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a b s t r a c t

Transactive Energy (TE) has brought exciting opportunities for all stakeholders in energy markets by
enabling management decentralization. This new paradigm empowers demand-side agents to play a
more active role through coordinating, cooperating, and negotiating with other agents. Nevertheless,
most of these agents are not used to process market signals and develop optimal strategies, especially in
the residential sector. Accordingly, it is indispensable to create tools that automate and facilitate
demand-side participation in TE systems. This paper presents a new methodology for residential auto-
mated agents to perform two key tasks: prevision and planning. Specifically, the proposed method is
applied to a forward market where agents' planning is a fundamental step to maintain the dynamic
balance between demand and generation. Since planning depends on future demand, agents' prevision
of consumption is an inevitable part of this step. The procedures for automating the targeted tasks are
developed in a general way for residential prosumers and consumers, interacting at the distribution
level. These players are managed by a demand aggregator as the leader by means of the Stackelberg
game. The suggested process results in a TE setup for multi-stage single-side auctions, useful to manage
future Smart Energy Markets. Through simulated transactions, this paper examines the market clearing
mechanism and the convenience of agents' planning. The results show that customers with higher price-
elasticity leverage lower costs periods. However, they make it harder to reduce the peak-to-average ratio
of the aggregated demand profile since a unique price signal can create prisoner's dilemma conditions.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Energy systems must confront significant challenges to suc-
cessfully integrate renewable resources due to their intermittency
and variability [1]. Accordingly, several technologies have been
deployed to realize smart energy systems that offer more flexibility
and sustainability. The new technologies allow for identifying
synergies between electricity, thermal, and gas grids regarding
optimal global solutions [2]. These advancements along with new
and Computer Engineering,
. des Forges, Trois-Rivi�eres,

tr.ca (D. Toquica).

r Ltd. This is an open access article
energy market designs can exploit the potential of each component
in the system. Diverse innovative market solutions using smart
infrastructure can result in a better resource allocation to improve
security, equity, and social welfare [3].

Some of the most promising market designs in electrical grids
are based on Transactive Energy (TE) [4]. The main objective of TE is
to decentralize grid management in order to help stakeholders
maintain the balance of the grid while pursuing their objectives.
The change from centralized to decentralized optimization im-
proves grid management because it reduces uncertainties, risks,
and inefficiencies [5]. Particularly, the changes in electricity mar-
kets affect all energy sectors due to the conversion stage, needed for
the final energy use and the synergy with other energy grids.

The TE paradigm applied to energy markets transforms all
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stakeholders into decision-makers that interact (coordinate,
cooperate, and negotiate) with each other [6]. In this sense, TE
creates complications for stakeholders that have a passive role like
residential customers. Indeed, these customers have to process a
significant amount of data to quickly develop a consumption
strategy and find resources through the whole smart infrastructure
[7]. This situation necessitates employing automated tools to fulfill
the transactions on behalf of the residential customers [8]. In this
paper, the automated device is referred to as an agent.

In the literature, the feasibility of integrating residential agents
into grid management has been studied by the game theory [9].
Indeed, different enhancements have been made towards a
framework for agents' interactions in distribution grids [10].
However, residential agents' rationality has been assumed without
special considerations to how they create beliefs, update their de-
sires, and generate intentions. Therefore, it is necessary to define
agents’ behaviors in detail and develop standard procedures for
their tasks. The development of reliable agents help engage cus-
tomers into TE systems [11].

Since grid management depends on agents' interactions and
agreements, the information that they share is one of the most
important aspects to control [12]. There should not exist incentives
to lie in a well-designed mechanism, and each decision-maker
must minimize information errors [13]. For instance, residential
agents need to have a comprehensive understanding of their en-
ergy consumption and retailers need to supply accurate price sig-
nals. In this scenario, residential agents must perform some
anticipation tasks to ensure that their information is reliable. They
need a prevision of uncontrollable variables and a plan to handle
controllable loads. This anticipation helps build trust and define
other agents’ behaviors like local control.

In the specific case of forward-markets, the agents' anticipation
tasks define the operation of the grid [14]. In such context, agents
agree on energy price and consumption for future delivery, and
then they execute their plans to fulfill agreements and avoid pen-
alties. Table 1 summarizes different authors' proposals for agents'
interaction to reach agreements, explicitly in electric grids. Most of
the literature approaches do not take into account agents' infor-
mation needs from diverse sources such as weather data or user’
valuations. Besides, some interaction schemes do not consider the
extend of the solutions considering large TE systems. For these
scalability issues, a demand aggregator agent is favored as a great
Table 1
Limitations in state of the art work.

Interaction scheme Achievements

Cournot competition [16] Considers customers' willingness to pay and prefere

Coordination of opportunistic
agents [17]

Optimal scheduling of appliances according to resou
availability. Impose agents' solutions over customer
preferences.

Distributed demand response
algorithms [18]

Improved (flatten) aggregated demand profile.

Centralized demand response
with TE as security mechanism
[19]

Combined approach to overcome imbalances in the
improve system resiliency.

Peer-to-peer trading [20,21] Proved economic benefits for the agents.

Coalition operations and
collaborative agents [6,22]

Interactions between agents successfully integrate D
bring economic benefits. Scalable solutions.

Double-side auctions [7,23] Independent agent strategies. Information privacy. Im
cost allocation.

Aggregators' direct load control
[24]

Reduces uncertainties.

Stackelberg game with MAS in
the local environment [25]

Economic benefits for the residential agent.

Energy Hubs [9] Distributed grid management. Scalable solution.

2

bridge to link residential agents andwholesale energymarkets [15].
In this paper, the proposedmarket configuration is a Stackelberg

game where the aggregator leads the interaction to realize a for-
ward contract with the residential agents as followers. Conse-
quently, each residential agent formulates its strategy based on the
signals it receives without either parametrizing or anticipating
other agents' responses [25]. The observability conditions of agents
are different. Residential and aggregator agents fail to parametrize
market signals and individual consumption, respectively [26]. As a
result, they both have to trust the information they receive [27]. TE
mechanisms are beneficial for building such trust since they are
multistage games that allow agents to discover information while
they interact [16]. Thus, in the end of the interactions, agents will
not have an incentive to deviate from their plan considering other
agents’ strategy. This condition leads to a Nash equilibrium point
[28].

The residential agents' strategy is formulated to maximize the
utility by balancing costs and customers’ comfort considering the
constraints of loads dynamics [29]. Energy conversion technologies
in smart energy systems (like power-to-X) are advantageous
because they allow formulating strategies without excessively
compromising comfort [30]. Indeed, residential agents can char-
acterize all their behind-the-meter resources (local environment)
and make an integrated consumption plan. This characterization of
the local environment can be done by using data-driven and sto-
chastic modeling approaches [31]. Besides, an agent can adapt
these models to overcome the accuracy loss when external condi-
tions change [32]. In this case, for simplicity in data management,
energy consumption and generation devices are considered in
groups.

Once the residential agent has characterized its local environ-
ment, it can make a prevision and process the market signals to
optimize its energy consumption plan. Afterwards, it can commu-
nicate its plans and intentions with the demand aggregator or other
participants in the Multi-Agent System (MAS). To complete this
procedure and systematically integrate the prevision results into
the planning procedure, it is valuable to have a structured software
design in terms of agent-oriented programming. Such scheme can
also contribute to the scalability of TE solutions [33]. Within this
context, this paper aims to promote standard procedures for the
prevision and planning tasks of residential agents in a TE system.
The contributions of this work can be summarized as follows:
Limitations

nces. Agents interact directly in the wholesale market, making it problematic
for large power systems.

rce Increase the implementation requirements since it proposes aMAS in the
local environment.

Agents need to be informed about their peers' strategies and the pricing
scheme.

grid and Agents depend on centralized optimization and forecasts.

Assumes perfect information and perfect agents that make rational
decisions

ER and Coalitions among suppliers left customers in a disadvantageous position.

proved Lower social welfare compared with iterative games.

It does not consider customers' preferences and information privacy.

Hard to extend for multiple agents since retailers have to send in advance
a definitive price signal without information about the consumption.
Assumes deterministic consumption with perfect agents.



Fig. 1. System setup with one demand aggregator.
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� A sequential interaction protocol between residential agents
and a demand aggregator agent to find equilibrium points in an
iterative Stackelberg game. As a result of this interaction, the
agents reach forward contracts that set the energy price.
Moreover, this protocol allows the aggregator to coordinate the
demand in a small part of an energy system and offer useful
insights for managing the wholesale energy market.

� A planning algorithm based on agent-oriented programming
paradigm for solving residential agents' information needs in TE.
The algorithm is used to find the best consumption strategy
according to the perception of local environments and the price
signal. This helps characterize the agents' rationality that is
commonly assumed in the literature. Agents' behavior is
formulated for groups of appliances considering risk-neutral
users in order to overcome customers' heterogeneity.

By explicitly defining the decision-making procedure of resi-
dential agents, this work addresses the problem of assuming per-
fect agents with perfect information that is common in the
literature, as presented in Table 1. Furthermore, it proposes to
manage energy systems by coordinating the demand of small parts
through aggregator agents owing to forward-markets potentials.
These aggregators have proven to bring benefits to all stakeholders
in the system [15]. Through this proposition, we prevent residential
agents from interacting directly with wholesale markets since it
complicates the management of large energy systems.

The rest of this paper is organized as follows: Section 2 explains
the developed framework of TE and the opportunities of residential
agents in the market. Section 3 presents the proposed procedures
for residential agents to perform the anticipation tasks with the
definition of their behaviors. The experimental setup and results,
obtained from case studies with simulated transactions, are dis-
cussed in Section 4, followed by the concluding remarks in Section
5.

2. Transactive energy framework

Transactive Energy systems are composed of economic and
control mechanisms that allow the dynamic balance of supply and
demand by using value as a key operational parameter [34]. The
main features that differentiate TE from other grid management
schemes are the distributed decision-making process and the two-
way communication channel between all agents [35]. TE allows
agents interaction to find equilibrium points and balance the grid.
Particularly, user-perceived values reflect their willingness to pay.
In an aggregated manner, these valuations tune the price of energy
and services in the transactions [36].

Commonly, interactions between agents are not unique because
they can have different objectives. For example, retailers and final
consumers can have opposite objectives and thus, they should
negotiate. On the other hand, two prosumers with similar objec-
tives can cooperate [37]. Individually, each agent looks for opti-
mizing its payoff function. However, at the end, the system reaches
an equilibrium with agreed transactions [38]. Normally, agents
have to know market rules and perhaps even pricing schemes and
taxation regulations before agreeing on transactions [39].

In this study, we consider that agents representing residential
customers interact only with a demand aggregator. Therefore,
residential prosumer and consumer agents negotiate with this
aggregator agent to buy or sell energy in a forward market [40]. For
simplicity, it is assumed that the only commodity in trades is active
energy. It should be noted that TE is conceived for electricity grids
and its implementation requires all the layers, proposed in the
Smart-Grid Architecture Model (SGAM), to provide communication
between agents [41]. The schematic of the proposed setup is
3

presented in Fig. 1, where HQ is the aggregator agent and H1, H2,…,
Hk are the residential agents. Since the system is not meant to
operate as an isolated microgrid, generation resources adequacy
and reliability are not advised [42].

Since there is only one commodity in trades, the exchanged
messages between the agents are more straightforward than others
proposed in the industry such as OpenADR and ANSI/CTA 2045
[43]. Firstly, the aggregator registers the residential agents. After-
wards, it waits for the “ready” (RDY) message from each one to start
the interaction process. All agents have to participate in all market
periods even if they send void purchasing or selling offers. When all
agents are ready, the aggregator, as the leader, sends the price
signal first and then, waits for each residential agent's response.
Finally, whenever the aggregated demand profile is satisfactory, the
aggregator sends an “acknowledgment” (ACK) message and the
residential agents assume their last proposed consumption is
accepted. This interaction is represented by the Unified Modeling
Language (AUML) in Fig. 2.

It is presumed that there are no security concerns in lower layers
since the interaction is made on high-level communication layers
by utilizing protocols like XMPP or MQTT [44]. The main advantage
of the strategy of waiting for each response is that it ensures all
residential agents participate in transactions even if it takes longer
processing times than other approaches in the literature [40]. Since
the residential agents get a forward contract, their planning and
interaction procedures are made in advance and consequently, the
processing time is not critical.

The changes in the residential sector strategy towards trans-
acting active energy inevitably affect other energy markets [45].
Moreover, residences can be directly connected to heat and gas
grids in order to supply specific demands by switching the tech-
nologies [46]. Accordingly, it is necessary to analyze the scaling
options of a market re-design to advise a higher social welfare [47].
In this regard, the proposed agents’ interaction allows for coordi-
nating the residential sector active energy demand, in advance, and
using the resulting forward contracts for clearing the wholesale
electricity market. Furthermore, the results can be utilized in other
energy markets to forecast the demand.
2.1. Proposed aggregator agent architecture

In the value discovery mechanism, the aggregator, as the leader
of a Stackelberg game, makes an initial assumption about resi-
dential agents' consumption to start negotiations [25]. Under this
concern, the proposed agent architecture for aggregators has four
behaviors, as presented in Fig. 3. First, the aggregator agent gets
data from two components of the price accounting for the unitary
cost of energy and the initial incentive or commercialization/ag-
gregation rate. Second, it registers customers and perchance clas-
sifies them according to their demand flexibility or elasticity. Third,
it takes the residential agents' responses to update the demand
model and formulate the pricing strategy based on an optimization
problem. The pricing strategy corresponds to the aggregator's



Fig. 2. Proposed AUML diagram.

Fig. 3. Aggregator Agent architecture.
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objective in the energy system. Generally, in electrical grids, the
aggregator's goal is to flatten the aggregated demand profile
minimizing the peak-to-average ratio (PAR) [48]. It should be
noticed that it is possible to minimize the PAR by employing rein-
forcement learning techniques without building the demand
model [49]. Finally, the aggregator agent architecture requires a
behavior to communicate the price signals with the residential
agents.

Employing a single aggregator to minimize PAR improves risk
management and grid assets use [42,50]. However, it is interesting
to have competing aggregators in order to mitigate their market
power in cases where they try to maximize revenues [15]. The
problem formulation for the aggregator in our case is presented in
Eq. (1).
4

min
I1;…;IT

PAR¼ T maxðP1;…; PTÞPT
t¼1Pt

(1)

st : Pt ¼ Pflex;tpt þ Pfix;t ct (2)

pt ¼UC þ It (3)

XT
t¼1

PtIt ¼ E (4)

Where, It (decision variable) stands for the incentives at each time t,
and Pt is the power demand signal discretized in T energy blocks
according to the market period. UC stands for the unitary cost of
electricity and E expresses the expected revenue. Normally, the
price pt is the sum of UC and It . Here, UC is considered as a constant
value that the aggregator knows beforehand from the wholesale
market. Since a part of the electricity demand is inelastic (even
some appliances can be necessity goods), E has a limit, given by a
revenue cap regulation. The optimization horizon, T, is often set to
24 h (day-ahead) in forward-markets. However, reducing T can be
suitable for micro-grids because it can assist with a reliable forecast
of intermittent distributed energy resources (DER) [51].

The aggregated demand, Pt , is modeled as a linear function of
the price as naive approach without further information on each
house appliances. Pfix;t and Pflex;t correspond to the fixed and pro-
portional parts of the demand, respectively. These parameters are
estimated from a simple linear regression by using the Least-
squares method based on Eqs. (5) and (6) with normally distrib-
uted error term (as an assumption). An individual incentive
formulation for each customer by using independent values of Pfix;t
and Pflex;t can result in a lower PAR considering users’ participation
in various energy markets. However, this is out of the scope of this
paper. Besides, when there are only consumers and the energy
price is ensured to be positive, the demand can be modeled as a
function of the logarithm of the price to accelerate the convergence.

bPflex;t ¼
COVðpt ; PtÞ
VARðptÞ (5)

bPfix;t ¼ Pt � bPflex;tpt (6)

The mean values, Pt and pt are incrementally updated in each
iteration of the negotiation process. Similarly, the variance, ðVARÞ
and covariance, ðCOVÞ are updated with the Welford's online al-
gorithm [52]. The iterative process between the aggregator and the
residential agents stops when there are no significant changes in
the estimated regression parameters.
3. Residential decision-making process

The Pacific Northwest National Laboratory (PNNL) summarizes
the tasks that stakeholders should perform to participate in TE
systems as follows: planning, prevision, local control, register,
negotiation, check-out, and reconcile [35]. Indeed, the success of
these tasks depends on the knowledge that the agent has about its
environment. In the residential agent context, we can distinguish
two environments that account for a local environment composed



Fig. 4. Interaction of the residential agent with its environments.
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of behind-the-meter resources and a transactive environment as
the MAS. Fig. 4 presents the interactions of the residential agent
and its environments. Due to the number and heterogeneity of
appliances that a house can have, it is convenient to classify them
into controllable loads, uncontrollable loads, and power generation
devices.

Automating the tasks for residential users is essential because
the flexibility in this sector comes from elastic users operating
controllable loads. However, exploiting flexibility can be chal-
lenging if users do not appropriately respond to market signals.
Instead, an automated agent guarantees rationality in the operation
of loads at least inside the range of its observability [53]. The res-
idential sector flexibility assists with the proper incorporation of
intermittent and variable renewable resources, which, in turn, re-
sults in more sustainable energy systems.

This work focuses on the planning and prevision tasks because
they define the operation of a forward-market. The planning in-
tends to find the right sequence of actions to minimize cost
considering the agents' Beliefs, Desires, and Intentions (BDI) [54].
The BDI approach implies that the residential agent has reactive
behavior to respond to events and cognitive behavior to model its
environment. Note that, in this context, agent's behavior defines
activities that should be performed autonomously without external
instruction [55]. In brief, the residential agent acquires the
following.

� Beliefs corresponding to models that are built by using the local
environment.

� Desires that are expressed in the pay-off function of an opti-
mization problem.

� Intentions that present the solutions to the optimization prob-
lem during the planning task.

Since weather conditions influence both power generation of
DER and energy consumption, the residential agent needs to
receive weather data from an external information services to plan
its strategy. Therefore, the first step in the anticipation tasks is to
connect to those information services. It should be noted that the
agent carries out the consumption planning in a way to reach a
forward contract. Therefore, it should trust the weather forecast to
formulate its action [56]. The next step in the planning procedure is
to get data related to user's price-elasticity. This information can be
obtained directly from a Human-Machine Interface (HMI) or
inferred by using preference learning methods. Once the agent has
both weather forecasts and price-elasticity data, it is ready to
receive price offers and solve its optimization problem. The pro-
posed planning procedure is summarized in the Algorithm 1.

Algorithm 1. Residential agent planning procedure.
5

In the Stackelberg game configuration, presented above, the
residential agents are followers and thus, they wait for the aggre-
gator's offers. Since there is only one aggregator, the residential
agents do not need to arrange bids and they can recognize the
market period directly from the price signal [5]. The follower agents
formulate their best strategy, s*, by taking into account only the
price signal, which they receive at each moment. It is noted that the
complexity of the MAS and the unobservability of other agents'
responses make it infeasible to parametrize the price signal [57].
Therefore, residential agents undergo difficulties to find perfect
subgame equilibrium points albeit knowing that the TE mechanism
has an optimal substructure [24]. This limitation can be regarded as
a major issue of spot markets (not forward-markets) due to their
small planning window.

The consumption strategy, s*, deals with controllable loads, Pcl;t ,
uncontrollable loads, Pf ;t , and power generation devices, Pg;t . The
models of uncontrollable loads and power generation devices are
required to forecast their outcomes. On the other side, the model of
controllable loads is needed to know their dynamics under
different conditions and evaluate the strategies’ feasibility. As a

result, the total estimated consumption, bPt , for a given time, t, can
be computed by Eq. (7).

bPt ¼ bPf ;t þ Pcl;t � bPg;t (7)

Accordingly, the architecture to accomplish the prevision and
planning tasks is presented in Fig. 5. It contains six asynchronous
behaviors with no hierarchical order comprising data acquisition,
adaptive modeling, optimization, local control, reconciliations, and
communications. The agent's primary knowledge must contain the
data window for training each model and all the external infor-
mation, needed to solve the optimization problem. The calculation
of reconciliations is also presented in the agent's architecture
because the historical results of penalties can provide useful in-
formation for some users' planning. For instance, risk-averse agents
can use past reconciliation costs to improve their strategies
regarding asymmetric market penalties [23]. However, that is not
part of the anticipation tasks considered here to be automated.
3.1. Data acquisition

The agent measures appliances’ power consumption in the local
environment and creates a data stream [58]. It can be convenient to



Fig. 5. Residential Agent's architecture.
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implement lambda-based processing architectures for this
behavior, depending on the sampling time and the number of ap-
pliances [59]. Consequently, the agent stores parts of the data
stream, needed to create its environmentmodels, in a time-indexed
database. Furthermore, this database contains data from other
sources such as weather forecast services to complete the infor-
mation, required for the modeling phase.

Since the agent represents a final consumer, it is crucial to
consider users’ comfort constraints and price-elasticity. For this
purpose, the data acquisition behavior includes an HMI that en-
ables the communication between the agent and the user. For
example, users could define preferred temperature setpoints for
controlling heating systems, or state of charge limits for controlling
electric vehicles [22,60].

3.2. Adaptive modeling

It is relevant to have an adaptive learning process because there
can be concept drifts in the data. Concept drift is a change in the
hidden joint probability between the consumption ðPf ;t ; Pcl;t ; Pg;tÞ
and its explanatory variables. In fact, the collected data can present
any kind of drift because there are many changing sources. For
example, weather conditions and appliances degradation can cause
gradual drifts while technology upgrades can bring about sudden
drifts. Therefore, the models should be adapted to overcome both
kinds of drifts. This can be achieved by a suitable technique that is
chosen considering the data management and the forgetting
mechanisms as key factors. Models management or learning
strategy can be adjusted according to the chosen configuration
because not all the models can be ensembled or incrementally
6

trained [61].
For the residential agent, a technique based on Fish and Drift

Detection methods, presented in Ref. [62], is utilized. This manner,
summarized in the Algorithm 2, is suitable for this case because it
forgets less data and, in turn, allows the agent to train manymodels
with a single data window.

Algorithm 2. Adaptive Learning method.

It can be noticed that the algorithm depends on the distance
between data sub-windows and the error metrics. Indeed, the
distance in time in the data stream and the distance in feature
space must be weighted. The euclidean distance is frequently used
in the literature for measuring distance in feature space due to its
fast calculation [63]. Afterwards, it is convenient to use relative
metrics like the Normalized Root Mean Square Error (NRMSE) in
the cross-validation step to make the acceptance criteria inde-
pendent of the variable magnitude. The number of data sub-
windows, selected to train the models, should be always enough
to ensure convergence in training.
3.3. Optimization

Subsequently, the agent takes the prevision results from the
local environment models to plan its consumption strategy. As a
follower, the MAS is not fully observable because other agents'
actions are not deterministic and exogenous events affect their
strategies. Under these circumstances, it is unfeasible for the resi-
dential agent to parametrize the MAS. Alternatively, its best option
is to trust the price signals that it receives. Under this choice, the
agent's consumption plan is done with certainty and the only de-
cision variable is the energy demand of the controllable loads. Such
consumption strategy can be favored as the best action according to
all the available information [27]. It should be pointed out that the
prevision tasks of modeling and data acquirement should be car-
ried out once per market period. Nevertheless, the planning prob-
lem must be solved at each iteration of the negotiation process.

The optimization problem for the residential agent is formulated
in Eq. (8). The objective is to maximize the individual welfare as the
difference between the utility, Ut , that the user perceives from
consuming energy, and the cost, Ct , that it has to pay in return. The
utility from uncontrollable loads does not shift the solutions, and
thus Ut is a function of only Pcl;t. The cost function is a piecewise
affine function depending onwhether the agent is buying or selling
energy. Usually, the buying price, pt , is higher than the selling price,
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lt , to remunerate the grid usage [64]. Finally, the aggregator can
only send pt , and lt can be settled as a constant percentage of that.
This problem is constrained by comfort restrictions and dynamics
of controllable loads.

maxbP1;…;bPT

XT
t¼1

Ut � Ct (8)

Ct ¼

8><
>:

ptbPt if bPg;t � bPf ;t þ Pcl;t
�ltbPt if bPg;t >dPf ;t þ Pcl;t

(9)

The utility function depends on the controllable load and it must
be concave. Furthermore, the utility function can be a function of
either Pcl;t or derived variables. For instance, Ut can be represented
as a function of household internal temperature or the state of
charge of batteries when controlling heating systems or electric
vehicles, respectively. In the problem formulation, the significance
of the utility function in comparison with the cost, Ct , reflects the
user's price-elasticity. Therefore, the utility function often has a
scale parameter that is tuned according to the user's preferences.

3.4. Local control

The local control of loads is not relevant to the anticipation
tasks, but it can be usefully included in the agent's software ar-
chitecture. In this behavior, the agent communicates with the
drivers of controllable loads to follow the TE agreements. For this
purpose, agents can integrate other models to adjust control ac-
tions with short-term forecast like time-series models of low
computational cost [65]. Besides, this behavior can be expanded by
other protocols to communicate with appliances.

3.5. Reconciliations

The estimated bPf ;t and bPg;t can have errors due to the weather
forecast and inner model inaccuracies. This results in deviations
even if controllable loads are adjusted to follow exactly the TE
agreement. Normally, energy contracts specify penalties for these
kinds of deviations and involving regulations [66]. The reconcilia-
tion cost can be obtained right after the market period ends.

In power systems, some grid codes show that stability limits are
not symmetric and thus, underestimating energy consumption can
be cheaper than overestimating it for the grid operator. This effect
can be translated to final consumers with different penalties for
positive and negative deviations [67]. In this case, risk-averse
agents can use previous reconciliation results to shift their con-
sumption strategy and avoid higher penalties. However, this anal-
ysis considers risk-neutral agents whose best strategy is to

communicate their estimates, bPt .

3.6. Communications

Finally, the residential agent needs a communication block to
interact with other agents. It receives price signals and answers
with the consumption strategy. The agent certainly needs to know
the communication protocols, executed in lower levels of the smart
grid. The schematic of the communications of the described MAS is
presented in Fig. 6. The aggregator agent receives information from
other higher-level agents or a market database (market DB) and
communicates with the residential agents through a local server.
The house DB represents the residential agents’ primary
knowledge.
7

4. Case studies

The implemented communication server uses the XMPP pro-
tocol to test the proposed TE configuration. The market period is
24 h. Energy and price signals are discretized in intervals of 5 min.
The agents’ behavior is programmed by using SPADE in python to
make them asynchronous [68], and the optimization problems are
addressed by using the solvers of SciPy [69].

For the residential agents, the utilized weather data corresponds
to the conditions from 1st to February 5, 2018 in Trois-Rivi�eres, QC.
Regarding the residential agents’ designs, the power generation is
modeled by a feed-forward neural network with 100 neurons in
five layers and a hyperbolic tangent as the activation function. The
inputs of this model are the time of day, solar irradiance, wind
speed, wind direction, cloud coverage, and external temperature.
Besides, in order to forecast the consumption of uncontrollable
loads, a Support Vector Machine (SVM) is used with a radial basis
function as the kernel. In this case, the explanatory variables are a
cosine signal with a 24 h period, the number of the days of theweek
(from 1 to 7), the external temperature, and the previous time in-
terval consumption. In addition, the controllable load corresponds
to a single-zone space heater. The dynamics of this load are
modeled based on a linear function of its consumption, Pcl;t , and the
external temperature, qext;t , as presented in Eq. (10). This model
assumes that the current value of internal temperature, qint;t , is
linked to its previous one, qint;t�1 [70]. The parameters a and b are
obtained by the ordinary least-squares method and adapted
through Algorithm 2 as the other models.

bqint;t ¼aqext;t þð1�aÞqint;t�1 þ bPcl;t (10)

For this controllable load, the utility function is presented in Eq.
(11). qref is the internal temperature that maximizes the customer's
comfort and obtained from the thermostat set-points. This utility
function is concave because there are no monotone preferences for
temperature. In other words, the utility is non-decreasing while the
marginal benefit is non-increasing. It should be noted that zero
consumption does not imply zero utility in this case [71]. The
parameter d represents the user's elasticity and is considered
constant. It is used for weighting the utility with respect to the cost.
Since the only heating source is electricity, the utility function does
not consider cross-elasticity with other resources. When the agent
is participating in more energy markets, it is necessary to expand
the utility and cost terms to find an optimal integrated strategy for
consumption [47].

Ut ¼ � d

�bqint;t � qref

�2
(11)

The electrical heating system as controllable load adds two new
constraints to the agents’ planning problem. First, the consumption,
Pcl;t , cannot exceed the technical limit of the space heater. Second,
the final internal temperature must be equal to the initial one in
order to start everymarket period from similar conditions and keep
the optimal substructure of the problem. The constraints are pre-
sented in Eqs. (12) and (13). Nonetheless, the second constraint
should be modified when using rolling horizons or discounted
functions with infinite planning periods for other kinds of markets.

Pcl;max � Pcl;t ct (12)

q0 ¼ qT (13)



Fig. 6. Data network in a distribution circuit.
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4.1. Five residential agents

The first case study contains five houses with the following
devices:

H1. Controllable heating system, uncontrollable electrical loads,
and solar PV array

H2. Controllable heating system, uncontrollable electrical loads,
and solar PV array

H3. Uncontrollable electrical loads and solar PV array

H4. Controllable heating system and uncontrollable electrical
loads

H5. Uncontrollable electrical loads

The proposed residential agent architecture with the mentioned
load models is enough to overcome residential customers’ het-
erogeneity because the models are trained to produce zero output
when there is no data. The consumption data of uncontrollable
electrical appliances corresponds to real measures, collected from
houses in Trois-Rivi�eres, QC, during the same period as weather
data. The solar PV arrays and the heating systems have capacities of
10 kWp and 15 kW, respectively.

In order to apply a sensibility analysis to the parameter d, all the
agents are configured with the same constant value in this TE
framework. This parameter only affects the houses with control-
lable loads and thus, H3 and H5 can be considered inflexible de-
mand. On the other hand, given the convexity of the utility function
for heating systems, there is a limited range where changing d af-
fects the cost of H1, H2, and H4. This range that depends on the
parameters of the model (Eq. (10)) is subject to gradual changes
from one market period to another because of the adaptive
training.

Fig. 7 presents the results of internal temperature for one house
with different values of d where qref ¼ 21�C. A customer with high
price-elasticity is represented by a low value of d, which leads to
higher deviations from the reference temperature. Such customer
undergoes more temperature fluctuations to leverage low price
periods by preheating.

The final agreed power demand for d ¼ 0:1 is presented in Fig. 8.
On the last day, the consumption increases due to low external
temperature. According to the corresponding planning procedure,
the total aggregated demand for the five days should be
2965.77 kW h and the PV surplus 15.38 kW h. Since the planning
procedure results in a forward contract instead of a future one, the
penalties for deviations should not be harsh for residential
customers.
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Fig. 9 presents the results related to the price signal based on d ¼
0:1. The unitary cost, UC, is $0.04 and the initial cost is $0.06. It can
be understood that when the solar PV arrays are producing energy,
the prices reduce in order to incentivize consumption. The itera-
tions stop when the estimated PAR converges with a relative dif-
ference between consecutive iterations lower than 10�4.

Table 2 summarizes the final peak-to-average ratios for different
price-elasticities within five days. The gap between the actual value
and the estimated PAR demonstrates the aggregator's need to
improve its model of the residential agents' response. It should be
noticed that a lower value of d increases the peaks not only in the
temperature but also in the consumption. However, customers
with higher price-elasticities pay a lower final cost and have a
bigger margin to adjust the load drivers in the real operation.

4.2. Seven residential agents

In the next step, two other houses are added to the initial case.
These homes consist of uncontrollable appliances and controllable
heating systems with the same capacity to examine their contri-
butions to the system flexibility. The other conditions remain equal
for the new arrangement. The aggregated energy use increases, but
the demand profile has lower PAR. This is due to the new control-
lable loads contribution to flattening the profile. However, an in-
dividual price signal for each customer can be a better approach to
shift the consumption when there are different kinds of control-
lable loads. The demand profile for d ¼ 0:1 is presented in Fig. 10.

Similarly, the price signal has low values during solar PV pro-
duction hours. The final cost increases for this case due to the new
houses energy consumption. The revenue from the aggregation rate
is the same in all cases. The price results for d ¼ 0:1 are presented in
Fig. 11. Furthermore, the entire results for cost and PAR are pre-
sented in Table 3.

4.3. Results analysis

The results, presented in Tables 2 and 3, show that elastic users
managing controllable loads can reduce the operation cost of an
energy system. In this case, users’ elasticity is represented by the
scaling parameter, d, of the utility function. This representation is
useful to formulate an optimization problem for balancing utility
and energy cost in order to find a consumption strategy. The opti-
mization is carried out by an automated agent that gets a forward
contract. This, in turn, can simplify the participation of residential
customers in energy markets and grant the rationality in the de-
cision process to develop market-clearing mechanisms.

It is relevant to consider that users’ elasticity can vary in time.



Fig. 7. Temperature conditions of the houses.

Fig. 8. Aggregated energy demand with five residential agents for.d ¼ 0:1

Fig. 9. Negotiations results with five residential agents for.d ¼ 0:1

Table 2
Final Peak-to-Average ratio at different elasticities with five residential agents.

d Day 1 Day 2 Day 3 Day 4 Day 5 Cost [CAD]

0.0001 3.0953 3.7448 4.2460 2.3986 2.7348 119.0689
0.001 2.4247 1.9857 2.9140 1.5243 1.5081 120.6070
0.01 1.8471 1.5520 2.8390 1.2855 1.3470 120.8605
0.1 1.5828 1.3935 2.5551 1.2242 1.3407 125.1178

Fig. 10. Aggregated energy demand with seven residential agents for.d ¼ 0:1
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However, selecting an accurate value of elasticity to perform
transactions is not a trivial task for automated agents. A possible
solution is to allow users to express their preferences on comfort
and cost continuously in order to adapt the problem formulation.
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Besides, the results of controlling electric heating systems show
that a more elastic users bear bigger fluctuations in temperature.
Thus, it could be reasonable to add ramp restrictions into the
optimization problem because these variations can reduce the
lifespan of some heating systems [72].

Another problem existing in the literature, mentioned in Table 1,
is the direct interaction between residential users and wholesale
energy markets that causes difficulty in coordinating large energy
systems. In the simulated transactions, it has been evidenced that
residential agents can get contracts by interacting only with de-
mand aggregators since they know the unitary cost of energy and
their revenue cap. The advantage of forward contracts is the pos-
sibility of having demand estimates, in advance, to plan the system



Fig. 11. Negotiation results with seven residential agents for.d ¼ 0:1

Table 3
Final Peak-to-Average ratio at different elasticities with seven residential agents.

d Day 1 Day 2 Day 3 Day 4 Day 5 Cost [CAD]

0.0001 3.0544 3.2389 4.1896 2.3787 2.6406 186.0821
0.001 2.3888 1.9023 2.8923 1.3180 1.4777 187.6408
0.01 1.7408 1.4152 2.6069 1.2800 1.3426 190.3280
0.1 1.5358 1.3744 2.4661 1.2093 1.3400 191.2978
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operation towards coordinating several energy markets. Moreover,
the historical information about these contracts can be useful to do
long-term planning and ensure the adequacy of the resources.

In the aggregator side, there is an estimation error that results in
a miscalculation of the PAR as it can be seen in the part b of Figs. 9
and 11. A part of this problem relates to the assumption that Pt is a
function of only the instant price pt . Such situation can be solved by
using reinforcement learning techniques that parametrize the
residential agents' responses better. One interesting result, useful to
improve the aggregator agent's models, is that the convergence rate
does not rely on the number of flexible resources. The fact that the
price signal is unique for all residential customers can lead to a
Prisoner's Dilemma (PD) because it shifts all the flexible resources
to consume on the same low price periods.
4.4. Limitations and application opportunities

The proposed agent architecture can be expanded to transact
commodities other than active energy. The residential agent needs
more models of devices in its local environment to forecast their
consumption and know their controllable potentials. However, the
general formulation of the optimization problem remains the same
(balancing users’ utility and energy cost). For the aggregator agent,
it is necessary to include other optimization blocks because flat-
tening the demand profile is not of interest to all energymarkets. In
such a case, it is advantageous to use asynchronous behavior to
support multi-objective optimization. This results in agent archi-
tectures that contribute to the development of smart energy sys-
tems and allow for the integrated operation of all energy grids,
involved in the residential sector.

The interaction protocol, presented in this paper, is sequential to
ensure the participation of all residential agents. This configuration
is suitable for forward-markets but limits the application to other
markets such as spot markets where clearing time is crucial.
Additionally, the proposed protocol is not intended to permit the
communication between the residential agents because it is ex-
pected that the aggregator makes the coordination. In future work,
it is interesting to analyze the potentials of this interaction protocol
to use individualized price signals and avoid PD.
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In the above cases, it has been assumed that the system is able to
absorb all imbalances because the adequacy of energy resources is
out of the scope of this paper. In fact, for addressing this matter, the
aggregator agent needs to communicatewith higher-level agents in
the wholesale market to get an estimate of the unitary cost of en-
ergy beforehand. However, the operation of a large energy system
ultimately depends on the ensemble of small coordinated systems.

Finally, it is important to mention that the COVID-19 pandemic
hastens application opportunities for technologies that engage the
residential sector in TE systems. In fact, lockdown measures have
increased the energy demand of houses [73]. Even after economic
recovery, the residential sector electricity demand is expected to
remain higher than before the pandemic [74].
5. Conclusions

In recent years, transactive energy systems have been developed
to allow different kinds of grid agents to trade active energy among
other services. These systems help retailers and utility companies
refine and automate their information process and decision algo-
rithms. Nevertheless, demand-side agents requirements, especially
in the residential sector, have not been properly contemplated and
their decision-making process has been overlooked. Therefore, it is
important to develop automated systems that make decisions and
participate in transactive mechanisms on behalf of residential
customers. Particularly, the anticipation tasks of prevision and
planning must be automated to engage customers into forward-
markets.

In this paper, the proposed planning algorithm for residential
agents has been implemented through an agent architecture with
six behavior. This architecture can be conveniently integrated into a
multi-agent system to leverage transactive energymechanisms and
advance towards fully decentralized smart energy systems. Besides,
the adaptability character of the proposed architecture allows for
overcoming the heterogeneity of residential customers. The
developed planning algorithm can be used with different models of
controllable and uncontrollable appliances and expanded to
participate in other energy markets.

To integrate the residential agent architecture into a transactive
energy system, we have presented an interaction protocol to reach
equilibrium in a Stackelberg gamewith a demand aggregator as the
leader. This protocol is sequential to ensure all agents participate in
the transactions and contract energy for the market period. The
suggested strategy for managing the energy system can contribute
to scalingmarket solutions and help analyze complex systems as an
ensemble of small coordinated systems. The proposal has been
tested by using simulated transactions and actual data of household
appliances and electric heating systems, as controllable loads,
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during winter period. The results have demonstrated that the
flexibility of residential resources strongly depends on users’ val-
uations of comfort.
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