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Diffusion kurtosis imaging (DKI) has undisputed advantages over the more classical

diffusionmagnetic resonance imaging (dMRI) as witnessed by the fast-increasing number

of clinical applications and software packages widely adopted in brain imaging. However,

in the neonatal setting, DKI is still largely underutilized, in particular in spinal cord

(SC) imaging, because of its inherently demanding technological requirements. Due

to its extreme sensitivity to non-Gaussian diffusion, DKI proves particularly suitable for

detecting complex, subtle, fast microstructural changes occurring in this area at this

early and critical stage of development, which are not identifiable with only DTI. Given

the multiplicity of congenital anomalies of the spinal canal, their crucial effect on later

developmental outcome, and the close interconnection between the SC region and

the brain above, managing to apply such a method to the neonatal cohort becomes

of utmost importance. This study will (i) mention current methodological challenges

associated with the application of advanced dMRI methods, like DKI, in early infancy,

(ii) illustrate the first semi-automated pipeline built on Spinal Cord Toolbox for handling

the DKI data of neonatal SC, from acquisition setting to estimation of diffusion measures,

through accurate adjustment of processing algorithms customized for adult SC, and (iii)

present results of its application in a pilot clinical case study. With the proposed pipeline,

we preliminarily show that DKI is more sensitive than DTI-related measures to alterations

caused by brain white matter injuries in the underlying cervical SC.

Keywords: spinal cord, diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), image processing pipeline,

neonatal imaging, punctate white matter lesions

INTRODUCTION

In recent years, an increasing number of works in the field of neuroimaging are
stressing the importance to move beyond the simplistic assumptions of diffusion tensor
imaging (DTI) model (1) toward more advanced diffusion MRI (dMRI) methods,
among which diffusion kurtosis imaging (DKI) (2) is one of the most promising (3).
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Within existing non-standard techniques, DKI has indeed
turned out to be especially suitable for imaging of the spinal cord
(SC), a structure where the assumption of Gaussian diffusion fails
(4). Indeed gray matter (GM) in the central portion of the SC
contains cell membranes and organelles that limit diffusion to
fewer directions. Taking into account the pathological processes
not following Gaussian distribution, DKI provides a better
understanding of the underlying micromolecular environment.
In fact, it exhibits increased sensitivity in microstructural
assessment of both white matter (WM) and GM (5). Hence, this
susceptibility translates into an increased amount of diagnostic
information beyond that obtained with routine diffusion metrics,
as proven both for adult brain (2, 5) and spine (6, 7).

Latest technological advances on reduced field-of-
view techniques to mitigate susceptibility artifacts and
cardiac/respiratory gating have allowed experts to overcome
most of the methodological challenges inherent to adult SC
imaging (8). Thanks to these strategies, DKI by now represents a
promising tool for studying a plethora of spine disorders, with
minor modifications to protocol parameters in use for brain
imaging (6, 9–12).

The scenario becomes definitely more complicated when
attempting to translate this imaging technique to the pediatric
clinical setting (13). Typical issues inherent to the SC district
include a small cross-sectional area requiring high spatial
resolution, interface between regions with different magnetic
properties, partial volume effect (PVE) of pulsating cerebro-
spinal fluid (CSF) with each heartbeat, and bulk physiologic
motion due to the proximity of the heart and the pulmonary
parenchyma. This scenario is further complicated here from a
multiplicity of factors related to the age range under analysis.
Children in general have smaller anatomical structures—which,
in turn, might result in a higher risk of radiofrequency
heating effects—and move more frequently (e.g., tongue sucking
motion). On the other hand, artifact-reducing techniques
(i.e., cardiac gating, respiratory compensation, and suppression
sequences) (14) are often unfeasible since they are time-
consuming, and sedation is typically not desirable. All the
aforementioned issues result in artifact-laden, low-signal images,
which are often suboptimal for diagnostic evaluation.

The adopted solutions for improving image resolution and
reducing artifacts comprise induction of natural sleep (by feeding
the patient immediately before MR examination), the use of a
vacuum fixation pillow to wrap the patient, and the use of special
earmuffs to protect from noise. However, the main requirement
when handling with pediatric dMRI data is the choice of a proper
acquisition protocol tailored for pediatric imaging, which is made
up of low angular resolution, low b-values, and few gradient
directions, likewise in pediatric brain in order to minimize scan
time. Nevertheless, this forced time minimization clashes with
specific requirements of advanced diffusion methods in terms of
acquisition sequences.

Contrary to DTI, indeed DKI, as with all higher-order
diffusion models, requires multi-shell high-angular-resolution
diffusion imaging (HARDI) sequences (15), typically involving at
least three non-zero b-values distributed on hundreds of gradient
directions, grouped in shells. This implies longer acquisition

time, straining the feasibility of advanced dMRI methods in
pediatrics. Resorting to optimized acquisition sequences (16),
often combined with state-of-the-art techniques such as parallel
imaging (17) and multi-band, can significantly increase the
acquisition speed and reduce the artifacts. However, these
advanced technologies are not always available in a general
hospital due to high costs and technical limitations.

If extension of DTI to the pediatric SC has shown promising
results in a wide range of clinical conditions, as evidenced
by the increasing number of works on the topic (18–24),
what immediately stands out while reviewing the literature on
pediatric SC is the absence of studies concerning DKI and
particularly applied to the neonatal period (0 to 1 month).

To the best of our knowledge, the only published work
on pediatric DKI (25) is limited to grown-up children (6–16
years), whose larger anatomical structures and reduced source of
movements enable better image quality and longer scan times. In
newborns, indeed the SC dimensions themselves–24-cm average
length and 4.4-mm diameter, possibly further decreasing in case
of malformations (26) are enough to conceive amplification of
the aforementioned technical issues and thus justify the lack of
research toward this direction.

However, the ability of DKI to offer additional and
complementary information to DTI may bring a significant
contribution in investigating such decisive and delicate stage
of development, especially if we consider the wide range of
developmental anomalies of the spinal canal affecting infants at
birth (27).

It is on this premise that we conceived our work, the aim of
which is to show the feasibility of applying DKI to neonatal SC
within clinical routine with all the issues that this entails, opting
for minimal modifications of the current clinical setup.

We thus introduce here the first complete pipeline specifically
adapted to neonatal imaging acquired for diagnostic purposes.
The applicability and clinical validity of the proposed method
have been evaluated, by analyzing a specific clinical case
study concerning a condition common to preterm birth, in
collaboration with the Neuroradiology Unit of Giannina Gaslini
Children’s Hospital of Genova.

Specifically, we assessed the effects of WM brain lesions
typical of periventricular white matter injury (PWMI) on
lower cervical SC tracts by comparing the diffusion measures
between pathological patients and healthy controls. Our findings,

TABLE 1 | Demographic features of infants.

Unhealthy

(n = 9)

Healthy

(n = 8)

Gender (M/F) 6/3 4/4

Mean GA (range; week) 30.3 ± 2.6 (28.1–35.0) 31.8 ± 3.1 (28.3–36.7)

Mean PNA (range; week) 9.2 ± 3.9 (0.1–11.7) 8.6 ± 3.6 (2.0–10.7)

Mean PMA (range; week) 39.4 ± 1.6 (35.1–40.6) 40.4 ± 1.3 (38.7–42.4)

M/F, number of male and female infants; GA, gestational age; PNA, postnatal age; PMA,

postmenstrual age.
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though preliminary, confirm the ability of the DKI model
in capturing subtle pathological alterations. Conversely, DKI-
related measures appear to be less sensitive to WM/GM tissue
differentiation at this stage.

Since there are currently neither available protocols nor
standardized methodological pipelines for performing DKI in
the infant SC, this methodological outline may, at least, serve
as a proof-of-concept, stressing the need for infant-specific data
acquisition and processing guidelines in order to translate the
DKI of neonatal SC into routine clinical practice.

MATERIALS AND METHODS

Subjects
Infants whose data have been used to disclose each step of the
pipeline have been enrolled since August 2019 and scanned with
3.0-T MR scanner using a 32-channel head array coil (Ingenia
Cx, Philips, Best, The Netherlands) at the Neuroradiology Unit
of Giannina Gaslini Children’s Hospital of Genova. Conventional
MRI and DKI were performed in 17 pre-term infants [28.1–
36.7 weeks gestational age (GA); scanned at term-equivalent age
(TEA)]. Diagnosis has been exclusively made based on MRI
findings as reported by experienced neuroradiologists. Details
about the subjects’ demographics are reported in Table 1.

This single-center study was carried out in accordance with
the recommendations of “Comitato Etico Regione Liguria,

Genova, Italy”, with written informed parental consent obtained
for each infant prior to examination in accordance with
the Declaration of Helsinki. The subjects were spontaneously
breathing during the examination; free-flowing oxygen was
administered for the whole duration of the MRI session if
necessary. Throughout the course of the examination, the
newborns were subjected to constant monitoring of oxygen
saturation and heart rate by a pulse oximeter and a three-
electrode electrocardiographic monitor, respectively.

In consensus with a board-certified pediatric neuroradiologist,
we performed quality control (QC) for each of the pipeline’s steps.

Full Pipeline Description
Our pipeline integrates MRtrix3 (v.3.0.1) (28) for setting of
the dMRI acquisition sequence, Spinal Cord Toolbox (SCT, v.
5.3.0, https://github.com/neuropoly/spinalcordtoolbox) (29) for
all processing steps specific to the SC, and Diffusion Imaging in
Python (Dipy, v.1.4.0) (30) for denoising as well as computation
of diffusion metrics.

The output of key processes, such as motion correction,
segmentation, and registration with atlas, can be checked through
an interactive SCT QC module, which automatically generates
reports consisting of HTML files and containing a table of
entries which allow to show, for each entry, animated images
(background with overlay on and off) for data quality validation.

FIGURE 1 | Overall processing pipeline: the designed pipeline allows complete handling of diffusion kurtosis imaging scan of neonatal spinal cord from acquisition

setup to preprocessing, processing, and postprocessing.
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In our methodological pipeline, we have opted to mainly rely
on SCT, being currently the only existing fully comprehensive,
free, and open-source software dedicated to the processing and
analysis of multi-parametric MRI of the spinal cord successfully
employed in a plethora of clinical applications concerning adult
SC (31–44).

An overview of our image processing pipeline highlighting
the key features is shown in Figure 1. Since SCT algorithms
are validated in adult imaging, we specifically customized
each processing step to our neonatal scans. Our pipeline
thus represents, to the best of our knowledge, the first semi-
automated ad-hoc procedure for imaging of neonatal spine.
A fully automatic workflow is not feasible here—acquisition
time constraints, available scanner features, and subsequent
image quality require inevitable, although minimal and highly
reproducible, manual interventions.

Customized Acquisition Setting
In order to minimize macroscopic movement artifacts, all
recommended guidelines for pediatric imaging have been
adopted. So as to protect infants from acoustic disturbances
caused by MR sequences, we resorted to baby earmuffs and
silicone paste for hearing aids. Furthermore, we avoided most
of the motion by swaddling the infants and by placing airbags
around their head. In addition, protective pads have been placed
between themagnet and the patient. All these contribute to create
a comfortable and warm rest environment, thus minimizing the
chance of free movements.

MRI was performed when possible during spontaneous sleep
by exploiting the administration of breast milk or formula about
30min before the start of the exam. In case of spontaneous
sleep failure, in order to minimize macroscopic movement
artifacts, the instrumental examination was performed under
mild sedation by orally administering midazolam at 0.1 to 0.2
mg/kg diluted in 33% glucose solution, subject to the signature
of informed consent from parents and applied by expertly
trained nurses.

Given the lack of a specific acquisition protocol for DKI
of neonatal SC, we designed the diffusion-weighting scheme
in collaboration with the neuroradiologists at Giannina Gaslini
Hospital. One constraint we had to deal with was the
impossibility to perform optimized variants of spin-echo echo
planar imaging (SE-EPI) sequence [i.e., reduced field-of-view
(FOV) or spatially selective techniques] (16) on a Philips Ingenia
scanner. Therefore, minimization of scan duration was our main
focus in order to suppress motion and fast CSF pulsation artifacts
typical of newborns.

We thus tested different versions of diffusion-weighted
gradient scheme, adopting an optimal tradeoff between fiber
orientation distributions profile (estimated with Mrtrix3 using
multi-shell multi-tissue constrained spherical deconvolution),
image quality, and scan time.

We generated each multi-shell diffusion gradient table
through Mrtrix3 script gen_scheme, taking as inputs the number
of phase-encoding directions to be included in the scheme (for
most scanners, including ours, typically 1), the b-value of the
shell, and the number of directions to include in the shell. This

procedure ensures uniform spherical sampling by maximizing
uniformity within shells using a bipolar electrostatic repulsion
model for optimal angular coverage.

As regards the choice of acquisition parameters, we borrowed
some crucial measures (b-values, voxel size, as well as TR/TE)
from the setting used in the corresponding adult study that we
referred to as a starting point (45). Indeed this group presented a
scenario closely similar to ours—Philips 3T scanner and SE-EPI
sequence without advanced variants—and managed to perform
DKI in adult subjects within a clinically feasible time period, e.g.,
6 min.

For further reducing the acquisition time without significantly
affecting the image quality, we applied the MultiBand slice
acceleration technique (46) (https://www.usa.philips.com/
healthcare/resources/landing/the-next-mr-wave/compressed-
sense).

The final version of the diffusion acquisition scheme is
displayed in Figure 2 as well as reported inTable 2 and includes 6
b= 0, 13 b= 700, and 13 b= 2,100 s/mm² for a duration of 4min
and 30 s. This allowed the acquisition of high-in-plane-resolution
axial-diffusion-weighted images, where b= 0 scans could be well
discriminated from non b = 0 volumes and the anatomical SC
features are sharp.

A valuable alternative to this reduced DKI scheme is
represented by fast kurtosis imaging (47). This recently
developed technique may give a relevant boost to the widespread,
routine clinical applicability of DKI in the infant SC by drastically
reducing the acquisition as well as post-processing time.

A significant increase in speed is indeed made possible by a
reduction in data demand achieved through the rigorous analysis

FIGURE 2 | 3D view of final diffusion acquisition scheme: directions of

diffusion-sensitizing gradients relative to each b-value are displayed in three

different colors as reported in the legend. Units are in s/mm2. Markers indicate

polarity: dots are the polarities in the set; asterisks are their opposite.
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TABLE 2 | Data acquisition details for both structural 3D T1w and DKI image.

3dT1 DKI

TR/TE (s) 0.6/0.026337 3.378/0.128

Diffusion scheme (s/mm²) – 6 b = 0, 13 b = 700, 13 b = 2100

Flip angle (◦) 90 90

Field-of-view (mm) 195 × 195 × 126 128 × 93 × 96

In-plane acquisition resolution (mm) 1*1 1*1

Acquisition matrix 195*195 128*93

In-plane reconstruction resolution (mm) 0.38*0.38 0.8*0.8

Reconstruction matrix 512*512 160*160

Multi-band factor – 2

Averages 2 1

Slice thickness (mm) 0.5 without gap 4, without gap

Slice orientation Sagittal Axial

Slices 251 24

Total scan time 4min, 5 s 4min, 30 s

Partial fourier factor – 0.6

of the relation between the DKI signal and the kurtosis tensor-
basedmetrics. It therefore computes amean of the kurtosis tensor
from at least 13 diffusion-weighted images (dwis)—the so-called
1-3-9 approach. Commonly, this basic scheme is extended to
19 diffusion-weighted images—the so called 1-9-9 approach—
for robust and reliable parameter estimation with the chance to
reconstruct some parameters even in real time, which may be
really valuable in the clinic.

This technique has been successfully validated both in human
brain (48, 49) and spinal cord (50), demonstrating to offer the
same information as the conventional DKI both in normal and
diseased tissue.

Moreover, under the assumption of axisymmetry inherent
to regions with a well-defined axis of symmetry, such as the
large peripheral nerves and spinal cord (51), this method can
also be easily integrated with white matter tract integrity. This
valuable modeling-based WM characterization (52) provides
detailed information about the microstructure of highly aligned
fiber bundles and could thus be particularly suitable for
investigating SC.

Both “1-3-9” and “1-9-9” methods are heavily sensitive to
deviations from the encoding scheme required to ensure data
reduction. These schemes consist in acquiring images at fixed
b-values (0, 1,000, and 2,500) along a precise set of directions
specified in Hansen et al. (53).

This is thus about conventional diffusion sequences easily
implemented on almost any clinical system by allowing the
inclusion of DKI, at a little additional cost, as a component of any
protocol for imaging of the brain or other organs. However, our
starting acquisition scheme did not match the required diffusion-
sensitizing directions, and exactly for this reason, we were not
able to apply this method retrospectively.

Nonetheless, a strength of the current methodological pipeline
is its independence from the dMRI acquisition scheme used to
acquire input raw data, and it could thus be successfully used to
perform fast DKI, too.

Along with dMRI, we also acquired a high-resolution
structural image as an anatomical reference. The definitive MRI
protocol thus consisted in a turbo spin echo 3D T1-weighted
image followed by a DKI series whose details are listed in Table 2.

Preprocessing
Denoising
SC imaging is characterized by low SNR, which can hamper
accurate, repeatable, quantitative measurements. Moreover,
models such as DKI are susceptible to noise and signal
fluctuations, often leading to degeneracies in the estimation
of derived parameters. SNR further lowers, in the case of
neonates, due to the relatively high overall free water content,
and denoising approaches based on principal component analysis
(PCA) are inapplicable due to a reduced number of diffusion
gradient directions.

Therefore, we adopted Patch2Self, a recently proposed self-
supervised learning denoising method that outperforms existing
non-supervised methods (54).

A unique advantage of Patch2Self is the lack of requirement
for selecting or calibrating an explicit model either for noise
or diffusion signal so that it can be applied at any step in
the pre-processing pipeline. The only assumption it relies on is
randomness and uncorrelation of noise across different gradient
directions. Its framework consists in holding out one volume
and using patches from all other volumes to predict the center
of the patches of the held-out volume using a regressor. This
denoiser has already showed a significant improvement in
repeatability and conspicuity of pathology in diffusion volumes
and quantitative DTI metrics for adult SC (55).

Here we chose to apply Patch2Self as the first preprocessing
step on raw data since it showed to offer the highest SNR.
The method is implemented in Dipy v.1.4.0 and applied with
ordinary least squares regressor as recommended for SC imaging
(Figure 3).
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FIGURE 3 | Visual inspection of denoising: The denoising of Patch2Self is compared against the original noisy image along with their corresponding residuals for each

(A) b = 0, (B) b = 700, and (C) b = 2,100 s/mm2 shells, respectively. Notice that Patch2Self does not show any anatomical structure in the corresponding residual

plots and likely neither introducing structural artifacts.

Cropping
SC scans also usually include cerebral areas, such as medulla
and cerebellum, due to their proximity with cervical SC
(cSC). In order to exclusively focus on the area of interest
excluding undesired voxels, as a first preprocessing step, we
thus recommend applying to DKI images the SCT function
sct_crop_image, allowing also to fasten subsequent processing.
Lower and higher bounds for cropping along the three spatial
coordinates can be specified via command line in order to select
the same area of interest (i.e., cSC) for all the cohorts, considering
that FOV positioning is consistent across subjects.

Specifically, in the case of our scans, FOV reduction allowed to
exclude upper non-spinal areas (i.e., cerebellum) as well as lower
spinal levels whose corresponding slices are not usable due to
poor image quality (Figure 4A).

Motion Correction
The subjects’ immobilization and anesthesia successfully
minimized motion in our acquisitions. However, since dMRI

data are analyzed at the voxel level, residual intrascan and/or
interslice motion can adversely affect the accuracy of the modeled
results. We thus resorted to SCT complex motion correction
framework sct_dmri_moco based on a combination of tools.

First of all, SliceReg algorithm estimates slice-by-slice
translations while ensuring regularization constraints along the
z-axis. The latter is achieved using a polynomial function
(order specified by the user, flag -param). This method was
shown to offer better accuracy and robustness than rigid-body
transformations and non-regularized slice-by-slice registration,
respectively (29).

Moreover, motion correction in SCT includes another feature
first proposed in Xu et al. (56) to improve the robustness of
registration in high-b-value diffusion MRI data such as DKI
datasets. It consists in grouping adjacent volumes and estimating
the transformation relying on these successive subsets (typically
from 3 to 5 volumes) averaged together (flag -g).

This robust slice- and group-wise motion correction works
successfully also in the case of neonatal scans, and it is
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FIGURE 4 | Preprocessing: diffusion kurtosis imaging scan through

preprocessing steps for one example subject: (A) field-of-view reduction,

(B) motion correction, (C) segmentation: deep learning segmentation

algorithm generally achieves satisfactory results in spinal cord detection, (D)

example of artifactual slice due to poor fat saturation, causing the fat to alias

on the spinal cord area, and (E) requiring manual correction of segmentation.

hence applied here with default parameters: grouping of
3 successive dMRI volumes, regularization with 2nd-order
polynomial function, unitary smoothing kernel (1mm), and final
spline interpolation (flag -x), except for the metric used for
registration (Figure 4B). Indeed cross-correlation (CC) has been
selected as a similarity metric given its better performance with
respect to mean squares or mutual information (default option)
at the expense of computational time.

Since sct_dmri_moco works through iterative average over
groups of successive slices in order to increase the SNR of the
target image, its output includes a 3D volume corresponding to
the mean from DKI slices. These motion-corrected average DKI
data will serve as input for subsequent segmentation, thanks to
its excellent cord contrast.

Thanks to the limited duration of our acquisition and to
the adopted procedures for minimizing movement throughout
the exam, the amount of motion is very limited in our images.
As a result, the outcome of motion correction step does not
significantly differ from a raw DKI image by visual assessment.
However, this represents a crucial step in the case of longer scans
that are more prone to source of motion artifacts.

Segmentation
Proper segmentation of SC is decisive for the subsequent steps of
template registration and computation of metrics along the cord.

Detection of SC has turned out to be a critical step since
the standard SCT algorithm propseg, based on multi-resolution
propagation of tubular deformable models (57), is trained for
adult spine.

Given the reduced size of neonatal SC and the low contrast
between the spine and CSF, default segmentation method fails in

several slices even after modulating the algorithm parameters—
e.g., manual initialization of spinal cord centerline through
interactive viewer (flag -init-mask), selection of SC radius size
(flag -radius), or cord rescale (flag -rescale).

We thus resort to a more recent and advanced method
of SC extraction based on deep learning sct_deepseg_sc (58).
This fully automatic segmentation framework was conceived for
detecting SC and intramedullary MS lesions from a variety of
MRI contrasts and resolutions.

It is composed of a cascade of two convolutional neural
networks specifically designed to deal with spinal cord
morphometry: the first detects the cord centerline and reduces
the space around the spinal cord (for better class balance), and
the second segments the cord.

The segmentation results outperformed sct_propseg, showing
higher robustness to variability in both image parameters and
clinical conditions.

Thanks to its versatility, the application of this method come
sout suitable also for neonatal imaging, allowing the robust and
accurate segmentation of our scans without the ever need of
additional parameters except just specifying the kind of image
contrast as dwi (flag -c) (Figure 4C).

In case of failure of SC detection, we necessarily opt for
manual correction of problematic slices on FSL editor (FSLeyes)
(Figures 4D,E).

This is the case of five subjects within our cohort: to validate
the quality of segmentation, we checked the QC feature on our
MRI images across subjects and noticed some local segmentation
leakage—related to the onset of artifacts at the acquisition phase
and not to a flaw with the algorithm—in a few slices and hence
corrected it manually.

Processing
Vertebral Labeling
After segmentation, labeling of vertebral levels or discs is the
second mandatory step in order to match the template to the
subject’s MRI (template registration).

Two vertebral levels are necessary for registering data to the
template. Each of these two landmarks consists of a voxel placed
in the middle of the SC, at the level of the corresponding mid-
vertebral body, and assigned a relative number starting from 1
for C1 vertebra. However, SCT recently introduced the possibility
to alternatively use inter-vertebral disc labels with the analogous
procedure of reference-numbered voxels.

We perform this step on 3D T1w images in order to
achieve better accuracy, given their higher overall quality and
contrast compared to DKI ones, where vertebral discs are not
clearly identifiable.

Labeling from 3D T1w anatomical image is possible as
it turned out to match relatively well along the superior–
inferior (z) axis, the target direction of disc labeling, with
the DKI scan—not along the anterior–posterior or right–left
direction (see Figure 5 and, for an even clearer representation,
Supplementary Figure S5).

Vertebral labeling is typically done using an automaticmethod
sct_label_vertebrae, which finds the C2–C3 disc and then locates
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FIGURE 5 | Diffusion kurtosis imaging scan overlaid on structural 3dT1w

image: while both images are clearly not registered along the antero-posterior

direction due to the very strong susceptibility artifact, the z-location is similar:

see how the bottom tip of the cerebellum is consistent for the two scans.

neighboring discs using similarity measure with the PAM50
template at each specific level (59).

The default SCT procedure sct_label_vertebrae fails in
automatically detecting the C2–C3 vertebral disc once again
because of the small size of spines at issue and low image contrast
compared to adults.

Therefore, we manually create labels with the command
sct_label_utils through interactive viewer option provided by
SCT (flag -create-viewer) with little to no waste of time.

Specifically, vertebral labeling was created at the posterior tip
of the top of C1 vertebra and at the C3–C4 disc, centered in the
cord. Manual intervention only took a few seconds per subject
(Supplementary Figure S3).

Registration to PAM50 Atlas
Registration between the subject’s diffusion and atlas space
is a very demanding task in case of neonatal imaging given
the lack of a specific pediatric atlas compatible with SCT
(one is currently under creation, https://github.com/neuropoly/
spinalcordtoolbox/issues/2530). We thus use PAM50 atlas (60),
an adult template for MRI of the full SC and brainstem in the
same coordinate system, as the ICBM152 (MNI) brain template,
allowing us to conduct simultaneous brain/spine studies. It
consists of a T1w, T2w, T2∗w, white and graymatter probabilistic
atlas and white matter atlas of tracts as well as probabilistic
labeling of spinal levels. The template has been constructed from
straightened SC for facilitating the registration and visualization
of results.

sct_register_to_template is the main command for registering
one subject to the template and vice versa since it outputs
the forward and backward warping fields. We choose the
subject’s native diffusion space as target of registration transforms
as the straightening required by the opposite strategy would
cause through-plane interpolation errors which would bias the
following extraction of diffusion measures (61).

Moreover, we suggest employing T1w atlas image for its better
contrast similarity with DKI scan compared to T2w.

Application of default command does not produce satisfactory
results, stressing the need to tweak all the input parameters to deal
with our particular contrast and resolution. Given the presence of
artifacts and some inherent features (e.g., low CSF/cord contrast)
that could compromise the registration, we use SC segmentation
as input for the algorithm to ensure maximum robustness.

Registration is then built through multiple steps by increasing
the complexity of the transformation performed in each step
(starting with large deformation with low degree of freedom
and finishing with local adjustment). Specifically, the first step
consists in vertebral alignment, that is, vertebral level matching
between the subject and the template based on the posterior
edge of the intervertebral discs provided by previous manual
vertebral labeling. The second step is slice-wise center of mass
alignment between the two images, using centermass algorithm
instead of the default centermassrot (which also includes rotation
alignment) because the cord is quasi-circular, and cord angle
estimation is not reliable here. The third step is R–L scaling
along the x-axis, followed by A–P alignment to match the
segmentation borders along the y-axis, with the ultimate aim of
accommodating the very small SC size. Finally, iterative slice-
wise non-linear registration is performed through non-linear
symmetric normalization regularized with b-splines (62) using
information from the comparison of CC metric between the
two images, which allows the refinement of SC shape. Once the
algorithm is completed, one can assess the quality of registration
through visual evaluation and inspection of the QC module and
thus warp the template and all its objects to each subject’s DKI
image (Figure 6).

The current selection of parameters and steps successfully
worked for our scans since the atlas registration algorithm
robustly achieved convergence, as verified through inspection of
the QC feature.

Computation of Diffusion Metrics
The endpoint of previous preprocessing and processing steps
is computation of diffusion parametric maps, from which
quantitative summarymeasures requested by the particular study
in question were extracted. We estimate diffusion parametric
maps through DIPY software (v. 1.4.0) (63).

To avoid unnecessary calculations on the background of
the image, we use a mask created by dilating the spinal
cord segmentation (through sct_maths command) because
values outside the binary cord mask are important for proper
accounting of the PVE, which have to be minimized in every
possible way (64). Indeed this phenomenon, because of the coarse
resolution of MRI with respect to SC anatomy, may make the
apparent value within a boundary voxel be a mixture between
the WM and CSF compartment, thus yielding an inaccurate
quantification of diffusion measures.

Since the DKI model involves the estimation of a
large number of parameters (65) and is more sensitive to
artifacts (66), we choose to further suppress the effects
of noise and artifacts before diffusion kurtosis fitting
using 3D Gaussian smoothing (with a Gaussian kernel
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FIGURE 6 | Registration with PAM50 atlas and region-of-interest detection

through atlas-based approach: (A) PAM50 atlas’ cord segmentation binary

mask; (B) white matter; and (C) gray matter probabilistic masks warped to the

subject’s diffusion kurtosis imaging motion-corrected mean image.

with full width at half maximum = 1.25) as suggested
by pioneer DKI studies (2). This also helps in addressing
the issue of implausible negative values inherent to DKI
fitting (67).

The following parametric maps can thus be generated:
mean diffusivity (MD), axial diffusivity (AD), radial diffusivity
(RD), fractional anisotropy (FA) and mean kurtosis (MK), axial
kurtosis, radial kurtosis, kurtosis fractional anisotropy, and mean
signal kurtosis (MSK).

Given the low-angular-resolution data available, to ensure
the robustness and reproducibility of the parameters’ estimates,
we opted for just computing DTI measures, whose reference
tensor can be correctly estimated from at least six independent
directions, and MSK. The latter is a robust scalar kurtosis index
that can be estimated independently from the acquisition scheme
(68, 69). Indeed fitting MSDKI is well posed without relying
on the full DK tensor, which would require a minimum of 15
non-collinear directions per b-value. Moreover, this measure is

generally more robust to low-SNR situations as in the case of
neonatal imaging.

MSK can be seen as a proxy for the MK, showing to
present nearly identical contrast while improving the robustness
and reproducibility of the kurtosis metrics, and results in
parameter maps with enhanced quality and contrast. Specifically,
this measure turns out to be less sensitive to thermal noise
and imaging artifacts and thus drastically reduces black voxels
intrinsic to DKI and challenging the visual and statistical analysis
of potentially clinically relevant biomarkers of tissue integrity.
Moreover, as previously pointed out (69), standard kurtosis
measures depend not only on microstructural properties but
also on mesoscopic properties such as fiber dispersion or the
intersection angle of crossing fibers. In contrast, MSK has the
advantage of being decoupled from the confounding effects of
tissue dispersion and crossing (68, 70).

Supplementary Figure S1 provides a visualization of the
overall axial diffusion maps, including both DTI and MSDKI
metrics, for an example subject.

Postprocessing
Thanks to this atlas-based analysis approach, it is possible
to perform a cord-specific quantification of diffusion metrics
through the sct_extract_metric command, also restricted to
specific regions of interest (ROIs; labels used by default are taken
from the PAM50 template, e.g.,WM tracts, flag -l), vertebral levels
(flag -vert), or slice (flag -z), according to the specific clinical
needs concerned.

Along with WM and GM probabilistic masks as a whole
(Figures 6B,C), normally investigated in medical practice, one
can carry out ROI detection also in specific tracts according to the
clinical question (15 WM tracts and three GM regions available
in total for each side).

In our example, neither DKI nor structural images ensured
sufficient WM–GM–CSF contrast to perform any manual
detection of ROIs in contrast to the high-contrast PSIR image of
Panara et al. (45), whose acquisition time would be too long for
neonates. Therefore, we exploited a good registration outcome
for automatic delineation of ROIs through atlas-based approach.

We opted using lateral cortico-spinal tracts (CSTs) as ROIs
for consistency with (45)—though grouping together the left and
right sides in order to gain robustness by increasing the volume
fraction as suggested in De Leener et al. (29)—as well as WM
and GM.

We then computed the average of each diffusion measure
(MD, AD, RD, FA, and MSK) across the C1–C4 vertebral
levels since outside of these levels the registration is inaccurate
and/or the MRI signal may be corrupted. We thus checked
through the QC module if the correctly segmented slices
corresponded to the same vertebral levels across subjects, starting
from the first slice containing only SC (excluding cerebellum,
Supplementary Figure S2C).

Moreover, estimation of DTI and MSDKI weighted average
metrics was limited to those slices where the SC segmentation
is accurate: outside the segmentation mask, the metrics would
indeed be irrelevant. This was obtained by multiplying the
segmentation mask by the specific WM, GM, and CST atlas
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labels. We quantified the diffusion metrics using weighted
average estimation to minimize PVE and avoid bias into the
resulting metrics by the surrounding tissues (e.g., CSF). This is
one of the recommended methods especially in case of noisy
images and small tracts as in our case. We assessed the associated
voxel fraction to quantify the reliability of our diffusionmeasures:
as demonstrated in De Leener et al. (29), having at least 240
voxels results in an error smaller than 1%, while having 30 voxels
results in an error inferior to 2%. In this example, the metrics
were computed based on averages of 178.3, 50.5, and 31.5 voxels
in WM, GM, and CSTs, respectively, thus assuring sufficient
accuracy of the estimates.

Case Study
Periventricular WM injury is the most frequent type of brain
lesion in preterm infants, and the spatial extent and location of
WM injury correlate with distinct clinical outcomes, including
cerebral palsy and motor impairment (71).

Given the strong association of WM injury with the motor
function development of preterm neonates, we hypothesized that
periventricular punctate WM lesions at TEA could be associated
with regionally specific alterations in the cSC microstructure.

A similar approach was already used by Panara et al. (45)
to characterize cSC microstructural abnormalities in a cohort
of adult patients with previous unilateral ischemic stroke in
the vascular territory of the middle cerebral artery. The DTI
and DKI diffusion measures in cSC resulted to be valuable
imaging markers for predicting clinical outcome. In particular, a
significant reduction of FA and MK was observed in the affected
lateral WM bundle of the cSC, correlating with the severity of
motor dysfunction.

Accordingly, the ultimate goal of our study was to verify
whether the presence of periventricular WM lesions affects the
cSC tract development. Specifically, we aimed to compare the
DTI and MSDKI measures of cSC in two groups of preterm
neonates: (i) with punctate periventricular white matter lesions
and (ii) with normal brain MRI (controls).

RESULTS

Population Size and Classification
In order to investigate clinical differences among the acquired
subjects, we grouped the infants as follows: (i) 9 subjects with
punctate PWMI and (ii) 9 subjects with normal brain MRI, used
as the control group.

At the QC phase, in accordance with the expert
neuroradiologist, we opted to exclude one control subject
due to excessively poor image quality (i.e., signal leakage at the
C1–C3 level; Supplementary Figures S2A,B).

Therefore, the final number of subjects under analysis was 9
and 8 infants for the patient and the control groups, respectively.

The Role of Denoising
As mentioned above, neonatal imaging is inherently affected by
low SNR and sensitivity to imaging artifacts. Proper denoising of
scans is therefore a crucial step in the processing pipeline. Above

all, we thus focused on quantitatively assessing the contribution
of Patch2Self denoiser on subsequent analysis.

Firstly, we computed the average SNR on b = 0, b = 700, and
b = 2,100 images for all subjects and across all slices belonging
to the C1–C4 district of our interest. For this task, we resorted to
SCT function sct_compute_snr. The latter exploits the methods
described in Dietrich et al. (72).

Specifically, we have taken into account the spatially varying
and parameter-dependent nature of noise distribution in case
of parallel imaging by choosing the so-called mult method.
According to this definition, the noise of a single voxel is
described by the stochastic variation of its signal intensity in
repeated acquisitions.

Since this approach has the weakest requirements on the
statistical and spatial distribution of noise, it turns out to be
valid also in the case of increasingly complex MRI systems (e.g.,
multiple channels and complex reconstruction algorithms), and
it is thus used as the standard of reference with which to compare
the validity of other existing methods. In the absence of back-to-
back scans with the same parameters (to use the default “diff”
method), we looked at the “mult“ approach as the best option
possible for our kind of input data.

We found an increase in mean SNR after applying Patch2Self
at b = 0 s/mm2 (5.88 ± 1.41 vs. 14.64 ± 4.53), b = 700 s/mm2

(3.12± 0.67 vs. 16.47± 6.62), and b= 2,100 s/mm2 (1.95± 0.16
vs. 12.31± 6.20). Hence, this evidence subsists not only for b= 0
images, agnostic from signal attenuation related to diffusion and
thus exhibiting the highest SNR, but also for non-b = 0 shells
(Figure 7).

We then inspected the impact of denoising on microstructure
model fitting, a critical step often leading to degeneration of
parameter estimates due to the low SNR of dMRI acquisitions.

Specifically, we applied the DTI and MSDKI models on raw
and denoised data, resorting both to traditional Marchenko–
Pastur PCA (MP-PCA) (73) and to Patch2Self method. We
opted to compare our denoising procedure with MP-PCA
since it represents the current state-of-the-art unsupervised
method for denoising DWI. MP-PCA exploits the redundancy
in multidirectional dMRI data by identifying the noise-
only principal components using the knowledge that the
corresponding eigenvalues are described by the universal MP
distribution, parameterized by the noise level. In order to
compare the goodness of each fit, we performed a k-fold cross-
validation (k = 2) (74) across the whole volume of masked
data for all the datasets at disposal. As a standard measure
for quantifying the goodness of fit in linear regression models,
we computed the coefficient of determination (R2 score =

1 −

∑
i (yi−fi)

2

∑
i (yi−y)

2 , with y1. . . yn , observed values, y ,

mean of observed values, and f 1. . . f n , fitted values). In
Figure 8, we depict the improvement of the R2 metric by
simply subtracting the R2 scores of fitting undenoised data
from Marchenko–Pastur and Patch2Self denoised data for both
the DTI and MSDKI models. We could observe a consistent
trend across all subjects: 1R2 shows a significant increase
from MP-PCA to Patch2Self method for all the cohorts in
case of fitting the MSDKI model and for all subjects except
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FIGURE 7 | Effects of Patch2Self denoising on noise at different diffusion weightings. (A) Average signal-to-noise ratio computed on b = 0 images, (B) b = 700, and

(C) b = 2,100 s/mm2 increases in all the cohort, across C1–C4 vertebral levels under analysis, when including denoising with Patch2Self algorithm in the processing

pipeline.

FIGURE 8 | Box plots quantifying the increase in R2 metric after fitting downstream the diffusion tensor imaging and MSDKI models for the whole spinal cord volume

across all subjects. The R2 improvements in each case are plotted by subtracting the scores of model fitting on undenoised data (raw) from R2 of fitting each denoised

output. Note that the consistency of microstructure model fitting on Patch2Self (P2S) denoised data is higher than that obtained from Marchenko–Pastur, especially as

regards MSDKI model. Ns, 5.00e−02 < p ≤ 1.00e + 00; *, 1.00e−02 < p ≤ 5.00e−02; **, 1.00e−03 < p ≤ 1.00e−02; ***, 1.00e−04 < p ≤ 1.00e−03; ****, p ≤

1.00e−04 in two-sided t-test with Bonferroni correction.
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for one in case of the DTI model (two-sided t-test with
Bonferroni correction).

Our observation suggests that Patch2Self proves to be
particularly suitable for the DKI model.

MSK Decreases in Patients With PWMI
Lesions
In an initial evaluation based on the limited sample size
available, we detected an increase in MD, AD, and RD
(Supplementary Figure S4), parallel to an overall decrease in FA
andMSK (Figure 9) in preterm neonates with PWMI (18–21, 24,
75–78).

This decrease was more pronounced in MSK than FA
(Figure 9).

This visual trend of diffusion measures has been supported
by a statistical survey, which is to be considered as preliminary
given the very low sample size. We thus performed Scheirer
Ray Hare Test, that is, the non-parametric alternative of 2-
way ANOVA, to assess the presence of statistically significant
differences in DTI- and MSDKI-derived metrics between the
patient and control groups. Specifically, we analyzed the effect of
diagnosis (PVWMI/control) and ROI (WM/GM/CSTs) on each
diffusion measure (MSK, FA, MD, AD, and RD). We showed
that there is no statistically significant interaction between the
effects of diagnosis and ROI for any of the DTI and MSDKI
measures (Supplementary Table S1). Similarly, the simple main
effects analysis showed that ROI does not significantly affect any
diffusion parameter. Conversely, the simple main effects analysis
indicated a statistically significant effect of diagnosis exclusively
on MSK, regardless of the ROI examined (p= 0.0153).

Then, we wanted to assess if the MSK and FA means were
significantly different between the two groups in the different
ROIs. We thus conducted Mann–Whitney U-test between
each patient/control pair for each ROI (GM, WM, and CSTs)
separately for MSK and FA. Given the generally low power of
the statistical tests due to the limited number of subjects, we
decided to quantify the common language effect size given its
independence from sample size. In this case, we also reported a
non-significant (p > 0.05) difference of both MSK and FA values
between the two groups in all ROIs.

Nevertheless, we observed that MSK in CSTs exhibits the
combined lowest p-value (p = 0.067, uncorrected) and the
highest effect size (0.77), corroborating the observed decrease of
MSK in the patient group with respect to the controls (Figure 9).

DISCUSSION

Research Question
In the present study, we tested the pipeline of SC DKI analysis
in a group of neonates with PWMI, a form of mild WM injury
frequently diagnosed in preterm infants. PWMIs are seen at brain
MRI as small, focal, multiple alterations of signal intensity (high
on T1 and/or low on T2) in periventricular WM. The long-term
outcome of neonates with PWMI seems to be related to the
number of lesions, their pattern, and their localization. Notably,
several studies have shown that a greater lesion load of PWM
and the involvement of frontal WM are associated with a higher

risk of adverse neurodevelopmental outcome, affecting both
motor and cognitive functions (79). Moreover, periventricular
WM lesions in preterm neonates are associated with region-
specific changes in MD, FA, RD, and AD in several cerebral WM
tracts that might explain the abnormal development of long-
term neurological functions (80). Specifically, the involvement
of pyramidal tract fibers in the periventricular WM has been
demonstrated to be a relevant factor for motor dysfunction
in children with PWMI (81). In our study, we found that
microstructural changes can be detected by using an advanced
DKI analysis also in the GM and WM of cSC of preterm
neonates with PWMI studied at a term-equivalent age, thus
suggesting that DKI parameters could be used as markers to
unravel underlying subtle microstructural lesions. Moreover, our
preliminary findings confirm the hypothesis that, in preterm
neonates with PWMI, WM microstructure alterations extend
beyond the immediate area of periventricular injury, widening
distally also in the cSC (82, 83).

Furthermore, the range of values of DTI measures is
consistent with normative values on healthy pediatric SC (24).
The MD, AD, and RD values are higher, while the FA values
are lower compared to equivalent measures on older cohorts of
patients (i.e., children/adolescents) (18–21). This may be partially
due to the sensitivity of FA to denoising, which can imply a
reduction in this metric. Moreover, this trend is in line with
the simultaneous age-related decrease in MD, AD, and RD
and increase in FA metrics reflecting progressive maturation,
myelination, and fiber packing and thickening within the SC,
similar to that observed in the brain (77, 78).

Conversely, the definition of a normative variation of DKI
measures across ages from newborns to adults will be feasible
after further investigations from early stages of development.

Further analyses on a wider cohort of neonates are necessary
to confirm these preliminary results and specifically to prove if
the microstructural changes in cSC in preterm neonates with
PWMI correlate with long-term neurological outcomes.

Study Significance
Here we present the first application of DKI to neonatal SC
through a pipeline able to perform complete processing on a
subject within a clinically acceptable time (10min on average
with the current setup). As regards acquisition setting, we
were able to perform a time-consuming technique like DKI
using a short diffusion sequence which minimizes patient’s
physiological motion and which likely reflects a standard clinical
scenario devoid of the latest technologies in terms of acquisition
sequence optimization.

Among existing denoising strategies via magnitude data,
thanks to its weak assumption about noise properties to be
suppressed, Patch2self showed optimal performance in effectively
minimizing the detrimental bias introduced by Rician noise
at higher b-values. In turn, this minimization reduces error
estimates in tensors computation and subsequently derived
metrics. However, to properly break the Rician noise floor, one
would need complex valued data (84) which requires specific
settings during acquisitions and thus will be considered in
future studies.
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FIGURE 9 | Mean signal kurtosis (MSK) decreases in neonatal periventricular white matter injuries: (A) white matter, (B) gray matter, and (C) cortico-spinal tract

regions of interest (ROIs) overlaid on diffusion kurtosis imaging motion-corrected image. (D) Scatter plots of fractional anisotropy (FA) and MSK in group subjects

across the aforementioned ROIs: colored spots indicate single subject’s value for each metric; as reported in the legend, controls’ measures are in blue, whereas the

periventricular white matter injury group is in red. The units for MSK are in mm2/s, while FA is dimensionless. Error bars displaying mean (diamond) and standard

deviation (bars) are overlaid on scatter plots.

With regard to image processing, we opted for creating
this pipeline using SCT since it represents the only existing
comprehensive, free, and open-source software dedicated to
the processing and analysis of SC multi-parametric MRI data.
Adaptation of each image processing tools already in use for
adult subjects through appropriate tuning of parameters turned
out to be feasible. Indeed it allowed to successfully overcome all
the issues mentioned in the “Introduction” section inherent to
imaging of SC and exacerbated in case of neonatal setting, even
for the most challenging steps like segmentation or registration
to atlas. We were thus able to quantify diffusion measures within
specific ROIs using an atlas-based approach which presents
undisputed advantages compared to the usual manual drawing
of ROIs. It is automatic and thus highly reproducible, it is not
biased by the user’s experience and knowledge of the anatomy, it
is much faster than the long and tedious manual delineation of
ROIs, and it allows to account for PVE.

Added Value of DKI
The results about the feasibility of DTI and MSDKI analysis
in neonatal SC subjects collected so far are preliminary but
promising and demonstrate the clinical utility of combining DTI
and DKI in the characterization of spinal cord pathologies.

FA reduction parallel toMD increase in patients is an expected
finding consistent with existing literature and attributable

to the degeneration of the diffusion barrier and loss of
diffusion directionality.

Our results suggest that, although yet underused in clinical
studies, MSK metrics might have an increased sensitivity in
capturing alterations related to pathology, also far from the
lesion site.

Such findings once again stress the importance of combining
DTI and DKI metrics as complementary sensitive biomarkers
in order to fully exploit the potential of dMRI compared to
conventional MRI.

Our results further hint that the presence of a WM lesion in
the brainmight cause subsequent alterations not only in cSCWM
but also in GM, as evidenced by the strong association between
the brain and spine. In this respect, resorting to DKI measures
becomes of utmost importance given the kurtosis sensitivity to
structural changes in isotropic tissues such as GM. Indeed the
range of variability of MSK metric from controls to PWMI was
overall higher in GM than that of corresponding DTI measures,
and a considerable decrease in case of PWMI was registered also
in GM, unlike for DTI-related parameters.

If FA and, more importantly, MSK measures appeared to be
more sensitive to microstructural changes related to pathology
both in WM and GM, the same did not apply for WM/GM
tissue differentiation.

Indeed MD, AD, and RD showed a lower value in GM with
respect to WM (including CSTs) for both the control and patient
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groups. Conversely, FA and MSK kept comparable values for the
two tissues.

Since no other studies yet exist about dMRI on this anatomical
district in such age range, we had no ground-truth to compare
our findings with. However, we hypothesized that, in this cohort
of early preterm subjects, WM and GM already differ in terms
of the amount of diffusivity but yet still not of microstructural
organization or complexity.

Indeed a higher density of cell nuclei in GM than in WM
translates in a decreased amount of diffusivity along all directions
(mean, axial, and radial). In GM, the presence of a cell body
contributes to create voluminosity in the environment, which
turns into a more restricted diffusion pattern.

On the contrary, a parameter like FA, tightly dependent on
GA and strongly modulated by myelin growth, may not be yet
particularly sensitive to the different microstructure between the
WM and GM portions. The same happens for MSK, index of
microstructural complexity, related to brain maturation, and
supposedly not so different in SC areas at this early stage.

In any case, a more comprehensive corroboration and
explanation of our results is expected after collecting an adequate
number of subjects to carry out a robust statistical survey. An
in-depth interpretation of the single metrics is out of the scope
of this paper. Here we just dwell on exploring the comparison
with the work on adults which served as a starting point. Indeed
our statistical findings may be strongly affected by the limited
sample at disposal, making the power of the tests too low to
detect meaningful differences in the data. That is precisely why
the conclusions drawn are just preliminary and mainly based on
observations of the scatter plots of the present data. It is therefore
once again made clear that this is about a pilot study that will
help design a future well-powered study able to provide valid and
generalizable conclusions.

Comparison With Adult Study
Since MSK has proven to be a good approximation of MK,
here we assimilated it with standard the DKI metric used in
Panara et al. (45). The trend of both FA and MSK agreed with
the aforementioned study. Specifically, they both exhibited a
reduction inWM, GM, and CSTs in case of pathology (Figure 9).

Since FA is known to be an index of structural integrity
(85) and MSK is a marker of tissue microstructure complexity
(2), our findings suggest that, in case of an overlying WM
brain lesion, a loss of integrity and complexity is registered
also in SC WM tracts below, with a more isotropic diffusion
pattern due to the disruption of WM tracts. MD, AD, and
RD (Supplementary Figure S4) also followed the same trend,
with an increase in the case of lesioned subjects as in Panara
et al. (45). Hence the hypothesis that the microstructural
impairment of SC could be related to distant lesions of
cerebral WM, already verified for adults with stroke lesions,
would also subsist in infants with smaller prematurity-related
WM lesions.

Study Limitations
The present pipeline has been designed to fulfill specific
requirements such as short acquisition time and minimal

modifications to the routine protocol in use at the hosting
center. As a result, any improvement in the acquisition setup
of our pipeline will bring forth even stronger and more
comprehensive results.

The major limitations of this procedure consist in basing on
an adult atlas, where the exact location of tracts may not perfectly
correspond to the neonatal images despite the good adjustment
of registration parameters. Unfortunately, to the best of our
knowledge, a comprehensive freely available SC atlas for this
age range does not exist yet. The current pipeline will definitely
benefit from the introduction of a pediatric atlas into SCT. A
valid alternative strategy could also be represented by inserting
into the clinical routine protocol multi-echo FFE, a T2∗-weighted
spoiled gradient echo sequence considered a fast alternative to
PSIR although useful for displaying the internal architecture of
the spinal cord and for performing manual detection of ROIs
while waiting for a neonatal-specific atlas.

Another limitation is the comparison of DTI and DKI metrics
from the same acquisition protocol. On the one hand, indeed
DTI would settle for a much simpler, single b-value protocol
in favor of shorter TE, less susceptibility artifacts, and higher
SNR, also allowing for cardiac gating and motion compensation
techniques. On the other hand, the present study has been
specifically conceived to develop and test a methodological
pipeline for conducting DKI-related studies in neonatal SC data.
Therefore, our study required a HARDI protocol rather than
an acquisition setting optimized for DTI. The same approach
was used in the reference corresponding adult survey, wherein
the authors resort to the same acquisition protocol to estimate
both DTI and DKI metrics. Furthermore, this decision was
supported by two further studies. First, it has been demonstrated
that the b-value dependency of the DTI model—which hampers
the interpretation and comparison of various diffusion tensor
imaging studies—can be partially reduced by fitting the model
to DWIs acquired with multiple non-zero b-values, even though
not to the degree obtained with the DKI model (86). Finally,
given the high dependence of DTI-derived scalar indexes on
acquisition parameters (87), we considered it more appropriate
to acquire both DTI and DKI measures of interest under
the same condition in order to compare them as consistently
as possible.

Moreover, the image quality could be further improved: the
scans we acquired are extracted from routine clinical protocol
and consequently prone to noise and artifacts due to the short
acquisition time dictated by clinical needs and to the lack of
specific, spatially selective MR sequences.

Starting frommore advanced hardware tools may significantly
increase the image quality and thus accuracy of the estimated
metrics. Resorting to optimized acquisition sequences would
also allow to increase the resolution of HARDI acquisition
scheme and thus to exploit all standard DKI measures,
which can, in turn, increase the amount of diagnostic
information. Partially borrowed from the reference adult study,
our acquisition protocol certainly has room for improvement—
for instance, rather than prioritizing the voxel size, reducing
TE in favor of higher SNR and better contrast could be
an option.
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We acknowledge the protocol in use to be on the edge for
HARDI schemes required by DKI. However, this represents a
first attempt to customize an advanced dMRI acquisition setting
within a clinical routine protocol, already long in itself since
made up of multiple MRI sequences in order to increase the
diagnostic possibilities. Nevertheless, we appropriately addressed
this issue at the DKI tensor and measures computation phase
to ensure reliability and accuracy in their estimates. As already
mentioned, a valuable alternative would be resorting to fast DKI
methods, particularly suitable for imaging of neonates, thanks to
their inherent time reduction.

Future Developments
Validation of the current pipeline can be made by testing
it to a larger cohort of subjects, possibly investigating lower
SC tracts also, including thoracic and lumbar districts, and
extending the studies to different clinical cases, preferably
focusing on a determined pathology—for example, it would
be interesting to explore the long-term correlations between
DKI measures and specific clinical scores as done in Panara et
al. (45), where diffusion measures have been related to motor
performance indexes.

A further step may be adapting this analysis pipeline to other
promising higher-order diffusion models requiring multi-shell
acquisition such as NODDI (88).

CONCLUSION

In this work, we have shown how accurate adjustment and
parameters’ tuning of processing algorithms customized for adult
SC opens up new horizons in exploiting the increased ability of
advanced dMRImodels, also in neonatal domain, where they had
never been utilized before.

Indeed even starting from low-quality data acquired
for diagnostic purposes and thus suboptimal, we were
able to extract from DKI information which were relevant
for diagnosis.

The case study proposed in this paper is just an example
of the potential relapses of this semi-automated pipeline,
which paves the wave for applying advanced dMRI models
to the neonatal setting in a wide range of potential clinical
applications. In particular, the possibility of successfully
exploiting the increased sensitivity and sensibility inherent to a
DKI methodology also into the neonatal setting would indeed
be extremely useful for throwing light on complex diseases
related to this critical phase of development and to deepen the
knowledge about the relationship between the brain and the SC
at birth.
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