in Table 2.8. While, statistics

32

of OVDR for the sub-classes SSUS, USSS and USUS are given in Table 2.9. The model
architectures for the FFNN and CNN are the same as in experiment 2.

From Table 2.8, we can observe that the trained models indeed generalize well on SSSS and
unlabeled-SSSS. This adheres to the generalization ability of the ML models, observed during
the previous two experiments, where the model is tested on instances having the same (size,
NOS) combinations as present in the training set. LR achieves the best average OVDR
among all the methods, with CNN and FFNN being the second and third, respectively. On
the one hand, the baselines’ performance drops with an increase in the size of the instances.
On the other hand, the performance of ML based models is quite robust to such an increase
in the size, i.e., the average OVDR increases only slightly with the increase in size from 10
to 25.

Table 2.8 Experiment 3 OVDR statistics (in %), on the sub-classes SSSS and unlabeled-SSSS.

(size-NOS) AVG RND DIST LR FNN CNN
Sub-class SSSS

(10, 25) 8.21±1.81 11.32±11.65 5.17±4.06 0.86±0.55 1.05±0.6 0.97±0.57
(10, 50) 8.23±1.63 11.57±11.7 5.97±5.61 0.7±0.43 0.87±0.51 0.79±0.46
(15, 25) 13.27±2.2 18.2±17.42 18.12±6.35 1.0±0.56 1.42±0.77 1.25±0.73
(15, 50) 13.01±2 19.08±18.98 16.96±6.47 0.68±0.38 1.19±0.65 0.91±0.51
(25, 25) 23.33±3.39 33.19±31.99 45.05±6.06 1.25±0.6 3.55±3.97 1.77±0.97
(25, 50) 22.99±2.86 33.84±31.25 45.22±6.08 0.86±0.42 2.53±2.44 1.31±0.79

Min 0.72 -0.34 0.04 -0.56 -0.31 -0.55
Max 35.42 192.91 67.98 5.79 40.99 8.05
Avg. 13.75 19.60 19.84 0.87 1.60 1.11

Median 12.09 12.12 15.01 0.81 1.18 0.98
Std. dev. 6.27 22.31 16.56 0.52 1.93 0.73

Sub-class unlabeled-SSSS

(10, 25) 9.63±2.46 13.48±13.08 6.91±4.93 1.17±0.6 1.43±0.67 1.33±0.65
(15, 25) 14.31±2.46 19.56±19.92 21±7.23 1.19±0.56 1.68±0.82 1.51±0.73
(15, 50) 14±2.08 20.24±19.62 18.77±6.77 0.85±0.43 1.45±0.74 1.15±0.57
(25, 25) 24.23±3.44 33.66±31.66 47.14±6.43 1.45±0.64 4.22±4.73 1.97±0.99
(25, 50) 23.94±2.81 33.46±30.17 45.76±5.99 0.97±0.43 3.37±3.49 1.47±0.74

Min 3.42 -0.82 0.27 -0.36 -0.02 -0.11
Max 35.78 214.03 69.30 4.83 68.77 8.25
Avg. 21.36 29.77 39.14 1.19 3.27 1.65

Median 22.75 20.75 43.89 1.11 2.18 1.48
Std. dev. 5.74 29.18 14.70 0.59 3.82 0.88

From Table 2.9, we can observe that the average OVDR increases on the SSUS sub-class as
compared to the sub-classes SSSS and unlabeled SSSS. The average OVDR of LR, FFNN
and CNN on the sub-class unlabeled SSSS increases from 1.19, 3.27 and 1.65 to 3.57, 7.08
and 5.81 on the sub-class SSUS, respectively. This is contrary to the expected behavior as we

33

Table 2.9 Experiment 3 OVDR statistics (in %), on the sub-classes SSUS, USSS and USUS.

(size-NOS) AVG RND DIST LR FNN CNN
Sub-class SSUS

(10, 10) 8.68±2.24 11.19±10.25 5.44±3.29 3.21±1.48 4.03±1.66 3.89±1.57
(10, 40) 8.22±1.72 12.62±12.38 5.27±3.53 2.71±1.1 3.75±1.41 3.5±1.29
(10, 65) 8.01±1.58 11.97±12.04 3.97±3.6 2.48±0.89 3.51±1.23 3.28±1.04

(10, 100) 7.99±1.59 12.53±12.73 4.07±3.52 2.55±0.84 3.62±1.13 3.4±0.95
(15, 10) 13.49±3.07 18.45±16.16 19.48±5.68 3.84±1.68 5.81±2.12 5.08±2.15
(15, 40) 13.04±1.92 18.46±20.28 16.74±5.98 3.42±1.2 5.4±1.46 5.22±1.29
(15, 65) 12.88±1.68 20.7±19.14 18.3±5.32 3.29±1.03 5.33±1.27 5.25±1.11

(15, 100) 12.73±1.62 17.19±16.82 15.25±5.73 3.3±0.92 5.38±1.14 5.26±1.08
(25, 10) 24.29±5.14 30.58±26.59 48.49±6.67 5.35±1.5 11.26±3.34 9.1±2.28
(25, 40) 23.67±3.14 25.69±23.33 45.55±5.96 4.22±1.22 12.01±2.96 8.5±1.84
(25, 65) 23.3±2.71 34.89±32.02 44.06±6.03 4.28±1.13 12.4±2.69 8.59±1.6

(25, 100) 23.19±2.34 31.55±27.83 45.23±5.57 4.26±1.16 12.43±2.57 8.65±1.48

Min 3.11 -0.24 0.15 -0.32 0.50 0.29
Max 40.01 118.87 6.60 8.64 20.09 14.67
Avg. 14.96 20.48 22.65 3.57 7.08 5.81

Median 13.06 13.25 17.53 3.41 5.74 5.35
Std. dev. 6.94 21.71 18.02 1.45 4.13 2.65

Sub-class USSS

(5, 25) 1.59±0.79 3.29±3.35 21.37±10.95 24.09±5.6 26.56±6.39 57.07±10.41
(5, 50) 1.47±0.7 3.46±3.37 22.28±10.19 23.13±5.57 26.97±6.32 56.05±10.69

(20, 25) 19.22±2.78 26.7±24.79 33.72±6.3 16.5±2.76 31.72±33.55 5.92±3.69
(20, 50) 18.76±2.4 28.6±27.36 31.22±5.55 15.89±2.52 26.53±29.59 4.85±2.67

Min -0.06 -0.22 1.63 10.79 1.14 0.81
Max 24.69 155.11 60.15 47.26 164.47 81.01
Avg. 10.26 15.51 27.15 19.90 28.45 30.97

Median 8.24 6.16 28.63 18.61 25.82 26.25
Std. dev. 8.95 22.18 10.11 5.74 22.82 26.78

Sub-class USUS

(5, 40) 1.49±0.69 3.05±3.27 23.48±10.32 23.65±5.72 26.75±6.33 56.43±10.52
(5, 100) 1.38±0.67 3.49±3.61 22.17±11.36 23.59±5.59 26.68±6.41 56.08±10.9
(20, 40) 18.91±2.58 24.35±20.07 32.18±5.77 15.93±2.65 30.12±32.43 5.06±3.12

(20, 100) 18.47±1.93 24.33±23.48 33.69±6.05 15.63±2.44 27.04±29.11 4.42±2.22

Min -0.14 -0.71 0.33 10.35 1.07 0.64
Max 25.63 107.41 50.92 48.14 161.98 85.77
Avg. 10.06 13.81 27.88 19.70 27.65 30.50

Median 8.41 5.03 28.89 18.19 25.65 24.25
Std. dev. 8.80 18.81 10.09 5.87 22.21 26.94

have an aggregation over the NOS in the feature space and the sizes are already seen during
the training. However, we are still 50% better than the best baseline of 14.96 achieved by
AVG.

Also, we can note that the performance of the ML models deteriorates significantly as com-

34

pared to the results on the previous sub-classes, indicating the fact that they are not able to
generalize well across unseen sizes. The ML models find it more difficult to generalize on the
instances with size 5 as compared to the instances with size 20. However, baseline methods
perform comparably well across smaller sized instances, helping them bring down the overall
OVDR, across sizes 5 and 20. The baseline AVG performs best among all the methods on
the sub-class USSS and USUS. One interesting observation is the performance of the CNN.
On the one hand, it performs the worst for size 5, with an average OVDR around 56. On
the other hand, it performs the best for size 20 instances, with an average OVDR around 5.
This observation also suggests that we should have more unseen sizes instead of just two in
these two sub-classes to better judge a method. We also, in addition to adding more sizes,
need to think of fundamentally new approaches that can generalize to new sizes.

2.5.2 Stochastic Generalized Assignment Problem

Problem Formulation

We consider the stochastic generalized assignment problem S-GAP, with binary and discrete
variables in the first and second stages, respectively. Let O be the set of orders that needs
to be fulfilled and V be the set of vehicles. The first-stage decision is to assign orders on
the selected vehicles. In the second-stage, once the time taken to complete an order o on a
vehicle v is realized, the decision is to assign overtime to the selected vehicles such that all
the orders are satisfied. Table 2.10 contains the notations used to formulate the S-GAP.

Table 2.10 Notations used to define an instance of the S-GAP

Data Definition
cov Cost of completing order o on vehicle v
omax Maximum orders satisfied by a vehicle
umax Maximum vehicles used to complete all orders
ξovk Time taken to complete order o on vehicle v in scenario k
pv Penalty incurred for unit overtime on vehicle v
t
′
v Time available on vehicle v

Variable Definition

xov

1, if order o is satisfied by vehicle v
0, otherwise

uv

1, if vehicle v is used
0, otherwise

yv Overtime on vehicle v

35

Finally, the S-GAP is formulated as follows:

min
x

∑
v∈V

∑
o∈O

covxov + 1
N

N∑
k=1

Q(xov, ξovk) (2.20)

s.t.
∑
v∈V

xov = 1 ∀o ∈ O (2.21)
∑
o∈O

xov ≤ omax ∀v ∈ V (2.22)

xov ≤ uv ∀v ∈ V, ∀o ∈ O (2.23)∑
v∈V

uv ≤ umax (2.24)

xov, uv ∈ {0, 1} ∀v ∈ V, ∀o ∈ O (2.25)

Here, Q(xov, ξovk) is defined as the optimal value of the problem

min
y

∑
v∈V

pvyv (2.26)

s.t. yv ≥
∑
o∈O

ξovk xov − t′v ∀v ∈ V (2.27)

yv ≥ 0 ∀v ∈ V (2.28)

yv = 10zv ∀v ∈ V (2.29)

yv, zv ∈ Z+ ∀v ∈ V (2.30)

We minimize the assignment cost of orders to vehicles and the expected overtime cost in
Equation (2.20). The constraint in Equation (2.21) ensure that a given order is satisfied by
only one vehicle. Equation (2.22) limits the maximum number of orders that can be satisfied
by a vehicle to omax. The constraint in Equation (2.23) ensures that only a selected vehicle
can be used to satisfy an order. The maximum number of vehicles to be used to satisfy
all orders is governed by Equation (2.24). The constraint in Equation (2.28) ensures that
the total of time available and overtime on a vehicle should be greater than or equal to the
time required to satisfy all orders by that vehicle. The constraints in Equation (2.29) and
Equation (2.30) ensures that the overtime on a vehicle is an integer multiple of 10.

Data Generation

1. Instance generation: We focus on a single size for S-GAP, generating 15K unique
instances with 10 vehicles, 15 jobs and 20 scenarios. We generate 15K tuples of
cov, ξ

ov, pv and t
′ as listed in Table 2.11 and keep the value of k = 4 and umax = 9

36

fixed across all of them.

Table 2.11 Data sampling details for generating an instance of the S-GAP

Variable Method
cov dUniform[0, 1) ∗ 100e

ξovk max(1, a), where
a = db+ Uniform[0, 1) ∗ 8e
b = Uniform[0, 1) ∗ 50− 10

pv Poisson(25)

t
′ Poisson(30)

2. Optimal solution generation: We set a time limit of 15 minutes and a gap limit of
0% in Gurobi to solve the 15K instances generated in the previous step; we are able to
close the gap to 0% for all the instances within the time budget of 15 minutes.

3. Representative scenario generation: Once we know the optimal solution xov, it is
trivial to construct a naive representative scenario, where

ξ?naive ≡

c, if xov = 0, o ∈ O, v ∈ V

0, otherwise

for c > cmin, cmin ∈ R. However, using this naive representative scenario as the label will
make the supervised learning task challenging. In particular, because of Equation (2.21)
ensuring that an order is handled by only one vehicle, we will have only |O| ones in
xov. This leads to an RS with |O| zeros and (|O| ∗ |V |)− |O| c’s. Hence, when we train
a model to minimize the MSE with a naive RS as the label, the model will learn to
predict values very close to c. Such predictions might not even qualify as an RS.

To make the learning task easier for the model, it is necessary to have smoother labels.
An RS with many unique values from the set R is better instead of the one having just
two, i.e., 0 and c for the learning task. To achieve this, we generate an RS ξ? by taking
the convex combination of the naive RS ξ?naive and average scenario ξavg = 1

N

∑N
k=1 ξk

ξ? = w ∗ ξ?naive + (1− w) ∗ ξavg. (2.31)

Note that ∃w ∈ [0, 1] such that Equation (2.31) holds. A trivial choice of w = 1 gives
us ξ? = ξ?naive. Since we are interested in a smoother RS, we systematically lower the

37

value of w up to the point wmin, such that for w < wmin will violate Equation (2.31),
i.e., the convex combination no longer gives an RS. We do binary search to find wmin.

Feature Engineering

The features used to train ML models to predict an RS are as follows:

Type Data Size

F1 (cov, pv, t
′) 170

F2 (cov, pv, t
′
, ξovA) 320

F3 (cov, pv, t
′
, ξovA , ξ

ov
SD) 470

F4 (cov, pv, t
′
, ξovA , ξ

ov
SD, ξ

ov
MM) 770

Here, ξovA , ξovSD and ξovMM is the average, standard deviation and minimum-maximum of ξov

across the scenario axis, respectively. Note that we do not exploit any problem specific
property to construct these features. They are composed of static parameters and statistical
properties of random parameters of an instance.

Results

We use a common value of w?min for all the instances to generate an RS. The idea behind
this was to keep the learning task as simple as possible for the model. We randomly sample
1000 instances out of 15K and find wimin for each of the sampled instances i. We select w?min
to be equal to the 95th percentile from the sorted list of wimin, i ∈ [1, . . . , 1000].

We also try to make the labels more robust to prediction errors. Let (xi, yi) be the ith data
point in dataset D, ŷi be the corresponding prediction and δ a positive constant. We quantify
the robustness of a label yi by the value of δ, where higher the value of δ means more robust
the label, under the constraint that all the predictions ŷi ∈ [yi−δ, yi+δ] perform equally well
as the label yi for the downstream optimization task. In other words, we want to generate
labels such that the errors in predicting them will have minimum impact on the optimization
metric. We also need to keep in mind that this additional robustness should not come at
the cost of a harder prediction task for the model. A trivial choice of robust label is to
consider the naive representative scenario containing only c and 0. Here, even if we predict
values much less than c or greater than 0, up to some threshold, the label will still be an
RS. However, the trivial RS is a bad choice for the label as already discussed. What we do
instead is to add a positive offset to w?min; the positive offset moves the current RS towards
trivial-RS, making it more robust. It was interesting to observe that after the addition of an

38

offset to the RS, a few did not hold the condition for being an RS.

Table 2.14 contains the results of different model-feature combinations. Any row of the table
gives the positive offset ∆ added to w?min, the methods name, the learning metrics (mean
square error and R2) and the statistical properties like minimum, maximum, average, median
and standard deviation of the OVDR across all instances in the test set. A method name
is of the form XX YY, where XX and YY are the acronyms of the ML model and feature
type, respectively. The model acronyms LR and FN stand for Linear Regression and Feed
Forward Neural Network, respectively. We use 80% of the labeled instances in the train set
and the remaining in the test set. The average OVDR corresponding to AVG and RND, is
around 17% and 62%, respectively. As expected, these values are pretty consistent as the
surrogate corresponding to them will not change across different offsets. Thus, the goal for
the ML model should be to generate predictions which have an average OVDR of at least
17% or less.

We do hyperparameter tuning to achieve the best possible results using a FFNN. We pick
the dataset which contains the F2 features and the labels have an offset ∆ of 0. We fixed
the batch size to 256 and used Adam optimizer with a learning rate of 10−3. Let λ be the
weight penalty used during optimization. After a variety of tries, we found that having a
single hidden layer, with 256 neurons, weight penalty λ equal to 10−5, dropout equal to 0.2
in the output layer and a batch norm in the hidden layer seems to perform the best.

The detailed results of the various configurations of the FFNN are given in Table 2.13. Apart
from the λ, dropout and batch-norm, we tried changing the batch size, increasing the model
capacity by adding more layers and applying the dropout in the input layer. However, all of
these attempts resulted in no significant improvement over the current best setting.

Table 2.13 Hyperparameter tuning for the FFNN used in the S-GAP experiment.

λ Dropout Batch-Norm Loss
Train Val Test

10−4 0 No 21.76 28.45 28.32
10−5 0 No 14.59 24.96 24.95
10−5 0.1 No 16.1 23.9 23.92
10−5 0.2 No 17.75 23.81 23.8
10−5 0.3 No 19.79 24.61 24.57
10−5 0 Yes 13.86 25.7 25.96
10−5 0.2 Yes 17.7 23.5 23.32

As we already mentioned, Table 2.14 contains the performance of the different methods in

39

terms of the learning metrics (MSE and R2) and the optimization metric (OVDR). Across
different offset ∆ values, we see (1) LR outperforms FN, for a given feature type, on both
learning and optimization metrics, respectively (2) across different feature types, F3 is able to
achieve the best scores on all the learning and optimization metrics, apart from the exception
of method FN F3 with offset ∆ equal 0.1. Here, FN with feature type F2 achieves the
best average OVDR (3) LR with feature type F3 is able to achieve the best learning and
optimization metrics, respectively.

We also note that the MSE is a clear indicator of the performance of the model in terms of
average OVDR, i.e., for any two models, if one of them performs better than the other in
terms of MSE, then its average OVDR will also be better than the other. Indeed, we see this
trend among LR and FN with different feature types, and also between LR and FN, for a
given offset of ∆.

The best test loss achieved by an LR for ∆ equal to 0, 0.05, 0.1 and 0.2 is 20.06, 25.4,
30.88 and 42.75, respectively. The best average OVDR achieved by the same LR and feature
combinations for ∆ equal to 0, 0.05, 0.1 and 0.2 is 13.84%, 13.81%, 13.82% and 14.37%. We
also note that the average OVDR improves with the increase in ∆ from 0 to 0.05. However,
increasing ∆ beyond 0.05 starts deteriorating the average OVDR.

40

Table 2.14 Learning metrics and OVDR statistics (in %) for the S-GAP for different models

∆ GRB Loss R2 Min Max Avg. Med. Std.
vs . Train Val Test Train Val Test

0

AVG 0 54.84 18.67 17.97 7.23
RND 15.85 174.94 62.39 59.81 20.39

LR F1 32.76 - 32.86 0.087 - 0.052 10.29 88.79 40.16 39.32 11.45
LR F2 19.78 - 20.118 0.45 - 0.42 0 41.25 14.60 14.11 5.94
LR F3 19.22 - 20.06 0.46 - 0.42 0 35.76 13.84 13.32 5.63
LR F4 18.71 - 20.5 0.48 - 0.40 0.17 41.11 14.14 13.69 5.74
FN F1 31.72 36.5 36.84 0.12 -0.04 -0.07 9.04 96.82 42.72 41.92 11.95
FN F2 17.7 23.5 23.32 0.5 0.33 0.32 0 47.80 16.70 16.22 6.48
FN F3 16.97 23.64 23.66 0.53 0.33 0.31 0.4 46.28 16.54 16.13 6.46
FN F4 16.04 25.12 24.88 0.55 0.29 0.28 0 49.03 18.73 18.16 7.01

0.05

AVG 0 52.68 18.85 18.25 07.25
RND 9.14 165.19 62.90 60.62 20.50

LR F1 37.56 - 38.96 0.09 - 0.06 9.28 90.32 40.58 39.71 11.60
LR F2 23.9 - 25.5 0.42 - 0.38 0 43.27 14.76 14.42 06.02
LR F3 23.17 - 25.4 0.42 - 0.38 0 41.89 13.81 13.48 05.62
LR F4 22.05 - 26.12 0.45 - 0.37 0 38.54 14.15 13.71 05.70
FN F1 32.3 42.23 42.69 0.2 -0.03 -0.04 12.64 91.70 43.65 42.69 12.08
FN F2 21.58 28.08 28.87 0.46 0.3 0.29 0 44.41 17.46 16.80 6.67
FN F3 20.5 28.08 28.9 0.49 0.31 0.29 1.24 46.93 17.10 16.58 6.70
FN F4 19.48 29.39 30.59 0.51 0.28 0.25 0 52.05 18.74 18.23 7.07

0.1

AVG 0 58.34 18.73 18.10 7.22
RND 12.6 173.26 62.16 60.05 19.87

LR F1 43.07 - 45.21 0.09 - 0.06 11 90.63 40.75 39.77 11.57
LR F2 28.73 - 31.14 0.39 - 0.35 0.7 38.58 14.97 14.67 05.77
LR F3 27.81 - 30.88 0.41 - 0.36 0 40.50 13.82 13.49 05.57
LR F4 27.05 - 31.7 0.43 - 0.34 0 43.15 14.20 13.76 05.73
FN F1 42.18 47.86 50 0.1 -0.02 -0.05 9.41 96.86 44.35 43.19 12.36
FN F2 25 32.82 33.4 0.47 0.29 0.3 0.44 50.62 16.75 16.16 6.69
FN F3 24 33.16 34.45 0.49 0.28 0.28 0 45.18 17.29 16.87 6.70
FN F4 21.74 35.51 37.83 0.53 0.23 0.2 0.82 59.32 19.97 19.33 7.42

0.2

AVG 1.00 58.34 18.6 17.97 7.05
RND 16.15 173.54 62.17 59.44 20.38

LR F1 56.33 - 58.35 0.09 - 0.06 10.65 94.37 42.29 41.64 12.16
LR F2 40.47 - 43.1 0.35 - 0.30 0 45.71 15.67 15.14 6.20
LR F3 39.06 - 42.75 0.37 - 0.31 0 41.12 14.37 13.95 5.79
LR F4 38 - 43.87 0.385 - 0.29 0.23 43.25 14.90 14.49 5.97
FN F1 52.67 62.65 63.76 0.12 -0.02 -0.03 7.09 99.04 45.58 44.69 12.67
FN F2 35.17 44.58 46.1 0.4 0.27 0.25 1.28 46.63 18.35 17.95 6.96
FN F3 32.79 44.6 45.54 0.43 0.27 0.26 0.05 56.25 17.75 17.23 6.89
FN F4 31.16 47.1 48.78 0.46 0.23 0.2 0.00 53.53 19.80 19.36 7.24

41

CHAPTER 3 CONCLUSION AND RECOMMENDATIONS

We presented an ML based heuristic to quickly compute good primal solutions to two-stage
stochastic integer programs. We tested our approach on two problems, namely, stochastic ca-
pacitated facility location problem (S-CFLP) and stochastic generalized assignment problem
(S-GAP). We extracted statistical and customized features for both S-CFLP and S-GAP.
For the S-CFLP, we did three experiments; first, we trained on single size and tested on the
same size; second, we trained on multiple sizes and tested on those same set of sizes; finally,
we trained on some specific sizes and tested on previously seen sizes and unseen sizes. The
results of the first two experiments were positive, with LR achieving solutions at par with
Gurobi while taking only a fraction of its time. For the third experiment, we observe positive
results for seen sizes. However, for unseen sizes, the results were not good. This highlights
the fact that we may need better parameter sharing to achieve good generalization on pre-
viously unseen sizes during training. The experiments conducted also gave us a first-hand
experience of how the learning metric like the MSE might not be directly proportional to
the optimization metric like the average OVDR, i.e., achieving a good performance in terms
of the learning metric does not guaranty an improvement in the average OVDR. During the
initial experimentation, we spent quite some time trying to improve the MSE. It was only
when we observed the average OVDR, we became aware of this discrepancy.

For the S-GAP problem, we reported an ablation study with four different types of features
and two different types of models (LR and FFNN). We also tried to generate robust labels,
such that the error in the predictions does not affect the performance in the downstream
optimization task. However, we were not able to achieve good performance in terms of the
optimization metric of the average OVDR. We are still in the phase of deciding the right
complexity that the ML models can handle given the compute limitation. At this stage, we
believe that either the problem complexity is too high or we do not have the right set of
features that can help us achieve good performance in terms of the average OVDR.

We list two potential causes that might be making the prediction task difficult for the ML.
First, the second-stage costs were different for each instance in the S-GAP experiments, as
opposed to the second-stage costs being fixed for each instance, of the same size, in the
S-CFLP experiments. Second, the S-GAP had an output dimension of 150, whereas in the
S-CFLP the maximum output dimension was 25. Such differences can increase the problem
complexity and need further investigation.

Interestingly enough, and in contrast to the observation made during the S-CFLP experi-

42

mentation, for the S-GAP, we observed that achieving a good MSE was a clear indicator of
the good performance in terms of the average OVDR. LR, in this problem, achieved the best
MSE and the best average OVDR. Also, a similar trend is observed among the FFNN based
models. This is contrary to the observation of S-CFLP, where obtaining a good performance
on the learning metric had no bearing on the performance of the optimization metric. This
underscores the need for a better loss function for training the ML models that can give a
good estimate of the model performance on the downstream optimization task.

We would also like to focus on the problem classes for which the value of the stochastic
solution is larger as compared to the first-stage solution of the surrogate with average scenario.
Such problem classes would be an ideal place to apply our methodology as finding a good
first-stage decision traditionally requires solving a big formulation. On the other hand, we
can find a good first-stage decision quickly by solving a surrogate formulation, which is
significantly smaller, formed using an RS.

43

REFERENCES

[1] W. B. Powell, “Clearing the jungle of stochastic optimization,” in Bridging data and
decisions. Informs, 2014, pp. 109–137.

[2] G. B. Dantzig, “Programming in a linear structure,” in Bulletin of the American Math-
ematical Society, vol. 54, no. 11. AMER MATHEMATICAL SOC 201 CHARLES ST,
PROVIDENCE, RI 02940-2213, 1948, pp. 1074–1074.

[3] ——, “Origins of the simplex method,” in A history of scientific computing, 1990, pp.
141–151.

[4] ——, Linear programming and extensions. Princeton university press, 1998, vol. 48.

[5] A. Schrijver, Theory of linear and integer programming. John Wiley & Sons, 1998.

[6] A. H. Land and A. G. Doig, “An automatic method of solving discrete programming
problems,” Econometrica, vol. 28, no. 3, pp. pp. 497–520, 1960.

[7] R. E. Gomory, “Outline of an algorithm for integer solutions to linear programs,”
Bulletin of the American Mathematical Society, vol. 64, no. 5, p. 275–279, 1958. [Online].
Available: https://www.ams.org/journals/bull/1958-64-05/S0002-9904-1958-10224-4/
home.html

[8] M. Padberg and G. Rinaldi, “Optimization of a 532-city symmetric traveling salesman
problem by branch and cut,” Operations Research Letters, vol. 6, no. 1, pp. 1–7, 1987.

[9] M. Conforti, G. Cornuéjols, G. Zambelli et al., Integer programming. Springer, 2014,
vol. 271.

[10] S. Herculano-Houzel, “The remarkable, yet not extraordinary, human brain as a scaled-
up primate brain and its associated cost,” Proceedings of the National Academy of Sci-
ences, vol. 109, no. Supplement 1, pp. 10 661–10 668, 2012.

[11] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language under-
standing by generative pre-training,” 2018.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

https://www.ams.org/journals/bull/1958-64-05/S0002-9904-1958-10224-4/home.html
https://www.ams.org/journals/bull/1958-64-05/S0002-9904-1958-10224-4/home.html

44

[13] Y. Nesterov, “A method for unconstrained convex minimization problem with the rate
of convergence o (1/kˆ 2),” in Doklady an ussr, vol. 269, 1983, pp. 543–547.

[14] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural
networks, vol. 12, no. 1, pp. 145–151, 1999.

[15] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization.” Journal of machine learning research, vol. 12, no. 7, 2011.

[16] T. Dozat, “Incorporating nesterov momentum into adam,” 2016.

[17] M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine-learning prac-
tice and the classical bias–variance trade-off,” Proceedings of the National Academy of
Sciences, vol. 116, no. 32, pp. 15 849–15 854, 2019.

[18] S. Ruder, “An overview of gradient descent optimization algorithms,” Mar 2020.
[Online]. Available: https://ruder.io/optimizing-gradient-descent/

[19] P. J. Werbos, “Applications of advances in nonlinear sensitivity analysis,” in System
modeling and optimization. Springer, 1982, pp. 762–770.

[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations
by error propagation,” California Univ San Diego La Jolla Inst for Cognitive Science,
Tech. Rep., 1985.

[21] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[23] Y. Bengio, E. Frejinger, A. Lodi, R. Patel, and S. Sankaranarayanan, “A learning-based
algorithm to quickly compute good primal solutions for stochastic integer programs,” in
Integration of Constraint Programming, Artificial Intelligence, and Operations Research,
E. Hebrard and N. Musliu, Eds. Cham: Springer International Publishing, 2020, pp.
99–111.

[24] J. R. Birge and F. Louveaux, Introduction to stochastic programming. Springer Science
& Business Media, 2011.

[25] G. Lulli and S. Sen, “A branch-and-price algorithm for multistage stochastic integer pro-
gramming with application to stochastic batch-sizing problems,” Management Science,
vol. 50, no. 6, pp. 786–796, 2004.

https://ruder.io/optimizing-gradient-descent/

45

[26] F. V. Louveaux and D. Peeters, “A dual-based procedure for stochastic facility location,”
Operations research, vol. 40, no. 3, pp. 564–573, 1992.

[27] P. Kall, S. W. Wallace, and P. Kall, Stochastic programming. Springer, 1994.

[28] A. Prékopa, Stochastic programming. Springer Science & Business Media, 2013, vol.
324.

[29] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on stochastic programming:
modeling and theory. SIAM, 2009.

[30] J. Dupačová, N. Gröwe-Kuska, and W. Römisch, “Scenario reduction in stochastic pro-
gramming,” Mathematical programming, vol. 95, no. 3, pp. 493–511, 2003.

[31] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic approximation
approach to stochastic programming,” SIAM Journal on optimization, vol. 19, no. 4,
pp. 1574–1609, 2009.

[32] J. Linderoth, A. Shapiro, and S. Wright, “The empirical behavior of sampling methods
for stochastic programming,” Annals of Operations Research, vol. 142, no. 1, pp. 215–
241, 2006.

[33] W. B. Powell and S. Meisel, “Tutorial on stochastic optimization in energy—part i:
Modeling and policies,” IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 1459–
1467, 2015.

[34] ——, “Tutorial on stochastic optimization in energy—part ii: An energy storage illus-
tration,” IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 1468–1475, 2015.

[35] T. Santoso, S. Ahmed, M. Goetschalckx, and A. Shapiro, “A stochastic programming
approach for supply chain network design under uncertainty,” European Journal of Op-
erational Research, vol. 167, no. 1, pp. 96–115, 2005.

[36] S. Ahmed, M. Tawarmalani, and N. V. Sahinidis, “A finite branch-and-bound algorithm
for two-stage stochastic integer programs,” Mathematical Programming, vol. 100, no. 2,
pp. 355–377, 2004.

[37] S. Sen and J. L. Higle, “The c 3 theorem and a d 2 algorithm for large scale stochastic
mixed-integer programming: set convexification,” Mathematical Programming, vol. 104,
no. 1, pp. 1–20, 2005.

46

[38] S. Ahmed, “A scenario decomposition algorithm for 0–1 stochastic programs,” Opera-
tions Research Letters, vol. 41, no. 6, pp. 565–569, 2013.

[39] S. Sen, “Stochastic mixed-integer programming algorithms: Beyond benders’ decompo-
sition,” Wiley Encyclopedia of Operations Research and Management Science, 2010.

[40] C. C. Carøe and J. Tind, “L-shaped decomposition of two-stage stochastic programs
with integer recourse,” Mathematical Programming, vol. 83, no. 1-3, pp. 451–464, 1998.

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” in Advances in neural information processing systems, 2012,
pp. 1097–1105.

[42] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton et al., “Mastering the game of go without human knowledge,”
nature, vol. 550, no. 7676, pp. 354–359, 2017.

[43] E. B. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina, “Learning to branch
in mixed integer programming,” in Thirtieth AAAI Conference on Artificial Intelligence,
2016.

[44] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial optimization:
a methodological tour d’horizon,” arXiv preprint arXiv:1811.06128, 2018.

[45] A. Lodi and G. Zarpellon, “On learning and branching: a survey,” Top, vol. 25, no. 2,
pp. 207–236, 2017.

[46] B. Defourny, D. Ernst, and L. Wehenkel, “Scenario trees and policy selection for multi-
stage stochastic programming using machine learning,” INFORMS Journal on Comput-
ing, vol. 25, no. 3, pp. 488–501, 2013.

[47] G. Murgia and S. Sbrilli, “Integrating multi-stage stochastic programming and machine
learning for the evaluation of policies in the electricity portfolio problem,” IMA Journal
of Management Mathematics, vol. 28, no. 1, pp. 109–130, 2017.

[48] B. Defourny, D. Ernst, and L. Wehenkel, “Multistage stochastic programming: A sce-
nario tree based approach to planning under uncertainty,” in Decision theory models
for applications in artificial intelligence: concepts and solutions. IGI Global, 2012, pp.
97–143.

47

[49] P. Donti, B. Amos, and J. Z. Kolter, “Task-based end-to-end model learning in stochastic
optimization,” in Advances in Neural Information Processing Systems, 2017, pp. 5484–
5494.

[50] S. Prestwich, R. Rossi, and A. Tarim, “Stochastic constraint programming as reinforce-
ment learning,” arXiv preprint arXiv:1704.07183, 2017.

[51] H. Jia and S. Shen, “Benders cut classification via support vector machines for solving
two-stage stochastic programs,” arXiv preprint arXiv:1906.05994, 2019.

[52] V. Nair, D. Dvijotham, I. Dunning, and O. Vinyals, “Learning fast optimizers for
contextual stochastic integer programs,” in Proceedings of the Thirty-Fourth Conference
on Uncertainty in Artificial Intelligence, UAI 2018, Monterey, California, USA, August
6-10, 2018, A. Globerson and R. Silva, Eds. AUAI Press, 2018, pp. 591–600. [Online].
Available: http://auai.org/uai2018/proceedings/papers/217.pdf

[53] A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R. L. Gottwald, G. Hendel,
C. Hojny, T. Koch, M. E. Lübbecke, S. J. Maher, M. Miltenberger, B. Müller, M. E.
Pfetsch, C. Puchert, D. Rehfeldt, F. Schlösser, C. Schubert, F. Serrano, Y. Shinano,
J. M. Viernickel, M. Walter, F. Wegscheider, J. T. Witt, and J. Witzig, “The SCIP
Optimization Suite 6.0,” Optimization Online, Technical Report, July 2018. [Online].
Available: http://www.optimization-online.org/DB_HTML/2018/07/6692.html

[54] ——, “The SCIP Optimization Suite 6.0,” Zuse Institute Berlin, ZIB-Report 18-26,
July 2018. [Online]. Available: http://nbn-resolving.de/urn:nbn:de:0297-zib-69361

[55] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2020. [Online]. Available:
http://www.gurobi.com

[56] M. B. Editor, “Regression analysis: How do i interpret r-squared and assess the goodness-
of-fit?” [Online]. Available: https://blog.minitab.com/blog/adventures-in-statistics-2/
regression-analysis-how-do-i-interpret-r-squared-and-assess-the-goodness-of-fit

[57] P. Bonami, A. Lodi, and G. Zarpellon, “Learning a classification of mixed-integer
quadratic programming problems,” in International Conference on the Integration of
Constraint Programming, Artificial Intelligence, and Operations Research. Springer,
2018, pp. 595–604.

[58] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi, “Exact combinatorial opti-
mization with graph convolutional neural networks,” arXiv preprint arXiv:1906.01629,
2019.

http://auai.org/uai2018/proceedings/papers/217.pdf
http://www.optimization-online.org/DB_HTML/2018/07/6692.html
http://nbn-resolving.de/urn:nbn:de:0297-zib-69361
http://www.gurobi.com
https://blog.minitab.com/blog/adventures-in-statistics-2/regression-analysis-how-do-i-interpret-r-squared-and-assess-the-goodness-of-fit
https://blog.minitab.com/blog/adventures-in-statistics-2/regression-analysis-how-do-i-interpret-r-squared-and-assess-the-goodness-of-fit

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF SYMBOLS AND ACRONYMS
	INTRODUCTION
	Mathematical Programming
	Linear Programming
	Mixed Integer Linear Programming

	Machine Learning
	Supervised learning
	Linear Regression
	Artificial Neural Networks

	Outline

	A LEARNING BASED ALGORITHM TO QUICKLY COMPUTE GOOD PRIMAL SOLUTIONS FOR STOCHASTIC INTEGER PROGRAMS – AN EXTENSION
	Introduction
	Motivation and Literature Review
	Problem Definiton
	Methodology
	Surrogate Formulation
	Learning Algorithm

	Computational Study
	Stochastic Capacitated Facility Location Problem
	Stochastic Generalized Assignment Problem

	CONCLUSION AND RECOMMENDATIONS
	REFERENCES

