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a b s t r a c t 

Combined sewer overflows (CSOs) are a source of microbial contamination of drinking water intakes located 
downstream from their discharge. To safeguard the quality of the source water, it is essential to evaluate the risk 
levels associated with these municipal structures. This study compares two risk assessment approaches to test 
their applicability for assessing the risk of CSOs to drinking water intakes in a highly urbanized watershed. The 
first approach was based on a deterministic equation that combines the characteristics of an overflow structure 
allowing the risk to be rated as very low, low, medium, high, or very high. The second probabilistic risk assessment 
approach yielded findings that are probabilistically distributed across the five levels of risk. This approach was 
developed by constructing a novel Bayesian network to probabilistically link the different factors defining the 
exposure of water intakes to the hazards of CSOs. The comparison between the results of these two approaches 
highlighted the importance of simultaneously considering many scenarios for assessing the risk of contamination 
of source waters. It was possible to use the Bayesian network rather than the deterministic equation, which only 
supports one scenario at a time. It was also shown that the deterministic approach often overestimated risk levels 
for CSO outfalls close to the water intake. This occurred because the assessment process emphasized the distance 
factor between the discharge point and the water intake, while neglecting other crucial characteristics of the 
overflow, such as duration and frequency. In particular, the deterministic approach tended to underestimate risk 
for CSOs associated with low overflow frequencies as it did not support scenarios of overflow duration, unlike the 
probabilistic approach. The validation and sensitivity analysis of the Bayesian model revealed that the population 
residing in the CSO’s drainage basin, along with the frequency and duration of the overflows, exerted the greatest 
influence on the resulting risk levels. These factors outweighed other variables utilized in the risk assessment, 
including vulnerability of the drinking water intake, the type of overflow recorder, pipe diameter, and variables 
defining the exposure of the water intake to the discharge. In the context of implementing action plans, the 
Bayesian network is estimated as a cost-effective technique as it prioritized overflow structures needing special 
attention in a highly urbanized watershed, where the same CSOs were deterministically rated as having the same 
risk level. The results also demonstrated the effectiveness of the Bayesian model in addressing data gaps faced 
by water managers and stakeholders. The Bayesian model proved capable of assessing risks with uncertainties 
for CSOs, even with limited input data available. These findings can assist managers in identifying problematic 
structures by considering various scenarios, unlike the deterministic approach, which left almost half ( n = 42) of 
the study site’s overflow structures unassessed due to data limitations. 
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. Introduction 

Combined sewer overflows (CSOs) effluents contain a mixture of
icrobial pathogens ( Passerat et al., 2011 ; Madoux-Humery et al.,
016 ; Jalliffier-Verne et al., 2017 ), physico-chemical contaminants
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 Hajj-Mohamad et al., 2017 ; Petrie, 2021 ). Therefore, government enti-
ies are focusing on assessing potential risks from these anthropogenic
ctivities to protect drinking water sources. A review of risk assessment
pproaches ( Prévost et al., 2017 ) for these activities highlighted that
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aws, regulations, and recommendations of several countries use simi-
ar conceptual risk assessment methodology: a deterministic model. This
odel is commonly based on setting risk levels according to a risk matrix

hat combines the category of probability, or likelihood, against the cat-
gory of consequence severity. Risk matrices are used in Canada, New
ealand, and Australia (Table S1). Instead of the risk matrix, the overall
egree of risk can be assessed based on descriptive information on the
ollutants that may be discharged by human activities, the location of
he pollution source, water quality, land use, etc. Depending on the ex-
ent to which numerical measurements are available, these descriptions
ay be either general or precise. This is the case for Maine, New York,

nd California risk assessment methods (Table S1). 
These methods present a quick and easy approach ( Peace, 2017 )

o produce a comprehensive portrait of pollution hazards in all water-
heds. However, improperly designed, or deployed risk matrices may
aise uncertainty in outcomes ( Peace, 2017 ; Cox, 2008 ). As explained
y Grafton and Little (2017) , the risk matrix deficiency is revealed when
vents with high consequences and low frequency are compared to those
ith low consequences and high frequency as having the same risk

evel. In addition, effective risk management decisions cannot be derived
rom the translation of risk ratings into protection plans ( Cox, 2008 ;
atanpour et al., 2015 ). 

Researchers have developed improved deterministic methods to
valuate the level of microbial risk associated with CSOs using targeted
ater sampling and laboratory analysis ( Madoux-Humery et al., 2015 ;
alderon et al., 2017 ; Al Aukidy and Verlicchi, 2017 ), or real-time mea-
urement of a biochemical indicator of fecal pollution using ColiMinder
 Burnet et al., 2021 ; Sylvestre et al., 2021 ) to identify water quality
nd analyze wastewater impact on receiving waterways. Therefore, sta-
istical analysis ( Madoux-Humery et al., 2015 ; Sylvestre et al., 2020 ),
uantitative Microbial Risk Assessment (QMR(A) ( Sylvestre et al., 2021 ;
cGinnis et al., 2022 ), and coupled hydrodynamic and water qual-

ty modeling ( Locatelli et al., 2020 ; Taghipour et al., 2019 ) are also
sed as a risk assessment methods to better evaluate the effect of CSOs
n surface water quality and public health. These deterministic mod-
ling methods simulate scenarios where the input values are known.
hese strategies rely on specialized and large-scale data collected from
dvanced equipment or laboratory analysis, often unavailable, to cal-
brate models and reduce uncertainty regarding the interaction of dif-
erent system components. Several studies have used artificial neural
etwork (ANN), including uncertainty, to model and forecast fecal in-
icator bacteria in CSOs ( Vijayashanthar et al., 2018 ), and to investi-
ate different modalities related to CSOs, such as the flow rate ( El Gha-
ouli et al., 2022 ), water level in the CSO structure ( Zhang et al., 2018 ),
nd hydraulic performance of CSOs ( Aziz et al., 2013; Mounce et al.,
014 ). ANN is appropriate for complex problems and adaptive learning
 Sojobi and Zayed, 2022 ). However, it requires a large dataset for neural
etwork learning ( Mounce et al., 2014; Rosin et al., 2021 ). 

To support source water protection by prioritizing high-risk com-
ined sewer systems at the regional level, it is unrealistic to conduct
astewater modeling and analysis of each CSO due to the substantial re-

ources and data required, especially in highly urbanized jurisdictions.
ecision-makers must adopt a practical and accurate strategy for as-

essing risk ( Dirckx et al., 2022 ) while realistically demanding limited
esources. Recent studies ( Kaikkonen et al., 2020 ; Phan et al., 2016 ;
u and Zhang, 2021 ) suggest that Bayesian networks (BNs) are ideally a
uitable tool for addressing the challenges associated with data scarcity
n probabilistic risk assessment, combining different types of knowledge,
nd uncertainty in describing the interaction between a random set of
ariables that outline the interaction of system components. The BN is
n acyclic graph composed of nodes linked by conditional dependencies
epresented as probability distributions ( Shan et al., 2019 ; Stritih et al.,
020 ). 

Few studies have developed a BN to study different features related
o CSOs. Wijesiri et al. (2018) examined the potential health risks as-
ociated with poor water quality based on physicochemical attributes.
2 
ther studies used BN to assess the CSO pipe failure and their degrada-
ion ( Hahn et al., 2002 ; Elmasry et al., 2017 ). To our knowledge, only
oulding et al. (2012) built a BN model that includes QMRA to eval-
ate public health risks exposed to microbial contamination in sewage
verflows in Australia. Given that this BN uses analytical findings not
equired by North American regulations, such as raw sewage concen-
ration, it cannot be extended to all drinking water source protection
uthorities. Thus, this study investigates exposure to the threat from ir-
igation water and recreational activities. There have been no studies to
ate that have used BN to predict the microbiological risk assessment for
rinking water intakes from CSOs. Therefore, there is an urgent need for
tudies in this field to advise drinking water treatment plant managers
nd water stakeholders the necessary safeguards to protect drinking wa-
er intakes (DWIs) from microbial contamination. 

The main objective of this study is to assess the microbial risk associ-
ted with CSOs events on drinking water sources using a limited dataset.
o achieve this objective, a Bayesian model was developed, which con-
iders various scenarios related to CSO features, such as frequency and
uration of overflow, and their impact on the water quality of DWIs.
oreover, this study aims to compare two different risk assessment
ethods: deterministic and probabilistic. It seeks to illustrate the ap-
licability and limitations of each method in assessing risks in a highly
rbanized watershed, and to demonstrates the most effective strategy
hat could help water managers and stakeholders make informed deci-
ion about drinking water sources protection in Quebec (Canad(A). 

. Material and methods 

In this study, an assessment of microbial risks associated to CSOs up-
tream DWIs was performed using both deterministic and probabilistic
pproaches. Fig. 1 summarizes the steps followed in this study, and a
ore detailed description of these steps is provided in Sections 2.1 and
.2 . 

.1. Study site and CSOs 

This risk assessment research focuses on four DWIs (DWI_1, DWI_2,
WI_3, and DWI_4) supplied from the same river in southern Quebec,
anada. This study location was chosen because it exemplifies the chal-

enges of highly urbanized areas. There are a total of 89 CSO outfalls
from CSO_1 to CSO_89) upstream of these DWIs. These outfalls are
n the immediate (500 m upstream DWI) and intermediate (10 km
pstream DWI) protection zones, which are delineated according to
he requirements of the Water Withdrawal and Protection Regulation
 Quebec Government, 2022 ). 

Some overflow structures in Quebec have real-time telemetry sys-
ems that track the frequency and duration of overflows. Other struc-
ures have a marker that shifts position due to overflows ( Quebec Gov-
rnment, 2022 ; MELCC, 2021 ). In the latter case, overflow duration can-
ot be recorded, but the presence or absence of an overflow is noted
uring a weekly technical visit. Overflow data obtained manually or
utomatically was analyzed and the number of sewer structures, the
requency, and the duration of their overflows are summarized in the
upplementary Table S2. 

.2. Deterministic risk assessment method 

This research used the deterministic approach developed by
cQuaid et al. (2019) to estimate the risk associated with all CSOs up-

tream of the four DWIs. This method was chosen because it presents an
mprovement over the regulatory approach in Quebec which is based on
he risk matrix ( Quebec Government, 2022 ). The risk level was calcu-
ated using metrics representing the wastewater flow, microbial concen-
ration, the magnitude of the overflow, and the DWI’s proximity to the
utfall. The overflow index (OI) was computed using the formula below
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Fig. 1. Methodological flowchart for assessing microbial risks 
associated with CSOs. 
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Fig. 2. Bayesian network for CSOs risk assessment. Abbreviation used in the 
model: Pop: population in urban drainage basin, diam: pipe diameter, SC: sever- 
ity of consequences, AFO: annual frequency of overflows, AOFR: automatic over- 
flow frequency recorder, MHFO: microbial hazard based on frequency of over- 
flows, MACOT: maximum annual cumulative overflows time, MHDO: microbial 
hazard based on overflow duration, MH: CSO microbial hazard, DPI: distance 
prioritization index, LDWI: location of the DWI regarding the CSO, EXP: expo- 
sure of the DWI to the hazard of CSO, DWI_VL: DWI vulnerability level, VCC: 
vulnerability to chemical contamination, VMC: vulnerability to microbial con- 
tamination, VWS: vulnerability to water scarcity, RL: CSO risk level. The gray 
filled nodes are the key nodes of a BN sub-model proposed by Kammoun et al. 
( 42 ). 

s  

v  

i  
 Eq. (1) ). It generates a single numeric score, which is then classified
nto one of five risk categories, ranging from very low to very high. 

𝐼 = 

( 

𝐷 

2 . 𝑀𝑎𝑥 

𝑛 =5 ∑
𝑖 =1 

𝑋. 𝑃 𝑜𝑝 

) 

∕ ln ( 𝑅𝐷 ) (1)

here D is the pipe diameter (m) at the outfall, Pop is the estimated
opulation for the dissemination block boundary present in the urban
rainage basin (UD(B), RD is the riverine distance (m) between the DWI

nd the overflow discharge point, 𝑀𝑎𝑥 
𝑛 =5 ∑
𝑖 =1 

𝑋 is the maximum annual

umulative duration (h) of overflows observed during five years, X is
ubstituted with the overflow frequency if data on the duration is un-
vailable. The data used to apply this deterministic approach and their
ources of collection are reported in the supplementary Table S3. 

The overflow index was computed for all CSO structures with outfall
n the intermediate protection zone of the DWI. A very high risk level
as automatically assigned to any structure located in the immediate
rotection zone, regardless of its overflow characteristics. 

.3. Probabilistic risk assessment method 

.3.1. Bayesian network construction 
The BN model presented in Fig. 2 was designed to assess the micro-

ial risk of CSOs to DWIs by combining three sub-models – microbial
azard, exposure to the hazard, and global vulnerability of the DWI.
he Bayesian network sub-model that assesses DWI vulnerability was
eveloped by Kammoun et al. (2023. ) using Netica ( Norsys Software
nd Corp. Netica 2021 ) for agricultural risk assessment. This sub-model
Supplementary Fig. S1) was replicated using the R programming lan-
uage (R studio, version 4.1.3) and interconnected with the CSO risk
ssessment sub-model, which includes key variables that describe CSO
3 
tructures, overflow events, DWI and overflow outfall location. Each
ariable constituting the BN is represented as one node. Child nodes get
nput from one or more parent nodes ( Kaikkonen et al., 2020 ). The data
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sed as input in this Bayesian Network, along with their corresponding
ources of collection, are listed in supplementary Table S3. 

Probabilistic risk analysis was conducted by filling in conditional
robability tables (CPTs), which describe the probabilistic relationships
etween the parent nodes and their influence on the child nodes. The
onditional probability distributions in CPTs were determined using an
dapted mixed aggregation method (F add-max ) for BNs as proposed by
ammoun et al. (2023) . This method, which is described in more de-

ails in the supplementary materials (Text S1), involves combining an
dditive (f ad(D) and a maximum (f max ) aggregation. To make one aggre-
ation more important than the other, an alpha ( 𝛼) weight between 0
nd 1 is given to f add . Otherwise, a weight of 1- 𝛼 should be given for
 max . The additive aggregation requires assigning weights (W n ) (from 0
o 1) that show how much each parent node affects the child node. 

The conditional probabilities distribution of each CPT and the opti-
al 𝛼 and W n combinations for each parent node were set by developing

n algorithm that tests all possible iterations, incorporates interpreted
reconditions deduced from the literature, and relies on expert knowl-
dge. This algorithm is effective in identifying the optimal combination
mong thousands. It was developed by generally answering the follow-
ng questions for each CPT: 

- Which parent node contributes the most to the child node? 
- How does the status of a child node change when the status of a

parent node increases or decreases by one level? 
- Are there any extreme probability values in the CPT that need to be

excluded by evidence? 

For example, a single CPT of a child node (x 1 ) that is linked to two
arent nodes (x 2 and x 3 ) with five statuses for each node (k i = 5) must be
lled up after testing 121 iterations, each of which has 125 probability
alues (P(x 1 = a k |x 2 , x 3 ), where a k is the possible value of the node x 1 ).
he 121 iterations depict all conceivable combinations of 𝛼, W X2 and
 X3, where the sum of the weights equals 1. This approach must be

pplied to each CPT constituting the BN while adjusting the parameters
hat define the number of nodes and their status. A R code was developed
or this purpose (supplementary Text S2). It illustrates all the criteria and
ypotheses ( Table 1 ) implemented in the algorithm to determine the
ost appropriate conditional probabilities distribution to fill the CPTs.
he status of all nodes shown in Table 1 was mainly determined based on
he levels used in the deterministic approach of McQuaid et al. (2019) ,
s well as expert opinion. 

After defining the probabilistic connection between nodes, the “bn-
earn ” package ( Scutari, 2010 ) in R was used to learn the structure of
he BN, and the “Rgraphviz ” package ( Hansen et al., 2022 ) was used
o plot the network. The R code used for this purpose is given in the
upplementary Text S3. 

.3.2. Bayesian network validation 
Once the risk assessment model was constructed, the acceptability

f the probabilities that this BN inferred was assessed to determine the
odel’s reliability and credibility. This assessment was computed using

he “querygrain ” function of the “gRain ” package ( Hojsgaard, 2012 ),
s demonstrated in the R code shown in Supplementary Text S4. By
ltering one BN input node at a time, outcomes enabled the examina-
ion of the direct perturbation of the risk level node (RL). The probabil-
ty findings shown in Supplementary Fig. S2 indicated that changes to
he population in UDB (Pop), the frequency (AFO) and the duration of
he overflow (MACOT) nodes had the greatest impact on the “RL ” node
ompared to the other nodes. This supports the existence of a substan-
ial causal link between these three nodes and the relative risk of CSOs
ompared to the remaining input nodes. These results were further val-
dated by examining the outcomes of the sensitivity analysis conducted
or this Bayesian model. This sensitivity analysis refers to assessing the
egree of influence exerted by the parent nodes on the outcomes of a tar-
et node ( Grêt-Regamey and Straub, 2006 ; Harris et al., 2017 ; Zou and
4 
ue, 2017 ), using the calculation of mutual information between vari-
bles, as described by Pearl (1988) . In this study, the target node was
pecified by the node representing the risk levels (RL). The results of this
ensitivity analysis (Supplementary Table S4) identified the key factors
hat influence the risk levels associated with CSOs, ranked in descend-
ng order of influence: the population in the UDB (Pop), the frequency
f overflow (AFO), the duration of overflow (MACOT), the DWI vulner-
bility (DWI_VL), the automatic overflow frequency recorder (AOFR),
he pipe diameter (diam), the distance prioritization index (DPI), and
he location of the DWI relative to the CSO (LDWI). These findings pro-
ide insights into the most critical factors that should be monitored and
ontrolled to reduce the risk of source water contamination. 

The validity of the BN was completed by running known scenarios,
nd the results were then evaluated using expert judgment. First, we
xamined the most extreme combinations of the scenario analysis, by
hinking about the output in the best (S1) and worst case (S2) scenar-
os, and then we looked at the more generic version of the scenario
nalysis (S3 to S11). Supplementary Fig. S3 depicts the hierarchical
rouping of scenarios based on nodes “Pop ”, “AFO ”, and “MACOT ” that
ave the largest influence on the risk level. The scenario groups labeled
Population max ”, “Frequency max ” and “Duration max ” are defined
y population (Pop), the frequency (AFO), and the duration overflow
MACOT) nodes at their maximum statuses, respectively. Similarly, the
roups linked with the “min ” indices are related with the nodes having
tatuses at a low range. As an example, scenario S5 is defined by a very
ow population (0 to 50 person), very high overflow frequency ( ≥ 14),
nd extremely long overflow duration ( ≥ 262). Supplementary Table S5
rovides details of all modeled scenarios. 

The outcomes of the RLs related to the 11 scenarios (from S1 to S11)
re shown in Supplementary Fig. S4. The probability of a very high risk
evel was highest (99%) for the worst-case scenario S2. In comparison,
he probability of a very low risk level (97%) was highest for the best-
ase scenario S1. These estimations were expected given that the very
igh risk for S2 was associated with the combination of the critical nodes
Pop, AFO, and MACOT) in their worst range, and the overflow was
redicted to take place at a short distance from the DWI on the same
iverbank. In comparison, S1 implied all nodes that were coupled at
heir best range during BN construction. 

Very high risk probabilities of 24%, 8%, and 22%, respectively, were
bserved in scenarios S6, S7, and S8. For these three scenarios, the large
stimated population ( ≥ 5 000 people) was the leading factor explaining
hese probabilities. Scenario S6 was characterized by a low frequency of
verflow (AFO = 1 to 2) and a short period of overflow (MACOT = 1 to
3 h). However, it was assumed that the discharge would be extremely
lose to the DWI, which supported the 24% very high risk rating. The
utfall’s placement on the opposite riverbank and at the end of the in-
ermediate protection zone boundary justified a 16% reduction in the
ery high risk rating for S7 compared to S6. Also, S8 had a 14% higher
robability that the risk would be classified as “very high ” compared to
7 due to its more frequent and longer period of overflows. 

Due to the uncertainty around the frequency and duration of over-
ows in S9, which were not captured by an automated recorder as they
ere in S3, the medium level risk predicted by S9 was 26% higher than

hat predicted by S3. Additionally, S4 had a higher probability of the
edium risk level than scenarios S5 and S10 because of the higher over-
ows’ frequency and proximity to the DWI. The results of S3 and S10
howed that varying the overflow duration from a minimum to a maxi-
um state while maintaining all other variables in the same state led to
 54% increase in the medium risk level. It was also shown by scenarios
3 and S11 that changing the overflow frequency from the lowest to the
ighest state shifted the probability of the medium risk level by 80%. 

A quantitative technique could not be used to validate and improve
he precision of the Bayesian model that was designed in this study.
owever, in qualitative terms, we may infer that the findings connected
ith the various scenarios outlined below were plausible and consistent
ith the experts’ expectations. Accordingly, this Bayesian model can be
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Table 1 

Criteria and hypothesis used to fill conditional probability tables constituting the BN. 

Child node Parent nodes Criteria and hypothesis for determining the link between parent and child nodes CPT filling parameters selected 

Attribute Status ∗ 

Severity of consequences 
(S(C) 

Population (Pop) 1 < 50 
50 to 1000 
1000 to 2500 
2500 to 5000 
≥ 5000 

- The number of individuals that are housed in the UDB has a substantial correlation with the load of 
microbiological pollutants that are released from the overflow structure. Consequently, the severity of 
the consequences tends to be proportional to the population that occupies the UDB. According to 
Madoux-Humery et al. (2013) research, the concentration of E. coli in raw sewage water varies 
depending on the kind of land use, the UDB area, and the population density. The average E. coli 
concentration per person per combined sewer overflow event was estimated by Jalliffier-Verne et al. 
(2017) to be 5.5 CFU/100 mL/p in a southern Quebec urban region that is fairly similar to our study 
site. Olds et al. (2018) also demonstrated a causal relationship between the level of sewage 
contamination and the degree of urbanization by using genetic markers for human-associated indicator 
bacteria such human Bacteroides (H(B) and human Lachnospiraceae (Lachno2). 
- It was considered that the diameter of the overflow pipe does not completely represent the flow rate 
of the overflow discharge into the surface water because, in reality, pipe design is done to ensure that 
the maximum flow occurs within 93% of the total pipe diameter ( MELCC and MAMROT, 2014 ). In 
instances, the rate of wastewater outflow fluctuates with precipitation intensity. Furthermore, the 
overflow pipe’s diameter reflects the scale of the urban area drained upstream. 
- The weight assigned to the parent node “Pop ” should be greater than that assigned to the node “diam ”. 
- The uncertainties on the conditional probability distributions are mainly related to flow rate of the 
overflow discharge. 

𝛼= 0.9 
W Pop = 0.9 
W Diam = 0.1 

Diameter (diam) 2 < 0.9 
0.9–1 
1–1.2 
1.2–1.5 
≥ 1.5 

Microbial hazard based on 
overflow duration (MHO(D) 

Maximum annual cumulative 
overflow time (MACOT) 3 

[0, 1), [1, 23), [23, 96), [96, 
262), [262, +∞) 

- Studies on how E. coli concentrations change during an overflow event have shown inconsistent 
findings. According to the research of Madoux-Humery et al. (2013) and Passerat et al. (2011) , the E. 
coli concentration is higher at the beginning of overflow events due to leaching from the sewer systems. 
However, the more extended the overflow event lasts, the peak E. coli contamination decreases. Other 
research has shown that depending on the peak flow, E. coli peaks may happen later ( Taghipour et al., 
2019 ) or be randomly spread during excessively long overflow events or events caused by snowmelt 
mixed with precipitation ( McCarthy et al., 2012 ). Indeed, theses variations in the outcomes are 
influenced by a multitude of factors, most notably the duration and intensity of rainfall, as well as the 
duration of the dry period preceding the overflow episodes ( Madoux-Humery et al., 2015 ). 
Consequently, the uncertainties on the conditional probability distributions are mainly related to these 
factors. 

𝛼= 1 
W MACOT = 0.4 
W CS = 0.6 Severity of consequences 

(S(C) 
Very low 
Low 
Medium 

High 
Very high 

Microbial hazard based on 
frequency overflows (MHFO) 

Annual frequency of 
overflows (AFO) 4 

[0, 1), [1, 2), [2, 5), [5, 14), 
[14, +∞) 

- The frequency of overflows that are manually recorded may not accurately represent the 
microbiological hazard, because the real number of overflows could be higher when an automatic 
recorder is used; if there is more than one overflow in a week, they are all recorded as one event, and 
the duration of the overflow is not recorded. Consequently, there are more uncertainty and variability 
in the probability distribution of the CPT linked to the MHFO child node while using manual recorder. 

- A high number of overflows is not particularly associated with the highest levels of E. coli . However, 
high E. coli concentrations are often correlated with the extensive sewershed population that discharges 
upstream of the intakes (Jalliffier-Verne et al., 2016). 

If the overflow structure is equipped with 
an automated overflow frequency recorder: 
𝛼 = 0.7 
W AFO = 0.3 
W CS = 0.7 
Otherwise, the conditional probability 
distributions are adjusted based on expert 
judgment. 

Automatic overflow 
frequency recorder (AOFR) 5 

Yes 
No 

Severity of consequences 
(S(C) 

Very low 
Low 
Medium 

High 
Very high 

CSO microbial hazard (MH) Microbial hazard based on 
overflow duration (MHO(D) 

Very low 
Low 
Medium 

High 
Very high 

- Microbial hazard can be estimated with more certainty based on the overflow duration rather than 
the frequency. CSO frequencies do not represent contaminant loads properly ( Taghipour et al., 2019 ). 
- The uncertainties on the conditional probability distributions are mainly related to the CSO 
microbiological load. 

𝛼= 0.5 
W MHOD = 0.6 
W MHFO = 0.4 Microbial hazard based on 

frequency overflows (MHFO) 

( continued on next page ) 
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Table 1 ( continued ) 

Child node Parent nodes Criteria and hypothesis for determining the link between parent and child nodes CPT filling parameters selected 

Attribute Status ∗ 

Exposure of the DWI to the 
hazard of CSO (EXP) 

Location of the DWI 
regarding the CSO (LDWI) 6 

ORB 8 

MOR 9 

SRB 10 

- Peak E. coli concentrations are typically higher in DWI raw water located longitudinally downstream 

of the overflow outfalls, — in other words on the same riverbank, compared to the intake placed 
opposed the outfalls ( Taghipour et al., 2019 ). 
- Different CSO loading scenarios and simulated river hydrodynamic conditions demonstrated that 
maximum concentrations reached at drinking water treatment facilities within a few hours for 
near-intake overflow structures ( Taghipour et al., 2019 ). 
- Position of the DWI relative to a CSO outfall locations may reflect a significant impact of higher 
flowrates on E. coli concentrations at the intake ( Jalliffier-Verne et al., 2017 ). 
- The DPI is generated using the maximum and minimum distances between the drinking water intake 
and CSO outfalls within the same riverbank. The closer the index score is to one, the higher the 
microbiological hazard to water quality at the intake. 
- Uncertainties in the conditional probability distributions are mainly related to microbial contaminant 
fate and transport from CSO outfalls to the DWI. 

𝛼= 0.2 
W LDWI = 0.6 
W DPI = 0.4 

Distance prioritization index 
(DPI) 7 

[0, 0.2), [0.2, 0.4), [0.4, 0.6), 
[0.6, 0.8), [0.8, 1] 

CSO risk level (RL) CSO microbial hazard (MH) Very low 
Low 

CPT filling parameter were selected based on the study conducted by Kammoun et al. (2023) . 𝛼= 1 
W MH = 0.8 
W EXP = 0.1 
W DWI_VL = 0.1 

Exposure of the DWI to the 
hazard of CSO (EXP) 

Medium 

High 
Very high 

DWI vulnerability level 
(DWI_VL) 

Low 
Medium 

High 

∗ The status of each node are listed in ascending order from the best to the worst range. 
1 The population “Pop ” estimated in the UDB supplied by the combined overflow structure. 
2 Diameter (in meters) of the wastewater discharge pipe to the surface water. 
3 Maximum annual cumulative duration (in hours) of overflow events occurred during a 5-year period. 
4 Maximum annual cumulative number of overflow events occurred during a 5-year period. 
5 This node specifies whether or not the overflow structure is occupied by an automated recorder of the frequency and duration of overflows. 
6 The riverbank where the DWI is situated in regard to the overflow structure’s outfall. 
7 The distance prioritization index was determined based on the riparian distance (m) between the CSO outfall and the DWI. 
8 Opposite riverbank. 
9 Middle of the river. 
10 Same riverbank. 
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Fig. 3. Results of the risk assessment of the CSOs inventoried upstream of DWI_1 
and DWI_4. (A) Maps illustrate overflow structure’s locations upstream of DWIs. 
(B) Bar plots feature the probabilities (in%) across different risk levels deter- 
mined based on the probabilistic approach. (C) The bottom plot indicates the 
risk levels of CSOs using the deterministic approach. 

u  

s

3

3

 

s  

s  

i  

 

r  

r  

t  

r  

s  

n  

p  

T  

v  

e  

D
 

p  

r  

m  

C  

o  

d  

r  

t  

T  

C
 

C  

C  

t  

e  

i  

l

3

 

C  

t  

t  

t  

T  

D  

i  

s  

r  

r  

t  

m  

D  

r  

(  

a  

t  

b  

b  

a  

m  

v
 

C  

U  

(  

e

3

 

m  

h  

i  

i  

a  

a

4

4

 

o  

d  

d  

t  

p  

a  

t  

a  

s  

a  
sed to accurately assess the risk of the overflow structures at the study
ite. 

. Results 

.1. Overflows frequency and duration 

Both deterministic and probabilistic approaches were applied to as-
ess the CSO risk at the study site. Fig. 3 illustrates the results for up-
tream (DWI_1) and downstream (DWI_4) river intakes. Figs. 4 and 5
llustrate middle river section intakes (DWI_2 and DWI_3, respectively).

Using the probabilistic approach, CSO_2 posed the most significant
isk for the study site, with a 99% probability of being at the very high
isk level. This CSO outfall is located within the DWI_3 ′ s immediate pro-
ection zone and has the highest number of recorded overflow occur-
ences ( n = 343), therefore, the high risk it presents is justified. CSO_11,
ituated upstream of DWI_2 and DWI_3, had the longest cumulative an-
ual overflow duration (1186 h). This also explains the very high risk
robabilities of 86% and 83% regarding DWI_2 and DWI_3, respectively.
he exposure to this CSO and the vulnerability of each DWI led to a 3%
ariation in their very high risk probabilities. The deterministic method
stimated that CSO_2 and CSO_11 posed a very high risk to these two
WIs. 

Using a probabilistic method, the probabilities of very high risk
osed by CSO_9, CSO_36, and CSO_50, upstream DWI_2 and DWI_3,
anged from 23% to 62%. Nonetheless, the risk level was underesti-
ated using the deterministic approach; it was stated that CSO_9 and
SO_36 posed a medium risk level and CSO_50 a high risk level. A lack
f data on the overflow durations of CSO_36 and CSO_50 caused this un-
erestimation. The deterministic assessment, in this instance, was car-
ied out based on their overflow frequencies, regardless of their dura-
ions; CSO_36 had a medium overflow frequency, and CSO_50 a low one.
7 
he risk is also underestimated, although the frequency and duration of
SO_9 overflow events are known. 

Risk levels at 13 other overflow structures (CSO_7, CSO_10, CSO_22,
SO_34, CSO_39, CSO_43, CSO_45, CSO_47, CSO_48, CSO_49, CSO_52,
SO_54, CSO_55) upstream from all DWIs were assessed using the de-
erministic method without overflow duration data, as they were not
quipped with automatic overflow recorders. The deterministic method
mplies a low- to medium-frequency overflow and poses, in general, a
ow to medium risk to the DWI. 

.2. Hazard exposure 

Over the study site, six outfalls of CSOs (CSO_1, CSO_2, CSO_3,
SO_44, CSO_52, and CSO_53) are located in the DWIs’ immediate pro-
ection zones ( Figs. 3–5 ). Due to their discharges occurring no more
han 500 m upstream of the intakes, all these structures were estimated
o be associated with a very high risk using the deterministic method.
he Bayesian model revealed, however, that only CSO_2 upstream of
WI_3 was 99% likely to present a very high risk due to its character-

stics: all the nodes AFO, MACOT, DPI, and LDWI were at their worst
tatus. In contrast, for CSO_52, CSO_53, and CSO_3, the predominant
isk level was deemed high, with probabilities of 90%, 78%, and 70%,
espectively. The lower population density in their UDBs, as compared
o CSO_2, seemed to be mostly responsible for these findings. Further-
ore, CSO_3 and CSO_53 are positioned on the opposite riverbank as the
WI, making it uncertain that all microbiological contaminants could

each the intake. The risk associated with CSO_44 was rated as medium
60%) to low (29%) because of its low frequency of overflows (1 to 2),
 small population (50 to 1000), and intake position (MOR). According
o Taghipour (2019) , pollutants disperse predominantly along the river-
ank where they are discharged, which supports BN risk probabilities
eyond the deterministic risk level. As the population parameter is un-
vailable, CSO_1 ′ s risk is calculated as very high (38%), high (48%), and
edium (14%) ( Fig. 2 ). This uncertainty was related to the population

ariable that reflects the microbial contaminant load. 
In the intermediate protection zones, CSO_44, CSO_47, CSO_48, and

SO_49 are near the DWI (DPI = 0.8 to 1) and on the same riverbank.
sing the BN, it was assumed that these CSOs had a medium risk level

54 to 61%). Compared to these CSOs, CSO_32 had a high risk (88%),
ven though it is located on the other shore and distant from the DWI. 

.3. Lack of data 

The lack of data on any of the deterministic equation’s parameters
akes it impossible to apply it to estimate the overflow risk level. Almost
alf ( n = 42) of the study site’s overflow structures were not determin-
stically assessed because of lack of data. Using the Bayesian network,
t was feasible to evaluate these CSOs by assigning equal probability to
ll CSOs with missing data, therefore evaluating risk with uncertainty,
s shown in Fig. 6 . 

. Discussion 

.1. Prioritization of overflow structures 

In this study, the assessment of microbial contamination risk levels
f DWIs located downstream from CSOs discharge is conducted using
eterministic and probabilistic approaches. The findings in Section 3 in-
icate that overflow structures with both high frequency and long dura-
ion of overflow events are often linked to a high microbial risk for DWIs,
articularly when the discharge outlet is located on the same riverbank
nd near the intake ( Sections 3.1 and 3.2 ). The results also showed that
he deterministic approach could underestimate the level of risk due to
 lack of data regarding the duration of overflow events, as was ob-
erved for CSO_36 and CSO_50. Even with information on the frequency
nd duration of overflows events, as in the case of CSO_9, the risk level
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Fig. 4. Results of the risk assessment of the 
CSOs inventoried upstream of DWI_2. (A) Maps 
illustrate overflow structure’s locations up- 
stream of DWI_2. (B) Bar plots feature the prob- 
abilities (in%) across different risk levels de- 
termined based on the probabilistic approach. 
(C) The bottom plot indicates the risk levels of 
CSOs using the deterministic approach. 
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an still be underestimated ( Section 3.1 ). This is because the determin-
stic method is not capable of handling many scenarios simultaneously;
or example, a single overflow might result in several waterborne epi-
emics, mainly when the CSO structure serves a large population. In
act, the population estimated in the UDB of CSO_9, CSO_36, and CSO_50
anged from high (2500 to 5000) to very high ( ≥ 5000). However, as ex-
lained in Table 1 , the probabilistic method considers that the overflow
ay last for a long time, and it may alter the quality of water sources.
s a result, for all these CSOs, the probabilistic method produces lev-
ls of risk were higher than that given by the deterministic method.
hese findings demonstrate the Bayesian model’s capability to account
or the overflows’ inherent uncertainty as well as the uncertainties in the
ecorded data, particularly when employing a manual technique, giving
t an advantage over the deterministic assessment. 

These findings are supported by the research of
aghipour et al. (2019) demonstrating with hydrodynamic and water
uality modeling that overflow frequency is not always more indicative
f risk as compared to microbial contaminant load. Additionally, the
orld Health Organization (WHO) ( World Health Organization (WHO),

016 ) has shown that 13 events of microbial contamination intrusion
nto surface waters resulted in more than 600,000 waterborne disease
utbreaks over 14 years. The probabilistic risk assessment approach,
hich includes uncertainty and accounts for several scenarios, yields
ore reliable findings than the deterministic one. 

Based on the results of Section 3.2 , it can be deduced that the
ayesian model prioritizes the CSO that is overflowing more and for
 longer period, and it is not simply the overflow outfall’s position that
s of greatest significance and the only parameter of interest. The very
igh frequency and duration of overflows in the CSO_32 explained the
i  

8 
igh level of risk compared to other structures such as CSO_44, CSO_47,
SO_48, and CSO_49, which exhibited very low to low UDB populations.

The deterministic approach produced a point estimate risk level that
ay be either very low, low, medium, high, or very high using a simple

quation, whereas the probabilistic approach generated distributions of
robable risk levels across various risk ranges ( Section 3 ). The point
isk levels of the deterministic approach are difficult to compare as they
re less informative and may give similar ratings to quantitatively dis-
inct risks. Using DWI_3 as an example, it was assessed that 10 CSOs
ose a medium risk level with 100% evidence ( Fig. 4 ). Nevertheless,
sing the Bayesian model, it was feasible to identify the CSOs that re-
uire greater attention. These 10 CSOs may be sorted from most to least
ttention needed: CSO_36, CSO_51, CSO_39, CSO_9, CSO_40, CSO_43,
SO_43, CSO_38, CSO_3, CSO_23, and CSO_32. Results demonstrated
hat the other deterministic risk levels (very low, low, high, and very
igh) show the same pattern for all DWIs. Thus, the outputs of the de-
erministic approach make it challenging for managers to identify CSOs
hat need extensive attention when many CSO are evaluated as having
he same risk level. This may be handled by using the sorted results
btained from the probabilistic model. 

When implementing a source protection action plan, it is essential
o identify and especially prioritize the pollution sources that cause the
reatest risk to raw water. The probabilistic method allows for this, as
pposed to the deterministic approach, by considering uncertainties in
he risk assessment process. 

.2. Risk mitigation 

The first step in safeguarding a water source is recognizing the most
mportant risks to the quality of that water. As described in Section 4.1 ,
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Fig. 5. Results of the risk assessment of the 
CSOs inventoried upstream of DWI_3. (A) Maps 
illustrate overflow structure’s locations up- 
stream of DWI_3. (B) Bar plots feature the prob- 
abilities (in%) across different risk levels de- 
termined based on the probabilistic approach. 
(C) The bottom plot indicates the risk levels of 
CSOs using the deterministic approach. 

Fig. 6. Probabilistic risk assessment results for CSOs inventoried upstream of drinking water intakes (DWI 1, DWI 2, DWI 3, and DWI 4) that could not be analyzed 
using the deterministic approach owing to lack of data. 
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t was challenging to prioritize overflow structures in an urbanized wa-
ershed using the deterministic approach. However, the concept of a
eterministic approach could be used at a larger scale (e.g., provincial)
or a preliminary examination to evaluate the key sources of risk from a
ange of human activities. For higher-level risk evaluation on a smaller
cale (watershe(D), a probabilistic approach based on BN is useful. This
trategy could be beneficial to support water safety plans. 
9 
Water managers and stakeholders face several obstacles, including
ata gaps, and the complexity of interdependent components that de-
ne water resource systems ( Phan et al., 2016 ). This can make it chal-

enging to implement effective action plans to protect DWIs, especially
sing deterministic risk outcomes that do not support the lack of data
s demonstrated in the results of Section 3.3 . In this study, the Bayesian
odel addressed these issues by defining the relationship between vari-
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t  
bles that account for various types of uncertainties, including those
elated to data, knowledge gaps, and technical components that are
elated to the nature of the equipment (manual or automati(C) used
o record overflow characteristics. Thus, it can be stated that a single
odel may be used to estimate the risk associated with overflow struc-

ures in all watersheds, despite the limited amount of data available.
hese findings might help managers detect problematic structures by
overing several eventualities. This information may be used to make a
udgment on whether to install automated recorders to fill in the gaps
n data about the duration and frequency of overflows. Subsequently,
he updated data might be incorporated into the BN to reevaluate the
isk posed by these structures with less uncertainty. In this study, it is
mportant to acknowledge the limitations of the constructed Bayesian
odel, which relies on simplifying hypotheses used to fill conditional
robability tables ( Table 1 ). These hypotheses can lead to approximate
utcomes or oversimplifications of the complex reality of the assessed
ystem. This simplification of complexity affects various elements of the
tudy, such as dispersion and diffusion patterns, as well as the growth,
eproduction, and mortality of E. coli during the process of spreading
nd diffusion to the DWI. To incorporate these elements in more de-
ail, it would be necessary to conduct hydrodynamic and water quality
odeling using a three-dimensional (3(D) model to include the physical,

iochemical and biological processes. 
Regulations aim at reducing the frequency of CSOs ( Jalliffier-

erne et al., 2016 ). This goal could be achieved by various strate-
ies such as green infrastructures, Water Sensitive Urban Design
WSU(D), improved operation practice and collection system improve-
ents ( Botturi et al., 2020 ; Fry and Maxwell, 2017 ; Fu et al., 2019 ;

ean et al., 2021 ; Ryu et al., 2015 ; Wong, 2006 ) including the sepa-
ation of the combined sewers ( Abbas et al., 2019 ). However, not all
hese risk mitigation options are compatible with the characteristics of
he studied watershed and available budget. A feasibility evaluation is
eeded to select the optimal (or a combination of) options. The BN de-
eloped in this study could be extended to a Bayesian decision network
BDN) by adding decision nodes representing various risk mitigation
ptions and utility nodes indicating the benefits of outcomes and the
ost of action ( Kaikkonen et al., 2020 ; Phan et al., 2019 ). This BDN
ould compare the costs and benefits of several options and settle on
he most cost-effective strategy for mitigating the risk ( Notaro et al.,
014 ; Penman et al., 2020 ). 

.3. Applicability of the Bayesian model on a wider scale 

The BN model proposed in this study was developed with a particular
mphasis on the hazard that CSOs represent to DWIs. The factors charac-
erizing an overflow and its impact on water quality (such as population
n the UDB, frequency and duration of overflows, pipe diameter, expo-
ure, etc.) are similar across different countries and regions in Canada.
he readily available data used to construct this Bayesian model makes it
uitable for extrapolation to other major, densely urbanized watersheds,
s well as watersheds with different levels of urbanization. It is possible
o customize the nodes considering new data describing the character-
stics of the CSOs, the DWI to be studied, and the local regulations. To
urther strengthen and validate this study’s conclusions, future research
ndeavors may explore expanding this study to multiple locations. This
ayesian model could also be optimized in diverse global settings and
ontexts to protect other uses of surface water from CSOs, like recre-
tional and agricultural uses, as well as to protect aquatic species and
he ecological health of the receiving water. 

It is possible to improve the developed Bayesian model by consid-
ring the simultaneous occurrence of overflows, because the overflow
vents accumulation on the same riverbank increases the contaminant
oncentration downstream of the DWI ( Jalliffier-Verne et al., 2016 ).
dditionally, this study’s Bayesian model is deemed static because it
ses the statistics of the data gathered over a period of five years
ithout considering their evolution over time. This static BN might be
10 
ade dynamic by adding additional time-dependent variables and fea-
ures ( Marcot and Penman, 2019 ) as the probability distribution may
hange during its lifespan ( Khosravi-Farmad and Ghaemi-Bafghi, 2020 ).
n other words, climate or global change can be integrated into this
odel using a dynamic BN. The main challenge of this application is

ntegrating multiple simulations into the model, given that temporal
evelopment is coupled with a change in many variables, generating
arious scenarios. 

. Conclusions 

Results of this paper highlight how the outcomes of the deterministic
nd probabilistic approaches differed: 

• When all variables defining an intake’s exposure to an overflow
event are set to their lowest or highest values, the deterministic
method yields steady and equivalent outcomes to the probabilistic
approach. However, when a structure is linked to many features at
various degrees, the deterministic findings generally underestimate
risk compared to the probabilistic ones. Exceptionally, the deter-
ministic approach overestimates the risk level of the CSO located
in the immediate protection zone because it does not consider the
microbial contaminant load presented by the population in the UDB.
This inaccurate classification of risks may lead to unreliable decision
making. 

• Single-valued outputs from a deterministic risk assessment approach
are less relevant than those depicted in a probability distribution us-
ing a probabilistic approach. A valuable aspect of the probabilistic
model is its capacity to integrate probabilities to consider the uncer-
tainty related to the intrinsic characteristics of overflows as well as
external influences such as DWI vulnerability and exposure to the
threat. 

• In contrast to the deterministic approach, the Bayesian model en-
ables ranking and prioritizing CSOs to support risk management at
the watershed level and provides considerable assistance in estab-
lishing more effective action plans for drinking water safety. 

• The assessment of risk associated with CSOs requires a substan-
tial amount of data, which is not readily available or necessitates
in-depth and sophisticated analyses based on advanced equipment
that may not easily accessible to managers. Therefore, it is essen-
tial to rely on knowledge and experience, including theory, to con-
duct risk assessment. In this research project, this approach was fa-
cilitated by utilizing BN to handle various types of data, scientific
knowledge expert knowledge, and regulatory requirements in defin-
ing variables and the probabilistic relationships among them. The
BN model shows the important ability to overcome limitations that
arise from a lack of data when using the deterministic method. In the
field of source water protection, it is crucial to identify risk sources
even with uncertainty, to plan subsequent advanced and sophisti-
cated analyses for risk mitigation. 

• The Bayesian model can make a significant contribution to effective
learning process in the fields of source water protection. Sensitivity
analysis help identify variables that have the greatest influence on
risk levels and require further investigation. This enables targeted
and systematic learning, leading to improved scientific knowledge
in this field. 
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