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RESEARCH

Planning for resilience in screening 
operations using discrete event simulation 
modeling: example of HPV testing in Peru
Anne F. Rositch1*  , Aditya Singh2, Nadia Lahrichi3, Valerie A. Paz‑Soldan4,5, Anna Kohler‑Smith5, 
Patti Gravitt6 and Erica Gralla2 

Abstract 

Background: The World Health Organization (WHO) has called for the elimination of cervical cancer. Unfortunately, 
the implementation of cost‑effective prevention and control strategies has faced significant barriers, such as insuf‑
ficient guidance on best practices for resource and operations planning. Therefore, we demonstrate the value of 
discrete event simulation (DES) in implementation science research and practice, particularly to support the program‑
matic and operational planning for sustainable and resilient delivery of healthcare interventions. Our specific example 
shows how DES models can inform planning for scale‑up and resilient operations of a new HPV‑based screen and 
treat program in Iquitos, an Amazonian city of Peru.

Methods: Using data from a time and motion study and cervical cancer screening registry from Iquitos, Peru, we 
developed a DES model to conduct virtual experimentation with “what‑if” scenarios that compare different workflow 
and processing strategies under resource constraints and disruptions to the screening system.

Results: Our simulations show how much the screening system’s capacity can be increased at current resource lev‑
els, how much variability in service times can be tolerated, and the extent of resilience to disruptions such as curtailed 
resources. The simulations also identify the resources that would be required to scale up for larger target populations 
or increased resilience to disruptions, illustrating the key tradeoff between resilience and efficiency. Thus, our results 
demonstrate how DES models can inform specific resourcing decisions but can also highlight important tradeoffs and 
suggest general “rules” for resource and operational planning.

Conclusions: Multilevel planning and implementation challenges are not unique to sustainable adoption of cervical 
cancer screening programs but represent common barriers to the successful scale‑up of many preventative health 
interventions worldwide. DES represents a broadly applicable tool to address complex implementation challenges 
identified at the national, regional, and local levels across settings and health interventions—how to make effective 
and efficient operational and resourcing decisions to support program adaptation to local constraints and demands 
so that they are resilient to changing demands and more likely to be maintained with fidelity over time.

Keywords: Implementation planning, Discrete event simulation, DES modeling, Cervical cancer elimination, Peru, 
LMICs, Operations research, Resilience, Disruption
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Contributions to the literature

• While decision-analytic modeling has proven criti-
cal for the adoption of new technologies, our discrete 
event simulation (DES) models focus on the next set of 
decisions: resources and operations critical to adequate 
delivery of services.

• As an example, for an HPV-based screening program, 
our results assess its resilience to variability and disrup-
tion and the resources required to scale up capacity.

• These operational aspects of implementation have 
received limited attention but are critical in moving 
evidence-based interventions into routine practice.

• Thus, we demonstrate that DES models fill an essential 
and neglected role in translating new technologies and 
interventions into practice.

Introduction
The World Health Organization (WHO) has called for 
the elimination of cervical cancer through accelerated 
implementation of cost-effective prevention and control 
strategies, including screening with the treatment of pre-
cancerous lesions [1]. Low- and middle-income countries 
(LMICs), which bear the largest burden of cervical cancer 
and currently have either no, or highly ineffective, screen-
ing programs, can meet this global call to action only if 
significant efforts are made to adopt screening programs 
designed specifically for resource-limited settings [2]. 
Thus, the WHO guidelines now suggest choosing among 
several cost-effective screening strategies based on the 
availability of resources. Although many countries have 
adopted one or more of these WHO-recommended strat-
egies in their national cancer control plans [3–5], imple-
mentation of the new strategies has faced significant 
barriers, slowing the translation of policy to real-world 
practice [3, 6]. Unless these implementation challenges 
are adequately addressed, cervical cancer elimination 
goals will not be met, resulting in millions of preventable 
deaths.

Once a screening strategy has been adopted into a 
national screening program, a major barrier to success-
ful implementation, scale-up and sustainment of cervi-
cal cancer prevention programs has been insufficient 
guidance on best practices for resource and opera-
tions planning. “Resource and operations planning” is 
the set of decisions required to implement a screening 
approach, such as determining the amount and allo-
cation of staff and equipment and how and when to 
transport samples and results. Uninformed choices in 
resourcing and operations risk causing early failures in 

implementation, leading to reduced enthusiasm for new 
programs and even reversion to previous ineffective 
program plans. While these choices are often treated 
informally, we can facilitate data-driven resource plan-
ning and decision-making by “virtual experimentation” 
to examine the alternative implementation strategies 
using discrete event simulation (DES).

DES models have been used extensively in industrial 
engineering and in healthcare to improve operational 
efficiency and effectiveness by simulating "what-if " 
scenarios before investing in process changes [7–16], 
including in screening applications [8, 11] and in 
other applications in LMIC countries [17, 18]. DES 
models can represent health service systems by mod-
eling patients, samples, and other entities as they move 
through a process [19]. A process consists of a series 
of steps such as registration, sample collection, sam-
ple testing, and results delivery. The representation is 
sufficiently detailed to simulate interactions among 
patients/samples through resource-constrained process 
steps. For example, by simulating all the patients and 
samples as they step through the process, a DES model 
can measure the queues that result when patients wait 
to see a busy doctor and compute how long samples 
wait to be processed by a laboratory. By modeling the 
complex dynamics that lead to these bottlenecks and 
unintended consequences, DES models can explore 
the relative impact of both high-cost solutions such as 
building new physical space or hiring new staff against 
lower cost solutions such as workflow redesign and 
patient/staff scheduling. These examples are analogous 
to decisions facing LMIC stakeholders weighing the 
desirability of increasing coverage of cervical cancer 
screening and follow-up against the feasibility of meet-
ing the new demand without a significant increase in 
resources.

The overarching goal of this project is to demonstrate 
the value of DES in implementation research and prac-
tice, particularly to support operational planning for 
sustainable and resilient delivery of healthcare interven-
tions. While we apply DES to guide decision-making and 
resource utilization for cervical cancer prevention pro-
grams, these multi-level planning and implementation 
challenges represent common barriers to the success-
ful scale-up of many preventative health interventions 
worldwide. DES represents a broadly applicable tool to 
address complex implementation challenges across set-
tings and health interventions—how to make effective 
and efficient operational and resourcing decisions to sup-
port program adaptation (i.e., make more suitable) to 
local constraints in order to foster fidelity and resiliency.
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Methods
The Peruvian context and data
In Iquitos, a city of ~ 400,000 in the northern Ama-
zon basin region of Peru, we conducted a participa-
tory action research study to develop, implement, and 
test stakeholder-driven strategies for cervical cancer 
screening and treatment [20]. As part of this Proyecto 
Precancer Study, a difficult barrier emerged: mak-
ing effective and efficient operational and resourcing 
decisions so that the new screening program is better 
adapted to the local constraints and demand. Available 
tools from the WHO [21, 22] were essential in identify-
ing “what” to do but provided insufficient guidance for 
“how” to do it. To support such decisions, we decided 
to build a DES model of the screening process to carry 
out virtual experiments to assess the screening system’s 
performance at various resource levels.

As part of the Proyecto Precancer Study, we carried 
out a process mapping exercise [23, 24] whereby multi-
level stakeholders, including obstetras, doctors, col-
poscopists, administrators, and health authorities from 
the regional Ministry of Health, visually outlined and 
expanded upon the major steps and processes in the 
newly developed HPV-based screen and treat program 
for cervical cancer prevention. The process map (Fig. 1) 
was then used to build a simulation model, which 

was parameterized with real-life data from a time and 
motion study and screening registry.

As part of a time and motion study, we collected 
informed consent from patients and providers to directly 
observe and record time spent on different in-clinic 
activities and procedures at the major steps along the 
HPV-based screen and treat program process; data were 
collected at three clinics over 14 days (Appendix). For 
screening, we recorded the following times (in minutes): 
patient arrival, pre-screening registration and counseling, 
and HPV sample collection (clinician or self-collection). 
For the follow-up visit, we recorded the following times: 
arrival; pre-treatment registration, counseling, and con-
sent; visual examination to determine thermal ablation 
(TA) eligibility; TA procedure; post-treatment coun-
seling; and disinfection of TA probes. For HPV labora-
tory testing, we used direct observation to measure time 
(in minutes) for sample accessioning, processing, testing, 
and recording of results. We used our electronic screen-
ing registry to estimate the turnaround time (in days) 
from sample collection to HPV test completion in the 
central laboratory and from HPV result availability to 
conduct of visual triage to treatment (VTT) examina-
tion (for HPV positive women). Positivity rates, patient 
arrival rates, follow-up losses, and excision requirement 
rates were also estimated from the electronic screening 
registry.

Fig. 1 Process for HPV screen and treat, as represented in the DES model. Data estimated from a time and motion study, b electronic screening 
registry, and c direct observation
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The discrete event simulation model
A DES model was created to represent the process maps 
generated by multi-level stakeholders in Iquitos (Fig. 1). 
The movement of patients and samples is simulated as 
they move through the process steps. Each step (shown 
in orange in Fig. 1) takes some amount of time to com-
plete (a stochastic value drawn from a distribution) and 
has a fixed capacity (such as two staff who can process 
parallel registrations or an instrument with four test-
ing wells). When a patient or sample finishes one step, 
it waits until the next step is available, potentially gen-
erating a queue if the next step remains busy. When the 
process branches—such as when a test may be positive 
or negative—the branch is chosen by drawing from a 
probability distribution. Thus, running the model simu-
lates realistic variations in patient arrivals, queues, activ-
ity durations, and outcomes, accounting for the resource 
constraints in all parts of the modeled system.

The parameters for the model are designed to represent 
the process implemented in Iquitos. Processing time dis-
tributions are estimated from the time and motion study 
and the screening registry by fitting a distribution to the 
data (Appendix). In all cases, either a triangular or PERT 
distribution (based on the beta distribution and defined 
by the minimum, most likely, and maximum values of 
a variable) [25] was chosen because it provided a good 
fit based on the Kolmogorov–Smirnov test and is easily 
interpretable. The inputs and assumptions for the simula-
tion model are described in Table 1.

The model was verified to ensure that it accurately 
represented the processes mapped by stakeholders, 
through detailed examination and by testing for reason-
able outputs in a range of standard and extreme input 
parameters. Since the process has not yet been fully 
implemented in Iquitos, we followed the same approach 
as previous authors [16, 26]: the model was validated 
through stakeholder consultations instead of against data 
from Iquitos. Specifically, stakeholders were consulted 

through workshops in which they participated in the 
initial process mapping and later reviewed, refined, and 
approved the final process maps. Stakeholders were also 
shown the modeling results in a presentation and asked 
whether the results matched their experience with the 
processes. It is also important to note that the first part 
of the process, from sample collection to HPV testing, 
was fully implemented but with inconsistent processes 
and levels of demand, while the second part of the pro-
cess was in a pilot phase. The model was implemented in 
SIMIO version 11, an industry standard software package 
for this type of simulation.

Simulating health system performance under various 
scenarios
The model enables “virtual experiments” that evaluate 
the screening system’s performance under hypothetical 
“what-if” scenarios. Each scenario represents a potential 
change in the screening system’s resources, such as more 
staff or fewer operating hours. These virtual experiments 
allow decision-makers to evaluate the screening system’s 
adequacy to meet planned targets and its resilience to 
change and to test potential resourcing approaches, pro-
viding a basis for informed, data-driven implementation 
plans. Specifically, the performance of the health system 
is estimated in four experiments to investigate: (1) how 
many women can be screened with the baseline level 
of resources, (2) the resilience of the screening system 
to changes that make process steps take longer or take 
less predictable amounts of time, (3) the resources that 
would be required to scale up to meet a higher demand 
for screening, and (4) the resilience of the screening sys-
tem to larger disruptions such as unavailable equipment 
or personnel.

The baseline scenario represents the current status of 
the screening system. In virtual experiments, the assump-
tions are varied from the baseline to represent a set of 
“what-if” scenarios, such as higher demand or slower 

Table 1 Baseline scenario assumptions

Parameter Assumption

Central lab testing capacity Two 4‑well GeneXpert machines can process up to eight samples at one time.

Central lab testing time (for sample analysis and results processing) Triangular distribution in which the most likely value (central parameter) is 65 
min to complete the testing process and output the results; 5 min for results 
processing (see the Appendix section for all the parameters of the distribu‑
tion).

Scheduled hours of operation for CxCa screening 3 h per day, 5 days per week.

Demand for screening 4000 women per year, with Poisson‑distributed arrival times.

Batching for transport Samples are collected, stored, and sent from a health center to the central lab 
once a week on Wednesdays; results are returned on the same schedule.

Additional processing times See the Appendix section for additional processing time parameters.
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processing times. The baseline scenario assumptions are 
provided in Table 1. Each experiment includes a series of 
“what-if” scenarios, which each change one or more of 
the baseline assumptions, as shown in Table 2. For exam-
ple, to investigate the consequences of higher demand, 
one parameter (demand) is varied to create three “what-
if” scenarios, which increase the demand from the base-
line of 4000 to 4700, 5500, and 6000 women per year.

Outcome measures
To compare scenarios, several measures of performance, 
or key performance indicators (KPIs), are defined based 
on the goals and constraints of the screening system. 
These measures are as follows:

1. Number of women screened per year
2. Maximum time between sample collection and sam-

ple testing
3. Percent utilization of key resources

The first performance measure evaluates how well 
the screening system meets its goal to screen and treat 
the target population. It is computed by measuring the 
number of women whose results are reported, in the full 
year of simulated operations. The second measure tests 
whether the screening system meets a key constraint: the 
maximum time a sample spends in the system must not 
be greater than 14 days, or it expires and cannot be used 
(according to the HPV test manufacturer). It is computed 
by measuring the amount of time every sample spends 

from collection until testing, then finding the maximum 
across all the simulated samples. The third measure helps 
to identify parts of the process that are under-resourced 
or over-resourced by measuring how frequently a 
resource is being utilized, as a percentage of its scheduled 
time available. Specifically, percent utilization is defined 
as the percentage of a resource’s scheduled available time 
that is actively spent doing a process. For example, if a 
resource is scheduled to be available for 8 h a day and 
the resource is actively used for 4 h, then percent utili-
zation would be 50%. When a process step’s utilization 
approaches 100%, it becomes a bottleneck and limits flow 
through the system. Identifying bottlenecks reveals the 
capacity limit of the screening system and shows where 
more resources are needed if capacity is to be expanded 
or resilience is to be enhanced.

The KPIs are computed by the model over one full 
year of screening operations, which is sufficient to cap-
ture all relevant variability and seasonality. This 1-year 
period was determined by comparing the performance of 
the model for 2 and 3 years, which produced equivalent 
results. Because the model parameters (such as process-
ing times) are drawn from a distribution, the KPIs also 
vary for each simulation run. Therefore, each “what-
if” scenario is simulated 100 times, and the results are 
reported as a box plot in which the median line, inter-
quartile range box, range line, and outlier marks are 
shown. This number of repetitions was determined after 
a comparison of the results with those from 300 and 500 
repetitions.

Table 2 Detail of the "what‑if" scenarios

Experiment Description Parameters varied Values in "what-if" scenarios
(* indicates baseline value)

Screening system capacity with 
baseline resources (Figs. 2 and 3)

Assess capacity to meet the increas‑
ing demand for screening

Demand for screening 4000*, 4700, 5500, 6000 women 
per year

Resilience to changes in processing 
times (Fig. 4)

Assess resilience to longer or more 
variable processing times

Most likely central lab testing time 
(central parameter of triangular 
distribution)

Multiplied by a factor of 1*, 1.5, 2, 
and 3

Maximum central lab testing 
time (last parameter of triangular 
distribution)

Multiplied by a factor of 1*, 1.5, 2, 
and 3

Scaling up to meet a higher 
demand (Fig. 5)

Identify the resources required to 
meet a higher demand of 9500 
women per year

Demand for screening 9500

Scheduled hours of operation for 
CxCa screening per day (assumes 5 
days per week)

3*, 4, 5, and 6

Central lab testing capacity (num‑
ber of GeneXpert testing wells)

8* and 12

Resilience to disruptions (Fig. 6) Assess resilience to disruptions 
which result in cuts in laboratory 
operating hours or testing machine 
availability

Scheduled hours of operation for 
CxCa screening per day (assumes 5 
days per week)

3*, 2, and 1

Central lab testing capacity (num‑
ber of GeneXpert testing wells)

4, 8*, and 12
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Results
The following sections describe each of the four virtual 
experiments, described above and summarized in Table 2.

Screening system capacity with baseline resources
A fundamental question is whether the screening system 
has the capacity to meet the target demand for screen-
ing. In addition, this target could change—if, for example, 
the population increases, the coverage area expands, or 
more women choose to be screened in one year. There-
fore, various levels of screening demand were simulated 
to determine the capacity of the screening system with its 
baseline level of resources. Figure 2 shows the maximum 
time that any sample spends in the system for scenarios 
with different yearly demand levels. Recall that the sam-
ples must spend less than 14 days between collection and 
testing. Figure 2 shows that the screening system is able 
to reliably meet the baseline demand (4000 women per 
year) without samples waiting more than 14 days, but for 
higher demand, the wait times increase slowly and then 
rapidly when demand rises to 6000 per year. Based on 

these results, the screening system’s maximum capacity is 
around 4700 women per year. This leaves little room for 
expansion of coverage with current resources.

The models also enable us to examine the “bottle-
necks” in the screening system—the process steps 
whose capacity limits the overall capacity of the system. 
The stakeholders believe, and our analysis confirms, 
that the central laboratory is the main bottleneck, since 
all samples from all 17 health centers must be processed 
there. The central laboratory has two key resources: the 
GeneXpert machine that runs the test on the samples 
and the technician who transcribes the GeneXpert out-
put into a result that can be easily interpreted by work-
ers and patients at the health centers. Analyzing how 
“busy” these resources are thus provides insight into the 
screening system’s performance as demand increases.

Figure 3 shows the percent utilization for each of these 
central laboratory resources. Percent utilization refers to 
the percentage of time that the machine is running (or 
busy) during the time that the machine is scheduled to 
run. (For example, if a machine runs 3 h per day and sits 

Fig. 2 Maximum time from sample collection to testing, with baseline resource levels and increasing demand. For each "what‑if" scenario (point 
on the x‑axis), results from 100 simulation runs are reported on a box plot showing the median (horizontal line), interquartile range (box), range 
(whiskers), and outliers (asterisks)
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idle for 3 h a day during a 6 h scheduled availability time, 
then the percent utilization rate would be 50%.) For the 
GeneXpert machine, utilization grows from a comforta-
ble 70% for the target demand to an unmanageable 100% 
for the highest demand of 6000 women per year. This 
helps to explain the previously observed large growth 
in the time a sample spends waiting: the GeneXpert 
machine is always busy, causing samples to pile up wait-
ing while the machine tries to work through a growing 
backlog. This high utilization indicates that the GeneX-
pert is acting as a bottleneck, limiting the capacity of the 
overall screening system.

Resilience to changes in processing times
Processing times were measured based on the current 
screening system operations, but they might change if, 
for example, new employees perform them or a process 
is rolled out to new locations. Therefore, the screening 
system performance is analyzed for processing times 
that are longer (average processing time increases) and 
for processing times that are more variable (wider distri-
bution around the mean). Because the central laboratory 
is the main bottleneck, we changed the processing times 
for the result transcription step, which is performed by a 

laboratory technician after the sample is analyzed in the 
GeneXpert. (The GeneXpert machine processing time 
is not heavily influenced by human behavior and is thus 
less susceptible to human error, so it was left constant.) 
The baseline demand of 4000 people is used throughout 
these scenarios.

The left side of Fig. 4 shows that, as expected, longer 
processing times lead to increasing utilization for the 
results transcription step. The right side of Fig. 4 shows 
similar but slower increases when processing times 
become more variable, because in this case, some sam-
ples will take much longer to process but some will also 
take much less time. This analysis can provide a toler-
ance limit on processing times for key steps. If result 
transcription takes twice as long, then the screening 
system performance is still tolerable, but if it takes 
three times longer than expected, a rapid performance 
degradation occurs because the scheduled utilization of 
a bottleneck process reaches 100%.

Scaling up to meet a higher demand
The models can also provide decision-makers with 
information on how to scale up a system’s capacity to 
meet a higher demand. The scaled-up demand scenario 

Fig. 3 Percent utilization of two central lab resources, the GeneXpert and the laboratory technician’s time transcribing its results, with baseline 
resource levels and increasing demand. For each "what‑if" scenario (point on the x‑axis), results from 100 simulation runs are reported on a box plot 
showing the median (horizontal line), interquartile range (box), range (whiskers), and outliers (asterisks)
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analyzed here is 9500 people per year, more than dou-
ble that of the baseline demand scenario (4000). Since 
the central laboratory is the rate-limiting step for this 
screening system, and analysis has already shown its 
capacity to be about 4700, meeting a higher demand 
requires increasing the number of lab resources, such 
as operating hours or testing wells. Specifically, the 
following scenarios explore increasing the number of 
hours in which the lab is scheduled to process cervical 
cancer samples, and/or increasing the number of test-
ing wells from 8 to 12 (corresponding to one additional 
GeneXpert machine).

Figure 5 shows the percent utilization of the bottle-
neck resource, the GeneXpert. With the current Gen-
eXpert capacity of 8 testing wells, adding 1 or even 2 
h of lab time (increases of 33% or 66% of capacity) is 
insufficient to meet the higher demand, since the per-
cent utilization remains near 100% and the sample 
time from collection to processing remains above 14 
days. The lab time must be doubled (to 6 h) to meet 
the higher demand. If a GeneXpert machine is added 
(for a total of 12 testing wells), an increase of only 1 

h of lab time is required to meet the demand. Thus, if 
decision-makers want to more than double the target 
screening capacity, they have multiple options: they 
may significantly increase operating hours, or they 
may purchase additional GeneXpert machines and 
modestly increase operating hours. A third alterna-
tive is to implement a batched testing platform with a 
higher capacity; in future work, a modified DES model 
could identify the threshold at which the increased 
demand makes batch processing efficient rather than 
wasteful.

Resilience to disruptions
Models can also enable decision-makers to quickly 
understand the potential impact of disruptions on 
health system performance. For example, GeneXpert 
machines or lab time may need to be diverted away 
from cervical cancer screenings toward a more imme-
diate public health need in the case of an outbreak, 
such as COVID-19 or TB. In such cases, the availability 
of the lab technicians and/or the GeneXpert machines 
for cervical cancer screening might decrease. Figure 6 

Fig. 4 Percent utilization of the bottleneck resource, the laboratory technician’s time transcribing results, as processing times grow longer (left side) 
or more variable (wider; right side). For each "what‑if" scenario (point on the x‑axis), results from 100 simulation runs are reported on a box plot 
showing the median (horizontal line), interquartile range (box), range (whiskers), and outliers (asterisks)
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shows the impact of cuts in both hours and GeneX-
pert wells on the time from sample collection to test-
ing (which must not rise above 14 days). The results 
show that any reduction in GeneXpert machine avail-
ability or in the laboratory’s available hours (e.g., due 
to human resource constraints or diverted resources) 
would result in unacceptable performance, such that 
screening targets could not be met. Adding an addi-
tional GeneXpert machine would provide some resil-
ience to disruptions, enabling adequate performance 
with hours cut by 33% (but no more). This small selec-
tion of scenarios demonstrates how these models can 
enable decision-makers to explore the impact of vari-
ous types of disruptions, so that goals can be adjusted 
accordingly, or resilience can be built into the health 
system.

Discussion
This paper aimed to demonstrate the value of DES in 
the implementation science research and practice. 
In this context, data were collected to estimate, for 

example, sample processing times, but human-involved 
processes are always susceptible to unexpected 
changes. Modeling longer and more variable processing 
times showed worse health system performance and 
enabled an understanding of the system’s processing 
time tolerance limits. Health systems are also suscep-
tible to larger disruptions such as curtailed resources 
(e.g., such as experienced during the COVID-19 pan-
demic) or increased demand (e.g., such as regional 
scale-up or screening campaigns). Our results showed 
that this screening system lacks resilience to both sce-
narios and identified the resources required to improve 
performance in such cases. These are valuable but not 
obvious insights. Our example of HPV-based cervical 
cancer screening is specific to this setting in Iquitos, 
Peru, but similar models can be developed for other 
settings or healthcare delivery interventions. Discrete 
event simulation provides decision-makers with a pow-
erful tool to work through many potential scenarios 
and constraints. Decisions on the levels of resources 
needed to meet various levels of demand are often too 

Fig. 5 Percent utilization for various testing (GeneXpert) resource levels (operating hours, number of wells) with scaled‑up demand. For each 
"what‑if" scenario (point on the x‑axis), results from 100 simulation runs are reported on a box plot showing the median (horizontal line), 
interquartile range (box), range (whiskers), and outliers (asterisks)
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complex to analyze with “back of the envelope” calcu-
lations. Similarly, even if decision-makers have a firm 
understanding of their baseline scenario, they may be 
unable to accurately predict the effect of a resource 
disruption or a surge in demand or may even misesti-
mate the severity or timing of such effects. For exam-
ple, we found that increasing the screening demand by 
about one quarter could easily be accommodated, but 
further increases overtaxed the screening system and 
led to poor performance. Identifying the threshold at 
which a health system becomes overwhelmed, and the 
resources required to mitigate this problem is not intu-
itive, especially in multilevel and interconnected health 
systems. This paper has demonstrated a few of the ways 
in which discrete event simulation can mitigate some of 
these challenges.

For the case of HPV-based cervical cancer screen-
ing in Peru, our results show that the current pilot-
tested screening system in one micro-network can 
meet its target capacity. That is, under the current 
baseline conditions, the screening system has enough 

capacity to reach the annual target screening goal 
while maintaining a 14 day results turnaround. How-
ever, efforts are now ongoing to scale it up to addi-
tional micro-networks, as well as new regions of 
Peru, which would place a greatly increased demand 
on the laboratory and potentially on other parts of 
the screening system. Our results show that addi-
tional resources must be devoted to avoid major ser-
vice disruptions: additional laboratory hours devoted 
to HPV testing and/or additional testing instruments. 
Other generalizable real-world scenarios that rep-
resent threats to meeting the program goals, such 
as curtailed/diverted resources or highly variable 
screening services, showed similar results. Impor-
tantly, however, the model also highlights the effect 
of different tradeoffs such as adding more machines 
compared to more technician time, thus helping to 
identify efficient solutions to maintain resilience 
and sustainability in the dynamic screening system. 
Moreover, the models can be used to identify any new 
bottlenecks that may arise, such as the availability of 

Fig. 6 Maximum time from sample collection to testing, for various disruption scenarios. For each "what‑if" scenario (point on the x‑axis), results 
from 100 simulation runs are reported on a box plot showing the median (horizontal line), interquartile range (box), range (whiskers), and outliers 
(asterisks)
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precancer treatment providers, as the screening sys-
tem resources are changed.

The insights from this specific case example can be 
extended in several ways. First, models can be tailored 
and parameterized to represent other health systems 
(such as HPV testing in a different region or another 
type of health service delivery process in the same 
region). Such a model would support specific deci-
sions on resource levels required to meet changes in 
the health system, enhance resilience, and/or scale 
up services to meet increased demand or a broader 
coverage goal. Second, such specific models could 
be generalized to represent a broader range of situa-
tions (such as HPV testing in any LMIC setting). Such 
a model would support the development of broader 
guidelines that identify important tradeoffs, bound 
resource requirements, and guide the development 
of implementation plans. Third, the development and 
validation of the models facilitate stakeholder engage-
ment and shared decision-making across implementa-
tion scientists and practitioners to capitalize on their 
respective expertise in translating interventions sus-
tainably into real-world practice.

The use of discrete event simulations is particularly 
valuable when incorporating a new process into a health 
system, such as a new technology like COVID-19 testing 
[27]. For example, while there is clear policy-level guid-
ance on the decision to adopt HPV testing technology 
[21, 22], much less guidance is available on the opera-
tional planning aspects that are critical to effectively and 
efficiently meeting this demand. As described above, 
tools such as discrete event simulation models can pro-
vide general “rules” or boundaries to inform decision-
making around the operational aspects of healthcare 
service delivery. For example, our “what-if” scenarios 
demonstrate the importance of balancing resource effi-
ciency against the ability to maintain service resilience to 
different kinds of disruptions. More specifically, our case 
demonstrates how the models can support evidence-
based decisions on how to plan resources for resilience 
and/or scale-up.

There are several limitations to this study. First, data 
collection was based on early experiences from one 
micro-network; thus, continued work in this area will 
be informative when additional clinics and laborato-
ries can be included, and when similar models can be 
developed for related settings. While the overall steps 
in HPV-based screening are similar across most LMIC 
settings, there are many implementation options to 
consider, such as batch-testing and point-of-care 
testing, which were not modeled here, and remain 
part of our future work. Second, the DES models and 
“what-if ” scenarios required assumptions about how 

processes operate or would operate if they were imple-
mented, some of which could not be validated against 
empirical data. Nevertheless, our results demonstrate 
how these models lead to useful insights, because they 
are not intended to be predictive but rather to gauge 
the relative impact of different process choices on 
system performance. Data and assumptions from our 
single empirical setting have already identified key 
tradeoffs, and future work in different settings could 
enable the development of more generalizable princi-
ples that could be applied more broadly across diverse 
settings.

Conclusions
Discrete event simulation models thus fill an essential 
niche in our arsenal of modeling approaches. Deci-
sion analytic modeling has proven critical for getting 
new technologies into national health plans [28, 29]. 
However, once a decision to adopt has been made, the 
operational implementation decisions can be stud-
ied in a similar way to facilitate scale-up and sustain-
ability. Our discrete event simulation models focus 
on planning the processes and operations critical to 
adequate delivery of services with the new technol-
ogy. This aspect has received less attention but can fill 
a critical gap in moving evidence-based interventions 
into routine practice beyond an implementation study, 
especially in LMICs that often struggle with constant 
changes in human capacity, supply chain disruptions, 
and other resource shortages. As our community 
works toward aspirational goals such as cervical can-
cer elimination, transitioning from the many pilot and 
demonstration style projects to regional and national 
scale-up, synthesizing the operational data from these 
studies in a more general DES model of screening ser-
vice delivery would enable broad dissemination and 
use of the collective global experience to accelerate the 
scale-up of sustainable programs.

Appendix
Details of the time and motion study and HPV laboratory 
testing
The time and motion study consented providers and 
patients to directly observe and document the time spent 
during each activity. We observed HPV screening regis-
tration and sample collection in 3 primary health centers 
for 3 days each, with a total of 35 screening encounters. 
The time from HPV sampling to result was estimated 
via date stamps on the registration forms and the HPV 
results forms (and confirmed with time stamps on the 
GeneXpert instrument). For the visual triage to treatment 
(VTT) follow-up, only 2 primary health centers were 
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providing this service. The time spent on pre-defined 
activities was recorded on standardized forms at both 
centers over 10 days for a total of 71 observed examina-
tions. Table 3 details the procedure and activity times for 
process steps estimated from time and motion studies.

For HPV testing, samples were collected in 1 mL of stand-
ard transport medium (Digene), as liquid-based cytology 
medium (e.g., ThinPrep or SurePath) was not available and 
within the budget for the project. Samples were registered 
as being delivered from the health centers to the laboratory 
in a notebook, and two carbon copies of the triplicate reg-
istration form were left in the laboratory. The original copy 
was returned to the primary health center. Once the sam-
ples arrived in the laboratory, a 500-μL aliquot was removed 
using the transfer pipette included in the GeneXpert kit 
and placed in 5 mL of phosphate-buffered saline accord-
ing to Mbulawa et al. [30]. After a brief vortex, 1 mL of the 
PBS-diluted sample was added directly to the GeneXpert 
cartridge. Samples were stored at room temperature. The 
manufacturer’s instructions indicate to test within 2 weeks 
of collection, and our data suggests that > 95% met that cri-
terion (median 7 days, IQR 4–13 days).
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