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Abstract 

Purpose 

Consequential life cycle assessment (C-LCA) aims to assess the environmental consequences of a decision. It 

differs from traditional LCA because its inventory includes all the processes affected by the decision which 

are identified by accounting for causal links (physical, economic, etc.). However, C-LCA results could be quite 

uncertain which makes the interpretation phase harder. Therefore, strategies to assess and reduce 

uncertainty in C-LCA are needed. Part of uncertainty in C-LCA is due to spatial variability that can be reduced 

using regionalization. However, regionalization can be complex and time-consuming if straightforwardly 

applied to an entire LCA model.  

Methods 

The main purpose of this article is to prioritize regionalization efforts to enhance interpretation in C-LCA by 

assessing the spatial uncertainty of a case study building on a partial equilibrium economic model. Three 

specific objectives are derived: (1) perform a C-LCA case study of alternative transportation scenarios to 

investigate the benefits of implementing a public policy for energy transition in France by 2050 with an 

uncertainty analysis to explore the strength of our conclusions, (2) perform global sensitivity analyses to 

identify and quantify the main sources of spatial uncertainty between foreground inventory model from 

partial equilibrium economic modelling, background inventory model and characterisation factors, (3) 

propose a strategy to reduce the spatial uncertainty for our C-LCA case study by prioritizing regionalization. 

Results and discussion 

Results show that the implementation of alternative transport scenarios in compliance with public policy for 

the energy transition in France is beneficial for some impact categories (ICs) (global warming, marine 

acidification, marine eutrophication, terrestrial acidification, thermally polluted water, photochemical 

oxidant formation and particulate matter formation), with a confidence level of 95%. For other ICs, 

uncertainty reduction is required to determine conclusions with a similar level of confidence. Input variables 

with spatial variability from the partial equilibrium economic model are significant contributors to the C-LCA 

spatial uncertainty and should be prioritized for spatial uncertainty reduction. In addition, characterisation 

factors are significant contributors to the spatial uncertainty results for all regionalized ICs (except land 

occupation IC). 

Conclusions 

Ways to reduce the spatial uncertainty from economic modelling should be explored. Uncertainty reduction 

to enhance the interpretation phase and the decision making should be prioritized depending on the goal 

and scope of the LCA study. In addition, using regionalized CFs in C-LCA seems to be relevant, and C-LCA 

calculation tools should be adapted accordingly. 
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1. Introduction 

Life cycle assessment (LCA) is an iterative methodology to assess the potential environmental impacts of 

products and services throughout their life cycle (International Organization for Standardization (ISO) 2006a, 

b). Two types of LCA may be distinguished depending on their objectives (Weidema 2003; Zamagni et al. 

2012; Guiton and Benetto 2013): (i) attributional LCA (A-LCA) aims to assess the share of the overall 

environmental impacts that may be attributed to a product system in a status quo situation and (ii) 

consequential LCA (C-LCA) aims to assess the environmental consequences of a decision or a change 

(Weidema et al. 1999). ILCD (European Commission - Joint Research Centre - Institute for Environment and 

Sustainability 2010) and other authors (Dandres et al. 2011; Marvuglia et al. 2013; Plevin et al. 2014) 

recommend using the C-LCA approach to assess decisions with large-scale consequences (geographic and/or 

multi-sector scale), such as the implementation of a public policy.  

The way the life cycle inventory (LCI) is built constitutes the main modelling difference between A-LCA and 

C-LCA. In theory, life cycle impact assessment (LCIA) methods should also be different between A-LCA and C-

LCA. Indeed, it would be relevant to account for the consequences of the decision in the ecosphere by 

assessing the environmental feedbacks and the changes in the current state of the environment. However, 

the way C-LCA is now handled by LCA practitioners is by using the same models for LCIA in A-LCA and C-LCA. 

Consequential LCI (C-LCI) includes all the processes affected by the decision and are identified by accounting 

for causal links, which may be physical, economic, social, etc. (Zamagni et al. 2012). In practice, published C-

LCAs often account for physical links and market mechanisms. Inventory data may be distinguished by 

foreground inventory data and background inventory data (Udo de Haes et al. 1997; Frischknecht 1998). 

Here, foreground inventory data refers to the inventory data of the case study that are specifically collected 

or modelled by the LCA practitioner. Background inventory data refers to generic data, often from LCI 

databases, used to model the supply chains linked to the foreground inventory. Foreground inventory data 

in C-LCA is obtained through a descriptive causal method (Weidema et al. 1999; Weidema 2005) or the use 

of models, often economic models that account for non-linearity, elastic substitution or rebound effects 

(Earles et al. 2013). Using economic models is especially relevant when assessing prospective decisions with 

consequences on a large scale. Indeed, chains of market mechanisms are widely described in economic 

models and make it possible to also identify indirect consequences and account for technological progress 

(Dandres et al. 2011). In this study, we present a C-LCA case study to assess the potential environmental 

consequences (benefits or impacts) of the implementation of alternative transportation scenarios in France 

by 2050 through public policy for the energy transition. To perform the analysis, we applied a prospective 

economic partial equilibrium model, running from 2009 to 2050, to compute the foreground inventory data 
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instead of just collecting data as traditionally done in LCA (Marvuglia et al. 2013). The background inventory 

data is obtained using an adapted version of the LCI database ecoinvent. 

C-LCA and A-LCA deal with the same types of uncertainty: stochastic uncertainty (spatial, temporal and 

technological variability), and epistemic uncertainty related to the lack of knowledge on reality (often named 

uncertainty in LCA) (Huijbregts 1998; Clavreul et al. 2013). However, a higher level of uncertainty is expected 

for C-LCA results as compared to A-LCA (Whitefoot et al. 2011; Herrmann et al. 2014) which makes the 

interpretation phase harder. Indeed, C-LCA is complex and uncertain by nature as it aims at describing 

indirect consequences of a decision involving socio-economic links and is often prospective. Part of 

uncertainty sources in C-LCA is due to specificities to build the C-LCI (Whitefoot et al. 2011). More specifically, 

the use of economic modelling implies that uncertainty sources from those models are uncertainty sources 

in C-LCA. Three main sources of uncertainty in economic modelling can influence C-LCA: uncertainty due to 

the resolution mode of the model and related approximations (optimization, simulation, etc.), model 

uncertainty that simplifies reality (equations, linearity assumption, product in competition, partial 

equilibrium hypothesis, etc.) and input data uncertainty (prices, capacities, elasticities, etc.) (Dandres et al. 

2014). Overall uncertainty assessment is rarely performed in C-LCA from economic models (Dandres et al. 

2012, 2014). Strategies to assess and reduce uncertainty in C-LCA from economic models are needed. They 

should consider the goal and scope of the study, i.e. uncertainty reduction is required only if a conclusion 

cannot be drawn for the study or if the target level of uncertainty is not achieved to ultimately enhance 

decision making (Patouillard et al. 2018). 

Spatial variability is part of the overall uncertainty in LCA, and thus in C-LCA. Using too generic information 

to represent data with spatial variability introduces an additional uncertainty, called uncertainty due to 

spatial variability in this article. This additional uncertainty may be reduced when regionalization is 

accounted for in LCA. Regionalization refers to the enhancement of the representativeness of the processes 

and environmental phenomena in a given region (Patouillard et al. 2016). To integrate regionalization in an 

LCA study, the LCA practitioner may perform an inventory regionalization and/or inventory spatialization 

(Patouillard et al. 2018). Inventory regionalization consists of collecting inventory data that is more 

representative of the spatial coverage for a given technology. Inventory spatialization consists in describing 

the spatial distribution of elementary flows to be able to use more regionalized characterization factors (CFs) 

from regionalized LCIA methods (Mutel et al. 2018).  Efforts on inventory regionalization or spatialization 

must be prioritized depending on the impact category (IC) to guide the practitioner in reducing the 

uncertainty of the LCA (Patouillard et al. 2019). This may be achieved by performing a global sensitivity 

analysis (Patouillard et al. 2019). To our knowledge, the question of prioritizing regionalization in C-LCA has 
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never been addressed in the literature. This article addresses regionalization efforts at the level of the 

inventory data, so focuses on inventory regionalization and/or inventory spatialization only. Impact 

regionalization efforts, to develop spatially differentiated or regionalized characterization factors, is out of 

scope. 

The main purpose of this article is to prioritize regionalization efforts to enhance interpretation in 

consequential LCA by assessing the spatial uncertainty of a case study building on a partial equilibrium 

economic model. This article is a case study based on the methodology developed by Patouillard et al. (2019) 

to prioritize regionalization efforts in LCA. To do so, we propose an adaptation of this methodology to 

prioritize regionalization efforts for the consequential LCA case study. Three specific objectives are derived: 

(1) perform a C-LCA case study of alternative transportation scenarios to investigate the benefits of 

implementing a public policy for energy transition in France with an uncertainty analysis to explore the 

strength of our conclusions, (2) perform global sensitivity analyses to identify and quantify the main sources 

of spatial uncertainty among foreground inventory data from partial equilibrium economic modelling, 

background inventory data and CFs, (3) propose a strategy to reduce the spatial uncertainty for our C-LCA 

case study by prioritizing regionalization. This study aims to guide LCA practitioners and researchers to focus 

their efforts on the highest potential for uncertainty reduction in C-LCA based on the goal of the study. 

2. Uncertainty analysis of C-LCA case study 

2.1. Description of the C-LCA case study 

2.1.1. Goal and scope definition  

The goal of the study, used as C-LCA case study in this article, is to assess the consequences of implementing 

alternative transportation scenarios to meet the French law on the energy transition (LTE) targets and 

ultimately conclude if the consequences are potentially beneficial to the environment (more information on 

the context in SI). The functional unit is to “reach the LTE targets in the French transport sector by 2030 while 

meeting the French energy and mobility service demands from 2009 to 2050”. Modelling the consequences 

of the decision involves identifying the affected processes by the decision (and their magnitude) in the 

economy. To do so, we isolate the consequences of the decision making the difference between the results 

of a scenario with the decision and a scenario without decision (status-quo scenario) (Figure 1).  

2.1.2. Consequential life cycle inventory 

Amounts of elementary flow (emission and resource consumption) generated by the processes included in 

the system boundaries are quantified. The system includes all the affected processes and their supply chain. 
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As proposed by Heijungs and Suh (2002), the LCI results are stored in the inventory vector 𝒈𝒈 that describes 

the amount of each elementary flow generated to fulfill the functional unit and is calculated using equation 

1.  𝒈𝒈 = 𝑩𝑩𝑨𝑨−1𝒇𝒇    (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 1) 

To calculate 𝒈𝒈 for our case study, we used different tools to build an inventory model divided into two parts: 

the foreground inventory model based on a partial equilibrium economic model called MIRET (see section 

2.1.3 for more details) and the background inventory model mainly based on ecoinvent data (see Figure 1 

and Figure 2). Here, we use the term model to encompass the data, associated equations and principles 

leading to a result.  

• The foreground inventory model is used to calculate 𝒇𝒇 = � 𝟎𝟎𝒇𝒇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�, where and 𝒇𝒇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the 

vector with element 𝑓𝑓𝑝𝑝 represents the amount of output product as defined in MIRET for each 

directly affected process needed to fulfil the functional unit, or 0 for a product not defined in MIRET 

and thus considered as non-directly affected processes, and 𝟎𝟎 is the vector of zeros. Note that each 

directly affected process has only one output product (no multifunctionality). 𝑓𝑓𝑝𝑝 are calculated based 

on optimization results from MIRET as described in section 2.1.3. Notice that this deviates markedly 

from the traditional LCA model, in which vector 𝒇𝒇 is set by the analyst and contains an amount for 

one product only. No elementary flow or unit process is modelled in the foreground inventory, they 

are all modelled in the background.  

• The background inventory model corresponds to the technology matrix 𝑨𝑨 and the environmental 

matrix 𝑩𝑩. The background inventory refers to LCI datasets used to model (i) the direct emissions for 

each directly affected process and (ii) the part of the supply chain and associated indirect emissions 

for each affected process that is not described in MIRET. Note that all elementary flows and 

processes are modelled in the background inventory model and represent the overall life cycle. Most 

of those LCI datasets are adapted from the ecoinvent database. The mapping between directly 

affected processes from MIRET and the LCI datasets from ecoinvent is part of the background 

inventory model as described in section 2.1.4. Note that the row order and column order match for 𝑨𝑨 (e.g., if steel production is column 1, steel is row 1), all process output products are normalized to 

1 and all processes have one single output. Here are the formats of the resulting 𝑨𝑨 and 𝑩𝑩 matrices 

(see section 2.1.4 for more details) 𝑨𝑨 = �𝑨𝑨𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎𝟎𝟎 𝑨𝑨𝑚𝑚𝑎𝑎𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑚𝑚𝑰𝑰𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � and 𝑩𝑩 =

[𝑩𝑩𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎 𝟎𝟎] where 𝑨𝑨𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎 and 𝑩𝑩𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎 are the adapted versions 
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of the technology and environmental matrices from ecoinvent; 𝑨𝑨𝑚𝑚𝑎𝑎𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑚𝑚 is the matrix mapping each 

directly affected technology from MIRET to an adapted ecoinvent product, with element equal to -1 

if mapped or 0 otherwise; 𝑰𝑰𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the identity matrix with size 𝑃𝑃 × 𝑃𝑃 with 𝑃𝑃 the number of 

affected processes from MIRET, and 𝟎𝟎 are matrices of zeros. 

Figure 1 – Arrangement of the different models, tools, variables and equations to build the C-LCA 

model 

2.1.3. Foreground inventory model based on a partial equilibrium economic model 

A TIMES1-based prospective economic partial equilibrium model (Loulou et al. 2016), called MIRET and 

developed by IFP Énergies nouvelles (Menten et al. 2015), is used to identify the directly affected 

technologies in MIRET and quantify the associated amount of product reported in 𝑓𝑓. Direct and indirect 

elementary flows associated with those affected processes are modelled in the background inventory (see 

section 2.1.4).    

The MIRET model represents the energy and transport sectors in France and covers all the technologies 

occurring in France for the following steps: production and imports of resources for primary energy, 

production of final energy from primary energy, production of end-use energy to meet the final energy 

demand in France. Based on input data, this dynamic model helps determine which technologies will be 

needed to meet the exogenous demands (mobility demand, energy demand, etc.) in each time slice 𝑒𝑒 
representing a specific year 𝑌𝑌𝑎𝑎 ∈ {2009;  2015;  2019;  2025;  2030;  2050} by minimizing the total system 

cost under constraints (technological constraints, regulation constraints, etc.). Therefore, the identified 

technologies are cost-optimal and are limited by the structure of the model (technologies available, chosen 

granularity) and the nature of the partial equilibrium model where demands are exogenous. More details on 

the reference energy system of the MIRET model is available in SI. For more information on TIMES models 

and its use in LCA, see (Lorne and Tchung-Ming 2012; Menten et al. 2015; Astudillo et al. 2017; Albers et al. 

2019). Running the MIRET model allows determining the optimal production volumes 𝑉𝑉 (i.e. how much of 

the process is used in MIRET) for each process 𝑝𝑝 existing in MIRET at year 𝑌𝑌𝑎𝑎 for a defined scenario. Please 

note the term production volume is used to qualify the output amount per year of a product from a 

technology existing in the MIRET model. 

To identify the directly affected processes, we first built two scenarios with MIRET: (1) the scenario without 

decision which is business as usual scenario without the implementation of the LTE; (2) the scenario with 

 
1 TIMES: The Integrated Markal-Efom System. MARKAL (MARket ALlocation model, (Fishbone and Abilock 1981)) and 
EFOM (Van der Voort and Doni 1984) are two bottom-up energy models that inspired the structure of TIMES. 
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decision that defines alternative transportation scenarios to be implemented with the LTE in France by 2050. 

Then, we calculated the difference of production volumes 𝑉𝑉 for each technology 𝑝𝑝 at year 𝑌𝑌𝑎𝑎 between the 

scenario with decision (𝑉𝑉𝑝𝑝,𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎ℎ) and the one without decision (𝑉𝑉𝑝𝑝,𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎ℎ𝑒𝑒𝑜𝑜𝑎𝑎). When 𝑉𝑉𝑝𝑝,𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎ℎ − 𝑉𝑉𝑝𝑝,𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎ℎ𝑒𝑒𝑜𝑜𝑎𝑎 ≠ 0, we 

considered the technology 𝑝𝑝 at year 𝑌𝑌𝑎𝑎 as an affected process to be included in the C-LCA. The resulting 

production volume for each directly affected process 𝑉𝑉𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (equation 2) is then aggregated over time 

from 2009 to 2050 horizon with a linear interpolation between time slices to define 𝑓𝑓𝑝𝑝 (equation 3). We 

identified 𝑃𝑃 = 97 technologies in MIRET as directly affected processes (see SI for the complete list). 𝑉𝑉𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑉𝑉𝑝𝑝,𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎ℎ − 𝑉𝑉𝑝𝑝,𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎ℎ𝑒𝑒𝑜𝑜𝑎𝑎      (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 2) 

𝑓𝑓𝑝𝑝 = ∑ (𝑉𝑉𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑉𝑉𝑝𝑝,𝑎𝑎+1𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
)

(𝑌𝑌𝑡𝑡+1−𝑌𝑌𝑡𝑡)2𝑇𝑇−1𝑎𝑎=0       (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 3)  

Note that 𝑓𝑓𝑝𝑝 =  3𝑉𝑉𝑝𝑝,2009𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
+ 5𝑉𝑉𝑝𝑝,2015𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

+ 5𝑉𝑉𝑝𝑝,2019𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
+

112 𝑉𝑉𝑝𝑝,2025𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
+

252 𝑉𝑉𝑝𝑝,2030𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
+ 10𝑉𝑉𝑝𝑝,2050𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

  for 

our case study. 

2.1.4. Adaptation for background inventory and mapping with the foreground 

The background inventory model is mostly based on LCI datasets from the attributional LCI database 

ecoinvent version 3.3 cut-off (Wernet et al. 2016). Our choice of using the attributional version of ecoinvent 

3.3 is discussed in section 4.3. To model the direct elementary flows and supply chains of the directly affected 

processes, we mapped each MIRET process affected by the decision to a corresponding ecoinvent process 

that must be adapted for our case study (Yang 2016). All ecoinvent processes mapped with a MIRET process 

have been modified to (i) avoid double-counting by removing from the supply chain described in ecoinvent 

the consumption of products already modelled in MIRET (i.e. fuel production for car transportation is already 

modelled in MIRET and is considered as an affected process, so it is removed from the supply chain of car 

transportation processes in ecoinvent), (ii) account for direct tailpipe emissions from biofuel blended fuels 

by adding those emissions in ecoinvent transportation processes according to the biofuel share within each 

vehicle that evolves dynamically based on the optimization result of the MIRET model, (iii) technological 

progress in energy efficiency for vehicle use processes. Mapping excel file between MIRET and ecoinvent and 

further details on adaptation are available in SI.  

Figure 2 – Consequential inventory model. The foreground inventory model is the French MIRET-

TIMES model used to identify directly affected processes. The background inventory model is based 

on an adapted version of the ecoinvent database. 
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2.1.5. Life cycle impact assessment and LCA models 

Elementary flows quantified in the LCI step are then characterized by an LCIA methodology to assess the 

potential environmental impacts of the affected processes’ life cycle. To do so, we used IMPACT World+, a 

regionalized LCIA methodology with global spatial coverage (Bulle et al. 2019). We chose impact indicators 

at the damage level which can be aggregated to assess the impacts on Areas of Protection (AOP). Hence, we 

will be able to prioritize the practitioner’s efforts across damage ICs based on their contribution to the AOP. 

The implemented version of IMPACT World+ has two AOP ICs at the damage level: ecosystem quality (EQ) 

and human health (HH); and 16 and 11 damage ICs contributing to each AOP, respectively. ICs related to 

climate change contribute to both AOPs. The following ICs are spatially-differentiated: freshwater 

acidification, terrestrial acidification, freshwater eutrophication, land occupation and land transformation 

for EQ; and water availability for HH. Global CFs, that represent the impact of an elementary flow emitted 

somewhere in the world, were used to assess both spatially-differentiated and generic ICs. For spatially-

differentiated ICs, global CFs are CFs spatially aggregated for the world, calculated as an average of native 

CFs weighted by the probability for each elementary flow to occur in each native region (Bulle et al. 2019).  

Equations 4 and 5 describe the LCA calculation models to compute C-LCA impact scores which is performed 

with Brightway 2 LCA software (Mutel 2017) using traditional LCA calculation (not regionalized LCA 

calculation). 𝒉𝒉𝒅𝒅𝒅𝒅𝒅𝒅 represents the damage impact scores for damage ICs, for instance ionizing radiation 

contributing to ecosystem quality. It’s a vector with a dimension 𝐽𝐽 = 27 and with element ℎ𝑗𝑗𝑎𝑎𝑎𝑎𝑚𝑚 for each 

damage IC 𝑗𝑗. 𝒉𝒉𝒅𝒅𝒅𝒅𝒅𝒅 is calculated using equation 4 where 𝑸𝑸𝒅𝒅𝒅𝒅𝒅𝒅 is the matrix of CFs at damage level. 𝒉𝒉𝑨𝑨𝑨𝑨𝑨𝑨 

represents the total damage impact scores aggregated for AOP ICs, for instance ecosystem quality. It’s a 

vector with a dimension 𝐾𝐾 = 2 and with element ℎ𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴 for each AOP IC 𝑘𝑘. 𝒉𝒉𝑨𝑨𝑨𝑨𝑨𝑨 is calculated using equation 

4 where 𝑸𝑸𝑨𝑨𝑨𝑨𝑨𝑨 = �1 ⋯ 1

0 ⋯ 0

    0 ⋯ 0

    1 ⋯ 1
� is a matrix with dimensions  𝐾𝐾 × 𝐽𝐽 with element equals to 1 when 

the damage IC 𝑗𝑗 contributes to the AOP IC 𝑘𝑘.  𝒉𝒉𝒅𝒅𝒅𝒅𝒅𝒅 = 𝑸𝑸𝒅𝒅𝒅𝒅𝒅𝒅𝒈𝒈    (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 4) 𝒉𝒉𝑨𝑨𝑨𝑨𝑨𝑨 = 𝑸𝑸𝑨𝑨𝑨𝑨𝑨𝑨𝒉𝒉𝒅𝒅𝒅𝒅𝒅𝒅     (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 5) 

 In terms of interpretation of C-LCA impact scores, a negative impact score indicates that the alternative 

transportation scenario meeting the LTE targets (scenario with) is potentially more beneficial than the 

business-as-usual transportation scenario (scenario with). On the contrary, a positive impact score indicates 

that the consequences of implementing the LTE targets are potentially adverse to the environment. 
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2.2. Methods for uncertainty analysis 

The uncertainty analysis makes it possible to determine the strength of the conclusion of our case study, i.e. 

whether the implementation of LTE in France would be potentially beneficial or not for the environment, by 

testing the significance of the conclusion regarding a chosen confidence level. This section describes: (i) the 

uncertainty sources estimation for our case study for the foreground and background inventory models and 

LCIA model, (ii) the general approach for uncertainty analysis of the C-LCA model for our case study, and (iii) 

the statistical tests applied. Then, the results of the statistical tests are used to identify the damage and AOP 

ICs to be prioritized for uncertainty reduction, as proposed by Patouillard et al (2019).  

We distinguish two types of decision-makers: decision-makers who draw conclusions on AOP and will analyze 

statistical tests for each AOP IC to identify for which one reducing uncertainty is necessary; and decision-

makers who draw conclusions on damage contributions who will analyze statistical tests for each damage IC 

or a selection of damage ICs that are of interest. Therefore, the priority and type of work for uncertainty 

reduction will depend on the type of decision-maker. That’s why we apply the uncertainty analysis and 

statistical tests to both damage and AOP impact scores. We used the notation ℎ𝑒𝑒 to represent damage or 

AOP impact score (ℎ𝑗𝑗𝑎𝑎𝑎𝑎𝑚𝑚 𝑒𝑒𝑜𝑜 ℎ𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴). 

2.2.1. Estimation of uncertainty sources 

As displayed in Figure 1, the C-LCA model is an arrangement of several tools integrated or not with the LCA 

calculation model as described by equations 1, 2, 3, 4 and 5. Each tool is a source of uncertainty for the overall 

C-LCA model. Since we are focused on spatial uncertainty, we aimed to select specifically spatial components 

of the different uncertainty sources when possible. We accounted for uncertainty sources from different 

input variables for the different parts of the C-LCA model: background inventory model, foreground inventory 

model, and LCIA data i.e. CFs. 

• For the foreground inventory model, input variables of the MIRET model (i.e. prices of commodities, 

production capacities per year, yields, etc.) that may be subject to spatial variability were selected 

based on expert judgment. Finally, the prices of five different biomass commodities were considered 

based on their geographic origins. Further details on data sources and the calculation of relative 

extrema for spatial variability are available in SI. 

• For the background inventory model, we accounted for uncertainty sources as defined in ecoinvent 

v3.3 that are estimated with the Pedigree approach using lognormal distributions (Muller et al. 

2014). This uncertainty not only contains a spatial component but other uncertainty sources as well. 

Associated limitations for our case study are discussed in section 4.3. We also accounted for the 
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correlation between input and output quantities from unit processes in an uncertainty analysis in 

background LCI for water and land transformation flows, as described in Patouillard et al (2019). 

• For the LCIA model, only the variability due to the spatial aggregation of global CFs for spatially-

differentiated ICs is considered as the uncertainty source as done in Patouillard et al (2019) (more 

information on the implementation is available in SI). Besides, during the uncertainty analysis, we 

accounted for the LCIA spatial correlations between elementary flows produced by the same unit 

process only for the land transformation IC and for certain elementary flows. Other types of spatial 

correlation are not taken into account in this case study due to the challenge of implementing them 

in a reasonable amount of time (see Patouillard et al (2019) for more details). It is worth noting that 

uncertainty from CFs and spatial LCIA correlation is rarely implemented in available LCA software. 

2.2.1. The general approach for uncertainty analysis 

Table 1 summarizes the techniques used for the uncertainty analysis of the C-LCA case study. The background 

inventory model and the LCIA data are fully integrated with the LCA calculation tool. Therefore, to propagate 

the uncertainty from those sources to the C-LCA results, we used a random sampling from defined probability 

distributions for each source. On the other hand, the foreground inventory model (MIRET model) is not 

integrated with the rest of the model. Therefore, we propagate uncertainty sources in the MIRET model using 

a computer experimental design and bootstrapping resampling with a dependent sampling for the scenarios 

with and without decision (see details below). We used a Monte Carlo simulation with 𝑅𝑅 = 5000 runs (𝑜𝑜) to 

propagate all the uncertainty sources in the LCA calculation model and obtained the following set of impact 

scores 𝐻𝐻𝑒𝑒 = �ℎ𝑒𝑒,𝑟𝑟�𝑟𝑟=0𝑅𝑅−1
 for each IC 𝑒𝑒. Limitations of our uncertainty analysis are discussed in section 4.3. 

Table 1 –Techniques used for the uncertainty analysis of the C-LCA case study for the estimation of 
uncertainty sources, the uncertainty propagation and the output format. 

2.2.2. Uncertainty propagation in the foreground inventory model 

The MIRET model version used here is relatively time-consuming (approximately 15min/run) and there is no 

integration between the MIRET model and the rest of the C-LCA model. So, a substantial amount of time is 

required to extract and format the outputs of MIRET for each run. Therefore, performing a Monte Carlo 

analysis of 5 000 runs to propagate the uncertainty within the MIRET model and linking it directly with the 

other part of the C-LCA model would have been very time-consuming. Consequently, we decided to use a 

computer experimental design (Santner et al. 2013; Aleisa and Heijungs 2020) to approximate the 

uncertainty propagation of the spatial variability of MIRET’s inputs variables to its results. We chose a space-

filling design that aims to spread sets of values evenly throughout the experimental region, thus exploring all 

the potential responses of the model (Pronzato and Müller 2012). For the case study, we used a Latin-
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Hypercube sampling design that provided 80 sets of values for the 5 random input variables considered as 

uncorrelated variables with a uniform distribution (Damblin et al. 2013). A total of 80 sets are a good 

compromise to explore the space of 5 variables in minimum time. One set provides one random value for 

each input variable. For each set 𝑠𝑠 of input values, we run the MIRET model for the scenarios with and without 

and obtain new production volume values gathered in the following set �𝑉𝑉𝑝𝑝,𝑎𝑎,𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑠𝑠=079
= �𝑉𝑉𝑝𝑝,𝑎𝑎,𝑠𝑠𝑤𝑤𝑒𝑒𝑎𝑎ℎ −𝑉𝑉𝑝𝑝,𝑎𝑎,𝑠𝑠𝑤𝑤𝑒𝑒𝑎𝑎ℎ𝑒𝑒𝑜𝑜𝑎𝑎�𝑠𝑠=079

to ensure a dependent sampling between the scenarios with and without. During the Monte 

Carlo analysis for uncertainty analysis on the C-LCA model, we used the bootstrap resampling method (Efron 

1994) that consists in randomly picking a set 𝑠𝑠 of MIRET results 𝑉𝑉𝑝𝑝,𝑎𝑎,𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
 at each Monte Carlo iteration with 

replacement and recalculates 𝒇𝒇 for every set using equations 2 and 3.  

2.2.3. Statistical tests and priority rules for uncertainty reduction  

Statistical tests allow determining the strength of the conclusion depending on the goal of the LCA study. For 

our C-LCA case study, the goal is to investigate if the decision is beneficial for the environment. Positive C-

LCA impact scores (ℎ𝑒𝑒) are interpreted as adverse to the environment and negative ones as beneficial for the 

environment. Therefore, we want to compare the Monte Carlo output samples 𝐻𝐻𝑒𝑒 for each IC 𝑒𝑒  to a reference 

value. To do so, we can apply statistical tests based on the Null Hypothesis Significance Test (NHST). To avoid 

NHST limitations with large sample size (our sample size is 5000), we used the modified NHST procedure 

proposed by Heijungs et al. (2016) and described in Mendoza Beltran et al. (2018). In our case study, tests 

for prioritization are one-tailed modified NHST for each IC 𝑒𝑒 with the null hypothesis 𝐻𝐻0 ∶ 𝛿𝛿𝑒𝑒 ≥ −𝛿𝛿0; where 𝛿𝛿𝑒𝑒 =
𝜇𝜇𝑖𝑖𝜎𝜎𝑖𝑖 is the standardized mean of 𝐻𝐻𝑒𝑒, 𝜇𝜇𝑒𝑒  is the mean of impact scores 𝐻𝐻𝑒𝑒 estimated with 𝐻𝐻𝚤𝚤��� =

1𝑅𝑅∑ ℎ𝑒𝑒,𝑟𝑟𝑅𝑅−1𝑟𝑟=0 ,  𝜎𝜎𝑒𝑒 is the standard deviation of 𝐻𝐻𝑒𝑒 estimated with  𝑠𝑠𝑒𝑒 = � 1𝑅𝑅−1∑ �ℎ𝑒𝑒,𝑟𝑟 −𝐻𝐻𝚤𝚤����2𝑅𝑅−1𝑟𝑟=0 , 𝛿𝛿0 is a threshold value traditionally set at 0.2. The probability that we reject 𝐻𝐻0 

while being true is called the significance level (α) which should be set depending on the risk aversion of the 

decision-maker. In our case study, we conventionally set α to 0.05. If the p-value of the test is lower than the 

chosen significance level (α), then 𝐻𝐻0 is rejected and the alternative hypothesis 𝐻𝐻𝑎𝑎:𝛿𝛿𝑒𝑒 < −𝛿𝛿0 is considered 

as statistically significant with a confidence level (1-α). If 𝐻𝐻0 is rejected, the decision is beneficial for the IC. 

It means that the absolute distance between 𝛿𝛿𝑒𝑒  and zero is significantly more than 𝛿𝛿0, i.e. more than “0.2 

standard deviation units” (Mendoza Beltran et al. 2018). 

The priority for uncertainty reduction should set on actions with the potential to enhance the interpretation 

phase and the decision making (Patouillard et al. 2019). In the case 𝐻𝐻0 is rejected, there is no need to put 

efforts on reducing the uncertainty of C-LCA impact scores for related ICs as conclusions can already be 
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drawn. However, if 𝐻𝐻0 cannot be rejected for some ICs, it means that there is no statistical evidence that the 

decision is beneficial for these ICs. It can be that the decision is not beneficial or that the uncertainty level is 

still too high and prevents us from concluding. Therefore, we will prioritize our efforts to try to reduce the 

uncertainty of C-LCA impact scores for those ICs where 𝐻𝐻0 cannot be rejected. The prioritization between ICs 

will depend on their relative contribution to the uncertainty, using the methodology described in section 2.3. 

Different goals for this case study would have led to different statistical tests and the prioritization for 

uncertainty reduction would have been different. 

2.3. Results of uncertainty analysis of the C-LCA case study 

We performed a Monte Carlo analysis including all sources of identified uncertainty and displayed 𝐻𝐻𝑒𝑒 the 

damage impact score distributions for each IC 𝑒𝑒 (Figure 3). Then we identified ICs to be prioritized for 

uncertainty reduction based on the results of modified NHST statistical tests for sample size 𝑅𝑅 = 5000, 𝛿𝛿0=0.2 and α=0.05. ICs where 𝐻𝐻0 can be rejected with a confidence level of 95% are identified in Figure 3 

with the symbol (*). All detailed results for modified NHST statistical tests are available in SI.  

Analysis for decision-makers focusing on AOP: Even if the total impact score distribution for EQ contains 

both negative and positive values, the implementation of LTE in France from 2009 to 2050 would be 

beneficial for EQ with a confidence level of 95%, according to modified NHST statistical tests. The total impact 

scores for HH are evenly distributed between negative and positive values. Modified NHST statistical tests 

confirm that we cannot reject 𝐻𝐻0 for HH with a confidence level of 95%, so no conclusion can be drawn. 

Therefore, attempting to reduce the uncertainty and increase the discriminating power for HH is relevant to 

our case study. 

Analysis for decision-makers focusing on damage contributions: Land transformation and water availability 

are the ICs that seem to dominate uncertainty in EQ and HH, respectively. The global sensitivity analysis ill 

test this intuition based on visual inspection. However, the impact score uncertainty for both ICs should be 

interpreted with caution since spatial correlation within IC between CFs has been partially addressed for 

these ICs and may affect the results (Patouillard et al. 2019). Beyond land transformation and water 

availability, modified NHST statistical tests confirm that the implementation of LTE in France is likely to have 

a beneficial impact on the following ICs with a confidence level of 95%: global warming (short-term and long-

term altogether, for EQ and HH), marine acidification, marine eutrophication, terrestrial acidification, 

thermally polluted water, photochemical oxidant formation and particulate matter formation. In this case, 

there is no need to attempt to reduce the uncertainty for these ICs since we may already conclude on the 

benefits of implementing the LTE, which is the goal of our case study.  
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Figure 3 – Box and whisker charts representing the distribution of damage impact score 𝒉𝒉𝒊𝒊 for each 𝐈𝐈𝐈𝐈𝒊𝒊 contributing to the ecosystem quality (EQ) AOP in PDF.m2.year (left) and contributing to human 

health (HH) AOP in DALY (right). The whiskers represent the local minimum and local maximum. The 

bottom and top of each box represent the first and third quartiles. The bar inside the box represents 

the median, and the cross represents the mean value. Outliers are excluded following the Tukey 

standards (McGill et al. 1978). (*): p-value<0.05 based on the results of modified NHST statistical tests. 

The charts on the top represent the distributions for 𝒉𝒉𝒋𝒋𝒅𝒅𝒅𝒅𝒅𝒅 for each damage IC and on the right of each 

graph for 𝒉𝒉𝒌𝒌𝑨𝑨𝑨𝑨𝑨𝑨 for each AOP IC. The charts on the bottom focus on damage ICs that are less uncertain 

(excluding land transformation for EQ and water availability for HH). S-T: short-term. L-T: long-term.  

3. Global sensitivity analysis of the C-LCA case study 

Once we identified ICs where uncertainty needs to be reduced, main sources of spatial uncertainty in the C-

LCA model for each IC must be identified to adequately prioritize the data collection for regionalization. The 

objective of the global sensitivity analysis (GSA) is to identify the main sources of uncertainty in the C-LCA 

model (foreground inventory model based on economic modelling, background inventory model, CFs). In 

contrast to local sensitivity analysis, GSA provides a more representative sensitivity analysis by accounting 

for the overall variation range of inputs and accounts for interactions and correlations (Wei et al. 2015). 

Here, we present the GSA indicators used in this study and the stepwise procedure to identify the key 

sensitive variables, also referred to as main uncertainty sources or main uncertainty contributors. The 

stepwise procedure allows to determine which impact categories and which parts of the LCA model should 

be prioritized for uncertainty reduction. This procedure is in line with the one proposed in Patouillard et al. 

(2019) and adapted for our C-LCA case study. Python scripts to perform GSA are available as supporting 

information in Patouillard et al. (2019) and accessible at https://doi.org/10.5281/zenodo.3597423. 

3.1. GSA indicators definition 

The first-order sensitivity index derived from the Sobol variance decomposition is designed for factor 

prioritization (Saltelli and Tarantola 2002; Saltelli 2017). This index is selected as our importance indicator for 

GSA to identify the main uncertainty sources in this study. For a model 𝑌𝑌 = 𝑚𝑚(𝑋𝑋1, … ,𝑋𝑋𝑙𝑙 , … ,𝑋𝑋𝐿𝐿) where 𝑋𝑋𝑙𝑙  
are the uncertain (or random) input variables of the model and 𝑌𝑌 is the output, the first-order sensitivity 

index 𝑆𝑆𝑆𝑆1𝑋𝑋𝑙𝑙 measures the main influence or first order effect of variable 𝑋𝑋𝑙𝑙  on the results 𝑌𝑌 (Saltelli et al. 

2010). We estimated 𝑆𝑆𝑆𝑆1𝑋𝑋𝑙𝑙using the procedure described in Patouillard et al (2019). The total sensitivity 

index 𝑆𝑆𝑆𝑆𝑆𝑆𝑋𝑋𝑙𝑙 also includes the second and higher order effects of the variable 𝑋𝑋𝑙𝑙  on the results (Saltelli et al. 

2010). 𝑆𝑆𝑆𝑆𝑆𝑆𝑋𝑋𝑙𝑙 is a sum of 𝑆𝑆𝑆𝑆1𝑋𝑋𝑙𝑙 and all 𝑆𝑆𝑆𝑆𝑘𝑘𝑋𝑋𝑙𝑙…𝑋𝑋𝑘𝑘  (kth-order sensitivity index which represent the sensitivity due 

https://doi.org/10.5281/zenodo.3597423
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to interactions between variables 𝑋𝑋𝑙𝑙 …𝑋𝑋𝑘𝑘). It provides an additional information on the influence of 𝑋𝑋𝑙𝑙  in the 

model, which could be useful. More information on the Sobol variance decomposition is available in SI. 

3.2. A stepwise procedure to identify the main sources of uncertainty 

As discussed in Patouillard et al. (2019), a straightforward approach to perform GSA on an LCA model would 

require more than 200 days of calculation to directly estimate the sensitivity of each variable. Therefore, we 

decomposed the LCA model into simpler models by grouping variables to prioritize the most sensitive part 

of the model step by step. The main reasons for grouping variables are: (1) to reduce the computational 

complexity; (2) to drive the efforts with a practitioner’s perspective. Indeed, the type of data, tools and 

expertise to improve the spatialization of elementary flows, the regionalization of foreground inventory 

model or the regionalization of background inventory model is very different; (3) to deal with correlation 

between variables (Jacques et al. 2006; Xu and Gertner 2008; Wei et al. 2015; Patouillard et al. 2019). 

Therefore, we created three uncorrelated groups of variables that are the different parts of the C-LCA model: 

background inventory model variables 𝑋𝑋𝐿𝐿𝐿𝐿𝐼𝐼𝑏𝑏𝑏𝑏  from the ecoinvent database, foreground inventory model 

variables 𝑋𝑋𝐿𝐿𝐿𝐿𝐼𝐼𝑓𝑓𝑏𝑏  from MIRET model and LCIA variables 𝑋𝑋𝐿𝐿𝐿𝐿𝐼𝐼𝐴𝐴, which are CFs from IMPACT World+ (Figure 1). 

All inventory model variables can also be grouped in a single group of variables defined as 𝑋𝑋𝐿𝐿𝐿𝐿𝐼𝐼 =�𝑋𝑋𝐿𝐿𝐿𝐿𝐼𝐼𝑏𝑏𝑏𝑏 ,𝑋𝑋𝐿𝐿𝐿𝐿𝐼𝐼𝑓𝑓𝑏𝑏�. This group choice will guide the efforts required since each part involves different efforts 

and skills for data and model improvements.  

Here, we describe the stepwise procedure used to identify the main sources of ℎ𝑒𝑒 uncertainty for our case 

study. At each step, we performed a GSA on a specific model with the form 𝑌𝑌 = 𝑚𝑚x(𝑋𝑋1, … ,𝑋𝑋𝑙𝑙 , … ,𝑋𝑋𝐿𝐿) as 

detailed in Table 2 and estimated sensitivity indices as described in Patouillard et al (2019) (see the figure in 

SI).  

Table 2 – Details on GSA models and sensitivity indices estimated at each step 

 

The GSA interpretation to prioritize efforts for uncertainty reduction is explained at each step. 

1. IC ranking step: determine which damage IC is the main source of ℎ𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴  uncertainty for each AOP IC. 

For each AOP IC, we ranked each damage IC based on its 𝑆𝑆𝑆𝑆1ℎ𝑗𝑗𝑑𝑑𝑒𝑒𝑚𝑚 value. Damage ICs with higher 𝑆𝑆𝑆𝑆1ℎ𝑗𝑗𝑑𝑑𝑒𝑒𝑚𝑚 are major contributors to the uncertainty of ℎ𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴  and, therefore, should be prioritized for 

uncertainty reduction. This information is useful when the goal and scope of the LCA study focuses 

on more than one damage IC. 

2. LCI vs. LCIA step: determine which group of variables between 𝑋𝑋𝐿𝐿𝐿𝐿𝐼𝐼 and 𝑋𝑋𝐿𝐿𝐿𝐿𝐼𝐼𝐴𝐴 is the main source of ℎ𝑗𝑗𝑎𝑎𝑎𝑎𝑚𝑚  uncertainty for each damage IC. Interpretation of sensitivity indices for this step makes it 
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possible to prioritize efforts between inventory regionalization and inventory spatialization for the 

damage ICs selected during the IC ranking step. If 𝑆𝑆𝑆𝑆1𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿  is the highest sensitivity index, the ℎ𝑗𝑗𝑎𝑎𝑎𝑎𝑚𝑚 

uncertainty mainly comes from inventory model variables, and the inventory should, therefore, be 

investigated for regionalization. If 𝑆𝑆𝑆𝑆1𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  is the highest sensitivity index, the ℎ𝑗𝑗𝑎𝑎𝑎𝑎𝑚𝑚  uncertainty is 

mainly coming from LCIA variables, and the inventory should, therefore, be investigated for 

spatialization to use more regionalized CFs. An 𝑆𝑆𝑆𝑆2𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿,𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  (also referred to as interaction sensitivity 

index) higher than other sensitivity indices, which indicates that the ℎ𝑗𝑗𝑎𝑎𝑎𝑎𝑚𝑚  uncertainty mainly comes 

from the interactions between both groups of variables. Therefore, no priority order may be drawn 

and both groups 𝑋𝑋𝐿𝐿𝐿𝐿𝐼𝐼 and 𝑋𝑋𝐿𝐿𝐿𝐿𝐼𝐼𝐴𝐴 should be further studied. 

3. Background vs. foreground LCI step: determine which if 𝑋𝑋𝐿𝐿𝐿𝐿𝐼𝐼𝑏𝑏𝑏𝑏  or 𝑋𝑋𝐿𝐿𝐿𝐿𝐼𝐼𝑓𝑓𝑏𝑏  is the main source of ℎ𝑗𝑗𝑎𝑎𝑎𝑎𝑚𝑚  

uncertainty for each damage IC considering LCI uncertainty only. Interpretation of sensitivity indices 

for this step makes it possible to prioritize inventory regionalization efforts between background and 

foreground LCI for damage ICs selected during the IC ranking step and the LCI vs. LCIA step. Inventory 

regionalization efforts should be focused on: (i) the background inventory model if 𝑆𝑆𝑆𝑆1𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏 is higher 

than other sensitivity indices; (ii) the foreground inventory model, i.e. the MIRET model here, if 𝑆𝑆𝑆𝑆1𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿𝑓𝑓𝑏𝑏 is higher. 

3.3. Results of global sensitivity analysis of the C-LCA case study 

3.3.1. IC ranking and LCI vs. LCIA steps 

Figure 4 presents the results for GSA performed for the IC ranking step (length of each bar) and the LCI vs. 

LCIA step (divisions within each bar) by accounting for uncertainty from inventory model and LCIA variables. 

Figure 4 – GSA results for the IC ranking step (length of each bar) and the LCI vs. LCIA step (divisions 

within each bar). Values of first-order sensitivity indices for the IC ranking step for each damage IC 

contributing to the ecosystem quality (left) and human health AOPs (right). The divisions within each 

bar correspond to the contribution of sensitivity indices for the LCI vs. LCIA step with 𝑺𝑺𝑰𝑰𝟏𝟏𝑳𝑳𝑳𝑳𝑰𝑰: first-

order sensitivity index for inventory model variables (purple);𝑺𝑺𝑰𝑰𝟏𝟏𝑳𝑳𝑳𝑳𝑰𝑰𝑨𝑨: first-order sensitivity index for 

LCIA variables (green); 𝑺𝑺𝑰𝑰𝟐𝟐𝑳𝑳𝑳𝑳𝑰𝑰,𝑳𝑳𝑳𝑳𝑰𝑰𝑨𝑨: second-order sensitivity index due to the interactions between LCI 

and LCIA variables (grey). The contribution of sensitivity indices for the LCI vs. LCIA step is also 

provided for each total AOP (hashed bar). Regionalized ICs are identified with the (R) symbol. 

Both groups of inventory model variables and LCIA variables are important contributors to total EQ impact 

score uncertainty. The total HH impact score uncertainty is driven by the interactions between both 𝑋𝑋𝐿𝐿𝐿𝐿𝐼𝐼 and 𝑋𝑋𝐿𝐿𝐿𝐿𝐼𝐼𝐴𝐴 variable groups, meaning that no priority order may be drawn and that both groups should be further 

investigated.  Therefore, inventory regionalization or inventory spatialization may be required depending on 
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the damage IC. Land transformation and water availability have the highest first-order sensitivity indices for 

the IC ranking step for EQ and HH, respectively. Consequently, they are the most sensitive ICs. In the case of 

land transformation for EQ, the uncertainty mainly comes from the group of LCIA variables, highlighting the 

need for inventory spatialization. In the case of water availability for HH, the sensitivity is almost entirely due 

to the interactions between inventory model variables and LCIA variables. In this case, both groups of 

variables are sensitive and both inventory regionalization and spatialization should be enhanced. The spatial 

correlation within the IC between CFs has been partially addressed for land transformation but not for water 

availability. This limitation could partly explain the dominance of both ICs in the sensitivity in the IC ranking 

step (Patouillard et al. 2019). 

Regarding other regionalized ICs, the group of LCIA variables dominates the resulting sensitivity for the 

freshwater eutrophication IC only, indicating that inventory spatialization should be a priority for this IC. The 

interaction sensitivity index dominates the resulting sensitivity for terrestrial and freshwater acidification ICs 

for EQ and water availability for HH. Consequently, inventory regionalization and spatialization should both 

be a priority. Land occupation and marine eutrophication are the only ICs for which the group of LCI variables 

is the most sensitive, indicating that inventory regionalization should be prioritized here for these ICs.  

Finally, the group of inventory model variables necessarily dominates the resulting sensitivity for non-

regionalized ICs since no uncertainty from LCIA is associated with those ICs. The next section analyzes the 

part of the C-LCI model (foreground or background inventory model) that must be prioritized to refine the 

regionalization strategy. 

3.3.2. Digging deeper into inventory uncertainty 

Figure 5 presents the results for the GSA performed for the IC ranking step (length of each bar) and the 

background vs. foreground LCI step (divisions within each bar). In both steps, only inventory model variables 

(background and foreground) are uncertain and LCIA variables are set to their mean deterministic values, 

thus making it possible to test the sensitivity of the inventory model variables only. As uncertainty for 

background variables does not only contain spatial uncertainty, their contribution to the overall spatial 

uncertainty might be overestimated.  

Figure 5 - GSA results for the IC ranking step considering only uncertainty from inventory model 

variables (length of each bar) and for the background vs. foreground LCI step (divisions within each 

bar). Values of first-order sensitivity indices for the IC ranking step considering only uncertainty from 

inventory model variables for each damage IC contributing to the ecosystem quality (left) and human 

health AOPs (right). The divisions within each bar correspond to the contribution of sensitivity indices 

for the background vs. foreground LCI step with 𝑺𝑺𝑰𝑰𝟏𝟏𝑳𝑳𝑳𝑳𝑰𝑰𝒇𝒇𝒈𝒈: first-order sensitivity index for background 
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LCI variables (red); 𝑺𝑺𝑰𝑰𝟏𝟏𝑳𝑳𝑳𝑳𝑰𝑰𝒇𝒇𝒈𝒈: first-order sensitivity index for 𝑳𝑳𝑳𝑳𝑰𝑰𝒇𝒇𝒈𝒈variables (blue); 𝑺𝑺𝑰𝑰𝟐𝟐𝑳𝑳𝑳𝑳𝑰𝑰𝒃𝒃𝒈𝒈,𝑳𝑳𝑳𝑳𝑰𝑰𝒇𝒇𝒈𝒈: second-

order sensitivity index due to the interactions between 𝑿𝑿𝑳𝑳𝑳𝑳𝑰𝑰𝒃𝒃𝒈𝒈and 𝑿𝑿𝑳𝑳𝑳𝑳𝑰𝑰𝒃𝒃𝒈𝒈  variables (grey). The 

contribution of sensitivity indices for the background vs. foreground LCI step is also provided for each 

total AOP (hashed bar). 

For EQ, the contribution of ICs to the total damage impact score uncertainty from inventory model variables 

is similar, except for the land transformation IC where it is lower. So, a lower priority may be set on this latter 

IC for inventory regionalization, and other ICs are equally important. For HH, the water availability IC 

dominates the contribution of ICs to the total damage uncertainty from inventory model variables and 

therefore should become a study priority for inventory regionalization. 

The group of background inventory model variables dominates the sensitivity of the inventory model 

variables for only two ICs: ionizing radiation IC for HH and land transformation IC for EQ. For other ICs, the 

sensitivity is mainly due to the group of foreground inventory model variables or the interaction between 

background and foreground inventory model variables. These results highlight the fact that efforts should be 

invested to reduce the uncertainty from the foreground inventory model with a more representative 

regionalization of this part of the inventory model. For ICs in which interactions dominate, uncertainty 

reduction should also focus on background inventory model, in addition to the foreground inventory model.  

4. A proposed strategy for regionalization of the C-LCA case study 

The proposed strategy for regionalization in LCA strongly depends on the goal of the study, study resources 

(time and financial resources) and available tools, skills and experience of the team performing the study 

(Patouillard et al. 2018). Those factors affect the ICs that are selected for enhancement and the efforts 

invested to further study the sources of uncertainty within each group of variables.  

This case study is performed in the context of the development and enhancement of the C-LCA practice with 

the MIRET-TIMES model at IFP Énergies nouvelles and case study conclusions are based on the performance 

of each damage IC (decision-makers focusing on damage contribution). The proposed strategy is divided into 

actions from very high to low priority depending on the importance of the sensitivity, available means and 

confidence level about the study conclusions. In other words, actions with the highest potential for 

uncertainty reduction and which will help to draw study conclusions will be prioritized. Therefore, ICs for 

which we can already conclude with a confidence level of 95% (global warming, marine acidification, marine 

eutrophication, terrestrial acidification, thermally polluted water, photochemical oxidant formation and 

particulate matter formation) are excluded from this strategy. Only damage ICs which uncertainty prevents 

us from concluding will be prioritized.  
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Here are the proposed actions per priority level for regionalization in C-LCA for our case study: 

1. Very high priority actions. Those actions are focused on the most sensitive ICs (land transformation for 

EQ and water availability for HH) and the most sensitive part of their LCA model (LCIA data for both ICs 

and LCI data for water availability for HH). 

• Investigate the influence of LCIA spatial correlation (spatial correlation within IC between CFs) on the 

impact score uncertainty for land transformation for EQ and water availability for HH, as it may highly 

influence the high sensitivity of both ICs (Patouillard et al. 2019). 

• If the potential for uncertainty reduction with LCIA spatial correlation is high, implement the LCIA 

spatial correlation within IC between CFs for land transformation for EQ and water availability for HH 

and perform GSA as described in the methodology from the beginning. 

• If the potential for uncertainty reduction with LCIA spatial correlation is low, spatialize elementary 

flows for land transformation for EQ and water availability for HH to use more regionalized CFs 

instead of global CFs. The first level of spatialization would be to use the available information from 

ecoinvent on the location of each process unit, which is often at the country level. For water 

availability for HH, regionalize the inventory, especially the foreground LCI from the MIRET model. 

2. High priority actions. Those actions are focused on other high sensitive ICs which sensitivity may be due 

to foreground inventory model, i.e. the MIRET model (thermally polluted water, freshwater ecotoxicity, 

water availability, land occupation for EQ; ozone layer depletion, human toxicity for HH). 

• Perform a GSA to investigate the influence of each foreground LCI variables to identify which among 

them are more sensitive. Do it in priority for ICs where conclusions are more difficult to draw, i.e. 

when result distribution contains negative and positive values well spread around zero. 

• Enhance the description of the relative spatial variation of the most sensitive foreground inventory 

model variables. For instance, a more representative distribution may be defined to represent the 

relative spatial variation instead of the uniform distribution currently used. In this case, the space-

filling experimental design should be adapted. 

3. Low priority actions: Those actions are focused on other parts of the LCA model for highly sensitive ICs. 

• Perform a GSA to investigate the influence of background LCI variables to identify the most sensitive 

ones. Enhance the regionalization for those variables by performing a more representative regional 

data collection. Do it for highly sensitive ICs where background inventory model variables may be 

sensitive (freshwater ecotoxicity, land occupation for EQ; ozone layer depletion, human toxicity, 

ionizing radiation for HH). 

• Spatialize elementary flows to use more regionalized CFs instead of global CFs. The first level of 

spatialization would be to use the available information from ecoinvent on the location of each 
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process unit, which is often at the country level. Do it for highly sensitive ICs where LCIA data may be 

sensitive (land occupation and freshwater eutrophication for EQ). 

5. Discussion 

This article aims to prioritize regionalization efforts to enhance interpretation in C-LCA by assessing the 

spatial uncertainty of a case study building on a partial equilibrium economic model. The methodology used 

to prioritize regionalization efforts is an adaptation of the methodology proposed by Patouillard et al (2019). 

The benefits and limits of this methodology are already discussed in Patouillard et al (2019). Here, the 

discussion focuses on the limitations of its adaptation for our case study in C-LCA to avoid over-interpretation 

of the results. 

5.1. Assessing uncertainty from partial equilibrium economic modelling 

Assessing the spatial uncertainty of the foreground inventory model from the MIRET model was one of the 

challenges faced during this study. First, we relied on expert judgement to identify input variables of the 

MIRET model that may be subject to spatial variability. As it was not possible to assess the spatial variability 

of each MIRET model inputs, this approach helped us to focus our data collection to assess the spatial 

variability of the MIRET model in the context of our case study. However, by doing so, we excluded some 

inputs that might have been sensitive. As stated by Moret et al. (2017), this a priori exclusion should be 

avoided. Therefore, it would have been relevant to first identify the most sensitive inputs from the MIRET 

model and to assess the spatial variability of those inputs. Unfortunately, identifying the most sensitive inputs 

of the MIRET model was beyond the scope and the means of our case study. Nevertheless, future works on 

the MIRET model should focus on assessing the sensitivity of the model. 

As the MIRET model was computationally intensive and not integrated with the background inventory model 

and LCA model, we used a computer experimental design to save time. We chose a standard design, known 

as space-filling, which consists of selecting sets of values for inputs uniformly spread across the experimental 

region. Still, we used the MIRET results for each experiment in our Monte Carlo analysis, using bootstrapping 

to randomly pick a MIRET result at each iteration. In doing so, we assumed a uniform distribution of the input 

variables of the MIRET model, which may lead to misestimating, and probably overestimating, the sensitivity 

of foreground inventory model variables (Muller et al. 2017). Indeed, input variables most likely have a value 

and distribution that are different from the uniform distribution. In our case study, input variables from the 

MIRET model are biomass prices. Their distribution should reflect prices from the different region of origin 

weighted by the amount of biomass produced in each region. Their most likely value is the price in the region 

where most of the biomass originates (main import country or region). Alternative probability distributions 
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to fit the spatial distribution of the biomass prices should be investigated to validate (or not) the choice for 

the uniform distribution. 

An alternative way to account for input variable-specific distribution is to build a prediction model based on 

the computer experiment design results, for instance using response surface methodology (Draper 1997; Ba 

and Boyaci 2007). The prediction model would be an estimation of the MIRET model, calculating MIRET result 

estimates from the input variable value defined by the user. Using this model, we may apply any distribution 

to the input variables and perform a Monte Carlo analysis directly on the prediction model to estimate MIRET 

uncertainty. However, the estimator to build the prediction model must be adapted to the MIRET model, 

especially because MIRET results are not linear and may have discontinuities regarding input variables. The 

existence of estimators adapted to the MIRET model, as well as computational time to build the prediction 

model, must be studied. 

In our case study, we only investigated the spatial variability of the MIRET model. It involved a limited number 

of variables. Thus, the number of experiments, which depends on the number of variables, remains 

reasonable. If the purpose of the uncertainty analysis would have been to investigate all the MIRET 

uncertainty sources, and not only spatial variability, the number of variables would have been higher. 

Therefore, the number of experiments and thus the computational time to run them would have increased 

dramatically. In this case, an alternative to computer experimental design is required. The uncertainty of the 

TIMES model results can also be estimated with other approaches such as robust optimization (Nicolas et al. 

2014). The associated computational time, as well as how uncertainty results can be used for C-LCA purposes, 

should be studied further. 

5.2. LCIA spatial correlation in C-LCA 

Once regionalized ICs have been dealt with, LCIA spatial correlations from different origins should be 

considered: the spatial correlation at the product system level, the spatial correlation between ICs (inter ICs) 

and the spatial correlation within IC between CFs (intra CFs) (Patouillard et al. 2019). There is an additional 

source of LCIA spatial correlation in C-LCA: LCIA spatial correlation between processes affected by the 

decision. Here, affected processes are identified by comparing two scenarios modelled using the economic 

model MIRET: one scenario with the decision and the other without. Only the difference between both 

scenarios is modelled in the C-LCA model. However, the spatial distribution of a process may be different 

between the scenario with and without the decision. For instance, biomass cultivation processes may occur 

in some regions in the scenario that implement the LTE and in other regions in the business-as-usual scenario. 

Here, since the MIRET version used in this exercise is not regionalized, we assumed that this spatial 

distribution is the same for both scenarios and thus also assume that processes from the scenario with and 
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without decision are perfectly spatially correlated. We, therefore, use regionalized CFs from the same region 

for both scenarios. 

The effect of accounting (or not) for LCIA spatial correlation between affected processes may be studied by 

comparing C-LCA results from the current MIRET model (not regionalized) with a regionalized version of the 

MIRET model (GeoMIRET). With this version, we would be able to compare the spatial distribution of 

scenarios with and without the decision for each process and see if they match or not. If there is a difference 

between spatial distributions for each process that affects the C-LCA results, then not only should a set of 

affected processes be modelled in the C-LCA model but the LCA model of both scenarios, including affected 

and not affected processes, would have to be modelled. The difference between both LCA models must also 

be determined (Yang 2016). 

5.3. Other main limitations of the case study 

Even if we would have preferred to use a consequential version of an LCI database to fully represent the 

chain of consequences even in the background data, we decided not to assess the consequences of the 

decision in the background inventory model, by using the attributional version of ecoinvent 3.3 to model the 

background. Indeed, the consequential version of the ecoinvent 3.3 database has limitations to adequately 

represent the prospective consequences in the background inventory model. In this consequential version 

of the ecoinvent database, constrained productions and marginal supply mix shares are identified based on 

historical average data which limits the possibility to assess future consequences of a decision (Wernet et al. 

2016; Vandepaer et al. 2018). Note that those shortcomings have been addressed in the most recent 

consequential version of ecoinvent and that consequential version of ecoinvent can surely be used in future 

consequential studies to model the background LCI. 

Regarding uncertainty analysis, we accounted for the spatial uncertainty sources that we were able to 

quantify in the most comprehensive way as possible, i.e. trying to quantify the maximum sources of 

uncertainty in the case study. Nevertheless, quantifying all potential sources of spatial uncertainty in LCA was 

impossible because: (1) quantifying all quantitative sources would have required a very substantial amount 

of time that was beyond the time available for this study, (2) some qualitative uncertainty sources are difficult 

to translate into quantitative uncertainty, (3) we do not even know all potential sources in LCA, (4) the 

quantification of uncertainty is also uncertain. Interpretation of uncertainty analysis should keep in mind 

those limitations. More specifically, we do not account for the spatial component of the LCIA model 

uncertainty (i.e. spatial uncertainty from native resolution as opposed to the variability due to spatial 

aggregation) as this information is not yet provided by LCIA method developers (Mutel et al. 2018). Regarding 
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uncertainty for background LCI, we accounted for all components of the ecoinvent uncertainty data, not only 

the spatial component, as we only had access to the uncertainty information in that format. Therefore, if the 

main source of uncertainty comes from background inventory model in our case study, the way to reduce it 

would be to collect more representative data, but not necessarily more regionalized ones. Besides, inventory 

model and LCIA correlations have been partially addressed in our case study, so uncertainty and GSA results 

should be interpreted with caution especially for land transformation and water availability impact indicators 

which are mainly affected (Patouillard et al. 2019). 

6. Conclusion 

The uncertainty analysis of this C-LCA case study including inventory model and LCIA input variables shows 

that the implementation of alternative transport scenarios in compliance with the LTE public policy is 

beneficial for some ICs, such as global warming, marine acidification, marine eutrophication, terrestrial 

acidification, thermally polluted water, photochemical oxidant formation and particulate matter formation, 

with a confidence level of 95%. For other ICs, uncertainty reduction is required to determine conclusions with 

a similar level of confidence. 

The GSA of our C-LCA case study highlights that input variables identified from the partial equilibrium 

economic model with spatial variability (foreground inventory model) are significant contributors to the 

spatial uncertainty results and should be prioritized for spatial uncertainty reduction. Indeed, ways to reduce 

the spatial uncertainty of foreground inventory model from economic modelling should be explored. In this 

C-LCA case study, all regionalized ICs (except land occupation IC) require inventory spatialization, since the 

group of LCIA variables is the most sensitive. Therefore, using regionalized CFs in C-LCA is relevant, and C-

LCA calculation tools should be adapted accordingly. 
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Table 1. 

Parts of the C-LCA 

model 

Estimation of input 

uncertainty 

Uncertainty 

propagation 

Output format 

and integration 

with LCA model 

Background 

inventory model = 

adapted ecoinvent 

database 

Pedigree approach as 
defined in ecoinvent. 

 Fully integrated 
with the LCA 
model. 

Foreground 

inventory model = 

MIRET model 

Estimation of spatial 
variability based on historical 
data for 5 key parameters. 

Computer 
experimental 
design (space-filling 
design with Latin-
Hypercube 
sampling). 

80 sets of MIRET 
results. 
Not integrated 
with the LCA 
model. 

LCIA data = CFs 

from IMPACT 

World+ 

Spatial variability of global 
CFs for spatially-
differentiated ICs 
represented with four-
parameter beta distributions 

 Fully integrated 
with the LCA 
model. 

LCA calculation 

model 

Resampling using 
bootstrapping for 
foreground inventory model. 
Random sampling from 
probability distributions for 
background inventory model 
and LCIA data. 

Monte Carlo 
simulation with 
dependent 
sampling for the 
scenario with and 
without decision. 

5 000 runs  
= C-LCA impact 
scores 
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Table 2  

Steps Model on which the GSA is performed Sensitivity indices estimated  

(details available in SI) 

IC ranking 𝒉𝒉𝑨𝑨𝑨𝑨𝑨𝑨 = 𝑚𝑚1�ℎ0𝑎𝑎𝑎𝑎𝑚𝑚 , … , ℎ𝑗𝑗𝑎𝑎𝑎𝑎𝑚𝑚 , … , ℎ𝐽𝐽−1𝑎𝑎𝑎𝑎𝑚𝑚� 

based on equation 5. 

𝑆𝑆𝑆𝑆1ℎ𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑  for each IC𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴  

LCI vs. LCIA 𝒉𝒉𝒅𝒅𝒅𝒅𝒅𝒅 = 𝑚𝑚2(𝑋𝑋𝐿𝐿𝐿𝐿𝐼𝐼 ,𝑋𝑋𝐿𝐿𝐿𝐿𝐼𝐼𝐴𝐴) based on equation 

4. 

𝑆𝑆𝑆𝑆1𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿 , 𝑆𝑆𝑆𝑆1𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  𝑒𝑒𝑒𝑒𝑑𝑑 𝑆𝑆𝑆𝑆2𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿,𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  for 

each IC𝑗𝑗𝑎𝑎𝑎𝑎𝑚𝑚 

background 

vs. 

foreground 

LCI 

𝒉𝒉𝒅𝒅𝒅𝒅𝒅𝒅 = 𝑚𝑚3 �𝑋𝑋𝐿𝐿𝐿𝐿𝐼𝐼𝑏𝑏𝑏𝑏 ,𝑋𝑋𝐿𝐿𝐿𝐿𝐼𝐼𝑓𝑓𝑏𝑏 , 𝜇𝜇𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿� which 

is a derived model from 𝑚𝑚2 where 𝑋𝑋𝐿𝐿𝐿𝐿𝐼𝐼𝐴𝐴 are 

set to their mean deterministic values 

(𝜇𝜇𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿). 

𝑆𝑆𝑆𝑆1𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏 , 𝑆𝑆𝑆𝑆1𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿𝑓𝑓𝑏𝑏𝑒𝑒𝑒𝑒𝑑𝑑 𝑆𝑆𝑆𝑆2𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏 ,𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿𝑓𝑓𝑏𝑏  

for each IC𝑗𝑗𝑎𝑎𝑎𝑎𝑚𝑚 
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